Mazzawi, Elias; El-Naaj, Imad Abu; Ghantous, Yasmine; Balan, Salim; Sabo, Edmond; Rachmiel, Adi; Leiser, Yoav
2018-05-01
The accuracy and sensitivity of commonly used imaging modalities in evaluating oral cavity cancer was evaluated by comparing the preoperative radiologic findings and the postoperative pathology report. Patients with oral squamous cell carcinoma, who had undergone at least 1 imaging test 2 weeks before surgery were included. Radiologic findings were compared with the dissected neck findings to assess the lymph node status. Sensitivity and specificity of the imaging modalities were calculated by using the χ 2 test. Sensitivities for detecting metastatic neck lymph nodes at a threshold of 1 cm were 48% (P = .02) and 43.8% (P = .3) for computed tomography (CT) and magnetic resonance imaging respectively. Specificities were 76.3% and 70%, respectively. As for the 1.5 cm threshold, sensitivities were 36% (P = .002) and 31.3% (P = .5), respectively, and specificities were 91.5% and 76.7%, respectively. PET-CT was the most sensitive modality in the present study, with a P value of .02. The different studied imaging modalities used for preoperative neck staging are not sensitive enough and would lead to underdiagnoses of a significant proportion of patients. Thus, prophylactic neck dissection for occult neck disease is of extreme importance and remains the gold standard for oral cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Ueda-Arakawa, Naoko; Ooto, Sotaro; Tsujikawa, Akitaka; Yamashiro, Kenji; Oishi, Akio; Yoshimura, Nagahisa
2013-03-01
To identify reticular pseudodrusen (RPD) in age-related macular degeneration using multiple imaging modalities, including the blue channel image of fundus photography, infrared reflectance (IR), fundus autofluorescence, near-infrared fundus autofluorescence, confocal blue reflectance, indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT), and to compare the sensitivities and specificities of these modalities for detecting RPD. This study included 220 eyes from 114 patients with newly diagnosed age-related macular degeneration. Patients underwent fundus photography, IR, fundus autofluorescence, near-infrared fundus autofluorescence, confocal blue reflectance, indocyanine green angiography, and SD-OCT in both eyes. Eyes were diagnosed with RPD if they showed reticular patterns on at least two of the seven imaging modalities. Thirty-seven eyes were diagnosed with RPD. However, SD-OCT and IR had the highest sensitivity (94.6%), and at the same time, SD-OCT had a high specificity (98.4%). The blue channel of color fundus photography, confocal blue reflectance, and indocyanine green angiography had a specificity of 100% but had lower sensitivity than that of SD-OCT and IR. For detecting RPD, IR and SD-OCT had the highest sensitivity. Although SD-OCT had the highest sensitivity and specificity, RPD detection should be confirmed using more than one modality for increased accuracy.
Musculoskeletal ultrasound and other imaging modalities in rheumatoid arthritis.
Ohrndorf, Sarah; Werner, Stephanie G; Finzel, Stephanie; Backhaus, Marina
2013-05-01
This review refers to the use of musculoskeletal ultrasound in patients with rheumatoid arthritis (RA) both in clinical practice and research. Furthermore, other novel sensitive imaging modalities (high resolution peripheral quantitative computed tomography and fluorescence optical imaging) are introduced in this article. Recently published ultrasound studies presented power Doppler activity by ultrasound highly predictive for later radiographic erosions in patients with RA. Another study presented synovitis detected by ultrasound being predictive of subsequent structural radiographic destruction irrespective of the ultrasound modality (grayscale ultrasound/power Doppler ultrasound). Further studies are currently under way which prove ultrasound findings as imaging biomarkers in the destructive process of RA. Other introduced novel imaging modalities are in the validation process to prove their impact and significance in inflammatory joint diseases. The introduced imaging modalities show different sensitivities and specificities as well as strength and weakness belonging to the assessment of inflammation, differentiation of the involved structures and radiological progression. The review tries to give an answer regarding how to best integrate them into daily clinical practice with the aim to improve the diagnostic algorithms, the daily patient care and, furthermore, the disease's outcome.
A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro
NASA Astrophysics Data System (ADS)
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph
2015-01-01
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.
Ladd, Lauren M; Tirkes, Temel; Tann, Mark; Agarwal, David M; Johnson, Matthew S; Tahir, Bilal; Sandrasegaran, Kumaresan
2016-12-01
The diagnosis and treatment plan for hepatocellular carcinoma (HCC) can be made from radiologic imaging. However, lesion detection may vary depending on the imaging modality. This study aims to evaluate the sensitivities of hepatic multidetector computed tomography (MDCT), magnetic resonance imaging (MRI), and digital subtraction angiography (DSA) in the detection of HCC and the consequent management impact on potential liver transplant patients. One hundred and sixteen HCC lesions were analyzed in 41 patients who received an orthotopic liver transplant (OLT). All of the patients underwent pretransplantation hepatic DSA, MDCT, and/or MRI. The imaging results were independently reviewed retrospectively in a blinded fashion by two interventional and two abdominal radiologists. The liver explant pathology was used as the gold standard for assessing each imaging modality. The sensitivity for overall HCC detection was higher for cross-sectional imaging using MRI (51.5%, 95% confidence interval [CI]=36.2-58.4%) and MDCT (49.8%, 95% CI=43.7-55.9%) than for DSA (41.7%, 95% CI=36.2-47.3%) ( P =0.05). The difference in false-positive rate was not statistically significant between MRI (22%), MDCT (29%), and DSA (29%) ( P =0.67). The sensitivity was significantly higher for detecting right lobe lesions than left lobe lesions for all modalities (MRI: 56.1% vs. 43.1%, MDCT: 55.0% vs. 42.0%, and DSA: 46.9% vs. 33.9%; all P <0.01). The sensitivities of the three imaging modalities were also higher for lesions ≥2 cm vs. <2 cm (MRI: 73.4% vs. 32.7%, MDCT: 66.9% vs. 33.8%, and DSA: 62.2% vs. 24.1%; all P <0.01). The interobserver correlation was rated as very good to excellent. The sensitivity for detecting HCC is higher for MRI and MDCT than for DSA, and so cross-sectional imaging modalities should be used to evaluate OLT candidacy.
A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph
2015-01-01
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398
A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro
Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; ...
2015-01-05
Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. Here in this study we use numerical processing to produce x-ray scatter images ofmore » Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. Lastly, as x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.« less
NASA Astrophysics Data System (ADS)
Peng, Dong; Du, Yang; Shi, Yiwen; Mao, Duo; Jia, Xiaohua; Li, Hui; Zhu, Yukun; Wang, Kun; Tian, Jie
2016-07-01
Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases.Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03809c
Magnetomotive Molecular Nanoprobes
John, Renu; Boppart, Stephen A.
2012-01-01
Tremendous developments in the field of biomedical imaging in the past two decades have resulted in the transformation of anatomical imaging to molecular-specific imaging. The main approaches towards imaging at a molecular level are the development of high resolution imaging modalities with high penetration depths and increased sensitivity, and the development of molecular probes with high specificity. The development of novel molecular contrast agents and their success in molecular optical imaging modalities have lead to the emergence of molecular optical imaging as a more versatile and capable technique for providing morphological, spatial, and functional information at the molecular level with high sensitivity and precision, compared to other imaging modalities. In this review, we discuss a new class of dynamic contrast agents called magnetomotive molecular nanoprobes for molecular-specific imaging. Magnetomotive agents are superparamagnetic nanoparticles, typically iron-oxide, that are physically displaced by the application of a small modulating external magnetic field. Dynamic phase-sensitive position measurements are performed using any high resolution imaging modality, including optical coherence tomography (OCT), ultrasonography, or magnetic resonance imaging (MRI). The dynamics of the magnetomotive agents can be used to extract the biomechanical tissue properties in which the nanoparticles are bound, and the agents can be used to deliver therapy via magnetomotive displacements to modulate or disrupt cell function, or hyperthermia to kill cells. These agents can be targeted via conjugation to antibodies, and in vivo targeted imaging has been shown in a carcinogen-induced rat mammary tumor model. The iron-oxide nanoparticles also exhibit negative T2 contrast in MRI, and modulations can produce ultrasound imaging contrast for multimodal imaging applications. PMID:21517766
Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.
Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo
2012-04-15
Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. Copyright © 2012 Elsevier Inc. All rights reserved.
Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.
2015-01-01
Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379
New Ways to Detect Pediatric Sickle Cell Retinopathy: A Comprehensive Review.
Pahl, Daniel A; Green, Nancy S; Bhatia, Monica; Chen, Royce W S
2017-11-01
Sickle retinopathy reflects disease-related vascular injury of the eye, which can potentially result in visual loss from vitreous hemorrhage or retinal detachment. Here we review sickle retinopathy among children with sickle cell disease, describe the epidemiology, pediatric risk factors, pathophysiology, ocular findings, and treatment. Newer, more sensitive ophthalmological imaging modalities are available for retinal imaging, including ultra-widefield fluorescein angiography, spectral-domain optical coherence tomography, and optical coherence tomography angiography. Optical coherence tomography angiography provides a noninvasive view of retinal vascular layers that could previously not be imaged and can be quantified for comparative or prospective analyses. Ultra-widefield fluorescein angiography provides a more comprehensive view of the peripheral retina than traditional imaging techniques. Screening for retinopathy by standard fundoscopic imaging modalities detects a prevalence of approximately 10%. In contrast, these more sensitive methods allow for more sensitive examination that includes the retina perimeter where sickle retinopathy is often first detectable. Use of these new imaging modalities may detect a higher prevalence of early sickle pathology among children than has previously been reported. Earlier detection may help in better understanding the pathogenesis of sickle retinopathy and guide future screening and treatment paradigms.
Intravascular Optical Imaging Technology for Investigating the Coronary Artery
Suter, Melissa J.; Nadkarni, Seemantini K.; Weisz, Giora; Tanaka, Atsushi; Jaffer, Farouc A.; Bouma, Brett E.; Tearney, Guillermo J.
2012-01-01
There is an ever-increasing demand for new imaging methods that can provide additional information about the coronary wall to better characterize and stratify high-risk plaques, and to guide interventional and pharmacologic management of patients with coronary artery disease. While there are a number of imaging modalities that facilitate the assessment of coronary artery pathology, this review paper focuses on intravascular optical imaging modalities that provide information on the microstructural, compositional, biochemical, biomechanical, and molecular features of coronary lesions and stents. The optical imaging modalities discussed include angioscopy, optical coherence tomography, polarization sensitive-optical coherence tomography, laser speckle imaging, near-infrared spectroscopy, time-resolved laser induced fluorescence spectroscopy, Raman spectroscopy, and near-infrared fluorescence molecular imaging. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in the evaluation of the coronary artery in the future. PMID:21920342
Fiber optic in vivo imaging in the mammalian nervous system
Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J
2010-01-01
The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896
Contrast-enhanced photoacoustic tomography of human joints
NASA Astrophysics Data System (ADS)
Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding
2016-03-01
Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.
2015-12-01
Xiang, L Xing, “ X - Ray Fluorescence CT as a Novel Imaging Modality for Improved Radiation Therapy Target Delineation”, Presented at 56th Annual Meeting... Imaging and Sensing, 1: 18-22 (2014). Moiz Ahmad, Magdalena Bazalova, Liangzhong Xiang, and Lei Xing, Order of magnitude sensitivity increase in x - ray ...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goals of this training grant is to develop the foundations for a new medical imaging modality, now
Photoacoustic and ultrasound imaging of cancellous bone tissue.
Yang, Lifeng; Lashkari, Bahman; Tan, Joel W Y; Mandelis, Andreas
2015-07-01
We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ~1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.
Imaging for percutaneous renal access and management of renal calculi.
Park, Sangtae; Pearle, Margaret S
2006-08-01
Percutaneous renal stone surgery requires detailed imaging to define stone burden and delineate the anatomy of the kidney and nearby organs. It is also essential to carry out safe percutaneous access and to assess postoperative outcomes. The emergence of CT as the imaging modality of choice for detecting renal calculi and the ability of CT urography with or without three-dimensional reconstruction to delineate the collecting system makes this the most versatile and sensitive imaging modality for pre- and postoperative evaluation. At present, intravenous urogram continues to play an important role in the evaluation of patients considered for percutaneous nephrostolithotomy. Fluoroscopy re-mains the mainstay of intraoperative imaging, although ultrasound is a useful alternative. Selection and application of appropriate imaging modalities for patients undergoing per-cutaneous nephrostolithotomy enhances the safety and success of the procedure.
Satija, Bhawna; Kumar, Sanyal; Wadhwa, Leena; Gupta, Taru; Kohli, Supreethi; Chandoke, Rajkumar; Gupta, Pratibha
2015-01-01
Placenta accreta is the abnormal adherence of the placenta to the uterine wall and the most common cause for emergency postpartum hysterectomy. Accurate prenatal diagnosis of affected pregnancies allows optimal obstetric management. To summarize our experience in the antenatal diagnosis of placenta accreta on imaging in a tertiary care setup. To compare the accuracy of ultrasound (USG) with color Doppler (CDUS) and magnetic resonance imaging (MRI) in prenatal diagnosis of placenta accreta. Prospective study in a tertiary care setup. A prospective study was conducted on pregnant females with high clinical risk of placenta accreta. Antenatal diagnosis was established based on CDUS and MRI. The imaging findings were compared with final diagnosis at the time of delivery and/or pathologic examination. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for both CDUS and MRI. The sensitivity and specificity values of USG and MRI were compared by the McNemar test. Thirty patients at risk of placenta accreta underwent both CDUS and MRI. Eight cases of placenta accreta were identified (3 vera, 4 increta, and 1 percreta). All patients had history of previous cesarean section. Placenta previa was present in seven out of eight patients. USG correctly identified the presence of placenta accreta in seven out of eight patients (87.5% sensitivity) and the absence of placenta accreta in 19 out of 22 patients (86.4% specificity). MRI correctly identified the presence of placenta accreta in 6 out of 8 patients (75.0% sensitivity) and absence of placenta accreta in 17 out of 22 patients (77.3% specificity). There were no statistical differences in sensitivity (P = 1.00) and specificity (P = 0.687) between USG and MRI. Both USG and MRI have fairly good sensitivity for prenatal diagnosis of placenta accreta; however, specificity does not appear to be as good as reported in other studies. Both modalities have complimentary role and in cases of inconclusive findings with one imaging modality, the other modality may be useful for obtaining the diagnosis. CDUS remains the first primary modality for antenatal diagnosis of placenta accreta, with MRI reserved for cases where USG is inconclusive.
Radionuclide Methods and Instrumentation for Breast Cancer Detection and Diagnosis
Surti, Suleman
2013-01-01
Breast cancer mammography is a well-acknowledged technique for patient screening due to its high sensitivity. However, in addition to its low specificity the sensitivity of mammography is limited when imaging patients with dense breasts. Radionuclide imaging techniques, such as coincidence photon-based positron emission tomography and single photon emission computed tomography or scintimammography, can play a role in assisting screening of such patients. Radionuclide techniques can also be useful in assessing treatment response of patients with breast cancer to therapy, and staging of patients to diagnose the disease extent. However, the performance of these imaging modalities is generally limited because of the poor spatial resolution and sensitivity of the commercially available multipurpose imaging systems. Here, we describe some of the dedicated imaging systems (positron emission mammography [PEM] and breast-specific gamma imaging [BSGI]) that have been developed both commercially and in research laboratories for radionuclide imaging of breast cancer. Clinical studies with dedicated PEM scanners show improved sensitivity to detecting cancer in patients when using PEM in conjunction with additional imaging modalities, such as magnetic resonance imaging or mammography or both, as well as improved disease staging that can have an effect on surgical planning. High-resolution BSGI systems are more widely available commercially and several clinical studies have shown very high sensitivity and specificity in detecting cancer in high-risk patients. Further development of dedicated PEM and BSGI systems is ongoing, promising further expansion of radionuclide imaging techniques in the realm of breast cancer detection and treatment. PMID:23725989
Sensitivity of MRI of the spine compared with CT myelography in orthostatic headache with CSF leak.
Starling, Amaal; Hernandez, Fatima; Hoxworth, Joseph M; Trentman, Terrence; Halker, Rashmi; Vargas, Bert B; Hastriter, Eric; Dodick, David
2013-11-12
To investigate the sensitivity of MRI of the spine compared with CT myelography (CTM) in detecting CSF leaks. Between July 1998 and October 2010, 12 patients with orthostatic headache and a CTM-confirmed spinal CSF leak underwent an MRI of the spine with and without contrast. Using CTM as the gold standard, we retrospectively investigated the sensitivity of spinal MRI in detecting a CSF leak. Eleven of 12 patients with a CSF leak documented by CTM also had extradural fluid collections on spinal MRI (sensitivity 91.7%). Six patients with extradural fluid collections on spinal MRI also had spinal dural enhancement. When compared with the gold standard of CTM, MRI of the spine appears to be a sensitive and less invasive imaging modality for detecting a spinal CSF leak, suggesting that MRI of the spine should be the imaging modality of first choice for the detection of spinal CSF leaks.
Instrumentation in molecular imaging.
Wells, R Glenn
2016-12-01
In vivo molecular imaging is a challenging task and no single type of imaging system provides an ideal solution. Nuclear medicine techniques like SPECT and PET provide excellent sensitivity but have poor spatial resolution. Optical imaging has excellent sensitivity and spatial resolution, but light photons interact strongly with tissues and so only small animals and targets near the surface can be accurately visualized. CT and MRI have exquisite spatial resolution, but greatly reduced sensitivity. To overcome the limitations of individual modalities, molecular imaging systems often combine individual cameras together, for example, merging nuclear medicine cameras with CT or MRI to allow the visualization of molecular processes with both high sensitivity and high spatial resolution.
Chen, Ning; Shao, Chen; Li, Shuai; Wang, Zihao; Qu, Yanming; Gu, Wei; Yu, Chunjiang; Ye, Ling
2015-11-01
The fusion of molecular and anatomical modalities facilitates more reliable and accurate detection of tumors. Herein, we prepared the PEG-Cy5.5 conjugated MnO nanoparticles (MnO-PEG-Cy5.5 NPs) with magnetic resonance (MR) and near-infrared fluorescence (NIRF) imaging modalities. The applicability of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe for the detection of brain gliomas was investigated. In vivo MR contrast enhancement of the MnO-PEG-Cy5.5 nanoprobe in the tumor region was demonstrated. Meanwhile, whole-body NIRF imaging of glioma bearing nude mouse exhibited distinct tumor localization upon injection of MnO-PEG-Cy5.5 NPs. Moreover, ex vivo CLSM imaging of the brain slice hosting glioma indicated the preferential accumulation of MnO-PEG-Cy5.5 NPs in the glioma region. Our results therefore demonstrated the potential of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe in improving the diagnostic efficacy by simultaneously providing anatomical information from deep inside the body and more sensitive information at the cellular level. Copyright © 2015 Elsevier Inc. All rights reserved.
What is the role of imaging in the clinical diagnosis of osteoarthritis and disease management?
Wang, Xia; Oo, Win Min; Linklater, James M
2018-05-01
While OA is predominantly diagnosed on the basis of clinical criteria, imaging may aid with differential diagnosis in clinically suspected cases. While plain radiographs are traditionally the first choice of imaging modality, MRI and US also have a valuable role in assessing multiple pathologic features of OA, although each has particular advantages and disadvantages. Although modern imaging modalities provide the capability to detect a wide range of osseous and soft tissue (cartilage, menisci, ligaments, synovitis, effusion) OA-related structural damage, this extra information has not yet favourably influenced the clinical decision-making and management process. Imaging is recommended if there are unexpected rapid changes in clinical outcomes to determine whether it relates to disease severity or an additional diagnosis. On developing specific treatments, imaging serves as a sensitive tool to measure treatment response. This narrative review aims to describe the role of imaging modalities to aid in OA diagnosis, disease progression and management. It also provides insight into the use of these modalities in finding targeted treatment strategies in clinical research.
Hyperspectral imaging with laser-scanning sum-frequency generation microscopy
Hanninen, Adam; Shu, Ming Wai; Potma, Eric O.
2017-01-01
Vibrationally sensitive sum-frequency generation (SFG) microscopy is a chemically selective imaging technique sensitive to non-centrosymmetric molecular arrangements in biological samples. The routine use of SFG microscopy has been hampered by the difficulty of integrating the required mid-infrared excitation light into a conventional, laser-scanning nonlinear optical (NLO) microscope. In this work, we describe minor modifications to a regular laser-scanning microscope to accommodate SFG microscopy as an imaging modality. We achieve vibrationally sensitive SFG imaging of biological samples with sub-μm resolution at image acquisition rates of 1 frame/s, almost two orders of magnitude faster than attained with previous point-scanning SFG microscopes. Using the fast scanning capability, we demonstrate hyperspectral SFG imaging in the CH-stretching vibrational range and point out its use in the study of molecular orientation and arrangement in biologically relevant samples. We also show multimodal imaging by combining SFG microscopy with second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) on the same imaging platfrom. This development underlines that SFG microscopy is a unique modality with a spatial resolution and image acquisition time comparable to that of other NLO imaging techniques, making point-scanning SFG microscopy a valuable member of the NLO imaging family. PMID:28966861
NASA Astrophysics Data System (ADS)
Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun
2016-09-01
Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively 3 mm FWHM and 10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two modalities.
Markel, D; Naqa, I El; Freeman, C; Vallières, M
2012-06-01
To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. It was found that JR divergence when used for segmentation has an improved robustness to noise compared to using mutual information, or other entropy-based metrics. The MI metric failed at around 2/3 the noise power than the JR divergence. The JR divergence metric is useful for the task of joint segmentation/registration of multimodality images and shows improved results compared entropy based metric. The algorithm can be easily modified to incorporate non-intensity based images, which would allow applications into multi-modality and texture analysis. © 2012 American Association of Physicists in Medicine.
Dual-Modality, Dual-Functional Nanoprobes for Cellular and Molecular Imaging
Menon, Jyothi U.; Gulaka, Praveen K.; McKay, Madalyn A.; Geethanath, Sairam; Liu, Li; Kodibagkar, Vikram D.
2012-01-01
An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO) nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence), dual-functional (oximetry/detection) nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications. PMID:23382776
Imaging and machine learning techniques for diagnosis of Alzheimer's disease.
Mirzaei, Golrokh; Adeli, Anahita; Adeli, Hojjat
2016-12-01
Alzheimer's disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.
Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong
2016-09-15
Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yan; Ji, Lei; Zhang, Bingbo; Yin, Peihao; Qiu, Yanyan; Song, Daqian; Zhou, Juying; Li, Qi
2013-05-01
Multi-modal imaging based on multifunctional nanoparticles is a promising alternative approach to improve the sensitivity of early cancer diagnosis. In this study, highly upconverting fluorescence and strong relaxivity rare-earth nanoparticles coated with paramagnetic lanthanide complex shells and polyethylene glycol (PEGylated UCNPs@DTPA-Gd3+) are synthesized as dual-modality imaging contrast agents (CAs) for upconverting fluorescent and magnetic resonance dual-modality imaging. PEGylated UCNPs@DTPA-Gd3+ with sizes in the range of 32-86 nm are colloidally stable. They exhibit higher longitudinal relaxivity and transverse relaxivity in water (r1 and r2 values are 7.4 and 27.8 s-1 per mM Gd3+, respectively) than does commercial Gd-DTPA (r1 and r2 values of 3.7 and 4.6 s-1 per mM Gd3+, respectively). They are found to be biocompatible. In vitro cancer cell imaging shows good imaging contrast of PEGylated UCNPs@DTPA-Gd3+. In vivo upconversion fluorescent imaging and T1-weighted MRI show excellent enhancement of both fluorescent and MR signals in the livers of mice administered PEGylated UCNPs@DTPA-Gd3+. All the experimental results indicate that the synthesized PEGylated UCNPs@DTPA-Gd3+ present great potential for biomedical upconversion of fluorescent and magnetic resonance dual-modality imaging applications.
NASA Astrophysics Data System (ADS)
Tang, Qinggong; Frank, Aaron; Wang, Jianting; Chen, Chao-wei; Jin, Lily; Lin, Jon; Chan, Joanne M.; Chen, Yu
2016-03-01
Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is unable to detect those subsurface lesions. Since cancer development is associated with both morphological and molecular alterations, imaging technologies that can quantitative image tissue's morphological and molecular biomarkers and assess the depth extent of a lesion in real time, without the need for tissue excision, would be a major advance in GI cancer diagnostics and therapy. In this research, we investigated the feasibility of multi-modal optical imaging including high-resolution optical coherence tomography (OCT) and depth-resolved high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. APC (adenomatous polyposis coli) mice model were imaged using OCT and FLOT and the correlated histopathological diagnosis was obtained. Quantitative structural (the scattering coefficient) and molecular imaging parameters (fluorescence intensity) from OCT and FLOT images were developed for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 87.4% (87.3%) for sensitivity (specificity) which gives the most optimal diagnosis (the largest area under receiver operating characteristic (ROC) curve). This project results in a new non-invasive multi-modal imaging platform for improved GI cancer detection, which is expected to have a major impact on detection, diagnosis, and characterization of GI cancers, as well as a wide range of epithelial cancers.
Listening to membrane potential: photoacoustic voltage-sensitive dye recording.
Zhang, Haichong K; Yan, Ping; Kang, Jeeun; Abou, Diane S; Le, Hanh N D; Jha, Abhinav K; Thorek, Daniel L J; Kang, Jin U; Rahmim, Arman; Wong, Dean F; Boctor, Emad M; Loew, Leslie M
2017-04-01
Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.
Listening to membrane potential: photoacoustic voltage-sensitive dye recording
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Yan, Ping; Kang, Jeeun; Abou, Diane S.; Le, Hanh N. D.; Jha, Abhinav K.; Thorek, Daniel L. J.; Kang, Jin U.; Rahmim, Arman; Wong, Dean F.; Boctor, Emad M.; Loew, Leslie M.
2017-04-01
Voltage-sensitive dyes (VSDs) are designed to monitor membrane potential by detecting fluorescence changes in response to neuronal or muscle electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. By contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near-infrared light excitation and ultrasound detection. Here, we show that voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. We synthesized a near-infrared photoacoustic VSD (PA-VSD), whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. A theoretical model accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate PA voltage sensing but also emphasize the interplay of both fluorescence and absorbance properties in the design of optimized PA probes. Together, our results demonstrate PA sensing as a potential new modality for recording and external imaging of electrophysiological and neurochemical events in the brain.
Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie
2015-02-01
As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Satija, Bhawna; Kumar, Sanyal; Wadhwa, Leena; Gupta, Taru; Kohli, Supreethi; Chandoke, Rajkumar; Gupta, Pratibha
2015-01-01
Context: Placenta accreta is the abnormal adherence of the placenta to the uterine wall and the most common cause for emergency postpartum hysterectomy. Accurate prenatal diagnosis of affected pregnancies allows optimal obstetric management. Aims: To summarize our experience in the antenatal diagnosis of placenta accreta on imaging in a tertiary care setup. To compare the accuracy of ultrasound (USG) with color Doppler (CDUS) and magnetic resonance imaging (MRI) in prenatal diagnosis of placenta accreta. Settings and Design: Prospective study in a tertiary care setup. Materials and Methods: A prospective study was conducted on pregnant females with high clinical risk of placenta accreta. Antenatal diagnosis was established based on CDUS and MRI. The imaging findings were compared with final diagnosis at the time of delivery and/or pathologic examination. Statistical Analysis Used: The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for both CDUS and MRI. The sensitivity and specificity values of USG and MRI were compared by the McNemar test. Results: Thirty patients at risk of placenta accreta underwent both CDUS and MRI. Eight cases of placenta accreta were identified (3 vera, 4 increta, and 1 percreta). All patients had history of previous cesarean section. Placenta previa was present in seven out of eight patients. USG correctly identified the presence of placenta accreta in seven out of eight patients (87.5% sensitivity) and the absence of placenta accreta in 19 out of 22 patients (86.4% specificity). MRI correctly identified the presence of placenta accreta in 6 out of 8 patients (75.0% sensitivity) and absence of placenta accreta in 17 out of 22 patients (77.3% specificity). There were no statistical differences in sensitivity (P = 1.00) and specificity (P = 0.687) between USG and MRI. Conclusions: Both USG and MRI have fairly good sensitivity for prenatal diagnosis of placenta accreta; however, specificity does not appear to be as good as reported in other studies. Both modalities have complimentary role and in cases of inconclusive findings with one imaging modality, the other modality may be useful for obtaining the diagnosis. CDUS remains the first primary modality for antenatal diagnosis of placenta accreta, with MRI reserved for cases where USG is inconclusive. PMID:26752827
Nanomaterials for In Vivo Imaging.
Smith, Bryan Ronain; Gambhir, Sanjiv Sam
2017-02-08
In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.
Design of magnetic and fluorescent nanoparticles for in vivo MR and NIRF cancer imaging
NASA Astrophysics Data System (ADS)
Key, Jaehong
One big challenge for cancer treatment is that it has many errors in detection of cancers in the early stages before metastasis occurs. Using a current imaging modality, the detection of small tumors having potential metastasis is still very difficult. Thus, the development of multi-component nanoparticles (NPs) for dual modality cancer imaging is invaluable. The multi-component NPs can be an alternative to overcome the limitations from an imaging modality. For example, the multi-component NPs can visualize small tumors in both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF) imaging, which can help find the location of the tumors deep inside the body using MRI and subsequently guide surgeons to delineate the margin of tumors using highly sensitive NIRF imaging during a surgical operation. In this dissertation, we demonstrated the potential of the MRI and NIRF dual-modality NPs for skin and bladder cancer imaging. The multi-component NPs consisted of glycol chitosan, superparamagnetic iron oxide, NIRF dye, and cancer targeting peptides. We characterized the NPs and evaluated them with tumor bearing mice as well as various cancer cells. The findings of this research will contribute to the development of cancer diagnostic imaging and it can also be extensively applied to drug delivery system and fluorescence-guided surgical removal of cancer.
Review of photoacoustic flow imaging: its current state and its promises
van den Berg, P.J.; Daoudi, K.; Steenbergen, W.
2015-01-01
Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages. PMID:26640771
Review of photoacoustic flow imaging: its current state and its promises.
van den Berg, P J; Daoudi, K; Steenbergen, W
2015-09-01
Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages.
NASA Astrophysics Data System (ADS)
Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.
2016-03-01
Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.
Badal, Josep; Biarnés, Marc; Monés, Jordi
2018-02-01
To describe the appearance of reticular pseudodrusen on multicolor imaging and to evaluate its diagnostic accuracy as compared with the two modalities that may be considered the current reference standard, blue light and infrared imaging. Retrospective study in which all multicolor images (constructed from images acquired at 486 nm-blue, 518 nm-green and 815 nm-infrared) of 45 consecutive patients visited in a single center was reviewed. Inclusion criteria involved the presence of >1 reticular pseudodrusen on a 30° × 30° image centered on the fovea as seen with the blue light channel derived from the multicolor imaging. Three experienced observers, masked to each other's results with other imaging modalities, independently classified the number of reticular pseudodrusen with each modality. The median interobserver agreement (kappa) was 0.58 using blue light; 0.65 using infrared; and 0.64 using multicolor images. Multicolor and infrared modalities identified a higher number of reticular pseudodrusen than blue light modality in all fields for all observers (p < 0.0001). Results were not different when multicolor and infrared were compared (p ≥ 0.27). These results suggest that multicolor and infrared are more sensitive and reproducible than blue light in the identification of RPD. Multicolor did not appear to add a significant value to infrared in the evaluation of RDP. Clinicians using infrared do not need to incorporate multicolor for the identification and quantification of RPD.
Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography
NASA Astrophysics Data System (ADS)
Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz
2015-12-01
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.
Multimodal Nonlinear Optical Microscopy
Yue, Shuhua; Slipchenko, Mikhail N.; Cheng, Ji-Xin
2013-01-01
Because each nonlinear optical (NLO) imaging modality is sensitive to specific molecules or structures, multimodal NLO imaging capitalizes the potential of NLO microscopy for studies of complex biological tissues. The coupling of multiphoton fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS) has allowed investigation of a broad range of biological questions concerning lipid metabolism, cancer development, cardiovascular disease, and skin biology. Moreover, recent research shows the great potential of using CARS microscope as a platform to develop more advanced NLO modalities such as electronic-resonance-enhanced four-wave mixing, stimulated Raman scattering, and pump-probe microscopy. This article reviews the various approaches developed for realization of multimodal NLO imaging as well as developments of new NLO modalities on a CARS microscope. Applications to various aspects of biological and biomedical research are discussed. PMID:24353747
NASA Astrophysics Data System (ADS)
Dang, Jun; Frisch, Benjamin; Lasaygues, Philippe; Zhang, Dachun; Tavernier, Stefaan; Felix, Nicolas; Lecoq, Paul; Auffray, Etiennette; Varela, Joao; Mensah, Serge; Wan, Mingxi
2011-06-01
Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED).
Nonlinear PET parametric image reconstruction with MRI information using kernel method
NASA Astrophysics Data System (ADS)
Gong, Kuang; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi
2017-03-01
Positron Emission Tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neurology. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information. Previously we have used kernel learning to embed MR information in static PET reconstruction and direct Patlak reconstruction. Here we extend this method to direct reconstruction of nonlinear parameters in a compartment model by using the alternating direction of multiplier method (ADMM) algorithm. Simulation studies show that the proposed method can produce superior parametric images compared with existing methods.
Image Guided Biodistribution and Pharmacokinetic Studies of Theranostics
Ding, Hong; Wu, Fang
2012-01-01
Image guided technique is playing an increasingly important role in the investigation of the biodistribution and pharmacokinetics of drugs or drug delivery systems in various diseases, especially cancers. Besides anatomical imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), molecular imaging strategy including optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) will facilitate the localization and quantization of radioisotope or optical probe labeled nanoparticle delivery systems in the category of theranostics. The quantitative measurement of the bio-distribution and pharmacokinetics of theranostics in the fields of new drug/probe development, diagnosis and treatment process monitoring as well as tracking the brain-blood-barrier (BBB) breaking through by high sensitive imaging method, and the applications of the representative imaging modalities are summarized in this review. PMID:23227121
Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming
2018-02-19
The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.
NASA Astrophysics Data System (ADS)
Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang
2015-06-01
PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.
NASA Astrophysics Data System (ADS)
Li, Jiawen; Ma, Teng; Mohar, Dilbahar; Correa, Adrian; Minami, Hataka; Jing, Joseph; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping
2014-03-01
Intravascular ultrasound (IVUS) imaging and optical coherence tomography (OCT), two commonly used intracoronary imaging modalities, play important roles in plaque evaluation. The combined use of IVUS (to visualize the entire plaque volume) and OCT (to quantify the thickness of the plaque cap, if any) is hypothesized to increase plaque diagnostic accuracy. Our group has developed a fully-integrated dual-modality IVUS-OCT imaging system and 3.6F catheter for simultaneous IVUS-OCT imaging with a high resolution and deep penetration depth. However, the diagnostic accuracy of an integrated IVUS-OCT system has not been investigated. In this study, we imaged 175 coronary artery sites (241 regions of interest) from 20 cadavers using our previous reported integrated IVUS-OCT system. IVUS-OCT images were read by two skilled interventional cardiologists. Each region of interest was classified as either calcification, lipid pool or fibrosis. Comparing the diagnosis by cardiologists using IVUSOCT images with the diagnosis by the pathologist, we calculated the sensitivity and specificity for characterization of calcification, lipid pool or fibrosis with this integrated system. In vitro imaging of cadaver coronary specimens demonstrated the complementary nature of these two modalities for plaques classification. A higher accuracy was shown than using a single modality alone.
Addition of right-sided and posterior precordial leads during stress testing.
Shry, Eric A; Eckart, Robert E; Furgerson, James L; Stajduhar, Karl C; Krasuski, Richard A
2003-12-01
Exercise treadmill testing has limited sensitivity for the detection of coronary artery disease, frequently requiring the addition of imaging modalities to enhance the predictive value of the test. Recently, there has been interest in using nonstandard electrocardiographic (ECG) leads during exercise testing. We consecutively enrolled all patients undergoing exercise myocardial imaging with four additional leads recorded (V4R, V7, V8, and V9). The test characteristics of the 12-lead, the 15-lead (12-lead, V7, V8, V9), and the 16-lead (12-lead, V4R, V7, V8, V9) ECGs were compared with stress imaging in all patients. In the subset of patients who underwent angiography within 60 days of stress testing, these lead arrays were compared with the catheterization findings. There were 727 subjects who met entry criteria. The mean age was 58.5 +/- 12.3 years, and 366 (50.3%) were women. Pretest probability for disease was high in 241 (33.1%), intermediate in 347 (47.7%), and low in 139 (19.1%). A total of 166 subjects had an abnormal 12-lead ECG during exercise. The addition of 3 posterior leads to the standard 12-lead ECG resulted in 7 additional subjects having an abnormal electrocardiographic response to exercise. The addition of V4R resulted in only 1 additional patient having an abnormal ECG during exercise. The sensitivity of the ECG for detecting ischemia as determined by stress imaging was 36.6%, 39.2%, and 40.0% (P = NS) for the 12-lead, 15-lead, and 16-lead ECGs, respectively. In those with catheterization data (n = 123), the sensitivity for determining obstructive coronary artery disease was 43.5%, 45.2%, and 45.2% (P = NS) for the 12-lead, 15-lead, and 16-lead ECGs, respectively. The sensitivity of imaging modalities was 77.4% when compared with catheterization. In patients undergoing stress imaging studies, the addition of right-sided and posterior leads did not significantly increase the sensitivity of the ECG for the detection of myocardial ischemia. Additional leads should not be used to replace imaging modalities for the detection of coronary artery disease.
Imaging of common breast implants and implant-related complications: A pictorial essay
Shah, Amisha T; Jankharia, Bijal B
2016-01-01
The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer. PMID:27413269
Imaging of common breast implants and implant-related complications: A pictorial essay.
Shah, Amisha T; Jankharia, Bijal B
2016-01-01
The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer.
Diagnostic imaging and interventional therapy of hepatocellular carcinoma.
Palma, L D
1998-08-01
Diagnostic imaging has many important roles in the management of patients with hepatocellular carcinoma (HCC). In diagnosis, lipiodol CT (LCT) has been shown to be the most sensitive imaging modality (90-97%) for all sizes of lesions; all other modalities have high sensitivities for lesions 1-3 cm but low sensitivities for lesions < 1 cm (ultrasound 33-37%, conventional CT 20-42% and digital subtraction angiography 40-55%). All imaging modalities understage HCC. Once again LCT is the most accurate method of evaluating the extent of tumour, but even this method does not identify all satellite nodules. Ultrasound has been proposed as a screening method, but this cannot be justified on the basis of its results or cost benefit analysis. Both CT and dynamic MRI play useful roles in evaluating the efficacy and follow-up of patients undergoing chemoembolization (TACE) and percutaneous ethanol injection (PEI). Although surgery remains the best treatment of HCC, it is unsuitable in most of the cases which would be better treated with interventional therapy. This article presents a review of the literature regarding the use of TACE, PEI or a combination of both procedures in the treatment of HCC. A multicentric study has shown that patients with monofocal lesions less than 5 cm in diameter are better treated with PEI, which is therefore a good alternative to the surgical treatment; patients with multifocal lesions (maximum of three lesions) show a better survival with TACE. Combined treatment with TACE and PEI proves to be effective in patients with large HCC.
Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan
2014-01-01
Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery.
Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan
2014-01-01
Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092
Photoacoustic imaging of inflammatory arthritis in human joints
NASA Astrophysics Data System (ADS)
Jo, Janggun; Xu, Guan; Marquardt, April; Francis, Sheeja; Yuan, Jie; Girish, Dhanuj; Girish, Gandikota; Wang, Xueding
2016-02-01
The ducal imaging with photoacoustic imaging (PAI) that is an emerging technology and clinical ultrasound imaging that is an established modality is developed for the imaging of early inflammatory arthritis. PAI is sensitive to blood volume, not limited by flow like ultrasound, holding great promise for the earliest detection of increase in blood volume and angiogenesis - a key early finding inflammation PAI has the capability of assessing inflammation in superficial human soft tissues, offering potential benefits in diagnosis, treatment and monitoring of inflammatory arthritis. PAI combined with ultrasonography (US), is a real time dual-modality system developed and tested to identify active synovitis in metacarpophalangeal (MCP) joints of 10 arthritis patients and 10 normal volunteers. Photoacoustic images of the joints were acquired at 580-nm laser wavelength, which provided the desired balance between the optical contrast of hemoglobin over bone cortex and the imaging depth. Confirmed by US Doppler imaging, the results from ten patients and ten normal volunteers demonstrated satisfactory sensitivity of PAI in assessing enhanced blood flow due to active synovitis. This preliminary study suggests that photoacoustic imaging, by identifying early increase in blood volume, related to increased vascularity, a hallmark of joint inflammation, could be a valuable supplement to musculoskeletal US.
NASA Astrophysics Data System (ADS)
Adi Aizudin Bin Radin Nasirudin, Radin; Meier, Reinhard; Ahari, Carmen; Sievert, Matti; Fiebich, Martin; Rummeny, Ernst J.; No"l, Peter B.
2011-03-01
Optical imaging (OI) is a relatively new method in detecting active inflammation of hand joints of patients suffering from rheumatoid arthritis (RA). With the high number of people affected by this disease especially in western countries, the availability of OI as an early diagnostic imaging method is clinically highly relevant. In this paper, we present a newly in-house developed OI analyzing tool and a clinical evaluation study. Our analyzing tool extends the capability of existing OI tools. We include many features in the tool, such as region-based image analysis, hyper perfusion curve analysis, and multi-modality image fusion to aid clinicians in localizing and determining the intensity of inflammation in joints. Additionally, image data management options, such as the full integration of PACS/RIS, are included. In our clinical study we demonstrate how OI facilitates the detection of active inflammation in rheumatoid arthritis. The preliminary clinical results indicate a sensitivity of 43.5%, a specificity of 80.3%, an accuracy of 65.7%, a positive predictive value of 76.6%, and a negative predictive value of 64.9% in relation to clinical results from MRI. The accuracy of inflammation detection serves as evidence to the potential of OI as a useful imaging modality for early detection of active inflammation in patients with rheumatoid arthritis. With our in-house developed tool we extend the usefulness of OI imaging in the clinical arena. Overall, we show that OI is a fast, inexpensive, non-invasive and nonionizing yet highly sensitive and accurate imaging modality.-
Zakaria, Zulkarnay; Rahim, Ruzairi Abdul; Mansor, Muhammad Saiful Badri; Yaacob, Sazali; Ayub, Nor Muzakkir Nor; Muji, Siti Zarina Mohd.; Rahiman, Mohd Hafiz Fazalul; Aman, Syed Mustafa Kamal Syed
2012-01-01
Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology. PMID:22969341
NASA Astrophysics Data System (ADS)
Yu, Ping; Ma, Lixin
2012-02-01
In this work we developed two biomedical imaging techniques for early detection of breast cancer. Both image modalities provide molecular imaging capability to probe site-specific targeting dyes. The first technique, heterodyne CCD fluorescence mediated tomography, is a non-invasive biomedical imaging that uses fluorescent photons from the targeted dye on the tumor cells inside human breast tissue. The technique detects a large volume of tissue (20 cm) with a moderate resolution (1 mm) and provides the high sensitivity. The second technique, dual-band spectral-domain optical coherence tomography, is a high-resolution tissue imaging modality. It uses a low coherence interferometer to detect coherent photons hidden in the incoherent background. Due to the coherence detection, a high resolution (20 microns) is possible. We have finished prototype imaging systems for the development of both image modalities and performed imaging experiments on tumor tissues. The spectroscopic/tomographic images show contrasts of dense tumor tissues and tumor necrotic regions. In order to correlate the findings from our results, a diffusion-weighted magnetic resonance imaging (MRI) of the tumors was performed using a small animal 7-Telsa MRI and demonstrated excellent agreement.
Gibson, Eli; Fenster, Aaron; Ward, Aaron D
2013-10-01
Novel imaging modalities are pushing the boundaries of what is possible in medical imaging, but their signal properties are not always well understood. The evaluation of these novel imaging modalities is critical to achieving their research and clinical potential. Image registration of novel modalities to accepted reference standard modalities is an important part of characterizing the modalities and elucidating the effect of underlying focal disease on the imaging signal. The strengths of the conclusions drawn from these analyses are limited by statistical power. Based on the observation that in this context, statistical power depends in part on uncertainty arising from registration error, we derive a power calculation formula relating registration error, number of subjects, and the minimum detectable difference between normal and pathologic regions on imaging, for an imaging validation study design that accommodates signal correlations within image regions. Monte Carlo simulations were used to evaluate the derived models and test the strength of their assumptions, showing that the model yielded predictions of the power, the number of subjects, and the minimum detectable difference of simulated experiments accurate to within a maximum error of 1% when the assumptions of the derivation were met, and characterizing sensitivities of the model to violations of the assumptions. The use of these formulae is illustrated through a calculation of the number of subjects required for a case study, modeled closely after a prostate cancer imaging validation study currently taking place at our institution. The power calculation formulae address three central questions in the design of imaging validation studies: (1) What is the maximum acceptable registration error? (2) How many subjects are needed? (3) What is the minimum detectable difference between normal and pathologic image regions? Copyright © 2013 Elsevier B.V. All rights reserved.
Hotfiel, Thilo; Heiss, Rafael; Swoboda, Bernd; Kellermann, Marion; Gelse, Kolja; Grim, Casper; Strobel, Deike; Wildner, Dane
2018-07-01
To emphasize the diagnostic value of contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries with different degrees of severity by comparing findings to established imaging modalities such as conventional ultrasound and magnetic resonance imaging (MRI). Case series. Institutional study. Conventional ultrasound and CEUS were performed in the Department of Internal Medicine. Magnetic resonance imaging was carried out in the Department of Radiology within the Magnetom Avanto 1.5T and Magnetom Skyra fit 3T (Siemens Healthineers, Erlangen, Germany) and in the Institution of Imaging Diagnostics and Therapy (Magnetom Avanto 1.5T; Siemens, Erlangen, Germany). Fifteen patients who underwent an acute muscle injury were recruited. The appearance and detectable size of muscle injuries were compared between each imaging modality. The injuries were assessed by 3 independent observers and blinded between imaging modalities. All 15 injuries were identified on MRI and CEUS, whereas 10 injuries showed abnormalities in conventional ultrasound. The determination and measurement revealed significant differences between conventional ultrasound and CEUS depending on injury severity. Contrast-enhanced ultrasound revealed an impairment of microcirculation in grade I lesions (corresponding to intramuscular edema observed in MRI), which was not detectable using conventional ultrasound. Our results indicate that performing CEUS seems to be a sensitive additional diagnostic modality in the early assessment of muscle injuries. Our results highlight the advantages of CEUS in the imaging of low-grade lesions when compared with conventional ultrasound, as this was the more accurate modality for identifying intramuscular edema.
Infrared imaging enhances retinal crystals in Bietti's crystalline dystrophy.
Brar, Vikram S; Benson, William H
2015-01-01
Infrared imaging dramatically increased the number of crystalline deposits visualized compared with clinical examination, standard color fundus photography, and red free imaging in patients with Bietti's crystalline dystrophy. We believe that this imaging modality significantly improves the sensitivity with which these lesions are detected, facilitating earlier diagnosis and may potentially serve as a prognostic indicator when examined over time.
Donovan, Michael S; Kassop, David; Liotta, Robert A; Hulten, Edward A
2015-01-01
Sinus venosus atrial septal defects (SV-ASD) have nonspecific clinical presentations and represent a diagnostic imaging challenge. Transthoracic echocardiography (TTE) remains the initial diagnostic imaging modality. However, detection rates have been as low as 12%. Transesophageal echocardiography (TEE) improves diagnostic accuracy though it may not detect commonly associated partial anomalous pulmonary venous return (PAPVR). Cardiac magnetic resonance (CMR) imaging provides a noninvasive, highly sensitive and specific imaging modality of SV-ASD. We describe a case of an adult male with exercise-induced, paroxysmal supraventricular tachycardia who presented with palpitations and dyspnea. Despite nondiagnostic imaging results on TTE, CMR proved to be instrumental in visualizing a hemodynamically significant SV-ASD with PAPVR that ultimately led to surgical correction.
Donovan, Michael S.; Kassop, David; Liotta, Robert A.; Hulten, Edward A.
