Sample records for sensitive force transducer

  1. A microelectromechanical systems (MEMS) force-displacement transducer for sub-5 nm nanoindentation and adhesion measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Youfeng; Oh, Yunje; Stauffer, Douglas; Polycarpou, Andreas A.

    2018-04-01

    We present a highly sensitive force-displacement transducer capable of performing ultra-shallow nanoindentation and adhesion measurements. The transducer utilizes electrostatic actuation and capacitive sensing combined with microelectromechanical fabrication technologies. Air indentation experiments report a root-mean-square (RMS) force resolution of 1.8 nN and an RMS displacement resolution of 0.019 nm. Nanoindentation experiments on a standard fused quartz sample report a practical RMS force resolution of 5 nN and an RMS displacement resolution of 0.05 nm at sub-10 nm indentation depths, indicating that the system has a very low system noise for indentation experiments. The high sensitivity and low noise enables the transducer to obtain high-resolution nanoindentation data at sub-5 nm contact depths. The sensitive force transducer is used to successfully perform nanoindentation measurements on a 14 nm thin film. Adhesion measurements were also performed, clearly capturing the pull-on and pull-off forces during approach and separation of two contacting surfaces.

  2. Experimental Investigation of a Piezo-Optical Transducer for Highly Sensitive Strain Gauges

    NASA Astrophysics Data System (ADS)

    Paulish, A. G.; Zagubisalo, P. S.; Barakov, V. N.; Pavlov, M. A.

    2018-03-01

    The characteristics of a piezo-optical transducer of a new design with high strain sensitivity at compact size have been studied.The original form of the photoelastic element provides a considerable increase in the stress in its working area at a given external force, resulting in an increase in the sensitivity of the transducer. The main characteristics of the transducer were measured using a specially designed device. The strain at a given applied force was calculated using a developed mathematical model of the transducer. As a result, the sensitivity to the relative strain was Δ x/ x=3 · 10-10, the dynamic range was at least four orders of magnitude higher and the gauge factor three orders of magnitude higher than those of strain-resistive gauges.

  3. Ultra-sensitive transducer advances micro-measurement range

    NASA Technical Reports Server (NTRS)

    Rogallo, V. L.

    1964-01-01

    An ultrasensitive piezoelectric transducer, that converts minute mechanical forces into electrical impulses, measures the impact of micrometeoroids against space vehicles. It has uniform sensitivity over the entire target area and a high degree of stability.

  4. Force monitoring transducers with more than 100,000 scale intervals

    NASA Astrophysics Data System (ADS)

    Stavrov, Vladimir; Shulev, Assen; Chakarov, Dimiter; Stavreva, Galina

    2015-05-01

    This paper presents the results obtained at characterization of novel, high performing force transducers to be employed into monitoring systems with very high accuracy. Each force transducer comprises of a coherently designed mechanical transducer and a position microsensor with very high accuracy. The range of operation for the mechanical transducer has been optimized to fit the 500μm travel range of the position microsensor. Respectively, the flexures' stiffness corresponds to achieve the maximum displacement at 70N load force. The position microsensor is a MEMS device, comprising of two rigid elements: an anchored and an actuated ones connected via one monolithic micro-flexure. Additionally, the micro-flexure comprises of two strain detecting cantilevers having four sidewall embedded piezoresistors connected in a Wheatstone bridge. The particular sensor provides a voltage signal having sensitivity in the range of 240μV/μm at 1V DC voltage supply. The experimental set-up for measurement of the load curve of the force transducer has demonstrated an overall force resolution of about 0.6mN. As a result, more than 100,000 scale intervals have been experimentally assessed. The present work forms development of a common approach for accurate measurement of various physical values, when they are transduced in a multi-D displacement. Due to the demonstrated high accuracy, the force transducers with piezoresistive MEMS sensors remove most of the constraints in force monitoring with ppm-accuracy.

  5. Optical Interferometric Micrometrology

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.; Lauer, James R.

    1989-01-01

    Resolutions in angstrom and subangstrom range sought for atomic-scale surface probes. Experimental optical micrometrological system built to demonstrate calibration of piezoelectric transducer to displacement sensitivity of few angstroms. Objective to develop relatively simple system producing and measuring translation, across surface of specimen, of stylus in atomic-force or scanning tunneling microscope. Laser interferometer used to calibrate piezoelectric transducer used in atomic-force microscope. Electronic portion of calibration system made of commercially available components.

  6. Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.

    PubMed

    Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C

    2018-01-01

    The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.

  7. Traceable calibration and demonstration of a portable dynamic force transfer standard

    NASA Astrophysics Data System (ADS)

    Vlajic, Nicholas; Chijioke, Ako

    2017-08-01

    In general, the dynamic sensitivity of a force transducer depends upon the mechanical system in which it is used. This dependence serves as motivation to develop a dynamic force transfer standard, which can be used to calibrate an application transducer in situ. In this work, we SI-traceably calibrate a hand-held force transducer, namely an impact hammer, by using a mass suspended from a thin line which is cut to produce a known dynamic force in the form of a step function. We show that this instrument is a promising candidate as a transfer standard, since its dynamic response has small variance between different users. This calibrated transfer standard is then used to calibrate a secondary force transducer in an example application setting. The combined standard uncertainty (k  =  2) in the calibration of the transfer standard was determined to be 2.1% or less, up to a bandwidth of 5 kHz. The combined standard uncertainty (k  =  2) in the performed transfer calibration was less than 4%, up to 3 kHz. An advantage of the transfer calibration framework presented here, is that the transfer standard can be used to transfer SI-traceable calibrations without the use of any SI-traceable voltage metrology instrumentation.

  8. NASA Ultra-Sensitive Miniature Accelerometer

    NASA Technical Reports Server (NTRS)

    Zavracky, Paul M.; Hartley, Frank T.

    1994-01-01

    Using micro-machined silicon technology, an ultra-sensitive miniature acce.,rometer can be constructed which meets the requirements for microgravity experiments in the space environment.Such an accelerometer will have a full scale sensitivity of 1C2 g a resolution of lC8 g, low cross axis sensitivity, and low temperature sensitivity. Mass of the device is approximately five grams and its footprint is 2 cm x 2 cm. Innovative features of the accelerometer, which are patented, are: electrostatic caging to withstand handling shock up to 150 g, in-situ calibration, in situ performance characterization, and both static and dynamic compensation. The transducer operates on a force balance principle wherein the displacement of the proof mass is monitored by measuring tunneling electron current flow between a conductive tip, and a fixed platen. The four major parts of the accelerometer are tip die, incorporating the tunneling tip and four field plates for controlling pitch and roll of the proof mass; two proof mass dies, attached to the surrounding frame by sets of four leg" springs; and a force plate die. The four parts are fuse-bonded into a complete assembly. External electrical connections are made at bond pads on the front surface of the force plate die. Materials and processes used in the construction of the transducer are compatible with volume production.

  9. Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion.

    PubMed

    Araneo, Rodolfo; Falconi, Christian

    2013-07-05

    Quasi-1D piezoelectric nanostructures may offer unprecedented sensitivity for transducing minuscule input mechanical forces into high output voltages due to both scaling laws and increased piezoelectric coefficients. However, until now both theoretical and experimental studies have suggested that, for a given mechanical force, lateral bending of piezoelectric nanowires results in lower output electric potentials than vertical compression. Here we demonstrate that this result only applies to nanostructures with a constant cross-section. Moreover, though it is commonly believed that the output electric potential of a strained piezo-semiconductive device can only be reduced by the presence of free charges, we show that the output piezopotential of laterally bent tapered nanostructures, with typical doping levels and very small input forces, can be even increased up to two times by free charges.Our analyses confirm that, though not optimal for piezoelectric energy harvesting, lateral bending of tapered nanostructures with typical doping levels can be ideal for transducing tiny input mechanical forces into high and accessible piezopotentials. Our results provide guidelines for designing high-performance piezo-nano-devices for energy harvesting, mechanical sensing, piezotronics, piezo-phototronics, and piezo-controlled chemical reactions, among others.

  10. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.

    1993-01-01

    Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.

  11. A generalised multiple-mass based method for the determination of the live mass of a force transducer

    NASA Astrophysics Data System (ADS)

    Montalvão, Diogo; Baker, Thomas; Ihracska, Balazs; Aulaqi, Muhammad

    2017-01-01

    Many applications in Experimental Modal Analysis (EMA) require that the sensors' masses are known. This is because the added mass from sensors will affect the structural mode shapes, and in particular its natural frequencies. EMA requires the measurement of the exciting forces at given coordinates, which is often made using piezoelectric force transducers. In such a case, the live mass of the force transducer, i.e. the mass as 'seen' by the structure in perpendicular directions must be measured somehow, so that compensation methods like mass cancelation can be performed. This however presents a problem on how to obtain an accurate measurement for the live mass. If the system is perfectly calibrated, then a reasonably accurate estimate can be made using a straightforward method available in most classical textbooks based on Newton's second law. However, this is often not the case (for example when the transducer's sensitivity changed over time, when it is unknown or when the connection influences the transmission of the force). In a self-calibrating iterative method, both the live mass and calibration factor are determined, but this paper shows that the problem may be ill-conditioned, producing misleading results if certain conditions are not met. Therefore, a more robust method is presented and discussed in this paper, reducing the ill-conditioning problems and the need to know the calibration factors beforehand. The three methods will be compared and discussed through numerical and experimental examples, showing that classical EMA still is a field of research that deserves the attention from scientists and engineers.

  12. Development of a novel configuration for a MEMS transducer for low bias and high resolution imaging applications

    NASA Astrophysics Data System (ADS)

    Emadi, Tahereh Arezoo; Buchanan, Douglas A.

    2014-03-01

    A robust capacitive micromachined ultrasonic transducer has been developed. In this novel configuration, a stack of two deflectable membranes are suspended over a fixed bottom electrode. Similar to conventional capacitive ultrasonic transducers, a generated electrostatic force between the electrodes causes the membranes to deflect and vibrate. However, in this new configuration the transducer effective cavity height is reduced due to the deflection of two membranes. Therefore, the transducer spring constant is more susceptible to bias voltage, which in return reduces the required bias voltage. The transducers have been produced employing a MEMS sacrificial technique where two different membrane anchoring (curved- and flat- anchors) structures, with similar membrane radii were fabricated. Highly doped polysilicon was used as the membrane material. The resonant frequencies of the two transducers have been investigated. It was found that the transducers with curved membrane anchors exhibits a larger resonant frequency shift compared to the transducers with flat membranes for a given bias voltage. Comparison has been made between the spring constant of the flat membrane transducer and that of a conventional single membrane transducer. It is shown that the multiple moving membrane transducer exhibits a larger reduction in the spring constant compared to the conventional transducer, when driven with the same bias voltage. This results in a transducer with a higher power generation capability and sensitivity.

  13. Reversible Solid Adhesion for Defense Applications

    DTIC Science & Technology

    2008-01-31

    sensitive. Referring to Fig. 2(a), using the two closed-loop piezoelectric ( PZT ) actuators, the vertical and horizontal velocities of the...approaching/retracting contacting surfaces can be independently controlled. The displacement resolution of the vertical PZT actuator is 0.6 nm, and the total...interfacial forces are measured using the prototype custom-made capacity-type force transducer which is attached directly on the upper PZT actuator. In order

  14. Calibration of a horizontally acting force transducer with the use of a simple pendulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taberner, Andrew J.; Hunter, Ian W.; BioInstrumentation Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

    This article details the implementation of a method for calibrating horizontally measuring force transducers using a pendulum. The technique exploits the sinusoidal inertial force generated by a suspended mass as it pendulates about a point on the measurement axis of the force transducer. The method is used to calibrate a reconfigurable, custom-made force transducer based on exchangeable cantilevers with stiffness ranging from 10 to 10{sup 4} N/m. In this implementation, the relative combined standard uncertainty in the calibrated transducer stiffness is 0.41% while the repeatability of the calibration technique is 0.46%.

  15. The effect of applied transducer force on acoustic radiation force impulse quantification within the left lobe of the liver.

    PubMed

    Porra, Luke; Swan, Hans; Ho, Chien

    2015-08-01

    Introduction: Acoustic Radiation Force Impulse (ARFI) Quantification measures shear wave velocities (SWVs) within the liver. It is a reliable method for predicting the severity of liver fibrosis and has the potential to assess fibrosis in any part of the liver, but previous research has found ARFI quantification in the right lobe more accurate than in the left lobe. A lack of standardised applied transducer force when performing ARFI quantification in the left lobe of the liver may account for some of this inaccuracy. The research hypothesis of this present study predicted that an increase in applied transducer force would result in an increase in SWVs measured. Methods: ARFI quantification within the left lobe of the liver was performed within a group of healthy volunteers (n = 28). During each examination, each participant was subjected to ARFI quantification at six different levels of transducer force applied to the epigastric abdominal wall. Results: A repeated measures ANOVA test showed that ARFI quantification was significantly affected by applied transducer force (p = 0.002). Significant pairwise comparisons using Bonferroni correction for multiple comparisons showed that with an increase in applied transducer force, there was a decrease in SWVs. Conclusion: Applied transducer force has a significant effect on SWVs within the left lobe of the liver and it may explain some of the less accurate and less reliable results in previous studies where transducer force was not taken into consideration. Future studies in the left lobe of the liver should take this into account and control for applied transducer force.

  16. Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions

    PubMed Central

    Huang, Qian; Lee, Joon; Arce, Fernando Teran; Yoon, Ilsun; Angsantikul, Pavimol; Liu, Justin; Shi, Yuesong; Villanueva, Josh; Thamphiwatana, Soracha; Ma, Xuanyi; Zhang, Liangfang; Chen, Shaochen; Lal, Ratnesh; Sirbuly, Donald J.

    2018-01-01

    Ultrasensitive nanomechanical instruments, including the atomic force microscope (AFM)1–4 and optical and magnetic tweezers5–8, have helped shed new light on the complex mechanical environments of biological processes. However, it is difficult to scale down the size of these instruments due to their feedback mechanisms9, which, if overcome, would enable high-density nanomechanical probing inside materials. A variety of molecular force probes including mechanophores10, quantum dots11, fluorescent pairs12,13 and molecular rotors14–16 have been designed to measure intracellular stresses; however, fluorescence-based techniques can have short operating times due to photo-instability and it is still challenging to quantify the forces with high spatial and mechanical resolution. Here, we develop a compact nanofibre optic force transducer (NOFT) that utilizes strong near-field plasmon–dielectric interactions to measure local forces with a sensitivity of <200 fN. The NOFT system is tested by monitoring bacterial motion and heart-cell beating as well as detecting infrasound power in solution. PMID:29576804

  17. Load apparatus and method for bolt-loaded compact tension test specimen

    DOEpatents

    Buescher, B.J. Jr.; Lloyd, W.R.; Ward, M.B.; Epstein, J.S.

    1997-02-04

    A bolt-loaded compact tension test specimen load apparatus includes: (a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; (b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; (c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and (d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen. 6 figs.

  18. Load apparatus and method for bolt-loaded compact tension test specimen

    DOEpatents

    Buescher, Jr., Brent J.; Lloyd, W. Randolph; Ward, Michael B.; Epstein, Jonathan S.

    1997-01-01

    A bolt-loaded compact tension test specimen load apparatus includes: a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen.

  19. A Simple, Inexpensive Method for the Measurement of in vivo Intestinal Activity.

    ERIC Educational Resources Information Center

    Sallee, V. L.; Gaugl, J. F.

    1980-01-01

    Describes a system that monitors intestinal motility in vivo which is very sensitive, minimally injurious to the tissue, and inexpensive. Used are two balloons, one of which is inserted into the intestinal lumen and the other suspended from a force transducer. (CS)

  20. The effects of dimensional parameters on sensing and energy harvesting of an embedded PZT in a total knee replacement

    NASA Astrophysics Data System (ADS)

    Safaei, Mohsen; Anton, Steven R.

    2016-04-01

    Total Knee Replacement (TKR), one of the most common surgeries in the United States, is performed when the patient is experiencing significant amounts of pain or when knee functionality has become substantially degraded. Despite impressive recent developments, only about 85% of patients are satisfied with the pain reduction after one year. Therefore, structural health and performance monitoring are integral for intraoperative and postoperative feedback. In extension of the author's previous work, a new configuration for implementation of piezoelectric transducers in total knee replacement bearings is proposed and FEA modeling is performed to attain appropriate sensing and energy harvesting ability. The predicted force transmission ratio to the PZT (ratio of force applied to the bearing to force transferred to the embedded piezoelectric transducer) is about 6.2% compared to about 5% found for the previous encapsulated design. Dimensional parameters of the polyethylene bearing including the diameter and depth of the PZT pocket as well as the placement geometry of the PZT transducer within the bearing are hypothesized as the most influential parameters on the performance of the designed system. The results show a small change of 1% and 2.3% in the output of the system as a result of variation in the PZT location and pocket diameter, respectively. Whereas, the output of the system is significantly sensitive to the pocket depth; a pocket 0.01 mm deeper than the PZT transducer leads to no force transmission, and a pocket 0.15 mm shallower leads to full load transmission to the PZT. In order to develop a self-powered sensor, the amount of energy harvested from tibial forces for the proposed geometry is investigated.

  1. Transducer-based evaluation of tremor

    PubMed Central

    Haubenberger, Dietrich; Abbruzzese, Giovanni; Bain, Peter G; Bajaj, Nin; Benito-León, Julián; Bhatia, Kailash P; Deuschl, Günther; Forjaz, Maria João; Hallett, Mark; Louis, Elan D; Lyons, Kelly E; Mestre, Tiago A; Raethjen, Jan; Stamelou, Maria; Tan, Eng-King; Testa, Claudia M; Elble, Rodger J

    2016-01-01

    The Movement Disorder Society (MDS) established a task force on tremor that reviewed the use of transducer-based measures in the quantification and characterization of tremor. Studies of accelerometry, electromyography, activity monitoring, gyroscopy, digitizing tablet-based measures, vocal acoustic analysis, and several other transducer-based methods were identified by searching PubMed.gov. The availability, use, acceptability, reliability, validity, and responsiveness were reviewed for each measure using the following criteria: 1) used in the assessment of tremor, 2) used in published studies by people other than the developers, and 3) adequate clinimetric testing. Accelerometry, gyroscopy, electromyography, and digitizing tablet-based measures fulfilled all three criteria. Compared to rating scales, transducers are far more sensitive to changes in tremor amplitude and frequency, but they do not appear to be more capable of detecting a change that exceeds random variability in tremor amplitude (minimum detectable change). The use of transducer-based measures requires careful attention to their limitations and validity in a particular clinical or research setting. PMID:27273470

  2. Traceable Dynamic Calibration of Force Transducers by Primary Means

    PubMed Central

    Vlajic, Nicholas; Chijioke, Ako

    2018-01-01

    We describe an apparatus for traceable, dynamic calibration of force transducers using harmonic excitation, and report calibration measurements of force transducers using this apparatus. In this system, the force applied to the transducer is produced by the acceleration of an attached mass, and is determined according to Newton’s second law, F = ma. The acceleration is measured by primary means, using laser interferometry. The capabilities of this system are demonstrated by performing dynamic calibrations of two shear-web-type force transducers up to a frequency of 2 kHz, with an expanded uncertainty below 1.2 %. We give an accounting of all significant sources of uncertainty, including a detailed consideration of the effects of dynamic tilting (rocking), which is a leading source of uncertainty in such harmonic force calibration systems. PMID:29887643

  3. Force/torque and tactile sensors for sensor-based manipulator control

    NASA Technical Reports Server (NTRS)

    Vanbrussel, H.; Belieen, H.; Bao, Chao-Ying

    1989-01-01

    The autonomy of manipulators, in space and in industrial environments, can be dramatically enhanced by the use of force/torque and tactile sensors. The development and future use of a six-component force/torque sensor for the Hermes Robot Arm (HERA) Basic End-Effector (BEE) is discussed. Then a multifunctional gripper system based on tactile sensors is described. The basic transducing element of the sensor is a sheet of pressure-sensitive polymer. Tactile image processing algorithms for slip detection, object position estimation, and object recognition are described.

  4. Tensegrity: the architectural basis of cellular mechanotransduction

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.

    1997-01-01

    Physical forces of gravity, hemodynamic stresses, and movement play a critical role in tissue development. Yet, little is known about how cells convert these mechanical signals into a chemical response. This review attempts to place the potential molecular mediators of mechanotransduction (e.g. stretch-sensitive ion channels, signaling molecules, cytoskeleton, integrins) within the context of the structural complexity of living cells. The model presented relies on recent experimental findings, which suggests that cells use tensegrity architecture for their organization. Tensegrity predicts that cells are hard-wired to respond immediately to mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix (e.g. integrins) or to other cells (cadherins, selectins, CAMs). Many signal transducing molecules that are activated by cell binding to growth factors and extracellular matrix associate with cytoskeletal scaffolds within focal adhesion complexes. Mechanical signals, therefore, may be integrated with other environmental signals and transduced into a biochemical response through force-dependent changes in scaffold geometry or molecular mechanics. Tensegrity also provides a mechanism to focus mechanical energy on molecular transducers and to orchestrate and tune the cellular response.

  5. Electron-Tunneling Magnetometer

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Kenny, Thomas W.; Waltman, Steven B.

    1993-01-01

    Electron-tunneling magnetometer is conceptual solid-state device operating at room temperature, yet offers sensitivity comparable to state-of-art magnetometers such as flux gates, search coils, and optically pumped magnetometers, with greatly reduced volume, power consumption, electronics requirements, and manufacturing cost. Micromachined from silicon wafer, and uses tunneling displacement transducer to detect magnetic forces on cantilever-supported current loop.

  6. Transducer-based evaluation of tremor.

    PubMed

    Haubenberger, Dietrich; Abbruzzese, Giovanni; Bain, Peter G; Bajaj, Nin; Benito-León, Julián; Bhatia, Kailash P; Deuschl, Günther; Forjaz, Maria João; Hallett, Mark; Louis, Elan D; Lyons, Kelly E; Mestre, Tiago A; Raethjen, Jan; Stamelou, Maria; Tan, Eng-King; Testa, Claudia M; Elble, Rodger J

    2016-09-01

    The International Parkinson and Movement Disorder Society established a task force on tremor that reviewed the use of transducer-based measures in the quantification and characterization of tremor. Studies of accelerometry, electromyography, activity monitoring, gyroscopy, digitizing tablet-based measures, vocal acoustic analysis, and several other transducer-based methods were identified by searching PubMed.gov. The availability, use, acceptability, reliability, validity, and responsiveness were reviewed for each measure using the following criteria: (1) used in the assessment of tremor; (2) used in published studies by people other than the developers; and (3) adequate clinimetric testing. Accelerometry, gyroscopy, electromyography, and digitizing tablet-based measures fulfilled all three criteria. Compared to rating scales, transducers are far more sensitive to changes in tremor amplitude and frequency, but they do not appear to be more capable of detecting a change that exceeds random variability in tremor amplitude (minimum detectable change). The use of transducer-based measures requires careful attention to their limitations and validity in a particular clinical or research setting. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  7. Biomolecule recognition using piezoresistive nanomechanical force probes

    NASA Astrophysics Data System (ADS)

    Tosolini, Giordano; Scarponi, Filippo; Cannistraro, Salvatore; Bausells, Joan

    2013-06-01

    Highly sensitive sensors are one of the enabling technologies for the biomarker detection in early stage diagnosis of pathologies. We have developed a self-sensing nanomechanical force probe able for detecting the unbinding of single couples of biomolecular partners in nearly physiological conditions. The embedding of a piezoresistive transducer into a nanomechanical cantilever enabled high force measurement capability with sub 10-pN resolution. Here, we present the design, microfabrication, optimization, and complete characterization of the sensor. The exceptional electromechanical performance obtained allowed us to detect biorecognition specific events underlying the biotin-avidin complex formation, by integrating the sensor in a commercial atomic force microscope.

  8. Features calibration of the dynamic force transducers

    NASA Astrophysics Data System (ADS)

    Sc., M. Yu Prilepko D.; Lysenko, V. G.

    2018-04-01

    The article discusses calibration methods of dynamic forces measuring instruments. The relevance of work is dictated by need to valid definition of the dynamic forces transducers metrological characteristics taking into account their intended application. The aim of this work is choice justification of calibration method, which provides the definition dynamic forces transducers metrological characteristics under simulation operating conditions for determining suitability for using in accordance with its purpose. The following tasks are solved: the mathematical model and the main measurements equation of calibration dynamic forces transducers by load weight, the main budget uncertainty components of calibration are defined. The new method of dynamic forces transducers calibration with use the reference converter “force-deformation” based on the calibrated elastic element and measurement of his deformation by a laser interferometer is offered. The mathematical model and the main measurements equation of the offered method is constructed. It is shown that use of calibration method based on measurements by the laser interferometer of calibrated elastic element deformations allows to exclude or to considerably reduce the uncertainty budget components inherent to method of load weight.

  9. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  10. Amorphous ribbon transducers

    NASA Astrophysics Data System (ADS)

    Meydan, T.; Overshott, K. J.

    1984-02-01

    Amorphous ribbon transducers have been investigated which consist of toroidally wound amorphous ribbon with a primary (magnetizing) winding and secondary (search coil) windings. The application of a force to the ribbon gives a linear search coil voltage against applied force characteristic. The positioning of the windings with respect to the applied force has been studied, and it is shown that the effect of the applied force is localized. Domain studies have shown that the applied force produces domain wall motion which can be correlated to the performance. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.

  11. Thrust performance of unsteady propulsors using a novel measurement system, and corresponding wake patterns

    PubMed Central

    Clark, Richard P.; Smits, Alexander J.

    2009-01-01

    An apparatus is described for the measurement of unsteady thrust and propulsive efficiency produced by biologically inspired oscillating hydrodynamic propulsors. Force measurement is achieved using a strain-gauge-based force transducer, augmented with a lever to amplify or attenuate the applied force and control the measurement sensitivity and natural frequency of vibration. The lever can be used to tune the system to a specific application and it is shown that, using the lever, the stiffness can be made to increase more rapidly than the measurement sensitivity decreases. Efficiency is computed from measurements of the time-averaged power imparted to the fluid. The apparatus is applied to two different propulsors, demonstrating the versatility of the system; wake visualizations are examined, which provide insight into the physical mechanisms of efficient propulsion. PMID:19946574

  12. A new method to measure heart rate with EMFi and PVDF materials.

    PubMed

    Kärki, S; Lekkala, J

    2009-01-01

    In this paper we propose a new simple method to measure the heart rate of a person sitting on a chair or lying in a bed. The heart rate is measured with a thin sensor pad consisting of separate electromechanical film (EMFi) and polyvinylidenefluoride (PVDF) transducers located beneath the leg of chair or bed. This study aims to evaluate the operation of the sensor system with measurements, and also to compare the results provided by the two transducer materials. Based on the results obtained here, the heart rates measured with the transducers mainly corresponded to the values of reference ECG signal. Some minor differences between the heart rate values of PVDF and EMFi appeared, especially in supine position, possible due to the material sensitivities to different force directions. However, to conclude, both materials seem to be convenient for this kind of measurement of heart rate.

  13. Dual-Use Transducer for Use with a Boundary-Stiffened Panel and Method of Using the Same

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor)

    2011-01-01

    A transducer for use with a boundary-stiffened panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are triangular, with one edge or side aligned with a boundary edge of the panel. The transducer generates and transmits an output force to the panel in response to an input voltage signal from a sensor, which can be another transducer as described above or an accelerometer. A controller can generate an output force signal in response to the input voltage signal to help cancel the input voltage signal. A method of using the transducer minimizes vibration in the panel by connecting multiple transducers around a perimeter thereof. Motion is measured at different portions of the panel, and a voltage signal determined from the motion is transmitted to the transducers to generate an output force at least partially cancelling or damping the motion.

  14. Acoustic levitation of a large solid sphere

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  15. An approach to improve the spatial resolution of a force mapping sensing system

    NASA Astrophysics Data System (ADS)

    Negri, Lucas Hermann; Manfron Schiefer, Elberth; Sade Paterno, Aleksander; Muller, Marcia; Luís Fabris, José

    2016-02-01

    This paper proposes a smart sensor system capable of detecting sparse forces applied to different positions of a metal plate. The sensing is performed with strain transducers based on fiber Bragg gratings (FBG) distributed under the plate. Forces actuating in nine squared regions of the plate, resulting from up to three different loads applied simultaneously to the plate, were monitored with seven transducers. The system determines the magnitude of the force/pressure applied on each specific area, even in the absence of a dedicated transducer for that area. The set of strain transducers with coupled responses and a compressive sensing algorithm are employed to solve the underdetermined inverse problem which emerges from mapping the force. In this configuration, experimental results have shown that the system is capable of recovering the value of the load distributed on the plate with a signal-to-noise ratio better than 12 dB, when the plate is submitted to three simultaneous test loads. The proposed method is a practical illustration of compressive sensing algorithms for the reduction of the number of FBG-based transducers used in a quasi-distributed configuration.

  16. Thin film strain transducer. [in-flight measurement of stress or strain in walls of high altitude balloons

    NASA Technical Reports Server (NTRS)

    Rand, J. L.

    1981-01-01

    Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.

  17. A Force Transducer from a Junk Electronic Balance

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguia; Aguilar, Francisco Armenta

    2009-01-01

    It is shown how the load cell from a junk electronic balance can be used as a force transducer for physics experiments. Recovering this device is not only an inexpensive way of getting a valuable laboratory tool but also very useful didactic work on electronic instrumentation. Some experiments on mechanics with this transducer are possible after a…

  18. Simultaneous in- and out-of-plane Mitral Valve Annular Force Measurements.

    PubMed

    Skov, Søren N; Røpcke, Diana M; Telling, Kristine; Ilkjær, Christine; Tjørnild, Marcell J; Nygaard, Hans; Nielsen, Sten L; Jensen, Morten O

    2015-06-01

    Mitral valve repair with annuloplasty is often favoured over total valve replacement. In order to develop and optimize new annuloplasty ring designs, it is important to study the complex biomechanical behaviour of the valve annulus and the subvalvular apparatus with simultaneous in- and out-of-plane restraining force measurements. A new flat D-shaped mitral valve annular force transducer was developed. The transducer was mounted with strain gauges to measure strain and calibrated to provide simultaneous restraining forces in- and out of the mitral annular plane. The force transducer was implanted and evaluated in an 80 kg porcine experimental model. Accumulation of out-of-plane restraining forces, creating strain in the anterior segment were 0.7 ± 0.0 N (towards apex) and an average force accumulation of 1.5 ± 0.3 N, creating strain in the commissural segments (away from apex). The accumulations of in-plane restraining forces, creating strain on the inner side of the ring were 1.7 ± 0.2 N (away from ring center). A new mitral annular force transducer was successfully developed and evaluated in vivo. The transducer was able to measure forces simultaneously in different planes. Initial indications point towards overall agreement with previous individual force measurements in- and out-of the mitral annular plane. This can provide more detailed insight into the annular force distribution, and could potentially improve the level of evidence based mitral valve repair and support the development of future mitral annuloplasty devices.

  19. Instrument for controlling the application of mechanical loads to biological and bicompatible test subjects

    DOEpatents

    Lintilhac, Phillip M.; Vesecky, Thompson B.

    1995-01-01

    Apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user.

  20. Instrument for controlling the application of mechanical loads to biological and bicompatible test subjects

    DOEpatents

    Lintilhac, P.M.; Vesecky, T.B.

    1995-09-19

    An apparatus and methods are disclosed facilitating the application of forces and measurement of dimensions of a test subject. In one arrangement the test subject is coupled to a forcing frame and controlled forces applied thereto. Force applied to the test subject is measured and controlled. A dimensional characteristic of the test subject, such as growth, is measured by a linear variable differential transformer. The growth measurement data can be used to control the force applied. The transducer module receives force and dimensional data from the forcing frame. The transducer module is a separate, microprocessor-based unit that communicates the test data to a controller unit that controls the application of force to the test subject and receives the test data from the transducer module for force control, storage, and/or communication to the user. 8 figs.

  1. Influence of bending stress on flux distribution in toroidal transducers

    NASA Astrophysics Data System (ADS)

    Goktepe, M.; Meydan, T.

    1994-05-01

    Amorphous transducers consisting of toroidally wound amorphous ribbon with a magnetising winding and search coil windings have been investigated. The application of displacement to the toroid gives a linear search coil voltage against the applied force characteristics. The position of the search coils with respect to the applied force has been studied and it is shown that the effect of applied force is localised. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.

  2. Research of a smart cutting tool based on MEMS strain gauge

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.

    2018-03-01

    Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.

  3. Acoustic levitation of a large solid sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-25

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setupmore » consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.« less

  4. Effect of Surface Pressure Integration Methodology on Launch Vehicle Buffet Forcing Functions

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.

    2016-01-01

    The 2014 test of the Space Launch System (SLS) Rigid Buffet Model conducted at the NASA Langley Transonic Dynamics Tunnel employed an extremely high number of unsteady pressure transducers. The high channel count provided an opportunity to examine the effect of transducer placement on the resulting buffet forcing functions (BFFs). Rings of transducers on the forward half of the model were employed to simulate a single-body vehicle. The impact of transducer density, circumferential distribution, and loss of a single transducer on the resulting BFFs were examined. Rings of transducers on the aft half of the SLS model were employed to examine the effect of transducer density and circumferential distribution on BFFs for a multi-body configuration. Transducer placement considerations with respect to model size, facility infrastructure, and data acquisition system capabilities, which affect the integration process, are also discussed.

  5. Integrins, tensegrity, and mechanotransduction.

    PubMed

    Ingber, D E

    1997-06-01

    Physical forces, such as those due to gravity, play an important role in tissue development and remodeling. Yet, little is known about how individual cells sense mechanical signals or how they transduce them into a chemical response. Rather than listing the numerous signal pathways that have been found to be sensitive to mechanical stimulation, we need to place potential molecular signaling mechanisms within the context of the entire cell. The model presented is based on the concept that cells use tensegrity architecture to organize their cytoskeleton and stabilize their form. Studies with stick and string tensegrity cell models predict that living cells are hard-wired to respond immediately to external mechanical stresses. This hard-wiring exists in the form of discrete cytoskeletal filament networks that mechanically couple specific cell surface receptors, such as integrins, to nuclear matrix scaffolds and to potential transducing molecules that physically associate with the cytoskeleton. If these signaling molecules do function in a "solid-state", then mechanical stresses may be transduced into biochemical responses through force-dependent changes in cytoskeletal geometry or through local alterations in thermodynamic or kinetic parameters. Changes in cytoskeletal tension (prestress) also may play a role in signal amplification and adaptation. Recent experimental results are described which provide direct support for the tensegrity theory.

  6. Integrins, tensegrity, and mechanotransduction

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.

    1997-01-01

    Physical forces, such as those due to gravity, play an important role in tissue development and remodeling. Yet, little is known about how individual cells sense mechanical signals or how they transduce them into a chemical response. Rather than listing the numerous signal pathways that have been found to be sensitive to mechanical stimulation, we need to place potential molecular signaling mechanisms within the context of the entire cell. The model presented is based on the concept that cells use tensegrity architecture to organize their cytoskeleton and stabilize their form. Studies with stick and string tensegrity cell models predict that living cells are hard-wired to respond immediately to external mechanical stresses. This hard-wiring exists in the form of discrete cytoskeletal filament networks that mechanically couple specific cell surface receptors, such as integrins, to nuclear matrix scaffolds and to potential transducing molecules that physically associate with the cytoskeleton. If these signaling molecules do function in a "solid-state", then mechanical stresses may be transduced into biochemical responses through force-dependent changes in cytoskeletal geometry or through local alterations in thermodynamic or kinetic parameters. Changes in cytoskeletal tension (prestress) also may play a role in signal amplification and adaptation. Recent experimental results are described which provide direct support for the tensegrity theory.

  7. High sensitivity pressure transducer based on the phase characteristics of GMI magnetic sensors

    NASA Astrophysics Data System (ADS)

    Benavides, L. S.; Costa Silva, E.; Costa Monteiro, E.; Hall Barbosa, C. R.

    2018-03-01

    This paper presents a new configuration for a GMI pressure transducer based on the reading of the phase characteristics of GMI sensor, intended for biomedical applications. The development process of this new class of magnetic field transducers is discussed, beginning with the definition of the ideal conditioning of the GMI sensor elements (dc level and frequency of the excitation current and sample length) and continuing with computational simulations of the full electronic circuit performed using the experimental data obtained from measured GMI curves, and have shown that the improvement in the sensitivity of GMI magnetometers is larger when phase-based transducers are used instead of magnitude-based transducers. Parameters of interest of the developed prototype are thoroughly analyzed, such as: sensitivity, linearity and frequency response. Also, the spectral noise density of the developed pressure transducer is evaluated and its resolution in the passband is estimated. A low-cost GMI pressure transducer was developed, presenting high resolution, high sensitivity and a frequency bandwidth compatible to the desired biomedical applications.

  8. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  9. Enhanced Sensitivity of Novel Surface Acoustic Wave Microelectromechanical System-Interdigital Transducer Gyroscope

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Oh, Haekwan; Lee, Keekeun; Yoon, Sungjin; Yang, Sangsik

    2009-06-01

    In this paper, we present a novel microelectromechanical system-interdigital transducer (MEMS-IDT) surface acoustic wave (SAW) gyroscope with an 80 MHz central frequency on a 128° YX LiNbO3 wafer. The developed MEMS-IDT gyroscope is composed of a two-port SAW resonator, a dual delay line oscillator, and metallic dots. The SAW resonator provides a stable standing wave, and the vibrating metallic dot at an antinode of the standing wave induces the second SAW in the normal direction of its vibrating axis. The dual delay line oscillator detects the Coriolis force by comparing the resonant frequencies between two oscillators through the interference effect. The coupling of mode (COM) modeling was used to extract the optimal design parameters prior to fabrication. In the electrical testing by the network analyzer, the fabricated SAW resonator and delay lines showed low insertion loss and similar operation frequencies between a resonator and delay lines. When the device was rotated, the resonant frequency differences between two oscillators linearly varied owing to the Coriolis force. The obtained sensitivity was approximately 119 Hz deg-1 s-1 in the angular rate range of 0-1000 deg/s. Satisfactory linearity and superior directivity were also observed in the test.

  10. New devices for measuring forces on the kayak foot bar and on the seat during flat-water kayak paddling: a technical report.

    PubMed

    Nilsson, Johnny E; Rosdahl, Hans G

    2014-03-01

    The purpose was to develop and validate portable force-measurement devices for recording push and pull forces applied by each foot to the foot bar of a kayak and the horizontal force at the seat. A foot plate on a single-point force transducer mounted on the kayak foot bar underneath each foot allowed the push and pull forces to be recorded. Two metal frames interconnected with 4 linear ball bearings, and a force transducer allowed recording of horizontal seat force. The foot-bar-force device was calibrated by loading each foot plate with weights in the push-pull direction perpendicular to the foot plate surface, while the seat-force device was calibrated to horizontal forces with and without weights on the seat. A strong linearity (r2 = .99-1.0) was found between transducer output signal and load force in the push and pull directions for both foot-bar transducers perpendicular to the foot plate and the seat-force-measuring device. Reliability of both devices was tested by means of a test-retest design. The coefficient of variation (CV) for foot-bar push and pull forces ranged from 0.1% to 1.1%, and the CV for the seat forces varied from 0.6% to 2.2%. The current study opens up a field for new investigations of the forces generated in the kayak and ways to optimize kayak-paddling performance.

  11. Investigation of rotor blade element airloads for a teetering rotor in the blade stall regime (second wind tunnel test)

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.; Fukushima, T.

    1975-01-01

    A test was conducted in the NASA-Ames 7 x 10 ft low speed wind tunnel on a seven-foot diameter model of a teetering rotor. The objectives of the test were: (1) acquire pressure data for correlation with laser and flow visualization measurements; (2) explore rotor propulsive force limits by varying the advance ratio at constant lift and propulsive force coefficients; (3) obtain additional data to define the differences between teetering and articulated rotors; and (4) verify the acceleration sensitivity of experimental transducers. Results are presented.

  12. Cross-fiber Bragg grating transducer

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)

    2000-01-01

    A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.

  13. Increased antidepressant sensitivity after prefrontal cortex glucocorticoid receptor gene deletion in mice.

    PubMed

    Hussain, Rifat J; Jacobson, Lauren

    2015-01-01

    Our laboratory has previously shown that antidepressants regulate glucocorticoid receptor (GR) expression in the prefrontal cortex (PFC). To determine if PFC GR are involved in antidepressant effects on behavior or hypothalamic-pituitary-adrenocortical (HPA) axis activity, we treated floxed GR male mice with saline or 15 or 30 mg/kg/d imipramine after PFC injection of adeno-associated virus 2/9 vectors transducing expression of Cre recombinase, to knock-down GR (PFC-GRKD), or green fluorescent protein (PFC-GFP), to serve as a control. The pattern of virally transduced GR deletion, common to all imipramine treatment groups, included the infralimbic, prelimbic, and medial anterior cingulate cortex at its largest extent, but was confined to the prelimbic and anterior cingulate cortex at its smallest extent. PFC GR knock-down increased behavioral sensitivity to imipramine, with imipramine-treated PFC-GRKD but not PFC-GFP mice exhibiting significant decreases in depression-like immobility during forced swim. PFC GR deletion did not alter general locomotor activity. The 30 mg/kg dose of imipramine increased plasma corticosterone levels immediately after a 5-min forced swim, but PFC GR knock-down had no significant effect on plasma corticosterone under these experimental conditions. We conclude that PFC GR knock-down, likely limited to the medial prelimbic and anterior cingulate cortices, can increase behavioral sensitivity to antidepressants. These findings indicate a novel role for PFC GR in influencing antidepressant response. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Beam profile measurement on HITU transducers using a thermal intensity sensor technique

    NASA Astrophysics Data System (ADS)

    Wilkens, V.; Sonntag, S.; Jenderka, K.-V.

    2011-02-01

    Thermal intensity sensors based on the transformation of the incident ultrasonic energy into heat inside a small cylindrical absorber have been developed at PTB in the past, in particular to determine the acoustic output of medical diagnostic ultrasound equipment. Currently, this sensor technique is being expanded to match the measurement challenges of high intensity therapeutic ultrasound (HITU) fields. At the high acoustic power levels as utilized in the clinical application of HITU transducers, beam characterization using hydrophones is critical due to the possible damage of the sensitive and expensive measurement devices. Therefore, the low-cost and robust thermal sensors developed offer a promising alternative for the determination of high intensity output beam profiles. A sensor prototype with a spatial resolution of 0.5 mm was applied to the beam characterization of an HITU transducer operated at several driving amplitude levels. Axial beam plots and lateral profiles at focus were acquired. The absolute continuous wave output power was, in addition, determined using a radiation force balance.

  15. Four theorems on the psychometric function.

    PubMed

    May, Keith A; Solomon, Joshua A

    2013-01-01

    In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by β(Noise) x β(Transducer), where β(Noise) is the β of the Weibull function that fits best to the cumulative noise distribution, and β(Transducer) depends on the transducer. We derive general expressions for β(Noise) and β(Transducer), from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when d' ∝ (Δx)(b), β ≈ β(Noise) x b. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian.

  16. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres

    NASA Astrophysics Data System (ADS)

    Jannasch, Anita; Demirörs, Ahmet F.; van Oostrum, Peter D. J.; van Blaaderen, Alfons; Schäffer, Erik

    2012-07-01

    Optical tweezers are exquisite position and force transducers and are widely used for high-resolution measurements in fields as varied as physics, biology and materials science. Typically, small dielectric particles are trapped in a tightly focused laser and are often used as handles for sensitive force measurements. Improvement to the technique has largely focused on improving the instrument and shaping the light beam, and there has been little work exploring the benefit of customizing the trapped object. Here, we describe how anti-reflection coated, high-refractive-index core-shell particles composed of titania enable single-beam optical trapping with an optical force greater than a nanonewton. The increased force range broadens the scope of feasible optical trapping experiments and will pave the way towards more efficient light-powered miniature machines, tools and applications.

  17. A flexible piezoelectric force sensor based on PVDF fabrics

    NASA Astrophysics Data System (ADS)

    Wang, Y. R.; Zheng, J. M.; Ren, G. Y.; Zhang, P. H.; Xu, C.

    2011-04-01

    Polyvinylidene fluoride (PVDF) film has been widely investigated as a sensor and transducer material due to its high piezo-, pyro- and ferroelectric properties. To activate these properties, PVDF films require a mechanical treatment, stretching or poling. In this paper, we report on a force sensor based on PVDF fabrics with excellent flexibility and breathability, to be used as a specific human-related sensor. PVDF nanofibrous fabrics were prepared by using an electrospinning unit and characterized by means of scanning electron microscopy (SEM), FTIR spectroscopy and x-ray diffraction. Preliminary force sensors have been fabricated and demonstrated excellent sensitivity and response to external mechanical forces. This implies that promising applications can be made for sensing garment pressure, blood pressure, heartbeat rate, respiration rate and accidental impact on the human body.

  18. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  19. Radii effect on the translation spring constant of force transducer beams

    NASA Technical Reports Server (NTRS)

    Scott, C. E.

    1992-01-01

    Multi-component strain-gage force transducer design requires the designer to determine the spring constant of the numerous beams or flexures incorporated in the transducer. The classical beam deflection formulae that are used in calculating these spring constants typically assume that the beam has a uniform moment of inertia along the entire beam length. In practice all beams have a radius at the end where the beam interfaces with the shoulder of the transducer, and on short beams in particular this increases the beam spring constant considerably. A Basic computer program utilizing numerical integration is presented to determine this effect.

  20. Four Theorems on the Psychometric Function

    PubMed Central

    May, Keith A.; Solomon, Joshua A.

    2013-01-01

    In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, . This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull “slope” parameter, , can be approximated by , where is the of the Weibull function that fits best to the cumulative noise distribution, and depends on the transducer. We derive general expressions for and , from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when , . We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4–0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian. PMID:24124456

  1. Adhesion promoters for large scale fabrication of dielectric elastomer stack transducers (DESTs) made of pre-fabricated dielectric films

    NASA Astrophysics Data System (ADS)

    Grotepaß, T.; Förster-Zügel, F.; Mößinger, H.; Schlaak, H. F.

    2015-04-01

    Multilayer dielectric elastomer stack transducers (DESTs) are a promising new transducer technology with many applications in different industry sectors, like medical devices, human-machine-interaction, etc. Stacked dielectric elastomer transducers show larger thickness contraction driven by lower voltages than transducers made from a single dielectric layer. Traditionally multilayered DESTs are produced by repeatedly cross-linking a liquid elastomeric pre-polymer into the required shape. Our recent research focusses on a novel fabrication method for large scale stack transducers with a surface area over 200 x 300 mm by processing pre-fabricated elastomeric thin films of less than 50 μm thicknesses. The thin films are provided as two- or three-layer composites, where the elastomer is sandwiched between one or two sacrificial liners. Separating the elastomeric film from the residual layers and assembling them into dielectric elastomer stack transducers poses many challenges concerning adhesion, since the dielectric film merely separates from the liner if the adhesive forces between them are overcome. Conversely, during the assembly of a dielectric elastomer stack transducer, adhesive forces have to be established between two elastomeric layers or between the dielectric and the electrode layer. The very low Young's modulus of at least one adhesion partner requires suitable means of increasing the adhesive forces between the different adhesive layers of a dielectric elastomer stack transducer to prevent a delamination of the transducer during its lifetime. This work evaluates different surface activation treatments - corona, low-pressure plasma and UV-light - and their applicability in the production of large scale DESTs made from pre-fabricated elastomeric films.

  2. Simple go/no-go test for subcritical damage in body armor panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Jason; Chimenti, D. E.

    2011-06-23

    The development of a simple test for subcritical damage in body armor panels using pressure-sensitive dye-indicator film has been performed and demonstrated effective. Measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Impacts from hard blunt impactors instrumented with an accelerometer and embedded force transducer were studied. Reliable correlations between the indicator film and instrumented impact force are shown for a range of impact energies. Force and acceleration waveforms with corresponding indicator film results are presented for impact events onto damaged and undamaged panels. We find that panel damage can occur at impact levels farmore » below the National Institute of Justice acceptance test standard.« less

  3. Otoancorin Knockout Mice Reveal Inertia is the Force for Hearing

    NASA Astrophysics Data System (ADS)

    Weddell, Thomas; Legan, P. Kevin; Lukashkina, Victoria A.; Goodyear, Richard J.; Welstead, Lindsy; Petit, Chistine; Russell, Ian J.; Lukashkin, Andrei N.; Richardson, Guy P.

    2011-11-01

    We demonstrate that in Otoa-/- mice, in which the inner-ear-specific protein otoancorin is absent, excitation of the outer hair cells and cochlear amplification is normal. This finding is remarkable because the tectorial membrane (TM), although remaining functionally attached to the outer hair cell bundles, is completely detached from the spiral limbus. Therefore, as in ancestral vertebrate auditory organs, where inertia provides the excitatory force to the hair cells, it is the inertia of the TM that must be important for exciting the outer hair cells, setting the sensitivity of their transducer conductance, and determining the precise timing of cochlear amplification.

  4. PRESSURE TRANSDUCER

    DOEpatents

    Sander, H.H.

    1959-10-01

    A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.

  5. Vehicle brake testing system

    DOEpatents

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  6. A pulsatile pressure waveform is a sensitive marker for confirming the location of the thoracic epidural space.

    PubMed

    Lennox, Pamela H; Umedaly, Hamed S; Grant, Raymer P; White, S Adrian; Fitzmaurice, Brett G; Evans, Kenneth G

    2006-10-01

    The purpose of this study was to assess the validity of using a pulsatile, pressure waveform transduced from the epidural space through an epidural needle or catheter to confirm correct placement for maximal analgesia and to compare 3 different types of catheters' ability to transduce a waveform. A single-center, prospective, randomized trial. A tertiary-referral hospital. Eighty-one patients undergoing posterolateral thoracotomy who required a thoracic epidural catheter for postoperative pain management. Each epidural needle and each epidural catheter was transduced to determine if there was a pulsatile waveform exhibited. Sensitivity of the pulsatile waveform transduced through an epidural needle to identify correct placement of the epidural needle and the sensitivity of each catheter type to identify placement were compared. In 79 of 81 cases (97.5%), the waveform transduced directly through the epidural needle had a pulsatile characteristic as determined by blinded observers. In a total of 53 of 81 epidural catheters (65.4%), the transduced waveform displayed pulsations. Twenty-four of 27 catheters in group S-P/Sims Portex (Smiths Medical MD, Inc, St Paul, MN) (88.9%) transduced a pulsatile tracing from the epidural space, a significantly greater percentage than in the other 2 groups (p = 0.02). The technique of transducing the pressure waveform from the epidural needle inserted in the epidural space is a sensitive and reliable alternative to other techniques for confirmation of correct epidural catheter placement. The technique is simple, sensitive, and inexpensive and uses equipment available in any operating room.

  7. Piezoelectric and Electrostatic Polymeric Transducers for Acoustic Emission Detection.

    DTIC Science & Technology

    1984-12-01

    the fabrication of ultrasonic transducers for acoustic emission (A.E.) detection using polyvinylidene fluoride ( PVDF ) active elements. ii) the...characterization of PVDF transducers. The second report compared the sensitivity of PVDF transducers with polypropylene electrostatic transducer...detection using polyvinylidene 1uoride ( PVDF ) active elements. ii) the fabrication of electrostatic transducers using thin film of non-polar

  8. Optically transduced MEMS magnetometer

    DOEpatents

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  9. Enhanced Thermal Ablation by Combining Ultrasound Contrast Agents with a Miniature Flat Transducer

    NASA Astrophysics Data System (ADS)

    Murillo, A.; Goldendstedt, C.; Lafon, C.; Cathignol, D.; Chapelon, J.-Y.

    2007-05-01

    Miniature transducers can be used for performing interstitial thermal ablation. Increasing the frequency of non-focused transducers enhances energy deposition but limits the therapeutic range. In order to treat extended tumors, new therapeutic strategies must be explored. This work aimed to combine ultrasound contrast agents (UCA) with flat transducers for increasing the treatment depth. The idea consists in increasing attenuation away from the transducer to favor remote heat deposition. Thermal ablation is induced in three steps. 1- Attenuation raises by injecting UCA; 2- Destruction of bubbles next to the transducer by pulsed high intensity bursts, results in a gradient of attenuation; 3- Continuous ultrasound are applied for generating a localized thermal lesion. In vitro tests were performed on temperature-sensitive tissue phantoms in which the UCA BR14 (Bracco) was injected during the liquid phase. The feasibility of the idea was demonstrated in three stages. 1- The coefficient of attenuation was measured with the force balance as a function of the concentration of BR14. For 0.8 and 4.8% attenuation at 10MHz was found to be 0.35 and 1.33 Np/cm respectively. 2- Pulsed ultrasound was applied on phantoms to destroy UCA. Based on the echogenicity decay evidenced on ultrasound images, a 1MPa-pressure was required at 10MHz. 3- Heating beams were applied on phantoms presenting a gradient in attenuation. Lesions were 1.5 times larger than in phantoms with constant attenuation. This study demonstrates that UCA can be selectively destroyed in order to generate a gradient of attenuation and extended thermal lesions.

  10. Calibration of PVDF Film Transducers for the Cavitation Impact Measurement

    NASA Astrophysics Data System (ADS)

    Hujer, Jan; Müller, Miloš

    2018-06-01

    This paper describes investigation of the influence of the protective layer thickness on the calibration sensitivity of PVDF films sensors for the cavitation impacts measurements. The PVDF film sensor is casted into an aluminium block. The drop ball method is used for the measurement of the relation between impact force and the voltage detected on the PVDF film sensor. The calibration constants are measured for three different protective layers thicknesses. Five different ball weights for 400 mm drop height are used to reach the required impact force range. The ball positions for the evaluation of the impact force are measured with a high speed camera. The voltage signal detected on the PVDF film clamps was measured with a high speed digitizer. The measured signals are analysed in LabVIEW Signal Express.

  11. Direct force-measuring transducer used in blood pressure research

    NASA Technical Reports Server (NTRS)

    Eige, J. J.; Newgard, P. M.; Pressman, G. L.

    1965-01-01

    Direct force measuring transducer acts as an arterial tonometer, gives a direct readout to instrumentation, and is unaffected by ambient noise. It uses a semiconductor strain gage which is deflected by pressure pulses in the artery. The deflection changes the resistance of the gage and alters the voltage reading on the associated instrumentation.

  12. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOEpatents

    Hall, M.S.; Jackson, T.G.; Knerr, C.

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  13. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOEpatents

    Hall, Maclin S.; Jackson, Theodore G.; Knerr, Christopher

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  14. Sensor tip for a robotic gripper and method of manufacture

    NASA Technical Reports Server (NTRS)

    Lorenz, Robert D. (Inventor); Jackson, Gregory T. (Inventor)

    1991-01-01

    A sensor tip (10) for use in a robotic hand has a three-dimensional compliant elastomeric body (12) with an outer boundary (22) having a circular base (24) and a convex surface (26) extending therefrom. Four strain transducers (14, 16, 18, and 20) produce electrical signals indicative of the strain at various positions near the boundary of the elastomeric body (12) resulting from forces exerted upon the sensor tip (10) by an object which the robotic hand is manipulating. The transducers (14, 16, 18, and 20) are positioned about the convex surface (26) so as to produce signals that may be decoupled to determine the normal and tangential forces and the applied torque. A buffer amplifier circuit (34), one for each of the transducers (14, 16, 18, and 20), receives the signals and provides quasi-steady state force information. The circuit (34) connects the respective transducer (40) in a feedback loop around an amplifier (36) and has desirable attributes for static charge buffering. The sensor tip (10) is calibrated to determine proportionality constants for the decoupling algorithm for use of a force delivering system (60), which uses voice coils (74) to apply a force that is linearly related to the current introduced to each of the coils (74). A method of manufacture of the sensor tip (10) results in improved bonding between the transducers (14, 16, 18, and 20) and the elastomeric body (12) for better performance and longer life of the sensor tip (10).

  15. Sensor tip for a robotic gripper and method of manufacture

    NASA Technical Reports Server (NTRS)

    Lorenz, Robert D. (Inventor); Jackson, Gregory T. (Inventor)

    1993-01-01

    A sensor tip (10) for use in a robotic hand has a three-dimensional compliant elastomeric body (12) with an outer boundary (22) having a circular base (24) and a convex surface (26) extending therefrom. Four strain transducers (14, 16, 18, and 20) produce electrical signals indicative of the strain at various positions near the boundary of the elastomeric body (12) resulting from forces exerted upon the sensor tip (10) by an object which the robotic hand is manipulating. The transducers (14, 16, 18, and 20) are positioned about the convex surface (26) so as to produce signals that may be decoupled to determine the normal and tangential forces and the applied torque. A buffer amplifier circuit (34), one for each of the transducers (14, 16, 18, and 20), receives the signals and provides quasi-steady state force information. The circuit (34) connects the respective transducer (40) in a feedback loop around an amplifier (36) and has desirable attributes for static charge buffering. The sensor tip (10) is calibrated to determine proportionality constants for the decoupling algorithm for use of a force delivering system (60), which uses voice coils (74) to apply a force that is linearly related to the current introduced to each of the coils (74). A method of manufacture of the sensor tip (10) results in improved bonding between the transducers (14, 16, 18, and 20) and the elastomeric body (12) for better performance and longer life of the sensor tip (10).

  16. Cross-shaped torsional spring

    DOEpatents

    Williamson, Matthew M.; Pratt, Gill A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  17. Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications.

    PubMed

    Cannata, Jonathan M; Ritter, Timothy A; Chen, Wo-Hsing; Silverman, Ronald H; Shung, K Kirk

    2003-11-01

    This paper discusses the design, fabrication, and testing of sensitive broadband lithium niobate (LiNbO3) single-element ultrasonic transducers in the 20-80 MHz frequency range. Transducers of varying dimensions were built for an f# range of 2.0-3.1. The desired focal depths were achieved by either casting an acoustic lens on the transducer face or press-focusing the piezoelectric into a spherical curvature. For designs that required electrical impedance matching, a low impedance transmission line coaxial cable was used. All transducers were tested in a pulse-echo arrangement, whereby the center frequency, bandwidth, insertion loss, and focal depth were measured. Several transducers were fabricated with center frequencies in the 20-80 MHz range with the measured -6 dB bandwidths and two-way insertion loss values ranging from 57 to 74% and 9.6 to 21.3 dB, respectively. Both transducer focusing techniques proved successful in producing highly sensitive, high-frequency, single-element, ultrasonic-imaging transducers. In vivo and in vitro ultrasonic backscatter microscope (UBM) images of human eyes were obtained with the 50 MHz transducers. The high sensitivity of these devices could possibly allow for an increase in depth of penetration, higher image signal-to-noise ratio (SNR), and improved image contrast at high frequencies when compared to previously reported results.

  18. Intravascular ultrasound catheter to enhance microbubble-based drug delivery via acoustic radiation force.

    PubMed

    Kilroy, Joseph P; Klibanov, Alexander L; Wamhoff, Brian R; Hossack, John A

    2012-10-01

    Previous research has demonstrated that acoustic radiation force enhances intravascular microbubble adhesion to blood vessels in the presence of flow for moleculartargeted ultrasound imaging and drug delivery. A prototype acoustic radiation force intravascular ultrasound (ARFIVUS) catheter was designed and fabricated to displace a microbubble contrast agent in flow representative of conditions encountered in the human carotid artery. The prototype ARFIVUS transducer was designed to match the resonance frequency of 1.4- to 2.6-μm-diameter microbubbles modeled by an experimentally verified 1-D microbubble acoustic radiation force translation model. The transducer element was an elongated Navy Type I (hard) lead zirconate titanate (PZT) ceramic designed to operate at 3 MHz. Fabricated devices operated with center frequencies of 3.3 and 3.6 MHz with -6-dB fractional bandwidths of 55% and 50%, respectively. Microbubble translation velocities as high as 0.86 m/s were measured using a high-speed streak camera when insonating with the ARFIVUS transducer. Finally, the prototype was used to displace microbubbles in a flow phantom while imaging with a commercial 45-MHz imaging IVUS transducer. A sustained increase of 31 dB in average video intensity was measured following insonation with the ARFIVUS, indicating microbubble accumulation resulting from the application of acoustic radiation force.

  19. Simultaneous muscle force and displacement transducer

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Lewis, G. W.; Culler, V. H. (Inventor)

    1980-01-01

    A myocardial transducer for simultaneously measuring force and displacement within a very small area of myocardium is disclosed. The transducer comprised of an elongated body forked at one end to form an inverted Y shaped beam with each branch of the beam constituting a low compliant tine for penetrating the myocardium to a predetermined depth. Bonded to one of the low compliance tines is a small piezoresistive element for converting a force acting on the beam into an electrical signal. A third high compliant tine of the transducer, which measures displacement of the myocardium in a direction in line with the two low compliant tines, is of a length that just pierces the surface membrane. A small piezoresistive element is bonded to the third tine at its upper end where its bending is greatest. Displacement of the myocardium causes a deformation in curvature of the third tine, and the second small piezoresistive element bonded to the surface of its curved end converts its deformation into an electrical signal.

  20. Elastic actuator for precise force control

    DOEpatents

    Pratt, G.A.; Williamson, M.M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  1. Elastic actuator for precise force control

    DOEpatents

    Pratt, Gill A.; Williamson, Matthew M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  2. Transducer technology transfer to bio-engineering applications. [aerospace stress transducer for heart function analysis

    NASA Technical Reports Server (NTRS)

    Duran, E. N.; Lewis, G. W.; Feldstein, C.; Corday, E.; Meerbaum, S.; Lang, T.

    1973-01-01

    The results of a technology transfer of a miniature unidirectional stress transducer, developed for experimental stress analysis in the aerospace field, to applications in bioengineering are reported. By modification of the basic design and innovations in attachment techniques, the transducer was successfully used in vivo on the myocardium of large dogs to record the change in contractile force due to coronary occlusion, reperfusion, and intervention.

  3. Long term performance of wearable transducer for motion energy harvesting

    NASA Astrophysics Data System (ADS)

    McGarry, Scott A.; Behrens, Sam

    2010-04-01

    Personal electronic devices such as cell phones, GPS and MP3 players have traditionally depended on battery energy storage technologies for operation. By harvesting energy from a person's motion, these devices may achieve greater run times without increasing the mass or volume of the electronic device. Through the use of a flexible piezoelectric transducer such as poly-vinylidene fluoride (PVDF), and integrating it into a person's clothing, it becomes a 'wearable transducer'. As the PVDF transducer is strained during the person's routine activities, it produces an electrical charge which can then be harvested to power personal electronic devices. Existing wearable transducers have shown great promise for personal motion energy harvesting applications. However, they are presently physically bulky and not ergonomic for the wearer. In addition, there is limited information on the energy harvesting performance for wearable transducers, especially under realistic conditions and for extended cyclic force operations - as would be experienced when worn. In this paper, we present experimental results for a wearable PVDF transducer using a person's measured walking force profile, which is then cycled for a prolonged period of time using an experimental apparatus. Experimental results indicate that after an initial drop in performance, the transducer energy harvesting performance does not substantially deteriorate over time, as less than 10% degradation was observed. Longevity testing is still continuing at CSIRO.

  4. Design of a phased array for the generation of adaptive radiation force along a path surrounding a breast lesion for dynamic ultrasound elastography imaging.

    PubMed

    Ekeom, Didace; Hadj Henni, Anis; Cloutier, Guy

    2013-03-01

    This work demonstrates, with numerical simulations, the potential of an octagonal probe for the generation of radiation forces in a set of points following a path surrounding a breast lesion in the context of dynamic ultrasound elastography imaging. Because of the in-going wave adaptive focusing strategy, the proposed method is adapted to induce shear wave fronts to interact optimally with complex lesions. Transducer elements were based on 1-3 piezocomposite material. Three-dimensional simulations combining the finite element method and boundary element method with periodic boundary conditions in the elevation direction were used to predict acoustic wave radiation in a targeted region of interest. The coupling factor of the piezocomposite material and the radiated power of the transducer were optimized. The transducer's electrical impedance was targeted to 50 Ω. The probe was simulated by assembling the designed transducer elements to build an octagonal phased-array with 256 elements on each edge (for a total of 2048 elements). The central frequency is 4.54 MHz; simulated transducer elements are able to deliver enough power and can generate the radiation force with a relatively low level of voltage excitation. Using dynamic transmitter beamforming techniques, the radiation force along a path and resulting acoustic pattern in the breast were simulated assuming a linear isotropic medium. Magnitude and orientation of the acoustic intensity (radiation force) at any point of a generation path could be controlled for the case of an example representing a heterogeneous medium with an embedded soft mechanical inclusion.

  5. Characterization of a small Terfenol-D transducer in mechanically blocked configuration

    NASA Astrophysics Data System (ADS)

    Faidley, LeAnn E.; Dapino, Marcelo J.; Flatau, Alison B.

    2001-08-01

    In numerous applications, smart material transducers are employed to actuate upon virtually immovable structures, that is, structures whose stiffness approaches infinity in comparison with that of the transducer itself. Such mechanically blocked transducer configurations can be found in applications ranging from seismic testing and isolation of civil structures, to clamping mechanisms in linear or rotational inchworm motors. In addition to providing high blocking forces, smart materials for this type of applications must often be small in size and lightweight in order for design constraints to be met. This paper provides a characterization of the force produced by a 0.9 cm (0.35 in) diameter, 2.0 cm (0.79i in) long Terfenol-D operated under mechanically blocked conditions. Experimental results are shown for several mechanical preloads as well as various magnetic field intensities, waveforms, and frequencies. Optimal levels are deduced and discussed and the results are compared to published data for a PZT transducer of similar size operated in mechanically blocked configuration. The comparison reveals that the Terfenol-D rod provides higher blocking forces than its PZT counterpart. It is thus feasible to employ small magnetostrictive drivers in applications involving zero or near-zero displacement, particularly those based on hybrid magnetostrictive/piezoelectric designs in which high efficiencies are achieved by driving the two electrically complementary transducer materials at electrical resonance.

  6. Optically transduced MEMS gyro device

    DOEpatents

    Nielson, Gregory N; Bogart, Gregory R; Langlois, Eric; Okandan, Murat

    2014-05-20

    A bulk micromachined vibratory gyro in which a proof mass has a bulk substrate thickness for a large mass and high inertial sensitivity. In embodiments, optical displacement transduction is with multi-layer sub-wavelength gratings for high sensitivity and low cross-talk with non-optical drive elements. In embodiments, the vibratory gyro includes a plurality of multi-layer sub-wavelength gratings and a plurality of drive electrodes to measure motion of the proof mass induced by drive forces and/or moments and induced by the Coriolis Effect when the gyro experiences a rotation. In embodiments, phase is varied across the plurality gratings and a multi-layer grating having the best performance is selected from the plurality.

  7. Characteristics of receptor- and transducer-coupled activation of the intracellular signalling in sensory neuron revealed by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Khalisov, M. M.; Penniyaynen, V. A.; Esikova, N. A.; Ankudinov, A. V.; Krylov, B. V.

    2017-01-01

    The mechanical properties of sensory neurons upon activation of intracellular cascade processes by comenic acid binding to a membrane opioid-like receptor (receptor-coupled), as well as a very low (endogenous) concentration of ouabain (transducer-coupled), have been investigated. Using atomic force microscopy, it is established that exposure to ouabain, in contrast to the impact of comenic acid, leads to a hardening of the neuron soma. This suggests that the receptor-coupled signal transmission to the cell genome is carried out through mechanisms that are different from the transducer-coupled signal pathways.

  8. Method and system of measuring ultrasonic signals in the plane of a moving web

    DOEpatents

    Hall, Maclin S.; Jackson, Theodore G.; Wink, Wilmer A.; Knerr, Christopher

    1996-01-01

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefor, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  9. Method and system of measuring ultrasonic signals in the plane of a moving web

    DOEpatents

    Hall, M.S.; Jackson, T.G.; Wink, W.A.; Knerr, C.

    1996-02-27

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like is disclosed. In addition to velocity measurements of ultrasonic signals in the plane of the web in the machine direction, MD, and a cross direction, CD, generally perpendicular to the direction of the traveling web, therefore, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  10. Flexural Fillet Geometry Optimization for Design of Force Transducers Used in Aeronautics Testing

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Dixon, Genevieve

    2014-01-01

    Force transducer designs used in the ground testing aeronautics community have seen minimal change over the last few decades. With increased focus on data quality and long- term performance capabilities over the life of these instruments, it is critical to investigate new methods that improve these designs. One area of focus in the past few years at NASA has been on the design of the exural elements of traditional force balance transducers. Many of the heritage balances that have been heavily used over the last few decades have started to develop fatigue cracks. The recent focus on the exural design of traditional single-piece force balances revolves around the design of these elements such that stress concentrations are minimized, with the overall goal of increasing the fatigue life of the balance. Recent research in the area of using conic shaped llets in the highly stressed regions of traditional force balances will be discussed, with preliminary numerical and experimental data results. A case study will be presented which discusses integration of this knowledge into a new high-capacity semi-span force balance

  11. Flexural Fillet Geometry Optimization for Design of Force Transducers Used in Aeronautics Testing

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.; Dixon, Genevieve

    2015-01-01

    Force transducer designs used in the ground testing aeronautics community have seen minimal change over the last few decades. With increased focus on data quality and long-term performance capabilities over the life of these instruments, it is critical to investigate new methods that improve these designs. One area of focus in the past few years at NASA has been on the design of the flexural elements of traditional force balance transducers. Many of the heritage balances that have been heavily used over the last few decades have started to develop fatigue cracks. The recent focus on the flexural design of traditional single-piece force balances revolves around the design of these elements such that stress concentrations are minimized, with the overall goal of increasing the fatigue life of the balance. Recent research in the area of using conic shaped fillets in the highly stressed regions of traditional force balances will be discussed, with preliminary numerical and experimental data results. A case study will be presented which discusses integration of this knowledge into a new high-capacity semi-span force balance.

  12. Tunable optical lens array using viscoelastic material and acoustic radiation force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Daisuke, E-mail: dkoyama@mail.doshisha.ac.jp; Kashihara, Yuta; Matsukawa, Mami

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  13. Wideband Single Crystal Transducer for Bone Characterization

    NASA Technical Reports Server (NTRS)

    Sahul, Raffi

    2015-01-01

    Phase II objectives: Optimize the Phase I transducer for sensitivity; Test different transmit signals for optimum performance; Demonstrate compatibility with electronics; Confirm additional transducer capabilities over conventional systems by calibrating with other methods.

  14. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  15. Cross-shaped torsional spring

    DOEpatents

    Williamson, M.M.; Pratt, G.A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  16. Micromachined capacitive ultrasonic immersion transducer array

    NASA Astrophysics Data System (ADS)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  17. Piezoelectric transducer

    NASA Technical Reports Server (NTRS)

    Conragan, J.; Muller, R. S.

    1970-01-01

    Transducer consists of a hybrid thin film and a piezoelectric transistor that acts as a stress-sensitive device with built-in gain. It provides a stress/strain transducer that incorporates a signal amplification stage and sensor in a single package.

  18. Force Measurement Services at Kebs: AN Overview of Equipment, Procedures and Uncertainty

    NASA Astrophysics Data System (ADS)

    Bangi, J. O.; Maranga, S. M.; Nganga, S. P.; Mutuli, S. M.

    This paper describes the facilities, instrumentation and procedures currently used in the force laboratory at the Kenya Bureau of Standards (KEBS) for force measurement services. The laboratory uses the Force Calibration Machine (FCM) to calibrate force-measuring instruments. The FCM derives its traceability via comparisons using reference transfer force transducers calibrated by the Force Standard Machines (FSM) of a National Metrology Institute (NMI). The force laboratory is accredited to ISO/IEC 17025 by the Germany Accreditation Body (DAkkS). The accredited measurement scope of the laboratory is 1 MN to calibrate force transducers in both compression and tension modes. ISO 376 procedures are used while calibrating force transducers. The KEBS reference transfer standards have capacities of 10, 50, 300 and 1000 kN to cover the full range of the FCM. The uncertainty in the forces measured by the FCM were reviewed and determined in accordance to the new EURAMET calibration guide. The relative expanded uncertainty of force W realized by FCM was evaluated in a range from 10 kN-1 MN, and was found to be 5.0 × 10-4 with the coverage factor k being equal to 2. The overall normalized error (En) of the comparison results was also found to be less than 1. The accredited Calibration and Measurement Capability (CMC) of the KEBS force laboratory was based on the results of those intercomparisons. The FCM enables KEBS to provide traceability for the calibration of class ‘1’ force instruments as per the ISO 376.

  19. Lorentz force electrical impedance tomography using magnetic field measurements.

    PubMed

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies based on the sensitivity matrix analysis reveal that perturbations with [Formula: see text] mm size can be detected up to a 3.5 cm depth.

  20. Lorentz force electrical impedance tomography using magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies based on the sensitivity matrix analysis reveal that perturbations with 5~\\text{mm}× 5 mm size can be detected up to a 3.5 cm depth.

  1. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.

    PubMed

    Li, Xiaotian; Guo, Mingsen; Dong, Shuxiang

    2011-04-01

    A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer works in flex-compressive (F-C) mode, which is different from a conventional flex-tensional (F-T) one, to transfer a transversely applied force F into an amplified longitudinal force N pressing against the two piezo-stacks via the two bowshaped elastic plates, generating a large electric voltage output via piezoelectric effect. Our experimental results show that without an electric load, an F-C mode piezo-transducer could generate a maximum electric voltage output of up to 110 Vpp, and with an electric load of 40 κΩ, it a maximum power output of 14.6 mW under an acceleration excitation of 1 g peak-peak at the resonance frequency of 87 Hz. © 2011 IEEE

  2. Exploiting the relationship between birefringence and force to measure airway smooth muscle contraction with PS-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Adams, David C.; Hariri, Lida P.; Holz, Jasmin A.; Szabari, Margit V.; Harris, R. Scott; Cho, Jocelyn L.; Hamilos, Daniel L.; Luster, Andrew D.; Medoff, Benjamin D.; Suter, Melissa J.

    2016-03-01

    The ability to observe airway dynamics is fundamental to forming a complete understanding of pulmonary diseases such as asthma. We have previously demonstrated that Optical Coherence Tomography (OCT) can be used to observe structural changes in the airway during bronchoconstriction, but standard OCT lacks the contrast to discriminate airway smooth muscle (ASM) bands- ASM being responsible for generating the force that drives airway constriction- from the surrounding tissue. Since ASM in general exhibits a greater degree of birefringence than the surrounding tissue, a potential solution to this problem lies in the implementation of polarization sensitivity (PS) to the OCT system. By modifying the OCT system so that it is sensitive to the birefringence of tissue under inspection, we can visualize the ASM with much greater clarity and definition. In this presentation we show that the force of contraction can be indirectly measured by an associated increase in the birefringence signal of the ASM. We validate this approach by attaching segments of swine trachea to an isometric force transducer and stimulating contraction, while simultaneously measuring the exerted force and imaging the segment with PS-OCT. We then show how our results may be used to extrapolate the force of contraction of closed airways in absence of additional measurement devices. We apply this technique to assess ASM contractility volumetrically and in vivo, in both asthmatic and non-asthmatic human volunteers.

  3. Microhydraulic transducer technology for actuation and power generation

    NASA Astrophysics Data System (ADS)

    Hagood, Nesbitt W.; Roberts, David C.; Saggere, Laxminarayana; Breuer, Kenneth S.; Chen, Kuo-Shen; Carretero, Jorge A.; Li, Hanqing; Mlcak, Richard; Pulitzer, Seward W.; Schmidt, Martin A.; Spearing, S. Mark; Su, Yu-Hsuan

    2000-06-01

    The paper introduces a novel transducer technology, called the solid-state micro-hydraulic transducer, currently under development at MIT. The new technology is enabled through integration of micromachining technology, piezoelectrics, and microhydraulic concepts. These micro-hydraulic transducers are capable of bi-directional electromechanical energy conversion, i.e., they can operate as both an actuator that supplies high mechanical force in response to electrical input and an energy generator that transduces electrical energy from mechanical energy in the environment. These transducers are capable of transducing energy at very high specific power output in the order of 1 kW/kg, and thus, they have the potential to enable many novel applications. The concept, the design, and the potential applications of the transducers are presented. Present efforts towards the development of these transducers, and the challenges involved therein, are also discussed.

  4. A parametric symmetry breaking transducer

    NASA Astrophysics Data System (ADS)

    Eichler, Alexander; Heugel, Toni L.; Leuch, Anina; Degen, Christian L.; Chitra, R.; Zilberberg, Oded

    2018-06-01

    Force detectors rely on resonators to transduce forces into a readable signal. Usually, these resonators operate in the linear regime and their signal appears amidst a competing background comprising thermal or quantum fluctuations as well as readout noise. Here, we demonstrate a parametric symmetry breaking transduction method that leads to a robust nonlinear force detection in the presence of noise. The force signal is encoded in the frequency at which the system jumps between two phase states which are inherently protected against phase noise. Consequently, the transduction effectively decouples from readout noise channels. For a controlled demonstration of the method, we experiment with a macroscopic doubly clamped string. Our method provides a promising paradigm for high-precision force detection.

  5. 49 CFR 572.177 - Test conditions and instrumentation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) except as noted, with channel frequency classes as follows: (1) Pendulum acceleration, CFC 180, (2) Pendulum D-plane rotation (if transducer is used), CFC 60, (3) Torso flexion pulling force (if transducer...

  6. 49 CFR 572.177 - Test conditions and instrumentation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) except as noted, with channel frequency classes as follows: (1) Pendulum acceleration, CFC 180, (2) Pendulum D-plane rotation (if transducer is used), CFC 60, (3) Torso flexion pulling force (if transducer...

  7. 49 CFR 572.177 - Test conditions and instrumentation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) except as noted, with channel frequency classes as follows: (1) Pendulum acceleration, CFC 180, (2) Pendulum D-plane rotation (if transducer is used), CFC 60, (3) Torso flexion pulling force (if transducer...

  8. A simple uniformity test for ultrasound phased arrays.

    PubMed

    Dudley, Nicholas J; Woolley, Darren J

    2016-09-01

    It is difficult to test phased array ultrasound transducers for non functioning elements. We aimed to modify a widely performed test to improve its ease and effectiveness for these arrays. A paperclip was slowly moved along the transducer array, with the scanner operating in M-mode, imaging at a fundamental frequency with automatic gain and grey scale adjustment disabled. Non-functioning elements are identified by a dark vertical line in the image. The test was repeated several times for each transducer, looking for consistency of results. 2 transducers, with faults already shown by electronic transducer testing, were used to validate the method. 23 transducers in clinical use were tested. The results of the modified test on the 2 faulty transducers agreed closely with electronic transducer testing results. The test indicated faults in 5 of the 23 transducers in clinical use: 3 with a single failed element and 2 with non-uniform sensitivity. 1 transducer with non-uniform sensitivity had undergone lens repair; the new lens was visibly non-uniform in thickness and further testing showed a reduction in depth of penetration and a loss of elevational focus in comparison with a new transducer. The modified test is capable of detecting non-functioning elements. Further work is required to provide a better understanding of more subtle faults. Copyright © 2016 Associazione Italiana di Fisica Medica. All rights reserved.

  9. Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals

    PubMed Central

    Ju, Lining; Chen, Yunfeng; Xue, Lingzhou; Du, Xiaoping; Zhu, Cheng

    2016-01-01

    How cells sense their mechanical environment and transduce forces into biochemical signals is a crucial yet unresolved question in mechanobiology. Platelets use receptor glycoprotein Ib (GPIb), specifically its α subunit (GPIbα), to signal as they tether and translocate on von Willebrand factor (VWF) of injured arterial surfaces against blood flow. Force elicits catch bonds to slow VWF–GPIbα dissociation and unfolds the GPIbα leucine-rich repeat domain (LRRD) and juxtamembrane mechanosensitive domain (MSD). How these mechanical processes trigger biochemical signals remains unknown. Here we analyze these extracellular events and the resulting intracellular Ca2+ on a single platelet in real time, revealing that LRRD unfolding intensifies Ca2+ signal whereas MSD unfolding affects the type of Ca2+ signal. Therefore, LRRD and MSD are analog and digital force transducers, respectively. The >30 nm macroglycopeptide separating the two domains transmits force on the VWF–GPIbα bond (whose lifetime is prolonged by LRRD unfolding) to the MSD to enhance its unfolding, resulting in unfolding cooperativity at an optimal force. These elements may provide design principles for a generic mechanosensory protein machine. DOI: http://dx.doi.org/10.7554/eLife.15447.001 PMID:27434669

  10. Sickle cell mice exhibit mechanical allodynia and enhanced responsiveness in light touch cutaneous mechanoreceptors

    PubMed Central

    2012-01-01

    Background Sickle cell disease (SCD) is associated with both acute vaso-occlusive painful events as well as chronic pain syndromes, including heightened sensitivity to touch. We have previously shown that mice with severe SCD (HbSS mice; express 100% human sickle hemoglobin in red blood cells; RBCs) have sensitized nociceptors, which contribute to increased mechanical sensitivity. Yet, the hypersensitivity in these neural populations alone may not fully explain the mechanical allodynia phenotype in mouse and humans. Findings Using the Light Touch Behavioral Assay, we found HbSS mice exhibited increased responses to repeated application of both innocuous punctate and dynamic force compared to control HbAA mice (100% normal human hemoglobin). HbSS mice exhibited a 2-fold increase in percent response to a 0.7mN von Frey monofilament when compared to control HbAA mice. Moreover, HbSS mice exhibited a 1.7-fold increase in percent response to the dynamic light touch “puffed” cotton swab stimulus. We further investigated the mechanisms that drive this behavioral phenotype by focusing on the cutaneous sensory neurons that primarily transduce innocuous, light touch. Low threshold cutaneous afferents from HbSS mice exhibited sensitization to mechanical stimuli that manifested as an increase in the number of evoked action potentials to suprathreshold force. Rapidly adapting (RA) Aβ and Aδ D-hair fibers showed the greatest sensitization, each with a 75% increase in suprathreshold firing compared to controls. Slowly adapting (SA) Aβ afferents had a 25% increase in suprathreshold firing compared to HbAA controls. Conclusions These novel findings demonstrate mice with severe SCD exhibit mechanical allodynia to both punctate and dynamic light touch and suggest that this behavioral phenotype may be mediated in part by the sensitization of light touch cutaneous afferent fibers to suprathreshold force. These findings indicate that Aβ fibers can be sensitized to mechanical force and should potentially be examined for sensitization in other tissue injury and disease models. PMID:22963123

  11. Apparatus for providing vibrotactile sensory substitution of force feedback

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J. (Inventor); Sheridan, Thomas B. (Inventor); Patrick, Nicholas J. M. (Inventor)

    1997-01-01

    A feedback apparatus for an operator to control an effector that is remote from the operator to interact with a remote environment has a local input device to be manipulated by the operator. Sensors in the effector's environment are capable of sensing the amplitude of forces arising between the effector and its environment, the direction of application of such forces, or both amplitude and direction. A feedback signal corresponding to such a component of the force, is generated and transmitted to the environment of the operator. The signal is transduced into a vibrotactile sensory substitution signal to which the operator is sensitive. Vibration producing apparatus present the vibrotactile signal to the operator. The full range of the force amplitude may be represented by a single, mechanical vibrator. Vibrotactile display elements can be located on the operator's limbs, such as on the hand, fingers, arms, legs, feet, etc. The location of the application of the force may also be specified by the location of a vibrotactile display on the operator's body. Alternatively, the location may be specified by the frequency of a vibrotactile signal.

  12. Nonlinear elastic behavior of sub-critically damaged body armor panel

    NASA Astrophysics Data System (ADS)

    Fisher, Jason T.; Chimenti, D. E.

    2012-05-01

    A simple go/no-go test for body armor panels using pressure-sensitive, dye-indicator film (PSF) has been shown to be statistically effective in revealing subcritical damage to body armor panels. Previous measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Further impact tests on armor worn by a human resuscitation dummy using instrumented masses with an attached accelerometer and embedded force transducer have been performed and analyzed. New impact tests have shown a reliable correlation between PSF indication (as digitized images) and impact force for a wide range of impactor energies and masses. Numerical evaluation of digital PSF images is presented and correlated with impact parameters. Relationships between impactor mass and energy, and corresponding measured force are shown. We will also report on comparisons between ballistic testing performed on panels damaged under various impact conditions and tests performed on undamaged panels.

  13. High-Frequency Ultrasonic Imaging of the Anterior Segment Using an Annular Array Transducer

    PubMed Central

    Silverman, Ronald H.; Ketterling, Jeffrey A.; Coleman, D. Jackson

    2006-01-01

    Objective Very-high-frequency (>35 MHz) ultrasound (VHFU) allows imaging of anterior segment structures of the eye with a resolution of less than 40-μm. The low focal ratio of VHFU transducers, however, results in a depth-of-field (DOF) of less than 1-mm. Our aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity and resolution compared to conventional transducers. Design Experimental Study Participants Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. Methods A spherically curved annular array ultrasound transducer was fabricated. The array consisted of five concentric rings of equal area, had an overall aperture of 6 mm and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit/receive annuli combinations. The echo data were then synthetically focused and composite images produced. Transducer operation was tested by scanning a test object consisting of a series of 25-μm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit and human cadaver eyes. Main Outcome Measures Depth of field, resolution and sensitivity. Results The wire scans verified the operation of the array and demonstrated a 6.0 mm DOF compared to the 1.0 mm DOF of a conventional single-element transducer of comparable frequency, aperture and focal length. B-mode images of ex vivo bovine, in vivo rabbit and cadaver eyes showed that while the single-element transducer had high sensitivity and resolution within 1–2 mm of its focus, the array with synthetic focusing maintained this quality over a 6 mm DOF. Conclusion An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved depth-of-field, sensitivity and lateral resolution compared to single-element fixed focus transducers currently used for VHFU imaging of the eye. PMID:17141314

  14. High-frequency ultrasonic imaging of the anterior segment using an annular array transducer.

    PubMed

    Silverman, Ronald H; Ketterling, Jeffrey A; Coleman, D Jackson

    2007-04-01

    Very high-frequency ultrasound (VHFU; >35 megahertz [MHz]) allows imaging of anterior segment structures of the eye with a resolution of less than 40 microm. The low focal ratio of VHFU transducers, however, results in a depth of field (DOF) of less than 1 mm. The aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity, and resolution compared with conventional transducers. Experimental study. Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. A spherically curved annular array ultrasound transducer was fabricated. The array consisted of 5 concentric rings of equal area, had an overall aperture of 6 mm, and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data were recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit-and-receive annuli combinations. The echo data then were focused synthetically and composite images were produced. Transducer operation was tested by scanning a test object consisting of a series of 25-microm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit, and human cadaver eyes. Depth of field, resolution, and sensitivity. The wire scans verified the operation of the array and demonstrated a 6.0-mm DOF, compared with the 1.0-mm DOF of a conventional single-element transducer of comparable frequency, aperture, and focal length. B-mode images of ex vivo bovine, in vivo rabbit, and cadaver eyes showed that although the single-element transducer had high sensitivity and resolution within 1 to 2 mm of its focus, the array with synthetic focusing maintained this quality over a 6-mm DOF. An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved DOF, sensitivity, and lateral resolution compared with single-element fixed focus transducers currently used for VHFU imaging of the eye.

  15. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications.

  16. Effects of Transducer Installation on Unsteady Pressure Measurements on Oscillating Blades

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2006-01-01

    Unsteady pressures were measured above the suction side of a blade that was oscillated to simulate blade stall flutter. Measurements were made at blade oscillation frequencies up to 500 Hz. Two types of miniature pressure transducers were used: surface-mounted flat custom-made, and conventional miniature, body-mounted transducers. The signals of the surface-mounted transducers are significantly affected by blade acceleration, whereas the signals of body-mounted transducers are practically free of this distortion. A procedure was introduced to correct the signals of surface-mounted transducers to rectify the signal distortion due to blade acceleration. The signals from body-mounted transducers, and corrected signals from surface-mounted transducers represent true unsteady pressure signals on the surface of a blade subjected to forced oscillations. However, the use of body-mounted conventional transducers is preferred for the following reasons: no signal corrections are needed for blade acceleration, the conventional transducers are noticeably less expensive than custom-made flat transducers, the survival rate of body-mounted transducers is much higher, and finally installation of body-mounted transducers does not disturb the blade surface of interest.

  17. High-Sensitivity Encoder-Like Micro Area-Changed Capacitive Transducer for a Nano-g Micro Accelerometer

    PubMed Central

    Zheng, Panpan; Liu, Jinquan; Li, Zhu; Liu, Huafeng

    2017-01-01

    Encoder-like micro area-changed capacitive transducers are advantageous in terms of their better linearity and larger dynamic range compared to gap-changed capacitive transducers. Such transducers have been widely applied in rectilinear and rotational position sensors, lab-on-a-chip applications and bio-sensors. However, a complete model accounting for both the parasitic capacitance and fringe effect in area-changed capacitive transducers has not yet been developed. This paper presents a complete model for this type of transducer applied to a high-resolution micro accelerometer that was verified by both simulations and experiments. A novel optimization method involving the insertion of photosensitive polyimide was used to reduce the parasitic capacitance, and the capacitor spacing was decreased to overcome the fringe effect. The sensitivity of the optimized transducer was approximately 46 pF/mm, which was nearly 40 times higher than that of our previous transducer. The displacement detection resolution was measured as 50 pm/√Hz at 0.1 Hz using a precise capacitance detection circuit. Then, the transducer was applied to a sandwich in-plane micro accelerometer, and the measured level of the accelerometer was approximately 30 ng/√Hz at 1Hz. The earthquake that occurred in Taiwan was also detected during a continuous gravity measurement. PMID:28930176

  18. VIBRATIONAL SPECTROSCOPIC SENSORS Fundamentals, Instrumentation and Applications

    NASA Astrophysics Data System (ADS)

    Kraft, Martin

    In textbook descriptions of chemical sensors, almost invariably a chemical sensor is described as a combination of a (dumb) transducer and a (smart) recognition layer. The reason for this is that most transducers, while (reasonably) sensitive, have limited analyte specificity. This is in particular true for non-optical, e.g. mass-sensitive or electrochemical systems, but also many optical transducers are as such incapable of distinguishing between different substances. Consequently, to build sensors operational in multicomponent environments, such transducers must be combined with physicochemical, chemical or biochemical recognition systems providing the required analyte specificity. Although advancements have been made in this field over the last years, selective layers are frequently not (yet) up to the demands set by industrial or environmental applications, in particular when operated over prolonged periods of time. Another significant obstacle are cross-sensitivities that may interfere with the analytical accuracy. Together, these limitations restrict the real-world applicability of many otherwise promising chemical sensors.

  19. Piezoelectric micromachined acoustic emission sensors for early stage damage detection in structures

    NASA Astrophysics Data System (ADS)

    Kabir, Minoo; Kazari, Hanie; Ozevin, Didem

    2018-03-01

    Acoustic emission (AE) is a passive nondestructive evaluation (NDE) method that relies on the energy release of active flaws. The passive nature of this NDE method requires highly sensitive transducers in addition to low power and lightweight characteristics. With the advancement of micro-electro-mechanical systems (MEMS), acoustic emission (AE) transducers can be developed in low power and miniaturized. In this paper, the AE transducers operating in plate flexural mode driven piezoelectrically known as Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) are presented. The AE PMUTs are manufactured using PiezoMUMPS process by MEMSCAP and tuned to 46 kHz and 200 kHz. The PiezoMUMPs is a 5-mask level SOI (silicon-on-insulator) patterning and etching process followed by deposition of 0.5 micron Aluminum Nitride (AlN) to form piezoelectric layer to form the transducers. The AE transducers are numerically modeled using COMSOL Multiphysics software in order to optimize the performance before manufacturing. The electrometrical characterization experiments are presented. The efficiency of the proposed AE PMUTs compared to the conventional AE transducers in terms of power consumption, weight and sensitivity is presented.

  20. The Validity and Reliability of the Gymaware Linear Position Transducer for Measuring Counter-Movement Jump Performance in Female Athletes

    ERIC Educational Resources Information Center

    O'Donnell, Shannon; Tavares, Francisco; McMaster, Daniel; Chambers, Samuel; Driller, Matthew

    2018-01-01

    The current study aimed to assess the validity and test-retest reliability of a linear position transducer when compared to a force plate through a counter-movement jump in female participants. Twenty-seven female recreational athletes (19 ± 2 years) performed three counter-movement jumps simultaneously using the linear position transducer and…

  1. USRD type F63 transducer

    NASA Astrophysics Data System (ADS)

    Jevnager, M. D.; Tims, A. C.

    1981-11-01

    A small reversible audio frequency range transducer was developed. The type F63 transducer is designed to meet the specific needs of the user. It is sensitive and stable with temperature and moderate hydrostatic pressures as required by Naval Mine Engineering Facility to improve their mission capability.

  2. Characterization of airborne transducers by optical tomography

    PubMed

    Bou Matar O; Pizarro; Certon; Remenieras; Patat

    2000-03-01

    This paper describes the application of an acousto-optic method to the measurement of airborne ultrasound. The method consists of a heterodyne interferometric probing of the pressure emitted by the transducer combined with a tomographic algorithm. The heterodyne interferometer measures the optical phase shift of the probe laser beam, proportional to the acoustic pressure integrated along the light path. A number of projections of the sound field, e.g. a set of ray integrals obtained along parallel paths, are made in moving the transducer to be tested. The main advantage of the method is its very high sensitivity in air (2 x 10(-4) Pa Hz-1/2), combined with a large bandwidth. Using the same principle as X-ray tomography the ultrasonic pressure in a plane perpendicular to the transducer axis can be reconstructed. Several ultrasonic fields emitted by wide-band home made electrostatic transducers, with operating frequencies between 200 and 700 kHz, have been measured. The sensitivities compared favorably with those of commercial airborne transducers.

  3. Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet.

    PubMed

    Liu, Yingxiang; Shi, Shengjun; Li, Chunhong; Chen, Weishan; Wang, Liang; Liu, Junkao

    2018-03-01

    A bi-directional standing wave linear piezoelectric ultrasonic actuator with four driving feet is proposed in this work. Two sandwich type transducers operated in longitudinal-bending hybrid modes are set parallelly. The working mode of the transducer is not simple hybrid vibrations of a longitudinal one and a bending one, but a special coupling vibration mode contained both longitudinal and bending components. Two transducers with the same structure and unsymmetrical boundary conditions are set parallelly to accomplish the bi-directional driving: the first transducer can push the runner forward, while the other one produces the backward driving. In the experiments, two voltages with different amplitudes are applied on the two transducers, respectively: the one with higher voltage serves as the actuator, whereas the other one applied with lower voltage is used to reduce the frictional force. The prototype achieves maximum no-load speed and thrust force of 244 mm/s and 9.8 N. This work gives a new idea for the construction of standing wave piezoelectric ultrasonic actuator with bi-directional driving ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Flowmeter for Clear and Translucent Fluids

    NASA Technical Reports Server (NTRS)

    White, P. R.

    1985-01-01

    Transducer with only three moving parts senses flow of clear or translucent fluid. Displacement of diaphragm by force of flow detected electrooptically and displayed by panel meter or other device. Transducer used to measure flow of gasoline to automobile engine.

  5. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.

    PubMed

    Bergin, M J; Bird, P A; Vlajkovic, S M; Thorne, P R

    2015-12-01

    Permanent high frequency (>4 kHz) sensorineural hearing loss following middle ear surgery occurs in up to 25% of patients. The aetiology of this loss is poorly understood and may involve transmission of supra-physiological forces down the ossicular chain to the cochlea. Investigating the mechanisms of this injury using animal models is challenging, as evaluating cochlear function with evoked potentials is confounded when ossicular manipulation disrupts the normal air conduction (AC) pathway. Bone conduction (BC) using clinical bone vibrators in small animals is limited by poor transducer output at high frequencies sensitive to trauma. The objectives of the present study were firstly to evaluate a novel high frequency bone conduction transducer with evoked auditory potentials in a guinea pig model, and secondly to use this model to investigate the impact of middle ear surgical manipulation on cochlear function. We modified a magnetostrictive device as a high frequency BC transducer and evaluated its performance by comparison with a calibrated AC transducer at frequencies up to 32 kHz using the auditory brainstem response (ABR), compound action potential (CAP) and summating potential (SP). To mimic a middle ear traumatising stimulus, a rotating bur was brought in to contact with the incudomalleal complex and the effect on evoked cochlear potentials was observed. BC-evoked potentials followed the same input-output function pattern as AC potentials for all ABR frequencies. Deterioration in CAP and SP thresholds was observed after ossicular manipulation. It is possible to use high frequency BC to evoke responses from the injury sensitive basal region of the cochlea and so not rely on AC with the potential confounder of conductive hearing loss. Ongoing research explores how these findings evolve over time, and ways in which injury may be reduced and the cochlea protected during middle ear surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale [Nanophotonic AFM Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale

    DOE PAGES

    Chae, Jungseok; An, Sangmin; Ramer, Georg; ...

    2017-08-03

    The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscalemore » in photothermal induced resonance experiments. The intrinsic η of metal–organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. In conclusion, our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.« less

  7. Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale [Nanophotonic AFM Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Jungseok; An, Sangmin; Ramer, Georg

    The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscalemore » in photothermal induced resonance experiments. The intrinsic η of metal–organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. In conclusion, our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.« less

  8. Physics of direct-contact ultrasonic cloth drying process

    DOE PAGES

    Peng, Chang; Ravi, Saitej; Patel, Viral K.; ...

    2017-02-27

    Existing methods of drying fabrics involve energy-intensive thermal evaporation of moisture from clothes. Drying fabrics using high-frequency vibrations of piezoelectric transducers can substantially reduce drying time and energy consumption. In this method, vibrational energy generates instability on the liquid-air interface and mechanically ejects water from a wet fabric. For the first time, the physics of the ultrasonic fabric drying process in direct-contact mode is studied. The kinematic and thermal responses of water droplets and fabrics on piezoelectric crystal transducers and metal mesh–based transducers are studied. The results suggest that on piezoelectric crystal transducers, the response of a droplet subjected tomore » ultrasonic excitation is dictated by the relative magnitude of the surface tension and the ultrasonic excitation forces. The drying process for a fabric on the studied transducers consists of two regimes—vibrational and thermal. When the water content is high, the vibrational forces can eject bulk water rapidly. But the more strongly bound water within the smaller fabric pores evaporates by the thermal energy generated as a result of the viscous losses. Our study finds that a metal mesh–based transducer is more suitable for dewatering fabrics, as it facilitates the ejection of water from the fabric–transducer interface to the opposite side of the mesh. A demonstration unit developed consumes 10–20% of the water latent heat energy at water contents greater than 20%.« less

  9. Physics of direct-contact ultrasonic cloth drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Chang; Ravi, Saitej; Patel, Viral K.

    Existing methods of drying fabrics involve energy-intensive thermal evaporation of moisture from clothes. Drying fabrics using high-frequency vibrations of piezoelectric transducers can substantially reduce drying time and energy consumption. In this method, vibrational energy generates instability on the liquid-air interface and mechanically ejects water from a wet fabric. For the first time, the physics of the ultrasonic fabric drying process in direct-contact mode is studied. The kinematic and thermal responses of water droplets and fabrics on piezoelectric crystal transducers and metal mesh–based transducers are studied. The results suggest that on piezoelectric crystal transducers, the response of a droplet subjected tomore » ultrasonic excitation is dictated by the relative magnitude of the surface tension and the ultrasonic excitation forces. The drying process for a fabric on the studied transducers consists of two regimes—vibrational and thermal. When the water content is high, the vibrational forces can eject bulk water rapidly. But the more strongly bound water within the smaller fabric pores evaporates by the thermal energy generated as a result of the viscous losses. Our study finds that a metal mesh–based transducer is more suitable for dewatering fabrics, as it facilitates the ejection of water from the fabric–transducer interface to the opposite side of the mesh. A demonstration unit developed consumes 10–20% of the water latent heat energy at water contents greater than 20%.« less

  10. A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.

    PubMed

    Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun

    2012-05-01

    A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).

  11. Measuring mitotic forces.

    PubMed

    Ye, Anna A; Maresca, Thomas J

    2018-01-01

    Productive chromosome movements require that a large multiprotein complex called the kinetochore assemble on sister centromeres. The kinetochore fulfills two critical functions as (1) the physical linkage between chromosomes and spindle microtubules and (2) a mechanomolecular sensor that relays a spindle assembly checkpoint signal delaying anaphase onset until chromosomes are attached to spindle microtubules and bioriented. Given its central roles in such a vital process, the kinetochore is one of the most important force-transducing structures in cells; yet it has been technically challenging to measure kinetochore forces. Barriers to measuring cellular forces have begun to be broken by the development of fluorescence-based tension sensors. In this chapter, two methods will be described for measuring kinetochore forces in living cells and strategies for applying these sensors to other force-transducing processes and molecules will be discussed. © 2018 Elsevier Inc. All rights reserved.