2015-01-01
Sinus venosus atrial septal defects (SV-ASD) have nonspecific clinical presentations and represent a diagnostic imaging challenge. Transthoracic echocardiography (TTE) remains the initial diagnostic imaging modality. However, detection rates have been as low as 12%. Transesophageal echocardiography (TEE) improves diagnostic accuracy though it may not detect commonly associated partial anomalous pulmonary venous return (PAPVR). Cardiac magnetic resonance (CMR) imaging provides a noninvasive, highly sensitive and specific imaging modality of SV-ASD. We describe a case of an adult male with exercise-induced, paroxysmal supraventricular tachycardia who presented with palpitations and dyspnea. Despite nondiagnostic imaging results on TTE, CMR proved to be instrumental in visualizing a hemodynamically significant SV-ASD with PAPVR that ultimately led to surgical correction. PMID:25705227
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Majewski, Stan; Velan, S. Sendhil; Lemieux, Susan; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.
2007-06-01
Multi-modality imaging (such as PET-CT) is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET, fused with anatomical images created by MRI, allow the correlation of form with function. Perhaps more exciting than the combination of anatomical MRI with PET, is the melding of PET with MR spectroscopy (MRS). Thus, two aspects of physiology could be combined in novel ways to produce new insights into the physiology of normal and pathological processes. Our team is developing a system to acquire MRI images and MRS spectra, and PET images contemporaneously. The prototype MR-compatible PET system consists of two opposed detector heads (appropriate in size for small animal imaging), operating in coincidence mode with an active field-of-view of ˜14 cm in diameter. Each detector consists of an array of LSO detector elements coupled through a 2-m long fiber optic light guide to a single position-sensitive photomultiplier tube. The use of light guides allows these magnetic field-sensitive elements of the PET imager to be positioned outside the strong magnetic field of our 3T MRI scanner. The PET scanner imager was integrated with a 12-cm diameter, 12-leg custom, birdcage coil. Simultaneous MRS spectra and PET images were successfully acquired from a multi-modality phantom consisting of a sphere filled with 17 brain relevant substances and a positron-emitting radionuclide. There were no significant changes in MRI or PET scanner performance when both were present in the MRI magnet bore. This successful initial test demonstrates the potential for using such a multi-modality to obtain complementary MRS and PET data.
Henninger, B.; Putzer, D.; Kendler, D.; Uprimny, C.; Virgolini, I.; Gunsilius, E.; Bale, R.
2012-01-01
Aim. The purpose of this study was to evaluate the accuracy of 2-deoxy-2-[fluorine-18]fluoro-D-glucose (FDG) positron emission tomography (PET), computed tomography (CT), and software-based image fusion of both modalities in the imaging of non-Hodgkin's lymphoma (NHL) and Hodgkin's disease (HD). Methods. 77 patients with NHL (n = 58) or HD (n = 19) underwent a FDG PET scan, a contrast-enhanced CT, and a subsequent digital image fusion during initial staging or followup. 109 examinations of each modality were evaluated and compared to each other. Conventional staging procedures, other imaging techniques, laboratory screening, and follow-up data constituted the reference standard for comparison with image fusion. Sensitivity and specificity were calculated for CT and PET separately. Results. Sensitivity and specificity for detecting malignant lymphoma were 90% and 76% for CT and 94% and 91% for PET, respectively. A lymph node region-based analysis (comprising 14 defined anatomical regions) revealed a sensitivity of 81% and a specificity of 97% for CT and 96% and 99% for FDG PET, respectively. Only three of 109 image fusion findings needed further evaluation (false positive). Conclusion. Digital fusion of PET and CT improves the accuracy of staging, restaging, and therapy monitoring in patients with malignant lymphoma and may reduce the need for invasive diagnostic procedures. PMID:22654631
Molecular-genetic imaging based on reporter gene expression.
Kang, Joo Hyun; Chung, June-Key
2008-06-01
Molecular imaging includes proteomic, metabolic, cellular biologic process, and genetic imaging. In a narrow sense, molecular imaging means genetic imaging and can be called molecular-genetic imaging. Imaging reporter genes play a leading role in molecular-genetic imaging. There are 3 major methods of molecular-genetic imaging, based on optical, MRI, and nuclear medicine modalities. For each of these modalities, various reporter genes and probes have been developed, and these have resulted in successful transitions from bench to bedside applications. Each of these imaging modalities has its unique advantages and disadvantages. Fluorescent and bioluminescent optical imaging modalities are simple, less expensive, more convenient, and more user friendly than other imaging modalities. Another advantage, especially of bioluminescence imaging, is its ability to detect low levels of gene expression. MRI has the advantage of high spatial resolution, whereas nuclear medicine methods are highly sensitive and allow data from small-animal imaging studies to be translated to clinical practice. Moreover, multimodality imaging reporter genes will allow us to choose the imaging technologies that are most appropriate for the biologic problem at hand and facilitate the clinical application of reporter gene technologies. Reporter genes can be used to visualize the levels of expression of particular exogenous and endogenous genes and several intracellular biologic phenomena, including specific signal transduction pathways, nuclear receptor activities, and protein-protein interactions. This technique provides a straightforward means of monitoring tumor mass and can visualize the in vivo distributions of target cells, such as immune cells and stem cells. Molecular imaging has gradually evolved into an important tool for drug discovery and development, and transgenic mice with an imaging reporter gene can be useful during drug and stem cell therapy development. Moreover, instrumentation improvements, the identification of novel targets and genes, and imaging probe developments suggest that molecular-genetic imaging is likely to play an increasingly important role in the diagnosis and therapy of cancer.
Dual-Modality PET/Ultrasound imaging of the Prostate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Jennifer S.; Moses, William W.; Pouliot, Jean
2005-11-11
Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should helpmore » provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.« less
Ultrasonography and magnetic resonance imaging in the diagnosis of Morton's neuroma.
Fazal, Muhammad Ali; Khan, Ishrat; Thomas, Cherian
2012-01-01
Magnetic resonance imaging (MRI) and ultrasonography are used widely for the diagnosis of Morton's neuroma. The aim of this study was to assess the accuracy of these two modalities as diagnostic tools in Morton's neuroma. Fifty feet of 47 consecutive patients (39 women and 8 men; mean age, 46 years; age range, 36-64 years) who presented between January 1, 2005, and June 30, 2008, were included in the study. Twenty-five feet were investigated with ultrasonography and 25 with MRI. Morton's neuroma was confirmed surgically and histologically in all of the patients. A Student unpaired t test was applied. Twenty-two MRIs were diagnostic (sensitivity, 88%). Three patients with negative MRI findings underwent ultrasonography and were found to have a neuroma smaller than 5 mm. Twenty-four ultrasound scans demonstrated the neuroma (sensitivity, 96%), with five neuromas being smaller than 5 mm. Ultrasonography has a slightly higher sensitivity in the diagnosis of Morton's neuroma, particularly of neuromas smaller than 5 mm, and should be the preferred imaging modality in suspected cases, and MRI should be reserved for cases with equivocal diagnosis.
Joice, Gregory A; Rowe, Steven P; Pienta, Kenneth J; Gorin, Michael A
2017-11-01
The aim of this review is to discuss how novel imaging modalities and molecular markers are shaping the definition of oligometastatic prostate cancer. To effectively classify a patient as having oligometastatic prostate cancer, diagnostic tests must be sensitive enough to detect subtle sites of metastatic disease. Conventional imaging modalities can readily detect widespread polymetastatic disease but do not have the sensitivity necessary to reliably classify patients as oligometastatic. Molecular imaging using both metabolic- and molecularly-targeted radiotracers has demonstrated great promise in aiding in our ability to define the oligometastatic state. Perhaps the most promising data to date have been generated with radiotracers targeting prostate-specific membrane antigen. In addition, early studies are beginning to define biologic markers in the oligometastatic state that may be indicative of disease with minimal metastatic potential. Recent developments in molecular imaging have allowed for improved detection of metastatic prostate cancer allowing for more accurate staging of patients with oligometastatic disease. Future development of biologic markers may assist in defining the oligometastatic state and determining prognosis.
Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L; Wang, Xueding; Liu, Xiaojun
2013-08-01
Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.
NaGdF4:Nd3+/Yb3+ Nanoparticles as Multimodal Imaging Agents
NASA Astrophysics Data System (ADS)
Pedraza, Francisco; Rightsell, Chris; Kumar, Ga; Giuliani, Jason; Monton, Car; Sardar, Dhiraj
Medical imaging is a fundamental tool used for the diagnosis of numerous ailments. Each imaging modality has unique advantages; however, they possess intrinsic limitations. Some of which include low spatial resolution, sensitivity, penetration depth, and radiation damage. To circumvent this problem, the combination of imaging modalities, or multimodal imaging, has been proposed, such as Near Infrared Fluorescence imaging (NIRF) and Magnetic Resonance Imaging (MRI). Combining individual advantages, specificity and selectivity of NIRF with the deep penetration and high spatial resolution of MRI, it is possible to circumvent their shortcomings for a more robust imaging technique. In addition, both imaging modalities are very safe and minimally invasive. Fluorescent nanoparticles, such as NaGdF4:Nd3 +/Yb3 +, are excellent candidates for NIRF/MRI multimodal imaging. The dopants, Nd and Yb, absorb and emit within the biological window; where near infrared light is less attenuated by soft tissue. This results in less tissue damage and deeper tissue penetration making it a viable candidate in biological imaging. In addition, the inclusion of Gd results in paramagnetic properties, allowing their use as contrast agents in multimodal imaging. The work presented will include crystallographic results, as well as full optical and magnetic characterization to determine the nanoparticle's viability in multimodal imaging.
Infrared imaging enhances retinal crystals in Bietti’s crystalline dystrophy
Brar, Vikram S; Benson, William H
2015-01-01
Infrared imaging dramatically increased the number of crystalline deposits visualized compared with clinical examination, standard color fundus photography, and red free imaging in patients with Bietti’s crystalline dystrophy. We believe that this imaging modality significantly improves the sensitivity with which these lesions are detected, facilitating earlier diagnosis and may potentially serve as a prognostic indicator when examined over time. PMID:25931805
The diagnostic value of narrow-band imaging for early and invasive lung cancer: a meta-analysis.
Zhu, Juanjuan; Li, Wei; Zhou, Jihong; Chen, Yuqing; Zhao, Chenling; Zhang, Ting; Peng, Wenjia; Wang, Xiaojing
2017-07-01
This study aimed to compare the ability of narrow-band imaging to detect early and invasive lung cancer with that of conventional pathological analysis and white-light bronchoscopy. We searched the PubMed, EMBASE, Sinomed, and China National Knowledge Infrastructure databases for relevant studies. Meta-disc software was used to perform data analysis, meta-regression analysis, sensitivity analysis, and heterogeneity testing, and STATA software was used to determine if publication bias was present, as well as to calculate the relative risks for the sensitivity and specificity of narrow-band imaging vs those of white-light bronchoscopy for the detection of early and invasive lung cancer. A random-effects model was used to assess the diagnostic efficacy of the above modalities in cases in which a high degree of between-study heterogeneity was noted with respect to their diagnostic efficacies. The database search identified six studies including 578 patients. The pooled sensitivity and specificity of narrow-band imaging were 86% (95% confidence interval: 83-88%) and 81% (95% confidence interval: 77-84%), respectively, and the pooled sensitivity and specificity of white-light bronchoscopy were 70% (95% confidence interval: 66-74%) and 66% (95% confidence interval: 62-70%), respectively. The pooled relative risks for the sensitivity and specificity of narrow-band imaging vs the sensitivity and specificity of white-light bronchoscopy for the detection of early and invasive lung cancer were 1.33 (95% confidence interval: 1.07-1.67) and 1.09 (95% confidence interval: 0.84-1.42), respectively, and sensitivity analysis showed that narrow-band imaging exhibited good diagnostic efficacy with respect to detecting early and invasive lung cancer and that the results of the study were stable. Narrow-band imaging was superior to white light bronchoscopy with respect to detecting early and invasive lung cancer; however, the specificities of the two modalities did not differ significantly.
Uematsu, Takayoshi
2017-01-01
This article discusses possible supplemental breast cancer screening modalities for younger women with dense breasts from a perspective of population-based breast cancer screening program in Japan. Supplemental breast cancer screening modalities have been proposed to increase the sensitivity and detection rates of early stage breast cancer in women with dense breasts; however, there are no global guidelines that recommend the use of supplemental breast cancer screening modalities in such women. Also, no criterion standard exists for breast density assessment. Based on the current situation of breast imaging in Japan, the possible supplemental breast cancer screening modalities are ultrasonography, digital breast tomosynthesis, and breast magnetic resonance imaging. An appropriate population-based breast cancer screening program based on the balance between cost and benefit should be a high priority. Further research based on evidence-based medicine is encouraged. It is very important that the ethnicity, workforce, workflow, and resources for breast cancer screening in each country should be considered when considering supplemental breast cancer screening modalities for women with dense breasts.
Grahn, Jessica A.; Henry, Molly J.; McAuley, J. Devin
2011-01-01
How we measure time and integrate temporal cues from different sensory modalities are fundamental questions in neuroscience. Sensitivity to a “beat” (such as that routinely perceived in music) differs substantially between auditory and visual modalities. Here we examined beat sensitivity in each modality, and examined cross-modal influences, using functional magnetic resonance imaging (fMRI) to characterize brain activity during perception of auditory and visual rhythms. In separate fMRI sessions, participants listened to auditory sequences or watched visual sequences. The order of auditory and visual sequence presentation was counterbalanced so that cross-modal order effects could be investigated. Participants judged whether sequences were speeding up or slowing down, and the pattern of tempo judgments was used to derive a measure of sensitivity to an implied beat. As expected, participants were less sensitive to an implied beat in visual sequences than in auditory sequences. However, visual sequences produced a stronger sense of beat when preceded by auditory sequences with identical temporal structure. Moreover, increases in brain activity were observed in the bilateral putamen for visual sequences preceded by auditory sequences when compared to visual sequences without prior auditory exposure. No such order-dependent differences (behavioral or neural) were found for the auditory sequences. The results provide further evidence for the role of the basal ganglia in internal generation of the beat and suggest that an internal auditory rhythm representation may be activated during visual rhythm perception. PMID:20858544
NASA Astrophysics Data System (ADS)
Chen, Jingqin; Liu, Chengbo; Zeng, Guang; You, Yujia; Wang, Huina; Gong, Xiaojing; Zheng, Rongqin; Kim, Jeesu; Kim, Chulhong; Song, Liang
2016-02-01
Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.
High sensitivity optical molecular imaging system
NASA Astrophysics Data System (ADS)
An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie
2018-02-01
Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.
Cross-modality PET/CT and contrast-enhanced CT imaging for pancreatic cancer
Zhang, Jian; Zuo, Chang-Jing; Jia, Ning-Yang; Wang, Jian-Hua; Hu, Sheng-Ping; Yu, Zhong-Fei; Zheng, Yuan; Zhang, An-Yu; Feng, Xiao-Yuan
2015-01-01
AIM: To explore the diagnostic value of the cross-modality fusion images provided by positron emission tomography/computed tomography (PET/CT) and contrast-enhanced CT (CECT) for pancreatic cancer (PC). METHODS: Data from 70 patients with pancreatic lesions who underwent CECT and PET/CT examinations at our hospital from August 2010 to October 2012 were analyzed. PET/CECT for the cross-modality image fusion was obtained using TureD software. The diagnostic efficiencies of PET/CT, CECT and PET/CECT were calculated and compared with each other using a χ2 test. P < 0.05 was considered to indicate statistical significance. RESULTS: Of the total 70 patients, 50 had PC and 20 had benign lesions. The differences in the sensitivity, negative predictive value (NPV), and accuracy between CECT and PET/CECT in detecting PC were statistically significant (P < 0.05 for each). In 15 of the 31 patients with PC who underwent a surgical operation, peripancreatic vessel invasion was verified. The differences in the sensitivity, positive predictive value, NPV, and accuracy of CECT vs PET/CT and PET/CECT vs PET/CT in diagnosing peripancreatic vessel invasion were statistically significant (P < 0.05 for each). In 19 of the 31 patients with PC who underwent a surgical operation, regional lymph node metastasis was verified by postsurgical histology. There was no statistically significant difference among the three methods in detecting regional lymph node metastasis (P > 0.05 for each). In 17 of the 50 patients with PC confirmed by histology or clinical follow-up, distant metastasis was confirmed. The differences in the sensitivity and NPV between CECT and PET/CECT in detecting distant metastasis were statistically significant (P < 0.05 for each). CONCLUSION: Cross-modality image fusion of PET/CT and CECT is a convenient and effective method that can be used to diagnose and stage PC, compensating for the defects of PET/CT and CECT when they are conducted individually. PMID:25780297
NASA Astrophysics Data System (ADS)
Li, Yan; Jing, Joseph C.; Qu, Yueqiao; Miao, Yusi; Ma, Teng; Yu, Mingyue; Zhou, Qifa; Chen, Zhongping
2017-02-01
The rupture of atherosclerotic plaques is the leading cause of acute coronary events, so accurate assessment of plaque is critical. A large lipid pool, thin fibrous cap, and inflammatory reaction are the crucial characteristics for identifying vulnerable plaques. In our study, a tri-modality imaging system for intravascular imaging was designed and implemented. The tri-modality imaging system with a 1-mm probe diameter is able to simultaneously acquire optical coherence tomography (OCT), intravascular ultrasound (IVUS), and fluorescence imaging. Moreover, for fluorescence imaging, we used the FDA-approved indocyanine green (ICG) dye as the contrast agent to target lipid-loaded macrophages. Firstly, IVUS is used as the first step for identifying plaque since IVUS enables the visualization of the layered structures of the artery wall. Due to low soft-tissue contrast, IVUS only provides initial identification of the lipid plaque. Then OCT is used for differentiating fibrosis and lipid pool based on its relatively higher soft tissue contrast and high sensitivity/specificity. Last, fluorescence imaging is used for identifying inflammatory reaction to further confirm whether the plaque is vulnerable or not. Ex vivo experiment of a male New Zealand white rabbit aorta was performed to validate the performance of our tri-modality system. H and E histology results of the rabbit aorta were also presented to check assessment accuracy. The miniature tri-modality probe, together with the use of ICG dye suggest that the system is of great potential for providing a more accurate assessment of vulnerable plaques in clinical applications.
3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azpiroz, J.; Krafft, J.; Cadena, M.
2006-09-08
Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualizationmore » allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.« less
3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog
NASA Astrophysics Data System (ADS)
Azpiroz, J.; Krafft, J.; Cadena, M.; Rodríguez, A. O.
2006-09-01
Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualization allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.
Diagnostic performance of 3D standing CT imaging for detection of knee osteoarthritis features.
Segal, Neil A; Nevitt, Michael C; Lynch, John A; Niu, Jingbo; Torner, James C; Guermazi, Ali
2015-07-01
To determine the diagnostic performance of standing computerized tomography (SCT) of the knee for osteophytes and subchondral cysts compared with fixed-flexion radiography, using MRI as the reference standard. Twenty participants were recruited from the Multicenter Osteoarthritis Study. Participants' knees were imaged with SCT while standing in a knee-positioning frame, and with postero-anterior fixed-flexion radiography and 1T MRI. Medial and lateral marginal osteophytes and subchondral cysts were scored on bilateral radiographs and coronal SCT images using the OARSI grading system and on coronal MRI using Whole Organ MRI Scoring. Imaging modalities were read separately with images in random order. Sensitivity, specificity and accuracy for the detection of lesions were calculated and differences between modalities were tested using McNemar's test. Participants' mean age was 66.8 years, body mass index was 29.6 kg/m(2) and 50% were women. Of the 160 surfaces (medial and lateral femur and tibia for 40 knees), MRI revealed 84 osteophytes and 10 subchondral cysts. In comparison with osteophytes and subchondral cysts detected by MRI, SCT was significantly more sensitive (93 and 100%; p < 0.004) and accurate (95 and 99%; p < 0.001 for osteophytes) than plain radiographs (sensitivity 60 and 10% and accuracy 79 and 94%, respectively). For osteophytes, differences in sensitivity and accuracy were greatest at the medial femur (p = 0.002). In comparison with MRI, SCT imaging was more sensitive and accurate for detection of osteophytes and subchondral cysts than conventional fixed-flexion radiography. Additional study is warranted to assess diagnostic performance of SCT measures of joint space width, progression of OA features and the patellofemoral joint.
Magnetic resonance imaging of spinal infection.
Tins, Bernhard J; Cassar-Pullicino, Victor N; Lalam, Radhesh K
2007-06-01
This article reviews the pathophysiology of spinal infection and its relevance for imaging. Magnetic resonance imaging (MRI) is the modality with by far the best sensitivity and specificity for spinal infection. The imaging appearances of spinal infection in MRI are outlined, and imaging techniques are discussed. The problems of clinical diagnosis are outlined. There is some emphasis on the MRI differentiation of pyogenic and nonpyogenic infection and on the differential diagnosis of spinal infection centered on the imaging presentation.
NASA Astrophysics Data System (ADS)
Tornga, Shawn R.
The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as localization capability. Utilizing imaging information will show signal-to-noise gains over spectroscopic algorithms alone.
Nanotechnology-supported THz medical imaging
Stylianou, Andreas; Talias, Michael A
2013-01-01
Over the last few decades, the achievements and progress in the field of medical imaging have dramatically enhanced the early detection and treatment of many pathological conditions. The development of new imaging modalities, especially non-ionising ones, which will improve prognosis, is of crucial importance. A number of novel imaging modalities have been developed but they are still in the initial stages of development and serious drawbacks obstruct them from offering their benefits to the medical field. In the 21 st century, it is believed that nanotechnology will highly influence our everyday life and dramatically change the world of medicine, including medical imaging. Here we discuss how nanotechnology, which is still in its infancy, can improve Terahertz (THz) imaging, an emerging imaging modality, and how it may find its way into real clinical applications. THz imaging is characterised by the use of non-ionising radiation and although it has the potential to be used in many biomedical fields, it remains in the field of basic research. An extensive review of the recent available literature shows how the current state of this emerging imaging modality can be transformed by nanotechnology. Innovative scientific concepts that use nanotechnology-based techniques to overcome some of the limitations of the use of THz imaging are discussed. We review a number of drawbacks, such as a low contrast mechanism, poor source performance and bulky THz systems, which characterise present THz medical imaging and suggest how they can be overcome through nanotechnology. Better resolution and higher detection sensitivity can also be achieved using nanotechnology techniques. PMID:24555052
Jain, Avani; Srivastava, Madhur Kumar; Pawaskar, Alok Suresh; Shelley, Simon; Elangovan, Indirani; Jain, Hasmukh; Pandey, Somnath; Kalal, Shilpa; Amalachandran, Jaykanth
2015-01-01
To evaluate the advantages of contrast enhanced F-18-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-contrast enhanced CT [CECT]) when used as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin (MUO). A total of 243 patients with fine needle aspiration cytology/biopsy proven MUO were included in this prospective study. Patients who were thoroughly evaluated for primary or primary tumor was detected by any other investigation were excluded from the analysis. Totally, 163 patients with pathological diagnosis of malignancy but no apparent sites of the primary tumor were finally selected for analysis. The site of probable primary malignancy suggested by PET-CECT was confirmed by biopsy/follow-up. PET-CECT suggested probable site of primary in 128/163 (78.52%) patients. In 30/35 remaining patients, primary tumor was not detected even after extensive work-up. In 5 patients, where PET-CECT was negative, primary was found on further extensive investigations or follow-up. The sensitivity, specificity, positive predictive value and negative predictive value of the study were 95.76%, 66.67%, 88.28% and 85.71% respectively. F-18 FDG PET-CECT aptly serves the purpose of initial imaging modality owing to high sensitivity, negative and positive predictive value. PET-CECT not only surveys the whole body for the primary malignancy but also stages the disease accurately. Use of contrast improves the diagnostic utility of modality as well as help in staging of the primary tumor. Although benefits of using PET-CECT as initial diagnostic modality are obvious from this study, there is a need for a larger study comparing conventional methods for diagnosing primary in patients with MUO versus PET-CECT.
Multi-modality endoscopic imaging for the detection of colorectal cancer
NASA Astrophysics Data System (ADS)
Wall, Richard Andrew
Optical coherence tomography (OCT) is an imaging method that is considered the optical analog to ultrasound, using the technique of optical interferometry to construct two-dimensional depth-resolved images of tissue microstructure. With a resolution on the order of 10 um and a penetration depth of 1-2 mm in highly scattering tissue, fiber optics-coupled OCT is an ideal modality for the inspection of the mouse colon with its miniaturization capabilities. In the present study, the complementary modalities laser-induced fluorescence (LIF), which offers information on the biochemical makeup of the tissue, and surface magnifying chromoendoscopy, which offers high contrast surface visualization, are combined with OCT in endoscopic imaging systems for the greater specificity and sensitivity in the differentiation between normal and neoplastic tissue, and for the visualization of biomarkers which are indicative of early events in colorectal carcinogenesis. Oblique incidence reflectometry (OIR) also offers advantages, allowing the calculation of bulk tissue optical properties for use as a diagnostic tool. The study was broken up into three specific sections. First, a dual-modality OCTLIF imaging system was designed, capable of focusing light over 325-1300 nm using a reflective distal optics design. A dual-modality fluorescence-based SMC-OCT system was then designed and constructed, capable of resolving the stained mucosal crypt structure of the in vivo mouse colon. The SMC-OCT instrument's OIR capabilities were then modeled, as a modified version of the probe was used measure tissue scattering and absorption coefficients.
Ibraheem, Kareem; Toraih, Eman A; Haddad, Antoine B; Farag, Mahmoud; Randolph, Gregory W; Kandil, Emad
2018-05-14
Minimally invasive parathyroidectomy requires accurate preoperative localization techniques. There is considerable controversy about the effectiveness of selective parathyroid venous sampling (sPVS) in primary hyperparathyroidism (PHPT) patients. The aim of this meta-analysis is to examine the diagnostic accuracy of sPVS as a preoperative localization modality in PHPT. Studies evaluating the diagnostic accuracy of sPVS for PHPT were electronically searched in the PubMed, EMBASE, Web of Science, and Cochrane Controlled Trials Register databases. Two independent authors reviewed the studies, and revised quality assessment of diagnostic accuracy study tool was used for the quality assessment. Study heterogeneity and pooled estimates were calculated. Two hundred and two unique studies were identified. Of those, 12 studies were included in the meta-analysis. Pooled sensitivity, specificity, and positive likelihood ratio (PLR) of sPVS were 74%, 41%, and 1.55, respectively. The area-under-the-receiver operating characteristic curve was 0.684, indicating an average discriminatory ability of sPVS. On comparison between sPVS and noninvasive imaging modalities, sensitivity, PLR, and positive posttest probability were significantly higher in sPVS compared to noninvasive imaging modalities. Interestingly, super-selective venous sampling had the highest sensitivity, accuracy, and positive posttest probability compared to other parathyroid venous sampling techniques. This is the first meta-analysis to examine the accuracy of sPVS in PHPT. sPVS had higher pooled sensitivity when compared to noninvasive modalities in revision parathyroid surgery. However, the invasiveness of this technique does not favor its routine use for preoperative localization. Super-selective venous sampling was the most accurate among all other parathyroid venous sampling techniques. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Hou, Yafei; Wang, Kan; Xiao, Kun; Qin, Weijian; Lu, Wenting; Tao, Wei; Cui, Daxiang
2017-04-01
Nowadays, lateral flow immunochromatographic assays are increasingly popular as a diagnostic tool for point-of-care (POC) test based on their simplicity, specificity, and sensitivity. Hence, quantitative detection and pluralistic popular application are urgently needed in medical examination. In this study, a smartphone-based dual-modality imaging system was developed for quantitative detection of color or fluorescent lateral flow test strips, which can be operated anywhere at any time. In this system, the white and ultra-violet (UV) light of optical device was designed, which was tunable with different strips, and the Sobel operator algorithm was used in the software, which could enhance the identification ability to recognize the test area from the background boundary information. Moreover, this technology based on extraction of the components from RGB format (red, green, and blue) of color strips or only red format of the fluorescent strips can obviously improve the high-signal intensity and sensitivity. Fifty samples were used to evaluate the accuracy of this system, and the ideal detection limit was calculated separately from detection of human chorionic gonadotropin (HCG) and carcinoembryonic antigen (CEA). The results indicated that smartphone-controlled dual-modality imaging system could provide various POC diagnoses, which becomes a potential technology for developing the next-generation of portable system in the near future.
Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging
NASA Astrophysics Data System (ADS)
Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel
2018-02-01
Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.
Robust biological parametric mapping: an improved technique for multimodal brain image analysis
NASA Astrophysics Data System (ADS)
Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.
2011-03-01
Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.
Cardiac SPECT/CCTA hybrid imaging : One answer to two questions?
Kaufmann, P A; Buechel, R R
2016-08-01
Noninvasive cardiac imaging has witnessed tremendous advances in the recent past, particularly with regard to coronary computed tomography angiography (CCTA) where substantial improvements in image quality have been achieved while at the same time patients' radiation dose exposure has been reduced to the sub-millisievert range. Similarly, for single-photon emission computed tomography (SPECT) the introduction of novel cadmium-zinc-telluride-based semiconductor detectors has significantly improved system sensitivity and image quality, enabling fast image acquisition within less than 2-3 min or reduction of radiation dose exposure to less than 5 mSv. However, neither imaging modality alone is able to fully cover the two aspects of coronary artery disease (CAD), that is, morphology and function. Both modalities have distinct advantages and shortcomings: While CCTA may prove a superb modality for excluding CAD through its excellent negative predictive value, it does not allow for assessment of hemodynamic relevance if obstructive coronary lesions are detected. Conversely, SPECT myocardial perfusion imaging cannot provide any information on the presence or absence of subclinical coronary atherosclerosis. This article aims to highlight the great potential of cardiac hybrid imaging that allows for a comprehensive evaluation of CAD through combination of both morphological and functional information by fusing SPECT with CCTA.
Multimodal Classification of Alzheimer’s Disease and Mild Cognitive Impairment
Zhang, Daoqiang; Wang, Yaping; Zhou, Luping; Yuan, Hong; Shen, Dinggang
2011-01-01
Effective and accurate diagnosis of Alzheimer’s disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment (MCI)), has attracted more and more attentions recently. So far, multiple biomarkers have been shown sensitive to the diagnosis of AD and MCI, i.e., structural MR imaging (MRI) for brain atrophy measurement, functional imaging (e.g., FDG-PET) for hypometabolism quantification, and cerebrospinal fluid (CSF) for quantification of specific proteins. However, most existing research focuses on only a single modality of biomarkers for diagnosis of AD and MCI, although recent studies have shown that different biomarkers may provide complementary information for diagnosis of AD and MCI. In this paper, we propose to combine three modalities of biomarkers, i.e., MRI, FDG-PET, and CSF biomarkers, to discriminate between AD (or MCI) and healthy controls, using a kernel combination method. Specifically, ADNI baseline MRI, FDG-PET, and CSF data from 51 AD patients, 99 MCI patients (including 43 MCI converters who had converted to AD within 18 months and 56 MCI non-converters who had not converted to AD within 18 months), and 52 healthy controls are used for development and validation of our proposed multimodal classification method. In particular, for each MR or FDG-PET image, 93 volumetric features are extracted from the 93 regions of interest (ROIs), automatically labeled by an atlas warping algorithm. For CSF biomarkers, their original values are directly used as features. Then, a linear support vector machine (SVM) is adopted to evaluate the classification accuracy, using a 10-fold cross-validation. As a result, for classifying AD from healthy controls, we achieve a classification accuracy of 93.2% (with a sensitivity of 93% and a specificity of 93.3%) when combining all three modalities of biomarkers, and only 86.5% when using even the best individual modality of biomarkers. Similarly, for classifying MCI from healthy controls, we achieve a classification accuracy of 76.4% (with a sensitivity of 81.8% and a specificity of 66%) for our combined method, and only 72% even using the best individual modality of biomarkers. Further analysis on MCI sensitivity of our combined method indicates that 91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified. Moreover, we also evaluate the classification performance when employing a feature selection method to select the most discriminative MR and FDG-PET features. Again, our combined method shows considerably better performance, compared to the case of using an individual modality of biomarkers. PMID:21236349
Christakis, Ioannis; Vu, Thinh; Chuang, Hubert H; Fellman, Bryan; Figueroa, Angelica M Silva; Williams, Michelle D; Busaidy, Naifa L; Perrier, Nancy D
2017-10-01
Our aim was to investigate the accuracy of available imaging modalities for parathyroid carcinoma (PC) in our institution and to identify which imaging modality, or combination thereof, is optimal in preoperative determination of precise tumor location. All operated PC patients in our institution between 2000 and 2015 that had at least one of the following in-house preoperative scans: neck ultrasonography (US), neck 4D-Computed Tomography (4DCT) and 99mTc Sestamibi SPECT/CT (MIBI). Sensitivity, specificity and accuracy of PC tumor localization were assessed individually and in combination. 20 patients fulfilled the inclusion criteria and were analysed. There were 18 US, 18 CT and 9 MIBI scans. The sensitivity and accuracy for tumor localisation of US was 80% (CI 56-94%) and 73% respectively, of 4DCT was 79% (CI 58-93%) and 82%, and of MIBI was 81% (CI 54-96%) and 78%. The sensitivity and accuracy of the combination of CT and MIBI was 94% (CI 73-100%) and 95% and for the combination of US, CT and MIBI was 100% (CI 72-100%) and 100% respectively. The wash-out of the PC lesions, expressed as a percentage change in Hounsfield Units from the arterial phase to early delayed phase was -9.29% and to the late delayed phase was -16.88% (n=11). The sensitivity of solitary preoperative imaging of PC patients, whether by US, CT or MIBI, is approximately 80%. Combinations of CT with MIBI and US increase the sensitivity to 95% or better. Combined preoperative imaging of patients with clinical possibility of PC is therefore recommended. Copyright © 2017 Elsevier B.V. All rights reserved.
Recording membrane potential changes through photoacoustic voltage sensitive dye
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Kang, Jeeun; Yan, Ping; Abou, Diane S.; Le, Hanh N. D.; Thorek, Daniel L. J.; Kang, Jin U.; Gjedde, Albert; Rahmim, Arman; Wong, Dean F.; Loew, Leslie M.; Boctor, Emad M.
2017-03-01
Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in vivo systems for external detection. In contrast, photoacoustic (PA) imaging, an emerging modality, is capable of deep tissue, noninvasive imaging by combining near infrared light excitation and ultrasound detection. In this work, we develop the theoretical concept whereby the voltage-dependent quenching of dye fluorescence leads to a reciprocal enhancement of PA intensity. Based on this concept, we synthesized a novel near infrared photoacoustic VSD (PA-VSD) whose PA intensity change is sensitive to membrane potential. In the polarized state, this cyanine-based probe enhances PA intensity while decreasing fluorescence output in a lipid vesicle membrane model. With a 3-9 μM VSD concentration, we measured a PA signal increase in the range of 5.3 % to 18.1 %, and observed a corresponding signal reduction in fluorescence emission of 30.0 % to 48.7 %. A theoretical model successfully accounts for how the experimental PA intensity change depends on fluorescence and absorbance properties of the dye. These results not only demonstrate the voltage sensing capability of the dye, but also indicate the necessity of considering both fluorescence and absorbance spectral sensitivities in order to optimize the characteristics of improved photoacoustic probes. Together, our results demonstrate photoacoustic sensing as a potential new modality for sub-second recording and external imaging of electrophysiological and neurochemical events in the brain.
Coburger, Jan; Scheuerle, Angelika; Kapapa, Thomas; Engelke, Jens; Thal, Dietmar Rudolf; Wirtz, Christian R; König, Ralph
2015-07-01
Linear array intraoperative ultrasound (lioUS) is an emerging technology for intracranial use. We evaluated sensitivity and specificity of lioUS to detect residual tumor in patients harboring a glioblastoma. After near total resection in 20 patients, residual tumor detection using lioUS, conventional intraoperative ultrasound (cioUS), and gadopentetic-diethylenetriamine penta-acetic acid (Gd-DTPA)-enhanced intraoperative MRI (iMRI) were compared. Sensitivity and specificity were calculated based on 68 navigated biopsies. Receiver operator characteristic (ROC) curves and correlation with histopathological findings of each imaging modality were calculated. Additionally, results were evaluated in the subgroup of recurrent disease (23 biopsies in 8 patients). Sensitivity of lioUS (76 %) was significantly higher compared with iMRI (55 %) and cioUS (24 %). Specificity of lioUS (58 %) was significantly lower than in cioUS (96 %), while there was no significant difference to iMRI (74 %). All imaging modalities correlated significantly with histopathological findings. In the subgroup of recurrent disease, sensitivity and specificity decreased in all modalities. However, cioUS showed significant lower values than iMRI and lioUS. In ROC curves, lioUS showed a higher area und the curve (AUC) in comparison with iMRI and cioUS. We found similar results in the subgroup of recurrent disease. Tumor detection using a lioUS is significantly superior to cioUS. Overall test performance in lioUS is comparable with results of iMRI. While, the latter has a higher specificity and a significantly lower sensitivity in comparison with lioUS.
NASA Astrophysics Data System (ADS)
McReynolds, Naomi; Cooke, Fiona G. M.; Chen, Mingzhou; Powis, Simon J.; Dholakia, Kishan
2017-03-01
The ability to identify and characterise individual cells of the immune system under label-free conditions would be a significant advantage in biomedical and clinical studies where untouched and unmodified cells are required. We present a multi-modal system capable of simultaneously acquiring both single point Raman spectra and digital holographic images of single cells. We use this combined approach to identify and discriminate between immune cell populations CD4+ T cells, B cells and monocytes. We investigate several approaches to interpret the phase images including signal intensity histograms and texture analysis. Both modalities are independently able to discriminate between cell subsets and dual-modality may therefore be used a means for validation. We demonstrate here sensitivities achieved in the range of 86.8% to 100%, and specificities in the range of 85.4% to 100%. Additionally each modality provides information not available from the other providing both a molecular and a morphological signature of each cell.
TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, L; Tang, S; Ahmad, M
Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprisedmore » of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.« less
Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin; Ellegaard, Karen; D'Agostino, Maria Antonietta; Iagnocco, Annamaria; Naredo, Esperanza; Balint, Peter; Wakefield, Richard J; Torp-Pedersen, Arendse; Terslev, Lene
2015-02-01
To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. Six different types of ultrasound machines were used. On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. Power Doppler was more sensitive on half of the machines, whereas color Doppler was more sensitive on the other half, using both factory settings and study settings. There was an average increase in Doppler sensitivity, despite modality, of 78% when study settings were applied. Over the 6 machines, 2 Doppler modalities, and 2 settings, the grades for each of 7 of the patients varied between 0 and 3, while the grades for each of the other 4 patients varied between 0 and 2. The effect of using different machines, Doppler modalities, and settings has a considerable influence on the quantification of inflammation by ultrasound in RA patients, and this must be taken into account in multicenter studies. Copyright © 2015 by the American College of Rheumatology.
NASA Astrophysics Data System (ADS)
Choi, S.; Mandelis, A.; Guo, X.; Lashkari, B.; Kellnberger, S.; Ntziachristos, V.
2015-06-01
In the field of medical diagnostics, biomedical photoacoustics (PA) is a non-invasive hybrid optical-ultrasonic imaging modality. Due to the unique hybrid capability of optical and acoustic imaging, PA imaging has risen to the frontiers of medical diagnostic procedures such as human breast cancer detection. While conventional PA imaging has been mainly carried out by a high-power pulsed laser, an alternative technology, the frequency domain biophotoacoustic radar (FD-PAR) is under intensive development. It utilizes a continuous wave optical source with the laser intensity modulated by a frequency-swept waveform for acoustic wave generation. The small amplitude of the generated acoustic wave is significantly compensated by increased signal-to-noise ratio (several orders of magnitude) using matched-filter and pulse compression correlation processing in a manner similar to radar systems. The current study introduces the theory of a novel FD-PAR modality for ultra-sensitive characterization of functional information for breast cancer imaging. The newly developed theory of wavelength-modulated differential PA spectroscopy (WM-DPAS) detection has been introduced to address angiogenesis and hypoxia monitoring, two well-known benchmarks of breast tumor formation. Based on the WM-DPAS theory, this modality efficiently suppresses background absorptions and is expected to detect very small changes in total hemoglobin concentration and oxygenation levels, thereby identifying pre-malignant tumors before they are anatomically apparent. An experimental system design for the WM-DPAS is presented and preliminary single-ended laser experimental results were obtained and compared to a limiting case of the developed theoretical formalism.
Thymidine Kinase PET Reporter Gene Imaging of Cancer Cells In Vivo.
McCracken, Melissa N
2018-01-01
Positron emission tomography (PET) is a three dimensional imaging modality that detects the accumulation of radiolabeled isotopes in vivo. Ectopic expression of a thymidine kinase reporter gene allows for the specific detection of reporter cells in vivo by imaging with the reporter specific probe. PET reporter imaging is sensitive, quantitative and can be scaled into larger tumors or animals with little to no tissue diffraction. Here, we describe how thymidine kinase PET reporter genes can be used to noninvasively image cancer cells in vivo.
Xu, Bai-xuan; Liu, Chang-bin; Wang, Rui-min; Shao, Ming-zhe; Fu, Li-ping; Li, Yun-gang; Tian, Jia-he
2013-01-01
Based on the results of a recently accomplished multicenter clinical trial for the incremental value of a dual-tracer (18F-FDG and 18F-FLT), dual-modality (PET and CT) imaging in the differential diagnosis of pulmonary lesions, we investigate some issues that might affect the image interpretation and result reporting. The images were read in two separate sessions. Firstly the images were read and reported by physician(s) of the imaging center on completion of each PET/CT scanning. By the end of MCCT, all images collected during the trial were re-read by a collective of readers in an isolated, blinded, and independent way. One hundred sixty two patients successfully passed the data verification and entered into the final analysis. The primary reporting result showed adding 18F-FDG image information did not change the clinical performance much in sensitivity, specifity and accuracy, but the ratio between SUVFLT and SUVFDG did help the differentiation efficacy among the three subgroups of patients. The collective reviewing result showed the diagnostic achievement varied with reading strategies. ANOVA indicated significant differences among (18)F-FDG, (18)F-FLT in SUV (F = 14.239, p = 0.004). CT had almost the same diagnostic performance as 18F-FLT. When the 18F-FDG, 18F-FLT and CT images read in pair, both diagnostic sensitivity and specificity improved. The best diagnostic figures were obtained in full-modality strategy, when dual-tracer PET worked in combination with CT. With certain experience and training both radiologists and nuclear physicians are qualified to read and to achieve the similar diagnostic accuracy in PET/CT study. Making full use of modality combination and selecting right criteria seems more practical than professional back ground and personal experience in the new hybrid imaging technology, at least when novel tracer or application is concerned.
High Resolution X-ray-Induced Acoustic Tomography
Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei
2016-01-01
Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746
A Spherical Active Coded Aperture for 4π Gamma-ray Imaging
Hellfeld, Daniel; Barton, Paul; Gunter, Donald; ...
2017-09-22
Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less
Imaging in traumatic mandibular fractures
Gemal, Hugo; Reed, Duncan
2017-01-01
A fracture of the mandible is a common trauma presentation amongst young males and represents one of the most frequently encountered fractured bones within the viscerocranium. Historically, assault was the dominant contributing factor but now due to the increased number of vehicles used per capita, motor vehicle accidents are the primary cause. Mandibular fractures can be classified anatomically, by dentition, by muscle group and by severity. The fracture may also be closed, open, comminuted, displaced or pathological. It is important that the imaging modality used identifies the classification as this will decide definitive treatment. X-ray projections have typically been used to detect a mandibular fracture, but are limited to an anteroposterior (AP), lateral and oblique view in an unstable trauma patient. These views are inadequate to detail the level of fracture displacement and show poor detail of the condylar region. Computer tomography (CT) is the imaging modality of choice when assessing a traumatic mandibular injury and can demonstrate a 100% sensitivity in detecting a fracture. This is through use of a multidetector-row CT, which reduces motion blur and therefore produces accurate coronal and sagittal reconstructions. Furthermore, reconstructive three-dimensional CT images gained from planar views, allows a better understanding of the spatial relationship of the fracture with other anatomical landmarks. This ensures a better appreciation of the severity and classification of a mandibular fracture, which therefore influences operative planning. Ultrasound is another useful modality in detecting a mandibular fracture when the patient is too unstable to be transferred to a CT scanner. The sensitivity however is less in comparison to a CT series of images and provides limited detail on the fracture pattern. Magnetic resonance imaging demonstrates use in assessing soft tissue injury of the temporomandibular joint but this is unlikely to be of priority when initially assessing a trauma patient. PMID:28932703
NASA Astrophysics Data System (ADS)
Brill, Nicolai; Wirtz, Mathias; Merhof, Dorit; Tingart, Markus; Jahr, Holger; Truhn, Daniel; Schmitt, Robert; Nebelung, Sven
2016-07-01
Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.
Glemser, Philip A; Pfleiderer, Michael; Heger, Anna; Tremper, Jan; Krauskopf, Astrid; Schlemmer, Heinz-Peter; Yen, Kathrin; Simons, David
2017-03-01
The aim of this multi-reader feasibility study was to evaluate new post-processing CT imaging tools in rib fracture assessment of forensic cases by analyzing detection time and diagnostic accuracy. Thirty autopsy cases (20 with and 10 without rib fractures in autopsy) were randomly selected and included in this study. All cases received a native whole body CT scan prior to the autopsy procedure, which included dissection and careful evaluation of each rib. In addition to standard transverse sections (modality A), CT images were subjected to a reconstruction algorithm to compute axial labelling of the ribs (modality B) as well as "unfolding" visualizations of the rib cage (modality C, "eagle tool"). Three radiologists with different clinical and forensic experience who were blinded to autopsy results evaluated all cases in a random manner of modality and case. Rib fracture assessment of each reader was evaluated compared to autopsy and a CT consensus read as radiologic reference. A detailed evaluation of relevant test parameters revealed a better accordance to the CT consensus read as to the autopsy. Modality C was the significantly quickest rib fracture detection modality despite slightly reduced statistic test parameters compared to modalities A and B. Modern CT post-processing software is able to shorten reading time and to increase sensitivity and specificity compared to standard autopsy alone. The eagle tool as an easy to use tool is suited for an initial rib fracture screening prior to autopsy and can therefore be beneficial for forensic pathologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellfeld, Daniel; Barton, Paul; Gunter, Donald
Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less
Functional Imaging for Prostate Cancer: Therapeutic Implications
Aparici, Carina Mari; Seo, Youngho
2012-01-01
Functional radionuclide imaging modalities, now commonly combined with anatomical imaging modalities CT or MRI (SPECT/CT, PET/CT, and PET/MRI) are promising tools for the management of prostate cancer particularly for therapeutic implications. Sensitive detection capability of prostate cancer using these imaging modalities is one issue; however, the treatment of prostate cancer using the information that can be obtained from functional radionuclide imaging techniques is another challenging area. There are not many SPECT or PET radiotracers that can cover the full spectrum of the management of prostate cancer from initial detection, to staging, prognosis predictor, and all the way to treatment response assessment. However, when used appropriately, the information from functional radionuclide imaging improves, and sometimes significantly changes, the whole course of the cancer management. The limitations of using SPECT and PET radiotracers with regards to therapeutic implications are not so much different from their limitations solely for the task of detecting prostate cancer; however, the specific imaging target and how this target is reliably imaged by SPECT and PET can potentially make significant impact in the treatment of prostate cancer. Finally, while the localized prostate cancer is considered manageable, there is still significant need for improvement in noninvasive imaging of metastatic prostate cancer, in treatment guidance, and in response assessment from functional imaging including radionuclide-based techniques. In this review article, we present the rationale of using functional radionuclide imaging and the therapeutic implications for each of radionuclide imaging agent that have been studied in human subjects. PMID:22840598
The advance of non-invasive detection methods in osteoarthritis
NASA Astrophysics Data System (ADS)
Dai, Jiao; Chen, Yanping
2011-06-01
Osteoarthritis (OA) is one of the most prevalent chronic diseases which badly affected the patients' living quality and economy. Detection and evaluation technology can provide basic information for early treatment. A variety of imaging methods in OA were reviewed, such as conventional X-ray, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI) and near-infrared spectroscopy (NIRS). Among the existing imaging modalities, the spatial resolution of X-ray is extremely high; CT is a three-dimensional method, which has high density resolution; US as an evaluation method of knee OA discriminates lesions sensitively between normal cartilage and degenerative one; as a sensitive and nonionizing method, MRI is suitable for the detection of early OA, but the cost is too expensive for routine use; NIRS is a safe, low cost modality, and is also good at detecting early stage OA. In a word, each method has its own advantages, but NIRS is provided with broader application prospect, and it is likely to be used in clinical daily routine and become the golden standard for diagnostic detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.A.; Christie, M.J.; Sandler, M.P.