  12. Apparatus for providing sensory substitution of force feedback

    NASA Technical Reports Server (NTRS)

    Massimino, Michael J. (Inventor); Sheridan, Thomas B. (Inventor)

    1995-01-01

    A feedback apparatus for an operator to control an effector that is remote from the operator to interact with a remote environment has a local input device to be manipulated by the operator. Sensors in the effector's environment are capable of sensing the amplitude of forces arising between the effector and its environment, the direction of application of such forces, or both amplitude and direction. A feedback signal corresponding to such a component of the force, is generated and transmitted to the environment of the operator. The signal is transduced into an auditory sensory substitution signal to which the operator is sensitive. Sound production apparatus present the auditory signal to the operator. The full range of the force amplitude may be represented by a single, audio speaker. Auditory display elements may be stereo headphones or free standing audio speakers, numbering from one to many more than two. The location of the application of the force may also be specified by the location of audio speakers that generate signals corresponding to specific forces. Alternatively, the location may be specified by the frequency of an audio signal, or by the apparent location of an audio signal, as simulated by a combination of signals originating at different locations.

  13. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers

    PubMed Central

    2014-01-01

    Background The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer’s sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems. The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. Methods The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. Results We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers. Therefore, we performed a pulse-echo test using a single element transducer in order to utilize the crossed SMPS MOSFET-based protection circuit in an ultrasound system. Conclusions The SMPS-based protection circuit could be a viable alternative that provides better sensitivity, especially for high frequency ultrasound applications. PMID:24924595

  14. Bio-Inspired In-Air Sonar Localization: What Artificial Pinnae do for Robotic Bats

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, Filips

    This dissertation investigates the hypothesis that binaural spectral cues, as generated by biomimetic microphone-baffle shapes in a suitable configuration, are both a sufficient and efficient means to realize real-time 3D localization capabilities for an in-air sonar system. We demonstrate 3D localization of real reflectors under realistic noise conditions, a task previously not performed successfully with a single binaural sonar measurement. The principal driving force behind this new approach is the use of two complex artificial pinna structures acting as complex direction-dependent spectral filters on the returning echoes. The technique makes use of broadband spectral cues in the received echoes only. Experiments with complex reflectors illustrate that the active head-related transfer function dominates the echo spectrum, allowing 3D localization in the presence of spectrum distortions caused by unknown reflector filtering. Also, experimental results in which multiple targets are localized simultaneously are presented. It is then investigated how binaural sonar system configuration choices affect 3D spectrum-based reflector localization. The proposed model demonstrates the limits of the spectral cue information provided by conventional transducers. Configurations composed of conventional receivers are evaluated as a function of unknown reflection strength and compared with a system with artificial pinnae receivers. Localization performance is quantified by an information theoretic performance criterion expressing the mutual information carried by a binaural spectrum on the corresponding 3D reflector location. Optimal configurations with conventional transducers are shown to be a function of echo reflection strength and the specific region of interest. The more complex spatial sensitivity patterns of organic pinna forms such as that of the Phyllostomus discolor bat species provide additional spectral cues that greatly improve localization information transfer compared to conventional transducers. Results indicate that the varying acoustic axis in the head-related transfer function of the pinna and even more so the higher peripheral sensitivity around the varying acoustic axis are the driving forces behind the artificial pinna's superior localization performance. Finally, it is shown that technical antennas that do not reproduce all the structural details seen in natural biosonar antennas can be suitable and robust design alternatives for in-air sonar systems intended for use on autonomous robots.

  15. A correlation between extensional displacement and architecture of ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Duncan, Andrew; Leo, Donald J.

    2008-03-01

    Ionic polymer transducers (IPT), sometimes referred to as artificial muscles, are known to generate a large bending strain and a moderate stress at low applied voltages (<5V). Bending actuators have limited engineering applications due to the low forcing capabilities and the need for complicated external devices to convert the bending action into rotating or linear motion desired in most devices. Recently Akle and Leo reported extensional actuation in ionic polymer transducers. In this study, extensional IPTs are characterized as a function of transducer architecture. In this study 2 actuators are built and there extensional displacement response is characterized. The transducers have similar electrodes while the middle membrane in the first is a Nafion / ionic liquid and an aluminum oxide - ionic liquid in the second. The first transducer is characterized for constant current input, voltage step input, and sweep voltage input. The model prediction is in agreement in both shape and magnitude for the constant current experiment. The values of α and β used are within the range of values reported in Akle and Leo. Both experiments and model demonstrate that there is a preferred direction of applying the potential so that the transducer will exhibit large deformations. In step response the model well predicted the negative potential and the early part of the step in the positive potential and failed to predict the displacement after approximately 180s has elapsed. The model well predicted the sweep response, and the observed 1st harmonic in the displacement further confirmed the existence of a quadratic in the charge response. Finally the aluminum oxide based transducer is characterized for a step response and compared to the Nafion based transducer. The second actuator demonstrated electromechanical extensional response faster than that in the Nafion based transducer. The Aluminum oxide based transducer is expected to provide larger forces and hence larger energy density.

  16. Non-contact thermoacoustic detection of embedded targets using airborne-capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Nan, Hao; Boyle, Kevin C.; Apte, Nikhil; Aliroteh, Miaad S.; Bhuyan, Anshuman; Nikoozadeh, Amin; Khuri-Yakub, Butrus T.; Arbabian, Amin

    2015-02-01

    A radio frequency (RF)/ultrasound hybrid imaging system using airborne capacitive micromachined ultrasonic transducers (CMUTs) is proposed for the remote detection of embedded objects in highly dispersive media (e.g., water, soil, and tissue). RF excitation provides permittivity contrast, and ultra-sensitive airborne-ultrasound detection measures thermoacoustic-generated acoustic waves that initiate at the boundaries of the embedded target, go through the medium-air interface, and finally reach the transducer. Vented wideband CMUTs interface to 0.18 μm CMOS low-noise amplifiers to provide displacement detection sensitivity of 1.3 pm at the transducer surface. The carefully designed vented CMUT structure provides a fractional bandwidth of 3.5% utilizing the squeeze-film damping of the air in the cavity.

  17. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it?

    PubMed

    Sirbuly, Donald J; Friddle, Raymond W; Villanueva, Joshua; Huang, Qian

    2015-02-01

    Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.

  18. What is the best method for assessing lower limb force-velocity relationship?

    PubMed

    Giroux, C; Rabita, G; Chollet, D; Guilhem, G

    2015-02-01

    This study determined the concurrent validity and reliability of force, velocity and power measurements provided by accelerometry, linear position transducer and Samozino's methods, during loaded squat jumps. 17 subjects performed squat jumps on 2 separate occasions in 7 loading conditions (0-60% of the maximal concentric load). Force, velocity and power patterns were averaged over the push-off phase using accelerometry, linear position transducer and a method based on key positions measurements during squat jump, and compared to force plate measurements. Concurrent validity analyses indicated very good agreement with the reference method (CV=6.4-14.5%). Force, velocity and power patterns comparison confirmed the agreement with slight differences for high-velocity movements. The validity of measurements was equivalent for all tested methods (r=0.87-0.98). Bland-Altman plots showed a lower agreement for velocity and power compared to force. Mean force, velocity and power were reliable for all methods (ICC=0.84-0.99), especially for Samozino's method (CV=2.7-8.6%). Our findings showed that present methods are valid and reliable in different loading conditions and permit between-session comparisons and characterization of training-induced effects. While linear position transducer and accelerometer allow for examining the whole time-course of kinetic patterns, Samozino's method benefits from a better reliability and ease of processing. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Growth stimulation of Bacillus cereus and Pseudomonas putida using nanostructured ZnO thin film as transducer element

    NASA Astrophysics Data System (ADS)

    Loukanov, Alexandre; Filipov, Chavdar; Valcheva, Violeta; Lecheva, Marta; Emin, Saim

    2015-04-01

    The semiconductor zinc oxide nanomaterial (ZnO or ZnO:H) is widely used in advanced biosensor technology for the design of highly-sensitive detector elements for various applications. In the attempt to evaluate its effect on common microorganisms, two types of nanostructured transducer films have been used (average diameter 600-1000 nm). They have been prepared by using both wet sol-gel method and magnetron sputtering. Their polycrystalline structure and specific surface features have been analyzed by X-ray diffraction (XRD), scanning electron microscope, and atomic force microscope. The assessment of growth stimulation of bacteria was determined using epifluorescent microscope by cell staining with Live/Dead BacLight kit. In our experiments, the growth stimulation of Gram-positive and Gram-negative bacteria on nanostructured ZnO film is demonstrated by Bacillus cereus and Pseudomonas putida. These two bacterial species have been selected, because they are well known and studied in biosensor technologies, with structural difference of their cell walls. These pathogens are easy for with common source in the liquid food or some commercial products. Our data has revealed that the method of transducer film preparation influences strongly bacterial inhibition and division. These results present the transforming signal precisely, when ZnO is used in biosensor applications.

  20. Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.

  1. Flexible magnetoelectric transducer with high magnetic field sensitivity based on Metglas/poly(vinylidene fluoride) heterostructures

    NASA Astrophysics Data System (ADS)

    Long, Yibing; Qiu, Jing; He, Xingduo; Chang, Qijie; Hu, Zhenwen; Liu, Huanbin

    2017-12-01

    In this paper, the flexible magnetoelectric (ME) transducer consisting of FeSiB (Metglas)/poly(vinylidene fluoride) (PVDF) is presented, whose ME coupling characteristics and ME sensing performance under different bend status have been investigated. It is found that an appropriate size of transducers is propitious to the ME coupling characteristics due to the demagnetization effect. In addition, with increase the bending angle (θ) of transducers from 0° to 50°, the magnetoelectric voltage coefficient (MEVC) shows a reduction from 240.42 to 26.44 V/cm.Oe and 13.1 to 2.11 V/cm.Oe, at the resonance and low-frequency (1 kHz), respectively. Meanwhile, the induced ME voltage have an excellent linear relationship to ac magnetic field. An ultrahigh magnetic field sensitivity of 1.22 V/Oe and 0.11 V/Oe have been found under θ = 0° and 50°, respectively, which are positively comparable to the highest reported in the most recent polymer-based ME transducers. Moreover, the transducers can maintain the MEVC stable after an additionally bending cycles up to 1000 times, indicating the full flexibility and high stability of the mentioned transducers. Obviously, it demonstrates that the proposed FeSiB/PVDF transducers have great potential of being applied to wearable devices.

  2. Recording forces exerted on the bowel wall during colonoscopy: in vitro evaluation.

    PubMed

    Dogramadzi, S; Virk, G S; Bell, G D; Rowland, R S; Hancock, J

    2005-12-01

    A novel system for distributed force measurement between the bowel wall and the shaft of a colonoscope is presented. The system, based on the piezoresistive method, involves the integration of soft miniature transducers to a colonoscope to enable a wide range of forces to be sensed. The attached sensing sheath does not restrict the propulsion of the colonoscope nor notably alter its flexibility. The addition of the sensor sheath increases the colonoscope diameter by 15-20% depending on the type of the colonoscope (adult or paediatric). The transducer's accuracy is +/-20 grammes if it is not subjected to extensive static forces. Under large static force conditions the errors may increase to +/-50 grammes. The tactile force measuring sensors have provided preliminary results from experiments on a model of the large bowel. The force measurements confirm the predictions on the location and magnitude of the forces and that most of the forces are exerted whilst the instrument is looping. Copyright 2005 John Wiley & Sons, Ltd.

  3. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    PubMed

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  4. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    PubMed Central

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-01-01

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz·deg·s−1) and good linearity were observed. PMID:24577520

  5. Acoustic radiation force optical coherence elastography using vibro-acoustography

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao (.; Ma, Teng; Li, Rui; Qi, Wenjuan; Zhu, Jiang; He, Youmin; Shung, K. K.; Zhou, Qifa; Chen, Zhongping

    2015-03-01

    High-resolution elasticity mapping of tissue biomechanical properties is crucial in early detection of many diseases. We report a method of acoustic radiation force optical coherence elastography (ARF-OCE) based on the methods of vibroacoustography, which uses a dual-ring ultrasonic transducer in order to excite a highly localized 3-D field. The single element transducer introduced previously in our ARF imaging has low depth resolution because the ARF is difficult to discriminate along the entire ultrasound propagation path. The novel dual-ring approach takes advantage of two overlapping acoustic fields and a few-hundred-Hertz difference in the signal frequencies of the two unmodulated confocal ring transducers in order to confine the acoustic stress field within a smaller volume. This frequency difference is the resulting "beating" frequency of the system. The frequency modulation of the transducers has been validated by comparing the dual ring ARF-OCE measurement to that of the single ring using a homogeneous silicone phantom. We have compared and analyzed the phantom resonance frequency to show the feasibility of our approach. We also show phantom images of the ARF-OCE based vibro-acoustography method and map out its acoustic stress region. We concluded that the dual-ring transducer is able to better localize the excitation to a smaller region to induce a focused force, which allows for highly selective excitation of small regions. The beat-frequency elastography method has great potential to achieve high-resolution elastography for ophthalmology and cardiovascular applications.

  6. Piezoelectric Composites by Solid Freeform Fabrication: A Nature-Inspired Approach

    NASA Astrophysics Data System (ADS)

    Safari, A.; Akdoğan, E. K.

    Piezoelectrics and electrostrictors are indispensable materials for use in transducer technology, as they inherently possess both direct (sensing) and converse (actuation) effects. A piezoelectric/electrostrictive sensor converts a mechanical input (displacement or force) into a measurable electrical output through piezoelectric/electrostrictive energy conversion. In the case of a piezoelectric, an applied mechanical force (stress) induces a voltage across the terminals of the transducer. On the other hand, an applied mechanical force induces a change in the capacitance of an electrostrictive transducer that could be electrically detected. Hence, the mechanical to electrical energy conversion is accomplished directly when a piezoelectric is used, while the same is obtained indirectly if the electroactive material of choice is an electrostrictor. Conversely, both piezoelectric and electrostrictive materials develop an elastic strain under an applied electric field. The said elastic strain is linearly proportional to the applied field in a piezoelectric, whereas electrostrictive coupling involves the second-order (quadratic) coupling of electric field with elastic strain. While piezoelectricity is possible only in noncentrosymetric point groups, electrostriction is observed in all solids, which make it a much more general solid-state phenomenon. Sensing and actuation functions can coexist in a given transducer by the intelligent use of such materials. Piezoelectrics and electrostrictors, therefore, constitute the backbone of modern transducer technology, as mechanical to electric energy (and vice versa) conversion can be accomplished with great efficiency in a way that is second to none among all phenomena known to date [1,2].

  7. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  8. Method of simultaneous measurement of two direction force and temperature using FBG sensor head.

    PubMed

    Kisała, Piotr; Cięszczyk, Sławomir

    2015-04-01

    This paper presents a method for measuring two components of bending force and temperature using one sensor head. Indirect inference based on the spectra of two fiber Bragg gratings (FBGs) placed on a cantilever beam is used. The method was developed during work on the inverse problem of determining a nonuniform stress distribution based on FBG spectra. A gradient in the FBG stress profile results in a characteristic shape of its reflective spectrum. The simultaneous measurements of force and temperature were possible through the use of an appropriate layout of the sensor head. The spectral characteristics of the sensor's gratings do not retain full symmetry, which is due to the geometry of the sensor's head and the related difference in the distribution of the axial stress of the gratings. In the proposed approach, the change in width of the sum of the normalized transmission spectra was used to determine the value of the applied force. In the presented method, an increase in the sensitivity of this change to the force is obtained relative to the other known systems. A change in the spectral width was observed for an increase in bending forces from 0 to 150 N. The sensitivity coefficient of the spectral width to force, defined as the ratio of the change of the spectral half-width to the change in force was 2.6e-3  nm/N for the first grating and 1.2e-3  nm/N for the second grating. However, the sensitivity of the whole sensor system was 5.8e-3  nm/N, which is greater than the sum of the sensitivities of the individual gratings. For the purpose of this work, a station with a thermal chamber has been designed with a bracket on which fiber optic transducers have been mounted for use in further measurements. The sensor head in this experiment is considered to be a universal device with potential applications in other types of optical sensors, and it can be treated as a module for development through its multiplication on a single optical fiber.

  9. Long-Term Stability of the NIST Conical Reference Transducer.

    PubMed

    Fick, Steven E; Proctor, Thomas M

    2011-01-01

    The National Institute of Standards and Technology (NIST) Conical Reference Transducer (CRT) is designed for purposes requiring frequency response characteristics much more uniform than those attainable with ultrasonic transducers conventionally used for acoustic emission (AE) nondestructive testing. The high performance of the CRT results from the use of design elements radically different from those of conventional transducers. The CRT was offered for sale for 15 years (1985 to 2000). Each CRT was furnished with data which expressed, as a function of frequency, the transducer sensitivity in volts per micrometer of normal displacement on the test block. Of the 22 transducers constructed, eight were reserved for long term research and were stored undisturbed in a laboratory with well controlled temperature and humidity. In 2009, the sensitivities of these eight units were redetermined. The 2009 data have been compared with data from similar tests conducted in 1985. The results of this comparison verify the claim "Results of tests of the long term stability of CRT characteristics indicate that, if proper care is taken, tens of years of service can reasonably be expected." made in the CRT specifications document furnished to prospective customers.

  10. Floating Ultrasonic Transducer Inspection System and Method for Nondestructive Evaluation

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H. (Inventor); Zalameda, Joseph N. (Inventor)

    2016-01-01

    A method for inspecting a structural sample using ultrasonic energy includes positioning an ultrasonic transducer adjacent to a surface of the sample, and then transmitting ultrasonic energy into the sample. Force pulses are applied to the transducer concurrently with transmission of the ultrasonic energy. A host machine processes ultrasonic return pulses from an ultrasonic pulser/receiver to quantify attenuation of the ultrasonic energy within the sample. The host machine detects a defect in the sample using the quantified level of attenuation. The method may include positioning a dry couplant between an ultrasonic transducer and the surface. A system includes an actuator, an ultrasonic transducer, a dry couplant between the transducer the sample, a scanning device that moves the actuator and transducer, and a measurement system having a pulsed actuator power supply, an ultrasonic pulser/receiver, and a host machine that executes the above method.

  11. A novel ultrasonic clutch using near-field acoustic levitation.

    PubMed

    Chang, Kuo-Tsi

    2004-10-01

    This paper investigates design, fabrication and drive of an ultrasonic clutch with two transducers. For the two transducers, one serving as a driving element of the clutch is connected to a driving shaft via a coupling, and the other serving as a slave element of the clutch is connected to a slave shaft via another coupling. The principle of ultrasonic levitation is first expressed. Then, a series-resonant inverter is used to generate AC voltages at input terminals of each transducer, and a speed measuring system with optic sensors is used to find the relationship between rotational speed of the slave shaft and applied voltage of each transducer. Moreover, contact surfaces of the two transducers are coupled by the frictional force when both the two transducers are not energized, and separated using the ultrasonic levitation when at least one of the two transducers is energized at high voltages at resonance.

  12. Means for ultrasonic testing when material properties vary

    DOEpatents

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  13. Cylindrical acoustic levitator/concentrator having non-circular cross-section

    DOEpatents

    Kaduchak, Gregory; Sinha, Dipen N.

    2003-11-11

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow piezoelectric crystal which has been formed with a cylindrical cross-section to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. By deforming the circular cross-section of the transducer, the acoustic force is concentrated along axial regions parallel to the axis of the transducer. The cylinder does not require accurate alignment of a resonant cavity. The concentrated regions of acoustic force cause particles in the fluid to concentrate within the regions of acoustic force for separation from the fluid.

  14. Research on new dynamic force calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2008-06-01

    Sinusoidal force calibration method based on electrodynamic shaker and interferometric system was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). In that system a load mass are screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition F(t) = ma(t), where m is the total mass acting on the sensing element of the force transducer and a is the time and spatial-dependent acceleration of the mass, which is directly measured by a laser interferometer. This paper will introduce a new dynamic force calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electrodynamic shakers to generate dynamic force in the range from 1N to 20kN, and heterodyne laser interferometers are used for acceleration measurement. A new air bearing system is developed to increase the performance of shakers and an active vibration isolator is used to reduce enviromental disturbance to the interferometric system.

  15. TH-AB-209-09: Quantitative Imaging of Electrical Conductivity by VHF-Induced Thermoacoustics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patch, S; Hull, D; See, W

    Purpose: To demonstrate that very high frequency (VHF) induced thermoacoustics has the potential to provide quantitative images of electrical conductivity in Siemens/meter, much as shear wave elastography provides tissue stiffness in kPa. Quantitatively imaging a large organ requires exciting thermoacoustic pulses throughout the volume and broadband detection of those pulses because tomographic image reconstruction preserves frequency content. Applying the half-wavelength limit to a 200-micron inclusion inside a 7.5 cm diameter organ requires measurement sensitivity to frequencies ranging from 4 MHz down to 10 kHz, respectively. VHF irradiation provides superior depth penetration over near infrared used in photoacoustics. Additionally, VHF signalmore » production is proportional to electrical conductivity, and prostate cancer is known to suppress electrical conductivity of prostatic fluid. Methods: A dual-transducer system utilizing a P4-1 array connected to a Verasonics V1 system augmented by a lower frequency focused single element transducer was developed. Simultaneous acquisition of VHF-induced thermoacoustic pulses by both transducers enabled comparison of transducer performance. Data from the clinical array generated a stack of 96-images with separation of 0.3 mm, whereas the single element transducer imaged only in a single plane. In-plane resolution and quantitative accuracy were measured at isocenter. Results: The array provided volumetric imaging capability with superior resolution whereas the single element transducer provided superior quantitative accuracy. Combining axial images from both transducers preserved resolution of the P4-1 array and improved image contrast. Neither transducer was sensitive to frequencies below 50 kHz, resulting in a DC offset and low-frequency shading over fields of view exceeding 15 mm. Fresh human prostates were imaged ex vivo and volumetric reconstructions reveal structures rarely seen in diagnostic images. Conclusion: Quantitative whole-organ thermoacoustic tomography will be feasible by sparsely interspersing transducer elements sensitive to the low end of the ultrasonic range.« less

  16. Strong quantum squeezing near the pull-in instability of a nonlinear beam

    DOE PAGES

    Passian, Ali; Siopsis, George

    2016-08-04

    Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe, transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies, and emerging optomechanical and chem-bio sensors. Here, we predict a significant squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. When we take into account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in instability of the oscillator.more » We discuss a possible application of this strong quantum squeezing as an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other novel sensing actions.« less

  17. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    PubMed

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  18. Inertia Coupling Analysis of a Self-Decoupled Wheel Force Transducer under Multi-Axis Acceleration Fields

    PubMed Central

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range. PMID:25723492

  19. Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer

    NASA Astrophysics Data System (ADS)

    Moaddel Haghighi, I.; Malossi, N.; Natali, R.; Di Giuseppe, G.; Vitali, D.

    2018-03-01

    An optoelectromechanical system formed by a nanomembrane capacitively coupled to an L C resonator and to an optical interferometer has recently been employed for the highly sensitive optical readout of rf signals [T. Bagci et al., Nature (London) 507, 81 (2013), 10.1038/nature13029]. We propose and experimentally demonstrate how the bandwidth of such a transducer can be increased by controlling the interference between two electromechanical interaction pathways of a two-mode mechanical system. With a proof-of-principle device operating at room temperature, we achieve a sensitivity of 300 nV /√{Hz } over a bandwidth of 15 kHz in the presence of radio-frequency noise, and an optimal shot-noise-limited sensitivity of 10 nV /√{Hz } over a bandwidth of 5 kHz. We discuss strategies for improving the performance of the device, showing that, for the same given sensitivity, a mechanical multimode transducer can achieve a bandwidth significantly larger than that for a single-mode one.

  20. Simple-structured capillary-force-dominated tunable-focus liquid lens based on the higher-order-harmonic resonance of a piezoelectric ring transducer.

    PubMed

    Feng, Guo-Hua; Liu, Jun-Hao

    2013-02-01

    This paper proposes a tunable-focus liquid lens implemented with a simple cylindrical container structure and liquid as the lens material. The cylindrical container was constructed using a Pb [Zr(0.52)Ti(0.48)]O(3) (PZT) ring transducer and a polydimethylsiloxane membrane that was attached to a flat side of the transducer. The free surface of the liquid in the cylindrical container can be driven as a static-like convex lens with different curvatures because the higher-order harmonic resonance of the PZT transducer was electrically controlled. Based on a capillary-force-dominant design, the activated liquid lens maintained surface curvature in an arbitrary orientation without a gravitational effect. Profiles of the liquid lenses were characterized with the driving voltages of the transducer ranging from 12 to 60 V peak-to-peak (Vpp) at a resonant frequency of 460 kHz. The temperature effects on the lenses caused by the continuous operation of the transducer were measured. Images showed the various curvatures of the lenses with a range of actuation voltages. A change in focal length of eight times (5.72 to 46.03 cm) was demonstrated within the 10 Vpp variation of the driving voltage. For the characterized liquid lenses, the distortion was less than 2%, and the modulation transfer function reached 63 line pairs per mm (lp/mm) using ZEMAX analysis.

  1. A Dual-Range Strain Gage Weighing Transducer Employing Automatic Switching

    Treesearch

    Rodger A. Arola

    1968-01-01

    Describes a dual-range strain gage transducer which has proven to be an excellent weight-sensing device for weighing trees and tree-length logs; discusses basic principals of the design and operation; and shows that a single transducer having two sensitivity ranges with automatic internal switching can sense weight with good repeatability and that one calibration curve...

  2. Design of a 7-DOF slave robot integrated with a magneto-rheological haptic master

    NASA Astrophysics Data System (ADS)

    Hwang, Yong-Hoon; Cha, Seung-Woo; Kang, Seok-Rae; Choi, Seung-Bok

    2017-04-01

    In this study, a 7-DOF slave robot integrated with the haptic master is designed and its dynamic motion is controlled. The haptic master is made using a controllable magneto-rheological (MR) clutch and brake and it provides the surgeon with a sense of touch by using both kinetic and kinesthetic information. Due to the size constraint of the slave robot, a wire actuating is adopted to make the desired motion of the end-effector which has 3-DOF instead of a conventional direct-driven motor. Another motions of the link parts that have 4-DOF use direct-driven motor. In total system, for working as a haptic device, the haptic master need to receive the information of repulsive forces applied on the slave robot. Therefore, repulsive forces on the end-effector are sensed by using three uniaxial torque transducer inserted in the wire actuating system and another repulsive forces applied on link part are sensed by using 6-axis transducer that is able to sense forces and torques. Using another 6-axis transducer, verify the reliability of force information on final end of slave robot. Lastly, integrated with a MR haptic master, psycho-physical test is conducted by different operators who can feel the different repulsive force or torque generated from the haptic master which is equivalent to the force or torque occurred on the end-effector to demonstrate the effectiveness of the proposed system.

  3. A new topological structure for the Langevin-type ultrasonic transducer.

    PubMed

    Lu, Xiaolong; Hu, Junhui; Peng, Hanmin; Wang, Yuan

    2017-03-01

    In this paper, a new topological structure for the Langevin-type ultrasonic transducer is proposed and investigated. The two cylindrical terminal blocks are conically shaped with four supporting plates each, and two cooling fins are disposed at the bottom of terminal blocks, adjacent to the piezoelectric rings. Experimental results show that it has larger vibration velocity, lower temperature rise and higher electroacoustic energy efficiency than the conventional Langevin transducer. The reasons for the phenomena can be well explained by the change of mass, heat dissipation surface and force factor of the transducer. The proposed design may effectively improve the performance of ultrasonic transducers, in terms of the working effect, energy consumption and working life. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Gas pressure in sealed electrochemical cells measured externally

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1967-01-01

    Piezoresistive transducer measures gas pressure inside sealed secondary electrochemical cells without breaking the seal. This method is based on the observed fact that the force exerted by the cell faces on the clamp tightening them against the transducer is a function of the gas pressure inside the cell.

  5. Methodological concerns for determining power output in the jump squat.

    PubMed

    Cormie, Prue; Deane, Russell; McBride, Jeffrey M

    2007-05-01

    The purpose of this study was to investigate the validity of power measurement techniques during the jump squat (JS) utilizing various combinations of a force plate and linear position transducer (LPT) devices. Nine men with at least 6 months of prior resistance training experience participated in this acute investigation. One repetition maximums (1RM) in the squat were determined, followed by JS testing under 2 loading conditions (30% of 1RM [JS30] and 90% of 1RM [JS90]). Three different techniques were used simultaneously in data collection: (a) 1 linear position transducer (1-LPT); (b) 1 linear position transducer and a force plate (1-LPT + FP); and (c) 2 linear position transducers and a force place (2-LPT + FP). Vertical velocity-, force-, and power-time curves were calculated for each lift using these methodologies and were compared. Peak force and peak power were overestimated by 1-LPT in both JS30 and JS90 compared with 2-LPT + FP and 1-LPT + FP (p

  6. Escaping the maze: micro-swimmers using acoustic forces to navigate

    NASA Astrophysics Data System (ADS)

    Louf, Jean-Francois; Dollet, Benjamin; Stephan, Olivier; Marmottant, Philippe

    2017-11-01

    The goal of this study is to make 3D micro-swimmers containing a bubble that can be stimulated with acoustic waves emitted by a transducer, and whose direction is accurately controlled. By using 3D micro-fabrication techniques, we designed 40x40 μm swimmers with a trapped air bubble. We then applied acoustic vibration to the bubble, which generates a strong steady flow (1-100 mm/s) behind it, an effect referred as acoustic streaming. However, independently from the orientation of the bubble and thus from the flow, the motion of the swimmer is found to be towards the transducer. This suggests that primary Bjerknes forces, i.e. acoustic radiation forces, are involved. Subsequently, using different transducers located at different points, we could be able to navigate the swimmer in a chosen direction. The next step of our study is to use a stationary wave and Bjerknes forces to bring encapsulated objects in a pressure node. Without bubbles, the effect of acoustic streaming on big objects of more than a micrometer is not sufficient to generate motion. However, with the presence of bubbles, our swimmers should be able to move. ERC BUBBLEBOOST.

  7. Catheter tip force transducer for cardiovascular research

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Lewis, G. W.; Silver, R. H.; Culler, V. H. (Inventor)

    1976-01-01

    A force transducer for measuring dynamic force activity within the heart of a subject essentially consists of a U-shaped beam of low elastic compliance material. Two lines extend from the beams's legs and a long coil spring is attached to the beam. A strain gauge is coupled to one of the beam's legs to sense deflections thereof. The beam with the tines and most of the spring are surrounded by a flexible tube, defining a catheter, which is insertable into a subject's heart through an appropriate artery. The tines are extractable from the catheter for implantation into the myocardium by pushing on the end of the spring which extends beyond the external end of the catheter.

  8. Structural tests using a MEMS acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Oppenheim, Irving J.; Greve, David W.; Ozevin, Didem; Hay, D. Robert; Hay, Thomas R.; Pessiki, Stephen P.; Tyson, Nathan L.

    2006-03-01

    In a collaborative project at Lehigh and Carnegie Mellon, a MEMS acoustic emission sensor was designed and fabricated as a suite of six resonant-type capacitive transducers in the frequency range between 100 and 500 kHz. Characterization studies showed good comparisons between predicted and experimental electro-mechanical behavior. Acoustic emission events, simulated experimentally in steel ball impact and in pencil lead break tests, were detected and source localization was demonstrated. In this paper we describe the application of the MEMS device in structural testing, both in laboratory and in field applications. We discuss our findings regarding housing and mounting (acoustic coupling) of the MEMS device with its supporting electronics, and we then report the results of structural testing. In all tests, the MEMS transducers were used in parallel with commercial acoustic emission sensors, which thereby serve as a benchmark and permit a direct observation of MEMS device functionality. All tests involved steel structures, with particular interest in propagation of existing cracks or flaws. A series of four laboratory tests were performed on beam specimens fabricated from two segments (Grade 50 steel) with a full penetration weld (E70T-4 electrode material) at midspan. That weld region was notched, an initial fatigue crack was induced, and the specimens were then instrumented with one commercial transducer and with one MEMS device; data was recorded from five individual transducers on the MEMS device. Under a four-point bending test, the beam displayed both inelastic behavior and crack propagation, including load drops associated with crack instability. The MEMS transducers detected all instability events as well as many or most of the acoustic emissions occurring during plasticity and stable crack growth. The MEMS transducers were less sensitive than the commercial transducer, and did not detect as many events, but the normalized cumulative burst count obtained from the MEMS transducers paralleled the count obtained from the commercial transducer. Waveform analysis of signals from the MEMS transducers provided additional information concerning arrivals of P-waves and S-waves. Similarly, the analysis provided additional confirmation that the acoustic emissions emanated from the damage zone near the crack tip, and were not spurious signals or artifacts. Subsequent tests were conducted in a field application where the MEMS transducers were redundant to a group of commercial transducers. The application example is a connection plate in truss bridge construction under passage of heavy traffic loads. The MEMS transducers were found to be functional, but were less sensitive in their present form than existing commercial transducers. We conclude that the transducers are usable in their current configuration and we outline applications for which they are presently suited, and then we discuss alternate MEMS structures that would provide greater sensitivity.

  9. Helmet weight simulator

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R.; Hall, A. C.; Clark, C. E. (Inventor)

    1981-01-01

    A device for providing acceleration cues to the helmet of a simulator pilot is described. Pulleys are attached to both shoulders of the pilot. A cable is attached to both sides of the helmet and extends through the pulleys to a takeup reel that is controlled by a torque motor. Control signals are applied to a servo system including the torque motor, the takeup reel and a force transducer which supplies the feedback signal. In one embodiment of the invention the force transducer is in the cable and in another it is in the takeup reel.

  10. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Transducers of physical fields based on two-channel coaxial optical fibres

    NASA Astrophysics Data System (ADS)

    Busurin, V. I.; Brazhnikova, T. Yu; Korobkov, V. V.; Prokhorov, N. I.

    1995-10-01

    An analysis is made of a general basic configuration and of the transfer function of a fibre-optic transducer based on controlled coupling in a multilayer two-channel coaxial optical fibre. The influence of the structure parameters and of external factors on the errors of a sensitive element in such a transducer is considered. The results are given of an investigation of the characteristics of a number of transducers constructed in accordance with the basic configuration.

  11. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less

  12. 21 CFR 888.1240 - AC-powered dynamometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... neuromuscular function or degree of neuromuscular blockage by measuring, with a force transducer (a device that translates force into electrical impulses), the grip-strength of a patient's hand. (b) Classification. Class...

  13. 21 CFR 888.1240 - AC-powered dynamometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... neuromuscular function or degree of neuromuscular blockage by measuring, with a force transducer (a device that translates force into electrical impulses), the grip-strength of a patient's hand. (b) Classification. Class...

  14. Ultrahigh Frequency (100 MHz–300 MHz) Ultrasonic Transducers for Optical Resolution Medical Imagining

    PubMed Central

    Fei, Chunlong; Chiu, Chi Tat; Chen, Xiaoyang; Chen, Zeyu; Ma, Jianguo; Zhu, Benpeng; Shung, K. Kirk; Zhou, Qifa

    2016-01-01

    High resolution ultrasonic imaging requires high frequency wide band ultrasonic transducers, which produce short pulses and highly focused beam. However, currently the frequency of ultrasonic transducers is limited to below 100 MHz, mainly because of the challenge in precise control of fabrication parameters. This paper reports the design, fabrication, and characterization of sensitive broadband lithium niobate (LiNbO3) single element ultrasonic transducers in the range of 100–300 MHz, as well as their applications in high resolution imaging. All transducers were built for an f-number close to 1.0, which was achieved by press-focusing the piezoelectric layer into a spherical curvature. Characterization results demonstrated their high sensitivity and a −6 dB bandwidth greater than 40%. Resolutions better than 6.4 μm in the lateral direction and 6.2 μm in the axial direction were achieved by scanning a 4 μm tungsten wire target. Ultrasonic biomicroscopy images of zebrafish eyes were obtained with these transducers which demonstrate the feasibility of high resolution imaging with a performance comparable to optical resolution. PMID:27329379

  15. The effect of an extraluminal transducer on the reproductive capability of the rabbit.

    PubMed

    Fromm, E; Garcia, C R; Jeutter, D C; Anid, A; Epstein, S

    1976-12-01

    An extraluminally attached microminiature force transducer, designed for reproductive tract contractility measurements, was investigated in terms of its effects on the physiology of the uterotubal junction in the rabbit. The presence or attachment process of the extraluminal force transducer (EFT) did not affect the rate of pregnancy or the number of embryonic implantation sites whether the attached device was silicone rubber or polyethylene-encased. The uterotubal junction was able to retain the blastocyst for the required time after mating, while an examination of postembryonic mortality revealed a rate of one resorption in some experimental groups. The gestation period was unaffected by the EFT, ranging from 30 to 40 days with a mode of 32, while histologic examinations revealed formation of a thin fibroblastic layer, some increased vascularity, and no abnormal leukocytic accumulation.

  16. Comparison of transducers with different frequencies in breast contrast-enhanced ultrasound (CEUS) using SonoVue as contrast agent.

    PubMed

    Wang, Yong-Mei; Fan, Wei; Zhang, Kai; Zhang, Li; Tan, Zhen; Ma, Rong

    2016-07-01

    To explore the effectiveness of different transducers in breast contrast-enhanced ultrasound (CEUS) using SonoVue(®) (Bracco, Plan-Les-Ouates, Switzerland) as the contrast agent. Breast CEUS was performed in 51 patients with 51 breast lesions using a low-frequency transducer (probe C5-1) and a high-frequency transducer (probe L12-5) separately. All image processes were reviewed for the presence of local blood perfusion defects and surrounding vessels. McNemar's test was conducted to compare the detection effectiveness between these two transducers. Pathological results revealed 38 malignant and 13 benign lesions. The two transducers showed no difference in detecting benign lesions. Among malignant lesions, CEUS conducted by probe C5-1 (frequency range from 1 to 5 MHz) presented 23 (60.5%) lesions with local blood perfusion defects and 26 (68.4%) lesions with surrounding vessels. Meanwhile, probe L12-5 (frequency range from 5 to 12 MHz) showed only 12 (31.6%) lesions with local blood perfusion defects and 12 (31.6%) lesions with surrounding vessel. Probe C5-1 was more sensitive than probe L12-5 in detecting malignant CEUS characteristics (p-value < 0.05). The low-frequency transducer was more sensitive than the high-frequency transducer in breast CEUS using SonoVue as the contrast agent. A new contrast agent with a higher resonance frequency, specially designed for high-frequency transducers, may be helpful in improving the clinical value of breast CEUS. The first study comparing different frequency transducers in breast CEUS of the same patient lesions. We brought out the requirement for CEUS contrast agents which are more suitable for high-frequency examinations.

  17. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.

    PubMed

    Sanderson, D J; Hennig, E M; Black, A H

    2000-03-01

    The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.

  18. Mechanical behaviour of condenser microphone in mechanomyography.

    PubMed

    Watakabe, M; Mita, K; Akataki, K; Itoh, Y

    2001-03-01

    Condenser microphones (MIC) have been widely used in mechanomyography, together with accelerometers and piezoelectric contact sensors. The aim of the present investigation was to clarify the mechanical variable (acceleration, velocity or displacement) indicated by the signal from a MIC transducer using a mechanical sinusoidal vibration system. In addition, the mechanomyogram (MMG) was recorded simultaneously with a MIC transducer and accelerometer (ACC) during voluntary contractions to confirm the mechanical variable reflected by the actual MMG and to examine the influence of motion artifact on the MMG. To measure the displacement-frequency response, mechanical sinusoidal vibrations of 3 to 300 Hz were applied to the MIC transducer with different sizes of air chambers (5, 10, 15 and 20 mm in diameter and 15, 20 or 25 mm long). The MIC transducer showed a linear relationship between the output amplitude and the vibration displacement, however, its frequency response declined with decreasing diameter and decreasing length of the air chamber. In fact, the cut-off frequency (-3dB) of the MIC transducer with the 5-mm-diameter chamber was 10, 8 and 4 Hz for the length 15, 20 and 25 mm, respectively. The air chamber with at least a diameter of 10 mm and a length of 15 mm is recommended for the MIC transducer. The sensitivity of this MIC transducer arrangement was 92 mV microm(-1) when excited at 100 Hz. During voluntary contraction, the amplitude spectral density function of the MMG from the MIC transducer resembled that of the double integral of the ACC transducer signal. The angle of the MIC transducer was delayed by 180 degrees in relation to the ACC transducer signal. The sensitivity of the MIC transducer was reduced to one-third because of the peculiar volume change of air chamber when the MMG was detected on the surface of the skin. In addition, the MIC transducer was contaminated by a smaller motion artifact than that from the ACC transducer. The maximal peak amplitude of the MIC and ACC transducer signal with the motion artifact was 7.7 and 12.3 times as much as the RMS amplitude of each signal without the motion artifact, respectively. These findings suggest that the MIC transducer acts as a displacement meter in the MMG. The MIC transducer seems to be a possible candidate for recording the MMG during dynamic muscle contractions as well as during sustained contractions.

  19. Using FOCUS to determine the radiation impedance for square transducers

    NASA Astrophysics Data System (ADS)

    Jennings, Matthew R.; McGough, Robert J.

    2012-10-01

    The power radiated by an ultrasound transducer is calculated with the radiation resistance, which is the real part of the radiation impedance. For circular transducers, an analytical solution for the radiation impedance is known, but an analytical expression for the radiation impedance is not available for rectangular or square transducers. To determine the radiation resistance in FOCUS, the pressure on the surface of a square transducer is computed with the fast nearfield method, and then the force on the transducer face is computed by integrating the pressure. Results using this approach are numerically evaluated for a range of ka values from 0.1 to 16. The pressure on the transducer face is also computed with the Rayleigh-Sommerfeld integral, and the results are compared. The numerical value of the radiation resistance computed with FOCUS and with the Rayleigh-Sommerfeld integral converge to the same value, although FOCUS calculates the same result in about one-quarter of the time.

  20. Normal values of spleen stiffness in healthy children assessed by acoustic radiation force impulse imaging (ARFI): comparison between two ultrasound transducers.

    PubMed

    Cañas, Teresa; Fontanilla, Teresa; Miralles, María; Maciá, Araceli; Malalana, Ana; Román, Enriqueta

    2015-08-01

    Portal hypertension, a major complication of hepatic fibrosis, can affect the stiffness of the spleen. To suggest normal values of spleen stiffness determined by acoustic radiation force impulse imaging in healthy children and to compare measurements using two different US probes. In a prospective study, 60 healthy children between 1 day and 14 years of age were assigned to four age groups with 15 children in each. Measurements were performed using two transducers (convex 4C1 and linear 9L4), and 10 measurements were obtained in each child, 5 with each probe. The mean splenic shear wave velocities were 2.17 m/s (SD 0.35, 95% CI 2.08-2.26) with the 4C1 probe and 2.15 m/s (SD 0.23, 95% CI 2.09-2.21) with the 9L4 probe (not significant). We found normal values for spleen stiffness with no difference in the mean values obtained using two types of US transducers, but with higher variability using a convex compared to a linear transducer.

  1. Design, analysis, and fabrication of a piezoelectric force plate

    NASA Astrophysics Data System (ADS)

    Hoummadi, Elias; Safaei, Mohsen; Anton, Steven R.

    2017-04-01

    Force plates are used to detect static and dynamic reaction forces due to presence of stationary or moving objects as well as the location of applied forces. The application of force plates in various biomechanical fields, such as gait analysis, has been widely suggested and investigated in the past. Several sensor technologies like piezoelectrics, capacitance gauges, and piezoresistive sensors are utilized to develop force plates with special characteristics. Among the technologies employed in force plate designs, piezoelectrics present the ability of providing a self-powered sensory system. Recently, it has been suggested to implement piezoelectric transducers as sensors in the tibial bearing of total knee replacement (TKR) implants in order to transform the knee bearing into a force plate with the ability to detect force and contact point location for in vivo knee load analysis. Considering this application, a simplified design of a force plate instrumented with six piezoelectric transducers is presented in this study. The force plate is modeled using a finite element (FE) model to investigate the sensing performance of the system. In order to validate the simulation, a prototype force plate is fabricated and tested under the same loading condition applied on the FE model. The results are presented in terms of measured location and amplitude of applied force measured by the piezoelectric transducers. For the FE simulation, the deviation of the measured location of the applied force from the actual location is obtained as 0.62 mm in the x-direction and 0.13 mm in the y-direction, and the error in the amplitude of the measured force is 0.03% of the applied force. On the other hand, the deviation in the measured location of the force from the experimental test is 0.53 mm in the x-direction and 0.1 mm in the y-direction, while the error in force is 3.6% of the applied force. The small quantities of error in both sensed location and amplitude of applied force obtained from the FE simulation and experimental test results demonstrates the potential of the proposed design to be utilized as the sensor in the knee bearing of TKR implants.

  2. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    This paper presents a computational study of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magnetomechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.25; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping.

  3. Multifunctional transducer

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Lewis, G. W.; Culler, V. H.; Merrbaum, S. (Inventor)

    1981-01-01

    Several parameters of a small region of a muscle tissue or other object, can be simultaneously measured using with minimal traumatizing or damage of the object, a trifunctional transducer which can determine the force applied by a muscle fiber, the displacement of the fiber, and the change in thickness of the fiber. The transducer has three legs with inner ends joined together and outer ends formed to piece the tissue and remain within it. Two of the legs are relatively stiff, to measure force applied by the tissue, and a third leg is relatively flexible to measure displacement of the tissue relative to one or both stiff legs, and with the three legs lying in a common plane so that the force and displacement measurements all relate to the same direction of muscle movements. A flexible loop is attached to one of the stiff legs to measure changes in muscle thickness, with the upper end of the loop fixed to the leg and the lower end of the loop bearing against the surface of the tissue and being free to slide on the leg.

  4. Development of Diesel Engine Diagnostics for U.S. Coast Guard Cutters.

    DTIC Science & Technology

    1981-07-01

    even though this type of transducer is sensitive to both acoustic noise and mechanical vibration. These "noise" signals are ordinarily of much higher...Unfortunately, this maintenance work was not scheduled for the immediate future, but the E.O. did agree to make exhaust pyrometer readings for the...pressure pulsations normally present in the engine crankcase. However, the very sensitive pressure transducer apparently registered the acoustical

  5. Durability investigation of a group of strain gage pressure transducers

    NASA Technical Reports Server (NTRS)

    Lederer, P. S.; Hilten, J. S.

    1972-01-01

    A durability investigation was conducted on a group of eighteen bonded-wire strain gage pressure transducers with ranges of 0 to 15 psig and 0 to 100 psig using an improved version of a previously developed technique. Some of the transducers were subjected to 40 million pressure cycles at a 5-Hz rate at laboratory ambient conditions, others were cycled at a temperature of 150 F (65.6 C). The largest change in sensitivity observed was 0.22% for a 100-psig transducer subjected to 40 million pressure cycles at 150 F. The largest change in zero pressure output observed was 0.91% FS for the same transducer. None of the transducers failed completely as a result of cycling at or below full scale pressure.

  6. Performance of some miniature pressure transducers subjected to high rotational speeds and centripetal accelerations

    NASA Technical Reports Server (NTRS)

    Minkin, H. L.

    1976-01-01

    The performance characteristics of several miniature pressure transducers were determined at centripetal accelerations up to 11,200 g's at a rotational speed of 23,000 rpm. The variation in centripetal acceleration was produced by changing radial position of the transducer relative to the center of rotation. Residual zero outputs and transducer sensitivities were determined at 23,000 rpm and compared with those determined at 0 rpm. The actual pressures at the various transducer locations differ from the center line impressed pressures due to a rotational effect. Corrections for this effect were made. A brief description of the test apparatus is included.

  7. Sensitivity of diamond-capped impedance transducer to Tröger's base derivative.

    PubMed

    Stehlik, Stepan; Izak, Tibor; Kromka, Alexander; Dolenský, Bohumil; Havlík, Martin; Rezek, Bohuslav

    2012-08-01

    Sensitivity of an intrinsic nanocrystalline diamond (NCD) layer to naphthalene Tröger's base derivative decorated with pyrrole groups (TBPyr) was characterized by impedance spectroscopy. The transducer was made of Au interdigitated electrodes (IDE) with 50 μm spacing on alumina substrate which were capped with the NCD layer. The NCD-capped transducer with H-termination was able to electrically distinguish TBPyr molecules (the change of surface resistance within 30-60 kΩ) adsorbed from methanol in concentrations of 0.04 mg/mL to 40 mg/mL. An exponential decay of the surface resistance with time was observed and attributed to the readsorption of air moisture after methanol evaporation. After surface oxidation the NCD cap layer did not show any leakage due to NCD grain boundaries. We analyzed electronic transport in the transducer and propose a model for the sensing mechanism based on surface ion replacement.

  8. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing.

    PubMed

    Regatos, David; Sepúlveda, Borja; Fariña, David; Carrascosa, Laura G; Lechuga, Laura M

    2011-04-25

    We present a theoretical and experimental study on the biosensing sensitivity of Au/Co/Au multilayers as transducers of the magneto-optic surface-plasmon-resonance (MOSPR) sensor. We demonstrate that the sensing response of these magneto-plasmonic (MP) transducers is a trade-off between the optical absorption and the magneto-optical activity, observing that the MP multilayer with larger MO effect does not provide the best sensing response. We show that it is possible to design highly-sensitive MP transducers able to largely surpass the limit of detection of the conventional surface-plasmon-resonance (SPR) sensor. This was proved comparing the biosensing performance of both sensors for the label-free detection of short DNA chains hybridization. For this purpose, we used and tested a novel label-free biofunctionalization protocol based on polyelectrolytes, which increases the resistance of MP transducers in aqueous environments.

  9. Ultrasonic Leak Detection System

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Inventor); Moerk, J. Steven (Inventor)

    1998-01-01

    A system for detecting ultrasonic vibrations. such as those generated by a small leak in a pressurized container. vessel. pipe. or the like. comprises an ultrasonic transducer assembly and a processing circuit for converting transducer signals into an audio frequency range signal. The audio frequency range signal can be used to drive a pair of headphones worn by an operator. A diode rectifier based mixing circuit provides a simple, inexpensive way to mix the transducer signal with a square wave signal generated by an oscillator, and thereby generate the audio frequency signal. The sensitivity of the system is greatly increased through proper selection and matching of the system components. and the use of noise rejection filters and elements. In addition, a parabolic collecting horn is preferably employed which is mounted on the transducer assembly housing. The collecting horn increases sensitivity of the system by amplifying the received signals. and provides directionality which facilitates easier location of an ultrasonic vibration source.

  10. USE OF PELTIER COOLERS AS SOIL HEAT FLUX TRANSDUCERS.

    USGS Publications Warehouse

    Weaver, H.L.; Campbell, G.S.

    1985-01-01

    Peltier coolers were modified and calibrated to serve as soil heat flux transducers. The modification was to fill their interiors with epoxy. The average calibration constant on 21 units was 13. 6 plus or minus 0. 8 kW m** minus **2 V** minus **1 at 20 degree C. This sensitivity is about eight times that of the two thermopile transducers with which comparisons were made. The thermal conductivity of the Peltier cooler transducers was 0. 4 W m** minus **1 degree C** minus **1, which is comparable to that of dry soil.

  11. Influence of Ultrasonic Nonlinear Propagation on Hydrophone Calibration Using Two-Transducer Reciprocity Method

    NASA Astrophysics Data System (ADS)

    Yoshioka, Masahiro; Sato, Sojun; Kikuchi, Tsuneo; Matsuda, Yoichi

    2006-05-01

    In this study, the influence of ultrasonic nonlinear propagation on hydrophone calibration by the two-transducer reciprocity method is investigated quantitatively using the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. It is proposed that the correction for the diffraction and attenuation of ultrasonic waves used in two-transducer reciprocity calibration can be derived using the KZK equation to remove the influence of nonlinear propagation. The validity of the correction is confirmed by comparing the sensitivities calibrated by the two-transducer reciprocity method and laser interferometry.

  12. Development of a high-sensitivity strain measurement system based on a SH SAW sensor

    NASA Astrophysics Data System (ADS)

    Oh, Haekwan; Lee, Keekeun; Eun, Kyoungtae; Choa, Sung-Hoon; Yang, Sang Sik

    2012-02-01

    A strain measurement system based on a shear horizontal surface acoustic wave (SH SAW) was developed. The developed system is composed of a SAW microsensor, a printed circuit board (PCB), an adhesive and a strain gauge. When a compression force is applied to the PCB by the strain gauge, the PCB is bent so that external strain energy can be evenly delivered to the microsensor without any detachment of the sensor from the board. When a stretching force is applied to the PCB under the condition that one side of the PCB is fixed and the other side is modulated, the actual length of the SAW delay line between the two interdigital transducers (IDTs) is increased. The increase in the delay line length causes a change in the time for the propagating SAW to reach the output IDT. If strain energy is applied to the piezoelectric substrate, the substrate density is changed, which then changes the propagation velocity of the SAW. Coupling-of-modes modeling was conducted prior to fabrication to determine the optimal device parameters. Depending on the strain, the frequency difference was linearly modulated. The obtained sensitivity for stretching was 17.3 kHz/% for the SH wave mode and split electrode. And the obtained sensitivity for bending was 46.1 kHz/% for the SH wave mode and split electrode. The SH wave showed about 15% higher sensitivity than the Rayleigh wave, and the dog-bone PCB showed about 8% higher sensitivity than the rectangular PCB. The obtained sensitivity was about five times higher than that of existing SAW-based strain sensors.

  13. Biomedical applications of a commercial capacitance transducer.

    DOT National Transportation Integrated Search

    1968-03-01

    A capacitive displacement transducer with a linear response and constant sensitivity for a frequency range of 0-1,000 Hz is described. Its application to measurement of chest wall motions was verified using static displacements from flat and curved s...

  14. A new method for acoustic containerless processing of materials

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1984-01-01

    The development of an acoustic positioner, which uses only one acoustic mode in chambers of rectangular, cylindrical, and spherical geometries, for high-temperature containerless processing of materials in space is described. The objective of the single-mode positioner is to develop sufficient acoustic forces to stably localize and manipulate molten materials. In order to attain this goal the transducer power, energy transfer medium, and chamber geometry and dimensions need to be optimized. The use of a variable frequency compression driver or solid-state piezoelectric transducer to optimize these properties is investigated; it is determined that a solid-state transducer would be most applicable for optimizing the positioner. The positioning capabilities of this single-mode positioner are discussed. The dependence of the acoustic forces on temperature and ambient pressure is studied. The development of a levitator to process a molten sample at 1500 C in the space environment using the cylindrical (011) mode is illustrated.

  15. A New Electromagnetic Acoustic Transducer Design for Generating and Receiving S0 Lamb Waves in Ferromagnetic Steel Plate

    PubMed Central

    He, Jianpeng; Dixon, Steve; Hill, Samuel; Xu, Ke

    2017-01-01

    Electromagnetic acoustic transducers (EMATs) are non-contact, ultrasonic transducers that are usually kept within 5 mm from the sample surface to obtain a sufficient signal-to-noise ratio (SNR). One important issue associated with operation on a ferromagnetic plate is that the strong attraction force from the magnet can affect measurements and make scanning difficult. This paper investigates a method to generate fundamental, symmetric Lamb waves on a ferromagnetic plate. A coil-only, low-weight, generation EMAT is designed and investigated, operating at lift-offs of over 5 mm. Another design of an EMAT is investigated using a rectangular magnet with a much higher lift-off than the coil, of up to 19 mm. This results in a much lower force between the EMAT and sample, making scanning the EMAT much easier. PMID:28471377

  16. Polydimethylsiloxane pressure sensors for force analysis in tension band wiring of the olecranon.

    PubMed

    Zens, Martin; Goldschmidtboeing, Frank; Wagner, Ferdinand; Reising, Kilian; Südkamp, Norbert P; Woias, Peter

    2016-11-14

    Several different surgical techniques are used in the treatment of olecranon fractures. Tension band wiring is one of the most preferred options by surgeons worldwide. The concept of this technique is to transform a tensile force into a compression force that adjoins two surfaces of a fractured bone. Currently, little is known about the resulting compression force within a fracture. Sensor devices are needed that directly transduce the compression force into a measurement quality. This allows the comparison of different surgical techniques. Ideally the sensor devices ought to be placed in the gap between the fractured segments. The design, development and characterization of miniaturized pressure sensors fabricated entirely from polydimethylsiloxane (PDMS) for a placement within a fracture is presented. The pressure sensors presented in this work are tested, calibrated and used in an experimental in vitro study. The pressure sensors are highly sensitive with an accuracy of approximately 3 kPa. A flexible fabrication process for various possible applications is described. The first in vitro study shows that using a single-twist or double-twist technique in tension band wiring of the olecranon has no significant effect on the resulting compression forces. The in vitro study shows the feasibility of the proposed measurement technique and the results of a first exemplary study.

  17. Experimental measure of retinal impact force resulting from intraocular foreign body dropped onto retina through media of differing viscosity.

    PubMed

    Ernst, Benjamin J; Velez-Montoya, Raul; Kujundzic, Damir; Kujundzic, Elmira; Olson, Jeffrey L

    2013-07-01

    To evaluate and compare the perfluorocarbon liquid, silicone oil, and viscoelastic against standard saline, in their ability to dampen the impact force of a foreign body, dropped within the eye. In an experimental surgical model in where cohesive and adhesive forces of the substances are not enough to float heavy-than-water foreign bodies. A model of ophthalmic surgery was constructed. A BB pellet was dropped from 24 mm onto a force transducer through four different fluids: balanced salt solution, perfluoro-n-octane, viscoelastic, and silicone oil. The impact energy (force) for each case was measured and recorded by the force transducer. The mean force of impact for each fluid was compared using the Student t-test. Silicone oil resulted in the lowest force of impact. Both silicone oil and viscoelastic dampened the impact an order of magnitude more than perfluoro-n-octane and balanced salt solution. Silicone oil and viscoelastic cushioned the force from a dropped BB. They may be useful adjuncts to prevent iatrogenic retinal injury during vitrectomy for intraocular foreign body removal. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  18. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.

    PubMed

    Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J

    2010-08-01

    This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Transducer-actuator systems and methods for performing on-machine measurements and automatic part alignment

    DOEpatents

    Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary

    2016-07-12

    Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.

  20. Two dimensional photoacoustic imaging using microfiber interferometric acoustic transducers

    NASA Astrophysics Data System (ADS)

    Wang, Xiu Xin; Li, Zhang Yong; Tian, Yin; Wang, Wei; Pang, Yu; Tam, Kin Yip

    2018-07-01

    Photoacoustic imaging transducer with a pair of wavelength-matched Bragg gratings (forming a Fabry-Perot cavity) inscribed on a short section of microfiber has been developed. A tunable laser with wavelength that matched to one of selected fringe slopes was used to transmit the acoustic induced wavelength. Interferometric fringes with high finesse in transmission significantly enhanced the sensitivity of the transducer even under very small acoustic perturbations. The performance of this novel transducer was evaluated through the imaging studies of human hairs (∼98 μm in diameter). The spatial resolution is 300 μm. We have demonstrated that the novel transducer developed in this study is a versatile tool for photoacoustic imaging study.

  1. Static Footprint Local Forces, Areas, and Aspect Ratios for Three Type 7 Aircraft Tires

    NASA Technical Reports Server (NTRS)

    Howell, William E.; Perez, Sharon E.; Vogler, William A.

    1991-01-01

    The National Tire Modeling Program (NTMP) is a joint NASA/industry effort to improve the understanding of tire mechanics and develop accurate analytical design tools. This effort includes fundamental analytical and experimental research on the structural mechanics of tires. Footprint local forces, areas, and aspect ratios were measured. Local footprint forces in the vertical, lateral, and drag directions were measured with a special footprint force transducer. Measurements of the local forces in the footprint were obtained by positioning the transducer at specified locations within the footprint and externally loading the tires. Three tires were tested: (1) one representative of those used on the main landing gear of B-737 and DC-9 commercial transport airplanes, (2) a nose landing gear tire for the Space Shuttle Orbiter, and (3) a main landing gear tire for the Space Shuttle Orbiter. Data obtained for various inflation pressures and vertical loads are presented for two aircraft tires. The results are presented in graphical and tabulated forms.

  2. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications. PMID:25694960

  3. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.

    PubMed

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa

    2015-02-01

    Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications.

  4. The dynamic deformation of a layered viscoelastic medium under surface excitation

    NASA Astrophysics Data System (ADS)

    Aglyamov, Salavat R.; Wang, Shang; Karpiouk, Andrei B.; Li, Jiasong; Twa, Michael; Emelianov, Stanislav Y.; Larin, Kirill V.

    2015-06-01

    In this study the dynamic behavior of a layered viscoelastic medium in response to the harmonic and impulsive acoustic radiation force applied to its surface was investigated both theoretically and experimentally. An analytical solution for a layered viscoelastic compressible medium in frequency and time domains was obtained using the Hankel transform. A special incompressible case was considered to model soft biological tissues. To verify our theoretical model, experiments were performed using tissue-like gel-based phantoms with varying mechanical properties. A 3.5 MHz single-element focused ultrasound transducer was used to apply the radiation force at the surface of the phantoms. A phase-sensitive optical coherence tomography system was used to track the displacements of the phantom surface. Theoretically predicted displacements were compared with experimental measurements. The role of the depth dependence of the elastic properties of a medium in its response to an acoustic pulse at the surface was studied. It was shown that the low-frequency vibrations at the surface are more sensitive to the deep layers than high-frequency ones. Therefore, the proposed model in combination with spectral analysis can be used to evaluate depth-dependent distribution of the mechanical properties based on the measurements of the surface deformation.

  5. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2015-01-01

    Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).

  6. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    PubMed Central

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew

    2015-01-01

    Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970

  7. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging† †Electronic supplementary information (ESI) available: Additional information about 1D model calculations for a piezoelectric transducer. See DOI: 10.1039/c6lc00182c Click here for additional data file.

    PubMed Central

    McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika

    2016-01-01

    Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398

  8. Adhesion enhancement methods for a roll-to-sheet fabrication process of DE stack-transducers and their influences on the electric properties

    NASA Astrophysics Data System (ADS)

    Bochmann, Helge; von Heckel, Benedikt; Maas, Jürgen

    2017-04-01

    Transducers made of dielectric elastomers (DE) offer versatile opportunities for many different applications. To gain large strains and forces a multilayer topology is commonly used. DE stack-transducers represent one multilayer topology and can be operated as a sensor, a generator or an actuator simultaneously. They are made of many layers of DE films, like silicone (PDMS) and polyurethane (PUR), stacked on top of each other. The single layers are several micrometers thin and coated with a compliant electrode on both sides. Depending on the application a DE transducer has to withstand tensile forces, which may lead to a delamination of the layers and a ripping of the stack-transducer. This can be prevented by enhancing the adhesion among the layers. Within this contribution a surface plasma jet treatment with an atmospheric plasma beam as well as an adhesive utilized as electrode material was investigated to obtain an adhesion enhancement. The effects of these methods to enhance the adhesion are introduced briefly. Furthermore, various investigations were made to determine the benefits of the enhancement methods with respect to the electromechanical properties of the electrode. Therefore, certain tests regarding the surface resistance of the electrode and the dielectric breakdown strength (DBS) of the DE film were conducted. The tests indicate that the influences are strongly dependent on the composition of the electrode and the used DE material. Finally, improvements for a dry deposition roll-to-sheet manufacturing process for DE stack-transducers are derived from the obtained results.

  9. Near-field multiple traps of paraxial acoustic vortices with strengthened gradient force generated by sector transducer array

    NASA Astrophysics Data System (ADS)

    Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-01-01

    In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.

  10. Biosensors Based on Urease Adsorbed on Nickel, Platinum, and Gold Conductometric Transducers Modified with Silicalite and Nanozeolites

    NASA Astrophysics Data System (ADS)

    Kucherenko, Ivan S.; Soldatkin, Oleksandr O.; Kasap, Berna Ozansoy; Kurç, Burcu Akata; Melnyk, Volodymir G.; Semenycheva, Lyudmila M.; Dzyadevych, Sergei V.; Soldatkin, Alexei P.

    This work describes urease-based conductometric biosensors that were created using nontypical method of urease immobilization via adsorption on micro- and nanoporous particles: silicalite and nanocrystalline zeolites Beta (BEA) and L. Conductometric transducers with nickel, gold, and platinum interdigitated electrodes were used. Active regions of the nickel transducers were modified with microparticles using two procedures—spin coating and drop coating. Gold and platinum transducers were modified with silicalite using drop coating since it was more effective. Scanning electron microscopy was used to evaluate effectiveness of these procedures. The procedure of spin coating produced more uniform layers of particles (and biosensors had good reproducibility of preparation), but it was more complicated, drop coating was easier and led to formation of a bulk of particles; thus, biosensors had bigger sensitivity but worse reproducibility of preparation. Urease was immobilized onto transducers modified with particles by physical adsorption. Analytical characteristics of the obtained biosensors for determination of urea (calibration curves, sensitivity, limit of detection, linear concentration range, noise of responses, reproducibility of signal during a day, and operational stability during 3 days) were compared. Biosensors with all three particles deposited by spin coating showed similar characteristics; however, silicalite was a bit more effective. Biosensors based on nickel transducers modified by drop coating had better characteristics in comparison with modification by spin coating (except reproducibility of preparation). Transducers with gold electrodes showed best characteristics while creating biosensors, platinum electrodes were slightly inferior to them, and nickel electrodes were the worst.

  11. Investigation of Unsteady Pressure-Sensitive Paint (uPSP) and a Dynamic Loads Balance to Predict Launch Vehicle Buffet Environments

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.; hide

    2016-01-01

    This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production test environment for future launch vehicles. The results show that modifications to the current technique can improve the accuracy of buffet estimates. More importantly, the uPSP worked remarkably well and, with improvements to the frequency response, sensitivity, and productivity, will provide an enhanced method for measuring wind tunnel buffet forcing functions (BFFs).

  12. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  13. Instance Analysis for the Error of Three-pivot Pressure Transducer Static Balancing Method for Hydraulic Turbine Runner

    NASA Astrophysics Data System (ADS)

    Weng, Hanli; Li, Youping

    2017-04-01

    The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.

  14. Conflict in object affordance revealed by grip force

    PubMed Central

    McBride, Jennifer; Sumner, Petroc; Husain, Masud

    2011-01-01

    Viewing objects can result in automatic, partial activation of motor plans associated with them—“object affordance”. Here, we recorded grip force simultaneously from both hands in an object affordance task to investigate the effects of conflict between coactivated responses. Participants classified pictures of objects by squeezing force transducers with their left or right hand. Responses were faster on trials where the object afforded an action with the same hand that was required to make the response (congruent trials) compared to the opposite hand (incongruent trials). In addition, conflict between coactivated responses was reduced if it was experienced on the preceding trial, just like Gratton adaptation effects reported in “conflict” tasks (e.g., Eriksen flanker). This finding suggests that object affordance demonstrates conflict effects similar to those shown in other stimulus–response mapping tasks and thus could be integrated into the wider conceptual framework on overlearnt stimulus–response associations. Corrected erroneous responses occurred more frequently when there was conflict between the afforded response and the response required by the task, providing direct evidence that viewing an object activates motor plans appropriate for interacting with that object. Recording continuous grip force, as here, provides a sensitive way to measure coactivated responses in affordance tasks. PMID:21824035

  15. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes.

    PubMed

    Young, Kieran P; Haff, G Gregory; Newton, Robert U; Gabbett, Tim J; Sheppard, Jeremy M

    2015-03-01

    To evaluate whether the dynamic strength index (DSI: ballistic peak force/isometric peak force) could be effectively used to guide specific training interventions and detect training-induced changes in maximal and ballistic strength. Twenty-four elite male athletes were assessed in the isometric bench press and a 45% 1-repetition-maximum (1RM) ballistic bench throw using a force plate and linear position transducer. The DSI was calculated using the peak force values obtained during the ballistic bench throw and isometric bench press. Athletes were then allocated into 2 groups as matched pairs based on their DSI and strength in the 1RM bench press. Over the 5 wk of training, athletes performed either high-load (80-100% 1RM) bench press or moderate-load (40-55% 1RM) ballistic bench throws. The DSI was sensitive to disparate training methods, with the bench-press group increasing isometric bench-press peak force (P=.035, 91% likely), and the ballistic-bench-throw group increasing bench-throw peak force to a greater extent (P≤.001, 83% likely). A significant increase (P≤.001, 93% likely) in the DSI was observed for both groups. The DSI can be used to guide specific training interventions and can detect training-induced changes in isometric bench-press and ballistic bench-throw peak force over periods as short as 5 wk.

  16. Tissue architecture, cell traction, deformable scaffolds, and the forces that shape the embryo during morphogenesis.

    NASA Astrophysics Data System (ADS)

    Davidson, Lance

    2005-03-01

    Morphogenesis is the process of constucting form and shape. Morphogenesis during early development of the embryo involves orchestrated movements of cells and tissues. These morphogenetic movements establish the body plan and organs of the early embryo. The rates and trajectories of these movements depend on three physical features of the early embryo: 1) the forces generated by cells, 2) the mechanical properties of the tissues, and 3) the architecture of the tissues. These three mechanical features of the embryo are some of the earliest phenotypic features generated by the genome. We are taking an interdisciplinary approach combining biophysical, cell biological, and classical embryological techniques to understand the mechanics of morphogenesis. Using nanoNewton-sensitive force transducers we can apply forces and measure time dependent elastic modulii of tissue fragments 100 micrometers across. Using traction-force microscopy we can measure forces generated by cells on their environment. We use drugs and chimeric proteins to investigate the localization and function of molecular complexes responsible for force generation and the modulus. We use microsurgery to take-apart and construct novel tissues to investigate the role of geometry and architecture in the mechanics of morphogenesis. Together with simulation techniques these quantitative approaches will provide us with a practical nuts-and-bolts understanding of how the genome encodes the shapes and forms of life.

  17. New improvement of the combined optical fiber transducer for landslide monitoring

    NASA Astrophysics Data System (ADS)

    Zhu, Z.-W.; Yuan, Q.-Y.; Liu, D.-Y.; Liu, B.; Liu, J.-C.; Luo, H.

    2014-08-01

    Landslide monitoring is important in predicting the behavior of landslides, thereby ensuring environmental, life, and property safety. On the basis of our previous studies, we conducted the double shear test by using a third-generation optical fiber transducer that uses expandable polystyrene (EPS) as base material. However, the third-generation transducer has poor performance when cohesive force is present between the grout and capillary stainless steel pipe of the transducer. Thus, the fourth-generation optical fiber transducer was invented. Similar to the third-generation transducer, the fourth-generation transducer also used EPS as its base material. Single shear test was conducted on the fourth-generation transducer after being grouted with cement mortar (1 : 1 mix ratio). The micro-bend loss mechanism of the optical fiber was considered, and the optical time domain reflectometry instrument was used. The fact that the loss sequence of optical fibers subjected to loading is different at various locations is found. The relationship of the loading-point displacement vs. optical fiber sliding distance and optical loss were measured. Results show that the maximum initial measurement precision of the newly proposed device is 1 mm, the corresponding sliding distance is 21 mm, and the dynamic range is 0-20 mm. The fourth-generation transducer can measure the movement direction of loadings, thus making this transducer applicable for landslide monitoring.

  18. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, M.J.

    1994-01-01

    Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  19. A precision isotonic measuring system for isolated tissues.

    PubMed

    Mellor, P M

    1984-12-01

    An isotonic measuring system is described which utilizes an angular position transducer of the linear differential voltage transformer type. Resistance to corrosion, protection against the ingress of solutions, and ease of mounting and setting up were the mechanical objectives. Accuracy, linearity, and freedom from drift were essential requirements of the electrical specification. A special housing was designed to accommodate the transducer to overcome these problems. A control unit incorporating a power supply and electronic filtering components was made to serve up to four such transducers. The transducer output voltage is sufficiently high to drive directly even low sensitivity chart recorders. Constructional details and a circuit diagram are included. Fifty such transducers have been in use for up to four years in these laboratories. Examples of some of the published work done using this transducer system are referenced.

  20. Piezoelectric textured ceramics: Effective properties and application to ultrasonic transducers.

    PubMed

    Levassort, Franck; Pham Thi, Mai; Hemery, Henry; Marechal, Pierre; Tran-Huu-Hue, Louis-Pascal; Lethiecq, Marc

    2006-12-22

    Piezoelectric textured ceramics obtained by homo-template grain growth (HTGG) were recently demonstrated. A simple model with several assumptions has been used to calculate effective parameters of these new materials. Different connectivities have been simulated to show that spatial arrangements between the considered phases have little influence on the effective parameters, even through the 3-0 connectivity delivers the highest electromechanical thickness factor. A transducer based on a textured ceramic sample has been fabricated and characterised to show the efficiency of these piezoelectric materials. Finally, in a single element transducer configuration, simulation shows an improvement of 2 dB sensitivity for a transducer made with textured ceramic in comparison with a similar transducer design based on standard soft PZT (at equivalent bandwidths).

  1. 3-D airborne ultrasound synthetic aperture imaging based on capacitive micromachined ultrasonic transducers.

    PubMed

    Park, Kwan Kyu; Khuri-Yakub, Butrus T

    2013-09-01

    In this paper, we present an airborne 3-D volumetric imaging system based on capacitive micromachined ultrasonic transducers (CMUTs). For this purpose we fabricated 89-kHz CMUTs where each CMUT is made of a circular single-crystal silicon plate with a radius of 1mm and a thickness of 20 μm, which is actuated by electrostatic force through a 20-μm vacuum gap. The measured transmit sensitivity at 300-V DC bias is 14.6 Pa/V and 24.2 Pa/V, when excited by a 30-cycle burst and a continuous wave, respectively. The measured receive sensitivity at 300-V DC bias is 16.6 mV/Pa (-35.6 dB re 1 V/Pa) for a 30-cycle burst. A 26×26 2-D array was implemented by mechanical scanning a co-located transmitter and receiver using the classic synthetic aperture (CSA) method. The measurement of a 1.6λ-size target at a distance of 500 mm presented a lateral resolution of 3.17° and also showed good agreement with the theoretical point spread function. The 3-D imaging of two plates at a distance of 350 mm and 400 mm was constructed to exhibit the capability of the imaging system. This study experimentally demonstrates that a 2-D CMUT array can be used for practical 3-D imaging applications in air, such as a human-machine interface. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Development of a New Surface Acoustic Wave Based Gyroscope on a X-112°Y LiTaO3 Substrate

    PubMed Central

    Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang

    2011-01-01

    A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg−1 s at angular rates of up to 1,000 deg s−1 and good linearity are observed. PMID:22346678

  3. Development of a new surface acoustic wave based gyroscope on a X-112°Y LiTaO3 substrate.

    PubMed

    Wang, Wen; Liu, Jiuling; Xie, Xiao; Liu, Minghua; He, Shitang

    2011-01-01

    A new micro gyroscope based on the surface acoustic wave (SAW) gyroscopic effect was developed. The SAW gyroscopic effect is investigated by applying the surface effective permittivity method in the regime of small ratios of the rotation velocity and the frequency of the SAW. The theoretical analysis indicates that the larger velocity shift was observed from the rotated X-112°Y LiTaO3 substrate. Then, two SAW delay lines with reverse direction and an operation frequency of 160 MHz are fabricated on a same X-112°Y LiTaO3 chip as the feedback of two SAW oscillators, which act as the sensor element. The single-phase unidirectional transducer (SPUDT) and combed transducers were used to structure the delay lines to improve the frequency stability of the oscillator. The rotation of a piezoelectric medium gives rise to a shift of the propagation velocity of SAW due to the Coriolis force, resulting in the frequency shift of the SAW device, and hence, the evaluation of the sensor performance. Meanwhile, the differential structure was performed to double the sensitivity and compensate for the temperature effects. Using a precise rate table, the performance of the fabricated SAW gyroscope was evaluated experimentally. A sensitivity of 1.332 Hz deg(-1) s at angular rates of up to 1,000 deg s(-1) and good linearity are observed.

  4. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  5. Suggested Procedures for Installing Strain Gauges on Langley Research Center Wind Tunnel Balances, Custom Force Measuring Transducers, Metallic and Composite Structural Test Articles

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    2004-01-01

    The character of force and strain measurement testing at LaRC is such that the types of strain gauge installations, the materials upon which the strain gauges are applied, and the test environments encountered, require many varied approaches. In 1997, a NASA Technical Memorandum (NASA TM 110327) was generated to provide the strain gauge application specialist with a listing of recommended procedures for strain gauging various transducers and test articles at LaRC. The technical memorandum offered here is an effort to keep the strain gauge user informed of new technological enhancements in strain-gauging methodology while preserving the strain-gauging guidelines set forth in the 1997 TM. This document provides detailed recommendations for strain gauging LaRC-designed balances and custom transducers, composite materials, cryogenic and high-temperature test articles, and selected non-typical or unique materials or test conditions. Additionally, one section offers details for installing Bragg-Grating type fiber-optic strain sensors for non-typical test scenarios.

  6. Measurement of Forces and Moments Transmitted to the Residual Limb

    DTIC Science & Technology

    2009-08-01

    prosthesis alignment, socket pressure, gait, force and moment sensors 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER... prosthesis to measure the forces and moments at the base of the socket and to use these measurements to estimate the forces transmitted to the residual limb...BODY – EACH TASK IN STATEMENT OF WORK Task 1. To instrument a transtibial prosthesis with a tri-axial transducer to measure the forces and

  7. High temperature ultrasonic immersion measurements using a BS-PT based piezoelectric transducer without a delay line

    NASA Astrophysics Data System (ADS)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    2018-04-01

    Ultrasonic imaging is a key enabling technology required for in-service inspection of advanced sodium fast reactors at the hot stand-by operating mode (˜250C). Current work presents development of a single element, 2.4MHz, planar, ultrasonic immersion transducer for a potential application in ranging, inspection and imaging of the reactor components. The prototype immersion transducer is first tested in water for three thermal cycles up to 92C. The transducer is further evaluated for four thermal cycles in silicone oil, with total seven thermal cycles that exceeded operation period of 21 hours. Moreover, the preliminary data acquired for speed of sound in silicone oil indicates 24% reduction from 22C to 142C. Sensitivity of the ultrasonic transducer is also measured as a function of temperature and demonstrates the effect of multiple thermal cycles on the transducer components.

  8. Magneto-optical tracking of flexible laparoscopic ultrasound: model-based online detection and correction of magnetic tracking errors.

    PubMed

    Feuerstein, Marco; Reichl, Tobias; Vogel, Jakob; Traub, Joerg; Navab, Nassir

    2009-06-01

    Electromagnetic tracking is currently one of the most promising means of localizing flexible endoscopic instruments such as flexible laparoscopic ultrasound transducers. However, electromagnetic tracking is also susceptible to interference from ferromagnetic material, which distorts the magnetic field and leads to tracking errors. This paper presents new methods for real-time online detection and reduction of dynamic electromagnetic tracking errors when localizing a flexible laparoscopic ultrasound transducer. We use a hybrid tracking setup to combine optical tracking of the transducer shaft and electromagnetic tracking of the flexible transducer tip. A novel approach of modeling the poses of the transducer tip in relation to the transducer shaft allows us to reliably detect and significantly reduce electromagnetic tracking errors. For detecting errors of more than 5 mm, we achieved a sensitivity and specificity of 91% and 93%, respectively. Initial 3-D rms error of 6.91 mm were reduced to 3.15 mm.

  9. High performance miniature hygrometer and method thereof

    NASA Technical Reports Server (NTRS)

    VanZandt, Thomas R. (Inventor); Kaiser, William J. (Inventor); Kenny, Thomas W. (Inventor); Crisp, David (Inventor)

    1994-01-01

    An uncoated interdigitated transducer is cooled from a temperature above the dew point to a temperature below the dew point, while a parameter of a signal of the transducer is measured. The reduction in temperature causes a monotonic change in transducer signal because that signal is sensitive primarily to the water loading of the transducer surface as water forms on that surface due to the reduction in temperature. As the dew point is approached with temperature reduction, the slope of the curve of transducer signal with respect to temperature, remains relatively constant. However, as the dew point is reached the slope of that curve increases and because of changes in the structure of the water layer on the surface of the transducer, at the dew point the transducer responds with a clear shift in the rate at which the transducer signal changes. The temperature at which the second derivative of signal vs. temperature peaks can be readily used to identify with extreme accuracy, the precise dew point. The measurement technique employed by the present invention is relatively immune to surface contamination which remains significantly unchanged during the brief measurement period.

  10. Dual-frequency transducer with a wideband PVDF receiver for contrast-enhanced, adjustable harmonic imaging

    NASA Astrophysics Data System (ADS)

    Kim, Jinwook; Lindsey, Brooks D.; Li, Sibo; Dayton, Paul A.; Jiang, Xiaoning

    2017-04-01

    Acoustic angiography is a contrast-enhanced, superharmonic microvascular imaging method. It has shown the capability of high-resolution and high-contrast-to-tissue-ratio (CTR) imaging for vascular structure near tumor. Dual-frequency ultrasound transducers and arrays are usually used for this new imaging technique. Stacked-type dual-frequency transducers have been developed for this vascular imaging method by exciting injected microbubble contrast agent (MCA) in the vessels with low-frequency (1-5 MHz), moderate power ultrasound burst waves and receiving the superharmonic responses from MCA by a high-frequency receiver (>10 MHz). The main challenge of the conventional dual-frequency transducers is a limited penetration depth (<25 mm) due to the insufficient receiving sensitivity for highfrequency harmonic signal detection. A receiver with a high receiving sensitivity spanning a wide superharmonic frequency range (3rd to 6th) enables selectable bubble harmonic detection considering the required penetration depth. Here, we develop a new dual-frequency transducer composed of a 2 MHz 1-3 composite transmitter and a polyvinylidene fluoride (PVDF) receiver with a receiving frequency range of 4-12 MHz for adjustable harmonic imaging. The developed transducer was tested for harmonic responses from a microbubble-injected vessel-mimicking tube positioned 45 mm away. Despite the long imaging distance (45 mm), the prototype transducer detected clear harmonic response with the contrast-to-noise ratio of 6-20 dB and the -6 dB axial resolution of 200-350 μm for imaging a 200 um-diameter cellulose tube filled with microbubbles.

  11. A rectangle-type linear ultrasonic motor using longitudinal vibration transducers with four driving feet.

    PubMed

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2013-04-01

    To make full use of the vibrational energy of a longitudinal transducer, a rectangle-type linear ultrasonic motor with four driving feet is proposed in this paper. This new motor consists of four longitudinal vibration transducers which are arranged in a rectangle and form an enclosed construction. Lead zirconate titanate ceramics are embedded into the middle of the transducer and fastened by a wedge-caulking mechanism. Each transducer includes an exponentially shaped horn located on each end. The horns of the vertical transducers intersect at the base of the horizontal transducers' horns; the tip ends of the horizontal transducers' horns are used as the driving feet. Longitudinal vibrations are superimposed in the motor and generate elliptical movements at the tip ends of the horns. The working principle of the proposed motor is analyzed. The resonance frequencies of two working modes are tuned to be close to each other by adjusting the structural parameters. Transient analysis is developed to gain the vibration characteristics of the motor. A prototype motor is fabricated and measured. The vibration test results verify the feasibility of the proposed design. Typical output of the prototype is a no-load speed of 928 mm/s and maximum thrust force of 60 N at a voltage of 200 Vrms.

  12. Intracardiac ultrasound scanner using a micromachine (MEMS) actuator.

    PubMed

    Zara, J M; Bobbio, S M; Goodwin-Johansson, S; Smith, S W

    2000-01-01

    Catheter-based intracardiac ultrasound offers the potential for improved guidance of interventional cardiac procedures. The objective of this research is the development of catheter-based mechanical sector scanners incorporating high frequency ultrasound transducers operating at frequencies up to 20 MHz. The authors' current transducer assembly consists of a single 1.75 mm by 1.75 mm, 20 MHz, PZT element mounted on a 2 mm by 2 mm square, 75 mum thick polyimide table that pivots on 3-mum thick gold plated polyimide hinges. The hinges also serve as the electrical connections to the transducer. This table-mounted transducer is tilted using a miniature linear actuator to produce a sector scan. This linear actuator is an integrated force array (IFA), which is an example of a micromachine, i.e., a microelectromechanical system (MEMS). The IFA is a thin (2.2 mum) polyimide membrane, which consists of a network of hundreds of thousands of micron scale deformable capacitors made from pairs of metallized polyimide plates. IFAs contract with an applied voltage of 30-120 V and have been shown to produce strains as large as 20% and forces of up to 8 dynes. The prototype transducer and actuator assembly was fabricated and interfaced with a GagePCI analog to digital conversion board digitizing 12 bit samples at a rate of 100 MSamples/second housed in a personal computer to create a single channel ultrasound scanner. The deflection of the table transducer in a low viscosity insulating fluid (HFE 7100, 3M) is up to +/-10 degrees at scan rates of 10-60 Hz. Software has been developed to produce real-time sector scans on the PC monitor.

  13. Effects of stinger axial dynamics and mass compensation methods on experimental modal analysis

    NASA Astrophysics Data System (ADS)

    Hu, Ximing

    1992-06-01

    A longitudinal bar model that includes both stinger elastic and inertia properties is used to analyze the stinger's axial dynamics as well as the mass compensation that is required to obtain accurate input forces when a stinger is installed between the excitation source, force transducer, and the structure under test. Stinger motion transmissibility and force transmissibility, axial resonance and excitation energy transfer problems are discussed in detail. Stinger mass compensation problems occur when the force transducer is mounted on the exciter end of the stinger. These problems are studied theoretically, numerically, and experimentally. It is found that the measured Frequency Response Function (FRF) can be underestimated if mass compensation is based on the stinger exciter-end acceleration and can be overestimated if the mass compensation is based on the structure-end acceleration due to the stinger's compliance. A new mass compensation method that is based on two accelerations is introduced and is seen to improve the accuracy considerably. The effects of the force transducer's compliance on the mass compensation are also discussed. A theoretical model is developed that describes the measurement system's FRD around a test structure's resonance. The model shows that very large measurement errors occur when there is a small relative phase shift between the force and acceleration measurements. These errors can be in hundreds of percent corresponding to a phase error on the order of one or two degrees. The physical reasons for this unexpected error pattern are explained. This error is currently unknown to the experimental modal analysis community. Two sample structures consisting of a rigid mass and a double cantilever beam are used in the numerical calculations and experiments.

  14. A Novel Strategy for landslide displacement and its direction monitoring

    NASA Astrophysics Data System (ADS)

    Zhu, Z.-W.; Yuan, Q.-Y.; Liu, D.-Y.; Liu, B.; Liu, J.-C.; Luo, H.

    2013-12-01

    Landslide monitoring is important in predicting the behavior of landslides, thereby ensuring environmental, life, and property safety. On the basis of our previous studies, we conducted the double shear test by using a third-generation optical fiber transducer that uses expandable polystyrene (EPS) as base material. However, the third-generation transducer has poor performance when cohesive force is present between the grout and capillary stainless steel pipe of the transducer. Thus, the fourth-generation optical fiber transducer was invented. Similar to the third-generation transducer, the fourth-generation transducer also used EPS as its base material. Single shear test was conducted on the fourth-generation transducer after being grouted with cement mortar (1:1 mix ratio). The micro-bend loss mechanism of the optical fiber was considered, and the optical time domain reflectometry instrument was used. The fact that the loss sequence of optical fibers subjected to loading is different at various locations is found. The relationship of the loading-point displacement VS. optical fiber sliding distance and optical loss were measured. Results show that the maximum initial measurement precision of the newly proposed device is 1mm, the corresponding sliding distance is 21 mm, and the dynamic range is 0-20 mm. The fourth-generation transducer can measure the movement direction of loadings, thus making this transducer applicable for landslide monitoring.

  15. Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2010-03-01

    Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.

  16. Acoustic cymbal performance under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Jenne, Kirk E.; Huang, Dehua; Howarth, Thomas R.

    2004-05-01

    Continual awareness about the need to develop light-weight, low-volume, broadband, underwater acoustic projector and receive arrays that perform consistently in diverse environments is evident in recent Navy acoustic system initiatives. Acoustic cymbals, so named for resemblance to the percussive musical instruments, are miniature flextensional transducers that may perhaps meet the performance criteria for consistent performance under hydrostatic pressure after modifications in the design. These acoustic cymbals consist of a piezoceramic disk (or ring) bonded to two opposing cymbal-shaped metal shells. Operating as mechanical transformers, the two metal shells convert the large generative force inherently within the disk's radial mode into increased volume displacement at the metal shell surface to obtain volume displacement that translates into usable source levels and/or sensitivities at sonar frequencies in a relatively broad band. The air-backed design for standard acoustic cymbal transducers presents a barrier to deepwater applications. A new acoustic cymbal design for high-pressure applications will be presented for the first time. This practical pressure compensation is designed to diminish the effects of hydrostatic pressure to maintain consistent acoustic cymbal performance. Transmit and receive performance data, determined at the Naval Undersea Warfare Center's (NUWC) Acoustic Pressure Tank Facility (APTF), is presented.

  17. Research on pressure sensors for biomedical instruments

    NASA Technical Reports Server (NTRS)

    Angell, J. B.

    1975-01-01

    The development of a piezo-resistive pressure transducer is discussed suitable for recording pressures typically encountered in biomedical applications. The pressure transducer consists of a thin silicon diaphragm containing four strain-sensitive resistors, and is fabricated using silicon monolithic integrated-circuit technology. The pressure transducers can be as small as 0.7 mm outer diameter, and are, as a result, suitable for mounting at the tip of a catheter. Pressure-induced stress in the diaphragm is sensed by the resistors, which are interconnected to form a Wheatstone bridge.

  18. Force-Sensing Enhanced Simulation Environment (ForSense) for laparoscopic surgery training and assessment.

    PubMed

    Cundy, Thomas P; Thangaraj, Evelyn; Rafii-Tari, Hedyeh; Payne, Christopher J; Azzie, Georges; Sodergren, Mikael H; Yang, Guang-Zhong; Darzi, Ara

    2015-04-01

    Excessive or inappropriate tissue interaction force during laparoscopic surgery is a recognized contributor to surgical error, especially for robotic surgery. Measurement of force at the tool-tissue interface is, therefore, a clinically relevant skill assessment variable that may improve effectiveness of surgical simulation. Popular box trainer simulators lack the necessary technology to measure force. The aim of this study was to develop a force sensing unit that may be integrated easily with existing box trainer simulators and to (1) validate multiple force variables as objective measurements of laparoscopic skill, and (2) determine concurrent validity of a revised scoring metric. A base plate unit sensitized to a force transducer was retrofitted to a box trainer. Participants of 3 different levels of operative experience performed 5 repetitions of a peg transfer and suture task. Multiple outcome variables of force were assessed as well as a revised scoring metric that incorporated a penalty for force error. Mean, maximum, and overall magnitudes of force were significantly different among the 3 levels of experience, as well as force error. Experts were found to exert the least force and fastest task completion times, and vice versa for novices. Overall magnitude of force was the variable most correlated with experience level and task completion time. The revised scoring metric had similar predictive strength for experience level compared with the standard scoring metric. Current box trainer simulators can be adapted for enhanced objective measurements of skill involving force sensing. These outcomes are significantly influenced by level of expertise and are relevant to operative safety in laparoscopic surgery. Conventional proficiency standards that focus predominantly on task completion time may be integrated with force-based outcomes to be more accurately reflective of skill quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Portable high precision pressure transducer system

    DOEpatents

    Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  20. Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers.

    PubMed

    Tadayon, Mohammad Amin; Ashkenazi, Shai

    2013-09-01

    The sensitivity and reliability of piezoelectric ultrasound transducers severely degrade in applications requiring high frequency and small element size. Alternative technologies such as capacitive micromachined ultrasound transducers (CMUT) and optical sensing and generation of ultrasound have been proposed and studied for several decades. In this paper, we present a new type of device based on optical micromachined ultrasound transducer (OMUT) technology. OMUTs rely on microfabrication techniques to construct micrometerscale air cavities capped by an elastic membrane. A modified photoresist bonding process has been developed to facilitate the fabrication of these devices. We will describe the design, fabrication, and testing of prototype OMUT devices which implement a receive-only function. Future design modifications are proposed for incorporating complete transmit¿receive functionality in a single element.

  1. Rotor systems research aircraft risk-reduction shake test

    NASA Technical Reports Server (NTRS)

    Wellman, J. Brent

    1990-01-01

    A shake test and an extensive analysis of results were performed to evaluate the possibility of and the method for dynamically calibrating the Rotor Systems Research Aircraft (RSRA). The RSRA airframe was subjected to known vibratory loads in several degrees of freedom and the responses of many aircraft transducers were recorded. Analysis of the transducer responses using the technique of dynamic force determination showed that the RSRA, when used as a dynamic measurement system, could predict, a posteriori, an excitation force in a single axis to an accuracy of about 5 percent and sometimes better. As the analysis was broadened to include multiple degrees of freedom for the excitation force, the predictive ability of the measurement system degraded to about 20 percent, with the error occasionally reaching 100 percent. The poor performance of the measurement system is explained by the nonlinear response of the RSRA to vibratory forces and the inadequacy of the particular method used in accounting for this nonlinearity.

  2. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    NASA Astrophysics Data System (ADS)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  3. Spit-Hole Effects on the Ballistics of a 7.62-mm Cartridge

    DTIC Science & Technology

    2014-02-01

    barrel retains 0.50 in (12.7 mm) of rifling. The midchamber pressure transducer, Kistler Model 6215 (8), is consistent with previous experiments...Nemours and Company. 2 Kistler Model 9031A Load Washer (9). Force transducer selection was driven by the anticipated load and the necessity of an...Development and Engineering Center, Picatinny Arsenal, NJ, January 1986. 8. Kistler Operating Instructions, Quartz High-Pressure Sensor Type 6215

  4. Nonlinear Effects in Ultrasound Fields of Diagnostic-type Transducers Used for Kidney Stone Propulsion: Characterization in Water

    PubMed Central

    Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.

    2016-01-01

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher transducer output to provide stronger pushing force; however, nonlinear acoustic saturation effect can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match low power pressure beam scans. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging. PMID:27087711

  5. Matrix method for acoustic levitation simulation.

    PubMed

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

  6. Ultrasensitive mechanical detection of magnetic moment using a commercial disk drive write head

    PubMed Central

    Tao, Y.; Eichler, A.; Holzherr, T.; Degen, C. L.

    2016-01-01

    Sensitive detection of weak magnetic moments is an essential capability in many areas of nanoscale science and technology, including nanomagnetism, quantum readout of spins and nanoscale magnetic resonance imaging. Here we show that the write head of a commercial hard drive may enable significant advances in nanoscale spin detection. By approaching a sharp diamond tip to within 5 nm from a write pole and measuring the induced diamagnetic moment with a nanomechanical force transducer, we demonstrate a spin sensitivity of 0.032 μB Hz−1/2, equivalent to 21 proton magnetic moments. The high sensitivity is enabled in part by the pole's strong magnetic gradient of up to 28 × 106 T m−1 and in part by the absence of non-contact friction due to the extremely flat writer surface. In addition, we demonstrate quantitative imaging of the pole field with ∼10 nm spatial resolution. We foresee diverse applications for write heads in experimental condensed matter physics, especially in spintronics, ultrafast spin manipulation and mesoscopic physics. PMID:27647039

  7. Particle manipulation by a non-resonant acoustic levitator

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2015-01-01

    We present the analysis of a non-resonant acoustic levitator, formed by an ultrasonic transducer and a concave reflector. In contrast to traditional levitators, the geometry presented herein does not require the separation distance between the transducer and the reflector to be a multiple of half wavelength. The levitator behavior is numerically predicted by applying a numerical model to calculate the acoustic pressure distribution and the Gor'kov theory to obtain the potential of the acoustic radiation force that acts on a levitated particle. We also demonstrate that levitating particles can be manipulated by controlling the reflector position while maintaining the transducer in a fixed position.

  8. Nano-optomechanical transducer

    DOEpatents

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  9. An Investigation of the Posterior Component of Occlusal Force

    DTIC Science & Technology

    1994-05-01

    of the hemostat allowed subjects to consistently orient the bite force transducer parallel to the occIusal plane , thus allowing the bite force to be...the anterior component of occlusal force was influenced by the steepness of the occlusal plane . Southard et al (1989) was the first to quantify the...young adult males yielded higher mean maximum bite forces at 20 mm opening and at 40 mm opening. The authors suggested that orientation and function of

  10. Bolt-Tension Sensor

    NASA Technical Reports Server (NTRS)

    Goldie, James H.; Bushko, Dariusz A.; Gerver, Michael J.

    1995-01-01

    In technique for measuring tensile force of bolt, specially fabricated magnetostrictive washer used as force transducer. Compact, portable inductive electronic sensor placed against washer to measure tension force. New system provides accurate, economical, and convenient way to measure bolt tension in field. Measurements on test assembly shows that tension can be measured to accuracy of about plus or minus 1 percent of load capacity of typical bolt.

  11. Limitation of Gravitational Wave Detector Niobè Sensitivity by the Frequency Tracking Noise

    NASA Astrophysics Data System (ADS)

    Frajuca, Carlos; Bortoli, Fabio Da Silva

    The gravity wave detector at the University of Western Australia was based on a bending flap of 0.45kg tuned near the fundamental resonant frequency of a 1.5ton resonant-bar of 710Hz at a temperature of 5K. The displacement of the bending flap was monitored with a 9.5GHz superconducting re-entrant cavity transducer. The performance of the transducer is related to the development of a low noise microwave pump oscillator to drive the transducer. This work studies the influence of the frequency tracking noise of Niobè. It had a burst sensitivity of h ≈ 7 × 10-19 with a long term operation from 1993 to early 1998. It had the lowest observed noise temperature. Using the characteristics of the detector, NIOBÈ should had reached a much better sensitivity that the one measure. It seems that the noise introduced in the system by the frequency tracking device was not taken into account at the time of operation, this noise gives a value of ≈ 2.5 × 10-18m/(Hz)-1/2, what is the value that limited the detector sensitivity to the one measured at the time of operation.

  12. A novel CMOS transducer for giant magnetoresistance sensors.

    PubMed

    Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong

    2017-02-01

    In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μm CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.

  13. Acousto-optical Transducer with Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Kolomenskii, A. A.; Surovic, E.; Schuessler, H. A.

    2018-04-01

    The surface plasmon resonance (SPR) is a sensitive technique for the detection of changes in dielectric parameters in close proximity to a metal film supporting surface plasmon waves. Here we study the application of the SPR effect to an efficient conversion of an acoustic signal into an optical one. Such a transducer potentially has a large bandwidth and good sensitivity. When an acoustic wave is incident onto a receiving plate positioned within the penetration depth of the surface plasmons, it creates displacements of the surface of the plate and, thus, modulates the dielectric properties in the proximity of the gold film. This modulation, in turn, modifies the light reflection under surface plasmon resonance conditions. We simulate characteristics of this acousto-optical transducer with surface plasmons and provide sets of parameters at the optical wavelength of 800 nm and 633 nm for its realization.

  14. Roller-transducer scanning of wooden pallet parts for defect detection

    Treesearch

    Mohammed F. Kabir; Daniel L. Schmoldt; Mark E. Schafer

    2001-01-01

    Ultrasonic scanning experiments were conducted on two species of pallet deckboards using rolling transducers in a pitch-catch arrangement. Sound and unsound knots, cross grain, bark pockets, holes, splits, decay, and wane were characterized using several ultrasound parameters. Almost all parameters displayed sensitivity to defects distinctly from clear wood regions—...

  15. Portable high precision pressure transducer system

    DOEpatents

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  16. Measurement of Forces and Moments Transmitted to the Residual Limb

    DTIC Science & Technology

    2010-10-01

    forces, moments, and alignments. 15. SUBJECT TERMS Amputees, prosthesis alignment, socket pressure, gait, force and moment sensors 16. SECURITY...evaluate the feasibility of using a tri-axial transducer mounted to the pylon of a lower limb prosthesis directly below the socket to a.) Characterize...weighing up to nearly 500lbs, or activities which involve deceleration or acceleration forces of up to 500 lbs along the pylon of a prosthesis . Diameter

  17. Remote detection of stress corrosion cracking: Surface composition and crack detection

    NASA Astrophysics Data System (ADS)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  18. Early Detection of Clinically Significant Prostate Cancer Using Ultrasonic Acoustic Radiation Force Impulse (ARFI) Imaging

    DTIC Science & Technology

    2017-10-01

    Toolkit for rapid 3D visualization and image volume interpretation, followed by automated transducer positioning in a user-selected image plane for... Toolkit (IGSTK) to enable rapid 3D visualization and image volume interpretation followed by automated transducer positioning in the user-selected... careers in science, technology, and the humanities. What do you plan to do during the next reporting period to accomplish the goals? If this

  19. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    NASA Astrophysics Data System (ADS)

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor.