1988-08-01
Preoperative exclusion or confirmation of periprosthetic infection is essential for correct surgical management of patients with suspected infected joint prostheses. The sensitivity and specificity of (/sup 111/In)WBC imaging in the diagnosis of infected total joint prostheses was examined in 28 patients and compared with sequential (/sup 99m/Tc)HDP/(/sup 111/In)WBC scintigraphy and aspiration arthrography. The sensitivity of preoperative aspiration cultures was 12%, with a specificity of 81% and an accuracy of 58%. The sensitivity of (/sup 111/In)WBC imaging alone was 100%, with a specificity of 50% and an accuracy of 65%. When correlated with the bone scintigraphy and read as sequential (/supmore » 99m/Tc)HDP/(/sup 111/In)WBC imaging, the sensitivity was 88%, specificity 95%, and accuracy 93%. This study demonstrates that (/sup 111/In)WBC imaging is an extremely sensitive imaging modality for the detection of occult infection of joint prostheses. It also demonstrates the necessity of correlating (/sup 111/In)WBC images with (/sup 99m/Tc)HDP skeletal scintigraphy in the detection of occult periprosthetic infection.« less
Combination of Fluorescence-Guided Surgery With Photodynamic Therapy for the Treatment of Cancer
He, Jun; Yang, Leping; Yi, Wenjun; Fan, Wentao; Wen, Yu; Miao, Xiongying; Xiong, Li
2017-01-01
Specific visualization of body parts is needed during surgery. Fluorescence-guided surgery (FGS) uses a fluorescence contrast agent for in vivo tumor imaging to detect and identify both malignant and normal tissues. There are several advantages and clinical benefits of FGS over other conventional medical imaging modalities, such as its safety, effectiveness, and suitability for real-time imaging in the operating room. Recent advancements in contrast agents and intraoperative fluorescence imaging devices have led to a greater potential for intraoperative fluorescence imaging in clinical applications. Photodynamic therapy (PDT) is an alternative modality to treat tumors, which uses a light-sensitive drug (photosensitizers) and special light to destroy the targeted tissues. In this review, we discuss the fluorescent contrast agents, some newly developed imaging devices, and the successful clinical application of FGS. Additionally, we present the combined strategy of FGS with PDT to further improve the therapeutic effect for patients with cancer. Taken together, this review provides a unique perspective and summarization of FGS. PMID:28849712
Laeseke, Paul F.; Chen, Ru; Jeffrey, R. Brooke; Brentnall, Teresa A.
2015-01-01
Pancreatic ductal adenocarcinoma (PDAC) is the fourth-leading cause of cancer-related death in the United States and is associated with a dismal prognosis, particularly when diagnosed at an advanced stage. Overall survival is significantly improved if PDAC is detected at an early stage prior to the onset of symptoms. At present, there is no suitable screening strategy for the general population. Available diagnostic serum markers are not sensitive or specific enough, and clinically available imaging modalities are inadequate for visualizing early-stage lesions. In this article, the role of currently available blood biomarkers and imaging tests for the early detection of PDAC will be reviewed. Also, the emerging biomarkers and molecularly targeted imaging agents being developed to improve the specificity of current imaging modalities for PDAC will be discussed. A strategy incorporating blood biomarkers and molecularly targeted imaging agents could lead to improved screening and earlier detection of PDAC in the future. © RSNA, 2015 PMID:26599925
A review of imaging modalities in pulmonary hypertension
Ascha, Mona; Renapurkar, Rahul D.; Tonelli, Adriano R.
2017-01-01
Pulmonary hypertension (PH) is defined as resting mean pulmonary artery pressure ≥25 mmHg measured by right heart catheterization. PH is a progressive, life-threatening disease with a variety of etiologies. Swift and accurate diagnosis of PH and appropriate classification in etiologic group will allow for earlier treatment and improved outcomes. A number of imaging tools are utilized in the evaluation of PH, such as chest X-ray, computed tomography (CT), ventilation/perfusion (V/Q) scan, and cardiac magnetic resonance imaging. Newer imaging tools such as dual-energy CT and single-photon emission computed tomography/computed tomography V/Q scanning have also emerged; however, their place in the diagnostic evaluation of PH remains to be determined. In general, each imaging technique provides incremental information, with varying degrees of sensitivity and specificity, which helps suspect the presence and identify the etiology of PH. The present study aims to provide a comprehensive review of the utility, advantages, and shortcomings of the imaging modalities that may be used to evaluate patients with PH. PMID:28469715
2D-3D registration using gradient-based MI for image guided surgery systems
NASA Astrophysics Data System (ADS)
Yim, Yeny; Chen, Xuanyi; Wakid, Mike; Bielamowicz, Steve; Hahn, James
2011-03-01
Registration of preoperative CT data to intra-operative video images is necessary not only to compare the outcome of the vocal fold after surgery with the preplanned shape but also to provide the image guidance for fusion of all imaging modalities. We propose a 2D-3D registration method using gradient-based mutual information. The 3D CT scan is aligned to 2D endoscopic images by finding the corresponding viewpoint between the real camera for endoscopic images and the virtual camera for CT scans. Even though mutual information has been successfully used to register different imaging modalities, it is difficult to robustly register the CT rendered image to the endoscopic image due to varying light patterns and shape of the vocal fold. The proposed method calculates the mutual information in the gradient images as well as original images, assigning more weight to the high gradient regions. The proposed method can emphasize the effect of vocal fold and allow a robust matching regardless of the surface illumination. To find the viewpoint with maximum mutual information, a downhill simplex method is applied in a conditional multi-resolution scheme which leads to a less-sensitive result to local maxima. To validate the registration accuracy, we evaluated the sensitivity to initial viewpoint of preoperative CT. Experimental results showed that gradient-based mutual information provided robust matching not only for two identical images with different viewpoints but also for different images acquired before and after surgery. The results also showed that conditional multi-resolution scheme led to a more accurate registration than single-resolution.
Zhou, Zhengyang; Chen, Hongwei; Lipowska, Malgorzata; Wang, Liya; Yu, Qiqi; Yang, Xiaofeng; Tiwari, Diana; Yang, Lily; Mao, Hui
2016-01-01
The ability to reliably detect sentinel lymph nodes for sentinel lymph node biopsy and lymphadenectomy is important in clinical management of patients with metastatic cancers. However, the traditional sentinel lymph node mapping with visible dyes is limited by the penetration depth of light and fast clearance of the dyes. On the other hand, sentinel lymph node mapping with radionucleotide technique has intrinsically low spatial resolution and does not provide anatomic details in the sentinel lymph node mapping procedure. This work reports the development of a dual modality imaging probe with magnetic resonance and near infrared imaging capabilities for sentinel lymph node mapping using magnetic iron oxide nanoparticles (10 nm core size) conjugated with a near infrared molecule with emission at 830 nm. Accumulation of magnetic iron oxide nanoparticles in sentinel lymph nodes leads to strong T2 weighted magnetic resonance imaging contrast that can be potentially used for preoperative localization of sentinel lymph nodes, while conjugated near infrared molecules provide optical imaging tracking of lymph nodes with a high signal to background ratio. The new magnetic nanoparticle based dual imaging probe exhibits a significant longer lymph node retention time. Near infrared signals from nanoparticle conjugated near infrared dyes last up to 60 min in sentinel lymph node compared to that of 25 min for the free near infrared dyes in a mouse model. Furthermore, axillary lymph nodes, in addition to sentinel lymph nodes, can be also visualized with this probe, given its slow clearance and sufficient sensitivity. Therefore, this new dual modality imaging probe with the tissue penetration and sensitive detection of sentinel lymph nodes can be applied for preoperative survey of lymph nodes with magnetic resonance imaging and allows intraoperative sentinel lymph node mapping using near infrared optical devices. PMID:23812946
Kråkenes, Jostein; Brauckhoff, Katrin; Haugland, Hans Kristian; Heinecke, Achim; Akslen, Lars A; Varhaug, Jan Erik; Brauckhoff, Michael
2015-01-01
Background Positron emission tomography (PET) using fluor-18-deoxyglucose (18F-FDG) with or without computed tomography (CT) is generally accepted as the most sensitive imaging modality for diagnosing recurrent differentiated thyroid cancer (DTC) in patients with negative whole body scintigraphy with iodine-131 (I-131). Purpose To assess the potential incremental value of ultrasound (US) over 18F-FDG-PET-CT. Material and Methods Fifty-one consecutive patients with suspected recurrent DTC were prospectively evaluated using the following multimodal imaging protocol: (i) US before PET (pre-US) with or without fine needle biopsy (FNB) of suspicious lesions; (ii) single photon emission computed tomography (≥3 GBq I-131) with co-registered CT (SPECT-CT); (iii) 18F-FDG-PET with co-registered contrast-enhanced CT of the neck; (iv) US in correlation with the other imaging modalities (post-US). Postoperative histology, FNB, and long-term follow-up (median, 2.8 years) were taken as composite gold standard. Results Fifty-eight malignant lesions were identified in 34 patients. Forty lesions were located in the neck or upper mediastinum. On receiver operating characteristics (ROC) analysis, 18F-FDG-PET had a limited lesion-based specificity of 59% at a set sensitivity of 90%. Pre-US had poor sensitivity and specificity of 52% and 53%, respectively, increasing to 85% and 94% on post-US, with knowledge of the PET/CT findings (P < 0.05 vs. PET and pre-US). Multimodal imaging changed therapy in 15 out of 51 patients (30%). Conclusion In patients with suspected recurrent DTC, supplemental targeted US in addition to 18F-FDG-PET-CT increases specificity while maintainin sensitivity, as non-malignant FDG uptake in cervical lesions can be confirmed. PMID:25770086
Hagen, C K; Diemoz, P C; Endrizzi, M; Rigon, L; Dreossi, D; Arfelli, F; Lopez, F C M; Longo, R; Olivo, A
2014-04-07
X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.
Initial clinical evaluation of stationary digital chest tomosynthesis
NASA Astrophysics Data System (ADS)
Hartman, Allison E.; Shan, Jing; Wu, Gongting; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping; Heath, Michael; Wang, Xiaohui; Foos, David
2016-03-01
Computed Tomography (CT) is the gold standard for image evaluation of lung disease, including lung cancer and cystic fibrosis. It provides detailed information of the lung anatomy and lesions, but at a relatively high cost and high dose of radiation. Chest radiography is a low dose imaging modality but it has low sensitivity. Digital chest tomosynthesis (DCT) is an imaging modality that produces 3D images by collecting x-ray projection images over a limited angle. DCT is less expensive than CT and requires about 1/10th the dose of radiation. Commercial DCT systems acquire the projection images by mechanically scanning an x-ray tube. The movement of the tube head limits acquisition speed. We recently demonstrated the feasibility of stationary digital chest tomosynthesis (s-DCT) using a carbon nanotube (CNT) x-ray source array in benchtop phantom studies. The stationary x-ray source allows for fast image acquisition. The objective of this study is to demonstrate the feasibility of s-DCT for patient imaging. We have successfully imaged 31 patients. Preliminary evaluation by board certified radiologists suggests good depiction of thoracic anatomy and pathology.
Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.
Chan, Minnie; Almutairi, Adah
2016-01-21
In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.
Jain, Avani; Srivastava, Madhur Kumar; Pawaskar, Alok Suresh; Shelley, Simon; Elangovan, Indirani; Jain, Hasmukh; Pandey, Somnath; Kalal, Shilpa; Amalachandran, Jaykanth
2015-01-01
Background: To evaluate the advantages of contrast enhanced F-18-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-contrast enhanced CT [CECT]) when used as an initial imaging modality in patients presenting with metastatic malignancy of undefined primary origin (MUO). Materials and Methods: A total of 243 patients with fine needle aspiration cytology/biopsy proven MUO were included in this prospective study. Patients who were thoroughly evaluated for primary or primary tumor was detected by any other investigation were excluded from the analysis. Totally, 163 patients with pathological diagnosis of malignancy but no apparent sites of the primary tumor were finally selected for analysis. The site of probable primary malignancy suggested by PET-CECT was confirmed by biopsy/follow-up. Results: PET-CECT suggested probable site of primary in 128/163 (78.52%) patients. In 30/35 remaining patients, primary tumor was not detected even after extensive work-up. In 5 patients, where PET-CECT was negative, primary was found on further extensive investigations or follow-up. The sensitivity, specificity, positive predictive value and negative predictive value of the study were 95.76%, 66.67%, 88.28% and 85.71% respectively. Conclusions: F-18 FDG PET-CECT aptly serves the purpose of initial imaging modality owing to high sensitivity, negative and positive predictive value. PET-CECT not only surveys the whole body for the primary malignancy but also stages the disease accurately. Use of contrast improves the diagnostic utility of modality as well as help in staging of the primary tumor. Although benefits of using PET-CECT as initial diagnostic modality are obvious from this study, there is a need for a larger study comparing conventional methods for diagnosing primary in patients with MUO versus PET-CECT. PMID:26170563
Sun, Yang; Stephens, Douglas N.; Park, Jesung; Sun, Yinghua; Marcu, Laura; Cannata, Jonathan M.; Shung, K. Kirk
2010-01-01
We report the development and validate a multi-modal tissue diagnostic technology, which combines three complementary techniques into one system including ultrasound backscatter microscopy (UBM), photoacoustic imaging (PAI), and time-resolved laser-induced fluorescence spectroscopy (TR-LIFS). UBM enables the reconstruction of the tissue microanatomy. PAI maps the optical absorption heterogeneity of the tissue associated with structure information and has the potential to provide functional imaging of the tissue. Examination of the UBM and PAI images allows for localization of regions of interest for TR-LIFS evaluation of the tissue composition. The hybrid probe consists of a single element ring transducer with concentric fiber optics for multi-modal data acquisition. Validation and characterization of the multi-modal system and ultrasonic, photoacoustic, and spectroscopic data coregistration were conducted in a physical phantom with properties of ultrasound scattering, optical absorption, and fluorescence. The UBM system with the 41 MHz ring transducer can reach the axial and lateral resolution of 30 and 65 μm, respectively. The PAI system with 532 nm excitation light from a Nd:YAG laser shows great contrast for the distribution of optical absorbers. The TR-LIFS system records the fluorescence decay with the time resolution of ~300 ps and a high sensitivity of nM concentration range. Biological phantom constructed with different types of tissues (tendon and fat) was used to demonstrate the complementary information provided by the three modalities. Fluorescence spectra and lifetimes were compared to differentiate chemical composition of tissues at the regions of interest determined by the coregistered high resolution UBM and PAI image. Current results demonstrate that the fusion of these techniques enables sequentially detection of functional, morphological, and compositional features of biological tissue, suggesting potential applications in diagnosis of tumors and atherosclerotic plaques. PMID:21894259
Sun, Yang; Stephens, Douglas N; Park, Jesung; Sun, Yinghua; Marcu, Laura; Cannata, Jonathan M; Shung, K Kirk
2008-01-01
We report the development and validate a multi-modal tissue diagnostic technology, which combines three complementary techniques into one system including ultrasound backscatter microscopy (UBM), photoacoustic imaging (PAI), and time-resolved laser-induced fluorescence spectroscopy (TR-LIFS). UBM enables the reconstruction of the tissue microanatomy. PAI maps the optical absorption heterogeneity of the tissue associated with structure information and has the potential to provide functional imaging of the tissue. Examination of the UBM and PAI images allows for localization of regions of interest for TR-LIFS evaluation of the tissue composition. The hybrid probe consists of a single element ring transducer with concentric fiber optics for multi-modal data acquisition. Validation and characterization of the multi-modal system and ultrasonic, photoacoustic, and spectroscopic data coregistration were conducted in a physical phantom with properties of ultrasound scattering, optical absorption, and fluorescence. The UBM system with the 41 MHz ring transducer can reach the axial and lateral resolution of 30 and 65 μm, respectively. The PAI system with 532 nm excitation light from a Nd:YAG laser shows great contrast for the distribution of optical absorbers. The TR-LIFS system records the fluorescence decay with the time resolution of ~300 ps and a high sensitivity of nM concentration range. Biological phantom constructed with different types of tissues (tendon and fat) was used to demonstrate the complementary information provided by the three modalities. Fluorescence spectra and lifetimes were compared to differentiate chemical composition of tissues at the regions of interest determined by the coregistered high resolution UBM and PAI image. Current results demonstrate that the fusion of these techniques enables sequentially detection of functional, morphological, and compositional features of biological tissue, suggesting potential applications in diagnosis of tumors and atherosclerotic plaques.
Prenatal Diagnosis of Placenta Accreta: Sonography or Magnetic Resonance Imaging?
Dwyer, Bonnie K.; Belogolovkin, Victoria; Tran, Lan; Rao, Anjali; Carroll, Ian; Barth, Richard; Chitkara, Usha
2009-01-01
Objective The purpose of this study was to compare the accuracy of transabdominal sonography and magnetic resonance imaging (MRI) for prenatal diagnosis of placenta accreta. Methods A historical cohort study was undertaken at 3 institutions identifying women at risk for placenta accreta who had undergone both sonography and MRI prenatally. Sonographic and MRI findings were compared with the final diagnosis as determined at delivery and by pathologic examination. Results Thirty-two patients who had both sonography and MRI prenatally to evaluate for placenta accreta were identified. Of these, 15 had confirmation of placenta accreta at delivery. Sonography correctly identified the presence of placenta accreta in 14 of 15 patients (93% sensitivity; 95% confidence interval [CI], 80%–100%) and the absence of placenta accreta in 12 of 17 patients (71% specificity; 95% CI, 49%–93%). Magnetic resonance imaging correctly identified the presence of placenta accreta in 12 of 15 patients (80% sensitivity; 95% CI, 60%–100%) and the absence of placenta accreta in 11 of 17 patients (65% specificity; 95% CI, 42%–88%). In 7 of 32 cases, sonography and MRI had discordant diagnoses: sonography was correct in 5 cases, and MRI was correct in 2. There was no statistical difference in sensitivity (P = .25) or specificity (P = .5) between sonography and MRI. Conclusions Both sonography and MRI have fairly good sensitivity for prenatal diagnosis of placenta accreta; however, specificity does not appear to be as good as reported in other studies. In the case of inconclusive findings with one imaging modality, the other modality may be useful for clarifying the diagnosis. PMID:18716136
A look at 15 years of planar thallium-201 imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaul, S.
1989-09-01
Extensive experience has been accumulated over the past 15 years regarding planar thallium-201 imaging. Quantitation of technically superior images provides a high sensitivity and specificity for the detection of CAD. In addition, planar thallium-201 images provide very important prognostic information in different clinical situations. Although single photon emission computerized tomography offers potential theoretical advantages over planar imaging, because of the problems involved in reconstruction, specifically the creation of artifacts, it may not be the ideal imaging modality in all situations. Good quality planar thallium-201 imaging still has an important role in clinical cardiology today. 144 references.
Non-invasive detection of vulnerable coronary plaque
Sharif, Faisal; Lohan, Derek G; Wijns, William
2011-01-01
Critical coronary stenoses have been shown to contribute to only a minority of acute coronary syndromes and sudden cardiac death. Autopsy studies have identified a subgroup of high-risk patients with disrupted vulnerable plaque and modest stenosis. Consequently, a clinical need exists to develop methods to identify these plaques prospectively before disruption and clinical expression of disease. Recent advances in invasive and non-invasive imaging techniques have shown the potential to identify these high-risk plaques. Non-invasive imaging with magnetic resonance imaging, computed tomography and positron emission tomography holds the potential to differentiate between low- and high-risk plaques. There have been significant technological advances in non-invasive imaging modalities, and the aim is to achieve a diagnostic sensitivity for these technologies similar to that of the invasive modalities. Molecular imaging with the use of novel targeted nanoparticles may help in detecting high-risk plaques that will ultimately cause acute myocardial infarction. Moreover, nanoparticle-based imaging may even provide non-invasive treatments for these plaques. However, at present none of these imaging modalities are able to detect vulnerable plaque nor have they been shown to definitively predict outcome. Further trials are needed to provide more information regarding the natural history of high-risk but non-flow-limiting plaque to establish patient specific targeted therapy and to refine plaque stabilizing strategies in the future. PMID:21860703
Multi-pass transmission electron microscopy
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.; ...
2017-05-10
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery
Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.
2016-01-01
Purpose Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation. PMID:27330239
MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery
NASA Astrophysics Data System (ADS)
Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.
2016-03-01
Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.
MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery.
Reaungamornrat, S; De Silva, T; Uneri, A; Wolinsky, J-P; Khanna, A J; Kleinszig, G; Vogt, S; Prince, J L; Siewerdsen, J H
2016-02-27
Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.
NASA Astrophysics Data System (ADS)
Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.
2016-03-01
Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.
Polarization sensitive optical coherence tomography – a review [Invited
de Boer, Johannes F.; Hitzenberger, Christoph K.; Yasuno, Yoshiaki
2017-01-01
Optical coherence tomography (OCT) is now a well-established modality for high-resolution cross-sectional and three-dimensional imaging of transparent and translucent samples and tissues. Conventional, intensity based OCT, however, does not provide a tissue-specific contrast, causing an ambiguity with image interpretation in several cases. Polarization sensitive (PS) OCT draws advantage from the fact that several materials and tissues can change the light’s polarization state, adding an additional contrast channel and providing quantitative information. In this paper, we review basic and advanced methods of PS-OCT and demonstrate its use in selected biomedical applications. PMID:28663869
Domínguez D, Juan F; Egan, Gary F; Gray, Marcus A; Poudel, Govinda R; Churchyard, Andrew; Chua, Phyllis; Stout, Julie C; Georgiou-Karistianis, Nellie
2013-01-01
IMAGE-HD is an Australian based multi-modal longitudinal magnetic resonance imaging (MRI) study in premanifest and early symptomatic Huntington's disease (pre-HD and symp-HD, respectively). In this investigation we sought to determine the sensitivity of imaging methods to detect macrostructural (volume) and microstructural (diffusivity) longitudinal change in HD. We used a 3T MRI scanner to acquire T1 and diffusion weighted images at baseline and 18 months in 31 pre-HD, 31 symp-HD and 29 controls. Volume was measured across the whole brain, and volume and diffusion measures were ascertained for caudate and putamen. We observed a range of significant volumetric and, for the first time, diffusion changes over 18 months in both pre-HD and symp-HD, relative to controls, detectable at the brain-wide level (volume change in grey and white matter) and in caudate and putamen (volume and diffusivity change). Importantly, longitudinal volume change in the caudate was the only measure that discriminated between groups across all stages of disease: far from diagnosis (>15 years), close to diagnosis (<15 years) and after diagnosis. Of the two diffusion metrics (mean diffusivity, MD; fractional anisotropy, FA), only longitudinal FA change was sensitive to group differences, but only after diagnosis. These findings further confirm caudate atrophy as one of the most sensitive and early biomarkers of neurodegeneration in HD. They also highlight that different tissue properties have varying schedules in their ability to discriminate between groups along disease progression and may therefore inform biomarker selection for future therapeutic interventions.
Unconventional methods of imaging: computational microscopy and compact implementations
NASA Astrophysics Data System (ADS)
McLeod, Euan; Ozcan, Aydogan
2016-07-01
In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading.
Rhee, H; Thomas, P; Shepherd, B; Gustafson, S; Vela, I; Russell, P J; Nelson, C; Chung, E; Wood, G; Malone, G; Wood, S; Heathcote, P
2016-10-01
Positron emission tomography using ligands targeting prostate specific membrane antigen has recently been introduced. Positron emission tomography imaging with (68)Ga-PSMA-HBED-CC has been shown to detect metastatic prostate cancer lesions at a high rate. In this study we compare multiparametric magnetic resonance imaging and prostate specific membrane antigen positron emission tomography of the prostate with whole mount ex vivo prostate histopathology to determine the true sensitivity and specificity of these imaging modalities for detecting and locating tumor foci within the prostate. In a prospective clinical trial setting 20 patients with localized prostate cancer and a planned radical prostatectomy were recruited. All patients underwent multiparametric magnetic resonance imaging and positron emission tomography before surgery, and whole mount histopathology slides were directly compared to the images. European Society of Urogenital Radiology guidelines for reporting magnetic resonance imaging were used as a template for regional units of analysis. The uropathologist and radiologists were blinded to individual components of the study, and the final correlation was performed by visual and deformable registration analysis. A total of 50 clinically significant lesions were identified from the whole mount histopathological analysis. Based on regional analysis the sensitivity, specificity, positive predictive value and negative predictive value for multiparametric magnetic resonance imaging were 44%, 94%, 81% and 76%, respectively. With prostate specific membrane antigen positron emission tomography the sensitivity, specificity, positive predictive value and negative predictive value were 49%, 95%, 85% and 88%, respectively. Prostate specific membrane antigen positron emission tomography yielded a higher specificity and positive predictive value. A significant proportion of cancers are potentially missed and underestimated by both imaging modalities. Prostate specific membrane antigen positron emission tomography may be used in addition to multiparametric magnetic resonance imaging to help improve local staging in those patients undergoing retropubic radical prostatectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Photoacoustic microscopy and computed tomography: from bench to bedside
Wang, Lihong V.; Gao, Liang
2014-01-01
Photoacoustic imaging (PAI) of biological tissue has seen immense growth in the past decade, providing unprecedented spatial resolution and functional information at depths in the optical diffusive regime. PAI uniquely combines the advantages of optical excitation and acoustic detection. The hybrid imaging modality features high sensitivity to optical absorption and wide scalability of spatial resolution with the desired imaging depth. Here we first summarize the fundamental principles underpinning the technology, then highlight its practical implementation, and finally discuss recent advances towards clinical translation. PMID:24905877
Towards clinically translatable in vivo nanodiagnostics
NASA Astrophysics Data System (ADS)
Park, Seung-Min; Aalipour, Amin; Vermesh, Ophir; Yu, Jung Ho; Gambhir, Sanjiv S.
2017-05-01
Nanodiagnostics as a field makes use of fundamental advances in nanobiotechnology to diagnose, characterize and manage disease at the molecular scale. As these strategies move closer to routine clinical use, a proper understanding of different imaging modalities, relevant biological systems and physical properties governing nanoscale interactions is necessary to rationally engineer next-generation bionanomaterials. In this Review, we analyse the background physics of several clinically relevant imaging modalities and their associated sensitivity and specificity, provide an overview of the materials currently used for in vivo nanodiagnostics, and assess the progress made towards clinical translation. This work provides a framework for understanding both the impressive progress made thus far in the nanodiagnostics field as well as presenting challenges that must be overcome to obtain widespread clinical adoption.
Chiu, Sheng-Hui; Gedda, Gangaraju; Girma, Wubshet Mekonnen; Chen, Jem-Kun; Ling, Yong-Chien; Ghule, Anil V; Ou, Keng-Liang; Chang, Jia-Yaw
2016-12-01
Herein, we synthesized an S, N, and Gd tri-element doped magnetofluorescent carbon quantum dots (GdNS@CQDs) within 10min by using a one-pot microwave method. Our results showed that these magnetofluorescent GdNS@CQDs have excellent fluorescent and magnetic properties. Moreover, GdNS@CQDs exhibited high stability at physiological conditions and ionic strength. These magnetofluorescent GdNS@CQDs were conjugated with a folic acid, denoted as FA-GdNS@CQDs, for targeting dual modal fluorescence/magnetic resonance (MR) imaging. The in vitro and in vivo studies confirmed the high biocompatibility and low toxicity of FA-GdNS@CQDs. FA-GdNS@CQDs enhanced the MR response as compared to that for commercial Gd-DTPA. The targeting capabilities of FA-GdNS@CQDs were confirmed in HeLa and HepG2 cells using in vitro fluorescence and MR dual modality imaging. Additionally, an anticancer drug, doxorubicin, was incorporated into the FA-GdNS@CQDs forming FA-GdNS@CQDs-DOX, which enables targeted drug delivery. Importantly, the prepared FA-GdNS@CQDs-DOX showed a high quantity of doxorubicin loading capacity (about 80%) and pH-sensitive drug release. The uptake into cancer cells and the intracellular location of the FA-GdNS@CQDs were observed by confocal laser scanning microscopy. We also successfully demonstrated in vivo fluorescence bio imaging of the FA-GdNS@CQDs, using zebrafish as an animal model. In this manuscript, we reported a facial, rapid, and environmental friendly method to fabricate hetero atoms including gadolinium, nitrogen, and sulfur doped multi-functional magnetofluorescent carbon quantum dots (GdNS@CQDs) nanocomposite. These multifunctional GdNS@CQDs were conjugated with a folic acid for targeting dual modal fluorescence/magnetic resonance imaging. Additionally, an anticancer drug, doxorubicin, was incorporated into the nanocomposite forming FA-GdNS@CQDs-DOX, which enables targeted drug delivery. We have developed GdNS@CQDs with integrated functions for simultaneous in vitro cell imaging, targeting, and pH-sensitive controlled drug release in HeLa cells. Furthermore, we successfully demonstrated the use of this material for in vivo fluorescence imaging, using zebrafish as an animal model. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael
Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in a prospective study. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdollahi, H
Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment responsemore » in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.« less
Xiao, Xiao; Dupuis-Roy, Nicolas; Jiang, Jun; Du, Xue; Zhang, Mingmin; Zhang, Qinglin
2018-02-21
The functional magnetic resonance imaging (fMRI) technique was used to investigate brain activations related to conflict control in a taste-visual cross-modal pairing task. On each trial, participants had to decide whether the taste of a gustatory stimulus matched or did not match the expected taste of the food item depicted in an image. There were four conditions: Negative match (NM; sour gustatory stimulus and image of sour food), negative mismatch (NMM; sour gustatory stimulus and image of sweet food), positive match (PM; sweet gustatory stimulus and image of sweet food), positive mismatch (PMM; sweet gustatory stimulus and image of sour food). Blood oxygenation level-dependent (BOLD) contrasts between the NMM and the NM conditions revealed an increased activity in the middle frontal gyrus (MFG) (BA 6), the lingual gyrus (LG) (BA 18), and the postcentral gyrus. Furthermore, the NMM minus NM BOLD differences observed in the MFG were correlated with the NMM minus NM differences in response time. These activations were specifically associated with conflict control during the aversive gustatory stimulation. BOLD contrasts between the PMM and the PM condition revealed no significant positive activation, which supported the hypothesis that the human brain is especially sensitive to aversive stimuli. Altogether, these results suggest that the MFG is associated with the taste-visual cross-modal conflict control. A possible role of the LG as an information conflict detector at an early perceptual stage is further discussed, along with a possible involvement of the postcentral gyrus in the processing of the taste-visual cross-modal sensory contrast. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Liu, Tongtong; Ge, Xifeng; Yu, Jinhua; Guo, Yi; Wang, Yuanyuan; Wang, Wenping; Cui, Ligang
2018-06-21
B-mode ultrasound (B-US) and strain elastography ultrasound (SE-US) images have a potential to distinguish thyroid tumor with different lymph node (LN) status. The purpose of our study is to investigate whether the application of multi-modality images including B-US and SE-US can improve the discriminability of thyroid tumor with LN metastasis based on a radiomics approach. Ultrasound (US) images including B-US and SE-US images of 75 papillary thyroid carcinoma (PTC) cases were retrospectively collected. A radiomics approach was developed in this study to estimate LNs status of PTC patients. The approach included image segmentation, quantitative feature extraction, feature selection and classification. Three feature sets were extracted from B-US, SE-US, and multi-modality containing B-US and SE-US. They were used to evaluate the contribution of different modalities. A total of 684 radiomics features have been extracted in our study. We used sparse representation coefficient-based feature selection method with 10-bootstrap to reduce the dimension of feature sets. Support vector machine with leave-one-out cross-validation was used to build the model for estimating LN status. Using features extracted from both B-US and SE-US, the radiomics-based model produced an area under the receiver operating characteristic curve (AUC) [Formula: see text] 0.90, accuracy (ACC) [Formula: see text] 0.85, sensitivity (SENS) [Formula: see text] 0.77 and specificity (SPEC) [Formula: see text] 0.88, which was better than using features extracted from B-US or SE-US separately. Multi-modality images provided more information in radiomics study. Combining use of B-US and SE-US could improve the LN metastasis estimation accuracy for PTC patients.
Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi
2018-04-01
Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.
A Brief Account of Nanoparticle Contrast Agents for Photoacoustic Imaging
Pan, Dipanjan; Kim, Benjamin; Wang, Lihong V.; Lanza, Gregory M
2014-01-01
Photoacoustic imaging (PAI) is a hybrid, nonionizing modality offering excellent spatial resolution, deep penetration, and high soft tissue contrast. In PAI, signal is generated based on the absorption of laser-generated optical energy by endogenous tissues or exogenous contrast agents leading to acoustic emissions detected by an ultrasound transducer. Research in this area over the years has shown that PAI has the ability to provide both physiological and molecular imaging, which can be viewed alone or used in a hybrid modality fashion to extend the anatomic and hemodynamic sensitivities of clinical ultrasound. PAI may be performed using inherent contrast afforded by light absorbing molecules such as hemoglobin, myoglobin, and melanin or exogenous small molecule contrast agent such as near infrared dyes and porphyrins. However, this review summarizes the potential of exogenous nanoparticle-based agents for PAI applications including contrast based on gold particles, carbon nanotubes, and encapsulated copper compounds. PMID:23983210
Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents
NASA Astrophysics Data System (ADS)
Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A.; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A.; Babakhani, Aydin; Ferrari, Mauro; Li, King C.; Cooper, Laurence J. N.
2014-03-01
Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-64Cu). This can now be potentially used for 64Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR+SPIONpos T cells effectively target in vitro CD19+ lymphoma.
2013-01-01
Background There is no established noninvasive or invasive diagnostic imaging modality at present that can serve as a ‘gold standard’ or “benchmark” for the detection of the venous anomalies, indicative of chronic cerebrospinal venous insufficiency (CCSVI). We investigated the sensitivity and specificity of 2 invasive vs. 2 noninvasive imaging techniques for the detection of extracranial venous anomalies in the internal jugular veins (IJVs) and azygos vein/vertebral veins (VVs) in patients with multiple sclerosis (MS). Methods The data for this multimodal imaging comparison pilot study was collected in phase 2 of the “Prospective Randomized Endovascular therapy in Multiple Sclerosis” (PREMiSe) study using standardized imaging techniques. Thirty MS subjects were screened initially with Doppler sonography (DS), out of which 10 did not fulfill noninvasive screening procedure requirements on DS that consisted of ≥2 venous hemodynamic extracranial criteria. Accordingly, 20 MS patients with relapsing MS were enrolled into the multimodal diagnostic imaging study. For magnetic resonance venography (MRV), IJVs abnormal findings were considered absent or pinpoint flow, whereas abnormal VVs flow was classified as absent. Abnormalities of the VVs were determined only using non-invasive testing. Catheter venography (CV) was considered abnormal when ≥50% lumen restriction was detected, while intravascular ultrasound (IVUS) was considered abnormal when ≥50% restriction of the lumen or intra-luminal defects or reduced pulsatility was found. Non-invasive and invasive imaging modality comparisons between left, right and total IJVs and between the VVs and azygos vein were performed. Because there is no reliable way of non-invasively assessing the azygos vein, the VVs abnormalities detected by the non-invasive testing were compared to the azygos abnormalities detected by the invasive testing. All image modalities were analyzed in a blinded manner by more than one viewer, upon which consensus was reached. The sensitivity and specificity were calculated using contingency tables denoting the presence or absence of vein-specific abnormality findings between all imaging modalities used individually as the benchmark. Results The sensitivity of CV + IVUS was 68.4% for the right and 90% for the left IJV and 85.7% for the azygos vein/VVs, compared to venous anomalies detected on DS. Compared to the venous anomalies detected on MRV, the sensitivity of CV + IVUS was 71.4% in right and 100% in left IJVs and 100% in the azygos vein/VVs; however, the specificity was 38.5%, 38.9% and 11.8%, respectively. The sensitivity between the two invasive imaging techniques, used as benchmarks, ranged from 72.7% for the right IJV to 90% for the azygos vein but the IVUS showed a higher rate of venous anomalies than the CV. There was excellent correspondence between identifying collateral veins on MRV and CV. Conclusions Noninvasive DS screening for the detection of venous anomalies indicative of CCSVI may be a reliable approach for identifying patients eligible for further multimodal invasive imaging testing of the IJVs. However, the noninvasive screening methods were inadequate to depict the total amount of azygos vein/VVs anomalies identified with invasive testing. This pilot study, with limited sample size, shows that both a non-invasive and invasive multimodal imaging diagnostic approach should be recommended to depict a range of extracranial venous anomalies indicative of CCSVI. However, lack of invasive testing on the study subjects whose results were negative on the DS screening and of healthy controls, limits further generalizibility of our findings. In addition, the findings from the 2 invasive techniques confirmed the existence of severe extracranial venous anomalies that significantly impaired normal blood outflow from the brain in this group of MS patients. PMID:24139135
Dual modality virtual colonoscopy workstation: design, implementation, and preliminary evaluation
NASA Astrophysics Data System (ADS)
Chen, Dongqing; Meissner, Michael
2006-03-01
The aim of this study is to develop a virtual colonoscopy (VC) workstation that supports both CT (computed tomography) and MR (magnetic resonance) imaging procedures. The workflow should be optimized and be able to take advantage of both image modalities. The technological break through is at the real-time volume rendering of spatial-intensity-inhomogeneous MR images to achieve high quality 3D endoluminal view. VC aims at visualizing CT or MR tomography images for detection of colonic polyp and lesion. It is also called as CT/MR colonography based on the imaging modality that is employed. The published results of large scale clinical trial demonstrated more than 90% of sensitivity on polyp detection for certain CT colonography (CTC) workstation. A drawback of the CT colonoscopy is the radiation exposure. MR colonography (MRC) is free from the X-ray radiation. It achieved almost 100% specificity for polyp detection in published trials. The better tissue contrast in MR image allows the accurate diagnosis of inflammatory bowel disease also, which is usually difficult in CTC. At present, most of the VC workstations are designed for CT examination. They are not able to display multi-sequence MR series concurrently in a single application. The automatic correlation between 2D and 3D view is not available due to the difficulty of 3D model building for MR images. This study aims at enhancing a commercial VC product that was successfully used for CTC to equally support dark-lumen protocol MR procedure also.
Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi
2014-01-01
The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.
New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology
Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying
2014-01-01
Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850
NASA Astrophysics Data System (ADS)
Chung, Hyunkoo; Lu, Guolan; Tian, Zhiqiang; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei
2016-03-01
Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications. HSI acquires two dimensional images at various wavelengths. The combination of both spectral and spatial information provides quantitative information for cancer detection and diagnosis. This paper proposes using superpixels, principal component analysis (PCA), and support vector machine (SVM) to distinguish regions of tumor from healthy tissue. The classification method uses 2 principal components decomposed from hyperspectral images and obtains an average sensitivity of 93% and an average specificity of 85% for 11 mice. The hyperspectral imaging technology and classification method can have various applications in cancer research and management.
Imaging of dental material by polarization-sensitive optical coherence tomography
NASA Astrophysics Data System (ADS)
Dichtl, Sabine; Baumgartner, Angela; Hitzenberger, Christoph K.; Moritz, Andreas; Wernisch, Johann; Robl, Barbara; Sattmann, Harald; Leitgeb, Rainer; Sperr, Wolfgang; Fercher, Adolf F.
1999-05-01
Partial coherence interferometry (PCI) and optical coherence tomography (OCT) are noninvasive and noncontact techniques for high precision biometry and for obtaining cross- sectional images of biologic structures. OCT was initially introduced to depict the transparent tissue of the eye. It is based on interferometry employing the partial coherence properties of a light source with high spatial coherence ut short coherence length to image structures with a resolution of the order of a few microns. Recently this technique has been modified for cross section al imaging of dental and periodontal tissues. In vitro and in vivo OCT images have been recorded, which distinguish enamel, cemento and dentin structures and provide detailed structural information on clinical abnormalities. In contrast to convention OCT, where the magnitude of backscattered light as a function of depth is imaged, polarization sensitive OCT uses backscattered light to image the magnitude of the birefringence in the sample as a function of depth. First polarization sensitive OCT recordings show, that changes in the mineralization status of enamel or dentin caused by caries or non-caries lesions can result in changes of the polarization state of the light backscattered by dental material. Therefore polarization sensitive OCT might provide a new diagnostic imaging modality in clinical and research dentistry.
Epel, Boris; Sundramoorthy, Subramanian V.; Barth, Eugene D.; Mailer, Colin; Halpern, Howard J.
2011-01-01
Purpose: The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging. Methods: Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies. Results: A study of phantoms with different oxygen concentrations revealed a threefold advantage of the ESE methodology in terms of reduced imaging time and more precise oxygen resolution for samples with less than 70 torr oxygen partial pressure. Above∼100 torr, CW performed better. The images produced by both methodologies showed pO2 distributions with similar mean values. However, ESE images demonstrated superior performance in low pO2 regions while missing voxels in high pO2 regions. Conclusions: ESE and CW have different areas of applicability. ESE is superior for hypoxia studies in tumors. PMID:21626937
Optical Detection of Ultrasound in Photoacoustic Imaging
Dong, Biqin; Sun, Cheng; Zhang, Hao F.
2017-01-01
Objective Photoacoustic (PA) imaging emerges as a unique tool to study biological samples based on optical absorption contrast. In PA imaging, piezoelectric transducers are commonly used to detect laser-induced ultrasonic waves. However, they typically lack adequate broadband sensitivity at ultrasonic frequency higher than 100 MHz while their bulky size and optically opaque nature cause technical difficulties in integrating PA imaging with conventional optical imaging modalities. To overcome these limitations, optical methods of ultrasound detection were developed and shown their unique applications in photoacoustic imaging. Methods We provide an overview of recent technological advances in optical methods of ultrasound detection and their applications in PA imaging. A general theoretical framework describing sensitivity, bandwidth, and angular responses of optical ultrasound detection is also introduced. Results Optical methods of ultrasound detection can provide improved detection angle and sensitivity over significantly extended bandwidth. In addition, its versatile variants also offer additional advantages, such as device miniaturization, optical transparency, mechanical flexibility, minimal electrical/mechanical crosstalk, and potential noncontact PA imaging. Conclusion The optical ultrasound detection methods discussed in this review and their future evolution may play an important role in photoacoustic imaging for biomedical study and clinical diagnosis. PMID:27608445
Prospects of third-generation femtosecond laser technology in biological spectromicroscopy
NASA Astrophysics Data System (ADS)
Fattahi, Hanieh; Fattahi, Zohreh; Ghorbani, Asghar
2018-05-01
The next generation of biological imaging modalities will be a movement towards super-resolution, label-free approaches to realize subcellular images in a nonperturbative, non-invasive manner and towards new detection metrologies to reach a higher sensitivity and dynamic range. In this paper, we discuss how the third generation femtosecond laser technology in combination with the already existing concepts in time-resolved spectroscopy could fulfill the requirements of these exciting prospects. The expected enhanced specificity and sensitivity of the envisioned super-resolution microscope could lead us to a better understanding of the inter- and intra-cellular molecular transport and DNA-protein interaction.
Thermo-elastic optical coherence tomography.
Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van
2017-09-01
The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.
He, Hongying; Plaxco, Jeri S; Wei, Wei; Huo, Lei; Candelaria, Rosalind P; Kuerer, Henry M; Yang, Wei T
2016-09-01
To compare the incremental cancer detection rate (ICDR) using bilateral whole-breast ultrasonography (BWBUS) vs dynamic contrast-enhanced MRI in patients with primary breast cancer. A retrospective database search in a single institution identified 259 patients with breast cancer diagnosed from January 2011 to August 2014 who underwent mammography, BWBUS and MRI before surgery. Patient characteristics, tumour characteristics and lesions seen on each imaging modality were recorded. The sensitivity, specificity and accuracy for each modality were calculated. ICDRs according to index tumour histology and receptor status were also evaluated. The effect of additional cancer detection on surgical planning was obtained from the medical records. A total of 266 additional lesions beyond 273 index malignancies were seen on at least 1 modality, of which 121 (45%) lesions were malignant and 145 (55%) lesions were benign. MRI was significantly more sensitive than BWBUS (p = 0.01), while BWBUS was significantly more accurate and specific than MRI (p < 0.0001). Compared with mammography, the ICDRs using BWBUS and MRI were significantly higher for oestrogen receptor-positive and triple-negative cancers, but not for human epidermal growth factor receptor 2-positive cancers. 22 additional malignant lesions in 18 patients were seen on MRI only. Surgical planning remained unchanged in 8 (44%) of those 18 patients. MRI was more sensitive than BWBUS, while BWBUS was more accurate and specific than MRI. MRI-detected additional malignant lesions did not change surgical planning in almost half of these patients. BWBUS may be a cost-effective and practical tool in breast cancer staging.
Fonager, Randi F; Zacho, Helle D; Langkilde, Niels C; Fledelius, Joan; Ejlersen, June A; Haarmark, Christian; Hendel, Helle W; Lange, Mine Benedicte; Jochumsen, Mads R; Mortensen, Jesper C; Petersen, Lars J
2017-01-01
The aim of this study was to prospectively compare planar, bone scan (BS) versus SPECT/CT and NaF PET/CT in detecting bone metastases in prostate cancer. Thirty-seven consecutive, newly diagnosed, prostate cancer patients with prostate specific antigen (PSA) levels ≥ 50 ng/mL and who were considered eligible for androgen-deprivation therapy (ADT) were included in this study. BS, SPECT/CT, and NaF PET/CT, were performed prior to treatment and were repeated after six months of ADT. Baseline images from each index test were independently read by two experienced readers. The reference standard was based on a consensus decision made by a multidisciplinary team on the basis of baseline and follow-up images of the index tests, the findings of the baseline index tests by the experienced readers, and any available imaging, biochemical, and clinical data, including the response to ADT. Twenty-seven (73%) of the 37 patients had bone metastases according to the reference standard. The sensitivities for BS, SPECT/CT and NaF PET/CT were 78%, 89%, and 89%, respectively, and the specificities were 90%, 100%, and 90%, respectively. The positive predictive values of BS, SPECT/CT and NaF PET/CT were 96%, 100%, and 96%, respectively, and the negative predictive values were 60%, 77% and 75%, respectively. No statistically significant difference among the three imaging modalities was observed. All three imaging modalities showed high sensitivity and specificity. NaF PET/CT and SPECT/CT showed numerically improved, but not statistically superior, sensitivity compared with BS in this limited and selected patient cohort. PMID:29181269
NASA Astrophysics Data System (ADS)
Kang, Jeeun; Chang, Jin Ho; Wilson, Brian C.; Veilleux, Israel; Bai, Yanhui; DaCosta, Ralph; Kim, Kang; Ha, Seunghan; Lee, Jong Gun; Kim, Jeong Seok; Lee, Sang-Goo; Kim, Sun Mi; Lee, Hak Jong; Ahn, Young Bok; Han, Seunghee; Yoo, Yangmo; Song, Tai-Kyong
2015-03-01
Multi-modality imaging is beneficial for both preclinical and clinical applications as it enables complementary information from each modality to be obtained in a single procedure. In this paper, we report the design, fabrication, and testing of a novel tri-modal in vivo imaging system to exploit molecular/functional information from fluorescence (FL) and photoacoustic (PA) imaging as well as anatomical information from ultrasound (US) imaging. The same ultrasound transducer was used for both US and PA imaging, bringing the pulsed laser light into a compact probe by fiberoptic bundles. The FL subsystem is independent of the acoustic components but the front end that delivers and collects the light is physically integrated into the same probe. The tri-modal imaging system was implemented to provide each modality image in real time as well as co-registration of the images. The performance of the system was evaluated through phantom and in vivo animal experiments. The results demonstrate that combining the modalities does not significantly compromise the performance of each of the separate US, PA, and FL imaging techniques, while enabling multi-modality registration. The potential applications of this novel approach to multi-modality imaging range from preclinical research to clinical diagnosis, especially in detection/localization and surgical guidance of accessible solid tumors.
Multi-test cervical cancer diagnosis with missing data estimation
NASA Astrophysics Data System (ADS)
Xu, Tao; Huang, Xiaolei; Kim, Edward; Long, L. Rodney; Antani, Sameer
2015-03-01
Cervical cancer is a leading most common type of cancer for women worldwide. Existing screening programs for cervical cancer suffer from low sensitivity. Using images of the cervix (cervigrams) as an aid in detecting pre-cancerous changes to the cervix has good potential to improve sensitivity and help reduce the number of cervical cancer cases. In this paper, we present a method that utilizes multi-modality information extracted from multiple tests of a patient's visit to classify the patient visit to be either low-risk or high-risk. Our algorithm integrates image features and text features to make a diagnosis. We also present two strategies to estimate the missing values in text features: Image Classifier Supervised Mean Imputation (ICSMI) and Image Classifier Supervised Linear Interpolation (ICSLI). We evaluate our method on a large medical dataset and compare it with several alternative approaches. The results show that the proposed method with ICSLI strategy achieves the best result of 83.03% specificity and 76.36% sensitivity. When higher specificity is desired, our method can achieve 90% specificity with 62.12% sensitivity.
Imaging methods for analyzing body composition in human obesity and cardiometabolic disease.
Seabolt, Lynn A; Welch, E Brian; Silver, Heidi J
2015-09-01
Advances in the technological qualities of imaging modalities for assessing human body composition have been stimulated by accumulating evidence that individual components of body composition have significant influences on chronic disease onset, disease progression, treatment response, and health outcomes. Importantly, imaging modalities have provided a systematic method for differentiating phenotypes of body composition that diverge from what is considered normal, that is, having low bone mass (osteopenia/osteoporosis), low muscle mass (sarcopenia), high fat mass (obesity), or high fat with low muscle mass (sarcopenic obesity). Moreover, advances over the past three decades in the sensitivity and quality of imaging not just to discern the amount and distribution of adipose and lean tissue but also to differentiate layers or depots within tissues and cells is enhancing our understanding of distinct mechanistic, metabolic, and functional roles of body composition within human phenotypes. In this review, we focus on advances in imaging technologies that show great promise for future investigation of human body composition and how they are being used to address the pandemic of obesity, metabolic syndrome, and diabetes. © 2015 New York Academy of Sciences.
Brenner, Arnold I; Koshy, June; Morey, Jose; Lin, Cheryl; DiPoce, Jason
2012-01-01
Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe
2016-02-01
The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core-shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals ( 11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core-shell nanoparticles ( 54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core-shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.
Shroff, Geeta
2017-02-01
Introduction Spinal cord injury is a cause of severe disability and mortality. The pharmacological and non-pharmacological methods used, are unable to improve the quality of life in spinal cord injury. Spinal disorders have been treated with human embryonic stem cells. Magnetic resonance imaging and tractography were used as imaging modality to document the changes in the damaged cord, but the magnetic resonance imaging tractography was seen to be more sensitive in detecting the changes in the spinal cord. The present study was conducted to evaluate the diagnostic modality of magnetic resonance imaging tractography to determine the efficacy of human embryonic stem cells in chronic spinal cord injury. Materials and methods The study included the patients with spinal cord injury for whom magnetic resonance imaging tractography was performed before and after the therapy. Omniscan (gadodiamide) magnetic resonance imaging tractography was analyzed to assess the spinal defects and the improvement by human embryonic stem cell treatment. The patients were also scored by American Spinal Injury Association scale. Results Overall, 15 patients aged 15-44 years with clinical manifestations of spinal cord injury had magnetic resonance imaging tractography performed. The average treatment period was nine months. The majority of subjects ( n = 13) had American Spinal Injury Association score A, and two patients were at score C at the beginning of therapy. At the end of therapy, 10 patients were at score A, two patients were at score B and three patients were at score C. Improvements in patients were clearly understood through magnetic resonance imaging tractography as well as in clinical signs and symptoms. Conclusion Magnetic resonance imaging tractography can be a crucial diagnostic modality to assess the improvement in spinal cord injury patients.
Accurate determination of imaging modality using an ensemble of text- and image-based classifiers.
Kahn, Charles E; Kalpathy-Cramer, Jayashree; Lam, Cesar A; Eldredge, Christina E
2012-02-01
Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities--computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph-to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A "Simple Vote" ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers' votes. A "Weighted Vote" classifier weighted each individual classifier's vote based on performance over a training set. For each image, this classifier's output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers' F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images (F score, 0.913; 95% confidence interval, 0.905-0.921) and 4,672 images (F score, 0.934; 95% confidence interval, 0.927-0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.
Recent development of nanoparticles for molecular imaging
NASA Astrophysics Data System (ADS)
Kim, Jonghoon; Lee, Nohyun; Hyeon, Taeghwan
2017-10-01
Molecular imaging enables us to non-invasively visualize cellular functions and biological processes in living subjects, allowing accurate diagnosis of diseases at early stages. For successful molecular imaging, a suitable contrast agent with high sensitivity is required. To date, various nanoparticles have been developed as contrast agents for medical imaging modalities. In comparison with conventional probes, nanoparticles offer several advantages, including controllable physical properties, facile surface modification and long circulation time. In addition, they can be integrated with various combinations for multimodal imaging and therapy. In this opinion piece, we highlight recent advances and future perspectives of nanomaterials for molecular imaging. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
NASA Astrophysics Data System (ADS)
Bodenschatz, Nico; Poh, Catherine F.; Lam, Sylvia; Lane, Pierre; Guillaud, Martial; MacAulay, Calum E.
2017-08-01
Dual-mode endomicroscopy is a diagnostic tool for early cancer detection. It combines the high-resolution nuclear tissue contrast of fluorescence endomicroscopy with quantified depth-dependent epithelial backscattering as obtained by diffuse optical microscopy. In an in vivo pilot imaging study of 27 oral lesions from 21 patients, we demonstrate the complementary diagnostic value of both modalities and show correlations between grade of epithelial dysplasia and relative depth-dependent shifts in light backscattering. When combined, the two modalities provide diagnostic sensitivity to both moderate and severe epithelial dysplasia in vivo.
NASA Astrophysics Data System (ADS)
Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer
2016-03-01
Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.
Bor, Renáta; Farkas, Klaudia; Bálint, Anita; Szűcs, Mónika; Ábrahám, Szabolcs; Milassin, Ágnes; Rutka, Mariann; Nagy, Ferenc; Milassin, Péter; Szepes, Zoltán; Molnár, Tamás
2016-11-01
Magnetic resonance imaging (MRI) and transrectal sonography are the two accepted imaging modalities for evaluation of perianal fistulas and abscesses. Transperineal sonography is a new technique that is easy to learn and can be performed at any time. The purpose of this study was to prospectively compare the diagnostic accuracy of MRI, transrectal sonography, and transperineal sonography with surgical findings in patients with perianal Crohn disease. All patients with perianal Crohn disease underwent MRI, transrectal sonography, and transperineal sonography within a few days before surgery. Fistulas were classified as simple (43.8%) or complex (52.2%) based on surgical findings. Twenty-three patients with active perianal Crohn disease (12 women and 11 men; mean age, 29.9 years; current therapy: antibiotics, 69.6%; azathioprine, 56.5%; and biologics, 73.9%; previous surgery, 26.1%; and proportion of smokers, 39.1%) were included. Sensitivity values for MRI, transrectal sonography, and transperineal sonography for diagnosis of fistulas were 84.6%, 84.6%, and 100%, respectively. Transperineal sonography was more sensitive for diagnosis of perianal abscesses than MRI and transrectal sonography (100%, 58.8%, and 92.8%). Transperineal sonography is a very accurate diagnostic method with outstanding sensitivity compared with MRI and transrectal sonography for evaluation of complicated perianal Crohn disease. Due to its simplicity and low cost, it is recommended that transperineal sonography be the first diagnostic modality in these cases. © 2016 by the American Institute of Ultrasound in Medicine.
Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun
2017-01-01
To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.
Kim, Jeong Rye; Suh, Chong Hyun; Yoon, Hee Mang; Lee, Jin Seong; Cho, Young Ah; Jung, Ah Young
2018-03-01
To assess the diagnostic performance of shear-wave elastography for determining the severity of liver fibrosis in children and adolescents. An electronic literature search of PubMed and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver-operating-characteristic modelling were performed to evaluate the diagnostic performance of shear-wave elastography. Meta-regression and subgroup analyses according to the modality of shear-wave imaging and the degree of liver fibrosis were also performed. Twelve eligible studies with 550 patients were included. Shear-wave elastography showed a summary sensitivity of 81 % (95 % CI: 71-88) and a specificity of 91 % (95 % CI: 83-96) for the prediction of significant liver fibrosis. The number of measurements of shear-wave elastography performed was a significant factor influencing study heterogeneity. Subgroup analysis revealed shear-wave elastography to have an excellent diagnostic performance according to each degree of liver fibrosis. Supersonic shear imaging (SSI) had a higher sensitivity (p<.01) and specificity (p<.01) than acoustic radiation force impulse imaging (ARFI). Shear-wave elastography is an excellent modality for the evaluation of the severity of liver fibrosis in children and adolescents. Compared with ARFI, SSI showed better diagnostic performance for prediction of significant liver fibrosis. • Shear-wave elastography is beneficial for determining liver fibrosis severity in children. • Shear-wave elastography showed summary sensitivity of 81 %, specificity of 91 %. • SSI showed better diagnostic performance than ARFI for significant liver fibrosis.
NASA Astrophysics Data System (ADS)
Murukeshan, Vadakke M.; Hoong Ta, Lim
2014-11-01
Medical diagnostics in the recent past has seen the challenging trend to come up with dual and multi-modality imaging for implementing better diagnostic procedures. The changes in tissues in the early disease stages are often subtle and can occur beneath the tissue surface. In most of these cases, conventional types of medical imaging using optics may not be able to detect these changes easily due to its penetration depth of the orders of 1 mm. Each imaging modality has its own advantages and limitations, and the use of a single modality is not suitable for every diagnostic applications. Therefore the need for multi or hybrid-modality imaging arises. Combining more than one imaging modalities overcomes the limitation of individual imaging method and integrates the respective advantages into a single setting. In this context, this paper will be focusing on the research and development of two multi-modality imaging platforms. The first platform combines ultrasound and photoacoustic imaging for diagnostic applications in the eye. The second platform consists of optical hyperspectral and photoacoustic imaging for diagnostic applications in the colon. Photoacoustic imaging is used as one of the modalities in both platforms as it can offer deeper penetration depth compared to optical imaging. The optical engineering and research challenges in developing the dual/multi-modality platforms will be discussed, followed by initial results validating the proposed scheme. The proposed schemes offer high spatial and spectral resolution imaging and sensing, and is expected to offer potential biomedical imaging solutions in the near future.
Scatterer density sensitive tomography utilizing light and ultrasound
NASA Astrophysics Data System (ADS)
Vakili, Ali; Holt, R. Glynn; DiMarzio, Charles A.
2018-02-01
Hybrid imaging modalities are becoming more popular since they utilize the benefit of both optical and ultrasound (US) imaging modalities. They use the contrast based on optical properties and negligible scattering of US waves to extend the depth of imaging. Ultrasound modulated optical tomography (UOT) and acoustic radiation force (ARF) with speckle pattern analysis, both use the idea of utilizing a focused US wave to spatially encode in information in the diffused light. We have previously shown that compared to UOT, ARF regime can result in a stronger signal and the mean irradiance change (MIC) signal can reflect the mechanical and thermal properties of the tissue non-invasively. In addition to the mechanical and thermal properties of the medium, the MIC signal is able to reveal information about the morphology of the medium. A tumor is formed by a group of cancer cells that are result of rounds of successive mutation. Cancer cell grow without control in abnormal shapes. In this study, we have modeled cells with their nuclei, assuming that the scattering events occur at the location of the nuclei of the cells. We have shown that, although the MIC signal is not sensitive to the size of the particle, it can detect the presence of the tumor base on the higher concentration of cells in a tumor.
Extensor tendinopathy of the elbow assessed with sonoelastography: histologic correlation.
Klauser, Andrea S; Pamminger, Mathias; Halpern, Ethan J; Abd Ellah, Mohamed M H; Moriggl, Bernhard; Taljanovic, Mihra S; Deml, Christian; Sztankay, Judit; Klima, Guenther; Jaschke, Werner R
2017-08-01
To compare agreement between conventional B-mode ultrasound (US) and compression sonoelastography (SEL) of the common extensor tendons of the elbow with histological evaluation. Twenty-six common extensor tendons were evaluated in 17 cadavers (11 females, median age 85 years and 6 males, median age 80 years). B-mode US was graded into: Grade 1, homogeneous fibrillar pattern; grade 2, hypoechoic areas and/or calcifications <30%; and grade 3 > 30%. SEL was graded into: Grade 1 indicated blue (hardest) to green (hard); grade 2 yellow (soft); and grade 3 red (softest). B-mode US, SEL, and a combined grading score incorporating both were compared to histological findings in 76 biopsies. Histological alterations were detected in 55/76 biopsies. Both modalities showed similar results (sensitivity, specificity, and accuracy 84%, 81%, and 83% for B-mode US versus 85%, 86%, and 86% for SEL, respectively, P > 0.3). However, a combination of both resulted in significant improvement in sensitivity (96%, P < 0.02) without significant change in specificity (81%, P < 0.3), yielding an improved overall accuracy (92%). Combined imaging of the extensor tendons with both modalities is superior to either modality alone for predicting the presence of pathologic findings on histology. • Combination of B-mode US and SEL proved efficiency in diagnosing lateral epicondylitis. • Combination of B-mode US and SEL in lateral epicondylitis correlates to histology. • Combination of both modalities provides improved sensitivity without loss of specificity.
Otazo, Ricardo; Lin, Fa-Hsuan; Wiggins, Graham; Jordan, Ramiro; Sodickson, Daniel; Posse, Stefan
2009-01-01
Standard parallel magnetic resonance imaging (MRI) techniques suffer from residual aliasing artifacts when the coil sensitivities vary within the image voxel. In this work, a parallel MRI approach known as Superresolution SENSE (SURE-SENSE) is presented in which acceleration is performed by acquiring only the central region of k-space instead of increasing the sampling distance over the complete k-space matrix and reconstruction is explicitly based on intra-voxel coil sensitivity variation. In SURE-SENSE, parallel MRI reconstruction is formulated as a superresolution imaging problem where a collection of low resolution images acquired with multiple receiver coils are combined into a single image with higher spatial resolution using coil sensitivities acquired with high spatial resolution. The effective acceleration of conventional gradient encoding is given by the gain in spatial resolution, which is dictated by the degree of variation of the different coil sensitivity profiles within the low resolution image voxel. Since SURE-SENSE is an ill-posed inverse problem, Tikhonov regularization is employed to control noise amplification. Unlike standard SENSE, for which acceleration is constrained to the phase-encoding dimension/s, SURE-SENSE allows acceleration along all encoding directions — for example, two-dimensional acceleration of a 2D echo-planar acquisition. SURE-SENSE is particularly suitable for low spatial resolution imaging modalities such as spectroscopic imaging and functional imaging with high temporal resolution. Application to echo-planar functional and spectroscopic imaging in human brain is presented using two-dimensional acceleration with a 32-channel receiver coil. PMID:19341804
Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.
Hong, Senlian; Chen, Tao; Zhu, Yuntao; Li, Ang; Huang, Yanyi; Chen, Xing
2014-06-02
Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MR imaging of breast implants.
Gorczyca, D P
1994-11-01
MR imaging has proved to be an excellent imaging modality in locating free silicone and evaluating an implant for rupture, with a sensitivity of approximately 94% and specificity of 97%. Silicone has a unique MR resonance frequency and long T1 and T2 relaxation times, which allows several MR sequences to provide excellent diagnostic images. The most commonly used sequences include T2-weighted, STIR, and chemical shift imaging (Figs. 3, 13, and 14). The T2-weighted and STIR sequences are often used in conjunction with chemical water suppression. The most reliable findings on MR images for detection of implant rupture include identification of the collapsed implant shell (linguine sign) and free silicone within the breast parenchyma.
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy. PMID:28638483
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.
Peteiro, Jesús; Bouzas-Mosquera, Alberto; Estevez, Rodrigo; Pazos, Pablo; Piñeiro, Miriam; Castro-Beiras, Alfonso
2012-03-01
Supine bicycle exercise (SBE) echocardiography and treadmill exercise (TME) echocardiography have been used for evaluation of coronary artery disease (CAD). Although peak imaging acquisition has been considered unfeasible with TME, higher sensitivity for the detection of CAD has been recently found with this method compared with post-TME echocardiography. However, peak TME echocardiography has not been previously compared with the more standardized peak SBE echocardiography. The aim of this study was to compare peak TME echocardiography, peak SBE echocardiography, and post-TME echocardiography for the detection of CAD. A series of 116 patients (mean age, 61 ± 10 years) referred for evaluation of CAD underwent SBE (starting at 25 W, with 25-W increments every 2-3 min) and TME with peak and postexercise imaging acquisition, in a random sequence. Digitized images at baseline, at peak TME, after TME, and at peak SBE were interpreted in a random and blinded fashion. All patients underwent coronary angiography. Maximal heart rate was higher during TME, whereas systolic blood pressure was higher during SBE, resulting in similar rate-pressure products. On quantitative angiography, 75 patients had coronary stenosis (≥50%). In these patients, wall motion score indexes at maximal exercise were higher at peak TME (median, 1.45; interquartile range [IQR], 1.13-1.75) than at peak SBE (median, 1.25; IQR, 1.0-1.56) or after TME (median, 1.13; IQR, 1.0-1.38) (P = .002 between peak TME and peak SBE imaging, P < .001 between post-TME imaging and the other modalities). The extent of myocardial ischemia (number of ischemic segments) was also higher during peak TME (median, 5; IQR, 2-12) compared with peak SBE (median, 3; IQR, 0-8) or after TME (median, 2; IQR, 0-4) (P < .001 between peak TME and peak SBE imaging, P < .001 between post-TME imaging and the other modalities). ST-segment changes in patients with CAD and normal baseline ST segments were higher during TME (median, 1 mm [IQR, 0-1.9 mm] vs 0 mm [IQR, 0-1.5 mm]; P = .006). The sensitivity of peak TME, peak SBE, and post-TME echocardiography for CAD was 84%, 75%, and 60% (P = .001 between post-TME and peak TME echocardiography, P = .055 between post-TME and peak SBE echocardiography), with specificity of 63%, 80%, and 78%, respectively (P = NS) and accuracy of 77%, 77%, and 66%, respectively (P = NS). Peak TME echocardiography diagnosed multivessel disease in 27 of the 40 patients with stenoses in more than one coronary artery, in contrast to 17 patients with peak SBE imaging and 12 with post-TME imaging (P < .05 between peak TME imaging and the other modalities). Image quality was similar with the three techniques. The duration of the test was longer with SBE echocardiography (9.5 ± 3.8 vs 7.6 ± 2.5 min, P < .001). During TME and SBE, patients achieve similar double products. Ischemia is more extensive and frequent with peak TME, which makes peak TME a more valuable exercise echocardiographic modality to increase sensitivity. However, peak SBE should be preferred to TME if the latter is performed with postexercise imaging acquisition. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Kluijfhout, Wouter P; Venkatesh, Shriya; Beninato, Toni; Vriens, Menno R; Duh, Quan-Yang; Wilson, David M; Hope, Thomas A; Suh, Insoo
2016-09-01
Preoperative imaging in patients with primary hyperparathyroidism and a previous parathyroid operation is essential; however, performance of conventional imaging is poor in this subgroup. Magnetic resonance imaging appears to be a good alternative, though overall evidence remains scarce. We retrospectively investigated the performance of magnetic resonance imaging in patients with and without a previous parathyroid operation, with a separate comparison for dynamic gadolinium-enhanced magnetic resonance imaging. All patients undergoing magnetic resonance imaging prior to parathyroidectomy for primary hyperparathyroidism (first time or recurrent) between January 2000 and August 2015 at a high-volume, tertiary care, referral center for endocrine operations were included. We compared the sensitivity and positive predictive value of magnetic resonance imaging with conventional ultrasound and sestamibi on a per-lesion level. A total of 3,450 patients underwent parathyroidectomy, of which 84 patients with recurrent (n = 10) or persistent (n = 74) disease and 41 patients with a primary operation were included. Magnetic resonance imaging had a sensitivity and positive predictive value of 79.9% and 84.7%, respectively, and performance was good in both patients with and without a previous parathyroid operation. Adding magnetic resonance imaging to the combination of ultrasound and sestamibi resulted in a significant increase in sensitivity from 75.2% to 91.5%. Dynamic magnetic resonance imaging produced excellent results in the reoperative group, with sensitivity and a positive predictive value of 90.1%. Technologic advances have enabled faster and more accurate magnetic resonance imaging protocols, making magnetic resonance imaging an excellent alternative modality without associated ionizing radiation. Our study shows that the sensitivity of multimodality imaging for parathyroid adenomas improved significantly with the use of conventional and dynamic magnetic resonance imaging, even in the case of recurrent or persistent disease. Published by Elsevier Inc.
Unveiling molecular events in the brain by noninvasive imaging.
Klohs, Jan; Rudin, Markus
2011-10-01
Neuroimaging allows researchers and clinicians to noninvasively assess structure and function of the brain. With the advances of imaging modalities such as magnetic resonance, nuclear, and optical imaging; the design of target-specific probes; and/or the introduction of reporter gene assays, these technologies are now capable of visualizing cellular and molecular processes in vivo. Undoubtedly, the system biological character of molecular neuroimaging, which allows for the study of molecular events in the intact organism, will enhance our understanding of physiology and pathophysiology of the brain and improve our ability to diagnose and treat diseases more specifically. Technical/scientific challenges to be faced are the development of highly sensitive imaging modalities, the design of specific imaging probe molecules capable of penetrating the CNS and reporting on endogenous cellular and molecular processes, and the development of tools for extracting quantitative, biologically relevant information from imaging data. Today, molecular neuroimaging is still an experimental approach with limited clinical impact; this is expected to change within the next decade. This article provides an overview of molecular neuroimaging approaches with a focus on rodent studies documenting the exploratory state of the field. Concepts are illustrated by discussing applications related to the pathophysiology of Alzheimer's disease.
Partovi, Sasan; Kohan, Andres A; Zipp, Lisa; Faulhaber, Peter; Kosmas, Christos; Ros, Pablo R; Robbin, Mark R
2014-01-01
PET/MRI is an evolving hybrid imaging modality which combines the inherent strengths of MRIs soft-tissue and contrast resolution and PETs functional metabolic capabilities. Bone and soft-tissue sarcoma are a relatively rare tumor entity, relying on MRI for local staging and often on PET/CT for lymph node involvement and metastatic spread evaluation. The purpose of this article is to demonstrate the successful use of PET/MRI in two sarcoma patients. We also use these patients as a starting point to discuss how PET/MRI might be of value in sarcoma. Among its potential benefits are: superior TNM staging than either modality alone, decreased radiation dose, more sensitive and specific follow-up and better assessment of treatment response. These potentials need to be investigated in future PET/MRI soft-tissue sarcoma trials.
A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.
Guo, Lu; Shen, Shuming; Harris, Eleanor; Wang, Zheng; Jiang, Wei; Guo, Yu; Feng, Yuanming
2014-01-01
To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors. A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation. The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09) and 0.07(± 0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method. With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.
Zhang, Li; Liang, Shuang; Liu, Ruiqing; Yuan, Tianmeng; Zhang, Shulai; Xu, Zushun; Xu, Haibo
2016-08-01
Molecular imaging is of significant importance for early detection and diagnosis of cancer. Herein, a novel core-shell magnetic microsphere for dual modal magnetic resonance imaging (MRI) and optical imaging was produced by one-pot emulsifier-free emulsion polymerization, which could provide high resolution rate of histologic structure information and realize high sensitive detection at the same time. The synthesized magnetic microspheres composed of cores containing oleic acid (OA) and sodium undecylenate (NaUA) modified Fe3O4 nanoparticles and styrene (St), Glycidyl methacrylate (GMA), and polymerizable lanthanide complexes (Gd(AA)3Phen and Eu(AA)3Phen) polymerized on the surface for outer shells. Fluorescence spectra show characteristic emission peaks from Eu(3+) at 590nm and 615nm and vivid red fluorescence luminescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vitro cytotoxicity tests based on the MTT assay demonstrate good cytocompatibility, the composites have longitudinal relaxivity value (r1) of 8.39mM(-1)s(-1) and also have transverse relaxivity value (r2) of 71.18mM(-1)s(-1) at clinical 3.0 T MR scanner. In vitro and in vivo MRI studies exhibit high signal enhancement on both T1- and T2-weighted MR images. These fascinating multifunctional properties suggest that the polymer microspheres have large clinical potential as multi-modal MRI/optical probes. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Combined FLIM and reflectance confocal microscopy for epithelial imaging
NASA Astrophysics Data System (ADS)
Jabbour, Joey M.; Cheng, Shuna; Shrestha, Sebina; Malik, Bilal; Jo, Javier A.; Applegate, Brian; Maitland, Kristen C.
2012-03-01
Current methods for detection of oral cancer lack the ability to delineate between normal and precancerous tissue with adequate sensitivity and specificity. The usual diagnostic mechanism involves visual inspection and palpation followed by tissue biopsy and histopathology, a process both invasive and time-intensive. A more sensitive and objective screening method can greatly facilitate the overall process of detection of early cancer. To this end, we present a multimodal imaging system with fluorescence lifetime imaging (FLIM) for wide field of view guidance and reflectance confocal microscopy for sub-cellular resolution imaging of epithelial tissue. Moving from a 12 x 12 mm2 field of view with 157 ìm lateral resolution using FLIM to 275 x 200 μm2 with lateral resolution of 2.2 μm using confocal microscopy, hamster cheek pouch model is imaged both in vivo and ex vivo. The results indicate that our dual modality imaging system can identify and distinguish between different tissue features, and, therefore, can potentially serve as a guide in early oral cancer detection..
Xu, Jian; Zhao, Hongliang; Wang, Xiaoying; Bai, Yuxiang; Liu, Liwen; Liu, Ying; Wei, Mengqi; Li, Jian; Zheng, Minwen
2014-10-01
To evaluate the diagnostic accuracy, image quality, and radiation dose of prospective electrocardiogram (ECG)-triggered high-pitch dual-source computed tomography (DSCT) in infants and young children with complex coarctation of the aorta (CoA). Forty pediatric patients aged < 4 years with suspected CoA underwent prospective ECG-triggered high-pitch DSCT angiography and transthoracic echocardiography (TTE). Surgery and/or conventional cardiac angiography (CCA) were performed in all patients. The diagnostic accuracy of DSCT angiography and TTE was compared to the surgical and/or CCA findings. The causes of misdiagnosis and miss were analyzed, and the advantages and limitation of both imaging modalities were evaluated. Image quality of DSCT was evaluated, and effective radiation dose was calculated. The sensitivity, specificity, positive predictive value, negative predictive value, and overall diagnostic accuracy of DSCT in evaluation of complex CoA were 92.37%, 98.51%, 97.32%, 93.57%, and 96.25%, respectively. There was a significant difference in the accuracy between DSCT and TTE (χ² = 9.9, P<.05). For a total of 80 extracardiac anomalies, the sensitivity (98.8%, 79/80) of DSCT was greater than that of TTE (62.5%; 50 of 80). On the contrary, for 38 cardiac anomalies, the sensitivity (78.9%, 30 of 38) of DSCT was lesser than that of TTE (100%; 38 of 38). The mean score of image quality was 4.27 ± 0.73. The mean effective radiation dose was 0.20 ± 0.09 mSv. Prospective ECG-triggered high-pitch DSCT may be a clinical feasible modality in the evaluation of pediatric patients with complex CoA, providing adequate image quality, high diagnostic accuracy, and low radiation dose. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Optical diagnostics in the oral cavity: an overview.
Wilder-Smith, P; Holtzman, J; Epstein, J; Le, A
2010-11-01
As the emphasis shifts from damage mitigation to disease prevention or reversal of early disease in the oral cavity, the need for sensitive and accurate detection and diagnostic tools become more important. Many novel and emergent optical diagnostic modalities for the oral cavity are becoming available to clinicians with a variety of desirable attributes including: (i) non-invasiveness, (ii) absence of ionizing radiation, (iii) patient-friendliness, (iv) real-time information (v) repeatability, and (vi) high-resolution surface and subsurface images. In this article, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging soft and hard tissues, and their potential usefulness as a tool in the diagnosis of oral mucosal lesions, dental pathologies, and other dental applications will be reviewed. The clinical applications of light-based imaging technologies in the oral cavity and of their derivative devices will be discussed to provide the reader with a comprehensive understanding of emergent diagnostic modalities. © 2010 John Wiley & Sons A/S.
MRI-guided fiber-based fluorescence molecular tomography for preclinical atherosclerosis imaging
NASA Astrophysics Data System (ADS)
Li, Baoqiang; Pouliot, Philippe; Lesage, Frederic
2014-09-01
Multi-modal imaging combining fluorescent molecular tomography (FMT) with MRI could provide information in these two modalities as well as optimize the recovery of functional information with MR-guidance. Here, we present a MRI-guided FMT system. An optical probe was designed consisting of a fiber plate on the top and bottom sides of the animal bed, respectively. In experiment, animal was installed between the two plates. Mounting fibers on each plate, transmission measuring could be conducted from both sides of the animal. Moreover, an accurate fluorescence reconstruction was achieved with MRI-derived anatomical guidance. The sensitivity of the FMT system was evaluated with a phantom showing that with long fibers, it was sufficient to detect 10nM Cy5.5 solution with ~28.5 dB in the phantom. The system was eventually used to image MMP activity involved in atherosclerosis with two ATX mice and two control mice. The reconstruction results were in agreement with ex vivo measurement.
Model-based position correlation between breast images
NASA Astrophysics Data System (ADS)
Georgii, J.; Zöhrer, F.; Hahn, H. K.
2013-02-01
Nowadays, breast diagnosis is based on images of different projections and modalities, such that sensitivity and specificity of the diagnosis can be improved. However, this emburdens radiologists to find corresponding locations in these data sets, which is a time consuming task, especially since the resolution of the images increases and thus more and more data have to be considered in the diagnosis. Therefore, we aim at support radiologist by automatically synchronizing cursor positions between different views of the breast. Specifically, we present an automatic approach to compute the spatial correlation between MLO and CC mammogram or tomosynthesis projections of the breast. It is based on pre-computed finite element simulations of generic breast models, which are adapted to the patient-specific breast using a contour mapping approach. Our approach is designed to be fully automatic and efficient, such that it can be implemented directly into existing multimodal breast workstations. Additionally, it is extendable to support other breast modalities in future, too.
NASA Astrophysics Data System (ADS)
Lin, Jian; Lu, Fake; Zheng, Wei; Yu, Hanry; Sheppard, Colin; Huang, Zhiwei
2012-03-01
Liver steatosis and fibrosis are two prevalence liver diseases and may eventually develop into hepatocellular carcinoma (HCC) Due to their prevalence and severity, much work has been done to develop efficient diagnostic methods and therapies. Nonlinear optical microscopy has high sensitivity and chemical specificity for major biochemical compounds, making it a powerful tool for tissue imaging without staining. In this study, three nonlinear microscopy imaging modalities are applied to the study of liver diseases in a bile duct ligation rat modal. CARS shows the distributions of fats or lipids quantitatively across the tissue; SHG visualizes the collagens; and TPEF reveals the morphology of hepatic cells. The results clearly show the development of liver steatosis and fibrosis with time, and the hepatic fat and collagen fibrils are quantified. This study demonstrates the ability of multimodal nonlinear optical microscopy for liver disease diagnosis, and may provide new insights into the understanding of the mechanisms of steatosis/fibrosis transformations at the cellular and molecular levels.
History and future technical innovation in positron emission tomography
Jones, Terry; Townsend, David
2017-01-01
Abstract. Instrumentation for positron emission tomography (PET) imaging has experienced tremendous improvements in performance over the past 60 years since it was first conceived as a medical imaging modality. Spatial resolution has improved by a factor of 10 and sensitivity by a factor of 40 from the early designs in the 1970s to the high-performance scanners of today. Multimodality configurations have emerged that combine PET with computed tomography (CT) and, more recently, with MR. Whole-body scans for clinical purposes can now be acquired in under 10 min on a state-of-the-art PET/CT. This paper will review the history of these technical developments over 40 years and summarize the important clinical research and healthcare applications that have been made possible by these technical advances. Some perspectives for the future of this technology will also be presented that promise to bring about new applications of this imaging modality in clinical research and healthcare. PMID:28401173
Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Mao, Qi; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.
2014-01-01
Background Evolution and improvements in microsurgical techniques and tools have paved the way for super-microsurgical anastomoses with vessel diameters often approaching below 0.8 mm in the clinical realm and even smaller (0.2–0.3 mm) in murine models. Several imaging and monitoring devices have been introduced for post-operative monitoring but intra-operative guidance, assessment and predictability have remained limited to binocular optical microscope and surgeon’s experience. We present a high-resolution real time 3D imaging modality for intra-operative evaluation of luminal narrowing, thrombus formation and flow alterations. Methods An imaging modality that provides immediate, in-depth high resolution 3D structure view and flow information of the anastomosed site called phase resolved Doppler optical coherence tomography (PRDOCT) was developed. 22 mouse femoral artery anastomoses and 17 mouse venous anastomoses were performed and evaluated with PRDOCT. Flow status, vessel inner lumen 3D structure, and early thrombus detection were analyzed based on PRDOCT imaging results. Initial PRDOCT based predictions were correlated with actual long term surgical outcomes. Eventually four cases of mouse orthotopic limb transplantation were carried out and PRDOCT predicted long term patency were confirmed by actual results. Results PRDOCT was able to provide high-resolution 3D visualization of the vessel flow status and vessel inner lumen. The assessments based on PRDOCT visualization shows a 92% sensitivity and 90% specificity for arterial anastomoses and 90% sensitivity and 86% specificity for venous anastomoses. Conclusions PRDOCT is an effective evaluation tool for microvascular anastomosis. It can predict the long term vessel patency with high sensitivity and specificity. PMID:25811583
Diagnostic value of imaging in infective endocarditis: a systematic review.
Gomes, Anna; Glaudemans, Andor W J M; Touw, Daan J; van Melle, Joost P; Willems, Tineke P; Maass, Alexander H; Natour, Ehsan; Prakken, Niek H J; Borra, Ronald J H; van Geel, Peter Paul; Slart, Riemer H J A; van Assen, Sander; Sinha, Bhanu
2017-01-01
Sensitivity and specificity of the modified Duke criteria for native valve endocarditis are both suboptimal, at approximately 80%. Diagnostic accuracy for intracardiac prosthetic material-related infection is even lower. Non-invasive imaging modalities could potentially improve diagnosis of infective endocarditis; however, their diagnostic value is unclear. We did a systematic literature review to critically appraise the evidence for the diagnostic performance of these imaging modalities, according to PRISMA and GRADE criteria. We searched PubMed, Embase, and Cochrane databases. 31 studies were included that presented original data on the performance of electrocardiogram (ECG)-gated multidetector CT angiography (MDCTA), ECG-gated MRI, 18 F-fluorodeoxyglucose ( 18 F-FDG) PET/CT, and leucocyte scintigraphy in diagnosis of native valve endocarditis, intracardiac prosthetic material-related infection, and extracardiac foci in adults. We consistently found positive albeit weak evidence for the diagnostic benefit of 18 F-FDG PET/CT and MDCTA. We conclude that additional imaging techniques should be considered if infective endocarditis is suspected. We propose an evidence-based diagnostic work-up for infective endocarditis including these non-invasive techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing
2014-01-01
Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-modal Registration for Correlative Microscopy using Image Analogies
Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc
2014-01-01
Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943
Vilalta, Laura; Altuzarra, Raul; Espada, Yvonne; Dominguez, Elisabet; Novellas, Rosa; Martorell, Jaime
2017-04-01
OBJECTIVE To evaluate the usefulness of excretory urography performed during radiography (REU) and CT (CTEU) in healthy rabbits, determine timings of urogram phases, and compare sensitivities of REU and CTEU for detection of these phases. ANIMALS 13 New Zealand White rabbits (Oryctolagus cuniculus). PROCEDURES Rabbits were screened for signs of systemic and urinary tract disease. An REU examination of each was performed, followed ≥ 5 days later by a CTEU examination. Contrast images from each modality were evaluated for quality of opacification and intervals between initiation of contrast medium administration and detection of various urogram phases. RESULTS Excretory urograms of excellent diagnostic quality were achieved with both imaging modalities. For all rabbits, the nephrographic phase of the urogram appeared in the first postcontrast REU image (obtained between 34 and 40 seconds after initiation of contrast medium administration) and at a median interval of 20 seconds in CTEU images. The pyelographic phase began at a median interval of 1.63 minutes with both imaging modalities. Contrast medium was visible within the urinary bladder at a median interval of 2.20 minutes. Median interval to the point at which the nephrogram and pyelogram were no longer visible in REU images was 8 hours and 2.67 hours, respectively. The CTEU technique was better than the REU technique for evaluating renal parenchyma. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that REU and, particularly, CTEU may be valuable tools for the diagnosis of renal and urinary tract disease in rabbits; however, additional evaluation in diseased rabbits is required.
Matharu, G S; Mansour, R; Dada, O; Ostlere, S; Pandit, H G; Murray, D W
2016-01-01
The aims of this study were to compare the diagnostic test characteristics of ultrasound alone, metal artefact reduction sequence MRI (MARS-MRI) alone, and ultrasound combined with MARS-MRI for identifying intra-operative pseudotumours in metal-on-metal hip resurfacing (MoMHR) patients undergoing revision surgery. This retrospective diagnostic accuracy study involved 39 patients (40 MoMHRs). The time between imaging modalities was a mean of 14.6 days (0 to 90), with imaging performed at a mean of 5.3 months (0.06 to 12) before revision. The prevalence of intra-operative pseudotumours was 82.5% (n = 33). Agreement with the intra-operative findings was 82.5% (n = 33) for ultrasound alone, 87.5% (n = 35) for MARS-MRI alone, and 92.5% (n = 37) for ultrasound and MARS-MRI combined. The diagnostic characteristics for ultrasound alone and MARS-MRI alone reached similar sensitivities (90.9% vs 93.9%) and positive predictive values (PPVs; 88.2% vs 91.2%), but higher specificities (57.1% vs 42.9%) and negative predictive values (NPVs; 66.7% vs 50.0%) were achieved with MARS-MRI. Ultrasound and MARS-MRI combined produced 100% sensitivity and 100% NPV, whilst maintaining both specificity (57.1%) and PPV (91.7%). For the identification of a pseudotumour, which was confirmed at revision surgery, agreement was substantial for ultrasound and MARS-MRI combined (κ = 0.69), moderate for MARS-MRI alone (κ = 0.54), and fair for ultrasound alone (κ = 0.36). These findings suggest that ultrasound and/or MARS-MRI have a role when assessing patients with a MoMHR, with the choice dependent on local financial constraints and the availability of ultrasound expertise. However in patients with a MoMHR who require revision, combined imaging was most effective. Combined imaging with ultrasound and MARS-MRI always identified intra-operative pseudotumours if present. Furthermore, if neither imaging modality showed a pseudotumour, one was not found intra-operatively. ©2016 The British Editorial Society of Bone & Joint Surgery.
NASA Astrophysics Data System (ADS)
Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai
2015-03-01
The oxygen partial pressure (pO2), which results from the balance between oxygen delivery and its consumption, is a key component of the physiological state of a tissue. Images of oxygen distribution can provide essential information for identifying hypoxic tissue and optimizing cancer treatment. Previously, we have reported a noninvasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor on small animals to identify hypoxia area. We also showed that PALI is able monitor changes of tissue oxygen, in an acute ischemia and breathing modulation model. Here we present our work on developing a treatment/imaging modality (PDT-PALI) that integrates PDT and a combined ultrasound/photoacoustic imaging system. The system provides real-time feedback of three essential parameters namely: tissue oxygen, light penetration in tumor location, and distribution of photosensitizer. Tissue oxygen imaging is performed by applying PALI, which relies on photoacoustic probing of oxygen-dependent, excitation lifetime of Methylene Blue (MB) photosensitizer. Lifetime information can also be used to generate image showing the distribution of photosensitizer. The level and penetration depth of PDT illumination can be deduced from photoacoustic imaging at the same wavelength. All images will be combined with ultrasound B-mode images for anatomical reference.
Multimodal Image Alignment via Linear Mapping between Feature Modalities.
Jiang, Yanyun; Zheng, Yuanjie; Hou, Sujuan; Chang, Yuchou; Gee, James
2017-01-01
We propose a novel landmark matching based method for aligning multimodal images, which is accomplished uniquely by resolving a linear mapping between different feature modalities. This linear mapping results in a new measurement on similarity of images captured from different modalities. In addition, our method simultaneously solves this linear mapping and the landmark correspondences by minimizing a convex quadratic function. Our method can estimate complex image relationship between different modalities and nonlinear nonrigid spatial transformations even in the presence of heavy noise, as shown in our experiments carried out by using a variety of image modalities.
Pelletier-Galarneau, Matthieu; Martineau, Patrick; Gaudreault, Maxime; Pham, Xuan
2015-01-01
Distance running is among the fastest growing sports, with record registration to marathons worldwide. It is estimated that more than half of recreational runners will experience injuries related to the practice of their sport. Three-phase bone scintigraphy is a very sensitive tool to identify sports injury, allowing imaging of hyperemia, stress reaction, enthesopathy and fractures, often before abnormalities can be detected on conventional anatomical modalities. In this article, we review the most common running related injuries and their imaging findings on bone scintigraphy with SPECT-CT. PMID:26269770
Design of SERS nanoprobes for Raman imaging: materials, critical factors and architectures.
Li, Mingwang; Qiu, Yuanyuan; Fan, Chenchen; Cui, Kai; Zhang, Yongming; Xiao, Zeyu
2018-05-01
Raman imaging yields high specificity and sensitivity when compared to other imaging modalities, mainly due to its fingerprint signature. However, intrinsic Raman signals are weak, thus limiting medical applications of Raman imaging. By adsorbing Raman molecules onto specific nanostructures such as noble metals, Raman signals can be significantly enhanced, termed surface-enhanced Raman scattering (SERS). Recent years have witnessed great interest in the development of SERS nanoprobes for Raman imaging. Rationally designed SERS nanoprobes have greatly enhanced Raman signals by several orders of magnitude, thus showing great potential for biomedical applications. In this review we elaborate on recent progress in design strategies with emphasis on material properties, modifying factors, and structural parameters.
Imaging modalities for the non-invasive diagnosis of endometriosis.
Nisenblat, Vicki; Bossuyt, Patrick M M; Farquhar, Cindy; Johnson, Neil; Hull, M Louise
2016-02-26
About 10% of women of reproductive age suffer from endometriosis. Endometriosis is a costly chronic disease that causes pelvic pain and subfertility. Laparoscopy, the gold standard diagnostic test for endometriosis, is expensive and carries surgical risks. Currently, no non-invasive tests that can be used to accurately diagnose endometriosis are available in clinical practice. This is the first review of diagnostic test accuracy of imaging tests for endometriosis that uses Cochrane methods to provide an update on the rapidly expanding literature in this field. • To provide estimates of the diagnostic accuracy of imaging modalities for the diagnosis of pelvic endometriosis, ovarian endometriosis and deeply infiltrating endometriosis (DIE) versus surgical diagnosis as a reference standard.• To describe performance of imaging tests for mapping of deep endometriotic lesions in the pelvis at specific anatomical sites.Imaging tests were evaluated as replacement tests for diagnostic surgery and as triage tests that would assist decision making regarding diagnostic surgery for endometriosis. We searched the following databases to 20 April 2015: MEDLINE, CENTRAL, EMBASE, CINAHL, PsycINFO, Web of Science, LILACS, OAIster, TRIP, ClinicalTrials.gov, MEDION, DARE, and PubMed. Searches were not restricted to a particular study design or language nor to specific publication dates. The search strategy incorporated words in the title, abstracts, text words across the record and medical subject headings (MeSH). We considered published peer-reviewed cross-sectional studies and randomised controlled trials of any size that included prospectively recruited women of reproductive age suspected of having one or more of the following target conditions: endometrioma, pelvic endometriosis, DIE or endometriotic lesions at specific intrapelvic anatomical locations. We included studies that compared the diagnostic test accuracy of one or more imaging modalities versus findings of surgical visualisation of endometriotic lesions. Two review authors independently collected and performed a quality assessment of data from each study. For each imaging test, data were classified as positive or negative for surgical detection of endometriosis, and sensitivity and specificity estimates were calculated. If two or more tests were evaluated in the same cohort, each was considered as a separate data set. We used the bivariate model to obtain pooled estimates of sensitivity and specificity when sufficient data sets were available. Predetermined criteria for a clinically useful imaging test to replace diagnostic surgery included sensitivity ≥ 94% and specificity ≥ 79%. Criteria for triage tests were set at sensitivity ≥ 95% and specificity ≥ 50%, ruling out the diagnosis with a negative result (SnNout test - if sensitivity is high, a negative test rules out pathology) or at sensitivity ≥ 50% with specificity ≥ 95%, ruling in the diagnosis with a positive result (SpPin test - if specificity is high, a positive test rules in pathology). We included 49 studies involving 4807 women: 13 studies evaluated pelvic endometriosis, 10 endometriomas and 15 DIE, and 33 studies addressed endometriosis at specific anatomical sites. Most studies were of poor methodological quality. The most studied modalities were transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI), with outcome measures commonly demonstrating diversity in diagnostic estimates; however, sources of heterogeneity could not be reliably determined. No imaging test met the criteria for a replacement or triage test for detecting pelvic endometriosis, albeit TVUS approached the criteria for a SpPin triage test. For endometrioma, TVUS (eight studies, 765 participants; sensitivity 0.93 (95% confidence interval (CI) 0.87, 0.99), specificity 0.96 (95% CI 0.92, 0.99)) qualified as a SpPin triage test and approached the criteria for a replacement and SnNout triage test, whereas MRI (three studies, 179 participants; sensitivity 0.95 (95% CI 0.90, 1.00), specificity 0.91 (95% CI 0.86, 0.97)) met the criteria for a replacement and SnNout triage test and approached the criteria for a SpPin test. For DIE, TVUS (nine studies, 12 data sets, 934 participants; sensitivity 0.79 (95% CI 0.69, 0.89) and specificity 0.94 (95% CI 0.88, 1.00)) approached the criteria for a SpPin triage test, and MRI (six studies, seven data sets, 266 participants; sensitivity 0.94 (95% CI 0.90, 0.97), specificity 0.77 (95% CI 0.44, 1.00)) approached the criteria for a replacement and SnNout triage test. Other imaging tests assessed in small individual studies could not be statistically evaluated.TVUS met the criteria for a SpPin triage test in mapping DIE to uterosacral ligaments, rectovaginal septum, vaginal wall, pouch of Douglas (POD) and rectosigmoid. MRI met the criteria for a SpPin triage test for POD and vaginal and rectosigmoid endometriosis. Transrectal ultrasonography (TRUS) might qualify as a SpPin triage test for rectosigmoid involvement but could not be adequately assessed for other anatomical sites because heterogeneous data were scant. Multi-detector computerised tomography enema (MDCT-e) displayed the highest diagnostic performance for rectosigmoid and other bowel endometriosis and met the criteria for both SpPin and SnNout triage tests, but studies were too few to provide meaningful results.Diagnostic accuracies were higher for TVUS with bowel preparation (TVUS-BP) and rectal water contrast (RWC-TVS) and for 3.0TMRI than for conventional methods, although the paucity of studies precluded statistical evaluation. None of the evaluated imaging modalities were able to detect overall pelvic endometriosis with enough accuracy that they would be suggested to replace surgery. Specifically for endometrioma, TVUS qualified as a SpPin triage test. MRI displayed sufficient accuracy to suggest utility as a replacement test, but the data were too scant to permit meaningful conclusions. TVUS could be used clinically to identify additional anatomical sites of DIE compared with MRI, thus facilitating preoperative planning. Rectosigmoid endometriosis was the only site that could be accurately mapped by using TVUS, TRUS, MRI or MDCT-e. Studies evaluating recent advances in imaging modalities such as TVUS-BP, RWC-TVS, 3.0TMRI and MDCT-e were observed to have high diagnostic accuracies but were too few to allow prudent evaluation of their diagnostic role. In view of the low quality of most of the included studies, the findings of this review should be interpreted with caution. Future well-designed diagnostic studies undertaken to compare imaging tests for diagnostic test accuracy and costs are recommended.