  20. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    PubMed Central

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor. PMID:28134275

  1. Ultrahigh Frequency Lensless Ultrasonic Transducers for Acoustic Tweezers Application

    PubMed Central

    Hsu, Hsiu-Sheng; Li, Ying; Lee, Changyang; Lin, Anderson; Zhou, Qifa; Kim, Eun Sok; Shung, Kirk Koping

    2014-01-01

    Similar to optical tweezers, a tightly focused ultrasound microbeam is needed to manipulate microparticles in acoustic tweezers. The development of highly sensitive ultrahigh frequency ultrasonic transducers is crucial for trapping particles or cells with a size of a few microns. As an extra lens would cause excessive attenuation at ultrahigh frequencies, two types of 200-MHz lensless transducer design were developed as an ultrasound microbeam device for acoustic tweezers application. Lithium niobate single crystal press-focused (PF) transducer and zinc oxide self-focused transducer were designed, fabricated and characterized. Tightly focused acoustic beams produced by these transducers were shown to be capable of manipulating single microspheres as small as 5 μm two-dimensionally within a range of hundreds of micrometers in distilled water. The size of the trapped microspheres is the smallest ever reported in the literature of acoustic PF devices. These results suggest that these lensless ultrahigh frequency ultrasonic transducers are capable of manipulating particles at the cellular level and that acoustic tweezers may be a useful tool to manipulate a single cell or molecule for a wide range of biomedical applications. PMID:23042219

  2. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    PubMed

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation.

    PubMed

    Huang, Hayden; Dong, Chen Y; Kwon, Hyuk-Sang; Sutin, Jason D; Kamm, Roger D; So, Peter T C

    2002-04-01

    The ability to apply quantifiable mechanical stresses at the microscopic scale is critical for studying cellular responses to mechanical forces. This necessitates the use of force transducers that can apply precisely controlled forces to cells while monitoring the responses noninvasively. This paper describes the development of a micromanipulation workstation integrating two-photon, three-dimensional imaging with a high-force, uniform-gradient magnetic manipulator. The uniform-gradient magnetic field applies nearly uniform forces to a large cell population, permitting statistical quantification of select molecular responses to mechanical stresses. The magnetic transducer design is capable of exerting over 200 pN of force on 4.5-microm-diameter paramagnetic particles and over 800 pN on 5.0-microm ferromagnetic particles. These forces vary within +/-10% over an area 500 x 500 microm2. The compatibility with the use of high numerical aperture (approximately 1.0) objectives is an integral part of the workstation design allowing submicron-resolution, three-dimensional, two-photon imaging. Three-dimensional analyses of cellular deformation under localized mechanical strain are reported. These measurements indicate that the response of cells to large focal stresses may contain three-dimensional global deformations and show the suitability of this workstation to further studying cellular response to mechanical stresses.

  4. Novel infrared detector based on a tunneling displacement transducer

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Waltman, S. B.; Reynolds, J. K.

    1991-01-01

    The paper describes the design, fabrication, and characteristics of a novel infrared detector based on the principle of Golay's (1947) pneumatic infrared detector, which uses the expansion of a gas to detect infrared radiation. The present detector is constructed entirely from micromachined silicon and uses an electron tunneling displacement transducer for the detection of gas expansion. The sensitivity of the new detector is competitive with the best commercial pyroelectric sensors and can be readily improved by an order of magnitude through the use of an optimized transducer.

  5. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane

    NASA Astrophysics Data System (ADS)

    Steinberg-Yfrach, Gali; Rigaud, Jean-Louis; Durantini, Edgardo N.; Moore, Ana L.; Gust, Devens; Moore, Thomas A.

    1998-04-01

    Energy-transducing membranes of living organisms couple spontaneous to non-spontaneous processes through the intermediacy of protonmotive force (p.m.f.) - an imbalance in electrochemical potential of protons across the membrane. In most organisms, p.m.f. is generated by redox reactions that are either photochemically driven, such as those in photosynthetic reaction centres, or intrinsically spontaneous, such as those of oxidative phosphorylation in mitochondria. Transmembrane proteins (such as the cytochromes and complexes I, III and IV in the electron-transport chain in the inner mitochondrial membrane) couple the redox reactions to proton translocation, thereby conserving a fraction of the redox chemical potential as p.m.f. Many transducer proteins couple p.m.f. to the performance of biochemical work, such as biochemical synthesis and mechanical and transport processes. Recently, an artificial photosynthetic membrane was reported in which a photocyclic process was used to transport protons across a liposomal membrane, resulting in acidification of the liposome's internal volume. If significant p.m.f. is generated in this system, then incorporating an appropriate transducer into the liposomal bilayer should make it possible to drive a non-spontaneous chemical process. Here we report the incorporation of FOF1-ATP synthase into liposomes containing the components of the proton-pumping photocycle. Irradiation of this artificial membrane with visible light results in the uncoupler- and inhibitor-sensitive synthesis of adenosine triphosphate (ATP) against an ATP chemical potential of ~12kcalmol-1, with a quantum yield of more than 7%. This system mimics the process by which photosynthetic bacteria convert light energy into ATP chemical potential.

  6. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  7. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arpaia, P., E-mail: pasquale.arpaia@unina.it; Technology Department, European Organization for Nuclear Research; Girone, M., E-mail: mario.girone@cern.ch

    2015-12-15

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sourcesmore » most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.« less

  8. Theoretical design and evaluation of endoluminal ultrasound applicators for thermal therapy of pancreatic cancer under image guidance

    NASA Astrophysics Data System (ADS)

    Adams, Matthew; Scott, Serena; Salgaonkar, Vasant; Sommer, Graham; Diederich, Chris

    2017-03-01

    An image-guided endoluminal ultrasound applicator has been proposed for palliative and potential curative thermal therapy of pancreatic tumors. By considering a directional transducer array of planar, tubular, or curvilinear transducers, this design offers the potential for fast volumetric therapy and 3D spatial control over the energy deposition profile. Treatment of pancreatic tumor tissue would be performed in a minimally invasive fashion with the applicator positioned in the gastrointestinal (GI) lumen, and sparing of the luminal wall would be achieved with a water-cooled balloon surrounding the transducers. A theoretical evaluation of this design was performed by developing a 3D acoustic and bioheat transfer model, with temperature and thermal dose solutions obtained using a FEM solver (COMSOL Multiphysics). Parametric studies were performed on a generalized anatomical model of the pancreas, tumor, and adjacent luminal wall to determine preferred transducer configurations and frequencies for maximizing lesion volume and penetration while sparing the luminal wall. Patient-specific models of pancreatic tumors were generated from CT studies and used to assess the feasibility of performing thermal ablation or hyperthermia on small (˜2 cm diameter) pancreatic head tumors with an endoluminal applicator positioned within the duodenum. Simulation results indicate lower transducer operating frequencies (1-3 MHz) are necessary to mitigate damage to the luminal wall, and a tradeoff between penetration depth and lesion volume emerges as the degree of focusing increases. For patient-specific ablation modeling of tumors within 30 mm of the luminal wall, approximately 95% of the volume could be ablated within 15 min using a planar or lightly focused transducer configuration without duodenal damage. Over 90% of the volume could be elevated above 40°C at steady state for hyperthermia applications (e.g., radiation sensitization, drug delivery) using a tubular transducer. For tumors extending deeper into the pancreas (˜35 mm), strongly focused curvilinear transducers could ablate over 80% of the tumor volume within 15 min while minimizing damage to nearby sensitive structures.

  9. Finger forces in fastball baseball pitching.

    PubMed

    Kinoshita, Hiroshi; Obata, Satoshi; Nasu, Daiki; Kadota, Koji; Matsuo, Tomoyuki; Fleisig, Glenn S

    2017-08-01

    Forces imparted by the fingers onto a baseball are the final, critical aspects for pitching, however these forces have not been quantified previously as no biomechanical technology was available. In this study, an instrumented baseball was developed for direct measurement of ball reaction force by individual fingers and used to provide fundamental information on the forces during a fastball pitch. A tri-axial force transducer with a cable having an easily-detachable connector were installed in an official baseball. Data were collected from 11 pitchers who placed the fingertip of their index, middle, ring, or thumb on the transducer, and threw four-seam fastballs to a target cage from a flat mound. For the index and middle fingers, resultant ball reaction force exhibited a bimodal pattern with initial and second peaks at 38-39ms and 6-7ms before ball release, and their amplitudes were around 97N each. The ring finger and thumb produced single-peak forces of approximately 50 and 83N, respectively. Shear forces for the index and middle fingers formed distinct peak at 4-5ms before release, and the peaks summed to 102N; a kinetic source for backspin on the ball. An additional experiment with submaximal pitching effort showed a linear relationship of peak forces with ball velocity. The peak ball reaction force for fastballs exceeded 80% of maximum finger strength measured, suggesting that strengthening of the distal muscles is important both for enhancing performance and for avoiding injuries. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Silicon nanowires: where mechanics and optics meet at the nanoscale.

    PubMed

    Ramos, Daniel; Gil-Santos, Eduardo; Malvar, Oscar; Llorens, Jose M; Pini, Valerio; San Paulo, Alvaro; Calleja, Montserrat; Tamayo, Javier

    2013-12-06

    Mechanical transducers based on nanowires promise revolutionary advances in biological sensing and force microscopy/spectroscopy. A crucial step is the development of simple and non-invasive techniques able to detect displacements with subpicometer sensitivity per unit bandwidth. Here, we design suspended tapered silicon nanowires supporting a range of optical resonances that confine and efficiently scatter light in the visible range. Then, we develop an optical method for efficiently coupling the evanescent field to the regular interference pattern generated by an incoming laser beam and the reflected beam from the substrate underneath the nanowire. This optomechanical coupling is here applied to measure the displacement of 50 nm wide nanowires with sensitivity on the verge of 1 fm/Hz(1/2) at room temperature with a simple laser interferometry set-up. This method opens the door to the measurement of the Brownian motion of ultrashort nanowires for the detection of single biomolecular recognition events in liquids, and single molecule spectroscopy in vacuum.

  11. A droplet-based passive force sensor for remote tactile sensing applications

    NASA Astrophysics Data System (ADS)

    Nie, Baoqing; Yao, Ting; Zhang, Yiqiu; Liu, Jian; Chen, Xinjian

    2018-01-01

    A droplet-based flexible wireless force sensor has been developed for remote tactile-sensing applications. By integration of a droplet-based capacitive sensing unit and two circular planar coils, this inductor-capacitor (LC) passive sensor offers a platform for the mechanical force detection in a wireless transmitting mode. Under external loads, the membrane surface of the sensor deforms the underlying elastic droplet uniformly, introducing a capacitance response in tens of picofarads. The LC circuit transduces the applied force into corresponding variations of its resonance frequency, which is detected by an external electromagnetic coupling coil. Specifically, the liquid droplet features a mechanosensitive plasticity, which results in an increased device sensitivity as high as 2.72 MHz N-1. The high dielectric property of the droplet endows our sensor with high tolerance for noise and large capacitance values (20-40 pF), the highest value in the literature for the LC passive devices in comparable dimensions. It achieves excellent reproducibility under periodical loads ranging from 0 to 1.56 N and temperature fluctuations ranging from 10 °C to 55 °C. As an interesting conceptual demonstration, the flexible device has been configured into a fingertip-amounted setting in a highly compact package (of 11 mm × 11 mm × 0.25 mm) for remote contact force sensing in the table tennis game.

  12. Standing surface acoustic wave technology applied for micro-particle concentration in oil

    NASA Astrophysics Data System (ADS)

    Wang, Ziping; Xue, Xian; Luo, Ying; Yuan, Fuh-Gwo

    2018-03-01

    Oil lubrication plays an important role in a variety of mechanical equipment. The traditional purification method is difficult to remove the tiny impurity size of 5-15 μm. Three different types of the transducers and its preparation methods were used in the experiment. The phenomenon that the impurity particles in viscous fluid by the acoustic radiation force was moved the wave node position and focused on the center line was observed by the super-depth microscope. The influence factors of the produced SSAW, particle force condition and movement track were analyzed. The experimental results show that the interdigital transducer can be used to generate SSAW, so as to achieve the separation effect of oil and suspended particles.

  13. Novel approach to tensile testing of micro- and nanoscale fibers

    NASA Astrophysics Data System (ADS)

    Tan, E. P. S.; Lim, C. T.

    2004-08-01

    Due to the strength and size of the micro- and nanoscale fibers, larger conventional universal testing machines are not suitable in performing stretch test of such fibers. Existing microtensile testing machines are custom-made and are complex and expensive to construct. Here, a novel method of using an existing atomic force microscope (AFM)-based nanoindenation system for the tensile testing of microscale or bundled nanoscale fibers is proposed. The microscale poly (L-lactic-co-glycolic acid) fiber (˜25 μm diameter) was used as an example to illustrate this technique. The microfiber was first attached to a nanoindenter tip and the base via a custom-made holder to ensure that the microfiber was taut and vertically aligned. The force transducer of the nanoindenter was used to measure the tensile force required to stretch the microfiber. The microfiber was stretched using the stepper motor of the AFM system. The elongation of the microfiber was measured by subtracting the elongation of the transducer spring from the total elongation of the microfiber and transducer spring. A plot of the load against elongation of the microfiber was then obtained. The stress and strain of the microfiber was measured by subtracting the elongation of the transducer spring from the total elongation of the microfiber was then obtained. The stress and strain of the microfiber was obtained by dividing the load and elongation by cross-sectional area and gauge length, respectively. With this data, the mechanical behavior of the sample at small strains can be studied. This system is able to provide a high load resolution of 80 nN and displacement resolution of 0.5 nm. However, maximum load and sample elongation is limited and handling of the sample still remains a challenge.

  14. Design, characterization, and experimental use of the second generation MEMS acoustic emission device

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2005-05-01

    We describe the design, fabrication, testing and application (in structural experiments) of our 2004 (second generation) MEMS device, designed for acoustic emission sensing based upon experiments with our 2002 (first generation) device. Both devices feature a suite of resonant-type transducers in the frequency range between 100 kHz and 1 MHz. The 2002 device was designed to operate in an evacuated housing because of high squeeze film damping, as confirmed in our earlier experiments. In additional studies involving the 2002 device, experimental simulation of acoustic emissions in a steel plate, using pencil lead break or ball impact loading, showed that the transducers in the frequency range of 100 kHz-500 kHz presented clearer output signals than the transducers with frequencies higher than 500 kHz. Using the knowledge gained from the 2002 device, we designed and fabricated our second generation device in 2004 using the multi-user polysilicon surface micromachining (MUMPs) process. The 2004 device has 7 independent capacitive type transducers, compared to 18 independent transducers in the 2002 device, including 6 piston type transducers in the frequency range of 100 kHz to 500 kHz and 1 piston type transducer at 1 MHz to capture high frequency information. Piston type transducers developed in our research have two uncoupled modes so that twofold information can be acquired from a single transducer. In addition, the piston shape helps to reduce residual stress effect of surface micromachining process. The center to center distance between etch holes in the vibrating plate was reduced from 30 μm to 13 μm, in order to reduce squeeze film damping. As a result, the Q factor under atmospheric pressure for the 100 kHz transducer was increased to 2.37 from 0.18, and therefore the vacuum housing has been eliminated from the 2004 device. Sensitivities of transducers were also increased, by enlarging transducer area, in order to capture significant small amplitude acoustic emission events. The average individual transducer area in the 2004 device was increased to 6.97 mm2 as compared to 2.51 mm2 in the 2002 device. In this paper, we report the new experimental results on the characterization of the 2004 device and compare them with analytical results. We show improvements in sensitivity as measured by capacitance and as measured by pencil lead break experiments. Improvement in damping is also evaluated by admittance measurement in atmosphere. Pencil lead break experiments also show that transducers can operate in atmospheric pressure. Finally, we apply the device to acoustic emission experiments on crack propagation in a steel beam specimen, precracked in fatigue, in a four-point bending test.

  15. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.

    PubMed

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2015-05-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.

  16. Variation in predicting pantograph-catenary interaction contact forces, numerical simulations and field measurements

    NASA Astrophysics Data System (ADS)

    Nåvik, Petter; Rønnquist, Anders; Stichel, Sebastian

    2017-09-01

    The contact force between the pantograph and the contact wire ensures energy transfer between the two. Too small of a force leads to arching and unstable energy transfer, while too large of a force leads to unnecessary wear on both parts. Thus, obtaining the correct contact force is important for both field measurements and estimates using numerical analysis. The field contact force time series is derived from measurements performed by a self-propelled diagnostic vehicle containing overhead line recording equipment. The measurements are not sampled at the actual contact surface of the interaction but by force transducers beneath the collector strips. Methods exist for obtaining more realistic measurements by adding inertia and aerodynamic effects to the measurements. The variation in predicting the pantograph-catenary interaction contact force is studied in this paper by evaluating the effect of the force sampling location and the effects of signal processing such as filtering. A numerical model validated by field measurements is used to study these effects. First, this paper shows that the numerical model can reproduce a train passage with high accuracy. Second, this study introduces three different options for contact force predictions from numerical simulations. Third, this paper demonstrates that the standard deviation and the maximum and minimum values of the contact force are sensitive to a low-pass filter. For a specific case, an 80 Hz cut-off frequency is compared to a 20 Hz cut-off frequency, as required by EN 50317:2012; the results show an 11% increase in standard deviation, a 36% increase in the maximum value and a 19% decrease in the minimum value.

  17. Acoustic levitator for structure measurements on low temperature liquid droplets.

    PubMed

    Weber, J K R; Rey, C A; Neuefeind, J; Benmore, C J

    2009-08-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 degrees C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of approximately 22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  18. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles.

    PubMed

    Hofmann, Andreas; Wenzel, Daniela; Becher, Ulrich M; Freitag, Daniel F; Klein, Alexandra M; Eberbeck, Dietmar; Schulte, Maike; Zimmermann, Katrin; Bergemann, Christian; Gleich, Bernhard; Roell, Wilhelm; Weyh, Thomas; Trahms, Lutz; Nickenig, Georg; Fleischmann, Bernd K; Pfeifer, Alexander

    2009-01-06

    Targeting of viral vectors is a major challenge for in vivo gene delivery, especially after intravascular application. In addition, targeting of the endothelium itself would be of importance for gene-based therapies of vascular disease. Here, we used magnetic nanoparticles (MNPs) to combine cell transduction and positioning in the vascular system under clinically relevant, nonpermissive conditions, including hydrodynamic forces and hypothermia. The use of MNPs enhanced transduction efficiency of endothelial cells and enabled direct endothelial targeting of lentiviral vectors (LVs) by magnetic force, even in perfused vessels. In addition, application of external magnetic fields to mice significantly changed LV/MNP biodistribution in vivo. LV/MNP-transduced cells exhibited superparamagnetic behavior as measured by magnetorelaxometry, and they were efficiently retained by magnetic fields. The magnetic interactions were strong enough to position MNP-containing endothelial cells at the intima of vessels under physiological flow conditions. Importantly, magnetic positioning of MNP-labeled cells was also achieved in vivo in an injury model of the mouse carotid artery. Intravascular gene targeting can be combined with positioning of the transduced cells via nanomagnetic particles, thereby combining gene- and cell-based therapies.

  19. Novel approaches to optomechanical transduction

    NASA Astrophysics Data System (ADS)

    Cernotik, Ondrej; Hammerer, Klemens

    In recent years, mechanical oscillators received attention as a promising tool for frequency conversion between microwaves and light. A general, bi-directional transducer with high efficiency is still far from reach of current technology; finding new strategies for optomechanical transduction allows us to relax the requirements and bring these systems closer to an experimental realization. An interesting example is generation of entanglement between two superconducting qubits using measurement and postselection. Here, the mechanical oscillators interacts directly with the superconducting transmon qubit in such a way that it feels a qubit-state dependent force. This force can then be read out using a cavity field; reading out two such systems sequentially realizes an effective total spin measurement. Starting from a suitable initial state and employing postselection, entanglement can be generated. Another interesting approach is to use an array of optomechanical transducers in which the output fields of one transducer are fed into the input of the next. The periodicity of the array results in a joint dispersion relation for the propagating microwave and optical fields. The resulting structure can be used to control the conversion bandwidth and forward and backward scattering.

  20. Acoustic levitator for structure measurements on low temperature liquid droplets

    NASA Astrophysics Data System (ADS)

    Weber, J. K. R.; Rey, C. A.; Neuefeind, J.; Benmore, C. J.

    2009-08-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops of 1-3 mm in diameter at temperatures in the range -40 to +40 °C. The levitator comprised (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) an acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1 kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ˜22 kHz and could produce sound pressure levels of up to 160 dB. The force applied by the acoustic field could be modulated to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  1. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuqi; Wang, Jiawei; Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn

    2016-03-07

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharpmore » and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5–10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.« less

  2. Detection of cyclic-fold bifurcation in electrostatic MEMS transducers by motion-induced current

    NASA Astrophysics Data System (ADS)

    Park, Sangtak; Khater, Mahmoud; Effa, David; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2017-08-01

    This paper presents a new detection method of cyclic-fold bifurcations in electrostatic MEMS transducers based on a variant of the harmonic detection of resonance method. The electrostatic transducer is driven by an unbiased harmonic signal at half its natural frequency, ω a   =  1/2 ω o . The response of the transducer consists of static displacement and a series of harmonics at 2 ω a , 4 ω a , and so on. Its motion-induced current is shifted by the excitation frequency, ω a , to appear at 3 ω a , 5 ω a , and higher odd harmonics, providing higher sensitivity to the measurement of harmonic motions. With this method, we successfully detected the variation in the location of the cyclic-fold bifurcation of an encapsulated electrostatic MEMS transducer. We also detected a regime of tapping mode motions subsequent to the bifurcation.

  3. Micromachined ultrasonic transducers: 11.4 MHz transmission in air and more

    NASA Astrophysics Data System (ADS)

    Ladabaum, Igal; Khuri-Yakub, B. T.; Spoliansky, Dimitri

    1996-01-01

    The fabrication and modeling of novel, capacitive, ultrasonic air transducers is reported. Transmission experiments in air at 11.4, 9.2, and 3.1 MHz are shown to correspond with theory. The transducers are made using surface micromachining techniques, which enable the realization of center frequencies ranging from 1.8 to 11.6 MHz. The bandwidth of the transducers ranges from 5% to 20%, depending on processing parameters. Custom circuitry is able to detect 10 MHz capacitance fluctuations as small as 10-18 F, which correspond to displacements on the order of 10-3 Å, in a bandwidth of 2 MHz with a signal to noise ratio of 20 dB. Such detection sensitivity is shown to yield air transducer systems capable of withstanding over 100 dB of signal attenuation, a figure of merit that has significant implications for ultrasonic imaging, nondestructive evaluation, gas flow and composition measurements, and range sensing.

  4. Influence of Berdan and Boxer Primer Spit-Hole Diameter on 7.62-mm Cartridge Performance

    DTIC Science & Technology

    2014-06-01

    pressure transducer, Kistler Model 6215 (4), is consistent with previous experiments. Pressure is measured through a 3/32-in hole drilled into the...cartridge case forward of the midpoint, and case holes are sealed with 1-mil- thick DuPont Kapton* tape. The force transducer selected is the Kistler ...April 1986. 3. M14 Barrel, Drawing 7790190, Rev R, January 1986. 4. Kistler Operating Instructions, Quartz High-Pressure Sensor Type 6215, Kistler

  5. Techniques For Mass Production Of Tunneling Electrodes

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W.; Podosek, Judith A.; Reynolds, Joseph K.; Rockstad, Howard K.; Vote, Erika C.; Kaiser, William J.

    1993-01-01

    Techniques for mass production of tunneling electrodes developed from silicon-micromachining, lithographic patterning, and related microfabrication processes. Tunneling electrodes named because electrons travel between them by quantum-mechanical tunneling; tunneling electrodes integral parts of tunneling transducer/sensors, which act in conjunction with feedback circuitry to stabilize tunneling currents by maintaining electrode separations of order of 10 Angstrom. Essential parts of scanning tunneling microscopes and related instruments, and used as force and position transducers in novel microscopic accelerometers and infrared detectors.

  6. Sensitivity to gaze-contingent contrast increments in naturalistic movies: An exploratory report and model comparison

    PubMed Central

    Wallis, Thomas S. A.; Dorr, Michael; Bex, Peter J.

    2015-01-01

    Sensitivity to luminance contrast is a prerequisite for all but the simplest visual systems. To examine contrast increment detection performance in a way that approximates the natural environmental input of the human visual system, we presented contrast increments gaze-contingently within naturalistic video freely viewed by observers. A band-limited contrast increment was applied to a local region of the video relative to the observer's current gaze point, and the observer made a forced-choice response to the location of the target (≈25,000 trials across five observers). We present exploratory analyses showing that performance improved as a function of the magnitude of the increment and depended on the direction of eye movements relative to the target location, the timing of eye movements relative to target presentation, and the spatiotemporal image structure at the target location. Contrast discrimination performance can be modeled by assuming that the underlying contrast response is an accelerating nonlinearity (arising from a nonlinear transducer or gain control). We implemented one such model and examined the posterior over model parameters, estimated using Markov-chain Monte Carlo methods. The parameters were poorly constrained by our data; parameters constrained using strong priors taken from previous research showed poor cross-validated prediction performance. Atheoretical logistic regression models were better constrained and provided similar prediction performance to the nonlinear transducer model. Finally, we explored the properties of an extended logistic regression that incorporates both eye movement and image content features. Models of contrast transduction may be better constrained by incorporating data from both artificial and natural contrast perception settings. PMID:26057546

  7. Real-time Focused Ultrasound Surgery (FUS) Monitoring Using Harmonic Motion Imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Maleke, Caroline; Konofagou, Elisa E.

    2009-04-01

    Monitoring changes in tissue mechanical properties to optimally control thermal exposure is important in thermal therapies. The amplitude-modulated (AM) harmonic motion imaging (HMI) for focused ultrasound (HMIFU) technique is a radiation force technique, which has the capability of tracking tissue stiffness during application of an oscillatory force. The feasibility of HMIFU for assessing mechanical tissue properties has been previously demonstrated. In this paper, a confocal transducer, combining a 4.5 MHz FUS transducer and a 3.3 MHz phased array imaging transducer, was used. The FUS transducer was driven by AM wave at 15 Hz with an acoustic intensity (Ispta) was equal to 1050 W/cm2. A lowpass digital filter was used to remove the spectrum of the higher power beam prior to displacement estimation. The resulting axial tissue displacement was estimated using 1D cross-correlation with a correlation window of 2 mm and a 92.5% overlap. A thermocouple was also used to measure the temperature near the ablated region. 2D HMI-images from six-bovine-liver specimens indicated the onset of coagulation necrosis through changes in amplitude displacement after coagulation due to its simultaneous probing and heating capability. The HMI technique can thus be used to monitor temperature-related stiffness changes of tissues during thermal therapies in real-time, i.e., without interrupting or modifying the treatment protocol.

  8. Real-time Focused Ultrasound Surgery (FUS) Monitoring Using Harmonic Motion Imaging (HMI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maleke, Caroline; Konofagou, Elisa E.; Department of Radiology, Columbia University, New York, NY

    2009-04-14

    Monitoring changes in tissue mechanical properties to optimally control thermal exposure is important in thermal therapies. The amplitude-modulated (AM) harmonic motion imaging (HMI) for focused ultrasound (HMIFU) technique is a radiation force technique, which has the capability of tracking tissue stiffness during application of an oscillatory force. The feasibility of HMIFU for assessing mechanical tissue properties has been previously demonstrated. In this paper, a confocal transducer, combining a 4.5 MHz FUS transducer and a 3.3 MHz phased array imaging transducer, was used. The FUS transducer was driven by AM wave at 15 Hz with an acoustic intensity (I{sub spta}) wasmore » equal to 1050 W/cm{sup 2}. A lowpass digital filter was used to remove the spectrum of the higher power beam prior to displacement estimation. The resulting axial tissue displacement was estimated using 1D cross-correlation with a correlation window of 2 mm and a 92.5% overlap. A thermocouple was also used to measure the temperature near the ablated region. 2D HMI-images from six-bovine-liver specimens indicated the onset of coagulation necrosis through changes in amplitude displacement after coagulation due to its simultaneous probing and heating capability. The HMI technique can thus be used to monitor temperature-related stiffness changes of tissues during thermal therapies in real-time, i.e., without interrupting or modifying the treatment protocol.« less

  9. Compact Tactile Sensors for Robot Fingers

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa

    2004-01-01

    Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.

  10. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, Martin

    1996-01-01

    A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  11. Material test machine for tension-compression tests at high temperature

    DOEpatents

    Cioletti, Olisse C.

    1988-01-01

    Apparatus providing a device for testing the properties of material specimens at high temperatures and pressures in controlled water chemistries includes, inter alia, an autoclave housing the specimen which is being tested. The specimen is connected to a pull rod which couples out of the autoclave to an external assembly which includes one or more transducers, a force balance chamber and a piston type actuator. The pull rod feeds through the force balance chamber and is compensated thereby for the pressure conditions existing within the autoclave and tending to eject the pull rod therefrom. The upper end of the push rod is connected to the actuator through elements containing a transducer comprising a linear variable differential transformer (LVDT). The housing and coil assembly of the LVDT is coupled to a tube which runs through a central bore of the pull rod into the autoclave where it is connected to one side of the specimen. The movable core of the LVDT is coupled to a stem which runs through the tube where it is then connected to the other side of the specimen through a coupling member. A transducer in the form of a load cell including one or more strain gages is located on a necked-down portion of the upper part of the pull rod intermediate the LVDT and force balance chamber.

  12. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, P. K., E-mail: premkdubey@gmail.com; Kumar, Yudhisther; Gupta, Reeta

    2014-05-15

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occursmore » at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.« less

  13. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    NASA Astrophysics Data System (ADS)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  14. Physically Damped Noise Canceling Hydrophone

    DTIC Science & Technology

    2016-06-24

    Description of the Prior Art [0004] An acoustic hydrophone can transfer underwater pressure waves to electrical energy. As a result, an output charge...includes two types of piezoelectric transducers coupled together. One transducer maintains voids and is sensitive to hydrostatic acoustic signals. The...the cable assembly. [0009] Cray (United States Patent No. 6,370,084) discloses an acoustic vector sensor. An accelerometer of the acoustic vector

  15. High-numerical-aperture-based virtual point detectors for photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Li, Changhui; Wang, Lihong V.

    2008-07-01

    The focal point of a high-numerical-aperture (NA) ultrasonic transducer can be used as a virtual point detector. This virtual point detector detects omnidirectionally over a wide acceptance angle. It also combines a large active transducer surface and a small effective virtual detector size. Thus the sensitivity is high compared with that of a real point detector, and the aperture effect is small compared with that of a finite size transducer. We present two kinds of high-NA-based virtual point detectors and their successful application in photoacoustic tomography. They can also be applied in other ultrasound-related fields.

  16. Electrical potentials in bone induced by ultrasound irradiation in the megahertz range

    NASA Astrophysics Data System (ADS)

    Okino, M.; Coutelou, S.; Mizuno, K.; Yanagitani, T.; Matsukawa, M.

    2013-09-01

    Low frequency mechanical studies have reported the contribution of stress-induced electrical potentials to bone metabolism. However, the healing mechanism of bone fractures by low intensity ultrasound is not yet clear. We demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. Electrical potentials were obtained from the output of bovine cortical bone transducers. In the range of 0.7-2.5 MHz, sensitivities of bone transducers were around 1/1000 of a poly (vinylidene fluoride) ultrasonic transducer and did not depend on magnitude and alignment of hydroxyapatite crystallites in bone.

  17. Explosive Event in MON-3 Oxidizer System Resulting from Pressure Transducer Failure

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Reynolds, Michael; Anderson, John

    2006-01-01

    In 2003, a Druck(Registered Trademark) pressure transducer failed catastrophically in a test system circulating nitrogen tetroxide at NASA Johnson Space Center White Sands Test Facility. The cause of the explosion was not immediately obvious since the wetted areas of the pressure transducer were constructed of materials compatible with nitrogen tetroxide. Chemical analysis of the resulting residue and a materials analysis of the diaphragm and its weld zones were used to determine the chain of events that led to the catastrophic failure. Due to excessive dynamic pressure loading in the test system, the diaphragm in the pressure transducer suffered cyclic failure and allowed the silicon oil located behind the isolation diaphragm to mix with the nitrogen tetroxide. The reaction between these two chemicals formed a combination of 2,4-di and 2,4,6-trinitrophenol, which are shock sensitive explosives that caused the failure of the pressure transducer. Further research indicated numerous manufacturers offer similar pressure transducers with silicone oil separated from the test fluid by a thin stainless steel isolation diaphragm. Caution must be exercised when purchasing a pressure transducer for a particular system to avoid costly failures and test system contamination.

  18. Sensing And Force-Reflecting Exoskeleton

    NASA Technical Reports Server (NTRS)

    Eberman, Brian; Fontana, Richard; Marcus, Beth

    1993-01-01

    Sensing and force-reflecting exoskeleton (SAFiRE) provides control signals to robot hand and force feedback from robot hand to human operator. Operator makes robot hand touch objects gently and manipulates them finely without exerting excessive forces. Device attaches to operator's hand; comfortable and lightweight. Includes finger exoskeleton, cable mechanical transmission, two dc servomotors, partial thumb exoskeleton, harness, amplifier box, two computer circuit boards, and software. Transduces motion of index finger and thumb. Video monitor of associated computer displays image corresponding to motion.

  19. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing.

    PubMed

    Jayakumar, K; Rajesh, R; Dharuman, V; Venkatasan, R; Hahn, J H; Pandian, S Karutha

    2012-01-15

    A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Energetic balance in an ultrasonic reactor using focused or flat high frequency transducers.

    PubMed

    Hallez, L; Touyeras, F; Hihn, J Y; Klima, J

    2007-09-01

    In order to undertake irradiation of polymer blocks or films by ultrasound, this paper deals with the measurements of ultrasonic power and its distribution within the cell by several methods. The electric power measured at the transducer input is compared to the ultrasonic power input to the cell evaluated by calorimetry and radiation force measurement for different generator settings. Results obtained in the specific case of new transducer types (composites and focused composites i.e., HIFU: high intensity focused ultrasound) provide an opportunity to conduct a discussion about measurement methods. It has thus been confirmed that these measurement techniques can be applied to HIFU transducers. For all cases, results underlined the fact that measurement of radiation pressure for power evaluation is more adapted to low powers (<15 W) and that measurement by calorimetry is a valid technique for global energy measurements. Composites and monocomponent transducers were compared and it appears that the presence of an adaptation glass plate reduces the efficiency of the monocomponent transducers. The distribution of ultrasonic intensity is qualitatively depicted by sono-chemiluminescence of luminol. Finally, the quantity of energy absorbed by samples placed in the sound field is determined and the temperature distribution monitored as a function of wall distance. This energetic balance allows us to understand the global behaviour of all experimental set-ups made up of a generator-transducer-liquid and sample.

  1. Using Passive Two-Port Networks to Study the Forced Vibrations of Piezoceramic Transducers

    NASA Astrophysics Data System (ADS)

    Karlash, V. L.

    2017-09-01

    A generalization and subsequent development of experimental techniques, including methods of studying the phase-frequency relations between the measured components of admittance and instantaneous power are considered. The conditions of electric loading where electric currents, voltages, or instantaneous powers of constant amplitude in the piezoresonators are specified are numerically modeled. It is particularly established that the advanced Mason circuit with additional switch allows acquiring much more data on the forced vibrations of piezoceramic transducers than the classical circuit. The measured (at an arbitrary frequency) voltage drop across the piezoelement, its pull-up resistor, and at the input of the measuring circuit allow determining, with high accuracy, the current, conductivity, impedance, instantaneous power, and phase shifts when the amplitudes of electric current and voltage are given.

  2. Atomic force microscope based on vertical silicon probes

    NASA Astrophysics Data System (ADS)

    Walter, Benjamin; Mairiaux, Estelle; Faucher, Marc

    2017-06-01

    A family of silicon micro-sensors for Atomic Force Microscope (AFM) is presented that allows to operate with integrated transducers from medium to high frequencies together with moderate stiffness constants. The sensors are based on Micro-Electro-Mechanical-Systems technology. The vertical design specifically enables a long tip to oscillate perpendicularly to the surface to be imaged. The tip is part of a resonator including quasi-flexural composite beams, and symmetrical transducers that can be used as piezoresistive detector and/or electro-thermal actuator. Two vertical probes (Vprobes) were operated up to 4.3 MHz with stiffness constants 150 N/m to 500 N/m and the capability to oscillate from 10 pm to 90 nm. AFM images of several samples both in amplitude modulation (tapping-mode) and in frequency modulation were obtained.

  3. Material fabrication using acoustic radiation forces

    DOEpatents

    Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ

    2015-12-01

    Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.

  4. Nonlinear characterization of a single-axis acoustic levitator.

    PubMed

    Andrade, Marco A B; Ramos, Tiago S; Okina, Fábio T A; Adamowski, Julio C

    2014-04-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  5. Nonlinear characterization of a single-axis acoustic levitator

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-04-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  6. High resolution, high sensitivity, dynamic distributed structural monitoring using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Kreger, Stephen T.; Sang, Alex K.; Garg, Naman; Michel, Julia

    2013-05-01

    Fiber-optic ultrasonic transducers are an important component of an active ultrasonic testing system for structural health monitoring. Fiber-optic transducers have several advantages such as small size, light weight, and immunity to electromagnetic interference that make them much more attractive than the current available piezoelectric transducers, especially as embedded and permanent transducers in active ultrasonic testing for structural health monitoring. In this paper, a distributed fiber-optic laser-ultrasound generation based on the ghost-mode of tilted fiber Bragg gratings is studied. The influences of the laser power and laser pulse duration on the laser-ultrasound generation are investigated. The results of this paper are helpful to understand the working principle of this laser-ultrasound method and improve the ultrasonic generation efficiency.

  7. Ultrasound Analysis of Slurries

    DOEpatents

    Soong, Yee and Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  8. Ultrasound Analysis Of Slurries

    DOEpatents

    Soong, Yee; Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N.sub.2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  9. Strain Gage

    NASA Technical Reports Server (NTRS)

    1995-01-01

    HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

  10. Hybrid Electrostatic/Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won K.; Trinh, Eugene H.; Chung, Sang K.; Elleman, Daniel D.

    1987-01-01

    Because electrostatic and acoustic forces independent of each other, hybrid levitator especially suitable for studies of drop dynamics. Like all-acoustic or all-electrostatic systems, also used in studies of containerless material processing. Vertical levitating force applied to sample by upper and lower electrodes. Torques or vibrational forces in horizontal plane applied by acoustic transducers. Electrically charged water drop about 4 mm in diameter levitated electrostatically and rotated acoustically until it assumed dumbell shape and broke apart.

  11. A spaceborne superconducting gravity gradiometer for mapping the earth's gravity field

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The principles of a satellite gravity gradiometer system which measures all five independent components of the gravity gradient tensor with a sensitivity of 0.001 E/Hz to the 1/2 power or better, are analyzed, and the status of development of the system is reviewed. The superconducting gravity gradiometer uses sensitive superconducting accelerometers, each of which are composed of a weakly suspended superconducting proof mass, a superconducting magnetic transducer, and a low-noise superconducting magnetometer. The magnetic field produced by the transducer coils is modulated by the motion of the proof mass and detected by the magnetometer. A combination of two or four of such accelerometers with proper relative orientation of sensitive axes results in an in-line or a cross component gravity gradiometer.

  12. A NEW PRINCIPLE FOR ELECTROMAGNETIC CATHETER FLOW METERS*

    PubMed Central

    Kolin, Alexander

    1969-01-01

    An electromagnetic catheter flow meter is described in which the magnetic field is generated by two parallel bundles of wire carrying equal currents in opposite directions. The electrodes are fixed centrally to the insulated wire bundles that generate the magnetic field. The flow sensor is flexible, resembling a split catheter. The flow transducer is designed to constrict as it is introduced through a branch artery and to expand in the main artery over the span of its diameter. The principle is suitable for branch flow measurement as well as for measurement of flow in a major artery or vein by the same transducer. A special method of guiding the electrode wires results in a zero base line at zero flow for the entire range of diameters accommodating the field generating coil. The electrodes could be used in this configuration with a magnetic field generated by coils external to the patient for blood flow measurements with a catheter of reduced gauge. The transducer can be made smaller in circumference than those employed in other electromagnetic flow measuring catheter devices. This feature is of special value for envisaged clinical uses (percutaneous introduction) to minimize surgical intervention. The velocity sensitivity of the flow transducer is a logarithmic function of the tube diameter. The flow throughout the entire tube cross section contributes to the flow signal. It is sufficient to calibrate the transducer by one measurement in a dielectric conduit of less than maximum diameter. The sensitivity at other diameters follows from a logarithmic plot. The diameter of the blood vessel is outlined by the transducer in radiograms, thus obviating the need for radiopaque materials. The principle was demonstrated by measurements in vitro. Experiments in vivo, derivation of equations, and construction details will be published elsewhere. Images PMID:5257127

  13. Direct and label-free detection of the human growth hormone in urine by an ultrasensitive bimodal waveguide biosensor.

    PubMed

    González-Guerrero, Ana Belén; Maldonado, Jesús; Dante, Stefania; Grajales, Daniel; Lechuga, Laura M

    2017-01-01

    A label-free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10 -8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm -2 , is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL -1 range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Variable reluctance displacement transducer temperature compensated to 650$sup 0$F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piper, T.C.; Colson, J.B.

    650 deg F. Piper, T. C.; Colson, J. B. (Aerojet Nuclear Co., Idaho Falls, Idaho (USA)). Nov 1973. Contract AT(10-1)-1375. ' 16p. Dep. NTlS 00. A variable reluctnce transducer (VRT) with plus or minus 0.100- inch stroke to operate to 550 deg F is described. Specific design effort was taken to optimize the desiga to have minimum change in the VRT's null and sensitivity with rapid thermal and pressure transients. Null and sensitivity stabilities of plus or minus 0.5% and 1.8% of full scale, respectively, were obtained. Appentice; 'ineate the various effects considered in optimizing the design. (auth)

  15. 40 CFR 1066.255 - Parasitic loss verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following the dynamometer manufacturer's specifications to establish a parasitic loss curve, taking data at.... Parasitic loss forces may never be negative. Note that the torque transducers must be zeroed and spanned...

  16. 40 CFR 1066.255 - Parasitic loss verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following the dynamometer manufacturer's specifications to establish a parasitic loss curve, taking data at.... Parasitic loss forces may never be negative. Note that the torque transducers must be zeroed and spanned...

  17. Deletion of Interleukin-6 Signal Transducer gp130 in Small Sensory Neurons Attenuates Mechanonociception and Down-Regulates TRPA1 Expression

    PubMed Central

    Malsch, Philipp; Andratsch, Manfred; Vogl, Christian; Link, Andrea S.; Alzheimer, Christian; Brierley, Stuart M.; Hughes, Patrick A.

    2014-01-01

    Glycoprotein 130 (gp130) is the signal transducing receptor subunit for cytokines of the interleukin-6 (IL-6) family, and it is expressed in a multitude of cell types of the immune and nervous system. IL-6-like cytokines are not only key regulators of innate immunity and inflammation but are also essential factors for the differentiation and development of the somatosensory system. Mice with a null mutation of gp130 in primary nociceptive afferents (SNS-gp130−/−) are largely protected from hypersensitivity to mechanical stimuli in mouse models of pathological pain. Therefore, we set out to investigate how neuronal gp130 regulates mechanonociception. SNS-gp130−/− mice revealed reduced mechanosensitivity to high mechanical forces in the von Frey assay in vivo, and this was associated with a reduced sensitivity of nociceptive primary afferents in vitro. Together with these findings, transient receptor potential ankyrin 1 (TRPA1) mRNA expression was significantly reduced in DRG from SNS-gp130−/− mice. This was also reflected by a reduced number of neurons responding with calcium transients to TRPA1 agonists in primary DRG cultures. Downregulation of Trpa1 expression was predominantly discovered in nonpeptidergic neurons, with the deficit becoming evident during stages of early postnatal development. Regulation of Trpa1 mRNA expression levels downstream of gp130 involved the classical Janus kinase family-signal transducer and activator of transcription pathway. Our results closely link proinflammatory cytokines to the expression of TRPA1, both of which have been shown to contribute to hypersensitive pain states. We suggest that gp130 has an essential role in mechanonociception and in the regulation of TRPA1 expression. PMID:25057188

  18. Parametric analysis of electromechanical and fatigue performance of total knee replacement bearing with embedded piezoelectric transducers.

    PubMed

    Safaei, Mohsen; Meneghini, R Michael; Anton, Steven R

    2017-09-01

    Total knee arthroplasty (TKA) is a common procedure in the United States; it has been estimated that about 4 million people are currently living with primary knee replacement in this country. Despite huge improvements in material properties, implant design, and surgical techniques, some implants fail a few years after surgery. A lack of information about in vivo kinetics of the knee prevents the establishment of a correlated intra- and postoperative loading pattern in knee implants. In this study, a conceptual design of an ultra high molecular weight (UHMW) knee bearing with embedded piezoelectric transducers is proposed, which is able to measure the reaction forces from knee motion as well as harvest energy to power embedded electronics. A simplified geometry consisting of a disk of UHMW with a single embedded piezoelectric ceramic is used in this work to study the general parametric trends of an instrumented knee bearing. A combined finite element and electromechanical modeling framework is employed to investigate the fatigue behavior of the instrumented bearing and the electromechanical performance of the embedded piezoelectric. The model is validated through experimental testing and utilized for further parametric studies. Parametric studies consist of the investigation of the effects of several dimensional and piezoelectric material parameters on the durability of the bearing and electrical output of the transducers. Among all the parameters, it is shown that adding large fillet radii results in noticeable improvement in the fatigue life of the bearing. Additionally, the design is highly sensitive to the depth of piezoelectric pocket. Finally, using PZT-5H piezoceramics, higher voltage and slightly enhanced fatigue life is achieved.

  19. Parametric analysis of electromechanical and fatigue performance of total knee replacement bearing with embedded piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Safaei, Mohsen; Meneghini, R. Michael; Anton, Steven R.

    2017-09-01

    Total knee arthroplasty is a common procedure in the United States; it has been estimated that about 4 million people are currently living with primary knee replacement in this country. Despite huge improvements in material properties, implant design, and surgical techniques, some implants fail a few years after surgery. A lack of information about in vivo kinetics of the knee prevents the establishment of a correlated intra- and postoperative loading pattern in knee implants. In this study, a conceptual design of an ultra high molecular weight (UHMW) knee bearing with embedded piezoelectric transducers is proposed, which is able to measure the reaction forces from knee motion as well as harvest energy to power embedded electronics. A simplified geometry consisting of a disk of UHMW with a single embedded piezoelectric ceramic is used in this work to study the general parametric trends of an instrumented knee bearing. A combined finite element and electromechanical modeling framework is employed to investigate the fatigue behavior of the instrumented bearing and the electromechanical performance of the embedded piezoelectric. The model is validated through experimental testing and utilized for further parametric studies. Parametric studies consist of the investigation of the effects of several dimensional and piezoelectric material parameters on the durability of the bearing and electrical output of the transducers. Among all the parameters, it is shown that adding large fillet radii results in noticeable improvement in the fatigue life of the bearing. Additionally, the design is highly sensitive to the depth of piezoelectric pocket. Finally, using PZT-5H piezoceramics, higher voltage and slightly enhanced fatigue life is achieved.

  20. Precision Mechanical Measurement Using the Levitation Mass Method (LMM)

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku; Jin, Tao; Maru, Koichi

    2010-12-01

    The present status and the future prospects of a method for precision mass and force measurement, the levitation mass method (LMM), are reviewed. The LMM has been proposed and improved by the authors. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects under test, such as force transducers, materials or structures. The inertial force of the levitated mass is measured using an optical interferometer. The three typical applications of the LMM, i.e. the dynamic force calibration, the micro force material tester and the space scale, are reviewed in this paper.

  1. Dynamic and quantitative assessment of blood coagulation using optical coherence elastography

    PubMed Central

    Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping

    2016-01-01

    Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen. PMID:27090437

  2. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    NASA Astrophysics Data System (ADS)

    Ambroziński, Łukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-07-01

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  3. Dynamic and quantitative assessment of blood coagulation using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Xu, Xiangqun; Zhu, Jiang; Chen, Zhongping

    2016-04-01

    Reliable clot diagnostic systems are needed for directing treatment in a broad spectrum of cardiovascular diseases and coagulopathy. Here, we report on non-contact measurement of elastic modulus for dynamic and quantitative assessment of whole blood coagulation using acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE). In this system, acoustic radiation force (ARF) is produced by a remote ultrasonic transducer, and a shear wave induced by ARF excitation is detected by the optical coherence tomography (OCT) system. During porcine whole blood coagulation, changes in the elastic property of the clots increase the shear modulus of the sample, altering the propagating velocity of the shear wave. Consequently, dynamic blood coagulation status can be measured quantitatively by relating the velocity of the shear wave with clinically relevant coagulation metrics, including reaction time, clot formation kinetics and maximum shear modulus. The results show that the ARFOE-OCE is sensitive to the clot formation kinetics and can differentiate the elastic properties of the recalcified porcine whole blood, blood added with kaolin as an activator, and blood spiked with fibrinogen.