NASA Astrophysics Data System (ADS)
Ozturk, Mehmet Saadeddin
Optical microscopy has been one of the essential tools for biological studies for decades, however, its application areas was limited to superficial investigation due to strong scattering in live tissues. Even though advanced techniques such as confocal or multiphoton methods have been recently developed to penetrate beyond a few hundreds of microns deep in tissues, they still cannot perform in the mesoscopic regime (millimeter scale) without using destructive sample preparation protocols such as clearing techniques. They provide rich cellular information; however, they cannot be readily employed to investigate the biological processes at larger scales. Herein, we will present our effort to establish a novel imaging approach that can quantify molecular expression in intact tissues, well beyond the current microscopy depth limits. Mesoscopic Fluorescence Molecular Tomography (MFMT) is an emerging imaging modality that offers unique potential for the non-invasive molecular assessment of thick in-vitro and in-vivo live tissues. This novel imaging modality is based on an optical inverse problem that allows for retrieval of the quantitative spatial distribution of fluorescent tagged bio-markers at millimeter depth. MFMT is well-suited for in-vivo subsurface tissue imaging and thick bio-printed specimens due to its high sensitivity and fast acquisition times, as well as relatively large fields of view. Herein, we will first demonstrate the potential of this technique using our first generation MFMT system applied to multiplexed reporter gene imaging (in-vitro) and determination of Photodynamic Therapy (PDT) agent bio-distribution in a mouse model (in-vivo). Second, we will present the design rationale, in silico benchmarking, and experimental validation of a second generation MFMT (2GMFMT) system. We will demonstrate the gain in resolution and sensitivity achieved due to the de-scanned dense detector configuration implemented. The potential of this novel platform will be showcased by applying it to the longitudinal assessment of Ink-Jet Bio-Printed tumor models. This preliminary investigation focuses on monitoring four patient-derived glioblastoma multiforme (GBM) spheroids within their bioreactor for up to 70 days and following their volume change prior to and after exposure to a cytotoxic drug. Overall, our studies indicate that 2GMFMT is a powerful technique for in-vitro and in-vivo thick tissue molecular imaging applications due to its high resolution, fast tomographic imaging capability, and high sensitivity.
Huang, Yawen; Shao, Ling; Frangi, Alejandro F
2018-03-01
Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods.
Noninvasive imaging of oral premalignancy and malignancy
NASA Astrophysics Data System (ADS)
Wilder-Smith, Petra; Krasieva, T.; Jung, W.; You, J. S.; Chen, Z.; Osann, K.; Tromberg, B.
2005-04-01
Objectives: Early detection of cancer and its curable precursors remains the best way to ensure patient survival and quality of life. Despite significant advances in treatment, oral cancer still results in 10,000 U.S. deaths annually, mainly due to the late detection of most oral lesions. Specific aim was to use a combination of non-invasive optical in vivo technologies to test a multi-modality approach to non-invasive diagnostics of oral premalignancy and malignancy. Methods: In the hamster cheek pouch model (120 hamsters), in vivo optical coherence tomography (OCT) and optical Doppler tomography (ODT) mapped epithelial, subepithelial and vascular change throughout carcinogenesis in specific, marked sites. In vivo multi-wavelength multi-photon (MPM) and second harmonic generated (SHG) fluorescence techniques provided parallel data on surface and subsurface tissue structure, specifically collagen presence and structure, cellular presence, and vasculature. Images were diagnosed by 2 blinded, pre-standardized investigators using a standardized scale from 0-6 for all modalities. After sacrifice, histopathological sections were prepared and pathology evaluated on a scale of 0-6. ANOVA techniques compared imaging diagnostics with histopathology. 95% confidence limits of the sensitivity and specificity were established for the diagnostic capability of OCT/ODT+ MPM/SHG using ROC curves and kappa statistics. Results: Imaging data were reproducibly obtained with good accuracy. Carcinogenesis-related structural and vascular changes were clearly visible to tissue depths of 2mm. Sensitivity (OCT/ODT alone: 71-88%; OCT+MPM/SHG: 79-91%) and specificity (OCT alone: 62-83%;OCT+MPM/SHG: 67-90%) compared well with conventional techniques. Conclusions: OCT/ODT and MPM/SHG are promising non-invasive in vivo diagnostic modalities for oral dysplasia and malignancy. Supported by CRFA 30003, CCRP 00-01391V-20235, NIH (LAMMP) RR01192, DOE DE903-91ER 61227, NIH EB-00293 CA91717, NSF BES-86924, AFOSR FA 9550-04-1-0101.
Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field
Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin
2014-01-01
Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized. PMID:24648733
Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field.
Yi, Xiaomin; Wang, Fuli; Qin, Weijun; Yang, Xiaojian; Yuan, Jianlin
2014-01-01
Near-infrared fluorescence (NIRF) imaging is an attractive modality for early cancer detection with high sensitivity and multi-detection capability. Due to convenient modification by conjugating with moieties of interests, NIRF probes are ideal candidates for cancer targeted imaging. Additionally, the combinatory application of NIRF imaging and other imaging modalities that can delineate anatomical structures extends fluorometric determination of biomedical information. Moreover, nanoparticles loaded with NIRF dyes and anticancer agents contribute to the synergistic management of cancer, which integrates the advantage of imaging and therapeutic functions to achieve the ultimate goal of simultaneous diagnosis and treatment. Appropriate probe design with targeting moieties can retain the original properties of NIRF and pharmacokinetics. In recent years, great efforts have been made to develop new NIRF probes with better photostability and strong fluorescence emission, leading to the discovery of numerous novel NIRF probes with fine photophysical properties. Some of these probes exhibit tumoricidal activities upon light radiation, which holds great promise in photothermal therapy, photodynamic therapy, and photoimmunotherapy. This review aims to provide a timely and concise update on emerging NIRF dyes and multifunctional agents. Their potential uses as agents for cancer specific imaging, lymph node mapping, and therapeutics are included. Recent advances of NIRF dyes in clinical use are also summarized.
Inpainting approaches to fill in detector gaps in phase contrast computed tomography
NASA Astrophysics Data System (ADS)
Brun, F.; Delogu, P.; Longo, R.; Dreossi, D.; Rigon, L.
2018-01-01
Photon counting semiconductor detectors in radiation imaging present attractive properties, such as high efficiency, low noise, and energy sensitivity. The very complex electronics limits the sensitive area of current devices to a few square cm. This disadvantage is often compensated by tiling a larger matrix with an adequate number of detector units but this usually results in non-negligible insensitive gaps between two adjacent modules. When considering the case of Computed Tomography (CT), these gaps lead to degraded reconstructed images with severe streak and ring artifacts. This work presents two digital image processing solutions to fill in these gaps when considering the specific case of synchrotron radiation x-ray parallel beam phase contrast CT. While not discussed with experimental data, other CT modalities, such as spectral, cone beam and other geometries might benefit from the presented approaches.
New Trends in Radionuclide Myocardial Perfusion Imaging
Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang
2016-01-01
Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946
Multimodal 3D cancer-mimicking optical phantom
Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee Bowden, Audrey K.
2016-01-01
Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing various aspects of optical systems, including for evaluating new probe designs, characterizing the diagnostic potential of new technologies, and assessing novel image processing algorithms prior to validation in real tissue. We introduce and characterize the use of a new material, Dragon Skin (Smooth-On Inc.), and fabrication technique, air-brushing, for fabrication of a 3D phantom that mimics the appearance of a real organ under multiple imaging modalities. We demonstrate the utility of the material and technique by fabricating the first 3D, hollow bladder phantom with realistic normal and multi-stage pathology features suitable for endoscopic detection using the gold standard imaging technique, white light cystoscopy (WLC), as well as the complementary imaging modalities of optical coherence tomography and blue light cystoscopy, which are aimed at improving the sensitivity and specificity of WLC to bladder cancer detection. The flexibility of the material and technique used for phantom construction allowed for the representation of a wide range of diseased tissue states, ranging from inflammation (benign) to high-grade cancerous lesions. Such phantoms can serve as important tools for trainee education and evaluation of new endoscopic instrumentation. PMID:26977369
Hettlich, Bianca F; Fosgate, Geoffrey T; Levine, Jonathan M; Young, Benjamin D; Kerwin, Sharon C; Walker, Michael; Griffin, Jay; Maierl, Johann
2010-08-01
To compare the accuracy of radiography and computed tomography (CT) in predicting implant position in relation to the vertebral canal in the cervical and thoracolumbar vertebral column. In vitro imaging and anatomic study. Medium-sized canine cadaver vertebral columns (n=12). Steinmann pins were inserted into cervical and thoracolumbar vertebrae based on established landmarks but without predetermination of vertebral canal violation. Radiographs and CT images were obtained and evaluated by 6 individuals. A random subset of pins was evaluated for ability to distinguish left from right pins on radiographs. The ability to correctly identify vertebral canal penetration for all pins was assessed both on radiographs and CT. Spines were then anatomically prepared and visual examination of pin penetration into the canal served as the gold standard. Left/right accuracy was 93.1%. Overall sensitivity of radiographs and CT to detect vertebral canal penetration by an implant were significantly different and estimated as 50.7% and 93.4%, respectively (P<.0001). Sensitivity was significantly higher for complete versus partial penetration and for radiologists compared with nonradiologists for both imaging modalities. Overall specificity of radiographs and CT to detect vertebral canal penetration was 82.9% and 86.4%, respectively (P=.049). CT was superior to radiographic assessment and is the recommended imaging modality to assess penetration into the vertebral canal. CT is significantly more accurate in identifying vertebral canal violation by Steinmann pins and should be performed postoperatively to assess implant position.
Novakovic, Dunja; Saarinen, Jukka; Rojalin, Tatu; Antikainen, Osmo; Fraser-Miller, Sara J; Laaksonen, Timo; Peltonen, Leena; Isomäki, Antti; Strachan, Clare J
2017-11-07
Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches. Simultaneous narrowband CARS and SFG imaging was faster, but hyperspectral CARS and SFG imaging has the potential to be applied to a wider variety of more complex samples. These methodologies were further used to follow crystallization of indomethacin on tablet surfaces under two storage conditions: 30 °C/23% RH and 30 °C/75% RH. Imaging with (sub)micron resolution showed that the approach allowed detection of very early stage surface crystallization. The surfaces progressively crystallized to predominantly (but not exclusively) the gamma form at lower humidity and the alpha form at higher humidity. Overall, this study suggests that multimodal nonlinear imaging is a highly sensitive, solid-state (and chemically) specific, rapid, and versatile imaging technique for understanding and hence controlling (surface) solid-state forms and their complex changes in pharmaceuticals.
Bernstein, Ally Leigh; Dhanantwari, Amar; Jurcova, Martina; Cheheltani, Rabee; Naha, Pratap Chandra; Ivanc, Thomas; Shefer, Efrat; Cormode, David Peter
2016-01-01
Computed tomography is a widely used medical imaging technique that has high spatial and temporal resolution. Its weakness is its low sensitivity towards contrast media. Iterative reconstruction techniques (ITER) have recently become available, which provide reduced image noise compared with traditional filtered back-projection methods (FBP), which may allow the sensitivity of CT to be improved, however this effect has not been studied in detail. We scanned phantoms containing either an iodine contrast agent or gold nanoparticles. We used a range of tube voltages and currents. We performed reconstruction with FBP, ITER and a novel, iterative, modal-based reconstruction (IMR) algorithm. We found that noise decreased in an algorithm dependent manner (FBP > ITER > IMR) for every scan and that no differences were observed in attenuation rates of the agents. The contrast to noise ratio (CNR) of iodine was highest at 80 kV, whilst the CNR for gold was highest at 140 kV. The CNR of IMR images was almost tenfold higher than that of FBP images. Similar trends were found in dual energy images formed using these algorithms. In conclusion, IMR-based reconstruction techniques will allow contrast agents to be detected with greater sensitivity, and may allow lower contrast agent doses to be used. PMID:27185492
Multi-Modality Phantom Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Jennifer S.; Peng, Qiyu; Moses, William W.
2009-03-20
Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe bothmore » our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.« less
Multimodal Imaging of the Normal Eye.
Kawali, Ankush; Pichi, Francesco; Avadhani, Kavitha; Invernizzi, Alessandro; Hashimoto, Yuki; Mahendradas, Padmamalini
2017-10-01
Multimodal imaging is the concept of "bundling" images obtained from various imaging modalities, viz., fundus photograph, fundus autofluorescence imaging, infrared (IR) imaging, simultaneous fluorescein and indocyanine angiography, optical coherence tomography (OCT), and, more recently, OCT angiography. Each modality has its pros and cons as well as its limitations. Combination of multiple imaging techniques will overcome their individual weaknesses and give a comprehensive picture. Such approach helps in accurate localization of a lesion and understanding the pathology in posterior segment. It is important to know imaging of normal eye before one starts evaluating pathology. This article describes multimodal imaging modalities in detail and discusses healthy eye features as seen on various imaging modalities mentioned above.
NASA Astrophysics Data System (ADS)
Viswanath, Satish; Tiwari, Pallavi; Rosen, Mark; Madabhushi, Anant
2008-03-01
Recently, in vivo Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) have emerged as promising new modalities to aid in prostate cancer (CaP) detection. MRI provides anatomic and structural information of the prostate while MRS provides functional data pertaining to biochemical concentrations of metabolites such as creatine, choline and citrate. We have previously presented a hierarchical clustering scheme for CaP detection on in vivo prostate MRS and have recently developed a computer-aided method for CaP detection on in vivo prostate MRI. In this paper we present a novel scheme to develop a meta-classifier to detect CaP in vivo via quantitative integration of multimodal prostate MRS and MRI by use of non-linear dimensionality reduction (NLDR) methods including spectral clustering and locally linear embedding (LLE). Quantitative integration of multimodal image data (MRI and PET) involves the concatenation of image intensities following image registration. However multimodal data integration is non-trivial when the individual modalities include spectral and image intensity data. We propose a data combination solution wherein we project the feature spaces (image intensities and spectral data) associated with each of the modalities into a lower dimensional embedding space via NLDR. NLDR methods preserve the relationships between the objects in the original high dimensional space when projecting them into the reduced low dimensional space. Since the original spectral and image intensity data are divorced from their original physical meaning in the reduced dimensional space, data at the same spatial location can be integrated by concatenating the respective embedding vectors. Unsupervised consensus clustering is then used to partition objects into different classes in the combined MRS and MRI embedding space. Quantitative results of our multimodal computer-aided diagnosis scheme on 16 sets of patient data obtained from the ACRIN trial, for which corresponding histological ground truth for spatial extent of CaP is known, show a marginally higher sensitivity, specificity, and positive predictive value compared to corresponding CAD results with the individual modalities.
Toft, James; Hadden, William J; Laurence, Jerome M; Lam, Vincent; Yuen, Lawrence; Janssen, Anna; Pleass, Henry
2017-07-01
Pancreatic cancer, primarily pancreatic ductal adenocarcinoma (PDAC), accounts for 2.4% of cancer diagnoses and 5.8% of cancer death annually. Early diagnoses can improve 5-year survival in PDAC. The aim of this systematic review was to determine the sensitivity, specificity and diagnostic accuracy values for MRI, CT, PET&PET/CT, EUS and transabdominal ultrasound (TAUS) in the diagnosis of PDAC. A systematic review was undertaken to identify studies reporting sensitivity, specificity and/or diagnostic accuracy for the diagnosis of PDAC with MRI, CT, PET, EUS or TAUS. Proportional meta-analysis was performed for each modality. A total of 5399 patients, 3567 with PDAC, from 52 studies were included. The sensitivity, specificity and diagnostic accuracy were 93% (95% CI=88-96), 89% (95% CI=82-94) and 90% (95% CI=86-94) for MRI; 90% (95% CI=87-93), 87% (95% CI=79-93) and 89% (95% CI=85-93) for CT; 89% (95% CI=85-93), 70% (95% CI=54-84) and 84% (95% CI=79-89) for PET; 91% (95% CI=87-94), 86% (95% CI=81-91) and 89% (95% CI=87-92) for EUS; and 88% (95% CI=86-90), 94% (95% CI=87-98) and 91% (95% C=87-93) for TAUS. This review concludes all modalities, except for PET, are equivalent within 95% confidence intervals for the diagnosis of PDAC. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel medical imaging technologies for disease diagnosis and treatment
NASA Astrophysics Data System (ADS)
Olego, Diego
2009-03-01
New clinical approaches for disease diagnosis, treatment and monitoring will rely on the ability of simultaneously obtaining anatomical, functional and biological information. Medical imaging technologies in combination with targeted contrast agents play a key role in delivering with ever increasing temporal and spatial resolution structural and functional information about conditions and pathologies in cardiology, oncology and neurology fields among others. This presentation will review the clinical motivations and physics challenges in on-going developments of new medical imaging techniques and the associated contrast agents. Examples to be discussed are: *The enrichment of computer tomography with spectral sensitivity for the diagnosis of vulnerable sclerotic plaque. *Time of flight positron emission tomography for improved resolution in metabolic characterization of pathologies. *Magnetic particle imaging -a novel imaging modality based on in-vivo measurement of the local concentration of iron oxide nano-particles - for blood perfusion measurement with better sensitivity, spatial resolution and 3D real time acquisition. *Focused ultrasound for therapy delivery.
Potential Cost Savings of Contrast-Enhanced Digital Mammography.
Patel, Bhavika K; Gray, Richard J; Pockaj, Barbara A
2017-06-01
The purpose of this article is to discuss whether the sensitivity and specificity of contrast-enhanced digital mammography (CEDM) render it a viable diagnostic alternative to breast MRI. That CEDM couples low-energy images (comparable to the diagnostic quality of standard mammography) and subtracted contrast-enhanced mammograms make it a cost-effective modality and a realistic substitute for the more costly breast MRI.
Kushnir, Vladimir M; Wani, Sachin B; Fowler, Kathryn; Menias, Christine; Varma, Rakesh; Narra, Vamsi; Hovis, Christine; Murad, Faris M; Mullady, Daniel K; Jonnalagadda, Sreenivasa S; Early, Dayna S; Edmundowicz, Steven A; Azar, Riad R
2013-04-01
There are limited data comparing imaging modalities in the diagnosis of pancreas divisum. We aimed to: (1) evaluate the sensitivity of endoscopic ultrasound (EUS), magnetic resonance cholangiopancreatography (MRCP), and multidetector computed tomography (MDCT) for pancreas divisum; and (2) assess interobserver agreement (IOA) among expert radiologists for detecting pancreas divisum on MDCT and MRCP. For this retrospective cohort study, we identified 45 consecutive patients with pancreaticobiliary symptoms and pancreas divisum established by endoscopic retrograde pancreatography who underwent EUS and cross-sectional imaging. The control group was composed of patients without pancreas divisum who underwent endoscopic retrograde pancreatography and cross-sectional imaging. The sensitivity of EUS for pancreas divisum was 86.7%, significantly higher than the sensitivity reported in the medical records for MDCT (15.5%) or MRCP (60%) (P < 0.001 for each). On review by expert radiologists, the sensitivity of MDCT increased to 83.3% in cases where the pancreatic duct was visualized, with fair IOA (κ = 0.34). Expert review of MRCPs did not identify any additional cases of pancreas divisum; IOA was moderate (κ = 0.43). Endoscopic ultrasound is a sensitive test for diagnosing pancreas divisum and is superior to MDCT and MRCP. Review of MDCT studies by expert radiologists substantially raises its sensitivity for pancreas divisum.
Fiducial marker for correlating images
Miller, Lisa Marie [Rocky Point, NY; Smith, Randy J [Wading River, NY; Warren, John B [Port Jefferson, NY; Elliott, Donald [Hampton Bays, NY
2011-06-21
The invention relates to a fiducial marker having a marking grid that is used to correlate and view images produced by different imaging modalities or different imaging and viewing modalities. More specifically, the invention relates to the fiducial marking grid that has a grid pattern for producing either a viewing image and/or a first analytical image that can be overlaid with at least one other second analytical image in order to view a light path or to image different imaging modalities. Depending on the analysis, the grid pattern has a single layer of a certain thickness or at least two layers of certain thicknesses. In either case, the grid pattern is imageable by each imaging or viewing modality used in the analysis. Further, when viewing a light path, the light path of the analytical modality cannot be visualized by viewing modality (e.g., a light microscope objective). By correlating these images, the ability to analyze a thin sample that is, for example, biological in nature but yet contains trace metal ions is enhanced. Specifically, it is desired to analyze both the organic matter of the biological sample and the trace metal ions contained within the biological sample without adding or using extrinsic labels or stains.
Multi-modal molecular diffuse optical tomography system for small animal imaging
Guggenheim, James A.; Basevi, Hector R. A.; Frampton, Jon; Styles, Iain B.; Dehghani, Hamid
2013-01-01
A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to 2D planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localised to within 1.5mm for a range of target locations and depths indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15% which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images. PMID:24954977
Dual-Modality Small Animal Imaging System*
NASA Astrophysics Data System (ADS)
Ranck, Amoreena; Feldmann, John; Saunders, Robert S.; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Weisenberger, Andrew G.; Wojcik, Randolph
2000-10-01
We describe preliminary results from an imaging system consisting of an array of position-sensitive photomultiplier tubes (PSPMTs) viewing pixelated scintillators and a small fluoroscopic x-ray system (Lixi, Inc.). The PSPMT detectors are used to follow the uptake of lignads tagged principally with ^125I which emits photons in the 30keV region. The fluoroscope allows the superposition of structural information on the pattern of the radioligands. This "dual modality" technique permits more accurate tracking of the tagged material in the animal under study. Small sources give fiducial information on both x-ray and radioligand pictures allowing close registration of the two views of the system under study. Improvements to this system incorporating a very versatile rotatable gantry capable of supporting a wide range of detection systems simultaneously will be described. *Supported in part by The American Diabetes Association, The Jeffress Trust, The National Science Foundation, The Department of Energy, and The Howard Hughes Foundation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Adam; Piquette, Kathryn E.; Bergmann, Uwe
Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to providemore » robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. Finally, the tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation.« less
Gibson, Adam; Piquette, Kathryn E.; Bergmann, Uwe; ...
2018-02-26
Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to providemore » robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. Finally, the tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation.« less
Image acquisition unit for the Mayo/IBM PACS project
NASA Astrophysics Data System (ADS)
Reardon, Frank J.; Salutz, James R.
1991-07-01
The Mayo Clinic and IBM Rochester, Minnesota, have jointly developed a picture archiving, distribution and viewing system for use with Mayo's CT and MRI imaging modalities. Images are retrieved from the modalities and sent over the Mayo city-wide token ring network to optical storage subsystems for archiving, and to server subsystems for viewing on image review stations. Images may also be retrieved from archive and transmitted back to the modalities. The subsystems that interface to the modalities and communicate to the other components of the system are termed Image Acquisition Units (LAUs). The IAUs are IBM Personal System/2 (PS/2) computers with specially developed software. They operate independently in a network of cooperative subsystems and communicate with the modalities, archive subsystems, image review server subsystems, and a central subsystem that maintains information about the content and location of images. This paper provides a detailed description of the function and design of the Image Acquisition Units.
Shinto, Ajit S; Kamaleshwaran, K; Vyshak, K; Sudhakar, Natarajan; Banerjee, Sharmila; Korde, Aruna; Samuel, Grace; Mallia, Madhav
2014-01-01
Objective(s): The objective of this study was to evaluate the performance and utility of 99mTc HYNIC-TOC planar scintigraphy and SPECT/CT in the diagnosis, staging and management of gastroenteropancreatic neuroendocrine tumors (GPNETs). Methods: 22 patients (median age, 46 years) with histologically proven gastro- entero- pancreatic NETs underwent 99mTc HYNIC-TOC whole body scintigraphy and regional SPECT/CT as indicated. Scanning was performed after injection of 370-550 MBq (10-15 mCi) of 99mTc HYNIC-TOC intravenously. Images were evaluated by two experienced nuclear medicine physicians both qualitatively as well as semi quantitatively (tumor to background and tumor to normal liver ratios on SPECT -CT images). Results of SPECT/CT were compared with the results of conventional imaging. Histopathology results and follow-up somatostatin receptor scintigraphy with 99mTc HYNIC TOC or conventional imaging with biochemical markers were considered to be the reference standards. Results: 99mTc HYNIC TOC showed sensitivity and specificity of 87.5% and 85.7%, respectively, for primary tumor and 100% and 86% for metastases. It was better than conventional imaging modalities for the detection of both primary tumor (P<0.001) and metastases (P<0.0001). It changed the management strategy in 6 patients (31.8%) and supported management decisions in 8 patients (36.3%). Conclusion: 99mTc HYNIC TOC SPECT/CT appears to be a highly sensitive and specific modality for the detection and staging of GPNETs. It is better than conventional imaging for the evaluation of GPNETs and can have a significant impact on patient management and planning further therapeutic options. PMID:27408857
Shinto, Ajit S; Kamaleshwaran, K; Vyshak, K; Sudhakar, Natarajan; Banerjee, Sharmila; Korde, Aruna; Samuel, Grace; Mallia, Madhav
2014-01-01
The objective of this study was to evaluate the performance and utility of (99m)Tc HYNIC-TOC planar scintigraphy and SPECT/CT in the diagnosis, staging and management of gastroenteropancreatic neuroendocrine tumors (GPNETs). 22 patients (median age, 46 years) with histologically proven gastro- entero- pancreatic NETs underwent (99m)Tc HYNIC-TOC whole body scintigraphy and regional SPECT/CT as indicated. Scanning was performed after injection of 370-550 MBq (10-15 mCi) of (99m)Tc HYNIC-TOC intravenously. Images were evaluated by two experienced nuclear medicine physicians both qualitatively as well as semi quantitatively (tumor to background and tumor to normal liver ratios on SPECT -CT images). Results of SPECT/CT were compared with the results of conventional imaging. Histopathology results and follow-up somatostatin receptor scintigraphy with (99m)Tc HYNIC TOC or conventional imaging with biochemical markers were considered to be the reference standards. (99m)Tc HYNIC TOC showed sensitivity and specificity of 87.5% and 85.7%, respectively, for primary tumor and 100% and 86% for metastases. It was better than conventional imaging modalities for the detection of both primary tumor (P<0.001) and metastases (P<0.0001). It changed the management strategy in 6 patients (31.8%) and supported management decisions in 8 patients (36.3%). (99m)Tc HYNIC TOC SPECT/CT appears to be a highly sensitive and specific modality for the detection and staging of GPNETs. It is better than conventional imaging for the evaluation of GPNETs and can have a significant impact on patient management and planning further therapeutic options.
Dark-field imaging in coronary atherosclerosis.
Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Auweter, Sigrid; Schüller, Ulrich; Bamberg, Fabian; Notohamiprodjo, Susan; Bartsch, Harald; Wolf, Johannes; Marschner, Mathias; Pfeiffer, Franz; Reiser, Maximilian; Saam, Tobias
2017-09-01
Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability. Copyright © 2017 Elsevier B.V. All rights reserved.
Imaging of the hip joint. Computed tomography versus magnetic resonance imaging
NASA Technical Reports Server (NTRS)
Lang, P.; Genant, H. K.; Jergesen, H. E.; Murray, W. R.
1992-01-01
The authors reviewed the applications and limitations of computed tomography (CT) and magnetic resonance (MR) imaging in the assessment of the most common hip disorders. Magnetic resonance imaging is the most sensitive technique in detecting osteonecrosis of the femoral head. Magnetic resonance reflects the histologic changes associated with osteonecrosis very well, which may ultimately help to improve staging. Computed tomography can more accurately identify subchondral fractures than MR imaging and thus remains important for staging. In congenital dysplasia of the hip, the position of the nonossified femoral head in children less than six months of age can only be inferred by indirect signs on CT. Magnetic resonance imaging demonstrates the cartilaginous femoral head directly without ionizing radiation. Computed tomography remains the imaging modality of choice for evaluating fractures of the hip joint. In some patients, MR imaging demonstrates the fracture even when it is not apparent on radiography. In neoplasm, CT provides better assessment of calcification, ossification, and periosteal reaction than MR imaging. Magnetic resonance imaging, however, represents the most accurate imaging modality for evaluating intramedullary and soft-tissue extent of the tumor and identifying involvement of neurovascular bundles. Magnetic resonance imaging can also be used to monitor response to chemotherapy. In osteoarthrosis and rheumatoid arthritis of the hip, both CT and MR provide more detailed assessment of the severity of disease than conventional radiography because of their tomographic nature. Magnetic resonance imaging is unique in evaluating cartilage degeneration and loss, and in demonstrating soft-tissue alterations such as inflammatory synovial proliferation.
Cross contrast multi-channel image registration using image synthesis for MR brain images.
Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L
2017-02-01
Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bergholt, Mads Sylvest; Zheng, Wei; Lin, Kan; Ho, Khek Yu; Yeoh, Khay Guan; Teh, Ming; So, Jimmy Bok Yan; Huang, Zhiwei
2012-01-01
Raman spectroscopy is a vibrational analytic technique sensitive to the changes in biomolecular composition and conformations occurring in tissue. With our most recent development of near-infrared (NIR) Raman endoscopy integrated with diagnostic algorithms, in vivo real-time Raman diagnostics has been realized under multimodal wide-field imaging (i.e., white- light reflectance (WLR), narrow-band imaging (NBI), autofluorescence imaging (AFI)) modalities. A selection of 177 patients who previously underwent Raman endoscopy (n=2510 spectra) was used to render two robust models based on partial least squares - discriminant analysis (PLS-DA) for esophageal and gastric cancer diagnosis. The Raman endoscopy technique was validated prospectively on 4 new gastric and esophageal patients for in vivo tissue diagnosis. The Raman endoscopic technique could identify esophageal cancer in vivo with a sensitivity of 88.9% (8/9) and specificity of 100.0% (11/11) and gastric cancers with a sensitivity of 77.8% (14/18) and specificity of 100.0% (13/13). This study realizes for the first time the image-guided Raman endoscopy for real-time in vivo diagnosis of malignancies in the esophagus and gastric at the biomolecular level.
Shin, Samuel S; Bales, James W; Edward Dixon, C; Hwang, Misun
2017-04-01
A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.
NASA Astrophysics Data System (ADS)
Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu
2012-12-01
The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.
Maiwald, Bettina; Lobsien, Donald; Kahn, Thomas; Stumpp, Patrick
2014-01-01
Objectives To compare 64-slice contrast-enhanced computed tomography (CT) with 3-Tesla magnetic resonance imaging (MRI) using Gd-EOB-DTPA for the diagnosis of hepatocellular carcinoma (HCC) and evaluate the utility of diffusion-weighted imaging (DWI) in this setting. Methods 3-phase-liver-CT was performed in fifty patients (42 male, 8 female) with suspected or proven HCC. The patients were subjected to a 3-Tesla-MRI-examination with Gd-EOB-DTPA and diffusion weighted imaging (DWI) at b-values of 0, 50 and 400 s/mm2. The apparent diffusion coefficient (ADC)-value was determined for each lesion detected in DWI. The histopathological report after resection or biopsy of a lesion served as the gold standard, and a surrogate of follow-up or complementary imaging techniques in combination with clinical and paraclinical parameters was used in unresected lesions. Diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values were evaluated for each technique. Results MRI detected slightly more lesions that were considered suspicious for HCC per patient compared to CT (2.7 versus 2.3, respectively). ADC-measurements in HCC showed notably heterogeneous values with a median of 1.2±0.5×10−3 mm2/s (range from 0.07±0.1 to 3.0±0.1×10−3 mm2/s). MRI showed similar diagnostic accuracy, sensitivity, and positive and negative predictive values compared to CT (AUC 0.837, sensitivity 92%, PPV 80% and NPV 90% for MRI vs. AUC 0.798, sensitivity 85%, PPV 79% and NPV 82% for CT; not significant). Specificity was 75% for both techniques. Conclusions Our study did not show a statistically significant difference in detection in detection of HCC between MRI and CT. Gd-EOB-DTPA-enhanced MRI tended to detect more lesions per patient compared to contrast-enhanced CT; therefore, we would recommend this modality as the first-choice imaging method for the detection of HCC and therapeutic decisions. However, contrast-enhanced CT was not inferior in our study, so that it can be a useful image modality for follow-up examinations. PMID:25375778
Management of skeletal metastases: An orthopaedic surgeon's guide
Agarwal, Manish G; Nayak, Prakash
2015-01-01
Skeletal metastasis is a common cause of severe morbidity, reduction in quality of life (QOL) and often early mortality. Its prevalence is rising due to a higher rate of diagnosis, better systemic treatment, longer lives with the disease and higher disease burden rate. As people with cancer live longer and with rising sensitivity of body imaging and surveillance, the incidence of pathological fracture, metastatic epidural cord compression is rising and constitutes a challenge for the orthopedic surgeon to maintain their QOL. Metastatic disease is no longer a death sentence condemning patients to “terminal care.” In the era of multidisciplinary care and effective systemic targeted and nontargeted therapy, patient expectations of QOL, even during palliative end of care period is high. We lay emphasis on proving the diagnosis of metastasis by biopsy and histopathology and discuss imaging modalities to help estimate fracture risk and map disease extent. This article discusses at length the evidence and decision-making process of various modalities to treat skeletal metastasis. The modalities range from radiation including image-guided, stereotactic and whole body radiation, systemic targeted or hormonal therapy, spinal decompression with or without stabilization, extended curettage with stabilization, resection in select cases with megaprosthetic or biological reconstruction, percutaneous procedures using radio frequency ablation, cementoplasties and discusses the role of emerging modalities like high frequency ultrasound-guided ablation, cryotherapy and whole body radionuclide therapy. The focus lies on the role of multidisciplinary care, which considers complex decisions on patient centric prognosis, comorbidities, cost, feasibility and expectations in order to maximize outcomes on QOL issues. PMID:25593359
MIND: modality independent neighbourhood descriptor for multi-modal deformable registration.
Heinrich, Mattias P; Jenkinson, Mark; Bhushan, Manav; Matin, Tahreema; Gleeson, Fergus V; Brady, Sir Michael; Schnabel, Julia A
2012-10-01
Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this important problem and proposes a modality independent neighbourhood descriptor (MIND) for both linear and deformable multi-modal registration. Based on the similarity of small image patches within one image, it aims to extract the distinctive structure in a local neighbourhood, which is preserved across modalities. The descriptor is based on the concept of image self-similarity, which has been introduced for non-local means filtering for image denoising. It is able to distinguish between different types of features such as corners, edges and homogeneously textured regions. MIND is robust to the most considerable differences between modalities: non-functional intensity relations, image noise and non-uniform bias fields. The multi-dimensional descriptor can be efficiently computed in a dense fashion across the whole image and provides point-wise local similarity across modalities based on the absolute or squared difference between descriptors, making it applicable for a wide range of transformation models and optimisation algorithms. We use the sum of squared differences of the MIND representations of the images as a similarity metric within a symmetric non-parametric Gauss-Newton registration framework. In principle, MIND would be applicable to the registration of arbitrary modalities. In this work, we apply and validate it for the registration of clinical 3D thoracic CT scans between inhale and exhale as well as the alignment of 3D CT and MRI scans. Experimental results show the advantages of MIND over state-of-the-art techniques such as conditional mutual information and entropy images, with respect to clinically annotated landmark locations. Copyright © 2012 Elsevier B.V. All rights reserved.
Expanding role of 18F-fluoro-d-deoxyglucose PET and PET/CT in spinal infections
Rijk, Paul C.; Collins, James M. P.; Parlevliet, Thierry; Stumpe, Katrin D.; Palestro, Christopher J.
2010-01-01
18F-fluoro-d-deoxyglucose positron emission tomography ([18F]-FDG PET) is successfully employed as a molecular imaging technique in oncology, and has become a promising imaging modality in the field of infection. The non-invasive diagnosis of spinal infections (SI) has been a challenge for physicians for many years. Morphological imaging modalities such as conventional radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are techniques frequently used in patients with SI. However, these methods are sometimes non-specific, and difficulties in differentiating infectious from degenerative end-plate abnormalities or postoperative changes can occur. Moreover, in contrast to CT and MRI, FDG uptake in PET is not hampered by metallic implant-associated artifacts. Conventional radionuclide imaging tests, such as bone scintigraphy, labeled leukocyte, and gallium scanning, suffer from relatively poor spatial resolution and lack sensitivity, specificity, or both. Initial data show that [18F]-FDG PET is an emerging imaging technique for diagnosing SI. [18F]-FDG PET appears to be especially helpful in those cases in which MRI cannot be performed or is non-diagnostic, and as an adjunct in patients in whom the diagnosis is inconclusive. The article reviews the currently available literature on [18F]-FDG PET and PET/CT in the diagnosis of SI. PMID:20052505
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R; Lakshmanan, M; Fong, G
Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scanmore » protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to a minimum while still maintaining clinically viable image quality.« less
Integrated Photoacoustic Ophthalmoscopy and Spectral-domain Optical Coherence Tomography
Jiao, Shuliang; Zhang, Hao F.
2013-01-01
Both the clinical diagnosis and fundamental investigation of major ocular diseases greatly benefit from various non-invasive ophthalmic imaging technologies. Existing retinal imaging modalities, such as fundus photography1, confocal scanning laser ophthalmoscopy (cSLO)2, and optical coherence tomography (OCT)3, have significant contributions in monitoring disease onsets and progressions, and developing new therapeutic strategies. However, they predominantly rely on the back-reflected photons from the retina. As a consequence, the optical absorption properties of the retina, which are usually strongly associated with retinal pathophysiology status, are inaccessible by the traditional imaging technologies. Photoacoustic ophthalmoscopy (PAOM) is an emerging retinal imaging modality that permits the detection of the optical absorption contrasts in the eye with a high sensitivity4-7 . In PAOM nanosecond laser pulses are delivered through the pupil and scanned across the posterior eye to induce photoacoustic (PA) signals, which are detected by an unfocused ultrasonic transducer attached to the eyelid. Because of the strong optical absorption of hemoglobin and melanin, PAOM is capable of non-invasively imaging the retinal and choroidal vasculatures, and the retinal pigment epithelium (RPE) melanin at high contrasts 6,7. More importantly, based on the well-developed spectroscopic photoacoustic imaging5,8 , PAOM has the potential to map the hemoglobin oxygen saturation in retinal vessels, which can be critical in studying the physiology and pathology of several blinding diseases 9 such as diabetic retinopathy and neovascular age-related macular degeneration. Moreover, being the only existing optical-absorption-based ophthalmic imaging modality, PAOM can be integrated with well-established clinical ophthalmic imaging techniques to achieve more comprehensive anatomic and functional evaluations of the eye based on multiple optical contrasts6,10 . In this work, we integrate PAOM and spectral-domain OCT (SD-OCT) for simultaneously in vivo retinal imaging of rat, where both optical absorption and scattering properties of the retina are revealed. The system configuration, system alignment and imaging acquisition are presented. PMID:23354081
Abbaspour, Samira; Mahmoudian, Babak; Islamian, Jalil Pirayesh
2017-01-01
The detector in single-photon emission computed tomography has played a key role in the quality of the images. Over the past few decades, developments in semiconductor detector technology provided an appropriate substitution for scintillation detectors in terms of high sensitivity, better energy resolution, and also high spatial resolution. One of the considered detectors is cadmium telluride (CdTe). The purpose of this paper is to review the CdTe semiconductor detector used in preclinical studies, small organ and small animal imaging, also research in nuclear medicine and other medical imaging modalities by a complete inspect on the material characteristics, irradiation principles, applications, and epitaxial growth method. PMID:28553175
Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging
Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru
2008-01-01
Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788
In vivo endoscopic Doppler optical coherence tomography imaging of mouse colon
NASA Astrophysics Data System (ADS)
Welge, Weston A.; Barton, Jennifer K.
2016-03-01
Colorectal cancer remains the second deadliest cancer in the United States, despite the high sensitivity and specificity of colonoscopy and sigmoidoscopy. While these standard imaging procedures can accurately detect medium and large polyps, some studies have shown miss rates up to 25% for polyps less than 5 mm in diameter. An imaging modality capable of detecting small lesions could potentially improve patient outcomes. Optical coherence tomography (OCT) has been shown to be a powerful imaging modality for adenoma detection in a mouse model of colorectal cancer. While previous work has focused on analyzing the structural OCT images based on thickening of the mucosa and changes in light attenuation in depth, imaging the microvasculature of the colon may enable earlier detection of polyps. The structure and function of vessels grown to support tumor growth are markedly different from healthy vessels. Doppler OCT is capable of imaging microvessels in vivo. We developed a method of processing raw fringe data from a commercial swept-source OCT system using a lab-built miniature endoscope to extract microvessels. This method can be used to measure vessel count and density and to measure flow velocities. This may improve early detection and aid in the development of new chemopreventive and chemotherapeutic drugs. We present, to the best of our knowledge, the first endoscopic Doppler OCT images of in vivo mouse colon.
NASA Astrophysics Data System (ADS)
Mehrmohammadi, Mohammad; Alizad, Azra; Kinnick, Randall R.; Davis, Brian J.; Fatemi, Mostafa
2013-03-01
Effective brachytherapy procedures require precise placement of radioactive seeds in the prostate. Currently, transrectal ultrasound (TRUS) imaging is one of the main intraoperative imaging modalities to assist physicians in placement of brachytherapy seeds. However, the seed detection rate with TRUS is poor mainly because ultrasound imaging is highly sensitive to variations in seed orientation. The purpose of this study is to investigate the abilities of a new acoustic radiation force imaging modality, vibro-acoustography (VA), equipped with a 1.75D array transducer and implemented on a customized clinical ultrasound scanner, to image and localize brachytherapy seeds in prostatic tissue. To perform experiments, excised cadaver prostate specimens were implanted with dummy brachytherapy seeds, and embedded in tissue mimicking gel to simulate the properties of the surrounding soft tissues. The samples were scanned using the VA system and the resulting VA signals were used to reconstruct VA images at several depths inside the tissue. To further evaluate the performance of VA in detecting seeds, X-ray computed tomography (CT) images of the same tissue sample, were obtained and used as a gold-standard to compare the number of seeds detected by the two methods. Our results indicate that VA is capable of imaging of brachytherapy seeds with accuracy and high contrast, and can detect a large percentage of the seeds implanted within the tissue samples.
Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan
2012-01-01
Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cherry, Simon R; Jones, Terry; Karp, Joel S; Qi, Jinyi; Moses, William W; Badawi, Ramsey D
2018-01-01
PET is widely considered the most sensitive technique available for noninvasively studying physiology, metabolism, and molecular pathways in the living human being. However, the utility of PET, being a photon-deficient modality, remains constrained by factors including low signal-to-noise ratio, long imaging times, and concerns about radiation dose. Two developments offer the potential to dramatically increase the effective sensitivity of PET. First by increasing the geometric coverage to encompass the entire body, sensitivity can be increased by a factor of about 40 for total-body imaging or a factor of about 4-5 for imaging a single organ such as the brain or heart. The world's first total-body PET/CT scanner is currently under construction to demonstrate how this step change in sensitivity affects the way PET is used both in clinical research and in patient care. Second, there is the future prospect of significant improvements in timing resolution that could lead to further effective sensitivity gains. When combined with total-body PET, this could produce overall sensitivity gains of more than 2 orders of magnitude compared with existing state-of-the-art systems. In this article, we discuss the benefits of increasing body coverage, describe our efforts to develop a first-generation total-body PET/CT scanner, discuss selected application areas for total-body PET, and project the impact of further improvements in time-of-flight PET. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Wu, Heyu; Tai, Yuan-Chuan
2011-09-07
To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.
Tins, Bernhard J
2017-01-01
Traumatic spine injuries can be devastating for patients affected and for health care professionals if preventable neurological deterioration occurs. This review discusses the imaging options for the diagnosis of spinal trauma. It lays out when imaging is appropriate and when it is not. It discusses strength and weakness of available imaging modalities. Advanced techniques for spinal injury imaging will be explored. The review concludes with a review of imaging protocols adjusted to clinical circumstances.
Popita, Cristian; Popita, Anca Raluca; Sitar-Taut, Adela; Petrut, Bogdan; Fetica, Bogdan; Coman, Ioan
2017-01-01
Multiparametric-magnetic resonance imaging (mp-MRI) is the main imaging modality used for prostate cancer detection. The aim of this study is to evaluate the diagnostic performance of mp-MRI at 1.5-Tesla (1.5-T) for the detection of clinically significant prostate cancer. In this ethical board approved prospective study, 39 patients with suspected prostate cancer were included. Patients with a history of positive prostate biopsy and patients treated for prostate cancer were excluded. All patients were examined at 1.5-T MRI, before standard transrectal ultrasonography-guided biopsy. The overall sensitivity, specificity, positive predictive value and negative predictive value for mp-MRI were 100%, 73.68%, 80% and 100%, respectively. Our results showed that 1.5 T mp-MRI has a high sensitivity for detection of clinically significant prostate cancer and high negative predictive value in order to rule out significant disease.
Santiago, Jonas F.; Jana, Suman; Gilbert, Holly M.; Salem, Shahenda; Bellman, Paul Curtis; Hsu, Ricky K.S.; Naddaf, Sleiman; Abdel-Dayem, Hussein M.
1999-11-01
OBJECTIVE AND METHODS: This study was undertaken to find the role of fluorine-18-fluorodeoxyglucose (F18-FDG) in the diagnostic work-up of febrile Acquired Immune Deficiency Syndrome (AIDS) patients. Forty-seven (42 male and 5 female; mean age = 40.3 years) febrile patients with AIDS underwent imaging with F18-FDG by Dual Head Coincidence Imaging (DHCI). Findings were correlated with other imaging modalities.RESULTS: Our data show good sensitivity for scanning with F18-FDG by DHCI in determining the extent of Castleman's disease, lymphoma, Kaposi's sarcoma (KS), adenocarcinoma, and germ cell carcinoma. Various opportunistic infections also manifest with increased F18-FDG uptake.CONCLUSION: Total-body imaging can be done with F18-FDG with better resolution and a shorter procedure time compared to imaging with Gallium-67 (Ga-67). Furthermore, F18-FDG is more sensitive than Ga-67 for evaluating extent of involvement in various pathologies affecting AIDS patients. The new technology of DHCI is a good alternative for hospitals with no dedicated positron emission tomography (PET) scanner.
Through-barrier electromagnetic imaging with an atomic magnetometer.
Deans, Cameron; Marmugi, Luca; Renzoni, Ferruccio
2017-07-24
We demonstrate the penetration of thick metallic and ferromagnetic barriers for imaging of conductive targets underneath. Our system is based on an 85 Rb radio-frequency atomic magnetometer operating in electromagnetic induction imaging modality in an unshielded environment. Detrimental effects, including unpredictable magnetic signatures from ferromagnetic screens and variations in the magnetic background, are automatically compensated by active compensation coils controlled by servo loops. We exploit the tunability and low-frequency sensitivity of the atomic magnetometer to directly image multiple conductive targets concealed by a 2.5 mm ferromagnetic steel shield and/or a 2.0 mm aluminium shield, in a single scan. The performance of the atomic magnetometer allows imaging without any prior knowledge of the barriers or the targets, and without the need of background subtraction. A dedicated edge detection algorithm allows automatic estimation of the targets' size within 3.3 mm and of their position within 2.4 mm. Our results prove the feasibility of a compact, sensitive and automated sensing platform for imaging of concealed objects in a range of applications, from security screening to search and rescue.
Zaman, Md Badruz; Baral, Toya Nath; Jakubek, Zygmunt J; Zhang, Jianbing; Wu, Xiaohua; Lai, Edward; Whitfield, Dennis; Yu, Kui
2011-05-01
Successful targeted imaging of BxPC3 human pancreatic cancer cells is feasible with near-IR CdTeSe/CdS quantum dots (QDs) functionalized with single-domain antibody (sdAb) 2A3. For specific targeting, sdAbs are superior to conventional antibodies, especially in terms of stability, aggregation, and production cost. The bright CdTeSe/CdS QDs were synthesized to emit in the diagnostic window of 650-900 nm with a narrow emission band. 2A3 was derived from llama and is small in size of 13 kDa, but with fully-functional recognition to the target carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), a possible biomarker as a therapeutic target of pancreatic cancer. For compelling imaging, optical may be the most sensible among the various imaging modalities, regarding the sensitivity and cost. This first report on sdAb-conjugated near-IR QDs with high signal to background sensitivity for targeted cellular imaging brings insights into the development of optical molecular imaging for early stage cancer diagnosis.
NASA Astrophysics Data System (ADS)
Kwong, Tiffany C.; Nouizi, Farouk; Sampathkumaran, Uma; Zhu, Yue; Alam, Maksudul M.; Gulsen, Gultekin
2015-03-01
Fluorescent tomography has been hindered by poor tissue penetration and weak signal which results in poor spatial resolution and quantification accuracy. Recently, it has been reported that activatable temperature responsive fluorescent probes which respond to focused ultrasound heating can improve the resolution and quantification of fluorescent tomography in deep tissue. This has lead to a new imaging modality, "Temperature-modulated fluorescent tomography." This technique relies on activatable thermo-sensitive fluorescent nanocapsules for whose fluorescence quantum efficiency is temperature dependent. Within a 4-5° C temperature range, the fluorescent signal increase more than 10-fold. In this molecular probe, Indocyanine Green (ICG) is encapsulated inside the core of a thermo-reversible pluronic micelle. Here we show the fluorescence response and temperature range of the nanocapsules which have been optimized for a higher temperature range to be used for in vivo animal imaging. We report on the feasibility of these temperature-sensitive reversible nanocapsules for in vivo applications by studying the pharmacokinetics in a subcutaneous mouse tumor model in vivo.