  4. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambroziński, Łukasz; AGH University of Science and Technology, Krakow 30059; Pelivanov, Ivan, E-mail: ivanp3@uw.edu

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking softmore » biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.« less

  5. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles

    PubMed Central

    Hofmann, Andreas; Wenzel, Daniela; Becher, Ulrich M.; Freitag, Daniel F.; Klein, Alexandra M.; Eberbeck, Dietmar; Schulte, Maike; Zimmermann, Katrin; Bergemann, Christian; Gleich, Bernhard; Roell, Wilhelm; Weyh, Thomas; Trahms, Lutz; Nickenig, Georg; Fleischmann, Bernd K.; Pfeifer, Alexander

    2009-01-01

    Targeting of viral vectors is a major challenge for in vivo gene delivery, especially after intravascular application. In addition, targeting of the endothelium itself would be of importance for gene-based therapies of vascular disease. Here, we used magnetic nanoparticles (MNPs) to combine cell transduction and positioning in the vascular system under clinically relevant, nonpermissive conditions, including hydrodynamic forces and hypothermia. The use of MNPs enhanced transduction efficiency of endothelial cells and enabled direct endothelial targeting of lentiviral vectors (LVs) by magnetic force, even in perfused vessels. In addition, application of external magnetic fields to mice significantly changed LV/MNP biodistribution in vivo. LV/MNP-transduced cells exhibited superparamagnetic behavior as measured by magnetorelaxometry, and they were efficiently retained by magnetic fields. The magnetic interactions were strong enough to position MNP-containing endothelial cells at the intima of vessels under physiological flow conditions. Importantly, magnetic positioning of MNP-labeled cells was also achieved in vivo in an injury model of the mouse carotid artery. Intravascular gene targeting can be combined with positioning of the transduced cells via nanomagnetic particles, thereby combining gene- and cell-based therapies. PMID:19118196

  6. Amplitude-modulated ultrasound radiation force combined with phase-sensitive optical coherence tomography for shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2015-03-01

    Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.

  7. Resonant ultrasound spectrometer

    DOEpatents

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  8. Micromachined electron tunneling infrared sensors

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Podosek, J. A.; Rockstad, H. K.; Reynolds, J. K.

    1993-01-01

    The development of an improved Golay cell is reported. This new sensor is constructed entirely from micromachined silicon components. A silicon oxynitride (SiO(x)N(y)) membrane is deflected by the thermal expansion of a small volume of trapped gas. To detect the motion of the membrane, an electron tunneling transducer is used. This sensor detects electrons which tunnel through the classically forbidden barrier between a tip and a surface; the electron current is exponentially dependent on the separation between the tip and the surface. The sensitivity of tunneling transducers constructed was typically better than 10(exp -3) A/square root of Hz. Through use of the electron tunneling transducer, the scaling laws which have prevented the miniaturization of the Golay cell are avoided. This detector potentially offers low cost fabrication, compatibility with silicon readout electronics, and operation without cooling. Most importantly, this detector may offer better sensitivity than any other uncooled infrared sensor, with the exception of the original Golay cell.

  9. Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating.

    PubMed

    George, Jineesh; Ebenezer, D D; Bhattacharyya, S K

    2010-10-01

    A method is presented to determine the response of a spherical acoustic transducer that consists of a fluid-filled piezoelectric sphere with an elastic coating embedded in infinite fluid to electrical and plane-wave acoustic excitations. The exact spherically symmetric, linear, differential, governing equations are used for the interior and exterior fluids, and elastic and piezoelectric materials. Under acoustic excitation and open circuit boundary condition, the equation governing the piezoelectric sphere is homogeneous and the solution is expressed in terms of Bessel functions. Under electrical excitation, the equation governing the piezoelectric sphere is inhomogeneous and the complementary solution is expressed in terms of Bessel functions and the particular integral is expressed in terms of a power series. Numerical results are presented to illustrate the effect of dimensions of the piezoelectric sphere, fluid loading, elastic coating and internal material losses on the open-circuit receiving sensitivity and transmitting voltage response of the transducer.

  10. Cochlear transducer operating point adaptation.

    PubMed

    Zou, Yuan; Zheng, Jiefu; Ren, Tianying; Nuttall, Alfred

    2006-04-01

    The operating point (OP) of outer hair cell (OHC) mechanotransduction can be defined as any shift away from the center position on the transduction function. It is a dc offset that can be described by percentage of the maximum transduction current or as an equivalent dc pressure in the ear canal. The change of OP can be determined from the changes of the second and third harmonics of the cochlear microphonic (CM) following a calibration of its initial value. We found that the initial OP was dependent on sound level and cochlear sensitivity. From CM generated by a lower sound level at 74 dB SPL to avoid saturation and suppression of basal turn cochlear amplification, the OHC OP was at constant 57% of the maximum transduction current (an ear canal pressure of -0.1 Pa). To perturb the OP, a constant force was applied to the bony shell of the cochlea at the 18 kHz best frequency location using a blunt probe. The force applied over the scala tympani induced an OP change as if the organ of Corti moved toward the scala vestibuli (SV) direction. During an application of the constant force, the second harmonic of the CM partially recovered toward the initial level, which could be described by two time constants. Removing the force induced recovery of the second harmonic to its normal level described by a single time constant. The force applied over the SV caused an opposite result. These data indicate an active mechanism for OHC transduction OP.

  11. Model-based optical coherence elastography using acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Aglyamov, Salavat; Wang, Shang; Karpiouk, Andrei; Li, Jiasong; Emelianov, Stanislav; Larin, Kirill V.

    2014-02-01

    Acoustic Radiation Force (ARF) stimulation is actively used in ultrasound elastography to estimate mechanical properties of tissue. Compared with ultrasound imaging, OCT provides advantage in both spatial resolution and signal-to-noise ratio. Therefore, a combination of ARF and OCT technologies can provide a unique opportunity to measure viscoelastic properties of tissue, especially when the use of high intensity radiation pressure is limited for safety reasons. In this presentation we discuss a newly developed theoretical model of the deformation of a layered viscoelastic medium in response to an acoustic radiation force of short duration. An acoustic impulse was considered as an axisymmetric force generated on the upper surface of the medium. An analytical solution of this problem was obtained using the Hankel transform in frequency domain. It was demonstrated that layers at different depths introduce different frequency responses. To verify the developed model, experiments were performed using tissue-simulating, inhomogeneous phantoms of varying mechanical properties. The Young's modulus of the phantoms was varied from 5 to 50 kPa. A single-element focused ultrasound transducer (3.5 MHz) was used to apply the radiation force with various durations on the surface of phantoms. Displacements on the phantom surface were measured using a phase-sensitive OCT at 25 kHz repetition frequency. The experimental results were in good agreement with the modeling results. Therefore, the proposed theoretical model can be used to reconstruct the mechanical properties of tissue based on ARF/OCT measurements.

  12. Low-Pressure Generator Makes Cleanrooms Cleaner

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Scientists at NASA's Kennedy Space Center work in cleanrooms: laboratories with high degrees of cleanliness provided by strict control of particles such as dust, lint, or human skin. They are contaminant-free facilities, where the air is repeatedly filtered, and surfaces are smooth to prevent particles from getting lodged. Technicians working in these environments wear specially designed cleanroom "bunny suits" and booties over their street clothes, as well as gloves and face masks to avoid any contamination that may be imparted from the outside world. Even normal paper is not allowed in cleanrooms, only cleanroom low-particulate paper. These are sensitive environments where precision work, like the production of silicon chips or hard disk drives, is performed. Often in cleanrooms, positive air pressure is used to force particles outside of the isolated area. The air pressure in the Kennedy cleanrooms is monitored using high-accuracy, low-differential pressure transducers that require periodic calibration. Calibration of the transducers is a tricky business. In prior years, the analysis was performed by sending the transducers to the Kennedy Standards Laboratory, where a very expensive cross-floated, labor- intensive, dead-weight test was conducted. In the early 1990s, scientists at Kennedy determined to develop a technique and find equipment to perform qualification testing on new low-differential pressure transducers in an accurate, cost-effective manner onsite, without requiring an environmentally controlled room. They decided to use the highly accurate, cost-effective Setra Model C264 as the test transducer. For qualification testing of the Setra, though, a portable, lower-cost calibrator was needed that could control the differential pressure to a high degree of resolution and transfer the accuracy of the Standards Laboratory testing to the qualification testing. The researchers decided that, to generate the low-differential pressure setpoints needed for qualification testing, very small gas volume changes could be made against the test article, and a corresponding pressure change would be detected by a pressure standard. This allowed the researchers to recreate cleanroom air pressure settings without the use of a cleanroom. Thus was born the low-differential pressure generator. In 1993, a prototype was developed using a pair of PVC tanks, a volume controller, and a 1-pound-per-square-inch pressure standard. By 1995, the prototype was perfected into the unit that is still used today.

  13. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    NASA Astrophysics Data System (ADS)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  14. Improved high-resolution ultrasonic imaging of the eye.

    PubMed

    Silverman, Ronald H; Ketterling, Jeffrey A; Mamou, Jonathan; Coleman, D Jackson

    2008-01-01

    Currently, virtually all clinical diagnostic ultrasound systems used in ophthalmology are based on fixed-focus, single-element transducers. High-frequency (> or = 20-MHz) transducers introduced to ophthalmology during the last decade have led to improved resolution and diagnostic capabilities for assessment of the anterior segment and the retina. However, single-element transducers are restricted to a small depth of field, limiting their capacity to image the eye as a whole. We fabricated a 20-MHz annular array probe prototype consisting of 5 concentric transducer elements and scanned an ex vivo human eye. Synthetically focused images of the bank eye showed improved depth of field and sensitivity, allowing simultaneous display of the anterior and posterior segments and the full lens contour. This capability may be useful in assessment of vitreoretinal pathologies and investigation of the accommodative mechanism.

  15. Electro-optic voltage sensor head

    DOEpatents

    Crawford, T.M.; Davidson, J.R.; Woods, G.K.

    1999-08-17

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

  16. Electro-optic voltage sensor head

    DOEpatents

    Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.

    1999-01-01

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

  17. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers

    PubMed Central

    Eriksson, Tobias J. R.; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N.; Dixon, Steve

    2016-01-01

    Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio (SNR)≃15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart. PMID:27571075

  18. A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer.

    PubMed

    Urban, Matthew W; Chalek, Carl; Haider, Bruno; Thomenius, Kai E; Fatemi, Mostafa; Alizad, Azra

    2013-03-01

    Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using 1-D linear-array transducers. In this article, we discuss VA beamforming and image formation using a 1.75-D array transducer. A 1.75-D array transducer has several rows of elements in the elevation direction which can be controlled independently for focusing. The advantage of the 1.75-D array over a 1-D linear-array transducer is that multiple rows of elements can be used for improving elevation focus for imaging formation. Six configurations for subaperture design for the two ultrasound beams necessary for VA imaging were analyzed. The point-spread functions for these different configurations were evaluated using a numerical simulation model. Four of these configurations were then chosen for experimental evaluation with a needle hydrophone as well as for scanning two phantoms. Images were formed by scanning a urethane breast phantom and an ex vivo human prostate. VA imaging using a 1.75-D array transducer offers several advantages over scanning with a linear-array transducer, including improved image resolution and contrast resulting from better elevation focusing of the imaging point-spread function.

  19. A Beamforming Study for Implementation of Vibro-acoustography with a 1.75D Array Transducer

    PubMed Central

    Urban, Matthew W.; Chalek, Carl; Haider, Bruno; Thomenius, Kai E.; Fatemi, Mostafa; Alizad, Azra

    2013-01-01

    Vibro-acoustography (VA) is an ultrasound-based imaging modality that uses radiation force produced by two cofocused ultrasound beams separated by a small frequency difference, Δf, to vibrate tissue at Δf. An acoustic field is created by the object vibration and measured with a nearby hydrophone. This method has recently been implemented on a clinical ultrasound system using one-dimensional (1D) linear array transducers. In this article, we discuss VA beamforming and image formation using a 1.75D array transducer. A 1.75D array transducer has several rows of elements in the elevation direction which can be controlled independently for focusing. The advantage of the 1.75D array over a 1D linear array transducer is that multiple rows of elements can be used for improving elevation focus for imaging formation. Six configurations for subaperture design for the two ultrasound beams necessary for VA imaging were analyzed. The point-spread functions for these different configurations were evaluated using a numerical simulation model. Four of these configurations were then chosen for experimental evaluation with a needle hydrophone as well as for scanning two phantoms. Images were formed by scanning a urethane breast phantom and an ex vivo human prostate. VA imaging using a 1.75D array transducer offers several advantages over scanning with a linear array transducer including improved image resolution and contrast due to better elevation focusing of the imaging point-spread function. PMID:23475919

  20. Toric focusing for radiation force applications using a toric lens coupled to a spherically focused transducer.

    PubMed

    Arnal, Bastien; Nguyen, Thu-Mai; O'Donnell, Matthew

    2014-12-01

    Dynamic elastography using radiation force requires that an ultrasound field be focused during hundreds of microseconds at a pressure of several megapascals. Here, we address the importance of the focal geometry. Although there is usually no control of the elevational focal width in generating a tissue mechanical response, we propose a tunable approach to adapt the focus geometry that can significantly improve radiation force efficiency. Several thin, in-house-made polydimethylsiloxane lenses were designed to modify the focal spot of a spherical transducer. They exhibited low absorption and the focal spot widths were extended up to 8-fold in the elevation direction. Radiation force experiments demonstrated an 8-fold increase in tissue displacements using the same pressure level in a tissue-mimicking phantom with a similar shear wave spectrum, meaning it does not affect elastography resolution. Our results demonstrate that larger tissue responses can be obtained for a given pressure level, or that similar response can be reached at a much lower mechanical index (MI). We envision that this work will impact 3-D elastography using 2-D phased arrays, where such shaping can be achieved electronically with the potential for adaptive optimization.

  1. Nonlinear characterization of a single-axis acoustic levitator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jumpmore » phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.« less

  2. One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker.

    PubMed

    Nawaz, Muhammad Azhar Hayat; Rauf, Sajid; Catanante, Gaelle; Nawaz, Mian Hasnain; Nunes, Gilvanda; Marty, Jean Louis; Hayat, Akhtar

    2016-10-06

    Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer-Emmett- Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications.

  3. One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker

    PubMed Central

    Nawaz, Muhammad Azhar Hayat; Rauf, Sajid; Catanante, Gaelle; Nawaz, Mian Hasnain; Nunes, Gilvanda; Louis Marty, Jean; Hayat, Akhtar

    2016-01-01

    Thin films of organic moiety functionalized carbon nanotubes (CNTs) from a very well-dispersed aqueous solution were designed on a screen printed transducer surface through a single step directed assembly methodology. Very high density of CNTs was obtained on the screen printed electrode surface, with the formation of a thin and uniform layer on transducer substrate. Functionalized CNTs were characterized by X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area analyzer methodologies, while CNT coated screen printed transducer platform was analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed methodology makes use of a minimum amount of CNTs and toxic solvents, and is successfully demonstrated to form thin films over macroscopic areas of screen printed carbon transducer surface. The CNT coated screen printed transducer surface was integrated in the fabrication of electrochemical aptasensors for breast cancer biomarker analysis. This CNT coated platform can be applied to immobilize enzymes, antibodies and DNA in the construction of biosensor for a broad spectrum of applications. PMID:27782067

  4. Biomedical technical transfer. Applications of NASA science and technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  5. Assessment on the methods of measuring the tyre-road contact patch stresses

    NASA Astrophysics Data System (ADS)

    Anghelache, G.; Moisescu, A.-R.; Buretea, D.

    2017-08-01

    The paper reviews established and modern methods for investigating tri-axial stress distributions in the tyre-road contact patch. The authors used three methods of measuring stress distributions: strain gauge method; force sensing technique; acceleration measurements. Four prototypes of instrumented pins transducers involving mentioned measuring methods were developed. Data acquisitions of the contact patch stresses distributions were performed using each transducer with instrumented pin. The results are analysed and compared, underlining the advantages and drawbacks of each method. The experimental results indicate that the three methods are valuable.

  6. A new point contact surface acoustic wave transducer for measurement of acoustoelastic effect of polymethylmethacrylate.

    PubMed

    Lee, Yung-Chun; Kuo, Shi Hoa

    2004-01-01

    A new acoustic transducer and measurement method have been developed for precise measurement of surface wave velocity. This measurement method is used to investigate the acoustoelastic effects for waves propagating on the surface of a polymethylmethacrylate (PMMA) sample. The transducer uses two miniature conical PZT elements for acoustic wave transmitter and receiver on the sample surface; hence, it can be viewed as a point-source/point-receiver transducer. Acoustic waves are excited and detected with the PZT elements, and the wave velocity can be accurately determined with a cross-correlation waveform comparison method. The transducer and its measurement method are particularly sensitive and accurate in determining small changes in wave velocity; therefore, they are applied to the measurement of acoustoelastic effects in PMMA materials. Both the surface skimming longitudinal wave and Rayleigh surface wave can be simultaneously excited and measured. With a uniaxial-loaded PMMA sample, both acoustoelastic effects for surface skimming longitudinal wave and Rayleigh waves of PMMA are measured. The acoustoelastic coefficients for both types of surface wave motions are simultaneously determined. The transducer and its measurement method provide a practical way for measuring surface stresses nondestructively.

  7. Development of a directional sensitive pressure and shear sensor

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Dee, Jeffrey; Ledoux, William; Sangeorzan, Bruce; Reinhall, Per G.

    2002-06-01

    Diabetes mellitus is a disease that impacts the lives of millions of people around the world. Lower limb complications associated with diabetes include the development of plantar ulcers that can lead to infection and subsequent amputation. Shear stress is thought to be a major contributing factor to ulcer development, but due in part to technical difficulties with transducing shear stress, there is no widely used shear measurement sensor. As such, we are currently developing a directionally sensitive pressure/shear sensor based on fiber optic technology. The pressure/shear sensor consists of an array of optical fibers lying in perpendicular rows and columns separated by elastomeric pads. A map of pressure and shear stress is constructed based on observed macro bending through the intensity attenuation from the physical deformation of two adjacent perpendicular fibers. The sensor has been shown to have low noise and responded linearly to applied loads. The smallest detectable force on each sensor element based on the current setup is ~0.1 lbs. (0.4N). The smallest area we have resolved in our mesh sensor is currently ~1 cm2.

  8. Demonstrating Electrical Activity in Nerve and Muscle. Part I

    ERIC Educational Resources Information Center

    Robinson, D. J.

    1975-01-01

    Describes a demonstration for showing the electrical activity in nerve and muscle including action potentials, refractory period of a nerve, and fatigue. Presents instructions for constructing an amplifier, electronic stimulator, and force transducer. (GS)

  9. Design optimization of embedded ultrasonic transducers for concrete structures assessment.

    PubMed

    Dumoulin, Cédric; Deraemaeker, Arnaud

    2017-08-01

    In the last decades, the field of structural health monitoring and damage detection has been intensively explored. Active vibration techniques allow to excite structures at high frequency vibrations which are sensitive to small damage. Piezoelectric PZT transducers are perfect candidates for such testing due to their small size, low cost and large bandwidth. Current ultrasonic systems are based on external piezoelectric transducers which need to be placed on two faces of the concrete specimen. The limited accessibility of in-service structures makes such an arrangement often impractical. An alternative is to embed permanently low-cost transducers inside the structure. Such types of transducers have been applied successfully for the in-situ estimation of the P-wave velocity in fresh concrete, and for crack monitoring. Up to now, the design of such transducers was essentially based on trial and error, or in a few cases, on the limitation of the acoustic impedance mismatch between the PZT and concrete. In the present study, we explore the working principles of embedded piezoelectric transducers which are found to be significantly different from external transducers. One of the major challenges concerning embedded transducers is to produce very low cost transducers. We show that a practical way to achieve this imperative is to consider the radial mode of actuation of bulk PZT elements. This is done by developing a simple finite element model of a piezoelectric transducer embedded in an infinite medium. The model is coupled with a multi-objective genetic algorithm which is used to design specific ultrasonic embedded transducers both for hard and fresh concrete monitoring. The results show the efficiency of the approach and a few designs are proposed which are optimal for hard concrete, fresh concrete, or both, in a given frequency band of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An all-optical fiber optic photoacoustic transducer

    NASA Astrophysics Data System (ADS)

    Thathachary, Supriya V.; Motameni, Cameron; Ashkenazi, Shai

    2018-02-01

    A highly sensitive fiber-optic Fabry-Perot photoacoustic transducer is proposed in this work. The transducer will consist of separate transmit and receive fibers. The receiver will be composed of a Fabry-Perot Ultrasound sensor with a selfwritten waveguide with all-optical ultrasound detection with high sensitivity. In previous work, we have shown an increase in resonator Q-factor from 1900 to 3200 for a simulated Fabry-Perot ultrasound detector of 45 μm thickness upon including a waveguide to limit lateral power losses. Subsequently, we demonstrated a prototype device with 30nm gold mirrors and a cavity composed of the photosensitive polymer Benzocyclobutene. This 80 µm thick device showed an improvement in its Q-factor from 2500 to 5200 after a selfaligned waveguide was written into the cavity using UV exposure. Current work uses a significantly faster fabrication technique using a combination of UV-cured epoxies for the cavity medium, and the waveguide within it. This reduces the fabrication time from several hours to a few minutes, and significantly lowers the cost of fabrication. We use a dip-coating technique to deposit the polymer layer. Future work will include the use of Dielectric Bragg mirrors in place of gold to achieve better reflectivity, thereby further improving the Q-factor of the device. The complete transducer presents an ideal solution for intravascular imaging in cases where tissue differentiation is desirable, an important feature in interventional procedures where arterial perforation is a risk. The final design proposed comprises the transducer within a guidewire to guide interventions for Chronic Total Occlusions, a disease state for which there are currently no invasive imaging options.

  11. Reflector-based phase calibration of ultrasound transducers.

    PubMed

    van Neer, Paul L M J; Vos, Hendrik J; de Jong, Nico

    2011-01-01

    Recently, the measurement of phase transfer functions (PTFs) of piezoelectric transducers has received more attention. These PTFs are useful for e.g. coding and interference based imaging methods, and ultrasound contrast microbubble research. Several optical and acoustic methods to measure a transducer's PTF have been reported in literature. The optical methods require a setup to which not all ultrasound laboratories have access to. The acoustic methods require accurate distance and acoustic wave speed measurements. A small error in these leads to a large error in phase, e.g. an accuracy of 0.1% on an axial distance of 10cm leads to an uncertainty in the PTF measurement of ±97° at 4MHz. In this paper we present an acoustic pulse-echo method to measure the PTF of a transducer, which is based on linear wave propagation and only requires an estimate of the wave travel distance and the acoustic wave speed. In our method the transducer is excited by a monofrequency sine burst with a rectangular envelope. The transducer initially vibrates at resonance (transient regime) prior to the forcing frequency response (steady state regime). The PTF value of the system is the difference between the phases deduced from the transient and the steady state regimes. Good agreement, to within 7°, was obtained between KLM simulations and measurements on two transducers in a 1-8MHz frequency range. The reproducibility of the method was ±10°, with a systematic error of 2° at 1MHz increasing to 16° at 8MHz. This work demonstrates that the PTF of a transducer can be measured in a simple laboratory setting. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Patterson, R. G.

    1977-01-01

    We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.

  13. A dynamic pressure source for the calibration of pressure transducers

    NASA Technical Reports Server (NTRS)

    Vezzetti, C. F.; Hilten, J. S.; Mayo-Wells, J. F.; Lederer, P. S.

    1976-01-01

    A dynamic pressure source is described for producing sinusoidally varying pressures of up to 34 kPa zero to peak, over the frequency range of approximately 50 Hz to 2 kHz. The source is intended for the dynamic calibration of pressure transducers. The transducer to be calibrated is mounted near the base of the thick walled aluminum tube forming the vessel so that the pressure sensitive element is in contact with the liquid in the tube. A section of the tube is filled with small steel balls to damp the motion of the 10-St dimethyl siloxane working fluid in order to extend the useful frquency range to higher frequencies than would be provided by an undamped system. The dynamic response of six transducers provided by the sponsor was evaluated using the pressure sources; the results of these calibrations are given.

  14. A follow-on study for miniature solid-state pressure transducer

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The activities of a developmental program to design, fabricate and test an absolute pressure transducer based upon the piezojunction properties of silicon are summarized. The prime problem addressed is the development of a housing capable of applying the high stress levels needed for sensitive piezojunction operation but at the same, free from the creep effects and the fragility that limit the usefulness of previous designs. The first part of the report describes the initial fabrication and test and reviews the theory of sensor performance. The second part incorporates two recommendations of the first part (the use of commercially manufactured silicon planar mesa diodes and the adoption of an all-silicon structure for loading) and presents some preliminary test data on the transducers thus fabricated. These initial measurements show much improved performance over any previously fabricated piezojunction transducers but testing is incomplete and several problems in manufacturing technology remain.

  15. A New Sensor for Measurement of Dynamic Contact Stress in the Hip

    PubMed Central

    Rudert, M. J.; Ellis, B. J.; Henak, C. R.; Stroud, N. J.; Pederson, D. R.; Weiss, J. A.; Brown, T. D.

    2014-01-01

    Various techniques exist for quantifying articular contact stress distributions, an important class of measurements in the field of orthopaedic biomechanics. In situations where the need for dynamic recording has been paramount, the approach of preference has involved thin-sheet multiplexed grid-array transducers. To date, these sensors have been used to study contact stresses in the knee, shoulder, ankle, wrist, and spinal facet joints. Until now, however, no such sensor had been available for the human hip joint due to difficulties posed by the deep, bi-curvilinear geometry of the acetabulum. We report here the design and development of a novel sensor capable of measuring dynamic contact stress in human cadaveric hip joints (maximum contact stress of 20 MPa and maximum sampling rate 100 readings/s). Particular emphasis is placed on issues concerning calibration, and on the effect of joint curvature on the sensor's performance. The active pressure-sensing regions of the sensors have the shape of a segment of an annulus with a 150-deg circumferential span, and employ a polar/circumferential “ring-and-spoke” sensel grid layout. There are two sensor sizes, having outside radii of 44 and 48 mm, respectively. The new design was evaluated in human cadaver hip joints using two methods. The stress magnitudes and spatial distribution measured by the sensor were compared to contact stresses measured by pressure sensitive film during static loading conditions that simulated heel strike during walking and stair climbing. Additionally, the forces obtained by spatial integration of the sensor contact stresses were compared to the forces measured by load cells during the static simulations and for loading applied by a dynamic hip simulator. Stress magnitudes and spatial distribution patterns obtained from the sensor versus from pressure sensitive film exhibited good agreement. The joint forces obtained during both static and dynamic loading were within ±10% and ±26%, respectively, of the forces measured by the load cells. These results provide confidence in the measurements obtained by the sensor. The new sensor's real-time output and dynamic measurement capabilities hold significant advantages over static measurements from pressure sensitive film. PMID:24763632

  16. A new sensor for measurement of dynamic contact stress in the hip.

    PubMed

    Rudert, M J; Ellis, B J; Henak, C R; Stroud, N J; Pederson, D R; Weiss, J A; Brown, T D

    2014-03-01

    Various techniques exist for quantifying articular contact stress distributions, an important class of measurements in the field of orthopaedic biomechanics. In situations where the need for dynamic recording has been paramount, the approach of preference has involved thin-sheet multiplexed grid-array transducers. To date, these sensors have been used to study contact stresses in the knee, shoulder, ankle, wrist, and spinal facet joints. Until now, however, no such sensor had been available for the human hip joint due to difficulties posed by the deep, bi-curvilinear geometry of the acetabulum. We report here the design and development of a novel sensor capable of measuring dynamic contact stress in human cadaveric hip joints (maximum contact stress of 20 MPa and maximum sampling rate 100 readings/s). Particular emphasis is placed on issues concerning calibration, and on the effect of joint curvature on the sensor's performance. The active pressure-sensing regions of the sensors have the shape of a segment of an annulus with a 150-deg circumferential span, and employ a polar/circumferential "ring-and-spoke" sensel grid layout. There are two sensor sizes, having outside radii of 44 and 48 mm, respectively. The new design was evaluated in human cadaver hip joints using two methods. The stress magnitudes and spatial distribution measured by the sensor were compared to contact stresses measured by pressure sensitive film during static loading conditions that simulated heel strike during walking and stair climbing. Additionally, the forces obtained by spatial integration of the sensor contact stresses were compared to the forces measured by load cells during the static simulations and for loading applied by a dynamic hip simulator. Stress magnitudes and spatial distribution patterns obtained from the sensor versus from pressure sensitive film exhibited good agreement. The joint forces obtained during both static and dynamic loading were within ±10% and ±26%, respectively, of the forces measured by the load cells. These results provide confidence in the measurements obtained by the sensor. The new sensor's real-time output and dynamic measurement capabilities hold significant advantages over static measurements from pressure sensitive film.

  17. Indirect Blood Pressure Measuring Device

    NASA Technical Reports Server (NTRS)

    Hum, L.; Cole, C. E.

    1973-01-01

    Design and performance of a blood pressure recording device for pediatric use are reported. A strain gage transducer with a copper-beryllium strip as force sensing element is used to monitor skin movements and to convert them into electrical signals proportional to those displacements. Experimental tests with this device in recording of force developed above the left femoral artery of a dog accurately produced a blood pressure curve.

  18. Species-specific temperature sensitivity of TRPA1

    PubMed Central

    Laursen, Willem J; Anderson, Evan O; Hoffstaetter, Lydia J; Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-01-01

    Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector of low-intensity heat for prey localization. Exploring the variation of TRPA1 functions among species provides evolutionary insight into molecular mechanisms that fine-tune thermal and chemical sensitivity, and offers an opportunity to address basic principles of temperature gating in ion channels. A decade of research has yielded a number of hypotheses describing physiological roles of TRPA1, modulators of its activity, and biophysical principles of gating. This review surveys the diversity of TRPA1 adaptations across evolutionary taxa and explores possible mechanisms of TRPA1 activation. PMID:27227025

  19. A Prototype Tactile Sensor Array.

    DTIC Science & Technology

    1982-09-15

    Active Touch Sensing. Technical Report, MIT Artificial Inteligence Laboratory, 1981. (9] Larcombe, M. Carbon Fibre Tactile Sensors. Technical Report...thesis, Carnegie-Mellon University, 1981. [13] Purbrick, John A. A Force Transducer Employing Conductive Silicone Rubber. Technical Report, MIT Artificial

  20. Steerable vertical to horizontal energy transducer for mobile robots

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  1. Cosmos 2229

    NASA Technical Reports Server (NTRS)

    Edgerton, V. Reggie; Roy, Roland R.; Hodgson, John A.

    1993-01-01

    The 6 weeks preflight activities of the Cosmos project during 1993 included: modification of EMG connector to improve the reliability of EMG recording; 24 hour cage activity recording from all but two of the flight animals (monkeys); attempts to record from flight candidates during foot lever task; and force transducer calibrations on all flight candidate animals. The 4 week postflight recordings included: postflight recordings from flight animals; postflight recordings on 3 control (non-flight) animals; postflight recalibration of force transducers on 1 flight and 4 control (non-flight) animals; and attempts to record EMG and video data from the flight animals during postflight locomotion and postural activity. The flight EMG recordings suggest that significant changes in muscle control may occur in spaceflight. It is also clear from recordings that levels of EMG recorded during spaceflight can attain values similar to those measured on earth. Amplifier gain settings should therefore probably not be changed for spaceflight.

  2. Vibro-acoustography with 1.75D ultrasound array transducer for detection and localization of permanent prostate brachytherapy seeds: ex vivo study

    NASA Astrophysics Data System (ADS)

    Mehrmohammadi, Mohammad; Alizad, Azra; Kinnick, Randall R.; Davis, Brian J.; Fatemi, Mostafa

    2013-03-01

    Effective brachytherapy procedures require precise placement of radioactive seeds in the prostate. Currently, transrectal ultrasound (TRUS) imaging is one of the main intraoperative imaging modalities to assist physicians in placement of brachytherapy seeds. However, the seed detection rate with TRUS is poor mainly because ultrasound imaging is highly sensitive to variations in seed orientation. The purpose of this study is to investigate the abilities of a new acoustic radiation force imaging modality, vibro-acoustography (VA), equipped with a 1.75D array transducer and implemented on a customized clinical ultrasound scanner, to image and localize brachytherapy seeds in prostatic tissue. To perform experiments, excised cadaver prostate specimens were implanted with dummy brachytherapy seeds, and embedded in tissue mimicking gel to simulate the properties of the surrounding soft tissues. The samples were scanned using the VA system and the resulting VA signals were used to reconstruct VA images at several depths inside the tissue. To further evaluate the performance of VA in detecting seeds, X-ray computed tomography (CT) images of the same tissue sample, were obtained and used as a gold-standard to compare the number of seeds detected by the two methods. Our results indicate that VA is capable of imaging of brachytherapy seeds with accuracy and high contrast, and can detect a large percentage of the seeds implanted within the tissue samples.

  3. Modeling of Piezoelectric Energy Harvesting Using Cymbal Transducers

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo; Priya, Shashank; Uchino, Kenji

    2006-07-01

    This study reports the experimental and analytical results on a piezoelectric cymbal with 29 mm diameter and 1 mm thickness operating under force of 70 N in the frequency range of 10-200 Hz. It was found that the generated power increases with the frequency and around 100 mW can be harvested at frequency of 200 Hz across a 200 kΩ resistor. Power generation from the cymbal transducer was modeled by using the theory developed for the Belleville spring. The calculated results were found to be in good agreement with the experimental results. The results indicate that the metal-ceramic composite transducer “CYMBAL” is the most promising structure for harvesting the electric energy from automobile engine vibrations. The metal cap enhances the endurance of the ceramic to sustain high loads along with stress amplification.

  4. Effect of Hindlimb Unloading on Rat Soleus Fiber Force, Stiffness, and Calcium Sensitivity

    NASA Technical Reports Server (NTRS)

    McDonald Kerry S.; Fitts, Robert H.

    1995-01-01

    The purpose of this study was to examine the time course of change in soleus muscle fiber peak force (N), tension (P(sub 0), kN/sq m), elastic modulus (E(sub 0)), and force-pCa and stiffness - pCa relationships. After 1, 2, or 3 wk of Hindlimb Unloading (HU), single fibers were isolated and placed between a motor arm and a transducer, and fiber diameter, peak absolute force, P(sub 0), E(sub 0), and force-pCa and stiffness-pca relationships were characterized. One week of HU resulted in a significant reduction in fiber diameter (68 +/- 2 vs. 57 +/- 1 micrometer), force (3.59 +/- 0.15 vs. 2.19 +/- 0.12 x 10(exp -4) N), P(sub 0) (102 +/- 4 vs. 85 +/- 2 kN/sq m), and E(sub 0) (1.96 +/- 0.12 vs. 1.37 +/- 0.13 X 10(exp 7) N/sq m) and 2 wk of HU caused a further decline in fiber diameter (45 +/- 1 micrometer), force (1.31 +/- 0.06 x 10(exp -4) N), and E(sub 0)(0.96 +/- 0.09 x 10(exp 7) N/sq m). Although the mean fiber diameter and absolute force continued to decline through 3 wk of HU, P(sub 0) recovered to values not significantly different from control. The P(sub 0)/E(sub 0) ratio was significantly increased after 1 (5.5 +/- 0.3 to 7.1 +/- 0.6), 2, and 3 wk of HU, and the 2-wk (9.5 +/- 0.4) and 3-wk (9.4 +/- 0.8) values were significantly greater than the 1-wk values. The force-pCa and stiffness-pCa curves were shifted right- ward after 1, 2, and 3 wk of HU. At 1 wk of HU, the Ca(2+) sensitivity of isometric force, assessed by Ca(2+) concentration required for half-maximal force, was increased from the control value of 1.83 +/- 0.12 to 2.30 +/- 0.10 micrometers. In conclusion, after HU, the decrease in soleus fiber P(sub 0) can be explained by a reduction in the number of myofibrillar cross bridges per cross-sectional area. Our working hypothesis is that the loss of contractile protein reduces the number of cross bridges per cross-sectional area and increases the filament lattice spacing. The increased spacing reduces cross-bridge force and stiffness, but P(sub 0)/E(sub 0) increases because of a quantitatively greater effect on stiffness.

  5. Self-transducing silicon nanowire electromechanical systems at room temperature.

    PubMed

    He, Rongrui; Feng, X L; Roukes, M L; Yang, Peidong

    2008-06-01

    Electronic readout of the motions of genuinely nanoscale mechanical devices at room temperature imposes an important challenge for the integration and application of nanoelectromechanical systems (NEMS). Here, we report the first experiments on piezoresistively transduced very high frequency Si nanowire (SiNW) resonators with on-chip electronic actuation at room temperature. We have demonstrated that, for very thin (~90 nm down to ~30 nm) SiNWs, their time-varying strain can be exploited for self-transducing the devices' resonant motions at frequencies as high as approximately 100 MHz. The strain of wire elongation, which is only second-order in doubly clamped structures, enables efficient displacement transducer because of the enhanced piezoresistance effect in these SiNWs. This intrinsically integrated transducer is uniquely suited for a class of very thin wires and beams where metallization and multilayer complex patterning on devices become impractical. The 30 nm thin SiNW NEMS offer exceptional mass sensitivities in the subzeptogram range. This demonstration makes it promising to advance toward NEMS sensors based on ultrathin and even molecular-scale SiNWs, and their monolithic integration with microelectronics on the same chip.

  6. Force Required to Cinch the Tricuspid Annulus: An Ex-Vivo Study

    PubMed Central

    Adkins, Amy; Aleman, Jesus; Boies, Lori; Sako, Edward; Bhattacharya, Shamik

    2016-01-01

    Background and aim of the study Tricuspid annuloplasty is the most preferred technique for the treatment of functional tricuspid regurgitation (FTR). However, high incidences of recurrent regurgitation and risky reoperation demands a deeper insight into the technique. The cinching force required to bring a dilated annulus back to the original size is unknown. The study aim was to quantify the cinching force in the tricuspid annulus which can contribute to the long-term durability of tricuspid annuloplasty and percutaneous device design. Methods In ten ovine hearts, a suture was anchored around the free wall of the tricuspid annulus with the free end attached to a force transducer. The force transducer was mounted on a slider system which pulled the suture at regular intervals. Closure of the tricuspid valve was achieved by pressurizing the right ventricle at 30 mmHg through the pulmonary valve. The suture was pulled to cinch the tricuspid annulus. The tricuspid annulus area was measured from images taken at each increment, and the corresponding force was recorded. The hearts were tested for three conditions: (i) non-pressurized (NP); (ii) pressurized (P; normal), and (iii) dilated-pressurized (DP; diseased). Leakage data were also collected for pressurized and dilated pressurized conditions. Annulus dilation was created by injecting phenol into the annulus. Results The maximum annulus dilation obtained was 8.82%, and the maximum cinching force was 0.38 ± 0.09 N. Leakage was increased by 81.73% from the pressurized to dilated condition. Conclusion The minimal force required to cinch a tricuspid annulus with severe FTR (23.98% dilation) can be approximated to 0.25 N. The required cinching force can play a major role in the long-term durability of the tricuspid annuloplasty. PMID:26897846

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devkota, Jagannath; Kim, Ki-Joong; Ohodnicki, Paul R.

    The integration of nanoporous materials such as metal organic frameworks (MOFs) with sensitive transducers can result in robust sensing platforms for monitoring gases and chemical vapors for a range of applications.

  8. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    NASA Astrophysics Data System (ADS)

    Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.

    2015-10-01

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.

  9. An Investigation of Energy Transmission Due to Flexural Wave Propagation in Lightweight, Built-Up Structures. Thesis

    NASA Technical Reports Server (NTRS)

    Mickol, John Douglas; Bernhard, R. J.

    1986-01-01

    A technique to measure flexural structure-borne noise intensity is investigated. Two accelerometers serve as transducers in this cross-spectral technique. The structure-borne sound power is obtained by two different techniques and compared. In the first method, a contour integral of intensity is performed from the values provided by the two-accelerometer intensity technique. In the second method, input power is calculated directly from the output of force and acceleration transducers. A plate and two beams were the subjects of the sound power comparisons. Excitation for the structures was either band-limited white noise or a deterministic signal similar to a swept sine. The two-accelerometer method was found to be sharply limited by near field and transducer spacing limitations. In addition, for the lightweight structures investigated, it was found that the probe inertia can have a significant influence on the power input to the structure. In addition to the experimental investigation of structure-borne sound energy, an extensive study of the point harmonically forced, point-damped beam boundary value problem was performed to gain insight into measurements of this nature. The intensity formulations were also incorporated into the finite element method. Intensity mappings were obtained analytically via finite element modeling of simple structures.

  10. A computer-based servo system for controlling isotonic contractions of muscle.

    PubMed

    Smith, J P; Barsotti, R J

    1993-11-01

    We have developed a computer-based servo system for controlling isotonic releases in muscle. This system is a composite of commercially available devices: an IBM personal computer, an analog-to-digital (A/D) board, an Akers AE801 force transducer, and a Cambridge Technology motor. The servo loop controlling the force clamp is generated by computer via the A/D board, using a program written in QuickBASIC 4.5. Results are shown that illustrate the ability of the system to clamp the force generated by either skinned cardiac trabeculae or single rabbit psoas fibers down to the resolution of the force transducer within 4 ms. This rate is independent of the level of activation of the tissue and the size of the load imposed during the release. The key to the effectiveness of the system consists of two algorithms that are described in detail. The first is used to calculate the error signal to hold force to the desired level. The second algorithm is used to calculate the appropriate gain of the servo for a particular fiber and the size of the desired load to be imposed. The results show that the described computer-based method for controlling isotonic releases in muscle represents a good compromise between simplicity and performance and is an alternative to the custom-built digital/analog servo devices currently being used in studies of muscle mechanics.

  11. Tapping linked to function and structure in premanifest and symptomatic Huntington disease(e–Pub ahead of print)

    PubMed Central

    Bechtel, N.; Scahill, R.I.; Rosas, H.D.; Acharya, T.; van den Bogaard, S.J.A.; Jauffret, C.; Say, M.J.; Sturrock, A.; Johnson, H.; Onorato, C.E.; Salat, D.H.; Durr, A.; Leavitt, B.R.; Roos, R.A.C.; Landwehrmeyer, G.B.; Langbehn, D.R.; Stout, J.C.; Tabrizi, S.J.; Reilmann, R.

    2010-01-01

    Objective: Motor signs are functionally disabling features of Huntington disease. Characteristic motor signs define disease manifestation. Their severity and onset are assessed by the Total Motor Score of the Unified Huntington's Disease Rating Scale, a categorical scale limited by interrater variability and insensitivity in premanifest subjects. More objective, reliable, and precise measures are needed which permit clinical trials in premanifest populations. We hypothesized that motor deficits can be objectively quantified by force-transducer-based tapping and correlate with disease burden and brain atrophy. Methods: A total of 123 controls, 120 premanifest, and 123 early symptomatic gene carriers performed a speeded and a metronome tapping task in the multicenter study TRACK-HD. Total Motor Score, CAG repeat length, and MRIs were obtained. The premanifest group was subdivided into A and B, based on the proximity to estimated disease onset, the manifest group into stages 1 and 2, according to their Total Functional Capacity scores. Analyses were performed centrally and blinded. Results: Tapping variability distinguished between all groups and subgroups in both tasks and correlated with 1) disease burden, 2) clinical motor phenotype, 3) gray and white matter atrophy, and 4) cortical thinning. Speeded tapping was more sensitive to the detection of early changes. Conclusion: Tapping deficits are evident throughout manifest and premanifest stages. Deficits are more pronounced in later stages and correlate with clinical scores as well as regional brain atrophy, which implies a link between structure and function. The ability to track motor phenotype progression with force-transducer-based tapping measures will be tested prospectively in the TRACK-HD study. GLOSSARY CoV = coefficient of variation; DBS = disease burden score; Freq = frequency; HD = Huntington disease; ICV = intracranial volume; IOI = interonset interval; ΔIOI = deviation from interonset interval; IPI = interpeak interval; ΔIPI = deviation from interpeak interval; ITI = intertap interval; log = logarithmic; MT = metronome tapping; ΔMTI = deviation from midtap interval; preHD = premanifest Huntington disease; RT = reaction time; ST = speeded tapping; TD = tap duration; TF = tapping force; TFC = Total Functional Capacity; UHDRS = Unified Huntington's Disease Rating Scale; UHDRS-TMS = Unified Huntington's Disease Rating Scale-Total Motor Score; VBM = voxel-based morphometry. PMID:21068430

  12. Conception of the system for traffic measurements based on piezoelectric foils

    NASA Astrophysics Data System (ADS)

    Płaczek, M.

    2016-08-01

    A concept of mechatronic system for traffic measurements based on the piezoelectric transducers used as sensors is presented. The aim of the work project is to theoretically and experimentally analyse the dynamic response of road infrastructure forced by vehicles motion. The subject of the project is therefore on the borderline of civil engineering and mechanical and covers a wide range of issues in both these areas. To measure the dynamic response of the tested pieces of road infrastructure application of piezoelectric, in particular piezoelectric transducers in the form of piezoelectric films (MFC - Macro Fiber Composite) is proposed. The purpose is to verify the possibility to use composite piezoelectric transducers as sensors used in traffic surveillance systems - innovative methods of controlling the road infrastructure and traffic. Presented paper reports works that were done in order to receive the basic information about analysed systems and their behaviour under excitation by passing vehicles. It is very important to verify if such kind of systems can be controlled by the analysis of the dynamic response of road infrastructure measured using piezoelectric transducers. Obtained results show that it could be possible.

  13. Validity of the Myotest® in measuring force and power production in the squat and bench press.

    PubMed

    Comstock, Brett A; Solomon-Hill, Glenn; Flanagan, Shawn D; Earp, Jacob E; Luk, Hui-Ying; Dobbins, Kathryn A; Dunn-Lewis, Courtenay; Fragala, Maren S; Ho, Jen-Yu; Hatfield, Disa L; Vingren, Jakob L; Denegar, Craig R; Volek, Jeff S; Kupchak, Brian R; Maresh, Carl M; Kraemer, William J

    2011-08-01

    The purpose of this study was to verify the concurrent validity of a bar-mounted Myotest® instrument in measuring the force and power production in the squat and bench press exercises when compared to the gold standard of a computerized linear transducer and force platform system. Fifty-four men (bench press: 39-171 kg; squat: 75-221 kg) and 43 women (bench press: 18-80 kg; squat: 30-115 kg) (age range 18-30 years) performed a 1 repetition maximum (1RM) strength test in bench press and squat exercises. Power testing consisted of the jump squat and the bench throw at 30% of each subject's 1RM. During each measurement, both the Myotest® instrument and the Celesco linear transducer of the directly interfaced BMS system (Ballistic Measurement System [BMS] Innervations Inc, Fitness Technology force plate, Skye, South Australia, Australia) were mounted to the weight bar. A strong, positive correlation (r) between the Myotest and BMS systems and a high correlation of determination (R2) was demonstrated for bench throw force (r = 0.95, p < 0.05) (R2 = 0.92); bench throw power (r = 0.96, p < 0.05) (R2 = 0.93); squat jump force (r = 0.98, p < 0.05) (R2 = 0.97); and squat jump power (r = 0.91, p < 0.05) (R2 = 0.82). In conclusion, when fixed on the bar in the vertical axis, the Myotest is a valid field instrument for measuring force and power in commonly used exercise movements.

  14. Plastic Muscles TM as lightweight, low voltage actuators and sensors

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald; Duncan, Andrew

    2008-03-01

    Using proprietary technology, Discover Technologies has developed ionomeric polymer transducers that are capable of long-term operation in air. These "Plastic Muscle TM" transducers are useful as soft distributed actuators and sensors and have a wide range of applications in the aerospace, robotics, automotive, electronics, and biomedical industries. Discover Technologies is developing novel fabrication methods that allow the Plastic Muscles TM to be manufactured on a commercial scale. The Plastic Muscle TM transducers are capable of generating more than 0.5% bending strain at a peak strain rate of over 0.1 %/s with a 3 V input. Because the Plastic Muscles TM use an ionic liquid as a replacement solvent for water, they are able to operate in air for long periods of time. Also, the Plastic Muscles TM do not exhibit the characteristic "back relaxation" phenomenon that is common in water-swollen devices. The elastic modulus of the Plastic Muscle TM transducers is estimated to be 200 MPa and the maximum generated stress is estimated to be 1 MPa. Based on these values, the maximum blocked force at the tip of a 6 mm wide, 35 mm long actuator is estimated to be 19 mN. Modeling of the step response with an exponential series reveals nonlinearity in the transducers' behavior.

  15. A two-axis micromachined silicon actuator with micrometer range electrostatic actuation and picometer sensitive capacitive detection

    NASA Astrophysics Data System (ADS)

    Ayela, F.; Bret, J. L.; Chaussy, J.; Fournier, T.; Ménégaz, E.

    2000-05-01

    This article presents an innovative micromachined silicon actuator. A 50-μm-thick silicon foil is anodically bonded onto a broached Pyrex substrate. A free standing membrane and four coplanar electrodes in close proximity are then lithographied and etched. The use of phosphorus doped silicon with low electrical resistivity allows the application of an electrostatic force between one electrode and the moving diaphragm. This plane displacement and the induced interelectrode variation are capacitively detected. Due to the very low electrical resistivity of the doped silicon, there is no need to metallize the vertical trenches of the device. No piezoelectric transducer takes place so that the mechanical device is free from any hysteretic or temperature dependance. The range of the possible actuation along the x and y axis is around 5 μm. The actual sensitivity is xn=0.54 Å/Hz1/2 and yn=0.14 Å/Hz1/2. The microengineering steps and the electronic setup devoted to design the actuator and to perform relative capacitive measurements ΔC/C=10-6 from an initial value C≈10-13 F are described. The elaborated tests and performances of the device are presented. As a conclusion, some experimental projects using this subnanometric sensitive device are mentioned.

  16. Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Dapino, Marcelo J.

    2016-04-01

    Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.

  17. Single Molecule Enzymology via Nanoelectronic Circuits

    NASA Astrophysics Data System (ADS)

    Collins, Philip

    Traditional single-molecule techniques rely on fluorescence or force transduction to monitor conformational changes and biochemical activity. Recent demonstrations of single-molecule monitoring with electronic transistors are poised to add to the single-molecule research toolkit. The transistor-based technique is sensitive to the motion of single charged side chain residues and can transduce those motions with microsecond resolution, opening the doors to single-molecule enzymology with unprecedented resolution. Furthermore, the solid-state platform provides opportunities for parallelization in arrays and long-duration monitoring of one molecule's activity or processivity, all without the limitations caused by photo-oxidation or mutagenic fluorophore incorporation. This presentation will review some of these advantages and their particular application to DNA polymerase I processing single-stranded DNA templates. This research was supported financially by the NIH NCI (R01 CA133592-01), the NIH NIGMS (1R01GM106957-01) and the NSF (DMR-1104629 and ECCS-1231910).

  18. Resonant-type MEMS transducers excited by two acoustic emission simulation techniques

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2004-07-01

    Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.

  19. Underwater characterizations of monolithic piezoceramic and 1-3 composite using a self-designed transducer

    NASA Astrophysics Data System (ADS)

    Saleem Mirza, Muhammad; Yasin, Tariq; Ikram, Masroor; Altaf, Muhammad; Mushtaq, Zahir; Nasir Khan, Muhammad

    2016-03-01

    Underwater characterizations of (Pb0.94Sr0.04)(Zr0.52Ti0.48)O3 (PZT) and PZT/araldite-F 1-3 composite were carried out through a self-designed transducer. Disc-shaped samples of bulk PZT and PZT/araldite-F composite were first characterized in air and then were assembled in the transducer individually. The transducer's underwater voltage receiving sensitivity (Sh) and transmitting voltage response (Sv) were investigated in the frequency range of 10-200 kHz (well below thickness mode resonance) using a calibrated projector and receiver method with pulse technique. Results revealed that the transducer made with composite sample exhibited better (Sh) values (-214 dB ref 1 V/µPa) due to ~295% higher piezoelectric voltage coefficient gh (30 × 10-3 Vm/N) of the composite compared to PZT. In addition, the transducer with the PZT sample showed better Sv values (80 dB ref 1 µPa/1 V at 1 m) due to the presence of planar mode peaks in the frequency range of 10-200 kHz. These results indicate that the monolithic piezoceramic can exhibit underwater Sv response in both planar and thickness resonance modes owing to the admittance peaks in these frequency regions.

  20. Signal detection by active, noisy hair bundles

    NASA Astrophysics Data System (ADS)

    O'Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.

    2018-05-01

    Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle's phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle's active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle's ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.

  1. Acoustic pressure measurement of pulsed ultrasound using acousto-optic diffraction

    NASA Astrophysics Data System (ADS)

    Jia, Lecheng; Chen, Shili; Xue, Bin; Wu, Hanzhong; Zhang, Kai; Yang, Xiaoxia; Zeng, Zhoumo

    2018-01-01

    Compared with continuous ultrasound wave, pulsed ultrasound has been widely used in ultrasound imaging. The aim of this work is to show the applicability of acousto-optic diffraction on pulsed ultrasound transducer. In this paper, acoustic pressure of two ultrasound transducers is measured based on Raman-Nath diffraction. The frequencies of transducers are 5MHz and 10MHz. The pulse-echo method and simulation data are used to evaluate the results. The results show that the proposed method is capable to measure the absolute sound pressure. We get a sectional view of acoustic pressure using a displacement platform as an auxiliary. Compared with the traditional sound pressure measurement methods, the proposed method is non-invasive with high sensitivity and spatial resolution.

  2. Developing a Low-Cost Force Treadmill via Dynamic Modeling.

    PubMed

    Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen

    2017-01-01

    By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of "walk-on-the-spot motion," it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach.

  3. Catheter-tip force transducer for cardiovascular research

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Lewis, G. W.; Silver, R. H.; Culler, V. H.

    1975-01-01

    Sensor can be installed in left ventricle by means of procedures available for inserting catheter into an artery at body's extremities and manipulating it through vessel and past aortic valve. Metallic tines of device can be used as internal electrode for electrocardiogram.

  4. Advanced life systems hardware development for future missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An examination of the pulse formation in an externalized vessel suggests that the vessel does not behave as a simple visco-elastic tube. Pressure-pulse waveform transducers are sensitive either to the pressure present at the vessel wall or to the volume of blood filling a region of tissue. Results of comparisons between intra-and extra-vascular pressure recordings suggest that changes in vasomotor tone and transducer-vessel pressures may be the greatest contributors to the divergence of extra-vascular waveforms from intra-vascular waveforms.

  5. The Characteristics in the Sensitivity of Microfiber Fabry-Perot Interferometric Transducers

    NASA Astrophysics Data System (ADS)

    Wang, Xiuxin; Li, Zhangyong; Lin, Jinzhao; Wang, Wei; Tian, Yin; Pang, Yu

    2018-01-01

    We inscribe a Fabry-Perot (FP) resonator in the microfiber utilizing the 193-nm UV exposure and the phase mask technique. Some new characteristics in contrast to the conventional counterparts are measured, which are attributed to the index change in the grating and the dispersion of the effective grating length, respectively. The FP spectral dependencies on external strain, temperature, and refractive index are investigated. Our fabricated structures can have potential of acting as ultrasonic transducers and photo acoustic imaging.

  6. Contactless microparticle control via ultrahigh frequency needle type single beam acoustic tweezers

    NASA Astrophysics Data System (ADS)

    Fei, Chunlong; Li, Ying; Zhu, Benpeng; Chiu, Chi Tat; Chen, Zeyu; Li, Di; Yang, Yintang; Kirk Shung, K.; Zhou, Qifa

    2016-10-01

    This paper reports on contactless microparticle manipulation including single-particle controlled trapping, transportation, and patterning via single beam acoustic radiation forces. As the core component of single beam acoustic tweezers, a needle type ultrasonic transducer was designed and fabricated with center frequency higher than 300 MHz and -6 dB fractional bandwidth as large as 64%. The transducer was built for an f-number close to 1.0, and the desired focal depth was achieved by press-focusing technology. Its lateral resolution was measured to be better than 6.7 μm by scanning a 4 μm tungsten wire target. Tightly focused acoustic beam produced by the transducer was shown to be capable of manipulating individual microspheres as small as 3 μm. "USC" patterning with 15 μm microspheres was demonstrated without affecting nearby microspheres. These promising results may expand the applications in biomedical and biophysical research of single beam acoustic tweezers.

  7. Piezoelectret-based hydrophone: an alternative device for vibro-acoustography

    NASA Astrophysics Data System (ADS)

    de Medeiros, L. J.; Kamimura, H. A. S.; Altafim, R. A. P.; Carneiro, A. A. O.; Amorim, M. F.; Altafim, R. A. C.

    2015-09-01

    Piezoelectric polymers are highly desirable for ultrasound applications since their low acoustic impedance is much closer to the impedances of air and water than those of traditional piezoceramics. However, the piezoelectric effect observed in these poled polymers is limited to a few dozen picocoulombs per newton and requires very low-noise amplification. A different class of polymeric material known as piezoelectrets, presents piezoelectric effect in the same order of magnitude as those found on piezoceramics. This new class of materials has been explored in a wide range of applications such as flexible keyboards and airborne ultrasound transducers. Based on these polymers, we present here a new transducer for vibro-acoustography (VA), which is an ultrasonic image technique employed in medical diagnosis or material analysis based on ultrasound scattered by a target object. A calibration was carried out using a standard hydrophone, which is normally employed in VA. The average sensitivity of the transducer in the continuous wave mode was 1.712 mV Pa-1(-182.7 dB re 1 V μ Pa-1) with a maximum sensitivity of 18.25 mV Pa-1 (-154.8 dB re 1 V μ Pa-1) at its resonance frequency around 40 kHz. Subsequently, measurements in the burst mode and of directional sensitivity were taken and are presented here together with VA images obtained from a chicken bone and a metal sphere.

  8. In vivo fascicle length measurements via B-mode ultrasound imaging with single vs dual transducer arrangements.

    PubMed

    Brennan, Scott F; Cresswell, Andrew G; Farris, Dominic J; Lichtwark, Glen A

    2017-11-07

    Ultrasonography is a useful technique to study muscle contractions in vivo, however larger muscles like vastus lateralis may be difficult to visualise with smaller, commonly used transducers. Fascicle length is often estimated using linear trigonometry to extrapolate fascicle length to regions where the fascicle is not visible. However, this approach has not been compared to measurements made with a larger field of view for dynamic muscle contractions. Here we compared two different single-transducer extrapolation methods to measure VL muscle fascicle length to a direct measurement made using two synchronised, in-series transducers. The first method used pennation angle and muscle thickness to extrapolate fascicle length outside the image (extrapolate method). The second method determined fascicle length based on the extrapolated intercept between a fascicle and the aponeurosis (intercept method). Nine participants performed maximal effort, isometric, knee extension contractions on a dynamometer at 10° increments from 50 to 100° of knee flexion. Fascicle length and torque were simultaneously recorded for offline analysis. The dual transducer method showed similar patterns of fascicle length change (overall mean coefficient of multiple correlation was 0.76 and 0.71 compared to extrapolate and intercept methods respectively), but reached different absolute lengths during the contractions. This had the effect of producing force-length curves of the same shape, but each curve was shifted in terms of absolute length. We concluded that dual transducers are beneficial for studies that examine absolute fascicle lengths, whereas either of the single transducer methods may produce similar results for normalised length changes, and repeated measures experimental designs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Novel Device for Total Acoustic Output Measurement of High Power Transducers

    NASA Astrophysics Data System (ADS)

    Howard, S.; Twomey, R.; Morris, H.; Zanelli, C. I.

    2010-03-01

    The objective of this work was to develop a device for ultrasound power measurement applicable over a broad range of medical transducer types, orientations and powers, and which supports automatic measurements to simplify use and minimize errors. Considering all the recommendations from standards such as IEC 61161, an accurate electromagnetic null-balance has been designed for ultrasound power measurements. The sensing element is placed in the water to eliminate errors due to surface tension and water evaporation, and the motion and detection of force is constrained to one axis, to increase immunity to vibration from the floor, water sloshing and water surface waves. A transparent tank was designed so it could easily be submerged in a larger tank to accommodate large transducers or side-firing geometries, and can also be turned upside-down for upward-firing transducers. A vacuum lid allows degassing the water and target in situ. An external control module was designed to operate the sensing/driving loop and to communicate to a local computer for data logging. The sensing algorithm, which incorporates temperature compensation, compares the feedback force needed to cancel the motion for sources in the "on" and "off" states. These two states can be controlled by the control unit or manually by the user, under guidance by a graphical user interface (the system presents measured power live during collection). Software allows calibration to standard weights, or to independently calibrated acoustic sources. The design accommodates a variety of targets, including cone, rubber, brush targets and an oil-filled target for power measurement via buoyancy changes. Measurement examples are presented, including HIFU sources operating at powers from 1 to 100.

  10. Cryogenic strain gage techniques used in force balance design for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1986-01-01

    A force balance is a strain gage transducer used in wind tunnels to measure the forces and moments on aerodynamic models. Techniques have been established for temperature-compensation of force balances to allow their use over the operating temperature range of a cryogenic wind tunnel (-190C to 60C) without thermal control. This was accomplished by using a patented strain gage matching process to minimize inherent thermal differences, and a thermal compensation procedure to reduce the remaining thermally-induced outputs to acceptable levels. A method of compensating for mechanical movement of the axial force measuring beam caused by thermally-induced stresses under transient temperatures was also included.

  11. Measurement of Forces and Moments Transmitted to the Residual Limb

    DTIC Science & Technology

    2008-08-01

    leg and residual limb, the condition of your residual limb including touch and pressure sensation, and the type of components used in your prosthesis ...measured by a tri-axial transducer mounted on the pylon of a transtibial prosthesis distal to the socket can be used to estimate the intra-socket...alignment has been developed, and IRB approval has been obtained. 15. SUBJECT TERMS Amputees, prosthesis alignment, socket pressure, gait, force and moment

  12. A novel electron tunneling infrared detector

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.

    1990-01-01

    The pneumatic infrared detector, originally developed by Golay in the late 1940s, uses the thermal expansion of one cm(exp 3) of xenon at room temperature to detect the heat deposited by infrared radiation. This detector was limited by thermal fluctuations within a 10 Hz bandwidth, but suffered from long thermal time constants and a fragile structure. Nevertheless, it represents the most sensitive room temperature detector currently available in the long wavelength infrared (LWIR). Fabrication of this type of detector on smaller scales has been limited by the lack of a suitably sensitive transducer. Researchers designed a detector based on this principle, but which is constructed entirely from micromachined silicon, and uses a vacuum tunneling transducer to detect the expansion of the trapped gas. Because this detector is fabricated using micromachining techniques, miniaturization and integration into one and two-dimensional arrays is feasible. The extreme sensitivity of vacuum tunneling to changes in electrode separation will allow a prototype of this detector to operate in the limit of thermal fluctuations over a 10 kHz bandwidth. A calculation of the predicted response and noise of the prototype is presented with the general formalism of thermal detectors. At present, most of the components of the prototype have been fabricated and tested independently. In particular, a characterization of the micromachined electron tunneling transducer has been carried out. The measured noise in the tunnel current is within a decade of the limit imposed by shot noise, and well below the requirements for the operation of an infrared detector with the predicted sensitivity. Assembly and characterization of the prototype infrared detector will be carried out promptly.

  13. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses

    PubMed Central

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.

    2014-01-01

    SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027

  14. A proposed magnetic digital temperature transducer, volume 1

    NASA Technical Reports Server (NTRS)

    Collier, T. E.; Tchernev, D. I.; Hartwig, W. H.

    1972-01-01

    A study has been made of the feasibility of using the discontinuous permeability versus temperature characteristics of some magnetic materials for a digital temperature transducer and a thermally controlled ON-OFF switch. Simple logic converts the number of output pulse to a digital word recognizable by the system. Efforts have been concentrated on materials with Curie temperatures between 0 and 100 C. One compound has the composition Mn(5-x)Fe(x)Ge3 where the amount of iron determines the transition temperature. The other compound is Ni-Zn ferrite and has the compositon Ni(1-x)Zn(x)Fe(1.95)O4 where the nickel: zinc ratio determines the transition temperature. A detailed report of materials prepared is presented. Toroidal inductors of the material have been constructed and the change in inductance with temperature measured. In view of these initial measurements, it is felt that a transducer utilizing the permeability versus temperature characteristics of these materials has promise as a reliable and sensitive solid state digital temperature transducer.

  15. Conducting Polymer-Based Nanohybrid Transducers: A Potential Route to High Sensitivity and Selectivity Sensors

    PubMed Central

    Park, Seon Joo; Kwon, Oh Seok; Lee, Ji Eun; Jang, Jyongsik; Yoon, Hyeonseok

    2014-01-01

    The development of novel sensing materials provides good opportunities to realize previously unachievable sensor performance. In this review, conducting polymer-based nanohybrids are highlighted as innovative transducers for high-performance chemical and biological sensing devices. Synthetic strategies of the nanohybrids are categorized into four groups: (1) impregnation, followed by reduction; (2) concurrent redox reactions; (3) electrochemical deposition; (4) seeding approach. Nanocale hybridization of conducting polymers with inorganic components can lead to improved sorption, catalytic reaction and/or transport behavior of the material systems. The nanohybrids have thus been used to detect nerve agents, toxic gases, volatile organic compounds, glucose, dopamine, and DNA. Given further advances in nanohybrids synthesis, it is expected that sensor technology will also evolve, especially in terms of sensitivity and selectivity. PMID:24561406

  16. Development of a MEMS acoustic emission sensor system

    NASA Astrophysics Data System (ADS)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first and the second mode frequency, strongly approximating the desirable rigid plate limit. The effect is modeled analytically and is verified experimentally by measurement of the resonance frequencies in the new transducers. Another improvement arises from the use of a pin grid array ceramic package, in which the MEMS chip is acoustically coupled to the structure with only two interfaces, through a ceramic medium that is negligible in thickness when compared to wavelengths of interest. Like other acoustic emission sensors, those on the 2006 MEMS chip are sensitive only to displacements normal to the surface on which the device is mounted. To overcome that long-standing limitation, a new MEMS sensor sensitive to in-plane motion has been designed, featuring a different spring-mass mechanism and creating the signal by the change in capacitance between stationary and moving fingers. Predicted damping is much lower for the case of the in-plane sensor, and squeeze-film damping is used selectively to isolate the desired in-plane mechanical response from any unwanted out-of-plane response. The new spring-mass mechanism satisfies the design rules for the PolyMUMPS fabrication (foundry) process. A 3-D MEMS sensor system is presently being fabricated, collocating two in-plane sensors and one out-of-plane sensor at the mm scale, which is very short compared to the acoustic wavelength of interest for stress waves created by acoustic emission events.

  17. Design and simulation study of high frequency response for surface acoustic wave device by using CST software

    NASA Astrophysics Data System (ADS)

    Zakaria, M. R.; Hashim, U.; Amin, Mohd Hasrul I. M.; Ayub, R. Mat; Hashim, M. N.; Adam, T.

    2015-05-01

    This paper focuses on the enhancement and improvement of the Surface Acoustic Wave (SAW) device performance. Due to increased demand in the international market for biosensor product, the product must be emphasized in terms of quality. However, within the technological advances, demand for device with low cost, high efficiency and friendly-user preferred. Surface Acoustic Wave (SAW) device with the combination of pair electrode know as Interdigital Transducer (IDT) was fabricated on a piezoelectric substrate. The design of Interdigital Transducer (IDT) parameter is changes in several sizes and values for which it is able to provide greater efficiency in sensing sensitivity by using process simulation with CST STUDIO Suite software. In addition, Interdigital Transducer (IDT) parameters also changed to be created the products with a smaller size and easy to handle where it also reduces the cost of this product. Parameter values of an Interdigital Transducer (IDT) will be changed in the design is the total number of fingers pair, finger length, finger width and spacing, aperture and also the thickness of the Interdigital Transducer (IDT). From the result, the performance of the sensor is improved significantly after modification is done.

  18. Frame Rate Considerations for Real-Time Abdominal Acoustic Radiation Force Impulse Imaging

    PubMed Central

    Fahey, Brian J.; Palmeri, Mark L.; Trahey, Gregg E.

    2008-01-01

    With the advent of real-time Acoustic Radiation Force Impulse (ARFI) imaging, elevated frame rates are both desirable and relevant from a clinical perspective. However, fundamental limitations on frame rates are imposed by thermal safety concerns related to incident radiation force pulses. Abdominal ARFI imaging utilizes a curvilinear scanning geometry that results in markedly different tissue heating patterns than those previously studied for linear arrays or mechanically-translated concave transducers. Finite Element Method (FEM) models were used to simulate these tissue heating patterns and to analyze the impact of tissue heating on frame rates available for abdominal ARFI imaging. A perfusion model was implemented to account for cooling effects due to blood flow and frame rate limitations were evaluated in the presence of normal, reduced and negligible tissue perfusions. Conventional ARFI acquisition techniques were also compared to ARFI imaging with parallel receive tracking in terms of thermal efficiency. Additionally, thermocouple measurements of transducer face temperature increases were acquired to assess the frame rate limitations imposed by cumulative heating of the imaging array. Frame rates sufficient for many abdominal imaging applications were found to be safely achievable utilizing available ARFI imaging techniques. PMID:17521042

  19. Cross-bridge elasticity in single smooth muscle cells

    PubMed Central

    1983-01-01

    In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross- bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge. PMID:6413640

  20. Harmonic Motion Imaging for Abdominal Tumor Detection and High-intensity Focused Ultrasound Ablation Monitoring: A Feasibility Study in a Transgenic Mouse Model of Pancreatic Cancer

    PubMed Central

    Chen, Hong; Hou, Gary Y.; Han, Yang; Payen, Thomas; Palermo, Carmine F.; Olive, Kenneth P.; Konofagou, Elisa E.

    2015-01-01

    Harmonic motion imaging (HMI) is a radiation force-based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess relative tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radiofrequency signals using a 1D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated with a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring. PMID:26415128

  1. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru; Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow; Cunitz, B.

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however,more » nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.« less

  2. High pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubble interrogated by acoustic radiation force

    PubMed Central

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-01-01

    A high pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on measured motion of the microbubble, the Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using indentation test. Measured values of Young’s moduli of 4 bovine lenses ranged from 2.6±0.1 to 26±1.4 kPa and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed. PMID:22797709

  3. On-line calibration of high-response pressure transducers during jet-engine testing

    NASA Technical Reports Server (NTRS)

    Armentrout, E. C.

    1974-01-01

    Jet engine testing is reported concerned with the effect of inlet pressure and temperature distortions on engine performance and involves the use of numerous miniature pressure transducers. Despite recent improvements in the manufacture of miniature pressure transducers, they still exhibit sensitivity change and zero-shift with temperature and time. To obtain meaningful data, a calibration system is needed to determine these changes. A system has been developed which provides for computer selection of appropriate reference pressures selected from nine different sources to provide a two- or three-point calibration. Calibrations are made on command, before and sometimes after each data point. A unique no leak matrix valve design is used in the reference pressure system. Zero-shift corrections are measured and the values are automatically inserted into the data reduction program.

  4. Non-contact feature detection using ultrasonic Lamb waves

    DOEpatents

    Sinha, Dipen N [Los Alamos, NM

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  5. High Reynolds Number Wave Force Investigation in a Wave Flume.

    DTIC Science & Technology

    1985-03-01

    RESULTS 43 6.0 CONCLUSIONS 45 7.0 REFERENCES 49 8.0 ACKNOWLEDGEMENTS 51 9.0 TABLES 53 10.0 FIGURES 93 11.0 APPENDIX A" 11.1 Druck Pressure Transducer...adjoining test cylinder by 0.7 mm, which had a negligible influence on the resulting measurements. After the Druck pressure transducers were installed and...dC C 3d 4 ;88dC 38dC CI8 cninfl"nV0to .t" o ,t in cv d-. ,0 en w . nC M..r nin - -0 - I!- I!- V! - -i !V L4JN C; .0 d C0000000 40000008 o .6 C

  6. Methods And Apparatus For Acoustic Fiber Fractionation

    DOEpatents

    Brodeur, Pierre

    1999-11-09

    Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

  7. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  8. Inducer Hydrodynamic Load Measurement Devices

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  9. Silicon Integrated Cavity Optomechanical Transducer

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  10. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth

    NASA Astrophysics Data System (ADS)

    Rodríguez-Lorenzo, Laura; de La Rica, Roberto; Álvarez-Puebla, Ramón A.; Liz-Marzán, Luis M.; Stevens, Molly M.

    2012-07-01

    Lowering the limit of detection is key to the design of sensors needed for food safety regulations, environmental policies and the diagnosis of severe diseases. However, because conventional transducers generate a signal that is directly proportional to the concentration of the target molecule, ultralow concentrations of the molecule result in variations in the physical properties of the sensor that are tiny, and therefore difficult to detect with confidence. Here we present a signal-generation mechanism that redefines the limit of detection of nanoparticle sensors by inducing a signal that is larger when the target molecule is less concentrated. The key step to achieve this inverse sensitivity is to use an enzyme that controls the rate of nucleation of silver nanocrystals on plasmonic transducers. We demonstrate the outstanding sensitivity and robustness of this approach by detecting the cancer biomarker prostate-specific antigen down to 10-18 g ml-1 (4 × 10-20 M) in whole serum.

  11. Techniques to Improve Ultrasound-Switchable Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kandukuri, Jayanth

    Novel approaches to the improvement of ultrasound-switchable fluorescence (USF) imaging--a relatively new imaging modality that combines ultrasound and optical imaging techniques--have been proposed for early cancer detection. In USF, a high-intensity focused ultrasound (HIFU) beam is used to induce temperature rise within its acoustic focal region due to which a thermo-sensitive USF contrast agent undergoes a switch in its state by increasing the output of fluorescence photons. By using an increase in fluorescence, one can isolate and quantify the fluorescence properties within the ultrasonic focal area. Therefore, USF is able to provide fluorescence contrast while maintaining ultrasound resolution in tissue. The major challenge of the conventional USF technique is its low axial resolution and its sensitivity (i.e. its signal-to-noise ratio (SNR)). This work focuses on investigating and developing a novel USF system design that can improve the resolution and SNR of USF imaging for biological applications. This work can be divided into two major parts: characterizing the performance of a high-intensity focused ultrasound transducer; and improving the axial resolution and sensitivity of the USF technique. Preliminary investigation was conducted by using an IR camera setup to detect temperature variation and thereby study the performance of the high-intensity focused ultrasound transducer to quantify different parameters of ultrasound-induced temperature focal size (UTFS). Investigations are conducted for the purpose of high-resolution imaging with an emphasis on HIFU-induced thermal focus size, short duration of HIFU-induced temperature increase (to avoid thermal diffusion or conduction), and control of HIFU-induced temperature increase within a few degrees Celsius. Next, the focus was shifted to improving the sensitivity of the ultrasound-switchable fluorescence-imaging technique. In this study, the USF signal is encoded with the modulation frequency of the ultrasound by modulating the induced temperature. Later, two approaches were adopted to modify the USF design to improve the resolution of the conventional USF imaging technique. The first approach aims to improve the axial resolution of conventional USF technique, which involves changing the USF system to adopt a dual-HIFU transducer arrangement (in which the transducers are 90 degree with respect to each other) for use as the heating source. The overlapped region of the two crossed foci (OR-TCF) of the dual-HIFU transducer module is expected to have small thermal size along both lateral and axial directions; thus, it could improve the axial resolution of the USF imaging technique. The second approach aims to demonstrate the improvement of resolution via a single-element HIFU transducer with a high frequency (15 MHz). The high frequency of the ultrasound transducer would have smaller acoustic lateral and axial size and should therefore have smaller thermal size. Thus, both approaches should be able to reduce the focal region of heating and thereby improve the resolution of the USF imaging. Results show that the driving power and exposure time of the HIFU transducer significantly influence the ultrasound-induced temperature focal size (UTFS). Interestingly, a nonlinear acoustic effect was observed at certain variations of the ultrasound exposure power while satisfying the thermal confinement within UTFS. This has been shown to reduce UTFS beyond the acoustic diffraction limit, while the ultrasound-induced thermal energy, which is confined within the focal volume, can induce a desired peak-temperature increase of a few degrees. On other hand, after encoding the HIFU exposure and therefore the detected USF signal with a modulation frequency, the SNR (sensitivity) and full width at half maximum (FWHM) along the lateral direction of the USF image was calculated to be 114 and 0.95 mm for a micro-tube with an inner diameter of 0.31 mm (ID), respectively. In comparison, they are 95 and 1.1 mm when using a non-modulated conventional USF imaging technique. In the case of improving the axial resolution of USF imaging for a similar target size, the dual-HIFU USF design was able to achieve 1.07 and 1.5 mm along lateral (x ) and axial (z) directions, respectively. Adopting the second approach of using single 15 MHz HIFU transducer for USF imaging, the axial resolution was calculated to be 0.67+/-0.02 mm and 1.71+/-0.24 mm along lateral (x) and axial (z) directions, respectively. Thus, high-resolution ultrasound-switchable fluorescence with good sensitivity can be designed for biomedical applications.

  12. One-Piece Force-Transducer Body

    NASA Technical Reports Server (NTRS)

    Meyer, R. A.

    1986-01-01

    Rugged unit designed to operate in severe environment. Forcetransducer body designed for measurement of loads on specimens tested in hydrogen gas at temperatures up to 2,000 degree F (1,090 degree C). Body has symmetrical radial-shear-beam configuration and machined in one piece from bar stock.

  13. Improving the Response of a Load Cell by Using Optimal Filtering

    PubMed Central

    Hernandez, Wilmar

    2006-01-01

    Load cells are transducers used to measure force or weight. Despite the fact that there is a wide variety of load cells, most of these transducers that are used in the weighing industry are based on strain gauges. In this paper, an s-beam load cell based on strain gauges was suitably assembled to the mechanical structure of several seats of a bus under performance tests and used to measure the resistance of their mechanical structure to tension forces applied horizontally to the seats being tested. The load cell was buried in a broad-band noise background where the unwanted information and the relevant signal sometimes share a very similar frequency spectrum and its performance was improved by using a recursive least-squares (RLS) lattice algorithm. The experimental results are satisfactory and a significant improvement in the signal-to-noise ratio at the system output of 27 dB was achieved, which is a good performance factor for judging the quality of the system.

  14. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.

    PubMed

    Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor

    2013-08-01

    The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.

  15. A Experimental Investigation of Hydrodynamic Forces on Circular Cylinders in Sinusoidal and Random Oscillating Flow

    NASA Astrophysics Data System (ADS)

    Longoria, Raul Gilberto

    An experimental apparatus has been developed which can be used to generate a general time-dependent planar flow across a cylinder. A mass of water enclosed with no free surface within a square cross-section tank and two spring pre-loaded pistons is oscillated using a hydraulic actuator. A circular cylinder is suspended horizontally in the tank by two X-Y force transducers used to simultaneously measure the total in-line and transverse forces. Fluid motion is measured using a differential pressure transducer for instantaneous acceleration and an LVDT for displacement. This investigation provides measurement of forces on cylinders subjected to planar fluid flow velocity with a time (and frequency) dependence which more accurately represent the random conditions encountered in a natural ocean environment. The use of the same apparatus for both sinusoidal and random experiments provides a quantified assessment of the applicability of sinusoidal planar oscillatory flow data in offshore structure design methods. The drag and inertia coefficients for a Morison equation representation of the inline force are presented for both sinusoidal and random flow. Comparison of the sinusoidal results is favorable with those of previous investigations. The results from random experiments illustrates the difference in the force mechanism by contrasting the force transfer coefficients for the inline and transverse forces. It is found that application of sinusoidal results to random hydrodynamic inline force prediction using the Morison equation wrongly weighs the drag and inertia components, and the transverse force is overpredicted. The use of random planar oscillatory flow in the laboratory, contrasted with sinusoidal planar oscillatory flow, quantifies the accepted belief that the force transfer coefficients from sinusoidal flow experiments are conservative for prediction of forces on cylindrical structures subjected to random sea waves and the ensuing forces. Further analysis of data is conducted in the frequency domain to illustrate models used for predicting the power spectral density of the inline force including a nonlinear describing function method. It is postulated that the large-scale vortex activity prominent in sinusoidal oscillatory flow is subdued in random flow conditions.

  16. Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles.

    PubMed

    Reimhult, Kristina; Yoshimatsu, Keiichi; Risveden, Klas; Chen, Si; Ye, Lei; Krozer, Anatol

    2008-07-15

    Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quartz crystal microbalance (QCM) sensor crystals by coating the sensing surfaces with pre-made molecularly imprinted nanoparticles. The nanoparticles were immobilized on the QCM transducers by physical entrapment in a thin poly(ethylene terephthalate) (PET) layer that was spin-coated on the transducer surface. By controlling the deposition conditions, it was possible to gain a high nanoparticle loading in a stable PET layer, allowing the recognition sites in nanoparticles to be easily accessed by the test analytes. In this work, different sensor surfaces were studied by micro-profilometry and atomic force microscopy and the functionality was evaluated using quartz crystal microbalance with dissipation (QCM-D). The molecular recognition capability of the sensors were also confirmed using radioligand binding analysis by testing their response to the presence of the test compounds, (R)- and (S)-propranolol in aqueous buffer.

  17. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.

    PubMed

    Wygant, Ira O; Jamal, Nafis S; Lee, Hyunjoo J; Nikoozadeh, Amin; Oralkan, Omer; Karaman, Mustafa; Khuri-Yakub, Butrus T

    2009-10-01

    State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.

  18. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  19. A Miniature High-Sensitivity Braodband Accelerometer Based on Electron Tunneling Transducers

    NASA Technical Reports Server (NTRS)

    Rockstad, H.; Kenny, T.; Reynolds, J.; Kaiser, W.; Gabrielson, T.

    1993-01-01

    This paper describes the successful fabrication and demonstration of a new dual-element micromachined silicon tunnel accelerometer that extends the operational bandwidth beyond the resonant frequency of the proof mass.

  20. Elucidation of the role of biological factors and device design in cerebral NIRS using an in vivo hematoma model based on high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Huang, Stanley; Myers, Matthew; Chen, Yu; Welle, Cristin; Pfefer, Joshua

    2016-03-01

    Near-Infrared Spectroscopy (NIRS) is an emerging medical countermeasure for rapid, field detection of hematomas caused by traumatic brain injury (TBI). Bench and animal tests to determine NIRS sensitivity and specificity are needed. However, current animal models involving non-invasively induced, localized neural damage are limited. We investigated an in vivo murine hematoma model in which cerebral hemorrhage was induced noninvasively by high-intensity focused ultrasound (HIFU) with calibrated positioning and parameters. To characterize the morphology of induced hematomas, we used skull-intact histological evaluation. A multi-wavelength fiber-optic NIRS system with three source-detector separation distances was used to detect hematoma A 1.1 MHz transducer produced consistent small-to-medium hematoma localized to a single hemisphere, along with bruising of the scalp, with a low mortality rate. A 220 kHz transducer produced larger, more diffuse hematomas, with higher variability in size and a correspondingly higher mortality rate. No skin bruising or blood accumulation between the skin and skull was observed following injury application with the 220 kHz transducer. Histological analysis showed higher sensitivity for larger hematomas (>4x4 mm2). NIRS optical density change after HIFU was able to detect all hematomas, with sensitivity dependent on wavelength and separation distance. While improvements in methods for validating cerebral blood distribution are needed, the HIFU hematoma model provided useful insights that will inform development of biologically relevant, performance test methods for cerebral NIRS systems.

  1. Experimental demonstration and theoretical explanation of the efficiency of the nano-structured silicon as the transducer for optical immune biosensors

    NASA Astrophysics Data System (ADS)

    Starodub, Nickolaj F.; Slyshyk, Nelya F.; Shavanova, Kateryna E.; Karpyuk, Andrij; Mel'nichenko, Mykola M.; Zherdev, Anatolij V.; Dzantiev, Boris B.

    2014-10-01

    It is presented the experimental results about the investigations of the efficiency of the structured nano-pourous silicon (sNPS) application as transducer in the immune biosensors designed for the control of retroviral bovine leucosis (RBL) and the determination of the level such mycotoxins as T2 and patulin among environmental objects. Today, there is an arsenal of the traditional immunological methods that allow for the biochemical diagnostics of the above diseases and control of toxins but they are deeply routine and can not provide the requirements of practice for express analysis, its low cost and simplicity. Early to provide practical demands we developed immune biosensors based on SPR, TIRE and thermistors. To find more simple variant of the assay we studied the efficiency sNPS as trasducer in immune biosensor. The registration of the specific signals was made by measuremets of level of chemiluminescence (ChL) or photocurrent. The sensitivity of biosensor for both variants of the specific signal registration at the determination of T2 and patulin was about 10-20 ng/ml. Sensitivity analysis of RBL by this immune biosensors exceeds traditionally used approaches including the ELISA-method too. The optimal serum dilution of blood at the screening leukemia should be no less than 1:100, or even 1:500. The immune biosensor may be applied too for express screening leucosis through analysis of milk. In this case the optimal serum dilution of milk should be about 1:20. The total time of analysis including all steps (immobilization of specific Ab or antigens on the transducer surface and measurements) was about 40 min and it may be a sharp decline if the above mentione sensitive elements will be immobilized preliminary measurements. It is concluded that the proposed type of transducer for immune biosensor is effective for analysis of mycotoxins in screening regime.

  2. Ultrasound imparted air-recoil resonance (UIAR) method for acoustic power estimation: theory and experiment.

    PubMed

    Kaiplavil, Sreekumar; Rivens, Ian; ter Haar, Gail

    2013-07-01

    Ultrasound imparted air-recoil resonance (UIAR), a new method for acoustic power estimation, is introduced with emphasis on therapeutic high-intensity focused ultrasound (HIFU) monitoring applications. Advantages of this approach over existing practices include fast response; electrical and magnetic inertness, and hence MRI compatibility; portability; high damage threshold and immunity to vibration and interference; low cost; etc. The angle of incidence should be fixed for accurate measurement. However, the transducer-detector pair can be aligned in any direction with respect to the force of gravity. In this sense, the operation of the device is orientation independent. The acoustic response of a pneumatically coupled pair of Helmholtz resonators, with one of them acting as the sensor head, is used for the estimation of acoustic power. The principle is valid in the case of pulsed/ burst as well as continuous ultrasound exposure, the former being more sensitive and accurate. An electro-acoustic theory has been developed for describing the dynamics of pressure flow and resonance in the system considering various thermo- viscous loss mechanisms. Experimental observations are found to be in agreement with theoretical results. Assuming the window damage threshold (~10 J·mm(-2)) and accuracy of RF power estimation are the upper and lower scale-limiting factors, the performance of the device was examined for an RF power range of 5 mW to 100 W with a HIFU transducer operating at 1.70 MHz, and an average nonlinearity of ~1.5% was observed. The device is also sensitive to sub-milliwatt powers. The frequency response was analyzed at 0.85, 1.70, 2.55, and 3.40 MHz and the results are presented with respective theoretical estimates. Typical response time is in the millisecond regime. Output drift is about 3% for resonant and 5% for nonresonant modes. The principle has been optimized to demonstrate a general-purpose acoustic power meter.

  3. Medium- and high-pressure gauges and transducers produced by laser welding technology

    NASA Astrophysics Data System (ADS)

    Daurelio, Giuseppe; Nenci, Fabio; Cinquepalmi, Massimo; Chita, Giuseppe

    1998-07-01

    Industrial manufacturers produce many types of pressure gauges and transducers according to the applications, for gas or liquid, for high-medium and low pressure ranges. Nowadays the current production technology generally prefers to weld by micro TIG source the metallic corrugated membranes to the gauge or transducer bodies for the products, operating on the low pressure or medium pressure ranges. For the other ones, operating to high pressure range, generally the two components of the transducers are both threaded only and threaded and then circularly welded by micro TIG for the other higher range, till to 1000 bar. In this work the products, operating on the approximately equals 30 divided by 200 bar, are considered. These, when assembled on industrial plants, as an outcome of a non-correct operating sequence, give a 'shifted' electrical signal. This is due to a shift of the 'zero electrical signal' that unbalances the electrical bridge - thin layer sensor - that is the sensitive part of the product. Moreover, for the same problem, often some mechanical settlings of the transducer happen during the first pressure semi-components, with an increasing of the product manufacturing costs. In light of all this, the above referred, in this work the whole transducer has been re-designed according to the specific laser welding technology requirements. On the new product no threaded parts exist but only a circular laser welding with a full penetration depth about 2.5 divided by 3 mm high. Three different alloys have been tested according to the applications and the mechanical properties requested to the transducer. By using a 1.5 KW CO2 laser system many different working parameters have been evaluated for correlating laser parameters to the penetration depths, crown wides, interaction laser-materia times, mechanical and metallurgical properties. Moreover during the laser welding process the measurements of the maximum temperature, reached by the transducer top, has been read and recorded. At least some transducers, before the usual destructive testings, have been undertaken to many pressure test cycles to verify any pressure drops, the transducer sealing and the total quality of the new product.

  4. Design Principles for Rapid Prototyping Forces Sensors using 3D Printing.

    PubMed

    Kesner, Samuel B; Howe, Robert D

    2011-07-21

    Force sensors provide critical information for robot manipulators, manufacturing processes, and haptic interfaces. Commercial force sensors, however, are generally not adapted to specific system requirements, resulting in sensors with excess size, cost, and fragility. To overcome these issues, 3D printers can be used to create components for the quick and inexpensive development of force sensors. Limitations of this rapid prototyping technology, however, require specialized design principles. In this paper, we discuss techniques for rapidly developing simple force sensors, including selecting and attaching metal flexures, using inexpensive and simple displacement transducers, and 3D printing features to aid in assembly. These design methods are illustrated through the design and fabrication of a miniature force sensor for the tip of a robotic catheter system. The resulting force sensor prototype can measure forces with an accuracy of as low as 2% of the 10 N measurement range.

  5. Triaxial thermopile array geo-heat-flow sensor

    DOEpatents

    Carrigan, Charles R.; Hardee, Harry C.; Reynolds, Gerald D.; Steinfort, Terry D.

    1992-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

  6. Tissue-Specific Expression of Herpes Simplex Virus Thymidine Kinase Gene Delivered by Adeno-Associated Virus Inhibits the Growth of Human Hepatocellular Carcinoma in Athymic Mice

    NASA Astrophysics Data System (ADS)

    Su, Hua; Lu, Ronghua; Chang, Judy C.; Kan, Yuet Wai

    1997-12-01

    About 70% of hepatocellular carcinomas are known to express α -fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α -fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.

  7. Use of piezoelectric multicomponent force measuring devices in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Richter, A.; Stefan, K.

    1979-01-01

    The characterisitics of piezoelectric multicomponent transducers are discussed, giving attention to the advantages of quartz over other materials. The main advantage of piezoelectric devices in aerodynamic studies is their ability to indicate rapid changes in the values of physical parameters. Problems in the accuracy of measurments by piezoelectric devices can be overcome by suitable design approaches. A practical example is given of how such can be utilized to measure rapid fluctuations of fluid forces exerted on a circular cylinder mounted in a water channel.

  8. A Hitchhiker’s Guide to Mechanobiology

    PubMed Central

    Eyckmans, Jeroen; Boudou, Thomas; Yu, Xiang; Chen, Christopher S.

    2011-01-01

    More than a century ago, it was proposed that mechanical forces could drive tissue formation. However, only recently with the advent of enabling biophysical and molecular technologies are we beginning to understand how individual cells transduce mechanical force into biochemical signals. In turn, this knowledge of mechanotransduction at the cellular level is beginning to clarify the role of mechanics in patterning processes during embryonic development. In this perspective, we will discuss current mechanotransduction paradigms, along with the technologies that have shaped the field of mechanobiology. PMID:21763607

  9. Modeling NDT piezoelectric ultrasonic transmitters.

    PubMed

    San Emeterio, J L; Ramos, A; Sanz, P T; Ruíz, A; Azbaid, A

    2004-04-01

    Ultrasonic NDT applications are frequently based on the spike excitation of piezoelectric transducers by means of efficient pulsers which usually include a power switching device (e.g. SCR or MOS-FET) and some rectifier components. In this paper we present an approximate frequency domain electro-acoustic model for pulsed piezoelectric ultrasonic transmitters which, by integrating partial models of the different stages (driving electronics, tuning/matching networks and broadband piezoelectric transducer), allows the computation of the emission transfer function and output force temporal waveform. An approximate frequency domain model is used for the evaluation of the electrical driving pulse from the spike generator. Tuning circuits, interconnecting cable and mechanical impedance matching layers are modeled by means of transmission lines and the classical quadripole approach. The KLM model is used for the piezoelectric transducer. In addition, a PSPICE scheme is used for an alternative simulation of the broadband driving spike, including the accurate evaluation of non-linear driving effects. Several examples illustrate the capabilities of the specifically developed software.

  10. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer.

    PubMed

    Huang, Chih-Chung; Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S; Shung, K Kirk

    2009-10-07

    A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 +/- 0.02 to 0.520 +/- 0.06 dB mm(-1) MHz(-1) corresponding to an increase in Young's modulus from 6 +/- 0.4 to 96 +/- 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.

  11. Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound.

    PubMed

    Hoshi, T; Takahashi, M; Iwamoto, T; Shinoda, H

    2010-01-01

    This paper describes a tactile display which provides unrestricted tactile feedback in air without any mechanical contact. It controls ultrasound and produces a stress field in a 3D space. The principle is based on a nonlinear phenomenon of ultrasound: Acoustic radiation pressure. The fabricated prototype consists of 324 airborne ultrasound transducers, and the phase and intensity of each transducer are controlled individually to generate a focal point. The DC output force at the focal point is 16 mN and the diameter of the focal point is 20 mm. The prototype produces vibrations up to 1 kHz. An interaction system including the prototype is also introduced, which enables users to see and touch virtual objects.

  12. Fiber Optic Sensor System Using Birefringent Filters For Spectral Encoding

    NASA Astrophysics Data System (ADS)

    Dorsch, Friedhelm; Ulrich, Reinhard

    1989-02-01

    A system of multimode fiber optic sensors is described for the remote measurement of position, angle, force, pressure and other measurands that can be converted into a rotation of polarization. A birefringent filter encodes the polarization angle into the power ratio of two interleaved comb spectra or, in a modified implementation, into the absolute spectral position of a comb spectrum. By using identical filters in all transducers and in the evaluation unit, transducers for the same or different measurands become interchange-able. All sensors are of the incremental type, with accuracies reaching 0.5 % of one period of the measurand, independent of variations in the attenuation of the fiber link of up to 20dB.

  13. A Blanik L-23 glider carrying a microphone and a pressure transducer flies near a BADS sensor following flight under the path of the F-5E SSBE aircraft

    NASA Image and Video Library

    2004-01-13

    A United States Air Force Test Pilot School Blanik L-23 glider carrying a microphone and a pressure transducer flies near a BADS (Boom Amplitudes Direction System) sensor following flight at an altitude of 10 thousand feet under the path of the F-5E SSBE aircraft. The SSBE (Shaped Sonic Boom Experiment) was formerly known as the Shaped Sonic Boom Demonstration, or SSBD, and is part of DARPA's Quiet Supersonic Platform (QSP) program. On August 27, 2003, the F-5E SSBD aircraft demonstrated a method to reduce the intensity of sonic booms.

  14. Deconvolution of acoustic emissions for source localization using time reverse modeling

    NASA Astrophysics Data System (ADS)

    Kocur, Georg Karl

    2017-01-01

    Impact experiments on small-scale slabs made of concrete and aluminum were carried out. Wave motion radiated from the epicenter of the impact was recorded as voltage signals by resonant piezoelectric transducers. Numerical simulations of the elastic wave propagation are performed to simulate the physical experiments. The Hertz theory of contact is applied to estimate the force impulse, which is subsequently used for the numerical simulation. Displacements at the transducer positions are calculated numerically. A deconvolution function is obtained by comparing the physical (voltage signal) and the numerical (calculated displacement) experiments. Acoustic emission signals due to pencil-lead breaks are recorded, deconvolved and applied for localization using time reverse modeling.

  15. Electrostatic Discharge Initiation Experiments using PVDF Pressure Transducers

    DTIC Science & Technology

    1991-12-01

    ignition sensitivity. The results are discussed within the context of a preliminary model of electrostatic initiation. iii/iv NAVSWC TR 91-666 CONTENTS...Chapter Page 1 INTRODUCTION .......................................... 1-1 TWO PHASE IGNITION MODEL ....................... 1-1 SENSITIZING FACTORS...is necessary to establish effective techniques to reduce the hazards associated with ESD ignition. TWO-PHASE IGNITION MODEL A model has been proposed

  16. Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity

    PubMed Central

    Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.

    2010-01-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183

  17. Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.

    PubMed

    Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L

    2010-02-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.

  18. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall.

    PubMed

    Lowe, Premesh S; Duan, Wenbo; Kanfoud, Jamil; Gan, Tat-Hean

    2017-11-04

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers.

  19. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall

    PubMed Central

    Kanfoud, Jamil; Gan, Tat-Hean

    2017-01-01

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers. PMID:29113058

  20. Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement

    PubMed Central

    Yang, Bo; Hu, Di; Wu, Lei

    2016-01-01

    A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s)2, which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by comprehensive simulation and analysis. PMID:27399716

  1. In vivo noninvasive method for measuring local wave velocity in femoral arteries of pig

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Kinnick, Randall; Pislaru, Cristina; Fatemi, Mostafa; Greenleaf, James

    2005-09-01

    We have proposed generating a bending wave in the arterial wall using ultrasound radiation force and measuring the wave velocity along the arterial wall [Zhang et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 642-652 (2005)]. Here, we report the results of in vivo studies on pigs. The pig was anesthetized, and a micromanometer tip catheter was inserted into the femoral artery to measure luminal pressure. A water bath was created on the animal's groin to allow unimpeded access of the ultrasound beams to the femoral artery. The femoral artery was first located using a 13-MHz linear-array transducer. Then, a vibro-acoustography image was obtained to ensure precise positioning of the excitation force relative to the artery. The artery was excited by the force transducer and the resulting vibration of the arterial wall was measured by a sensing Doppler transceiver. Measured wave velocity was 3.1 m/s at 300 Hz. With this new method wave velocity over a distance of 5 mm, and therefore stiffness of arteries, can be measured locally and non-invasively. Measurement time is short in a few tens of milliseconds, which allows pressure dependence and pharmacological effect on the wall properties to be measured at different cardiac times.

  2. Vibration energy harvesting in a small channel fluid flow using piezoelectric transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Md. Mehedi, E-mail: buetmehedi10@gmail.com; Hossain, Md. Yeam, E-mail: yeamhossain@gmail.com; Mazumder, Rakib, E-mail: rakibmazumder46075@gmail.com

    2016-07-12

    This work is aimed at developing a way to harvest energy from a fluid stream with the application of piezoelectric transducers in a small channel. In this COMSOL Multiphysics based simulation study, it is attempted to harvest energy from the abundant renewable source of energy available in the form of kinetic energy of naturally occurring flow of fluids. The strategy involves harnessing energy from a fluid-actuator through generation of couples, eddies and vortices, resulting from the stagnation and separation of flow around a semi-circular bluff-body attached to a cantilever beam containing a piezoceramic layer. Fluctuation of fluidic pressure impulse onmore » the beam due to vortex shedding and varying lift forces causes the flexible cantilever beam to oscillate in the direction normal to the fluid flow in a periodic manner. The periodic application and release of a mechanical strain upon the beam effected a generation of electric potential within the piezoelectric layer, thus enabling extraction of electrical energy from the kinetic energy of the fluid. The piezoelectric material properties and transducer design are kept unchanged throughout the study, whereas the configuration is tested with different fluids and varying flow characteristics. The size and geometry of the obstructing entity are systematically varied to closely inspect the output from different iterations and for finding the optimum design parameters. The intermittent changes in the generated forces and subsequent variation in the strain on the beam are also monitored to find definitive relationship with the electrical energy output.« less

  3. Improved damage imaging in aerospace structures using a piezoceramic hybrid pin-force wave generation model

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2014-03-01

    In this study, a correlation-based imaging technique called "Excitelet" is used to monitor an aerospace grade aluminum plate, representative of an aircraft component. The principle is based on ultrasonic guided wave generation and sensing using three piezoceramic (PZT) transducers, and measurement of reflections induced by potential defects. The method uses a propagation model to correlate measured signals with a bank of signals and imaging is performed using a roundrobin procedure (Full-Matrix Capture). The formulation compares two models for the complex transducer dynamics: one where the shear stress at the tip of the PZT is considered to vary as a function of the frequency generated, and one where the PZT is discretized in order to consider the shear distribution under the PZT. This method allows taking into account the transducer dynamics and finite dimensions, multi-modal and dispersive characteristics of the material and complex interactions between guided wave and damages. Experimental validation has been conducted on an aerospace grade aluminum joint instrumented with three circular PZTs of 10 mm diameter. A magnet, acting as a reflector, is used in order to simulate a local reflection in the structure. It is demonstrated that the defect can be accurately detected and localized. The two models proposed are compared to the classical pin-force model, using narrow and broad-band excitations. The results demonstrate the potential of the proposed imaging techniques for damage monitoring of aerospace structures considering improved models for guided wave generation and propagation.

  4. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force.

    PubMed

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-07

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young's moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young's moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  5. Acetylcholine released by endothelial cells facilitates flow‐mediated dilatation

    PubMed Central

    Wilson, Calum; Lee, Matthew D.