Litton, Kayleigh M; Rogers, Bret A
2016-01-01
Edwardsiella tarda is a freshwater marine member of the family Enterobacteriaceae which often colonizes fish, lizards, snakes, and turtles but is an infrequent human pathogen. Indium-111- ((111)In-) labeled white blood cell (WBC) scintigraphy is an imaging modality which has a wide range of reported sensitivity and specificity (from 60 to 100% and from 68 to 92%, resp.) for diagnosing acute and chronic infection. We describe a case of suspected E. tarda prosthetic aortic valve and mitral valve endocarditis with probable vegetations and new mitral regurgitation on transthoracic and transesophageal echocardiograms which was supported with the use of (111)In-labeled WBC scintigraphy.
Dual-modality imaging of function and physiology
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce H.; Iwata, Koji; Wong, Kenneth H.; Wu, Max C.; Da Silva, Angela; Tang, Hamilton R.; Barber, William C.; Hwang, Andrew B.; Sakdinawat, Anne E.
2002-04-01
Dual-modality imaging is a technique where computed tomography or magnetic resonance imaging is combined with positron emission tomography or single-photon computed tomography to acquire structural and functional images with an integrated system. The data are acquired during a single procedure with the patient on a table viewed by both detectors to facilitate correlation between the structural and function images. The resulting data can be useful for localization for more specific diagnosis of disease. In addition, the anatomical information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can be used to improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems also are being developed for biological research that involves small animals. The small-animal dual-modality systems offer advantages for measurements that currently are performed invasively using autoradiography and tissue sampling. By acquiring the required data noninvasively, dual-modality imaging has the potential to allow serial studies in a single animal, to perform measurements with fewer animals, and to improve the statistical quality of the data.
Multimodal image registration based on binary gradient angle descriptor.
Jiang, Dongsheng; Shi, Yonghong; Yao, Demin; Fan, Yifeng; Wang, Manning; Song, Zhijian
2017-12-01
Multimodal image registration plays an important role in image-guided interventions/therapy and atlas building, and it is still a challenging task due to the complex intensity variations in different modalities. The paper addresses the problem and proposes a simple, compact, fast and generally applicable modality-independent binary gradient angle descriptor (BGA) based on the rationale of gradient orientation alignment. The BGA can be easily calculated at each voxel by coding the quadrant in which a local gradient vector falls, and it has an extremely low computational complexity, requiring only three convolutions, two multiplication operations and two comparison operations. Meanwhile, the binarized encoding of the gradient orientation makes the BGA more resistant to image degradations compared with conventional gradient orientation methods. The BGA can extract similar feature descriptors for different modalities and enable the use of simple similarity measures, which makes it applicable within a wide range of optimization frameworks. The results for pairwise multimodal and monomodal registrations between various images (T1, T2, PD, T1c, Flair) consistently show that the BGA significantly outperforms localized mutual information. The experimental results also confirm that the BGA can be a reliable alternative to the sum of absolute difference in monomodal image registration. The BGA can also achieve an accuracy of [Formula: see text], similar to that of the SSC, for the deformable registration of inhale and exhale CT scans. Specifically, for the highly challenging deformable registration of preoperative MRI and 3D intraoperative ultrasound images, the BGA achieves a similar registration accuracy of [Formula: see text] compared with state-of-the-art approaches, with a computation time of 18.3 s per case. The BGA improves the registration performance in terms of both accuracy and time efficiency. With further acceleration, the framework has the potential for application in time-sensitive clinical environments, such as for preoperative MRI and intraoperative US image registration for image-guided intervention.
Multimodal Classification of Mild Cognitive Impairment Based on Partial Least Squares.
Wang, Pingyue; Chen, Kewei; Yao, Li; Hu, Bin; Wu, Xia; Zhang, Jiacai; Ye, Qing; Guo, Xiaojuan
2016-08-10
In recent years, increasing attention has been given to the identification of the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD). Brain neuroimaging techniques have been widely used to support the classification or prediction of MCI. The present study combined magnetic resonance imaging (MRI), 18F-fluorodeoxyglucose PET (FDG-PET), and 18F-florbetapir PET (florbetapir-PET) to discriminate MCI converters (MCI-c, individuals with MCI who convert to AD) from MCI non-converters (MCI-nc, individuals with MCI who have not converted to AD in the follow-up period) based on the partial least squares (PLS) method. Two types of PLS models (informed PLS and agnostic PLS) were built based on 64 MCI-c and 65 MCI-nc from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The results showed that the three-modality informed PLS model achieved better classification accuracy of 81.40%, sensitivity of 79.69%, and specificity of 83.08% compared with the single-modality model, and the three-modality agnostic PLS model also achieved better classification compared with the two-modality model. Moreover, combining the three modalities with clinical test score (ADAS-cog), the agnostic PLS model (independent data: florbetapir-PET; dependent data: FDG-PET and MRI) achieved optimal accuracy of 86.05%, sensitivity of 81.25%, and specificity of 90.77%. In addition, the comparison of PLS, support vector machine (SVM), and random forest (RF) showed greater diagnostic power of PLS. These results suggested that our multimodal PLS model has the potential to discriminate MCI-c from the MCI-nc and may therefore be helpful in the early diagnosis of AD.
Mehta, Nehal N; Torigian, Drew A; Gelfand, Joel M; Saboury, Babak; Alavi, Abass
2012-05-02
Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC) and carotid intimal medial thickness (C-IMT) provide information about the burden of disease. However, despite multiple validation studies of CAC, and C-IMT, these modalities do not accurately assess plaque characteristics, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events. [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity, an important source of cellular inflammation in vessel walls. More recently, we and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy as well as longer term therapeutic lifestyle changes (16 months). The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.
3D Compton scattering imaging and contour reconstruction for a class of Radon transforms
NASA Astrophysics Data System (ADS)
Rigaud, Gaël; Hahn, Bernadette N.
2018-07-01
Compton scattering imaging is a nascent concept arising from the current development of high-sensitive energy detectors and is devoted to exploit the scattering radiation to image the electron density of the studied medium. Such detectors are able to collect incoming photons in terms of energy. This paper introduces potential 3D modalities in Compton scattering imaging (CSI). The associated measured data are modeled using a class of generalized Radon transforms. The study of this class of operators leads to build a filtered back-projection kind algorithm preserving the contours of the sought-for function and offering a fast approach to partially solve the associated inverse problems. Simulation results including Poisson noise demonstrate the potential of this new imaging concept as well as the proposed image reconstruction approach.
Combined photoacoustic and magneto-acoustic imaging.
Qu, Min; Mallidi, Srivalleesha; Mehrmohammadi, Mohammad; Ma, Li Leo; Johnston, Keith P; Sokolov, Konstantin; Emelianov, Stanislav
2009-01-01
Ultrasound is a widely used modality with excellent spatial resolution, low cost, portability, reliability and safety. In clinical practice and in the biomedical field, molecular ultrasound-based imaging techniques are desired to visualize tissue pathologies, such as cancer. In this paper, we present an advanced imaging technique - combined photoacoustic and magneto-acoustic imaging - capable of visualizing the anatomical, functional and biomechanical properties of tissues or organs. The experiments to test the combined imaging technique were performed using dual, nanoparticle-based contrast agents that exhibit the desired optical and magnetic properties. The results of our study demonstrate the feasibility of the combined photoacoustic and magneto-acoustic imaging that takes the advantages of each imaging techniques and provides high sensitivity, reliable contrast and good penetrating depth. Therefore, the developed imaging technique can be used in wide range of biomedical and clinical application.
Multimodal Imaging of Human Brain Activity: Rational, Biophysical Aspects and Modes of Integration
Blinowska, Katarzyna; Müller-Putz, Gernot; Kaiser, Vera; Astolfi, Laura; Vanderperren, Katrien; Van Huffel, Sabine; Lemieux, Louis
2009-01-01
Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship. PMID:19547657
Optimal wavelet transform for the detection of microaneurysms in retina photographs.
Quellec, Gwénolé; Lamard, Mathieu; Josselin, Pierre Marie; Cazuguel, Guy; Cochener, Béatrice; Roux, Christian
2008-09-01
In this paper, we propose an automatic method to detect microaneurysms in retina photographs. Microaneurysms are the most frequent and usually the first lesions to appear as a consequence of diabetic retinopathy. So, their detection is necessary for both screening the pathology and follow up (progression measurement). Automating this task, which is currently performed manually, would bring more objectivity and reproducibility. We propose to detect them by locally matching a lesion template in subbands of wavelet transformed images. To improve the method performance, we have searched for the best adapted wavelet within the lifting scheme framework. The optimization process is based on a genetic algorithm followed by Powell's direction set descent. Results are evaluated on 120 retinal images analyzed by an expert and the optimal wavelet is compared to different conventional mother wavelets. These images are of three different modalities: there are color photographs, green filtered photographs, and angiographs. Depending on the imaging modality, microaneurysms were detected with a sensitivity of respectively 89.62%, 90.24%, and 93.74% and a positive predictive value of respectively 89.50%, 89.75%, and 91.67%, which is better than previously published methods.
NASA Astrophysics Data System (ADS)
Ntziachristos, Vasilis; Yodh, Arjun G.; Schnall, Mitchell D.; Ma, XuHui; Chance, Britton
1998-12-01
A single photon counting NIR imager designed to work simultaneously with an MRI scanner for concurrent NIR-MR mammography has recently been developed. The combination of imaging modalities aims in effectively investigating the competence of optical imaging as a stand along modality and as an MRI add-on in order to increase the sensitivity and specificity of the mammoraphic examination. In this work we focus on the second aim. We present the methodology developed to employ the MR anatomical information in order to simplify the forward problem and accurately calculate local tissue optical properties, by fitting the NIR data to this model. Derivation of local optical properties due to intrinsic or extrinsic may identify the existence of malignant and benign breast tissue NIR signatures. We have evaluated the performance of the solver with experimental measurements, also presented here, from models with known absorption perturbations. The average quantification error of absolute absorption of local lesions has been found to be less than 10% in simple models and algorithm convergence is always ensured.
Assessment of diabetic neuropathy with emission tomography and magnetic resonance spectroscopy.
Rao, Harshvardhan; Gaur, Neeraj; Tipre, Dnyanesh
2017-04-01
Diabetic neuropathies (DNs) are nerve-damaging disorders associated with diabetes. They are commonly attributed to peripheral nerves and primarily affect the limbs of the patient. They cause altered sensitivity to external stimuli along with loss in balance and reflexes of the affected patient. DNs are associated with a variety of clinical manifestations including autonomic failure and are caused by poor management of blood sugar levels. Imaging modalities provide vital information about early physiological changes in DNs. This review summarizes contributions by various teams of scientists in developing imaging methods to assess physiological changes in DNs and ongoing clinical trials where imaging modalities are applied to evaluate therapeutic intervention in DNs. Development of PET, single photon emission computed tomography, and magnetic resonance spectroscopy methods over the past 20 years are reviewed in the diagnostic assessment of DNs. Abnormal radiotracer pharmacokinetics and neurometabolite spectra in affected organs confirm physiological abnormalities in DN. With the use of the Siemens Biograph mMR and GE Signa - 60 cm (PET/MRI scanner), simultaneous acquisition of physiological and anatomical information could enhance understanding of DNs and accelerate drug development.
Imaging trends in suspected appendicitis-a Canadian perspective.
Tan, Victoria F; Patlas, Michael N; Katz, Douglas S
2017-06-01
The purpose of our study was to assess trends in the imaging of suspected appendicitis in adult patients in emergency departments of academic centers in Canada. A questionnaire was sent to all 17 academic centers in Canada to be completed by a radiologist who works in emergency radiology. The questionnaires were sent and collected over a period of 4 months from October 2015 to February 2016. Sixteen centers (94%) responded to the questionnaire. Eleven respondents (73%) use IV contrast-enhanced computed tomography (CT) as the imaging modality of choice for all patients with suspected appendicitis. Thirteen respondents (81%) use ultrasound as the first modality of choice in imaging pregnant patients with suspected appendicitis. Eleven respondents (69%) use ultrasound (US) as the first modality of choice in patients younger than 40 years of age. Ten respondents (67%) use ultrasound as the first imaging modality in female patients younger than 40 years of age. When CT is used, 81% use non-focused CT of the abdomen and pelvis, and 44% of centers use oral contrast. Thirteen centers (81%) have ultrasound available 24 h a day/7 days a week. At 12 centers (75%), ultrasound is performed by ultrasound technologists. Four centers (40%) perform magnetic resonance imaging (MRI) in suspected appendicitis in adult patients at the discretion of the attending radiologist. Eleven centers (69%) have MRI available 24/7. All 16 centers (100%) use unenhanced MRI. Various imaging modalities are available for the work-up of suspected appendicitis. Although there are North American societal guidelines and recommendations regarding the appropriateness of the multiple imaging modalities, significant heterogeneity in the first-line modalities exist, which vary depending on the patient demographics and resource availability. Imaging trends in the use of the first-line modalities should be considered in order to plan for the availability of the imaging examinations and to consider plans for an imaging algorithm to permit standardization across multiple centers. While this study examined the imaging trends specifically in Canada, there are implications to other countries seeking to streamline imaging protocols and determining appropriateness of the first-line imaging modalities.
Stimulus Modality and Smoking Behavior: Moderating Role of Implicit Attitudes.
Ezeh, Valentine C; Mefoh, Philip
2015-07-20
This study investigated whether stimulus modality influences smoking behavior among smokers in South Eastern Nigeria and also whether implicit attitudes moderate the relationship between stimulus modality and smoking behavior. 60 undergraduate students of University of Nigeria, Nsukka were used. Participants were individually administered the IAT task as a measure of implicit attitude toward smoking and randomly assigned into either image condition that paired images of cigarette with aversive images of potential health consequences or text condition that paired images of cigarette with aversive texts of potential health consequences. A one- predictor and one-moderator binary logistic analysis indicates that stimulus modality significantly predicts smoking behavior (p = < .05) with those in the image condition choosing not to smoke with greater probability than the text condition. The interaction between stimulus modality and IAT scores was also significant (p = < .05). Specifically, the modality effect was larger for participants in the image group who held more negative implicit attitudes towards smoking. The finding shows the urgent need to introduce the use of aversive images of potential health consequences on cigarette packs in Nigeria.
High-resolution contrast-enhanced optical coherence tomography in mice retinae
NASA Astrophysics Data System (ADS)
Sen, Debasish; SoRelle, Elliott D.; Liba, Orly; Dalal, Roopa; Paulus, Yannis M.; Kim, Tae-Wan; Moshfeghi, Darius M.; de la Zerda, Adam
2016-06-01
Optical coherence tomography (OCT) is a noninvasive interferometric imaging modality providing anatomical information at depths of millimeters and a resolution of micrometers. Conventional OCT images limit our knowledge to anatomical structures alone, without any contrast enhancement. Therefore, here we have, for the first time, optimized an OCT-based contrast-enhanced imaging system for imaging single cells and blood vessels in vivo inside the living mouse retina at subnanomolar sensitivity. We used bioconjugated gold nanorods (GNRs) as exogenous OCT contrast agents. Specifically, we used anti-mouse CD45 coated GNRs to label mouse leukocytes and mPEG-coated GNRs to determine sensitivity of GNR detection in vivo inside mice retinae. We corroborated OCT observations with hyperspectral dark-field microscopy of formalin-fixed histological sections. Our results show that mouse leukocytes that otherwise do not produce OCT contrast can be labeled with GNRs leading to significant OCT intensity equivalent to a 0.5 nM GNR solution. Furthermore, GNRs injected intravenously can be detected inside retinal blood vessels at a sensitivity of ˜0.5 nM, and GNR-labeled cells injected intravenously can be detected inside retinal capillaries by enhanced OCT contrast. We envision the unprecedented resolution and sensitivity of functionalized GNRs coupled with OCT to be adopted for longitudinal studies of retinal disorders.
Detection of bladder metabolic artifacts in (18)F-FDG PET imaging.
Roman-Jimenez, Geoffrey; Crevoisier, Renaud De; Leseur, Julie; Devillers, Anne; Ospina, Juan David; Simon, Antoine; Terve, Pierre; Acosta, Oscar
2016-04-01
Positron emission tomography using (18)F-fluorodeoxyglucose ((18)F-FDG-PET) is a widely used imaging modality in oncology. It enables significant functional information to be included in analyses of anatomical data provided by other image modalities. Although PET offers high sensitivity in detecting suspected malignant metabolism, (18)F-FDG uptake is not tumor-specific and can also be fixed in surrounding healthy tissue, which may consequently be mistaken as cancerous. PET analyses may be particularly hampered in pelvic-located cancers by the bladder׳s physiological uptake potentially obliterating the tumor uptake. In this paper, we propose a novel method for detecting (18)F-FDG bladder artifacts based on a multi-feature double-step classification approach. Using two manually defined seeds (tumor and bladder), the method consists of a semi-automated double-step clustering strategy that simultaneously takes into consideration standard uptake values (SUV) on PET, Hounsfield values on computed tomography (CT), and the distance to the seeds. This method was performed on 52 PET/CT images from patients treated for locally advanced cervical cancer. Manual delineations of the bladder on CT images were used in order to evaluate bladder uptake detection capability. Tumor preservation was evaluated using a manual segmentation of the tumor, with a threshold of 42% of the maximal uptake within the tumor. Robustness was assessed by randomly selecting different initial seeds. The classification averages were 0.94±0.09 for sensitivity, 0.98±0.01 specificity, and 0.98±0.01 accuracy. These results suggest that this method is able to detect most (18)F-FDG bladder metabolism artifacts while preserving tumor uptake, and could thus be used as a pre-processing step for further non-parasitized PET analyses. Copyright © 2016. Published by Elsevier Ltd.
Govaert, Geertje A; IJpma, Frank F; McNally, Martin; McNally, Eugene; Reininga, Inge H; Glaudemans, Andor W
2017-08-01
Post-traumatic osteomyelitis (PTO) is difficult to diagnose and there is no consensus on the best imaging strategy. The aim of this study is to present a systematic review of the recent literature on diagnostic imaging of PTO. A literature search of the EMBASE and PubMed databases of the last 16 years (2000-2016) was performed. Studies that evaluated the accuracy of magnetic resonance imaging (MRI), three-phase bone scintigraphy (TPBS), white blood cell (WBC) or antigranulocyte antibody (AGA) scintigraphy, fluorodeoxyglucose positron emission tomography (FDG-PET) and plain computed tomography (CT) in diagnosing PTO were considered for inclusion. The review was conducted using the PRISMA statement and QUADAS-2 criteria. The literature search identified 3358 original records, of which 10 articles could be included in this review. Four of these studies had a comparative design which made it possible to report the results of, in total, 17 patient series. WBC (or AGA) scintigraphy and FDG-PET exhibit good accuracy for diagnosing PTO (sensitivity ranged from 50-100%, specificity ranged from 40-97% versus 83-100% and 51%-100%, respectively). The accuracy of both modalities improved when a hybrid imaging technique (SPECT/CT & FDG-PET/CT) was performed. For FDG-PET/CT, sensitivity ranged between 86 and 94% and specificity between 76 and 100%. For WBC scintigraphy + SPECT/CT, this is 100% and 89-97%, respectively. Based on the best available evidence of the last 16 years, both WBC (or AGA) scintigraphy combined with SPECT/CT or FDG-PET combined with CT have the best diagnostic accuracy for diagnosing peripheral PTO.
NASA Astrophysics Data System (ADS)
Liu, Bin; Harman, Michelle; Giattina, Susanne; Stamper, Debra L.; Demakis, Charles; Chilek, Mark; Raby, Stephanie; Brezinski, Mark E.
2006-06-01
Assessing tissue birefringence with imaging modality polarization-sensitive optical coherence tomography (PS-OCT) could improve the characterization of in vivo tissue pathology. Among the birefringent components, collagen may provide invaluable clinical information because of its alteration in disorders ranging from myocardial infarction to arthritis. But the features required of clinical imaging modality in these areas usually include the ability to assess the parameter of interest rapidly and without extensive data analysis, the characteristics that single-detector PS-OCT demonstrates. But beyond detecting organized collagen, which has been previously demonstrated and confirmed with the appropriate histological techniques, additional information can potentially be gained with PS-OCT, including collagen type, form versus intrinsic birefringence, the collagen angle, and the presence of multiple birefringence materials. In part I, we apply the simple but powerful fast-Fourier transform (FFT) to both PS-OCT mathematical modeling and in vitro bovine meniscus for improved PS-OCT data analysis. The FFT analysis yields, in a rapid, straightforward, and easily interpreted manner, information on the presence of multiple birefringent materials, distinguishing the true anatomical structure from patterns in image resulting from alterations in the polarization state and identifying the tissue/phantom optical axes. Therefore the use of the FFT analysis of PS-OCT data provides information on tissue composition beyond identifying the presence of organized collagen in real time and directly from the image without extensive mathematical manipulation or data analysis. In part II, Helistat phantoms (collagen type I) are analyzed with the ultimate goal of improved tissue characterization. This study, along with the data in part I, advance the insights gained from PS-OCT images beyond simply determining the presence or absence of birefringence.
Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong
2014-01-01
The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110° to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 µg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging. PMID:24770916
Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong; Xing, Lei
2014-05-01
The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110(°) to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 μg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging.
NASA Astrophysics Data System (ADS)
Masciotti, J.; Provenzano, F.; Papa, J.; Klose, A.; Hur, J.; Gu, X.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.
2006-02-01
Small animal models are employed to simulate disease in humans and to study its progression, what factors are important to the disease process, and to study the disease treatment. Biomedical imaging modalities such as magnetic resonance imaging (MRI) and Optical Tomography make it possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. MRI is an established imaging modality capable of obtaining high resolution anatomical images and along with contrast agents allow the studying of blood volume. Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and blood volume with high temporal resolution. In this study we apply these modalities to imaging the growth of kidney tumors and then there treatment by an anti-VEGF agent. We illustrate how these imaging modalities have their individual uses, but can still supplement each other and cross validation can be performed.
Lin, Yuning; Chen, Ziqian; Yang, Xizhang; Zhong, Qun; Zhang, Hongwen; Yang, Li; Xu, Shangwen; Li, Hui
2013-12-01
The aim of this study is to evaluate the diagnostic performance of multidetector CT angiography (CTA) in depicting bronchial and non-bronchial systemic arteries in patients with haemoptysis and to assess whether this modality helps determine the feasibility of angiographic embolisation. Fifty-two patients with haemoptysis between January 2010 and July 2011 underwent both preoperative multidetector CTA and digital subtraction angiography (DSA) imaging. Diagnostic performance of CTA in depicting arteries causing haemoptysis was assessed on a per-patient and a per-artery basis. The feasibility of the endovascular treatment evaluated by CTA was analysed. Sensitivity, specificity, and positive and negative predictive values for those analyses were determined. Fifty patients were included in the artery-presence-number analysis. In the per-patient analysis, neither CTA (P = 0.25) nor DSA (P = 1.00) showed statistical difference in the detection of arteries causing haemoptysis. The sensitivity, specificity, and positive and negative predictive values were 94%, 100%, 100%, and 40%, respectively, for the presence of pathologic arteries evaluated by CTA, and 98%, 100%, 100%, and 67%, respectively, for DSA. On the per-artery basis, CTA correctly identified 97% (107/110). Fifty-two patients were included in the feasibility analysis. The performance of CTA in predicting the feasibility of angiographic embolisation was not statistically different from the treatment performed (P = 1.00). The sensitivity, specificity, and positive and negative predictive values were 96%, 80%, 98% and 67%, respectively, for CTA. Multidetector CTA is an accurate imaging method in depicting the presence and number of arteries causing haemoptysis. This modality is also useful for determining the feasibility of angiographic embolisation for haemoptysis. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.
Alignment of multimodality, 2D and 3D breast images
NASA Astrophysics Data System (ADS)
Grevera, George J.; Udupa, Jayaram K.
2003-05-01
In a larger effort, we are studying methods to improve the specificity of the diagnosis of breast cancer by combining the complementary information available from multiple imaging modalities. Merging information is important for a number of reasons. For example, contrast uptake curves are an indication of malignancy. The determination of anatomical locations in corresponding images from various modalities is necessary to ascertain the extent of regions of tissue. To facilitate this fusion, registration becomes necessary. We describe in this paper a framework in which 2D and 3D breast images from MRI, PET, Ultrasound, and Digital Mammography can be registered to facilitate this goal. Briefly, prior to image acquisition, an alignment grid is drawn on the breast skin. Modality-specific markers are then placed at the indicated grid points. Images are then acquired by a specific modality with the modality specific external markers in place causing the markers to appear in the images. This is the first study that we are aware of that has undertaken the difficult task of registering 2D and 3D images of such a highly deformable (the breast) across such a wide variety of modalities. This paper reports some very preliminary results from this project.
Kushnir, Vladimir M.; Wani, Sachin B.; Fowler, Kathryn; Menias, Christine; Varma, Rakesh; Narra, Vamsi; Hovis, Christine; Murad, Faris; Mullady, Daniel; Jonnalagadda, Sreenivasa S.; Early, Dayna S.; Edmundowicz, Steven A.; Azar, Riad R.
2014-01-01
OBJECTIVES There are limited data comparing imaging modalities in the diagnosis of pancreas divisum. We aimed to: 1. Evaluate the sensitivity of endoscopic ultrasound (EUS), magnetic resonance cholangiopancreatography (MRCP) and multi-detector computed tomography (MDCT) for pancreas divisum. 2. Assess interobserver agreement (IOA) among expert radiologists for detecting pancreas divisum on MDCT and MRCP. METHODS For this retrospective cohort study, we identified 45 consecutive patients with pancreaticobiliary symptoms and pancreas divisum established by endoscopic retrograde pancreatography (ERP) who underwent EUS and cross-sectional imaging. The control group was composed of patients without pancreas divisum who underwent ERP and cross-sectional imaging. RESULTS The sensitivity of EUS for pancreas divisum was 86.7%, significantly higher than sensitivity reported in the medical records for MDCT (15.5%) or MRCP (60%) [p<0.001 for each]. On review by expert radiologists the sensitivity of MDCT increased to 83.3% in cases where the pancreatic duct was visualized, with fair IOA (қ=0.34). Expert review of MRCPs did not identify any additional cases of pancreas divisum; IOA was moderate (қ=0.43). CONCLUSIONS EUS is a sensitive test for diagnosing pancreas divisum and is superior to MDCT and MRCP. Review of MDCT studies by expert radiologists substantially raises its sensitivity for pancreas divisum. PMID:23211370
NASA Astrophysics Data System (ADS)
Liu, Xiaonan; Chen, Kewei; Wu, Teresa; Weidman, David; Lure, Fleming; Li, Jing
2018-02-01
Alzheimer's Disease (AD) is the most common cause of dementia and currently has no cure. Treatments targeting early stages of AD such as Mild Cognitive Impairment (MCI) may be most effective to deaccelerate AD, thus attracting increasing attention. However, MCI has substantial heterogeneity in that it can be caused by various underlying conditions, not only AD. To detect MCI due to AD, NIA-AA published updated consensus criteria in 2011, in which the use of multi-modality images was highlighted as one of the most promising methods. It is of great interest to develop a CAD system based on automatic, quantitative analysis of multi-modality images and machine learning algorithms to help physicians more adequately diagnose MCI due to AD. The challenge, however, is that multi-modality images are not universally available for many patients due to cost, access, safety, and lack of consent. We developed a novel Missing Modality Transfer Learning (MMTL) algorithm capable of utilizing whatever imaging modalities are available for an MCI patient to diagnose the patient's likelihood of MCI due to AD. Furthermore, we integrated MMTL with radiomics steps including image processing, feature extraction, and feature screening, and a post-processing for uncertainty quantification (UQ), and developed a CAD system called "ADMultiImg" to assist clinical diagnosis of MCI due to AD using multi-modality images together with patient demographic and genetic information. Tested on ADNI date, our system can generate a diagnosis with high accuracy even for patients with only partially available image modalities (AUC=0.94), and therefore may have broad clinical utility.
CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles
NASA Astrophysics Data System (ADS)
Xu, Guoqiang; Lin, Qiaoya; Lian, Lichao; Qian, Yuan; Lu, Lisen; Zhang, Zhihong
2016-03-01
Breast cancer is one of the most harmful cancers in human. Its early diagnosis is expected to improve the patients' survival rate. X-ray computed tomography (CT) has been widely used in tumor detection for obtaining three-dimentional information. Fluorescence Molecular Tomography (FMT) imaging combined with near-infrared fluorescent dyes provides a powerful tool for the acquisition of molecular biodistribution information in deep tissues. Thus, the combination of CT and FMT imaging modalities allows us to better differentiate diseased tissues from normal tissues. Here we developed a tumor-targeting nanoparticle for dual-modality imaging based on a biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier. By incorporation of CT contrast agents (iodinated oil) and far-infrared fluorescent dyes (DiR-BOA) into the hydrophobic core of HPPS, we obtained the FMT and CT signals simultaneously. Increased accumulation of the nanoparticles in the tumor lesions was achieved through the effect of the tumor-targeting peptide on the surface of nanoparticle. It resulted in excellent contrast between lesions and normal tissues. Together, the abilities to sensitively separate the lesions from adjacent normal tissues with the aid of a FMT/CT dual-model imaging approach make the targeting nanoparticles a useful tool for the diagnostics of breast cancer.
NASA Astrophysics Data System (ADS)
Jeong, Eun-Kee; Liu, Xin; Shi, Xianfeng; Yu, Y. Bruce; Lu, Zeng-Rong
2012-10-01
Magnetic resonance imaging (MRI) and spectroscopy (MRS) is very powerful modality for imaging and localized investigation of biological tissue. Medical MRI measures nuclear magnetization of the water protons, which consists of 70 % of our body. MRI provides superior contrast among different soft tissues to all other existing medical imaging modalities, including ultrasound, X-ray CT, PET, and SPECT. In principle, MRI/S may be an ideal non-invasive tool for drug delivery research. However, because of its low sensitivity, a large dose is required for tracing pharmaceuticals. Therefore, its use for imaging of pharmaceuticals is very limited mostly to molecules that contain a paramagnetic metal ion, such as gadolinium (Gd3+) and manganese (Mn2+). The paramagnetic metal ion provides a large fluctuating magnetic field at the proton in the water molecule via a coordinate site. The measurement of local drug concentration is the first step for further quantification. Local concentration of the paramagnetic-ion based MRI contrast agent can be indirectly measured via the change in the water signal intensity. 19F MRI/S of fluorinated complex may be an option for drug delivery and tracing agent, because the fluorinated molecule may be directly detected due to its large magnetic moment (94 % of proton) and 100 % abundance.
Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.
Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu
2016-01-01
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.
Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.
Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K
2016-01-01
Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.
NASA Astrophysics Data System (ADS)
Todorović, Miloš; Ai, Jun; Pereda Cubian, David; Stoica, George; Wang, Lihong
2006-02-01
National Health Interview Survey (NHIS) estimates more than 1.1 million burn injuries per year in the United States, with nearly 15,000 fatalities from wounds and related complications. An imaging modality capable of evaluating burn depths non-invasively is the polarization-sensitive optical coherence tomography. We report on the use of a high-speed, fiber-based Mueller-matrix OCT system with continuous source-polarization modulation for burn depth evaluation. The new system is capable of imaging at near video-quality frame rates (8 frames per second) with resolution of 10 μm in biological tissue (index of refraction: 1.4) and sensitivity of 78 dB. The sample arm optics is integrated in a hand-held probe simplifying the in vivo experiments. The applicability of the system for burn depth determination is demonstrated using biological samples of porcine tendon and porcine skin. The results show an improved imaging depth (1 mm in tendon) and a clear localization of the thermally damaged region. The burnt area determined from OCT images compares well with the histology, thus proving the system's potential for burn depth determination.
Yan, Xuejie; Song, Xiaoyan; Wang, Zhenbo
2017-05-01
The purpose of the study was to construct specific magnetic resonance imaging (MRI)/optical dual-modality molecular probe. Tumor-bearing animal models were established. MRI/optical dual-modality molecular probe was construed by coupling polyethylene glycol (PEG)-modified nano-Fe 3 O 4 with specific targeted cyclopeptide GX1 and near-infrared fluorescent dyes Cy5.5. MRI/optical imaging effects of the probe were observed and the feasibility of in vivo double-modality imaging was discussed. It was found that, the double-modality probe was of high stability; tumor signal of the experimental group tended to be weak after injection of the probe, but rose to a level which was close to the previous level after 18 h (p > 0.05). We successively completed the construction of an ideal MRI/optical dual-modality molecular probe. MRI/optical dual-modality molecular probe which can selectively gather in gastric cancer is expected to be a novel probe used for diagnosing gastric cancer in the early stage.
Near-infrared fluorescence imaging with a mobile phone (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ghassemi, Pejhman; Wang, Bohan; Wang, Jianting; Wang, Quanzeng; Chen, Yu; Pfefer, T. Joshua
2017-03-01
Mobile phone cameras employ sensors with near-infrared (NIR) sensitivity, yet this capability has not been exploited for biomedical purposes. Removing the IR-blocking filter from a phone-based camera opens the door to a wide range of techniques and applications for inexpensive, point-of-care biophotonic imaging and sensing. This study provides proof of principle for one of these modalities - phone-based NIR fluorescence imaging. An imaging system was assembled using a 780 nm light source along with excitation and emission filters with 800 nm and 825 nm cut-off wavelengths, respectively. Indocyanine green (ICG) was used as an NIR fluorescence contrast agent in an ex vivo rodent model, a resolution test target and a 3D-printed, tissue-simulating vascular phantom. Raw and processed images for red, green and blue pixel channels were analyzed for quantitative evaluation of fundamental performance characteristics including spectral sensitivity, detection linearity and spatial resolution. Mobile phone results were compared with a scientific CCD. The spatial resolution of CCD system was consistently superior to the phone, and green phone camera pixels showed better resolution than blue or green channels. The CCD exhibited similar sensitivity as processed red and blue pixels channels, yet a greater degree of detection linearity. Raw phone pixel data showed lower sensitivity but greater linearity than processed data. Overall, both qualitative and quantitative results provided strong evidence of the potential of phone-based NIR imaging, which may lead to a wide range of applications from cancer detection to glucose sensing.
NASA Astrophysics Data System (ADS)
Cheng, Ji-Xin
2017-02-01
In vivo molecular spectroscopic imaging is not a simple addition of a spectrometer to a microscope. Innovations are needed to break the physical limits in sensitivity, depth, speed and resolution perspectives. I will present our most recent advances in modality development, biological application, and clinical translation. My talk will focus on the development of mid-infrared photothermal microscope for depth-resolved vibrational imaging of living cells (Science Advances, in press), the discovery of a metabolic signature in cancer stem cells by hyperspectral stimulated Raman scattering imaging (Cell Stem Cell, in press), and the development of an intravascular vibrational photoacoustic catheter for label-free sensing of lipid laden plaques (Scientific Report 2016, 6:25236).
Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution
Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...
2016-02-05
Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less
Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.
Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less
NASA Astrophysics Data System (ADS)
Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.
2013-05-01
Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.
CT versus MR Techniques in the Detection of Cervical Artery Dissection.
Hanning, Uta; Sporns, Peter B; Schmiedel, Meilin; Ringelstein, Erich B; Heindel, Walter; Wiendl, Heinz; Niederstadt, Thomas; Dittrich, Ralf
2017-11-01
Spontaneous cervical artery dissection (sCAD) is an important etiology of juvenile stroke. The gold standard for the diagnosis of sCAD is convential angiography. However, magnetic resonance imaging (MRI)/MR angiography (MRA) and computed tomography (CT)/CT angiography (CTA) are frequently used alternatives. New developments such as multislice CT/CTA have enabled routine acquisition of thinner sections with rapid imaging times. The goal of this study was to compare the capability of recent developed 128-slice CT/CTA to MRI/MRA to detect radiologic features of sCAD. Retrospective review of patients with suspected sCAD (n = 188) in a database of our Stroke center (2008-2014), who underwent CT/CTA and MRI/MRA on initial clinical work-up. A control group of 26 patients was added. All Images were evaluated concerning specific and sensitive radiological features for dissection by two experienced neuroradiologists. Imaging features were compared between the two modalities. Forty patients with 43 dissected arteries received both modalities (29 internal carotid arteries [ICAs] and 14 vertebral arteries [VAs]). All CADs were identified in CT/CTA and MRI/MRA. The features intimal flap, stenosis, and lumen irregularity appeared in both modalities. One high-grade stenosis was identified by CT/CTA that was expected occluded on MRI/MRA. Two MRI/MRA-confirmed pseudoaneurysms were missed by CT/CTA. None of the controls evidenced specific imaging signs for dissection. CT/CTA is a reliable and better available alternative to MRI/MRA for diagnosis of sCAD. CT/CTA should be used to complement MRI/MRA in cases where MRI/MRA suggests occlusion. Copyright © 2017 by the American Society of Neuroimaging.
Li, Deling; Zhang, Jingjing; Chi, Chongwei; Xiao, Xiong; Wang, Junmei; Lang, Lixin; Ali, Iqbal; Niu, Gang; Zhang, Liwei; Tian, Jie; Ji, Nan; Zhu, Zhaohui; Chen, Xiaoyuan
2018-01-01
Purpose : Despite the use of fluorescence-guided surgery (FGS), maximum safe resection of glioblastoma multiforme (GBM) remains a major challenge. It has restricted surgeons between preoperative diagnosis and intraoperative treatment. Currently, an integrated approach combining preoperative assessment with intraoperative guidance would be a significant step in this direction. Experimental design : We developed a novel 68 Ga-IRDye800CW-BBN PET/near-infrared fluorescence (NIRF) dual-modality imaging probe targeting gastrin-releasing peptide receptor (GRPR) in GBM. The preclinical in vivo tumor imaging and FGS were first evaluated using an orthotopic U87MG glioma xenograft model. Subsequently, the first-in-human prospective cohort study (NCT 02910804) of GBM patients were conducted with preoperative PET assessment and intraoperative FGS. Results : The orthotopic tumors in mice could be precisely resected using the near-infrared intraoperative system. Translational cohort research in 14 GBM patients demonstrated an excellent correlation between preoperative positive PET uptake and intraoperative NIRF signal. The tumor fluorescence signals were significantly higher than those from adjacent brain tissue in vivo and ex vivo (p < 0.0001). Compared with pathology, the sensitivity and specificity of fluorescence using 42 loci of fluorescence-guided sampling were 93.9% (95% CI 79.8%-99.3%) and 100% (95% CI 66.4%-100%), respectively. The tracer was safe and the extent of resection was satisfactory without newly developed neurologic deficits. Progression-free survival (PFS) at 6 months was 80% and two newly diagnosed patients achieved long PFS. Conclusions: This initial study has demonstrated that the novel dual-modality imaging technique is feasible for integrated pre- and intraoperative targeted imaging via the same molecular receptor and improved intraoperative GBM visualization and maximum safe resection.
Magnetic Nanoparticles for Multi-Imaging and Drug Delivery
Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo
2013-01-01
Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479
Development of a PET/Cerenkov-light hybrid imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Hamamura, Fuka; Kato, Katsuhiko
2014-09-15
Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light.more » The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging system is useful to evaluate the merits and the limitations of Cerenkov-light imaging in molecular imaging research.« less
Optical imaging: new tools for arthritis.
Chamberland, David; Jiang, Yebin; Wang, Xueding
2010-10-01
Conventional radiography, ultrasound, CT, MRI, and nuclear imaging are the current imaging modalities used for clinical evaluation of arthritis which is highly prevalent and a leading cause of disability. Some of these types of imaging are also used for monitoring disease progression and treatment response of arthritis. However, their disadvantages limit their utilities, such as ionizing radiation for radiography, CT, and nuclear imaging; suboptimal tissue contrast resolution for radiography, CT, ultrasound, and nuclear imaging; high cost for CT and MRI and nuclear imaging; and long data-acquisition time with ensuing patient discomfort for MRI. Recently, there have been considerable advances in nonionizing noninvasive optical imaging which has demonstrated promise for early diagnosis, monitoring therapeutic interventions and disease progression of arthritis. Optical based molecular imaging modalities such as fluorescence imaging have shown high sensitivity in detection of optical contrast agents and can aid early diagnosis and ongoing evaluation of chronic inflammatory arthritis. Optical transillumination imaging or diffuse optical tomography may differentiate normal joint clear synovial fluid from turbid and pink medium early in the inflammatory process. Fourier transform infrared spectroscopy has been used to evaluate fluid composition from joints affected by arthritis. Hemodynamic changes such as angiogenesis, hypervascularization, and hypoxia in arthritic articular tissue can potentially be observed by diffuse optical tomography and photoacoustic tomography. Optical measurements could also facilitate quantification of hemodynamic properties such as blood volume and oxygenation levels at early stages of inflammatory arthritis. Optical imaging provides methodologies which should contribute to detection of early changes and monitoring of progression in pathological characteristics of arthritis, with relatively simple instrumentation.
NASA Astrophysics Data System (ADS)
Ma, Xibo; Tian, Jie; Zhang, Bo; Zhang, Xing; Xue, Zhenwen; Dong, Di; Han, Dong
2011-03-01
Among many optical molecular imaging modalities, bioluminescence imaging (BLI) has more and more wide application in tumor detection and evaluation of pharmacodynamics, toxicity, pharmacokinetics because of its noninvasive molecular and cellular level detection ability, high sensitivity and low cost in comparison with other imaging technologies. However, BLI can not present the accurate location and intensity of the inner bioluminescence sources such as in the bone, liver or lung etc. Bioluminescent tomography (BLT) shows its advantage in determining the bioluminescence source distribution inside a small animal or phantom. Considering the deficiency of two-dimensional imaging modality, we developed three-dimensional tomography to reconstruct the information of the bioluminescence source distribution in transgenic mOC-Luc mice bone with the boundary measured data. In this paper, to study the osteocalcin (OC) accumulation in transgenic mOC-Luc mice bone, a BLT reconstruction method based on multilevel adaptive finite element (FEM) algorithm was used for localizing and quantifying multi bioluminescence sources. Optical and anatomical information of the tissues are incorporated as a priori knowledge in this method, which can reduce the ill-posedness of BLT. The data was acquired by the dual modality BLT and Micro CT prototype system that was developed by us. Through temperature control and absolute intensity calibration, a relative accurate intensity can be calculated. The location of the OC accumulation was reconstructed, which was coherent with the principle of bone differentiation. This result also was testified by ex vivo experiment in the black 96-plate well using the BLI system and the chemiluminescence apparatus.
Small animal optoacoustic tomography system for molecular imaging of contrast agents
NASA Astrophysics Data System (ADS)
Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.
2016-03-01
We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (<0.2 mm) and (ii) a new low noise amplifier incorporated into the ultrasonic probe and providing the noise equivalent pressure around 2 Pa resulting in increased signal-to-noise ratio and the optical absorption sensitivity of about 0.15 cm-1. We also improved scan time and the image reconstruction times. This prototype has been commercialized for a number of biomedical research applications, such as imaging vascularization and measuring hemoglobin / oxyhemoglobin distribution in the organs as well as imaging exogenous or endogenous optoacoustic contrast agents. As examples, we present in vivo experiments using phantoms and mice with and without tumor injected with contrast agents with indocyanine green (ICG). LOIS-3D was capable of detecting ~1-2 pmole of the ICG, in tissues with relatively low blood content. With its high sensitivity and excellent spatial resolution LOIS-3D is an advanced alternative to fluorescence and bioluminescence based modalities for molecular imaging in live mice.
NASA Astrophysics Data System (ADS)
Brecht, Hans P.; Ivanov, Vassili; Dumani, Diego S.; Emelianov, Stanislav Y.; Anastasio, Mark A.; Ermilov, Sergey A.
2018-03-01
We have developed a preclinical 3D imaging instrument integrating photoacoustic tomography and fluorescence (PAFT) addressing known deficiencies in sensitivity and spatial resolution of the individual imaging components. PAFT is designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct registration of the two imaging modalities. Orthogonal photoacoustic projections are utilized to reconstruct large (21 cm3 ) volumes showing vascularized anatomical structures and regions of induced optical contrast with spatial resolution exceeding 100 µm. The major advantage of orthogonal fluorescence projections is significant reduction of background noise associated with transmitted or backscattered photons. The fluorescence imaging component of PAFT is used to boost detection sensitivity by providing low-resolution spatial constraint for the fluorescent biomarkers. PAFT performance characteristics were assessed by imaging optical and fluorescent contrast agents in tissue mimicking phantoms and in vivo. The proposed PAFT technology will enable functional and molecular volumetric imaging using fluorescent biomarkers, nanoparticles, and other photosensitive constructs mapped with high fidelity over robust anatomical structures, such as skin, central and peripheral vasculature, and internal organs.
Kobayashi, Tomoki; Aikata, Hiroshi; Hatooka, Masahiro; Morio, Kei; Morio, Reona; Kan, Hiromi; Fujino, Hatsue; Fukuhara, Takayuki; Masaki, Keiichi; Ohno, Atsushi; Naeshiro, Noriaki; Nakahara, Takashi; Honda, Yohji; Murakami, Eisuke; Kawaoka, Tomokazu; Tsuge, Masataka; Hiramatsu, Akira; Imamura, Michio; Kawakami, Yoshiiku; Hyogo, Hideyuki; Takahashi, Shoichi; Chayama, Kazuaki
2015-11-01
Non-simple nodules in hepatocellular carcinoma (HCC) correlate with poor prognosis. Therefore, we examined the diagnostic ability of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) and contrast-enhanced ultrasound (CEUS) for diagnosing the macroscopic classification of small HCCs. A total of 85 surgically resected nodules (≤30 mm) were analyzed. HCCs were pathologically classified as simple nodular (SN) and non-SN. By evaluating hepatobiliary phase (HBP) of EOB-MRI and Kupffer phase of CEUS, the diagnostic abilities of both modalities to correctly distinguish between SN and non-SN were compared. Forty-six nodules were diagnosed as SN and the remaining 39 nodules as non-SN. The area under the ROC curve (AUROCs, 95% confidence interval) for the diagnosis of non-SN were EOB-MRI, 0.786 (0.682-0.890): CEUS, 0.784 (0.679-0.889), in combination, 0.876 (0.792-0.959). The sensitivity, specificity, and accuracy were 64.1%, 95.7%, and 81.2% in EOB-MRI, 56.4%, 97.8%, and 78.8% in CEUS, and 84.6%, 95.7%, and 90.6% in combination, respectively. High diagnostic ability was obtained when diagnosed in both modalities combined. The sensitivity was especially statistically significant compared to CEUS. Combined diagnosis by EOB-MRI and CEUS can provide high-quality imaging assessment for determining non-SN in small HCCs. • Non-SN has a higher frequency of MVI and intrahepatic metastasis than SN. • Macroscopic classification is useful to choose the treatment strategy for small HCCs. • Diagnostic ability for macroscopic findings of EOB-MRI and CEUS were statistically equal. • The diagnosis of macroscopic findings by individual modality has limitations. • Combined diagnosis of EOB-MRI and CEUS provides high diagnostic ability.
Ultra-sensitive fluorescent imaging-biosensing using biological photonic crystals
NASA Astrophysics Data System (ADS)
Squire, Kenny; Kong, Xianming; Wu, Bo; Rorrer, Gregory; Wang, Alan X.
2018-02-01
Optical biosensing is a growing area of research known for its low limits of detection. Among optical sensing techniques, fluorescence detection is among the most established and prevalent. Fluorescence imaging is an optical biosensing modality that exploits the sensitivity of fluorescence in an easy-to-use process. Fluorescence imaging allows a user to place a sample on a sensor and use an imager, such as a camera, to collect the results. The image can then be processed to determine the presence of the analyte. Fluorescence imaging is appealing because it can be performed with as little as a light source, a camera and a data processor thus being ideal for nontrained personnel without any expensive equipment. Fluorescence imaging sensors generally employ an immunoassay procedure to selectively trap analytes such as antigens or antibodies. When the analyte is present, the sensor fluoresces thus transducing the chemical reaction into an optical signal capable of imaging. Enhancement of this fluorescence leads to an enhancement in the detection capabilities of the sensor. Diatoms are unicellular algae with a biosilica shell called a frustule. The frustule is porous with periodic nanopores making them biological photonic crystals. Additionally, the porous nature of the frustule allows for large surface area capable of multiple analyte binding sites. In this paper, we fabricate a diatom based ultra-sensitive fluorescence imaging biosensor capable of detecting the antibody mouse immunoglobulin down to a concentration of 1 nM. The measured signal has an enhancement of 6× when compared to sensors fabricated without diatoms.
Diagnostic Performance of Ultrafast Brain MRI for Evaluation of Abusive Head Trauma.
Kralik, S F; Yasrebi, M; Supakul, N; Lin, C; Netter, L G; Hicks, R A; Hibbard, R A; Ackerman, L L; Harris, M L; Ho, C Y
2017-04-01
MR imaging with sedation is commonly used to detect intracranial traumatic pathology in the pediatric population. Our purpose was to compare nonsedated ultrafast MR imaging, noncontrast head CT, and standard MR imaging for the detection of intracranial trauma in patients with potential abusive head trauma. A prospective study was performed in 24 pediatric patients who were evaluated for potential abusive head trauma. All patients received noncontrast head CT, ultrafast brain MR imaging without sedation, and standard MR imaging with general anesthesia or an immobilizer, sequentially. Two pediatric neuroradiologists independently reviewed each technique blinded to other modalities for intracranial trauma. We performed interreader agreement and consensus interpretation for standard MR imaging as the criterion standard. Diagnostic accuracy was calculated for ultrafast MR imaging, noncontrast head CT, and combined ultrafast MR imaging and noncontrast head CT. Interreader agreement was moderate for ultrafast MR imaging (κ = 0.42), substantial for noncontrast head CT (κ = 0.63), and nearly perfect for standard MR imaging (κ = 0.86). Forty-two percent of patients had discrepancies between ultrafast MR imaging and standard MR imaging, which included detection of subarachnoid hemorrhage and subdural hemorrhage. Sensitivity, specificity, and positive and negative predictive values were obtained for any traumatic pathology for each examination: ultrafast MR imaging (50%, 100%, 100%, 31%), noncontrast head CT (25%, 100%, 100%, 21%), and a combination of ultrafast MR imaging and noncontrast head CT (60%, 100%, 100%, 33%). Ultrafast MR imaging was more sensitive than noncontrast head CT for the detection of intraparenchymal hemorrhage ( P = .03), and the combination of ultrafast MR imaging and noncontrast head CT was more sensitive than noncontrast head CT alone for intracranial trauma ( P = .02). In abusive head trauma, ultrafast MR imaging, even combined with noncontrast head CT, demonstrated low sensitivity compared with standard MR imaging for intracranial traumatic pathology, which may limit its utility in this patient population. © 2017 by American Journal of Neuroradiology.
Kim, James D.; Hashemi, Nafiseh; Gelman, Rachel; Lee, Andrew G.
2012-01-01
In the past three decades, there have been countless advances in imaging modalities that have revolutionized evaluation, management, and treatment of neuro-ophthalmic disorders. Non-invasive approaches for early detection and monitoring of treatments have decreased morbidity and mortality. Understanding of basic methods of imaging techniques and choice of imaging modalities in cases encountered in neuro-ophthalmology clinic is critical for proper evaluation of patients. Two main imaging modalities that are often used are computed tomography (CT) and magnetic resonance imaging (MRI). However, variations of these modalities and appropriate location of imaging must be considered in each clinical scenario. In this article, we review and summarize the best neuroimaging studies for specific neuro-ophthalmic indications and the diagnostic radiographic findings for important clinical entities. PMID:23961025
Fast, cheap and in control: spectral imaging with handheld devices
NASA Astrophysics Data System (ADS)
Gooding, Edward A.; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.
2017-05-01
Remote sensing has moved out of the laboratory and into the real world. Instruments using reflection or Raman imaging modalities become faster, cheaper and more powerful annually. Enabling technologies include virtual slit spectrometer design, high power multimode diode lasers, fast open-loop scanning systems, low-noise IR-sensitive array detectors and low-cost computers with touchscreen interfaces. High-volume manufacturing assembles these components into inexpensive portable or handheld devices that make possible sophisticated decision-making based on robust data analytics. Examples include threat, hazmat and narcotics detection; remote gas sensing; biophotonic screening; environmental remediation and a host of other applications.
Status of the Nanoscopium scanning nanoprobe beamline of Synchrotron Soleil
NASA Astrophysics Data System (ADS)
Somogyi, A.; Medjoubi, K.; Kewish, C. M.; Leroux, V.; Ribbens, M.; Baranton, G.; Polack, F.; Samama, J. P.
2013-09-01
The Nanoscopium 155 m-long scanning nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal imaging. Dedicated experimental stations, working in consecutive operation mode, will provide coherent scatter imaging and spectro-microscopy techniques in the 5-20 keV energy range for various user communities. Next to fast scanning, cryogenic cooling will reduce the radiation damage of sensitive samples during the measurements. Nanoscopium is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this contribution.
Optical transillumination tomography with tolerance against refraction mismatch.
Haidekker, Mark A
2005-12-01
Optical transillumination tomography (OT) is a laser-based imaging modality where ballistic photons are used for projection generation. Image reconstruction is therefore similar to X-ray computed tomography. This modality promises fast image acquisition, good resolution and contrast, and inexpensive instrumentation for imaging of weakly scattering objects, such as for example tissue-engineered constructs. In spite of its advantages, OT is not widely used. One reason is its sensitivity towards changes in material refractive index along the light path. Beam refraction artefacts cause areas of overestimated tissue density and blur geometric details. A spatial filter, introduced into the beam path to eliminate scattered photons, will also remove refracted photons from the projections. In the projections, zones affected by refraction can be detected by thresholding. By using algebraic reconstruction techniques (ART) in conjunction with suitable interpolation algorithms, reconstruction artefacts can be partly avoided. Reconstructions from a test image were performed. Standard filtered backprojection (FBP) showed a round mean square (RMS) deviation from the original image of 9.9. RMS deviation with refraction-tolerant ART reconstruction was 0.33 and 0.24, depending on the algorithm, compared to 0.57 (FBP) and 0.06 (ART) in a non-refracting case. In addition, modified ART reconstruction allowed detection of small geometric details that were invisible in standard reconstructions. Refraction-tolerant ART may be the key to eliminating one of the major challenges of OT.
Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging
NASA Astrophysics Data System (ADS)
Chen, Chia-Chi; Hwang, Jeng-Jong; Ting, Gann; Tseng, Yun-Long; Wang, Shyh-Jen; Whang-Peng, Jaqueline
2007-02-01
In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/ tk-luc). A good correlation ( R2=0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm 3 ( R2=0.907). γ Scintigraphy combined with [ 131I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs.
Locketz, Garrett D; Li, Peter M M C; Fischbein, Nancy J; Holdsworth, Samantha J; Blevins, Nikolas H
2016-10-01
A method to optimize imaging of cholesteatoma by combining the strengths of available modalities will improve diagnostic accuracy and help to target treatment. To assess whether fusing Periodically Rotated Overlapping Parallel Lines With Enhanced Reconstruction (PROPELLER) diffusion-weighted magnetic resonance imaging (DW-MRI) with corresponding temporal bone computed tomography (CT) images could increase cholesteatoma diagnostic and localization accuracy across 6 distinct anatomical regions of the temporal bone. Case series and preliminary technology evaluation of adults with preoperative temporal bone CT and PROPELLER DW-MRI scans who underwent surgery for clinically suggested cholesteatoma at a tertiary academic hospital. When cholesteatoma was encountered surgically, the precise location was recorded in a diagram of the middle ear and mastoid. For each patient, the 3 image data sets (CT, PROPELLER DW-MRI, and CT-MRI fusion) were reviewed in random order for the presence or absence of cholesteatoma by an investigator blinded to operative findings. If cholesteatoma was deemed present on review of each imaging modality, the location of the lesion was mapped presumptively. Image analysis was then compared with surgical findings. Twelve adults (5 women and 7 men; median [range] age, 45.5 [19-77] years) were included. The use of CT-MRI fusion had greater diagnostic sensitivity (0.88 vs 0.75), positive predictive value (0.88 vs 0.86), and negative predictive value (0.75 vs 0.60) than PROPELLER DW-MRI alone. Image fusion also showed increased overall localization accuracy when stratified across 6 distinct anatomical regions of the temporal bone (localization sensitivity and specificity, 0.76 and 0.98 for CT-MRI fusion vs 0.58 and 0.98 for PROPELLER DW-MRI). For PROPELLER DW-MRI, there were 15 true-positive, 45 true-negative, 1 false-positive, and 11 false-negative results; overall accuracy was 0.83. For CT-MRI fusion, there were 20 true-positive, 45 true-negative, 1 false-positive, and 6 false-negative results; overall accuracy was 0.90. The poor anatomical spatial resolution of DW-MRI makes precise localization of cholesteatoma within the middle ear and mastoid a diagnostic challenge. This study suggests that the bony anatomic detail obtained via CT coupled with the excellent sensitivity and specificity of PROPELLER DW-MRI for cholesteatoma can improve both preoperative identification and localization of disease over DW-MRI alone.
Hybrid PET/MR imaging: physics and technical considerations.
Shah, Shetal N; Huang, Steve S
2015-08-01
In just over a decade, hybrid imaging with FDG PET/CT has become a standard bearer in the management of cancer patients. An exquisitely sensitive whole-body imaging modality, it combines the ability to detect subtle biologic changes with FDG PET and the anatomic information offered by CT scans. With advances in MR technology and advent of novel targeted PET radiotracers, hybrid PET/MRI is an evolutionary technique that is poised to revolutionize hybrid imaging. It offers unparalleled spatial resolution and functional multi-parametric data combined with biologic information in the non-invasive detection and characterization of diseases, without the deleterious effects of ionizing radiation. This article reviews the basic principles of FDG PET and MR imaging, discusses the salient technical developments of hybrid PET/MR systems, and provides an introduction to FDG PET/MR image acquisition.
Multimodal nanoparticle imaging agents: design and applications
NASA Astrophysics Data System (ADS)
Burke, Benjamin P.; Cawthorne, Christopher; Archibald, Stephen J.
2017-10-01
Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5-10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Feature-based Alignment of Volumetric Multi-modal Images
Toews, Matthew; Zöllei, Lilla; Wells, William M.
2014-01-01
This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955
Strauss, Rupert W; Muñoz, Beatriz; Jha, Anamika; Ho, Alexander; Cideciyan, Artur V; Kasilian, Melissa L; Wolfson, Yulia; Sadda, SriniVas; West, Sheila; Scholl, Hendrik P N; Michaelides, Michel
2016-08-01
To compare grading results between short-wavelength reduced-illuminance and conventional autofluorescence imaging in Stargardt macular dystrophy. Reliability study. setting: Moorfields Eye Hospital, London (United Kingdom). Eighteen patients (18 eyes) with Stargardt macular dystrophy. A series of 3 fundus autofluorescence images using 3 different acquisition parameters on a custom-patched device were obtained: (1) 25% laser power and total sensitivity 87; (2) 25% laser power and freely adjusted sensitivity; and (3) 100% laser power and freely adjusted total sensitivity (conventional). The total area of 2 hypoautofluorescent lesion types (definitely decreased autofluorescence and poorly demarcated questionably decreased autofluorescence) was measured. Agreement in grading between the 3 imaging methods was assessed by kappa coefficients (κ) and intraclass correlation coefficients. The mean ± standard deviation area for images acquired with 25% laser power and freely adjusted total sensitivity was 2.04 ± 1.87 mm(2) for definitely decreased autofluorescence (n = 15) and 1.86 ± 2.14 mm(2) for poorly demarcated questionably decreased autofluorescence (n = 12). The intraclass correlation coefficient (95% confidence interval) was 0.964 (0.929, 0.999) for definitely decreased autofluorescence and 0.268 (0.000, 0.730) for poorly demarcated questionably decreased autofluorescence. Short-wavelength reduced-illuminance and conventional fundus autofluorescence imaging showed good concordance in assessing areas of definitely decreased autofluorescence. However, there was significantly higher variability between imaging modalities for assessing areas of poorly demarcated questionably decreased autofluorescence. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Selb, Juliette; Boas, David A.; Chan, Suk-Tak; Evans, Karleyton C.; Buckley, Erin M.; Carp, Stefan A.
2014-01-01
Abstract. Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS. PMID:25453036
Sharma, Anu; Campbell, Julia; Cardon, Garrett
2015-02-01
Cortical development is dependent on extrinsic stimulation. As such, sensory deprivation, as in congenital deafness, can dramatically alter functional connectivity and growth in the auditory system. Cochlear implants ameliorate deprivation-induced delays in maturation by directly stimulating the central nervous system, and thereby restoring auditory input. The scenario in which hearing is lost due to deafness and then reestablished via a cochlear implant provides a window into the development of the central auditory system. Converging evidence from electrophysiologic and brain imaging studies of deaf animals and children fitted with cochlear implants has allowed us to elucidate the details of the time course for auditory cortical maturation under conditions of deprivation. Here, we review how the P1 cortical auditory evoked potential (CAEP) provides useful insight into sensitive period cut-offs for development of the primary auditory cortex in deaf children fitted with cochlear implants. Additionally, we present new data on similar sensitive period dynamics in higher-order auditory cortices, as measured by the N1 CAEP in cochlear implant recipients. Furthermore, cortical re-organization, secondary to sensory deprivation, may take the form of compensatory cross-modal plasticity. We provide new case-study evidence that cross-modal re-organization, in which intact sensory modalities (i.e., vision and somatosensation) recruit cortical regions associated with deficient sensory modalities (i.e., auditory) in cochlear implanted children may influence their behavioral outcomes with the implant. Improvements in our understanding of developmental neuroplasticity in the auditory system should lead to harnessing central auditory plasticity for superior clinical technique. Copyright © 2014 Elsevier B.V. All rights reserved.
Lee, Grace S; McKenzie, Travis J; Mullan, Brian P; Farley, David R; Thompson, Geoffrey B; Richards, Melanie L
2016-03-01
Focused parathyroidectomy in primary hyperparathyroidism (1°HPT) is possible with accurate preoperative localization and intraoperative PTH monitoring (IOPTH). The added benefit of multimodal imaging techniques for operative success is unknown. Patients with 1°HPT, who underwent parathyroidectomy in 2012-2014 at a single institution, were retrospectively reviewed. Only the patients who underwent the standardized multimodal imaging workup consisting of (123)I/(99)Tc-sestamibi subtraction scintigraphy, SPECT, and SPECT/CT were assessed. Of 360 patients who were identified, a curative operation was performed in 96%, using pre-operative imaging and IOPTH. Imaging analysis showed that (123)I/(99)Tc-sestamibi had a sensitivity of 86% (95% CI 82-90%), positive predictive value (PPV) 93%, and accuracy 81%, based on correct lateralization. SPECT had a sensitivity of 77% (95% CI 72-82%), PPV 92% and accuracy 72%. SPECT/CT had a sensitivity of 75% (95% CI 70-80%), PPV of 94%, and accuracy 71%. There were 3 of 45 (7%) patients with negative sestamibi imaging that had an accurate SPECT and SPECT/CT. Of 312 patients (87%) with positive uptake on sestamibi (93% true positive, 7% false positive), concordant findings were present in 86% SPECT and 84% SPECT/CT. In cases where imaging modalities were discordant, but at least one method was true-positive, (123)I/(99)Tc-sestamibi was significantly better than both SPECT and SPECT/CT (p < 0.001). The inclusion of SPECT and SPECT/CT in 1°HPT imaging protocol increases patient cost up to 2.4-fold. (123)I/(99)Tc-sestamibi subtraction imaging is highly sensitive for preoperative localization in 1°HPT. SPECT and SPECT/CT are commonly concordant with (123)I/(99)Tc-sestamibi and rarely increase the sensitivity. Routine inclusion of multimodality imaging technique adds minimal clinical benefit but increases cost to patient in high-volume setting.
Longmire, Michelle R.; Ogawa, Mikako; Choyke, Peter L.
2012-01-01
In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references). PMID:21607237
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.
2001-09-01
In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.
Sub-mSV breast XACT scanner: concept and design
NASA Astrophysics Data System (ADS)
Tang, Shanshan; Ren, Liqiang; Samant, Pratik; Chen, Jian; Liu, Hong; Xiang, Liangzhong
2016-04-01
Excessive exposure to radiation increases the risk of cancer. We present the concept and design of a new imaging paradigm, X-ray induced acoustic computed tomography (XACT). Applying this innovative technology to breast imaging, one single X-ray exposure can generate a 3D acoustic image, which dramatically reduces the radiation dose to patients when compared to beast CT. A theoretical model is developed to analyze the sensitivity of XACT. A noise equivalent pressure model is used for calculating the minimal radiation dose in XACT imaging. Furthermore, K-Wave simulation is employed to study the acoustic wave propagation in breast tissue. Theoretical analysis shows that the X-ray induced acoustic signal has a 100% relative sensitivity to the X-ray absorption (given that the percentage change in the X-ray absorption coefficient yields the same percentage change in the acoustic signal amplitude), but not to X-ray scattering. The final detection sensitivity is primarily limited by the thermal noise. The radiation dose can be reduced by a factor of 100 compared with the newly FDA approved breast CT. Reconstruction result shows that breast calcification with diameter of 80 μm can be observed in XACT image by using ultrasound transducers with 5.5 MHz center frequency. Therefore, with the proposed innovative technology, one can potentially reduce radiation dose to patient in breast imaging as compared with current x-ray modalities.
The influence of underwater turbulence on optical phase measurements
NASA Astrophysics Data System (ADS)
Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony
2016-05-01
Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.
Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis
2013-05-01
The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.
Robust Multimodal Dictionary Learning
Cao, Tian; Jojic, Vladimir; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc
2014-01-01
We propose a robust multimodal dictionary learning method for multimodal images. Joint dictionary learning for both modalities may be impaired by lack of correspondence between image modalities in training data, for example due to areas of low quality in one of the modalities. Dictionaries learned with such non-corresponding data will induce uncertainty about image representation. In this paper, we propose a probabilistic model that accounts for image areas that are poorly corresponding between the image modalities. We cast the problem of learning a dictionary in presence of problematic image patches as a likelihood maximization problem and solve it with a variant of the EM algorithm. Our algorithm iterates identification of poorly corresponding patches and re-finements of the dictionary. We tested our method on synthetic and real data. We show improvements in image prediction quality and alignment accuracy when using the method for multimodal image registration. PMID:24505674
Combined optical tomographic and magnetic resonance imaging of tumor bearing mice
NASA Astrophysics Data System (ADS)
Masciotti, J.; Abdoulaev, G.; Hur, J.; Papa, J.; Bae, J.; Huang, J.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.
2005-04-01
With the advent of small animal imaging systems, it has become possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. Magnetic resonance imaging (MRI) is an established imaging modality capable of obtaining high resolution anatomical images as well as studying cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2). Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution and insensitive to CBF, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and CBV with high temporal resolution. In this study we present our first results concerning coregistration of MRI and optical data. By applying both modalities to imaging of kidney tumors in mice that undergo VEGF treatment, we illustrate how these imaging modalities can supplement each other and cross validation can be performed.
TH-A-18A-01: Innovation in Clinical Breast Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, B; Yang, K; Yaffe, M
Several novel modalities have been or are on the verge of being introduced into the breast imaging clinic. These include tomosynthesis imaging, dedicated breast CT, contrast-enhanced digital mammography, and automated breast ultrasound, all of which are covered in this course. Tomosynthesis and dedicated breast CT address the problem of tissue superimposition that limits mammography screening performance, by improved or full resolution of the 3D breast morphology. Contrast-enhanced digital mammography provides functional information that allows for visualization of tumor angiogenesis. 3D breast ultrasound has high sensitivity for tumor detection in dense breasts, but the imaging exam was traditionally performed by radiologists.more » In automated breast ultrasound, the scan is performed in an automated fashion, making for a more practical imaging tool, that is now used as an adjunct to digital mammography in breast cancer screening. This course will provide medical physicists with an in-depth understanding of the imaging physics of each of these four novel imaging techniques, as well as the rationale and implementation of QC procedures. Further, basic clinical applications and work flow issues will be discussed. Learning Objectives: To be able to describe the underlying physical and physiological principles of each imaging technique, and to understand the corresponding imaging acquisition process. To be able to describe the critical system components and their performance requirements. To understand the rationale and implementation of quality control procedures, as well as regulatory requirements for systems with FDA approval. To learn about clinical applications and understand risks and benefits/strength and weakness of each modality in terms of clinical breast imaging.« less
NASA Astrophysics Data System (ADS)
Liu, Shuangquan; Zhang, Bin; Wang, Xin; Li, Lin; Chen, Yan; Liu, Xin; Liu, Fei; Shan, Baoci; Bai, Jing
2011-02-01
A dual-modality imaging system for simultaneous fluorescence molecular tomography (FMT) and positron emission tomography (PET) of small animals has been developed. The system consists of a noncontact 360°-projection FMT module and a flat panel detector pair based PET module, which are mounted orthogonally for the sake of eliminating cross interference. The FMT images and PET data are simultaneously acquired by employing dynamic sampling mode. Phantom experiments, in which the localization and range of radioactive and fluorescence probes are exactly indicated, have been carried out to verify the feasibility of the system. An experimental tumor-bearing mouse is also scanned using the dual-modality simultaneous imaging system, the preliminary fluorescence tomographic images and PET images demonstrate the in vivo performance of the presented dual-modality system.
Vaquero, Juan José; Kinahan, Paul
2015-01-01
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.
Vaquero, Juan José; Kinahan, Paul
2017-01-01
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024
Wang, Ruikang K.
2014-01-01
In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632
Diagnostic Accuracy of B-mode USG and Doppler Scan for Ovarian Lesions
Agarwal, Vinish Kumar
2016-01-01
Introduction Ultrasonography (USG) is considered as the primary imaging modality for confirmation of ovarian mass and to differentiate them in to benign or malignant. Aim The present study was conducted with the aim to evaluate accuracy of B- mode USG and Doppler scan (Colour Doppler + Spectral Doppler) for ovarian lesions. Materials and Methods The patients included in the study were from those referred with either palpable adnexal mass or incidentally detected adnexal masses. Total 250 women were evaluated by USG, Doppler scan. Only fifty patients who had true ovarian mass intraoperatively and on histopathology were included in study, rest masses were excluded. Study parameters were morphological indexing on B- Mode USG, flow study, vessel arrangement, and vessel morphology and vessel location in Colour Doppler and resistive index and pulsatility index in spectral Doppler. Results Total 50 women were included in present study. Out of these 46% were pre-menopausal while 54% were menopaused women, 66.7% of post-menopausal women had malignant ovarian masses compared to 8.7% of premenopausal. Sensitivity, specificity, positive predictive value and negative predictive value of B-Mode USG for ovarian masses were 94.44%, 48.15%, 54.84% and 92.86% respectively, with p-value = 0.007, while sensitivity, specificity, positive predictive value and negative predictive value of Doppler scan were 85%, 90%, 85% and 90% respectively, with p-value = 0.0001. Conclusion USG and its different techniques are accepted as the primary imaging modality for early stage diagnosis of an ovarian malignancy. Statistical analysis suggests that Doppler Scan (Colour + Spectral) was more accurate (88%) than B-Mode USG (67%), but author is in view that both of these modalities should be used in conjunction to screen the ovarian lesions. PMID:27790544
Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.
Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie
2016-07-01
Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.
Detecting ship targets in spaceborne infrared image based on modeling radiation anomalies
NASA Astrophysics Data System (ADS)
Wang, Haibo; Zou, Zhengxia; Shi, Zhenwei; Li, Bo
2017-09-01
Using infrared imaging sensors to detect ship target in the ocean environment has many advantages compared to other sensor modalities, such as better thermal sensitivity and all-weather detection capability. We propose a new ship detection method by modeling radiation anomalies for spaceborne infrared image. The proposed method can be decomposed into two stages, where in the first stage, a test infrared image is densely divided into a set of image patches and the radiation anomaly of each patch is estimated by a Gaussian Mixture Model (GMM), and thereby target candidates are obtained from anomaly image patches. In the second stage, target candidates are further checked by a more discriminative criterion to obtain the final detection result. The main innovation of the proposed method is inspired by the biological mechanism that human eyes are sensitive to the unusual and anomalous patches among complex background. The experimental result on short wavelength infrared band (1.560 - 2.300 μm) and long wavelength infrared band (10.30 - 12.50 μm) of Landsat-8 satellite shows the proposed method achieves a desired ship detection accuracy with higher recall than other classical ship detection methods.
Sato, Yasushi; Sagawa, Tamotsu; Hirakawa, Masahiro; Ohnuma, Hiroyuki; Osuga, Takahiro; Okagawa, Yutaka; Tamura, Fumito; Horiguchi, Hiroto; Takada, Kohichi; Hayashi, Tsuyoshi; Sato, Tsutomu; Miyanishi, Koji; Takimoto, Rishu; Kobune, Masayoshi; Kato, Junji
2014-01-01
Background and study aims: The clinical utility of computed virtual chromoendoscopy with flexible spectral imaging color enhancement (FICE) in capsule endoscopy (CE) remains controversial. To clarify the clinical utility of FICE-enhanced CE in evaluating small bowel lesions, we quantitatively assessed white light (WL), FICE, and blue mode (BM) images and examined the sensitivity of these 3 imaging modes of small-bowel lesions from patients who underwent CE. Methods: The CIELAB color difference (∆E) and visual analogue scales (VAS) were measured in 261 CE images (3 different lesion categories) using WL and FICE set 1, 2, and 3, and BM images, respectively. Three endoscopists reviewed CE videos with WL, 3 FICE mode settings, and BM, and compared the sensitivity and detectability for small intestinal diseases from 50 patients who underwent CE. Results: In the assessment of visibility in the 152 vascular lesion images, the ∆E and VAS of FICE set 1, 2, and BM images were significantly higher than that of WL images. In 88 erosion/ulceration images, the ∆E and VAS of FICE set 1 and 2 images were significantly higher than that of WL images. In 21 tumor images, there were no significant differences in ∆E among these modalities. When analyzed on a per-patient basis, FICE settings 1 and 2 had the highest sensitivity (100 %) and specificity (97.3 – 100 %) for vascular lesions. As for erosive/ulcerative lesions, FICE setting 2 had the highest sensitivity (100 %) and specificity (97.2 %). For tumors or polyps, WL had the highest sensitivity (90.9 %) and specificity (87.1 %). In per-lesion analysis, FICE settings 1 and 2 showed significantly superior detection ability over WL for vascular lesions. In the detection of erosive/ulcerative lesions, FICE setting 2 was significantly superior to WL. In tumor images, there was no significant improvement with any of the settings relative to WL images. Conclusions: FICE is most useful for improving CE image quality and detection in cases of angioectasia and erosion/ulceration of the small intestine. PMID:26135265
Muselaers, Constantijn H J; Rijpkema, Mark; Bos, Desirée L; Langenhuijsen, Johan F; Oyen, Wim J G; Mulders, Peter F A; Oosterwijk, Egbert; Boerman, Otto C
2015-08-01
Tumor targeted optical imaging using antibodies labeled with near infrared fluorophores is a sensitive imaging modality that might be used during surgery to assure complete removal of malignant tissue. We evaluated the feasibility of dual modality imaging and image guided surgery with the dual labeled anti-carbonic anhydrase IX antibody preparation (111)In-DTPA-G250-IRDye800CW in mice with intraperitoneal clear cell renal cell carcinoma. BALB/c nu/nu mice with intraperitoneal SK-RC-52 lesions received 10 μg DTPA-G250-IRDye800CW labeled with 15 MBq (111)In or 10 μg of the dual labeled irrelevant control antibody NUH-82 (20 mice each). To evaluate when tumors could be detected, 4 mice per group were imaged weekly during 5 weeks with single photon emission computerized tomography/computerized tomography and the fluorescence imaging followed by ex vivo biodistribution studies. As early as 1 week after tumor cell inoculation single photon emission computerized tomography and fluorescence images showed clear delineation of intraperitoneal clear cell renal cell carcinoma with good concordance between single photon emission computerized tomography/computerized tomography and fluorescence images. The high and specific accumulation of the dual labeled antibody conjugate in tumors was confirmed in the biodistribution studies. Maximum tumor uptake was observed 1 week after inoculation (mean ± SD 58.5% ± 18.7% vs 5.6% ± 2.3% injected dose per gm for DTPA-G250-IRDye800CW vs NUH-82, respectively). High tumor uptake was also observed at other time points. This study demonstrates the feasibility of dual modality imaging with dual labeled antibody (111)In-DTPA-G250-IRDye800CW in a clear cell renal cell carcinoma model. Results indicate that preoperative and intraoperative detection of carbonic anhydrase IX expressing tumors, positive resection margins and metastasis might be feasible with this approach. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.
2013-03-01
Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.
Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging
NASA Astrophysics Data System (ADS)
Marsden, Craig Michael
2000-12-01
This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.
Content-independent embedding scheme for multi-modal medical image watermarking.
Nyeem, Hussain; Boles, Wageeh; Boyd, Colin
2015-02-04
As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI's least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.
Catheter-based time-gated near-infrared fluorescence/OCT imaging system
NASA Astrophysics Data System (ADS)
Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric
2018-02-01
We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.
Radioactive Nanomaterials for Multimodality Imaging
Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao
2016-01-01
Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167
Computer-aided diagnosis of pulmonary diseases using x-ray darkfield radiography
NASA Astrophysics Data System (ADS)
Einarsdóttir, Hildur; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Hellbach, Katharina; Auweter, Sigrid; Yildirim, Önder; Meinel, Felix G.; Eickelberg, Oliver; Reiser, Maximilian; Larsen, Rasmus; Kjær Ersbøll, Bjarne; Pfeiffer, Franz
2015-12-01
In this work we develop a computer-aided diagnosis (CAD) scheme for classification of pulmonary disease for grating-based x-ray radiography. In addition to conventional transmission radiography, the grating-based technique provides a dark-field imaging modality, which utilizes the scattering properties of the x-rays. This modality has shown great potential for diagnosing early stage emphysema and fibrosis in mouse lungs in vivo. The CAD scheme is developed to assist radiologists and other medical experts to develop new diagnostic methods when evaluating grating-based images. The scheme consists of three stages: (i) automatic lung segmentation; (ii) feature extraction from lung shape and dark-field image intensities; (iii) classification between healthy, emphysema and fibrosis lungs. A study of 102 mice was conducted with 34 healthy, 52 emphysema and 16 fibrosis subjects. Each image was manually annotated to build an experimental dataset. System performance was assessed by: (i) determining the quality of the segmentations; (ii) validating emphysema and fibrosis recognition by a linear support vector machine using leave-one-out cross-validation. In terms of segmentation quality, we obtained an overlap percentage (Ω) 92.63 ± 3.65%, Dice Similarity Coefficient (DSC) 89.74 ± 8.84% and Jaccard Similarity Coefficient 82.39 ± 12.62%. For classification, the accuracy, sensitivity and specificity of diseased lung recognition was 100%. Classification between emphysema and fibrosis resulted in an accuracy of 93%, whilst the sensitivity was 94% and specificity 88%. In addition to the automatic classification of lungs, deviation maps created by the CAD scheme provide a visual aid for medical experts to further assess the severity of pulmonary disease in the lung, and highlights regions affected.
Roy, Jean-Sébastien; Braën, Caroline; Leblond, Jean; Desmeules, François; Dionne, Clermont E; MacDermid, Joy C; Bureau, Nathalie J; Frémont, Pierre
2015-01-01
Background Different diagnostic imaging modalities, such as ultrasonography (US), MRI, MR arthrography (MRA) are commonly used for the characterisation of rotator cuff (RC) disorders. Since the most recent systematic reviews on medical imaging, multiple diagnostic studies have been published, most using more advanced technological characteristics. The first objective was to perform a meta-analysis on the diagnostic accuracy of medical imaging for characterisation of RC disorders. Since US is used at the point of care in environments such as sports medicine, a secondary analysis assessed accuracy by radiologists and non-radiologists. Methods A systematic search in three databases was conducted. Two raters performed data extraction and evaluation of risk of bias independently, and agreement was achieved by consensus. Hierarchical summary receiver-operating characteristic package was used to calculate pooled estimates of included diagnostic studies. Results Diagnostic accuracy of US, MRI and MRA in the characterisation of full-thickness RC tears was high with overall estimates of sensitivity and specificity over 0.90. As for partial RC tears and tendinopathy, overall estimates of specificity were also high (>0.90), while sensitivity was lower (0.67–0.83). Diagnostic accuracy of US was similar whether a trained radiologist, sonographer or orthopaedist performed it. Conclusions Our results show the diagnostic accuracy of US, MRI and MRA in the characterisation of full-thickness RC tears. Since full thickness tear constitutes a key consideration for surgical repair, this is an important characteristic when selecting an imaging modality for RC disorder. When considering accuracy, cost, and safety, US is the best option. PMID:25677796
Meta-analysis of two computer-assisted screening methods for diagnosing oral precancer and cancer.
Ye, Xiaojing; Zhang, Jing; Tan, Yaqin; Chen, Guanying; Zhou, Gang
2015-11-01
The early diagnosis of oral precancer and cancer is crucial and could have the highest impact on improving survival rates. A meta-analysis was conducted to compare the accuracy between the OralCDx brush biopsy and DNA-image cytometry in diagnosing both conditions. Bibliographic databases were systematically searched for original relevant studies on the early diagnosis of oral precancer and oral cancer. Study characteristics were evaluated to determine the accuracy of the two screening strategies. Thirteen studies (eight of OralCDx brush biopsy and five of DNA-image cytometry) were identified as having reported on 1981 oral mucosa lesions. The meta-analysis found that the area under the summary receiver operating characteristic curves of the OralCDx brush biopsy and DNA-image cytometry were 0.8879 and 0.9885, respectively. The pooled sensitivity, specificity, and diagnostic odds ratio of the OralCDx brush biopsy were 86% (95% CI 81-90), 81% (95% CI 78-85), and 20.36 (95% CI 2.72-152.67), respectively, while these modalities of DNA-image cytometry were 89% (95% CI 83-94), 99% (95% CI 97-100), and 446.08 (95% CI 73.36-2712.43), respectively. Results of a pairwise comparison between each modality demonstrated that specificity, area under the curve (AUC), and Q(∗) index of DNA-image cytometry was significantly higher than that of the OralCDx brush biopsy (Z=2.821, p<0.05; Z=1.711, p<0.05; Z=1.727, p<0.05), but no significant difference in sensitivity was found (Z=1.520, p>0.05). In conclusion, the meta-analysis of the published studies indicated that DNA-image cytometry is more accurate than the OralCDx brush biopsy in diagnosing oral precancer and oral cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
The evolution of gadolinium based contrast agents: from single-modality to multi-modality
NASA Astrophysics Data System (ADS)
Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.
2016-05-01
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Preliminary experiments on pharmacokinetic diffuse fluorescence tomography of CT-scanning mode
NASA Astrophysics Data System (ADS)
Zhang, Yanqi; Wang, Xin; Yin, Guoyan; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng; Zhang, Limin
2016-10-01
In vivo tomographic imaging of the fluorescence pharmacokinetic parameters in tissues can provide additional specific and quantitative physiological and pathological information to that of fluorescence concentration. This modality normally requires a highly-sensitive diffuse fluorescence tomography (DFT) working in dynamic way to finally extract the pharmacokinetic parameters from the measured pharmacokinetics-associated temporally-varying boundary intensity. This paper is devoted to preliminary experimental validation of our proposed direct reconstruction scheme of instantaneous sampling based pharmacokinetic-DFT: A highly-sensitive DFT system of CT-scanning mode working with parallel four photomultiplier-tube photon-counting channels is developed to generate an instantaneous sampling dataset; A direct reconstruction scheme then extracts images of the pharmacokinetic parameters using the adaptive-EKF strategy. We design a dynamic phantom that can simulate the agent metabolism in living tissue. The results of the dynamic phantom experiments verify the validity of the experiment system and reconstruction algorithms, and demonstrate that system provides good resolution, high sensitivity and quantitativeness at different pump speed.
Evolving role of FDG-PET/CT in prognostic evaluation of resectable gastric cancer
De Raffele, Emilio; Mirarchi, Mariateresa; Cuicchi, Dajana; Lecce, Ferdinando; Cola, Bruno
2017-01-01
Gastric cancer (GC) remains a leading cause of cancer death worldwide. Radical gastrectomy is the only potentially curative treatment, and perioperative adjuvant therapies may improve the prognosis after curative resection. Prognosis largely depends on the tumour stage and histology, but the host systemic inflammatory response (SIR) to GC may contribute as well, as has been determined for other malignancies. In GC patients, the potential utility of positron emission tomography/computed tomography (PET/CT) with the imaging radiopharmaceutical 18F-fluorodeoxyglucose (FDG) is still debated, due to its lower sensitivity in diagnosing and staging GC compared to other imaging modalities. There is, however, growing evidence that FDG uptake in the primary tumour and regional lymph nodes may be efficient for predicting prognosis of resected patients and for monitoring tumour response to perioperative treatments, having prognostic value in that it can change therapeutic strategies. Moreover, FDG uptake in bone marrow seems to be significantly associated with SIR to GC and to represent an efficient prognostic factor after curative surgery. In conclusion, PET/CT technology is efficient in GC patients, since it is useful to integrate other imaging modalities in staging tumours and may have prognostic value that can change therapeutic strategies. With ongoing improvements, PET/CT imaging may gain further importance in the management of GC patients. PMID:29097864
Magnetic Resonance Imaging to Detect Early Molecular and Cellular Changes in Alzheimer's Disease.
Knight, Michael J; McCann, Bryony; Kauppinen, Risto A; Coulthard, Elizabeth J
2016-01-01
Recent pharmaceutical trials have demonstrated that slowing or reversing pathology in Alzheimer's disease is likely to be possible only in the earliest stages of disease, perhaps even before significant symptoms develop. Pathology in Alzheimer's disease accumulates for well over a decade before symptoms are detected giving a large potential window of opportunity for intervention. It is therefore important that imaging techniques detect subtle changes in brain tissue before significant macroscopic brain atrophy. Current diagnostic techniques often do not permit early diagnosis or are too expensive for routine clinical use. Magnetic Resonance Imaging (MRI) is the most versatile, affordable, and powerful imaging modality currently available, being able to deliver detailed analyses of anatomy, tissue volumes, and tissue state. In this mini-review, we consider how MRI might detect patients at risk of future dementia in the early stages of pathological change when symptoms are mild. We consider the contributions made by the various modalities of MRI (structural, diffusion, perfusion, relaxometry) in identifying not just atrophy (a late-stage AD symptom) but more subtle changes reflective of early dementia pathology. The sensitivity of MRI not just to gross anatomy but to the underlying "health" at the cellular (and even molecular) scales, makes it very well suited to this task.
Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations.
Shuster, Anastasia; Levy, Dino J
2018-01-01
Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing.
Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations
2018-01-01
Abstract Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing. PMID:29619408
NASA Astrophysics Data System (ADS)
Lin, Jian; Wang, Zi; Zheng, Wei; Huang, Zhiwei
2014-02-01
Nonlinear optical microscopy (e.g., higher harmonic (second-/third- harmonic) generation (HHG), simulated Raman scattering (SRS)) has high diagnostic sensitivity and chemical specificity, making it a promising tool for label-free tissue and cell imaging. In this work, we report a development of a simultaneous SRS and HHG imaging technique for characterization of liver disease in a bile-duct-ligation rat-modal. HHG visualizes collagens formation and reveals the cell morphologic changes associated with liver fibrosis; whereas SRS identifies the distributions of hepatic fat cells formed in steatosis liver tissue. This work shows that the co-registration of SRS and HHG images can be an effective means for label-free diagnosis and characterization of liver steatosis/fibrosis at the cellular and molecular levels.
NASA Astrophysics Data System (ADS)
Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing
2014-07-01
Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated.
Biomedical photoacoustics: fundamentals, instrumentation and perspectives on nanomedicine
Zou, Chunpeng; Wu, Beibei; Dong, Yanyan; Song, Zhangwei; Zhao, Yaping; Ni, Xianwei; Yang, Yan; Liu, Zhe
2017-01-01
Photoacoustic imaging (PAI) is an integrated biomedical imaging modality which combines the advantages of acoustic deep penetration and optical high sensitivity. It can provide functional and structural images with satisfactory resolution and contrast which could provide abundant pathological information for disease-oriented diagnosis. Therefore, it has found vast applications so far and become a powerful tool of precision nanomedicine. However, the investigation of PAI-based imaging nanomaterials is still in its infancy. This perspective article aims to summarize the developments in photoacoustic technologies and instrumentations in the past years, and more importantly, present a bright outlook for advanced PAI-based imaging nanomaterials as well as their emerging biomedical applications in nanomedicine. Current challenges and bottleneck issues have also been discussed and elucidated in this article to bring them to the attention of the readership. PMID:28053532
Clinical potential for imaging in patients with asthma and other lung disorders.
DeBoer, Emily M; Spielberg, David R; Brody, Alan S
2017-01-01
The ability of lung imaging to phenotype patients, determine prognosis, and predict response to treatment is expanding in clinical and translational research. The purpose of this perspective is to describe current imaging modalities that might be useful clinical tools in patients with asthma and other lung disorders and to explore some of the new developments in imaging modalities of the lung. These imaging modalities include chest radiography, computed tomography, lung magnetic resonance imaging, electrical impedance tomography, bronchoscopy, and others. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kirby, Richard; Whitaker, Ross
2016-09-01
In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol
2015-02-01
An ultra-high-field magnetic resonance (MR) scanner and a specially-optimized radiofrequency (RF) coil and sequence protocol are required to obtain high-resolution images of the inner ear that can noninvasively confirm pathologic diagnoses. In phantom studies, the MR signal distribution of the gradient echo MR images generated by using a customized RF coil was compared with that of a commercial volume coil. The MR signal intensity of the customized RF coil decreases rapidly from near the RF coil plane toward the exterior of the phantom. However, the signal sensitivity of this coil is superior on both sides of the phantom, corresponding to the petrous pyramid. In in-vivo 7-T MR imaging, a customized RF coil and a volumetric-interpolated breath-hold examination imaging sequence are employed for visualization of the inner ear's structure. The entire membranous portion of the cochlear and the three semicircular canals, including the ductus reunions, oval window, and round window with associated nervous tissue, were clearly depicted with sufficient spatial coverage for adequate inspection of the surrounding anatomy. Developments from a new perspective to inner ear imaging using the 7-T modality could lead to further improved image sensitivity and, thus, enable ultra-structural MR imaging.
Sieroń-Stołtny, Karolina; Kwiatek, Sebastian; Latos, Wojciech; Kawczyk-Krupka, Aleksandra; Cieślar, Grzegorz; Stanek, Agata; Ziaja, Damian; Bugaj, Andrzej M; Sieroń, Aleksander
2012-03-01
Oesophageal papilloma and Barrett's oesophagus are benign lesions known as risk factors of carcinoma in the oesophagus. Therefore, it is important to diagnose these early changes before neoplastic transformation. Autofluorescence endoscopy is a fast and non-invasive method of imaging of tissues based on the natural fluorescence of endogenous fluorophores. The aim of this study was to prove the diagnostic utility of autofluorescence endoscopy with digital image processing in histological diagnosis of endoscopic findings in the upper digestive tract, primarily in the imaging of oesophageal papilloma. During the retrospective analysis of about 200 endoscopic procedures in the upper digestive tract, 67 cases of benign, precancerous or cancerous changes were found. White light endoscopy (WLE) image, single-channel (red or green) autofluorescence images, as well as green and red fluorescence intensities in two modal fluorescence image and red-to-green (R/G) ratio (Numerical Colour Value, NCV) were correlated with histopathologic results. The NCV analysis in autofluorescence imaging (AFI) showed increased R/G ratio in cancerous changes in 96% vs. 85% in WLE. Simultaneous analysis with digital image processing allowed us to diagnose suspicious tissue as cancerous in all of cases. Barrett's metaplasia was confirmed in 90% vs. 79% (AFI vs. WLE), and 98% in imaging with digital image processing. In benign lesions, WLE allowed us to exclude tissue as malignant in 85%. Using autofluorescence endoscopy R/G ratio was increased in only 10% of benign changes causing the picture to be interpreted as suspicious, but when both methods were used together, 97.5% were cases excluded as malignancies. Mean R/G ratios were estimated to be 2.5 in cancers, 1.25 in Barrett's metaplasia and 0.75 in benign changes and were statistically significant (p=0.04). Autofluorescence imaging is a sensitive method to diagnose precancerous and cancerous early stages of the diseases located in oesophagus. Especially in two-modal imaging including white light endoscopy, autofluorescence imaging with digital image processing seems to be a useful modality of early diagnostics. Also in observation of papilloma changes, it facilitates differentiation between neoplastic and benign lesions and more accurate estimation of the risk of potential malignancy. Copyright © 2011 Elsevier B.V. All rights reserved.
POPITA, CRISTIAN; POPITA, ANCA RALUCA; SITAR-TAUT, ADELA; PETRUT, BOGDAN; FETICA, BOGDAN; COMAN, IOAN
2017-01-01
Background and aim Multiparametric-magnetic resonance imaging (mp-MRI) is the main imaging modality used for prostate cancer detection. The aim of this study is to evaluate the diagnostic performance of mp-MRI at 1.5-Tesla (1.5-T) for the detection of clinically significant prostate cancer. Methods In this ethical board approved prospective study, 39 patients with suspected prostate cancer were included. Patients with a history of positive prostate biopsy and patients treated for prostate cancer were excluded. All patients were examined at 1.5-T MRI, before standard transrectal ultrasonography–guided biopsy. Results The overall sensitivity, specificity, positive predictive value and negative predictive value for mp-MRI were 100%, 73.68%, 80% and 100%, respectively. Conclusion Our results showed that 1.5 T mp-MRI has a high sensitivity for detection of clinically significant prostate cancer and high negative predictive value in order to rule out significant disease. PMID:28246496
Pinilla, I; Gómez-León, N; Del Campo-Del Val, L; Hernandez-Maraver, D; Rodríguez-Vigil, B; Jover-Díaz, R; Coya, J
2011-10-01
The aim of this paper was to compare the accuracy of contrast-enhanced computed tomography (CT), positron emission tomography (PET), unenhanced low-dose PET/CT (LD-PET/CT) and full-dose enhanced PET/CT (FD-PET/CT) for the initial staging of lymphoma. One hundred and one lymphoma patients were examined by [18F]FDG-PET/CT including unenhanced low-dose CT and enhanced full-dose CT. Each modality of PET/CT was evaluated by a nuclear medicine physician and a radiologist unaware of the other modality, while the CT and PET images were interpreted separately by another independent radiologist and nuclear medicine physician respectively. The nodal and extranodal lesions detected by each technique were compared with a reference standard. For nodal assessment, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), and negative LR (LR-) of LD-PET/CT were 97%, 96%, 98%, 95%, 26 and 0.02 respectively, and those of FD-PET/CT were 97%, 97%, 98%, 95%, 36 and 0.02. These results were significantly better than those of PET (sensitivity 82%, specificity 81%, PPV 88%, NPV 72%, LR+ 4.3, LR- 0.21). Likewise, both PET/CT displayed a higher sensitivity, NPV and LR- than CT (91%, 84%, 0.1 respectively). For organ evaluation, both modalities of PET/CT also had significantly better sensitivity and NPV than that of PET (LD-PET/CT: sensitivity 92%, NPV 90%; FD-PET/CT sensitivity 94%, NPV 92%; PET: sensitivity 70%, NPV 69%). The sensitivity, specificity, PPV and NPV for bone marrow involvement were 29%, 84%, 45% and 72% respectively for PET, and 29%, 90%, 56%, and 74% for both, LD-PET/CT, and FD-PET/CT. No significant differences were found between LD-PET/CT and FD-PET/CT, but FD-PET/CT detected important incidental findings in 5.9% of patients. PET/CT is an accurate technique for the initial staging of lymphomas without significant differences between LD-PET/CT and FD-PET/CT. FD-PET/CT detects relevant incidental findings that are missed on LD-PET/CT.
The new frontiers of multimodality and multi-isotope imaging
NASA Astrophysics Data System (ADS)
Behnam Azad, Babak; Nimmagadda, Sridhar
2014-06-01
Technological advances in imaging systems and the development of target specific imaging tracers has been rapidly growing over the past two decades. Recent progress in "all-in-one" imaging systems that allow for automated image coregistration has significantly added to the growth of this field. These developments include ultra high resolution PET and SPECT scanners that can be integrated with CT or MR resulting in PET/CT, SPECT/CT, SPECT/PET and PET/MRI scanners for simultaneous high resolution high sensitivity anatomical and functional imaging. These technological developments have also resulted in drastic enhancements in image quality and acquisition time while eliminating cross compatibility issues between modalities. Furthermore, the most cutting edge technology, though mostly preclinical, also allows for simultaneous multimodality multi-isotope image acquisition and image reconstruction based on radioisotope decay characteristics. These scientific advances, in conjunction with the explosion in the development of highly specific multimodality molecular imaging agents, may aid in realizing simultaneous imaging of multiple biological processes and pave the way towards more efficient diagnosis and improved patient care.