    2016-01-01

    Key points The endothelium plays a pivotal role in the vascular response to chemical and mechanical stimuli.The endothelium is exquisitely sensitive to ACh, although the physiological significance of ACh‐induced activation of the endothelium is unknown.In the present study, we investigated the mechanisms of flow‐mediated endothelial calcium signalling.Our data establish that flow‐mediated endothelial calcium responses arise from the autocrine action of non‐neuronal ACh released by the endothelium. Abstract Circulating blood generates frictional forces (shear stress) on the walls of blood vessels. These frictional forces critically regulate vascular function. The endothelium senses these frictional forces and, in response, releases various vasodilators that relax smooth muscle cells in a process termed flow‐mediated dilatation. Although some elements of the signalling mechanisms have been identified, precisely how flow is sensed and transduced to cause the release of relaxing factors is poorly understood. By imaging signalling in large areas of the endothelium of intact arteries, we show that the endothelium responds to flow by releasing ACh. Once liberated, ACh acts to trigger calcium release from the internal store in endothelial cells, nitric oxide production and artery relaxation. Flow‐activated release of ACh from the endothelium is non‐vesicular and occurs via organic cation transporters. ACh is generated following mitochondrial production of acetylCoA. Thus, we show ACh is an autocrine signalling molecule released from endothelial cells, and identify a new role for the classical neurotransmitter in endothelial mechanotransduction. PMID:27730645

  6. Measuring the multi-scale integration of mechanical forces during morphogenesis.

    PubMed

    Blanchard, Guy B; Adams, Richard J

    2011-10-01

    The elaborate changes in morphology of an organism during development are the result of mechanical contributions that are a mixture of those generated locally and those that influence from a distance. We would like to know how chemical and mechanical information is transmitted and transduced, how work is done to achieve robust morphogenesis and why it sometimes fails. We introduce a scheme for separating the influence of two classes of forces. Active intrinsic forces integrate up levels of scale to shape tissues. Counter-currently, extrinsic forces exert influence from higher levels downwards and feed back directly and indirectly upon the intrinsic behaviours. We identify the measurable signatures of different kinds of forces and identify the frontiers where work is most needed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Experimental study on inter-particle acoustic forces.

    PubMed

    Garcia-Sabaté, Anna; Castro, Angélica; Hoyos, Mauricio; González-Cinca, Ricard

    2014-03-01

    A method for the experimental measurement of inter-particle forces (secondary Bjerknes force) generated by the action of an acoustic field in a resonator micro-channel is presented. The acoustic radiation force created by an ultrasonic standing wave moves suspended particles towards the pressure nodes and the acoustic pressure induces particle volume oscillations. Once particles are in the levitation plane, transverse and secondary Bjerknes forces become important. Experiments were carried out in a resonator filled with a suspension composed of water and latex particles of different size (5-15 μm) at different concentrations. Ultrasound was generated by means of a 2.5 MHz nominal frequency transducer. For the first time the acoustic force generated by oscillating particles acting on other particles has been measured, and the critical interaction distance in various cases has been determined. Inter-particle forces on the order of 10(-14) N have been measured by using this method.

  8. Force Limited Vibration Testing Monograph

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1997-01-01

    The practice of limiting the shaker force in vibration tests was investigated at the NASA Jet Propulsion Laboratory (JPL) in 1990 after the mechanical failure of an aerospace component during a vibration test. Now force limiting is used in almost every major vibration test at JPL and in many vibration tests at NASA Goddard Space Flight Center (GSFC) and at many aerospace contractors. The basic ideas behind force limiting have been in the literature for several decades, but the piezo-electric force transducers necessary to conveniently implement force limiting have been available only in the last decade. In 1993, funding was obtained from the NASA headquarters Office of Chief Engineer to develop and document the technology needed to establish force limited vibration testing as a standard approach available to all NASA centers and aerospace contractors. This monograph is the final report on that effort and discusses the history, theory, and applications of the method in some detail.

  9. Recent advances in immunosensor for narcotic drug detection

    PubMed Central

    Gandhi, Sonu; Suman, Pankaj; Kumar, Ashok; Sharma, Prince; Capalash, Neena; Suri, C. Raman

    2015-01-01

    Introduction: Immunosensor for illicit drugs have gained immense interest and have found several applications for drug abuse monitoring. This technology has offered a low cost detection of narcotics; thereby, providing a confirmatory platform to compliment the existing analytical methods. Methods: In this minireview, we define the basic concept of transducer for immunosensor development that utilizes antibodies and low molecular mass hapten (opiate) molecules. Results: This article emphasizes on recent advances in immunoanalytical techniques for monitoring of opiate drugs. Our results demonstrate that high quality antibodies can be used for immunosensor development against target analyte with greater sensitivity, specificity and precision than other available analytical methods. Conclusion: In this review we highlight the fundamentals of different transducer technologies and its applications for immunosensor development currently being developed in our laboratory using rapid screening via immunochromatographic kit, label free optical detection via enzyme, fluorescence, gold nanoparticles and carbon nanotubes based immunosensing for sensitive and specific monitoring of opiates. PMID:26929925

  10. Biosensing Technologies for Mycobacterium tuberculosis Detection: Status and New Developments

    PubMed Central

    Zhou, Lixia; He, Xiaoxiao; He, Dinggeng; Wang, Kemin; Qin, Dilan

    2011-01-01

    Biosensing technologies promise to improve Mycobacterium tuberculosis (M. tuberculosis) detection and management in clinical diagnosis, food analysis, bioprocess, and environmental monitoring. A variety of portable, rapid, and sensitive biosensors with immediate “on-the-spot” interpretation have been developed for M. tuberculosis detection based on different biological elements recognition systems and basic signal transducer principles. Here, we present a synopsis of current developments of biosensing technologies for M. tuberculosis detection, which are classified on the basis of basic signal transducer principles, including piezoelectric quartz crystal biosensors, electrochemical biosensors, and magnetoelastic biosensors. Special attention is paid to the methods for improving the framework and analytical parameters of the biosensors, including sensitivity and analysis time as well as automation of analysis procedures. Challenges and perspectives of biosensing technologies development for M. tuberculosis detection are also discussed in the final part of this paper. PMID:21437177

  11. Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Array

    PubMed Central

    Kothapalli, Sri-Rajasekhar; Ma, Te-Jen; Vaithilingam, Srikant; Oralkan, Ömer

    2014-01-01

    In this paper, we demonstrate 3-D photoacoustic imaging (PAI) of light absorbing objects embedded as deep as 5 cm inside strong optically scattering phantoms using a miniaturized (4 mm × 4 mm × 500 µm), 2-D capacitive micromachined ultrasonic transducer (CMUT) array of 16 × 16 elements with a center frequency of 5.5 MHz. Two-dimensional tomographic images and 3-D volumetric images of the objects placed at different depths are presented. In addition, we studied the sensitivity of CMUT-based PAI to the concentration of indocyanine green dye at 5 cm depth inside the phantom. Under optimized experimental conditions, the objects at 5 cm depth can be imaged with SNR of about 35 dB and a spatial resolution of approximately 500 µm. Results demonstrate that CMUTs with integrated front-end amplifier circuits are an attractive choice for achieving relatively high depth sensitivity for PAI. PMID:22249594

  12. Manipulation of biological samples using micro and nano techniques.

    PubMed

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable properties with physical transducers has been possible, giving rise to new and highly sensitive biosensing devices. This article reviews the different techniques available to manipulate and integrate biological materials in a controlled manner either by sliding them along a surface (2-D manipulation), by grapping them and moving them to a new position (3-D manipulation), or by manipulating and relocating them applying external forces. The advantages and drawbacks are mentioned together with examples that reflect the state of the art of manipulation techniques for biological samples (171 references).

  13. Tunneling readout of hydrogen-bonding based recognition

    PubMed Central

    Chang, Shuai; He, Jin; Kibel, Ashley; Lee, Myeong; Sankey, Otto; Zhang, Peiming; Lindsay, Stuart

    2009-01-01

    Hydrogen bonding has a ubiquitous role in electron transport1,2 and in molecular recognition, with DNA base-pairing being the best known example.3 Scanning tunneling microscope (STM) images4 and measurements of the decay of tunnel-current as a molecular junction is pulled apart by the STM tip, 5 are sensitive to hydrogen-bonded interactions. Here we show that these tunnel-decay signals can be used to measure the strength of hydrogen bonding in DNA basepairs. Junctions that are held together by three hydrogen bonds per basepair (e.g., guanine-cytosine interactions) are stiffer than junctions held together by two hydrogen bonds per basepair (e.g., adenine-thymine interactions). Similar, but less-pronounced, effects are observed on the approach of the tunneling probe, implying that hydrogen-bond dependent attractive forces also have a role in determining the rise of current. These effects provide new mechanisms for making sensors that transduce a molecular recognition event into an electronic signal. PMID:19421214

  14. Eddy current system for inspection of train hollow axles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard

    2014-02-18

    The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an eddy current transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.

  15. High frequency measurement of P- and S-wave velocities on crystalline rock massif surface - methodology of measurement

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Slavík, Lubomír

    2014-05-01

    For the purpose of non-destructive monitoring of rock properties in the underground excavation it is possible to perform repeated high-accuracy P- and S-wave velocity measurements. This contribution deals with preliminary results gained during the preparation of micro-seismic long-term monitoring system. The field velocity measurements were made by pulse-transmission technique directly on the rock outcrop (granite) in Bedrichov gallery (northern Bohemia). The gallery at the experimental site was excavated using TBM (Tunnel Boring Machine) and it is used for drinking water supply, which is conveyed in a pipe. The stable measuring system and its automatic operation lead to the use of piezoceramic transducers both as a seismic source and as a receiver. The length of measuring base at gallery wall was from 0.5 to 3 meters. Different transducer coupling possibilities were tested namely with regard of repeatability of velocity determination. The arrangement of measuring system on the surface of the rock massif causes better sensitivity of S-transducers for P-wave measurement compared with the P-transducers. Similarly P-transducers were found more suitable for S-wave velocity determination then P-transducers. The frequency dependent attenuation of fresh rock massif results in limited frequency content of registered seismic signals. It was found that at the distance between the seismic source and receiver from 0.5 m the frequency components above 40 kHz are significantly attenuated. Therefore for the excitation of seismic wave 100 kHz transducers are most suitable. The limited frequency range should be also taken into account for the shape of electric impulse used for exciting of piezoceramic transducer. The spike pulse generates broad-band seismic signal, short in the time domain. However its energy after low-pass filtration in the rock is significantly lower than the energy of seismic signal generated by square wave pulse. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408

  16. Overview of the Space Launch System Transonic Buffet Environment Test Program

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.; Florance, James R.; Ivanco, Thomas G.

    2015-01-01

    Fluctuating aerodynamic loads are a significant concern for the structural design of a launch vehicle, particularly while traversing the transonic flight environment. At these trajectory conditions, unsteady aerodynamic pressures can excite the vehicle dynamic modes of vibration and result in high structural bending moments and vibratory environments. To ensure that vehicle structural components and subsystems possess adequate strength, stress, and fatigue margins in the presence of buffet and other environments, buffet forcing functions are required to conduct the coupled load analysis of the launch vehicle. The accepted method to obtain these buffet forcing functions is to perform wind-tunnel testing of a rigid model that is heavily instrumented with unsteady pressure transducers designed to measure the buffet environment within the desired frequency range. Two wind-tunnel tests of a 3 percent scale rigid buffet model have been conducted at the Langley Research Center Transonic Dynamics Tunnel (TDT) as part of the Space Launch System (SLS) buffet test program. The SLS buffet models have been instrumented with as many as 472 unsteady pressure transducers to resolve the buffet forcing functions of this multi-body configuration through integration of the individual pressure time histories. This paper will discuss test program development, instrumentation, data acquisition, test implementation, data analysis techniques, and several methods explored to mitigate high buffet environment encountered during the test program. Preliminary buffet environments will be presented and compared using normalized sectional buffet forcing function root-meansquared levels along the vehicle centerline.

  17. Mirror movements in healthy humans across the lifespan: effects of development and ageing.

    PubMed

    Koerte, Inga; Eftimov, Lara; Laubender, Ruediger Paul; Esslinger, Olaf; Schroeder, Andreas Sebastian; Ertl-Wagner, Birgit; Wahllaender-Danek, Ute; Heinen, Florian; Danek, Adrian

    2010-12-01

    mirror movements are a transient phenomenon during childhood, which decrease in intensity with motor development. An increasing inhibitory competence resulting in the ability of movement lateralization is thought to be the underlying mechanism. We aimed to quantify unintended mirror movements systematically across the lifespan and to investigate the influences of age, sex, handedness, and task frequency. a total of 236 participants (127 females, 109 males; 216 right-handed, 20 left-handed; age range 3-96y, median 25y 8mo) first performed four clinical routine tests while mirror movements were rated by the observer. They were then asked to hold a force transducer in each hand between the thumb and index finger and to perform oscillatory grip force changes in one hand, while the other hand had to prevent the force transducer from dropping. age showed a strong nonlinear effect on the mirror-movement ratio (the amplitude ratio of the mirror and active hand, adjusted by the respective maximum grip force). Initially, there was a steep decline in the mirror-movement ratio during childhood and adolescence, followed by a gradual rise during adulthood. Males had lower mirror-movement ratios than females. The high-frequency condition triggered lower mirror-movement ratios. No significant differences of mirror movements between dominant and non-dominant hand, or left- and right-handed participants, were found. this study provides, for the first time to our knowledge, normative values of mirror movements across the lifespan that can aid differentiation between physiological and pathological mirror movements.

  18. Predicting vertical jump height from bar velocity.

    PubMed

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  19. Predicting Vertical Jump Height from Bar Velocity

    PubMed Central

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-01-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key points Vertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer. The relationship between the point at which bar acceleration is less than -9.81 m·s-2 and the real take-off is affected by the velocity of movement. Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance. PMID:25983572

  20. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors

    PubMed Central

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors. PMID:27924853

  1. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors.

    PubMed

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-12-07

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors.

  2. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry

    PubMed Central

    Agbodjan Prince, Just; Kohl, Franz; Sauter, Thilo

    2016-01-01

    This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object. PMID:27608021

  3. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry.

    PubMed

    Agbodjan Prince, Just; Kohl, Franz; Sauter, Thilo

    2016-09-06

    This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment's shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.

  4. AlN-based piezoelectric micromachined ultrasonic transducer for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Bingzhang; Chu, Futong; Liu, Xingzhao; Li, Yanrong; Rong, Jian; Jiang, Huabei

    2013-07-01

    We report on the fabrication of a piezoelectric micromachined ultrasonic transducer (pMUT) and its application to photoacoustic imaging. With c-axis orientation, AlN was grown on a 300 nm-thick SiO2 film and a 200 nm-thick bottom electrode at room temperature. The device consists of SiO2, bottom electrode, AlN films, upper electrode, and polyimide protective layer. An area ratio of 0.45 was used between the upper electrode and the vibration area of the pMUT to provide an optimal sensitivity of transducer. Its resonant frequency was measured to be 2.885 MHz, and the coupling coefficient in the range of 2.38%-3.71%. The fabricated pMUT was integrated with a photoacoustic imaging system and photoacoustic image of a phantom was obtained. The resolution of the system was measured to be about 240 μm.

  5. Urothelial Tight Junction Barrier Dysfunction Sensitizes Bladder Afferents

    PubMed Central

    Rued, Anna C.; Taiclet, Stefanie N.; Birder, Lori A.; Kullmann, F. Aura

    2017-01-01

    Abstract Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic voiding disorder that presents with pain in the urinary bladder and surrounding pelvic region. A growing body of evidence suggests that an increase in the permeability of the urothelium, the epithelial barrier that lines the interior of the bladder, contributes to the symptoms of IC/BPS. To examine the consequence of increased urothelial permeability on pelvic pain and afferent excitability, we overexpressed in the urothelium claudin 2 (Cldn2), a tight junction (TJ)-associated protein whose message is significantly upregulated in biopsies of IC/BPS patients. Consistent with the presence of bladder-derived pain, rats overexpressing Cldn2 showed hypersensitivity to von Frey filaments applied to the pelvic region. Overexpression of Cldn2 increased the expression of c-Fos and promoted the activation of ERK1/2 in spinal cord segments receiving bladder input, which we conceive is the result of noxious stimulation of afferent pathways. To determine whether the mechanical allodynia observed in rats with reduced urothelial barrier function results from altered afferent activity, we examined the firing of acutely isolated bladder sensory neurons. In patch-clamp recordings, about 30% of the bladder sensory neurons from rats transduced with Cldn2, but not controls transduced with GFP, displayed spontaneous activity. Furthermore, bladder sensory neurons with tetrodotoxin-sensitive (TTX-S) action potentials from rats transduced with Cldn2 showed hyperexcitability in response to suprathreshold electrical stimulation. These findings suggest that as a result of a leaky urothelium, the diffusion of urinary solutes through the urothelial barrier sensitizes bladders afferents, promoting voiding at low filling volumes and pain. PMID:28560313

  6. Reliability and sensitivity of the TonoLab rebound tonometer in awake Brown Norway rats.

    PubMed

    Morrison, John C; Jia, Lijun; Cepurna, William; Guo, Ying; Johnson, Elaine

    2009-06-01

    To compare the sensitivity of the TonoLab rebound tonometer with the Tono-Pen in awake Brown Norway rats and to compare their ability to predict optic nerve damage induced by experimental IOP elevation. TonoLab and Tono-Pen tonometers were calibrated in cannulated rat eyes connected to a pressure transducer. The TonoLab was used in awake animals housed in standard lighting to measure IOP during light and dark phases. Both instruments were used to monitor chronically elevated IOP produced by episcleral vein injection of hypertonic saline. Measured IOPs were correlated with quantified optic nerve damage in injected eyes. Although they were lower than transducer and Tono-Pen measurements at all levels, TonoLab readings showed an excellent linear fit with transducer readings from 20 to 80 mm Hg (R(2) = 0.99) in cannulated eyes. In awake animals housed in standard lighting, the TonoLab documented significantly higher pressures during the dark phase (27.9 +/- 1.7 mm Hg) than during the light phase (16.7 +/- 2.3 mm Hg). With elevated IOP, correlation between TonoLab and Tono-Pen readings (R(2) = 0.86, P < 0.0001) was similar to that in cannulated eyes. Although both instruments provided measurements that correlated well with optic nerve injury grade, only the Tono-Pen documented significant IOP elevation in eyes with the least amount of injury (P < 0.05). The TonoLab is sensitive enough to be used in awake Brown Norway rats, though instrument fluctuation may limit its ability to identify significant pressure elevations in eyes with minimal optic nerve damage.

  7. 40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating limits in § 63.9890(b) for pressure drop and scrubber water flow rate, you must install, operate...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... sensitivity of 0.5 inch of water or a transducer with a minimum measurement sensitivity of 1 percent of the...

  8. Diaphragm size and sensitivity for fiber optic pressure sensors

    NASA Technical Reports Server (NTRS)

    He, Gang; Cuomo, Frank W.; Zuckerwar, Allan J.

    1991-01-01

    A mechanism which leads to a significant increase in sensitivity and linear operating range in reflective type fiber optic pressure transducers with minute active dimensions is studied. A general theoretical formalism is presented which is in good agreement with the experimental data. These results are found useful in the development of small pressure sensors used in turbulent boundary layer studies and other applications.

  9. Optical Fibers Would Sense Local Strains

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Proposed fiber-optic transducers measure local strains. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift is sensitive to strain. Phase shifts in single-mode fibers vary with strains. In alternative version, multiple portions of optical fiber sensitive to strains characteristic of specific vibrational mode of object. Same principle also used with two-mode fiber.

  10. Data-Acquisition System With Remotely Adjustable Amplifiers

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Larson, William E.; Hallberg, Carl G.; Thayer, Steven W.; Ake, Jeffrey C.; Gleman, Stuart M.; Thompson, David L.; Medelius, Pedro J.; Crawford, Wayne A.; Vangilder, Richard M.; hide

    1994-01-01

    Improved data-acquisition system has both centralized and decentralized characteristics developed. Provides infrastructure for automation and standardization of operation, maintenance, calibration, and adjustment of many transducers. Increases efficiency by reducing need for diminishing work force of highly trained technicians to perform routine tasks. Large industrial and academic laboratory facilities benefit from systems like this one.

  11. Using a Phototransduction System to Monitor the Isolated Frog Heart

    ERIC Educational Resources Information Center

    Stephens, Philip J.

    2015-01-01

    A simple and inexpensive method of monitoring the movement of an isolated frog heart provides comparable results to those obtained with a force transducer. A commercially available photoresistor is integrated into a Wheatstone bridge circuit, and the output signal is interfaced directly with a recording device. An excised, beating frog heart is…

  12. Zeolitic imidazolate framework-coated acoustic sensors for room temperature detection of carbon dioxide and methane

    DOE PAGES

    Devkota, Jagannath; Kim, Ki-Joong; Ohodnicki, Paul R.; ...

    2018-01-01

    The integration of nanoporous materials such as metal organic frameworks (MOFs) with sensitive transducers can result in robust sensing platforms for monitoring gases and chemical vapors for a range of applications.

  13. Mechanosensory calcium-selective cation channels in epidermal cells

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    This paper explores the properties and likely functions of an epidermal Ca(2+)-selective cation channel complex activated by tension. As many as eight or nine linked or linkable equivalent conductance units or co-channels can open together. Open time for co-channel quadruplets and quintuplets tends to be relatively long with millimolar Mg2+ (but not millimolar Ca2+) at the cytosolic face of excised plasma membrane. Sensitivity to tension is regulated by transmembrane voltage and temperature. Under some circumstances channel activity is sychronized in rhythmic pulses. Certain lanthanides and a cytoskeleton-disturbing herbicide that inhibit gravitropic reception act on the channel system at low concentrations. Specifically, ethyl-N-phenylcarbamate promotes tension-dependent activity at micromolar levels. With moderate suction, Gd3+ provided at about 0.5 micromole at the extracellular face of the membrane promotes for several seconds but may then become inhibitory. Provision at 1-2 micromoles promotes and subsequently inhibits more vigorously (often abruptly and totally), and at high levels inhibits immediately. La3+, a poor gravitropic inhibitor, acts similarly but much more gradually and only at much higher concentrations. These properties, particularly these susceptibilities to modulation, indicate that in vivo the mechanosensitive channel must be mechanosensory and mechanoregulatory. It could serve to transduce the shear forces generated in the integrated wall-membrane-cytoskeleton system during turgor changes and cell expansion as well as transducing the stresses induced by gravity, touch and flexure. In so far as such transduction is modulated by voltage and temperature, the channels would also be sensors for these modalities as long as the wall-membrane-cytoskeleton system experiences mechanical stress.

  14. High Speed PC Based Data Acquisition and Instrumentation for Measurement of Simulated Low Earth Orbit Thermally Induced Disturbances

    NASA Technical Reports Server (NTRS)

    Sills, Joel W., Jr.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    The Hubble Space Telescope (HST) Disturbance Verification Test (DVT) was conducted to characterize responses of the Observatory's new set of rigid solar array's (SA3) to thermally induced 'creak' or stiction releases. The data acquired in the DVT were used in verification of the HST Pointing Control System on-orbit performance, post-Servicing Mission 3B (SM3B). The test simulated the on-orbit environment on a deployed SA3 flight wing. Instrumentation for this test required pretest simulations in order to select the correct sensitivities. Vacuum compatible, highly accurate accelerometers and force gages were used for this test. The complexity of the test, as well as a short planning schedule, required a data acquisition system that was easy to configure, highly flexible, and extremely robust. A PC Windows oriented data acquisition system meets these requirements, allowing the test engineers to minimize the time required to plan and perform complex environmental test. The SA3 DVT provided a direct practical and complex demonstration of the versatility that PC based data acquisition systems provide. Two PC based data acquisition systems were assembled to acquire, process, distribute, and provide real time processing for several types of transducers used in the SA3 DVT. A high sample rate digital tape recorder was used to archive the sensor signals. The two systems provided multi-channel hardware and software architecture and were selected based on the test requirements. How these systems acquire and processes multiple data rates from different transducer types is discussed, along with the system hardware and software architecture.

  15. Obesity as malnutrition: the role of capitalism in the obesity global epidemic.

    PubMed

    Wells, Jonathan C K

    2012-01-01

    The global obesity epidemic remains poorly understood, partly because it has emerged alongside persisting under-nutrition in many populations. At an abstract level, obesity develops from exposure to the "obesogenic niche," comprising diverse factors predisposing to weight gain. This article first explores how susceptibility to the obesogenic niche is influenced by developmental and life-history experience. Human growth is sensitive to early-life ecological conditions, under the transducing effect of maternal phenotype. Such plasticity is associated with subsequent variability in body composition and metabolism, impacting susceptibility to the obesogenic niche, albeit with heterogeneity across populations. Both nutritional constraint and nutritional excess during early life are associated with variability in relevant molecular pathways. The article then considers the fundamental contribution of capitalist economics to population under-nutrition and over-nutrition. Historically, capitalism contributed to the under-nutrition of many populations through demand for cheap labor. As the limiting factor for economic growth switched to consumption, capitalism has increasingly driven consumer behavior inducing widespread over-nutrition. In populations undergoing nutritional transition, many individuals encounter both under- and over-nutrition within the life course, elevating both susceptibility and exposure to the obesogenic niche. The interactions between global economic forces and nutritional shifts are distributed across generations, and are strongly transduced by maternal effects. The structural connections between undernourished and overnourished worldwide and between under- and over-nutrition within individual life-courses highlight the central role of capitalist economics in the global obesity epidemic. Prevention policies targeting individual behavior have proved ineffective and economic policies are arguably the optimal target for intervention. Copyright © 2012 Wiley Periodicals, Inc.

  16. Protection circuits for very high frequency ultrasound systems.

    PubMed

    Choi, Hojong; Shung, K Kirk

    2014-04-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (-1.0 dB), THD (-69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications.

  17. Endoluminal MR-guided ultrasonic applicator embedding cylindrical phased-array transducers and opposed-solenoid detection coil.

    PubMed

    Rata, Mihaela; Birlea, Vlad; Murillo, Adriana; Paquet, Christian; Cotton, François; Salomir, Rares

    2015-01-01

    MR-guided high-intensity contact ultrasound (HICU) was suggested as an alternative therapy for esophageal and rectal cancer. To offer high-quality MR guidance, two prototypes of receive-only opposed-solenoid coil were integrated with 64-element cylindrical phased-array ultrasound transducers (rectal/esophageal). The design of integrated coils took into account the transducer geometry (360° acoustic window within endoluminal space). The rectal coil was sealed on a plastic support and placed reversibly on the transducer head. The esophageal coil was fully embedded within the transducer head, resulting in one indivisible device. Comparison of integrated versus external coils was performed on a clinical 1.5T scanner. The integrated coils showed higher sensitivity compared with the standard extracorporeal coil with factors of up to 7.5 (rectal applicator) and 3.3 (esophageal applicator). High-resolution MR images for both anatomy (voxel 0.4 × 0.4 × 5 mm(3)) and thermometry (voxel 0.75 × 0.75 × 8 mm(3), 2 s/image) were acquired in vivo with the rectal endoscopic device. The temperature feedback loop accurately controlled multiple control points over the region of interest. This study showed significant improvement of MR data quality using endoluminal integrated coils versus standard external coil. Inframillimeter spatial resolution and accurate feedback control of MR-guided HICU thermotherapy were achieved. © 2014 Wiley Periodicals, Inc.

  18. Protection Circuits for Very High Frequency Ultrasound Systems

    PubMed Central

    Shung, K. Kirk

    2014-01-01

    The purpose of protection circuits in ultrasound applications is to block noise signals from the transmitter from reaching the transducer and also to prevent unwanted high voltage signals from reaching the receiver. The protection circuit using a resistor and diode pair is widely used due to its simple architecture, however, it may not be suitable for very high frequency (VHF) ultrasound transducer applications (>100 MHz) because of its limited bandwidth. Therefore, a protection circuit using MOSFET devices with unique structure is proposed in this paper. The performance of the designed protection circuit was compared with that of other traditional protection schemes. The performance characteristics measured were the insertion loss (IL), total harmonic distortion (THD) and transient response time (TRT). The new protection scheme offers the lowest IL (−1.0 dB), THD (−69.8 dB) and TRT (78 ns) at 120 MHz. The pulse-echo response using a 120 MHz LiNbO3 transducer with each protection circuit was measured to validate the feasibility of the protection circuits in VHF ultrasound applications. The sensitivity and bandwidth of the transducer using the new protection circuit improved by 252.1 and 50.9 %, respectively with respect to the protection circuit using a resistor and diode pair. These results demonstrated that the new protection circuit design minimizes the IL, THD and TRT for VHF ultrasound transducer applications. PMID:24682684

  19. Real-Time Monitoring Of Regional Tissue Elasticity During FUS Focused Ultrasound Therapy Using Harmonic Motion Imaging

    NASA Astrophysics Data System (ADS)

    Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa

    2006-05-01

    The feasibility of the Harmonic Motion Imaging (HMI) technique for simultaneous monitoring and generation of focused ultrasound therapy using two separate focused ultrasound transducer elements has previously been shown. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force induced using a single focused ultrasound element. First, wave propagation simulation models were used to compare the use of a single Amplitude-Modulated (AM) focused beam versus two overlapping focused beams as previously implemented for HMI. Simulation results indicated that, unlike in the two-beam configuration, the AM beam produced a consistent, stable focus for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were then performed on gelatin gel phantoms and tissue in vitro bovine liver. The radiation force was generated by a 4.68 MHz focused transducer using a low-frequency Amplitude-Modulated (AM) RF-signal. RF data were acquired at 7.5 MHz with a PRF of 6.5 kHz and displacements were estimated using a 1D cross-correlation algorithm on successive RF signals. Furthermore, taking advantage of the real-time capability of our method, the change in the elastic properties was monitored during focused ultrasound (FUS) ablation of tissue in vitro bovine liver. Based on the harmonic displacements, their temperature-dependence, and the calculated acoustic radiation force, the change in the relative, regional stiffness could be monitored during heating and ablation, both using the displacement amplitude and the resulting phase shift change of the displacement relative to the radiation force temporal profile. In conclusion, the feasibility of using an AM radiation force for HMI for simultaneous monitoring and treatment during ultrasound therapy was demonstrated in phantoms and tissues in vitro. Further study of this method will include, ex vivo and in vivo, stiffness and temperature.

  20. Numerical implementation of magneto-acousto-electrical tomography (MAET) using a linear phased array transducer

    NASA Astrophysics Data System (ADS)

    Soner Gözü, Mehmet; Zengin, Reyhan; Güneri Gençer, Nevzat

    2018-02-01

    In this study, the performance and implementation of magneto-acousto-electrical tomography (MAET) is investigated using a linear phased array (LPA) transducer. The goal of MAET is to image the conductivity distribution in biological bodies. It uses the interaction between ultrasound and a static magnetic field to generate velocity current density distribution inside the body. The resultant voltage due to velocity current density is sensed by surface electrodes attached on the body. In this study, the theory of MAET is reviewed. A 16-element LPA transducer with 1 MHz excitation frequency is used to provide beam directivity and steerability of acoustic waves. Different two-dimensional numerical models of breast and tumour are formed to analyze the multiphysics problem coupled with acoustics and electromagnetic fields. In these models, velocity current density distributions are obtained for pulse type ultrasound excitations. The static magnetic field is assumed as 1 T. To sense the resultant voltage caused by the velocity current density, it is assumed that two electrodes are attached on the surface of the body. The performance of MAET is shown through sensitivity matrix analysis. The sensitivity matrix is obtained for two transducer positions with 13 steering angles between -30\\circ to 30\\circ with 5\\circ angular intervals. For the reconstruction of the images, truncated singular value decomposition method is used with different signal-to-noise ratio (SNR) values (20 dB, 40 dB, 60 dB and 80 dB). The resultant images show that the perturbation (5 mm  ×  5 mm) placed 35 mm depth can be detected even if the SNR is 20 dB.

  1. Power MOSFET-diode-based limiter for high-frequency ultrasound systems.

    PubMed

    Choi, Hojong; Kim, Min Gon; Cummins, Thomas M; Hwang, Jae Youn; Shung, K Kirk

    2014-10-01

    The purpose of the limiter circuits used in the ultrasound imaging systems is to pass low-voltage echo signals generated by ultrasonic transducers while preventing high-voltage short pulses transmitted by pulsers from damaging front-end circuits. Resistor-diode-based limiters (a 50 Ω resistor with a single cross-coupled diode pair) have been widely used in pulse-echo measurement and imaging system applications due to their low cost and simple architecture. However, resistor-diode-based limiters may not be suited for high-frequency ultrasound transducer applications since they produce large signal conduction losses at higher frequencies. Therefore, we propose a new limiter architecture utilizing power MOSFETs, which we call a power MOSFET-diode-based limiter. The performance of a power MOSFET-diode-based limiter was evaluated with respect to insertion loss (IL), total harmonic distortion (THD), and response time (RT). We compared these results with those of three other conventional limiter designs and showed that the power MOSFET-diode-based limiter offers the lowest IL (-1.33 dB) and fastest RT (0.10 µs) with the lowest suppressed output voltage (3.47 Vp-p) among all the limiters at 70 MHz. A pulse-echo test was performed to determine how the new limiter affected the sensitivity and bandwidth of the transducer. We found that the sensitivity and bandwidth of the transducer were 130% and 129% greater, respectively, when combined with the new power MOSFET-diode-based limiter versus the resistor-diode-based limiter. Therefore, these results demonstrate that the power MOSFET-diode-based limiter is capable of producing lower signal attenuation than the three conventional limiter designs at higher frequency operation. © The Author(s) 2014.

  2. Genetic polymorphisms and asthma: findings from a case-control study in the Madeira island population.

    PubMed

    Berenguer, Anabela Gonçalves; Fernandes, Ana Teresa; Oliveira, Susana; Rodrigues, Mariana; Ornelas, Pedro; Romeira, Diogo; Serrão, Tânia; Rosa, Alexandra; Câmara, Rita

    2014-09-04

    Asthma is a complex disease influenced by multiple genetic and environmental factors. While Madeira has the highest prevalence of asthma in Portugal (14.6%), the effect of both genetic and environmental factors in this population has never been assessed. We categorized 98 asthma patients according to the Global Initiative for Asthma (GINA) guidelines, established their sensitization profile, and measured their forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) indexes. Selected single nucleotide polymorphisms (SNPs) were analysed as potential markers for asthma susceptibility and severity in the interleukin 4 (IL4), interleukin 13 (IL13), beta-2-adrenergic receptor (ADRB2), a disintegrin and metalloprotease 33 (ADAM33), gasdermin-like (GSDML) and the signal transducer and activator of transcription 6 (STAT6) genes comparatively to a population reference set. Although mites are the major source of allergic sensitization, no significant difference was found amongst asthma severity categories. IL4-590*CT/TT and IL4-RP2*253183/183183 were found to predict the risk (2-fold) and severity (3 to 4-fold) of asthma and were associated with a lower FEV1 index. ADRB2-c.16*AG is a risk factor (3.5-fold), while genotype GSDML-236*TT was protective (4-fold) for moderate-severe asthma. ADAM33-V4*C was associated to asthma and mild asthma by the transmission disequilibrium test (TDT). Finally, ADAM33-V4*CC and STAT6-21*TT were associated with higher sensitization (mean wheal size ≥10 mm) to house dust (1.4-fold) and storage mite (7.8-fold). In Madeira, IL4-590C/T, IL4-RP2 253/183, GSDML-236C/T and ADAM33-V4C/G SNPs are important risk factors for asthma susceptibility and severity, with implications for asthma healthcare management.

  3. Validating Ultrasound-based HIFU Lesion-size Monitoring Technique with MR Thermometry and Histology

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Petruzzello, John; Anand, Ajay; Sethuraman, Shriram; Azevedo, Jose

    2010-03-01

    In order to control and monitor HIFU lesions accurately and cost-effectively in real-time, we have developed an ultrasound-based therapy monitoring technique using acoustic radiation force to track the change in tissue mechanical properties. We validate our method with concurrent MR thermometry and histology. Comparison studies have been completed on in-vitro bovine liver samples. A single-element 1.1 MHz focused transducer was used to deliver HIFU and produce acoustic radiation force (ARF). A 5 MHz single-element transducer was placed co-axially with the HIFU transducer to acquire the RF data, and track the tissue displacement induced by ARF. During therapy, the monitoring procedure was interleaved with HIFU. MR thermometry (Philips Panorama 1T system) and ultrasound monitoring were performed simultaneously. The tissue temperature and thermal dose (CEM43 = 240 mins) were computed from the MR thermometry data. The tissue displacement induced by the acoustic radiation force was calculated from the ultrasound RF data in real-time using a cross-correlation based method. A normalized displacement difference (NDD) parameter was developed and calibrated to estimate the lesion size. The lesion size estimated by the NDD was compared with both MR thermometry prediction and the histology analysis. For lesions smaller than 8mm, the NDD-based lesion monitoring technique showed very similar performance as MR thermometry. The standard deviation of lesion size error is 0.66 mm, which is comparable to MR thermal dose contour prediction (0.42 mm). A phased array is needed for tracking displacement in 2D and monitoring lesion larger than 8 mm. The study demonstrates the potential of our ultrasound based technique to achieve precise HIFU lesion control through real-time monitoring. The results compare well with histology and an established technique like MR Thermometry. This approach provides feedback control in real-time to terminate therapy when a pre-determined lesion size is achieved, and can be extended to 2D and implemented on commercial ultrasound scanner systems.

  4. Enhancing the sensitivity of three-axis detectable surface acoustic wave gyroscope by using a floating thin piezoelectric membrane

    NASA Astrophysics Data System (ADS)

    Lee, Munhwan; Lee, Keekeun

    2017-06-01

    A new type of surface acoustic wave (SAW) gyroscope was developed on a floating thin piezoelectric membrane to enhance sensitivity and reliability by removing a bulk noise effect and by importing a higher amplitude of SAW. The developed device constitutes a two-port SAW resonator with a metallic dot array between two interdigital transducers (IDTs), and a one-port SAW delay line. The bulk silicon was completely etched away, leaving only a thin piezoelectric membrane with a thickness of one wavelength. A voltage controlled oscillator (VCO) was connected to a SAW resonator to activate the SAW resonator, while the SAW delay line was connected to the oscilloscope to monitor any variations caused by the Coriolis force. When the device was rotated, a secondary wave was generated, changing the amplitude of the SAW delay line. The highest sensitivity was observed in a device with a full acoustic wavelength thickness of the membrane because most of the acoustic field is confined within an acoustic wavelength thickness from the top surface; moreover, the thin-membrane-based gyroscope eliminates the bulk noise effect flowing along the bulk substrate. The obtained sensitivity and linearity of the SAW gyroscope were ˜27.5 µV deg-1 s-1 and ˜4.3%, respectively. Superior directivity was observed. The device surface was vacuum-sealed using poly(dimethylsiloxane) (PDMS) bonding to eliminate environmental interference. A three-axis detectable gyroscope was also implemented by placing three gyrosensors with the same configuration at right angles to each other on a printed circuit board.

  5. Customer loads of two-wheeled vehicles

    NASA Astrophysics Data System (ADS)

    Gorges, C.; Öztürk, K.; Liebich, R.

    2017-12-01

    Customer usage profiles are the most unknown influences in vehicle design targets and they play an important role in durability analysis. This publication presents a customer load acquisition system for two-wheeled vehicles that utilises the vehicle's onboard signals. A road slope estimator was developed to reveal the unknown slope resistance force with the help of a linear Kalman filter. Furthermore, an automated mass estimator was developed to consider the correct vehicle loading. The mass estimation is performed by an extended Kalman filter. Finally, a model-based wheel force calculation was derived, which is based on the superposition of forces calculated from measured onboard signals. The calculated wheel forces were validated by measurements with wheel-load transducers through the comparison of rainflow matrices. The calculated wheel forces correspond with the measured wheel forces in terms of both quality and quantity. The proposed methods can be used to gather field data for improved vehicle design loads.

  6. Ultrasonic Shear Wave Elasticity Imaging (SWEI) Sequencing and Data Processing Using a Verasonics Research Scanner

    PubMed Central

    Deng, Yufeng; Rouze, Ned C.; Palmeri, Mark L.; Nightingale, Kathryn R.

    2017-01-01

    Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage. PMID:28092508

  7. Small, fast, and tough: Shrinking down integrated elastomer transducers

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Shea, Herbert R.

    2016-09-01

    We review recent progress in miniaturized dielectric elastomer actuators (DEAs), sensors, and energy harvesters. We focus primarily on configurations where the large strain, high compliance, stretchability, and high level of integration offered by dielectric elastomer transducers provide significant advantages over other mm or μm-scale transduction technologies. We first present the most active application areas, including: tunable optics, soft robotics, haptics, micro fluidics, biomedical devices, and stretchable sensors. We then discuss the fabrication challenges related to miniaturization, such as thin membrane fabrication, precise patterning of compliant electrodes, and reliable batch fabrication of multilayer devices. We finally address the impact of miniaturization on strain, force, and driving voltage, as well as the important effect of boundary conditions on the performance of mm-scale DEAs.

  8. A host-guest-recognition-based electrochemical aptasensor for thrombin detection.

    PubMed

    Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2012-05-15

    A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.

    PubMed

    Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K

    2015-11-01

    The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.

  10. A Microseismometer for Terrestrial and Extraterrestrial Applications

    NASA Technical Reports Server (NTRS)

    Banerdt, W.; Kaiser, W.; Vanzandt, T.

    1993-01-01

    The scientific and technical requirements of extraterrestrial seismology place severe demands on instrumentation. Performance in terms of sensitivity, stability, and frequency band must match that of the best terrestrial instruments, at a fraction of the size, mass, and power. In addition, this performance must be realized without operator intervention in harsh temperature, shock, and radiation environments. These constraints have forced us to examine some fundamental limits of accelerometer design in order to produce a small, rugged, sensitive seismometer. Silicon micromachined sensor technology offers techniques for the fabrication of monolithic, robust, compact, low-power and -mass accelerometers. However, currently available sensors offer inadequate sensitivity and bandwidth. Our implementation of an advanced silicon micro machined seismometer is based on principles developed at JPL for high-sensitivity position sensor technology. The use of silicon micro machining technology with these new principles should enable the fabrication of a 10(exp -11) g sensitivity seismometer with a bandwidth of at least 0.01 to 20 Hz. The low Q properties of pure single-crystal silicon are essential in order to minimize the Brownian thermal noise limitations generally characteristic of seismometers with small proof masses. A seismometer consists of a spring-supported proof mass and a transducer for measuring its motion. For long period motion a position sensor is generally used, for which the displacement is proportional to the ground acceleration. The mechanical sensitivity can be increased either by increasing the proof mass or decreasing the spring stiffness, neither of which is desirable for planetary applications. Our approach has been to use an ultra sensitive capacitive position sensor with a sensitivity of better than 10(exp -13) m/Hz(exp 1/2). This allows the use of a stiffer suspension and a smaller proof mass. We have built several prototypes using these principles, and tests show that these devices can exhibit performance comparable to state-of-the-art instruments.

  11. Improved method for determining the stress relaxation at the crack tip

    NASA Astrophysics Data System (ADS)

    Grinevich, A. V.; Erasov, V. S.; Avtaev, V. V.

    2017-10-01

    A technique is suggested to determine the stress relaxation at the crack tip during tests of a specimen of a new type at a constant crack opening fixed by a stay bolt. The shape and geometry of the specimen make it possible to set the load and to determine the crack closure force after long-term exposure using the force transducer of a tensile-testing machine. The stress relaxation at the crack tip is determined in a V95pchT2 alloy specimen at elevated temperatures.

  12. Mechanosensation and the Primary Cilium

    NASA Astrophysics Data System (ADS)

    Glaser, Joseph; Resnick, Andrew

    2010-10-01

    The primary cilium has come under increased scrutiny as a site for mechano- and chemosensation by cells. We have undertaken a program of study using mouse renal cell lines from the cortical collecting duct to quantify how mechanical forces arising from fluid shear are transduced into cellular responses. Fluid flow through a model nephron has been analyzed to determine the in vivo forces. A novel tissue culture flow chamber permitting accurate reproduction of physiologically relevant conditions has been calibrated. We have determined that in vivo conditions can be accurately modeled in our flow chamber.

  13. Machinability of experimental Ti-Ag alloys.

    PubMed

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2008-03-01

    This study investigated the machinability of experimental Ti-Ag alloys (5, 10, 20, and 30 mass% Ag) as a new dental titanium alloy candidate for CAD/CAM use. The alloys were slotted with a vertical milling machine and carbide square end mills under two cutting conditions. Machinability was evaluated through cutting force using a three-component force transducer fixed on the table of the milling machine. The horizontal cutting force of the Ti-Ag alloys tended to decrease as the concentration of silver increased. Values of the component of the horizontal cutting force perpendicular to the feed direction for Ti-20% Ag and Ti-30% Ag were more than 20% lower than those for titanium under both cutting conditions. Alloying with silver significantly improved the machinability of titanium in terms of cutting force under the present cutting conditions.

  14. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    NASA Astrophysics Data System (ADS)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The modules are made of low temperature cofired ceramic (LTCC) tapes with an embedded lead zirconate titanate (PZT) plate and are manufactured in multilayer technique. For joining conducting copper (Cu) wires with the electrode structure of the LPM, a novel laser drop on demand wire bonding method (LDB) is applied, which is based on the melting of a spherical CuSn12 braze preform with a liquidus temperature Tliquid of 989.9 °C (Deutsches Kupfer-Institut Düsseldorf, [8]) providing sufficient thermal stability for a subsequent casting process.

  15. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2012-01-01

    The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the obtained acoustic impedances do not necessarily correspond to a nowadays available material. Consequently, the values of the acoustic impedances are switched to the nearest values in a large material database. The switched values of the acoustic impedances do not generally give efficient transmission coefficients. Therefore, we proposed, in a second step, the use of a genetic algorithm (GA) to select the best acoustic impedances for matching layers from the material database for a narrow band ultrasonic transducer that work at frequency below the 2.5MHz by considering attenuation. However this bank is rich, the results get better. So the accuracy of the propose method increase by using a lot of materials with exact data for acoustic impedance and their attenuation, especially in high frequency. This yields highly more efficient transmission coefficient. In fact by using increasing number of layer we can increase our chance to find the best sets of materials with valuable both in acoustic impedance and low attenuation. Precisely, the transmission coefficient is almost equal to unity for the all studied cases. Finally the effect of thickness on transmission coefficient is investigated for different layers. The results showed that the transmission coefficient for air media is a function of thickness and sensitive to it even for small variation in thickness. In fact, the sensitivity increases when the differences of acoustic impedances to be high (difference between PZT and air). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Ultrasonic flaw detection in a monorail box beam

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.

    2009-03-01

    A steel box beam in a monorail application is constructed with an epoxy grout wearing surface, precluding visual inspection of its top flange. This paper describes a sequence of experimental research tasks to develop an ultrasonic system to detect flaws (such as fatigue cracks) in that flange, and the results of a field test to demonstrate system performance. The problem is constrained by the fact that the flange is exposed only along its longitudinal edges, and by the fact that permanent installation of transducers at close spacing was deemed to be impractical. The system chosen for development, after experimental comparison of alternate technologies, features angle-beam ultrasonic transducers with fluid coupling to the flange edge; the emitting transducers create transverse waves that travel diagonally across the width of the flange, where an array of receiving transducers detect flaw reflections and flaw shadows. The system rolls along the box beam, surveying (screening) the top flange for the presence of flaws. In a first research task, conducted on a full-size beam specimen, we compared waves generated from different transducer locations, either the flange edge or the web face, and at different frequency ranges. At relatively low frequencies, such as 100 kHz, we observed Lamb wave modes, and at higher frequency, in the MHz range, we observed nearlylongitudinal waves with trailing pulses. In all cases we observed little attenuation by the wearing surface and little influence of reflection at the web-flange joints. At the conclusion of this task we made the design decision to use edgemounted transducers at relatively high frequency, with correspondingly short wavelength, for best scattering from flaws. In a second research task we conducted experiments at 55% scale on a steel plate, with machined flaws of different size, and detected flaws of target size for the intended application. We then compared the performance of bonded transducers, fluid-coupled transducers, and angle-beam (wedge) transducers; from that comparison we made the design decision to use wedges, which beam the wave to increase the scattering from flaws. We also compared the performance of wired transducers using fluid coupling to that of wireless (inductively coupled) transducers mounted permanently. Although the wireless transducers achieved flaw detection, the necessary spacing (determined experimentally) would have required an impractical number of transducers. Therefore, we made the design decision to use wedge transducers with fluid coupling. In a third research task we developed and tested a rolling system with a water channel for acoustic coupling, including a study of its sensitivity to misalignment, and in a fourth task we devised a data display to create a pattern of reflections or shadows that could be easily interpreted as evidence of a flaw. Finally, we conducted a field test on the full-size system in a region containing bolt holes, which act as a physical simulation of a flaw, and show successful detection of reflections and shadows from those holes.

  17. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOEpatents

    Sinha, Dipen N.

    1999-01-01

    Apparatus and method for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described.

  18. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOEpatents

    Sinha, D.N.

    1999-03-23

    Apparatus and method are disclosed for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described. 5 figs.

  19. The ultrasound brain helmet: new transducers and volume registration for in vivo simultaneous multi-transducer 3-D transcranial imaging.

    PubMed

    Lindsey, Brooks D; Light, Edward D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2011-06-01

    Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays-transducer design and interconnects-in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation.

  20. The Ultrasound Brain Helmet: New Transducers and Volume Registration for In Vivo Simultaneous Multi-Transducer 3-D Transcranial Imaging

    PubMed Central

    Lindsey, Brooks D.; Light, Edward D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2012-01-01

    Because stroke remains an important and time-sensitive health concern in developed nations, we present a system capable of fusing 3-D transcranial ultrasound volumes acquired from two sides of the head. This system uses custom sparse array transducers built on flexible multilayer circuits that can be positioned for simultaneous imaging through both temporal acoustic windows, allowing for potential registration of multiple real-time 3-D scans of cerebral vasculature. We examine hardware considerations for new matrix arrays—transducer design and interconnects—in this application. Specifically, it is proposed that SNR may be increased by reducing the length of probe cables. This claim is evaluated as part of the presented system through simulation, experimental data, and in vivo imaging. Ultimately, gains in SNR of 7 dB are realized by replacing a standard probe cable with a much shorter flex interconnect; higher gains may be possible using ribbon-based probe cables. In vivo images are presented, showing cerebral arteries with and without the use of microbubble contrast agent; they have been registered and fused using a simple algorithm which maximizes normalized cross-correlation. PMID:21693401

Top