New contrasts for x-ray imaging and synergy with optical imaging
NASA Astrophysics Data System (ADS)
Wang, Ge
2017-02-01
Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).
NASA Astrophysics Data System (ADS)
Peller, Joseph A.; Ceja, Nancy K.; Wawak, Amanda J.; Trammell, Susan R.
2018-02-01
Polarized light imaging and optical spectroscopy can be used to distinguish between healthy and diseased tissue. In this study, the design and testing of a single-pixel hyperspectral imaging system that uses differences in the polarization of light reflected from tissue to differentiate between healthy and thermally damaged tissue is discussed. Thermal lesions were created in porcine skin (n = 8) samples using an IR laser. The damaged regions were clearly visible in the polarized light hyperspectral images. Reflectance hyperspectral and white light imaging was also obtained for all tissue samples. Sizes of the thermally damaged regions as measured via polarized light hyperspectral imaging are compared to sizes of these regions as measured in the reflectance hyperspectral images and white light images. Good agreement between the sizes measured by all three imaging modalities was found. Hyperspectral polarized light imaging can differentiate between healthy and damaged tissue. Possible applications of this imaging system include determination of tumor margins during cancer surgery or pre-surgical biopsy.
Implementation and applications of dual-modality imaging
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce H.; Barber, William C.; Funk, Tobias; Hwang, Andrew B.; Taylor, Carmen; Sun, Mingshan; Seo, Youngho
2004-06-01
In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.
SPECT and PET in ischemic heart failure.
Angelidis, George; Giamouzis, Gregory; Karagiannis, Georgios; Butler, Javed; Tsougos, Ioannis; Valotassiou, Varvara; Giannakoulas, George; Dimakopoulos, Nikolaos; Xanthopoulos, Andrew; Skoularigis, John; Triposkiadis, Filippos; Georgoulias, Panagiotis
2017-03-01
Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient's investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.
Clinical Endpoints for the Study of Geographic Atrophy Secondary to Age-Related Macular Degeneration
Sadda, SriniVas R.; Chakravarthy, Usha; Birch, David G.; Staurenghi, Giovanni; Henry, Erin C.; Brittain, Christopher
2017-01-01
Purpose To summarize the recent literature describing the application of modern technologies in the study of patients with geographic atrophy (GA) secondary to age-related macular degeneration (AMD). Methods Review of the literature describing the terms and definitions used to describe GA, imaging modalities used to capture and measure GA, and the tests of visual function and functional deficits that occur in patients with GA. Results In this paper we describe the evolution of the definitions used to describe GA. We compare imaging modalities used in the characterization of GA, report on the sensitivity and specificity of the techniques where data exist, and describe the correlations between these various modes of capturing the presence of GA. We review the functional tests that have been used in patients with GA, and critically examine their ability to detect and quantify visual deficits. Conclusion Ophthalmologists and retina specialists now have a wide range of assessments available for the functional and anatomic characterization of GA in patients with AMD. To date, studies have been limited by their unimodal approach and we recommend that future studies of GA use multimodal imaging. We also suggest strategies for the optimal functional testing of patients with GA. PMID:27652913
NASA Astrophysics Data System (ADS)
Carbary-Ganz, Jordan L.; Welge, Weston A.; Barton, Jennifer K.; Utzinger, Urs
2015-09-01
Optical coherence tomography/laser induced fluorescence (OCT/LIF) dual-modality imaging allows for minimally invasive, nondestructive endoscopic visualization of colorectal cancer in mice. This technology enables simultaneous longitudinal tracking of morphological (OCT) and biochemical (fluorescence) changes as colorectal cancer develops, compared to current methods of colorectal cancer screening in humans that rely on morphological changes alone. We have shown that QDot655 targeted to vascular endothelial growth factor receptor 2 (QD655-VEGFR2) can be applied to the colon of carcinogen-treated mice and provides significantly increased contrast between the diseased and undiseased tissue with high sensitivity and specificity ex vivo. QD655-VEGFR2 was used in a longitudinal in vivo study to investigate the ability to correlate fluorescence signal to tumor development. QD655-VEGFR2 was applied to the colon of azoxymethane (AOM-) or saline-treated control mice in vivo via lavage. OCT/LIF images of the distal colon were taken at five consecutive time points every three weeks after the final AOM injection. Difficulties in fully flushing unbound contrast agent from the colon led to variable background signal; however, a spatial correlation was found between tumors identified in OCT images, and high fluorescence intensity of the QD655 signal, demonstrating the ability to detect VEGFR2 expressing tumors in vivo.
Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis--part I.
Bouchgua, M; Alexander, K; d'Anjou, M André; Girard, C A; Carmel, E Norman; Beauchamp, G; Richard, H; Laverty, S
2009-02-01
To evaluate in vivo the evolution of osteoarthritis (OA) lesions temporally in a rabbit model of OA with clinically available imaging modalities: computed radiography (CR), helical single-slice computed tomography (CT), and 1.5 tesla (T) magnetic resonance imaging (MRI). Imaging was performed on knees of anesthetized rabbits [10 anterior cruciate ligament transection (ACLT) and contralateral sham joints and six control rabbits] at baseline and at intervals up to 12 weeks post-surgery. Osteophytosis, subchondral bone sclerosis, bone marrow lesions (BMLs), femoropatellar effusion and articular cartilage were assessed. CT had the highest sensitivity (90%) and specificity (91%) to detect osteophytes. A significant increase in total joint osteophyte score occurred at all time-points post-operatively in the ACLT group alone. BMLs were identified and occurred most commonly in the lateral femoral condyle of the ACLT joints and were not identified in the tibia. A significant increase in joint effusion was present in the ACLT joints until 8 weeks after surgery. Bone sclerosis or cartilage defects were not reliably assessed with the selected imaging modalities. Combined, clinically available CT and 1.5 T MRI allowed the assessment of most of the characteristic lesions of OA and at early time-points in the development of the disease. However, the selected 1.5 T MRI sequences and acquisition times did not permit the detection of cartilage lesions in this rabbit OA model.
Jafarian, Amir Hossein; Tasbandi, Aida; Mohamadian Roshan, Nema
2018-04-19
The aim of this study is to investigate and compare the results of digital image analysis in pleural effusion cytology samples with conventional modalities. In this cross-sectional study, 53 pleural fluid cytology smears from Qaem hospital pathology department, located in Mashhad, Iran were investigated. Prior to digital analysis, all specimens were evaluated by two pathologists and categorized into three groups as: benign, suspicious, and malignant. Using an Olympus microscope and Olympus DP3 digital camera, digital images from cytology slides were captured. Appropriate images (n = 130) were separately imported to Adobe Photoshop CS5 and parameters including area and perimeter, circularity, Gray Value mean, integrated density, and nucleus to cytoplasm area ratio were analyzed. Gray Value mean, nucleus to cytoplasm area ratio, and circularity showed the best sensitivity and specificity rates as well as significant differences between all groups. Also, nucleus area and perimeter showed a significant relation between suspicious and malignant groups with benign group. Whereas, there was no such difference between suspicious and malignant groups. We concluded that digital image analysis is welcomed in the field of research on pleural fluid smears as it can provide quantitative data to apply various comparisons and reduce interobserver variation which could assist pathologists to achieve a more accurate diagnosis. © 2018 Wiley Periodicals, Inc.
MRI/TRUS data fusion for prostate brachytherapy. Preliminary results.
Reynier, Christophe; Troccaz, Jocelyne; Fourneret, Philippe; Dusserre, André; Gay-Jeune, Cécile; Descotes, Jean-Luc; Bolla, Michel; Giraud, Jean-Yves
2004-06-01
Prostate brachytherapy involves implanting radioactive seeds (I125 for instance) permanently in the gland for the treatment of localized prostate cancers, e.g., cT1c-T2a N0 M0 with good prognostic factors. Treatment planning and seed implanting are most often based on the intensive use of transrectal ultrasound (TRUS) imaging. This is not easy because prostate visualization is difficult in this imaging modality particularly as regards the apex of the gland and from an intra- and interobserver variability standpoint. Radioactive seeds are implanted inside open interventional MR machines in some centers. Since MRI was shown to be sensitive and specific for prostate imaging whilst open MR is prohibitive for most centers and makes surgical procedures very complex, this work suggests bringing the MR virtually in the operating room with MRI/TRUS data fusion. This involves providing the physician with bi-modality images (TRUS plus MRI) intended to improve treatment planning from the data registration stage. The paper describes the method developed and implemented in the PROCUR system. Results are reported for a phantom and first series of patients. Phantom experiments helped characterize the accuracy of the process. Patient experiments have shown that using MRI data linked with TRUS data improves TRUS image segmentation especially regarding the apex and base of the prostate. This may significantly modify prostate volume definition and have an impact on treatment planning.
Fluorescence-enhanced optical tomography and nuclear imaging system for small animals
NASA Astrophysics Data System (ADS)
Tan, I.-Chih; Lu, Yujie; Darne, Chinmay; Rasmussen, John C.; Zhu, Banghe; Azhdarinia, Ali; Yan, Shikui; Smith, Anne M.; Sevick-Muraca, Eva M.
2012-03-01
Near-infrared (NIR) fluorescence is an alternative modality for molecular imaging that has been demonstrated in animals and recently in humans. Fluorescence-enhanced optical tomography (FEOT) using continuous wave or frequency domain photon migration techniques could be used to provide quantitative molecular imaging in vivo if it could be validated against "gold-standard," nuclear imaging modalities, using dual-labeled imaging agents. Unfortunately, developed FEOT systems are not suitable for incorporation with CT/PET/SPECT scanners because they utilize benchtop devices and require a large footprint. In this work, we developed a miniaturized fluorescence imaging system installed in the gantry of the Siemens Inveon PET/CT scanner to enable NIR transillumination measurements. The system consists of a CCD camera equipped with NIR sensitive intensifier, a diode laser controlled by a single board compact controller, a 2-axis galvanometer, and RF circuit modules for homodyne detection of the phase and amplitude of fluorescence signals. The performance of the FEOT system was tested and characterized. A mouse-shaped solid phantom of uniform optical properties with a fluorescent inclusion was scanned using CT, and NIR fluorescence images at several projections were collected. The method of high-order approximation to the radioactive transfer equation was then used to reconstruct the optical images. Dual-labeled agents were also used on a tumor bearing mouse to validate the results of the FEOT against PET/CT image. The results showed that the location of the fluorophore obtained from the FEOT matches the location of tumor obtained from the PET/CT images. Besides validation of FEOT, this hybrid system could allow multimodal molecular imaging (FEOT/PET/CT) for small animal imaging.
Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF
COAN, Paola; MOLLENHAUER, Juergen; WAGNER, Andreas; Muehleman, Carol; BRAVIN, Alberto
2009-01-01
Monitoring the progression of osteoarthritis (OA) and the effects of therapy during clinical trials is still a challenge for present clinical imaging techniques since they present intrinsic limitations and can be sensitive only in case of advanced OA stages. In very severe cases, partial or complete joint replacement surgery is the only solution for reducing pain and restoring the joint functions. Poor imaging quality in practically all medical imaging technologies with respect to joint surfaces and to metal implant imaging calls for the development of new techniques that are sensitive to stages preceding the point of irreversible damage of the cartilage tissue. In this scenario, X-ray phase contrast modalities could play an important role since they can provide improved contrast compared to conventional absorption radiography, with a similar or even reduced tissue radiation dose. In this study, the Analyzer-based imaging (ABI), a technique sensitive to the X-ray refraction and permitting a high scatter rejection, has been successfully applied in-vitro on excised human synovial joints and sheep implants. Pathological and healthy joints as well as metal implants have been imaged in projection and computed tomography ABI mode at high resolution and clinically compatible doses (< 10 mGy). Volume rendering and segmentation permitted visualization of the cartilage from volumetric CT-scans. Results demonstrate that ABI can provide an unequivocal non-invasive diagnosis of the state of disease of the joint and be considered a new tool in orthopaedic research. PMID:18584983
Yang, Xin; Liu, Chaoyue; Wang, Zhiwei; Yang, Jun; Min, Hung Le; Wang, Liang; Cheng, Kwang-Ting Tim
2017-12-01
Multi-parameter magnetic resonance imaging (mp-MRI) is increasingly popular for prostate cancer (PCa) detection and diagnosis. However, interpreting mp-MRI data which typically contains multiple unregistered 3D sequences, e.g. apparent diffusion coefficient (ADC) and T2-weighted (T2w) images, is time-consuming and demands special expertise, limiting its usage for large-scale PCa screening. Therefore, solutions to computer-aided detection of PCa in mp-MRI images are highly desirable. Most recent advances in automated methods for PCa detection employ a handcrafted feature based two-stage classification flow, i.e. voxel-level classification followed by a region-level classification. This work presents an automated PCa detection system which can concurrently identify the presence of PCa in an image and localize lesions based on deep convolutional neural network (CNN) features and a single-stage SVM classifier. Specifically, the developed co-trained CNNs consist of two parallel convolutional networks for ADC and T2w images respectively. Each network is trained using images of a single modality in a weakly-supervised manner by providing a set of prostate images with image-level labels indicating only the presence of PCa without priors of lesions' locations. Discriminative visual patterns of lesions can be learned effectively from clutters of prostate and surrounding tissues. A cancer response map with each pixel indicating the likelihood to be cancerous is explicitly generated at the last convolutional layer of the network for each modality. A new back-propagated error E is defined to enforce both optimized classification results and consistent cancer response maps for different modalities, which help capture highly representative PCa-relevant features during the CNN feature learning process. The CNN features of each modality are concatenated and fed into a SVM classifier. For images which are classified to contain cancers, non-maximum suppression and adaptive thresholding are applied to the corresponding cancer response maps for PCa foci localization. Evaluation based on 160 patient data with 12-core systematic TRUS-guided prostate biopsy as the reference standard demonstrates that our system achieves a sensitivity of 0.46, 0.92 and 0.97 at 0.1, 1 and 10 false positives per normal/benign patient which is significantly superior to two state-of-the-art CNN-based methods (Oquab et al., 2015; Zhou et al., 2015) and 6-core systematic prostate biopsies. Copyright © 2017 Elsevier B.V. All rights reserved.
Imaging of femoroacetabular impingement-current concepts
Albers, Christoph E.; Wambeek, Nicholas; Hanke, Markus S.; Schmaranzer, Florian; Prosser, Gareth H.; Yates, Piers J.
2016-01-01
Following the recognition of femoroacetabular impingement (FAI) as a clinical entity, diagnostic tools have continuously evolved. While the diagnosis of FAI is primarily made based on the patients’ history and clinical examination, imaging of FAI is indispensable. Routine diagnostic work-up consists of a set of plain radiographs, magnetic resonance imaging (MRI) and MR-arthrography. Recent advances in MRI technology include biochemically sensitive sequences bearing the potential to detect degenerative changes of the hip joint at an early stage prior to their appearance on conventional imaging modalities. Computed tomography may serve as an adjunct. Advantages of CT include superior bone to soft tissue contrast, making CT applicable for image-guiding software tools that allow evaluation of the underlying dynamic mechanisms causing FAI. This article provides a summary of current concepts of imaging in FAI and a review of the literature on recent advances, and their application to clinical practice. PMID:29632685
Morphology supporting function: attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging
Lee, Tzu C.; Alessio, Adam M.; Miyaoka, Robert M.; Kinahan, Paul E.
2017-01-01
Both SPECT, and in particular PET, are unique in medical imaging for their high sensitivity and direct link to a physical quantity, i.e. radiotracer concentration. This gives PET and SPECT imaging unique capabilities for accurately monitoring disease activity for the purposes of clinical management or therapy development. However, to achieve a direct quantitative connection between the underlying radiotracer concentration and the reconstructed image values several confounding physical effects have to be estimated, notably photon attenuation and scatter. With the advent of dual-modality SPECT/CT, PET/CT, and PET/MR scanners, the complementary CT or MR image data can enable these corrections, although there are unique challenges for each combination. This review covers the basic physics underlying photon attenuation and scatter and summarizes technical considerations for multimodal imaging with regard to PET and SPECT quantification and methods to address the challenges for each multimodal combination. PMID:26576737
Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
NASA Astrophysics Data System (ADS)
Lu, George J.; Farhadi, Arash; Szablowski, Jerzy O.; Lee-Gosselin, Audrey; Barnes, Samuel R.; Lakshmanan, Anupama; Bourdeau, Raymond W.; Shapiro, Mikhail G.
2018-05-01
Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.
A 31-Channel MR Brain Array Coil Compatible with Positron Emission Tomography
Sander, Christin Y.; Keil, Boris; Chonde, Daniel B.; Rosen, Bruce R.; Catana, Ciprian; Wald, Lawrence L.
2014-01-01
Purpose Simultaneous acquisition of MR and PET images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. Methods A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (SNR, g-factor) and PET attenuation. Results The coil design showed an improvement in attenuation by 190% (average) compared to conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical ROI) compared to a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. Conclusion The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. PMID:25046699
Toward Simultaneous Real-Time Fluoroscopic and Nuclear Imaging in the Intervention Room.
Beijst, Casper; Elschot, Mattijs; Viergever, Max A; de Jong, Hugo W A M
2016-01-01
To investigate the technical feasibility of hybrid simultaneous fluoroscopic and nuclear imaging. An x-ray tube, an x-ray detector, and a gamma camera were positioned in one line, enabling imaging of the same field of view. Since a straightforward combination of these elements would block the lines of view, a gamma camera setup was developed to be able to view around the x-ray tube. A prototype was built by using a mobile C-arm and a gamma camera with a four-pinhole collimator. By using the prototype, test images were acquired and sensitivity, resolution, and coregistration error were analyzed. Nuclear images (two frames per second) were acquired simultaneously with fluoroscopic images. Depending on the distance from point source to detector, the system resolution was 1.5-1.9-cm full width at half maximum, the sensitivity was (0.6-1.5) × 10(-5) counts per decay, and the coregistration error was -0.13 to 0.15 cm. With good spatial and temporal alignment of both modalities throughout the field of view, fluoroscopic images can be shown in grayscale and corresponding nuclear images in color overlay. Measurements obtained with the hybrid imaging prototype device that combines simultaneous fluoroscopic and nuclear imaging of the same field of view have demonstrated the feasibility of real-time simultaneous hybrid imaging in the intervention room. © RSNA, 2015
Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V. Krishnan; Ljubimova, Julia; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.
2012-01-01
Purpose Several established optical imaging approaches have been applied, usually in isolation, to preclinical studies; however, truly useful in vivo imaging may require a simultaneous combination of imaging modalities to examine dynamic characteristics of cells and tissues. We developed a new multimode optical imaging system designed to be application-versatile, yielding high sensitivity, and specificity molecular imaging. Procedures We integrated several optical imaging technologies, including fluorescence intensity, spectral, lifetime, intravital confocal, two-photon excitation, and bioluminescence, into a single system that enables functional multiscale imaging in animal models. Results The approach offers a comprehensive imaging platform for kinetic, quantitative, and environmental analysis of highly relevant information, with micro-to-macroscopic resolution. Applied to small animals in vivo, this provides superior monitoring of processes of interest, represented here by chemo-/nanoconstruct therapy assessment. Conclusions This new system is versatile and can be optimized for various applications, of which cancer detection and targeted treatment are emphasized here. PMID:21874388
Rahal, Jason P; Malek, Adel M
2013-10-01
Ruptured arteriovenous malformations (AVMs) are a frequent cause of intracerebral hemorrhage (ICH). In some cases, compression from the associated hematoma in the acute setting can partially or completely occlude an AVM, making it invisible on conventional angiography techniques. The authors report on the successful use of cone-beam CT angiography (CBCT-A) to precisely identify the underlying angioarchitecture of ruptured AVMs that are not visible on conventional angiography. Three patients presented with ICH for which they underwent examination with CBCT-A in addition to digital subtraction angiography and other imaging modalities, including MR angiography and CT angiography. All patients underwent surgical evacuation due to mass effect from the hematoma. Clinical history, imaging studies, and surgical records were reviewed. Hematoma volumes were calculated. In all 3 cases, CBCT-A demonstrated detailed anatomy of an AVM where no lesion or just a suggestion of a draining vein had been seen with other imaging modalities. Magnetic resonance imaging demonstrated enhancement in 1 patient; CT angiography demonstrated a draining vein in 1 patient; 2D digital subtraction angiography and 3D rotational angiography demonstrated a suggestion of a draining vein in 2 cases and no finding in the third. In the 2 patients in whom CBCT-A was performed prior to surgery, the demonstrated AVM was successfully resected without evidence of a residual lesion. In the third patient, CBCT-A allowed precise targeting of the AVM nidus using Gamma Knife radiosurgery. Cone-beam CT angiography should be considered in the evaluation and subsequent treatment of ICH due to ruptured AVMs. In cases in which the associated hematoma compresses the AVM nidus, CBCT-A can have higher sensitivity and anatomical accuracy than traditional angiographic modalities, including digital subtraction angiography.
NASA Astrophysics Data System (ADS)
Sargent, Dusty; Chen, Chao-I.; Wang, Yuan-Fang
2010-02-01
The paper reports a fully-automated, cross-modality sensor data registration scheme between video and magnetic tracker data. This registration scheme is intended for use in computerized imaging systems to model the appearance, structure, and dimension of human anatomy in three dimensions (3D) from endoscopic videos, particularly colonoscopic videos, for cancer research and clinical practices. The proposed cross-modality calibration procedure operates this way: Before a colonoscopic procedure, the surgeon inserts a magnetic tracker into the working channel of the endoscope or otherwise fixes the tracker's position on the scope. The surgeon then maneuvers the scope-tracker assembly to view a checkerboard calibration pattern from a few different viewpoints for a few seconds. The calibration procedure is then completed, and the relative pose (translation and rotation) between the reference frames of the magnetic tracker and the scope is determined. During the colonoscopic procedure, the readings from the magnetic tracker are used to automatically deduce the pose (both position and orientation) of the scope's reference frame over time, without complicated image analysis. Knowing the scope movement over time then allows us to infer the 3D appearance and structure of the organs and tissues in the scene. While there are other well-established mechanisms for inferring the movement of the camera (scope) from images, they are often sensitive to mistakes in image analysis, error accumulation, and structure deformation. The proposed method using a magnetic tracker to establish the camera motion parameters thus provides a robust and efficient alternative for 3D model construction. Furthermore, the calibration procedure does not require special training nor use expensive calibration equipment (except for a camera calibration pattern-a checkerboard pattern-that can be printed on any laser or inkjet printer).
De Lasalle, Julie; Alexander, Kate; Olive, Julien; Laverty, Sheila
2016-09-01
A better understanding of imaging characteristics of equine stifle osteoarthritis (OA) may allow earlier detection and improve prognosis. Objectives of this ex vivo, prospective, methods comparison study were to (1) describe the location and severity of naturally acquired OA lesions in the equine stifle using ultrasound (US), radiography (XR), computed tomography (CT), and macroscopic evaluation (ME); (2) compare the diagnostic performance of each imaging modality with ME; and (3) describe subchondral bone mineral density (BMD) in equine stifle joints with OA using CT. Radiographic, CT, and US evaluations were performed on 23 equine cadaver stifles and compared with ME. Significant associations were found between osteophyte global scores for all imaging modalities (CT, P ˂ 0.0001; XR, P = 0.005; US, P = 0.04) vs. ME osteophyte global scores. Osteophytes were detected most frequently in the medial femorotibial (MFT) joint. A specific pattern of osteophytes was observed, with a long ridge of new bone at the insertion of the MFT joint capsule cranially on the medial femoral condyle. A novel caudo-10°proximo-5°lateral-cranio-disto-medial oblique radiographic projection was helpful for detection of intercondylar osteophytes. Multiplanar CT reformatted images were helpful for characterizing all osteophytes. Osteophyte grades at most sites did not differ among modalities. Low sensitivity/specificity for subchondral bone sclerosis and flattening of femoral condyles suggested that these signs may not be reliable radiographic and CT indicators of equine stifle OA. Equine stifle OA was associated with a decrease in BMD and specific sites of focal subchondral bone resorption/cyst formation were found in some specimens. © 2016 American College of Veterinary Radiology.
Application of infrared thermography in computer aided diagnosis
NASA Astrophysics Data System (ADS)
Faust, Oliver; Rajendra Acharya, U.; Ng, E. Y. K.; Hong, Tan Jen; Yu, Wenwei
2014-09-01
The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care.
Katorza, E; Bertucci, E; Perlman, S; Taschini, S; Ber, R; Gilboa, Y; Mazza, V; Achiron, R
2016-07-01
Normal biometry of the fetal posterior fossa rules out most major anomalies of the cerebellum and vermis. Our aim was to provide new reference data of the fetal vermis in 4 biometric parameters by using 3 imaging modalities, 2D ultrasound, 3D ultrasound, and MR imaging, and to assess the relation among these modalities. A retrospective study was conducted between June 2011 and June 2013. Three different imaging modalities were used to measure vermis biometry: 2D ultrasound, 3D ultrasound, and MR imaging. The vermian parameters evaluated were the maximum superoinferior diameter, maximum anteroposterior diameter, the perimeter, and the surface area. Statistical analysis was performed to calculate centiles for gestational age and to assess the agreement among the 3 imaging modalities. The number of fetuses in the study group was 193, 172, and 151 for 2D ultrasound, 3D ultrasound, and MR imaging, respectively. The mean and median gestational ages were 29.1 weeks, 29.5 weeks (range, 21-35 weeks); 28.2 weeks, 29.05 weeks (range, 21-35 weeks); and 32.1 weeks, 32.6 weeks (range, 27-35 weeks) for 2D ultrasound, 3D ultrasound, and MR imaging, respectively. In all 3 modalities, the biometric measurements of the vermis have shown a linear growth with gestational age. For all 4 biometric parameters, the lowest results were those measured by MR imaging, while the highest results were measured by 3D ultrasound. The inter- and intraobserver agreement was excellent for all measures and all imaging modalities. Limits of agreement were considered acceptable for clinical purposes for all parameters, with excellent or substantial agreement defined by the intraclass correlation coefficient. Imaging technique-specific reference data should be used for the assessment of the fetal vermis in pregnancy. © 2016 by American Journal of Neuroradiology.
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Kramer, Larry A.; Hamilton, Douglas R.; Hamilton, Douglas R.; Fogarty, Jennifer; Polk, J. D.
2010-01-01
Introduction: Intracranial pressure (ICP) elevation has been inferred or documented in a number of space crewmembers. Recent advances in noninvasive imaging technology offer new possibilities for ICP assessment. Most International Space Station (ISS) partner agencies have adopted a battery of occupational health monitoring tests including magnetic resonance imaging (MRI) pre- and postflight, and high-resolution sonography of the orbital structures in all mission phases including during flight. We hypothesize that joint consideration of data from the two techniques has the potential to improve quality and continuity of crewmember monitoring and care. Methods: Specially designed MRI and sonographic protocols were used to image eyes and optic nerves (ON) including the meningeal sheaths. Specific crewmembers multi-modality imaging data were analyzed to identify points of mutual validation as well as unique features of complementary nature. Results and Conclusion: Magnetic resonance imaging (MRI) and high-resolution sonography are both tomographic methods, however images obtained by the two modalities are based on different physical phenomena and use different acquisition principles. Consideration of the images acquired by these two modalities allows cross-validating findings related to the volume and fluid content of the ON subarachnoid space, shape of the globe, and other anatomical features of the orbit. Each of the imaging modalities also has unique advantages, making them complementary techniques.
Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.
2017-01-01
The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110
Salivary calculus diagnosis with 3-dimensional cone-beam computed tomography.
Dreiseidler, Timo; Ritter, Lutz; Rothamel, Daniel; Neugebauer, Jörg; Scheer, Martin; Mischkowski, Robert A
2010-07-01
The objective of this study was to evaluate cone-beam CT (CBCT) diagnoses of sialoliths in the major salivary glands. Twenty-nine CBCT images containing salivary calculi were retrospectively evaluated for image quality and artifact influence. Additionally, the reproducibility of calculus measurement and the differences between CBCT measurements and ultrasonography (US) and histomorphometry (HM) measurements were determined. Diagnostic sensitivity and specificity calculations were based on the observations of 3 masked clinicians, who reviewed a total of 58 CBCT volumes. Salivary calculi were sufficiently visualized in all patients. Metal artifacts were detected in images of 7 patients, and movement artifacts in 2. CBCT calculi measurements were highly reproducible, with mean differences of less than 350 microm. Mean CBCT measurements of calculi diameters differed from mean US measurements by approximately 500 microm and differed from mean HM measurements by approximately 1 mm. For calculus diagnoses, the mean sensitivity and specificity were both 98.85%. Although poor image qualities and artifacts can reduce diagnostic information, salivary calculi can be evaluated adequately with CBCT. CBCT measurements of calculi are highly reproducible and differ little from measurements made with US and HM. Diagnostic sensitivity and specificity levels with CBCT are as high as or higher than those obtained with other diagnostic methods. Because of its high diagnostic-information-to-radiation-dose ratio, CBCT is the preferable imaging modality for salivary calculus diagnosis. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Free-radical probes for functional in vivo EPR imaging
NASA Astrophysics Data System (ADS)
Subramanian, S.; Krishna, M. C.
2007-02-01
Electron paramagnetic resonance imaging (EPRI) is one of the recent functional imaging modalities that can provide valuable in vivo physiological information on its own merit and aids as a complimentary imaging technique to MRI and PET of tissues especially with respect to in vivo pO II (oxygen partial pressure), redox status and pharmacology. EPR imaging mainly deals with the measurement of distribution and in vivo dynamics and redox changes using special nontoxic paramagnetic spin probes that can be infused into the object of investigation. These spin probes should be characterized by simple EPR spectra, preferably with narrow EPR lines. The line width should be reversibly sensitive to the concentration of in vivo pO II with a linear dependence. Several non-toxic paramagnetic probes, some particulate and insoluble and others water-soluble and infusible (by intravenous or intramuscular injection) have been developed which can be effectively used to quantitatively assess tissue redox status, and tumor hypoxia. Quantitative assessment of the redox status of tissue in vivo is important in investigating oxidative stress, and that of tissue pO II is very important in radiation oncology. Other areas in which EPR imaging and oxymetry may help are in the investigation of tumorangiogenesis, wound healing, oxygenation of tumor tissue by the ingestion of oxygen-rich gases, etc. The correct choice of the spin probe will depend on the modality of measurement (whether by CW or time-domain EPR imaging) and the particular physiology interrogated. Examples of the available spin probes and some EPR imaging applications employing them are presented.
Comparison between breast MRI and contrast-enhanced spectral mammography.
Łuczyńska, Elżbieta; Heinze-Paluchowska, Sylwia; Hendrick, Edward; Dyczek, Sonia; Ryś, Janusz; Herman, Krzysztof; Blecharz, Paweł; Jakubowicz, Jerzy
2015-05-12
The main goal of this study was to compare contrast-enhanced spectral mammography (CESM) and breast magnetic resonance imaging (MRI) with histopathological results and to compare the sensitivity, accuracy, and positive and negative predictive values for both imaging modalities. After ethics approval, CESM and MRI examinations were performed in 102 patients who had suspicious lesions described in conventional mammography. All visible lesions were evaluated independently by 2 experienced radiologists using BI-RADS classifications (scale 1-5). Dimensions of lesions measured with each modality were compared to postoperative histopathology results. There were 102 patients entered into CESM/MRI studies and 118 lesions were identified by the combination of CESM and breast MRI. Histopathology confirmed that 81 of 118 lesions were malignant and 37 were benign. Of the 81 malignant lesions, 72 were invasive cancers and 9 were in situ cancers. Sensitivity was 100% with CESM and 93% with breast MRI. Accuracy was 79% with CESM and 73% with breast MRI. ROC curve areas based on BI-RADS were 0.83 for CESM and 0.84 for breast MRI. Lesion size estimates on CESM and breast MRI were similar, both slightly larger than those from histopathology. Our results indicate that CESM has the potential to be a valuable diagnostic method that enables accurate detection of malignant breast lesions, has high negative predictive value, and a false-positive rate similar to that of breast MRI.
Optical coherence tomography in guided surgery of GI cancer
NASA Astrophysics Data System (ADS)
Zagaynova, Elena V.; Abelevich, Alexander I.; Zagaynov, Vladimir E.; Gladkova, Natalia D.; Denisenko, Arkady N.; Feldchtein, Felix I.; Snopova, Ludmila B.; Kutis, Irina S.
2005-04-01
Optical Coherence Tomography (OCT) is a new high spatial resolution, real-time optical imaging modality, known from prior pilot studies for its high sensitivity to invasive cancer. We reported our results in an OCT feasibility study for accurate determination of the proximal border for esophageal carcinoma and the distal border for rectal carcinoma. The OCT study enrolled 19 patients with rectal adenocarcinoma and 24 patients with distal esophageal carcinoma (14 squamous cell carcinomas, 10 adenocarcinomas). During pre-surgery planning endoscopy we performed in vivo OCT imaging of the tumor border at four dial clock axes (12, 3, 6 and 9 o"clock). The OCT border then was marked by an electrocoagulator, or by a methylene blue tattoo. A cold biopsy (from the esophagus) was performed at visual and OCT borders and compared with visual and OCT readings. 27 post-surgery excised specimens were analyzed. OCT borders matched the histopathology in 94% cases in the rectum and 83.3% in the esophagus. In the cases of a mismatch between the OCT and histology borders, a deep tumor invasion occurred in the muscle layer (esophagus, rectum). Because of its high sensitivity to mucosal cancer, OCT can be used for pre-surgery planning and surgery guidance of the proximal border for esophageal carcinoma and the distal border for rectal carcinoma. However, deep invasion in the rectum or esophageal wall has to be controlled by alternative diagnostic modalities.
Mulla, Mubashir; Schulte, Klaus-Martin
2012-01-01
Cervical lymph nodes (CLNs) are the most common site of metastases in papillary thyroid cancer (PTC). Ultrasound scan (US) is the most commonly used imaging modality in the evaluation of CLNs in PTC. Computerised tomography (CT) and 18fluorodeoxyglucose positron emission tomography (18FDG PET–CT) are used less commonly. It is widely believed that the above imaging techniques should guide the surgical approach to the patient with PTC. Methods We performed a systematic review of imaging studies from the literature assessing the usefulness for the detection of metastatic CLNs in PTC. We evaluated the author's interpretation of their numeric findings specifically with regard to ‘sensitivity’ and ‘negative predictive value’ (NPV) by comparing their use against standard definitions of these terms in probabilistic statistics. Results A total of 16 studies used probabilistic terms to describe the value of US for the detection of LN metastases. Only 6 (37.5%) calculated sensitivity and NPV correctly. For CT, out of the eight studies, only 1 (12.5%) used correct terms to describe analytical results. One study looked at magnetic resonance imaging, while three assessed 18FDG PET–CT, none of which provided correct calculations for sensitivity and NPV. Conclusion Imaging provides high specificity for the detection of cervical metastases of PTC. However, sensitivity and NPV are low. The majority of studies reporting on a high sensitivity have not used key terms according to standard definitions of probabilistic statistics. Against common opinion, there is no current evidence that failure to find LN metastases on ultrasound or cross-sectional imaging can be used to guide surgical decision making. PMID:23781308
Structural and functional optical coherence tomography imaging of the colon
NASA Astrophysics Data System (ADS)
Welge, Weston Anthony
Colorectal cancer (CRC) remains the second deadliest cancer in the United States, despite steady reduction in mortality rate over the last three decades. Colonoscopy is the gold-standard screening modality with high sensitivity and specificity to mature polyps. However, the miss rate for small (< 5 mm) lesions is estimated to be as high as 26%. Because the five-year survival rate for CRC detected at the local stage is 90%, there is a clear need for a screening procedure that is sensitive to these small lesions. Optical coherence tomography (OCT) has become a major biomedical imaging modality since its invention in 1991. As the optical analog to ultrasound, OCT provides information in both lateral and depth dimensions with resolution < 10 ?m and an imaging depth of about 1.5 mm in scattering tissue. In this dissertation, I describe my efforts to develop new uses of OCT for improved early detection of adenoma in the azoxymethane mouse model of CRC. In recent years, commercial OCT systems have reached imaging speeds sufficiently high for in vivo volumeric imaging while laterally sampling the tissue at the Nyquist limit. First, I describe the design of a miniature endoscope and the integration of this probe with a commercial OCT system. Then I describe the development of two OCT imaging methods, one structural and one functional, that could be used for future work in diagnostic or therapeutic studies. The structural method produces en face images of the colon surface showing the colonic crypts, the first such demonstration of crypt visualization in the mouse. Changes in the crypt pattern are correlated with adenoma and are one of the earliest morphological changes. The functional method uses a Doppler OCT algorithm and image processing to detect the colon microvasculature. This technique can be used for vessel counting and blood flow measurements. Angiogenesis occurs at the beginning of tumorigenesis, and the tumor-originated arterioles are incapable of regular vasodilation. This Doppler OCT technique could potentially detect tumors at the earliest stages by measuring the change in local blood flow velocity in response to vasodilatory stimuli.
Quantitative multi-modal NDT data analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heideklang, René; Shokouhi, Parisa
2014-02-18
A single NDT technique is often not adequate to provide assessments about the integrity of test objects with the required coverage or accuracy. In such situations, it is often resorted to multi-modal testing, where complementary and overlapping information from different NDT techniques are combined for a more comprehensive evaluation. Multi-modal material and defect characterization is an interesting task which involves several diverse fields of research, including signal and image processing, statistics and data mining. The fusion of different modalities may improve quantitative nondestructive evaluation by effectively exploiting the augmented set of multi-sensor information about the material. It is the redundantmore » information in particular, whose quantification is expected to lead to increased reliability and robustness of the inspection results. There are different systematic approaches to data fusion, each with its specific advantages and drawbacks. In our contribution, these will be discussed in the context of nondestructive materials testing. A practical study adopting a high-level scheme for the fusion of Eddy Current, GMR and Thermography measurements on a reference metallic specimen with built-in grooves will be presented. Results show that fusion is able to outperform the best single sensor regarding detection specificity, while retaining the same level of sensitivity.« less
Christiansen, Andrew R; Shorti, Rami M; Smith, Cory D; Prows, William C; Bishoff, Jay T
2018-05-01
Despite the increasing use of advanced 3D imaging techniques and 3D printing, these techniques have not yet been comprehensively compared in a surgical setting. The purpose of this study is to explore the effectiveness of five different advanced imaging modalities during a complex renal surgical procedure. A patient with a horseshoe kidney and multiple large, symptomatic stones that had failed Extracorporeal Shock Wave Lithotripsy (ESWL) and ureteroscopy treatment was used for this evaluation. CT data were used to generate five different imaging modalities, including a 3D printed model, three different volume rendered models, and a geometric CAD model. A survey was used to evaluate the quality and breadth of the imaging modalities during four different phases of the laparoscopic procedure. In the case of a complex kidney procedure, the CAD model, 3D print, volume render on an autostereoscopic 3D display, interactive and basic volume render models demonstrated added insight and complemented the surgical procedure. CAD manual segmentation allowed tissue layers and/or kidney stones to be made colorful and semi-transparent, allowing easier navigation through abnormal vasculature. The 3D print allowed for simultaneous visualization of renal pelvis and surrounding vasculature. Our preliminary exploration indicates that various advanced imaging modalities, when properly utilized and supported during surgery, can be useful in complementing the CT data and laparoscopic display. This study suggests that various imaging modalities, such as ones utilized in this case, can be beneficial intraoperatively depending on the surgical step involved and may be more helpful than 3D printed models. We also present factors to consider when evaluating advanced imaging modalities during complex surgery.
Localization of malignant melanoma using monoclonal antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasselle, J.; Becker, J.; Cruse, W.
1991-04-01
Finding a screening test to evaluate patients with cancer for occult metastatic disease, as well as imaging all known disease, is a goal of research efforts. Twenty-nine evaluable patients with deeply invasive (stage I), regional nodal (stage II), or systemic (stage III) melanoma underwent imaging by administration of a preparation of the antimelanoma antibody labeled with technetium 99m. Scan results indicated that 28 of 32 confirmed metastatic sites were imaged with this technique (88% sensitivity). Analysis of the individual positive sites revealed that nodal basins and visceral metastases accounted for the highest percentage of metastatic sites imaged, with 14 (88%)more » of 16 nodal basin metastases and all four visceral metastases being detected through imaging. Occult nodal disease was detected in the iliac nodal chain in two of the 29 patients. The imaging of benign tumors and nodal basins not containing disease accounted for a confirmed false-positive rate of 21%. Three (10%) of the 29 scan results were confirmed to be false-negative. In vivo tumor localization with monoclonal antibodies showed a sensitivity similar to that of other roentgenographic procedures for identifying metastatic disease and was useful in two of three patients in identifying occult iliac nodal disease, a region that is difficult to evaluate with physical examination and other imaging modalities.« less
Dental MRI using wireless intraoral coils
NASA Astrophysics Data System (ADS)
Ludwig, Ute; Eisenbeiss, Anne-Katrin; Scheifele, Christian; Nelson, Katja; Bock, Michael; Hennig, Jürgen; von Elverfeldt, Dominik; Herdt, Olga; Flügge, Tabea; Hövener, Jan-Bernd
2016-03-01
Currently, the gold standard for dental imaging is projection radiography or cone-beam computed tomography (CBCT). These methods are fast and cost-efficient, but exhibit poor soft tissue contrast and expose the patient to ionizing radiation (X-rays). The need for an alternative imaging modality e.g. for soft tissue management has stimulated a rising interest in dental magnetic resonance imaging (MRI) which provides superior soft tissue contrast. Compared to X-ray imaging, however, so far the spatial resolution of MRI is lower and the scan time is longer. In this contribution, we describe wireless, inductively-coupled intraoral coils whose local sensitivity enables high resolution MRI of dental soft tissue. In comparison to CBCT, a similar image quality with complementary contrast was obtained ex vivo. In-vivo, a voxel size of the order of 250•250•500 μm3 was achieved in 4 min only. Compared to dental MRI acquired with clinical equipment, the quality of the images was superior in the sensitive volume of the coils and is expected to improve the planning of interventions and monitoring thereafter. This method may enable a more accurate dental diagnosis and avoid unnecessary interventions, improving patient welfare and bringing MRI a step closer to becoming a radiation-free alternative for dental imaging.
Nyflot, Matthew J.; Yang, Fei; Byrd, Darrin; Bowen, Stephen R.; Sandison, George A.; Kinahan, Paul E.
2015-01-01
Abstract. Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes. PMID:26251842
Nyflot, Matthew J; Yang, Fei; Byrd, Darrin; Bowen, Stephen R; Sandison, George A; Kinahan, Paul E
2015-10-01
Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes.
Grandl, Susanne; Scherer, Kai; Sztrókay-Gaul, Anikó; Birnbacher, Lorenz; Willer, Konstantin; Chabior, Michael; Herzen, Julia; Mayr, Doris; Auweter, Sigrid D; Pfeiffer, Franz; Bamberg, Fabian; Hellerhoff, Karin
2015-12-01
Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. • X-ray dark-field mammography provides significantly improved visualization of tumour features • X-ray dark-field mammography is capable of outperforming conventional mammographic imaging • X-ray dark-field mammography provides imaging sensitivity towards highly dispersed calcium grains.
XML-based scripting of multimodality image presentations in multidisciplinary clinical conferences
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Allada, Vivekanand; Dahlbom, Magdalena; Marcus, Phillip; Fine, Ian; Lapstra, Lorelle
2002-05-01
We developed a multi-modality image presentation software for display and analysis of images and related data from different imaging modalities. The software is part of a cardiac image review and presentation platform that supports integration of digital images and data from digital and analog media such as videotapes, analog x-ray films and 35 mm cine films. The software supports standard DICOM image files as well as AVI and PDF data formats. The system is integrated in a digital conferencing room that includes projections of digital and analog sources, remote videoconferencing capabilities, and an electronic whiteboard. The goal of this pilot project is to: 1) develop a new paradigm for image and data management for presentation in a clinically meaningful sequence adapted to case-specific scenarios, 2) design and implement a multi-modality review and conferencing workstation using component technology and customizable 'plug-in' architecture to support complex review and diagnostic tasks applicable to all cardiac imaging modalities and 3) develop an XML-based scripting model of image and data presentation for clinical review and decision making during routine clinical tasks and multidisciplinary clinical conferences.
Ahn, C Y; DeBruhl, N D; Gorczyca, D P; Shaw, W W; Bassett, L W
1994-10-01
With the current controversy regarding the safety of silicone implants, the detection and evaluation of implant rupture are causing concern for both plastic surgeons and patients. Our study obtained comparative value analysis of mammography, sonography, and magnetic resonance imaging (MRI) in the detection of silicone implant rupture. Twenty-nine symptomatic patients (total of 59 silicone implants) were entered into the study. Intraoperative findings revealed 21 ruptured implants (36 percent). During physical examination, a positive "squeeze test" was highly suggestive of implant rupture. Mammograms were obtained of 51 implants (sensitivity 11 percent, specificity 89 percent). Sonography was performed on 57 implants (sensitivity 70 percent, specificity 92 percent). MRI was performed on 55 implants (sensitivity 81 percent, specificity 92 percent). Sonographically, implant rupture is demonstrated by the "stepladder sign." Double-lumen implants may appear as false-positive results for rupture on sonography. On MRI, the "linguine sign" represents disrupted fragments of a ruptured implant. The most reliable imaging modality for implant rupture detection is MRI, followed by sonogram. Mammogram is the least reliable. Our study supports the clinical indication and diagnostic value of sonogram and MRI in the evaluation of symptomatic breast implant patients.
NASA Astrophysics Data System (ADS)
Wu, Chen; Ran, Shihao; Le, Henry; Singh, Manmohan; Larina, Irina V.; Mayerich, David; Dickinson, Mary E.; Larin, Kirill V.
2017-02-01
Both optical coherence tomography (OCT) and selective plane illumination microscopy (SPIM) are frequently used in mouse embryonic research for high-resolution three-dimensional imaging. However, each of these imaging methods provide a unique and independent advantage: SPIM provides morpho-functional information through immunofluorescence and OCT provides a method for whole-embryo 3D imaging. In this study, we have combined rotational imaging OCT and SPIM into a single, dual-modality device to image E9.5 mouse embryos. The results demonstrate that the dual-modality setup is able to provide both anatomical and functional information simultaneously for more comprehensive tissue characterization.
Cox, Benjamin L; Mackie, Thomas R; Eliceiri, Kevin W
2015-01-01
Multi-modal imaging approaches of tumor metabolism that provide improved specificity, physiological relevance and spatial resolution would improve diagnosing of tumors and evaluation of tumor progression. Currently, the molecular probe FDG, glucose fluorinated with 18F at the 2-carbon, is the primary metabolic approach for clinical diagnostics with PET imaging. However, PET lacks the resolution necessary to yield intratumoral distributions of deoxyglucose, on the cellular level. Multi-modal imaging could elucidate this problem, but requires the development of new glucose analogs that are better suited for other imaging modalities. Several such analogs have been created and are reviewed here. Also reviewed are several multi-modal imaging studies that have been performed that attempt to shed light on the cellular distribution of glucose analogs within tumors. Some of these studies are performed in vitro, while others are performed in vivo, in an animal model. The results from these studies introduce a visualization gap between the in vitro and in vivo studies that, if solved, could enable the early detection of tumors, the high resolution monitoring of tumors during treatment, and the greater accuracy in assessment of different imaging agents. PMID:25625022
Motion Artefacts in MRI: a Complex Problem with Many Partial Solutions
Zaitsev, Maxim; Maclaren, Julian.; Herbst, Michael
2015-01-01
Subject motion during magnetic resonance imaging (MRI) has been problematic since its introduction as a clinical imaging modality. While sensitivity to particle motion or blood flow can be used to provide useful image contrast, bulk motion presents a considerable problem in the majority of clinical applications. It is one of the most frequent sources of artefacts. Over 30 years of research have produced numerous methods to mitigate or correct for motion artefacts, but no single method can be applied in all imaging situations. Instead, a ‘toolbox’ of methods exists, where each tool is suitable for some tasks, but not for others. This article reviews the origins of motion artefacts and presents current mitigation and correction methods. In some imaging situations, the currently available motion correction tools are highly effective; in other cases, appropriate tools still need to be developed. It seems likely that this multifaceted approach will be what eventually solves the motion sensitivity problem in MRI, rather than a single solution that is effective in all situations. This review places a strong emphasis on explaining the physics behind the occurrence of such artefacts, with the aim of aiding artefact detection and mitigation in particular clinical situations. PMID:25630632
Motion artifacts in MRI: A complex problem with many partial solutions.
Zaitsev, Maxim; Maclaren, Julian; Herbst, Michael
2015-10-01
Subject motion during magnetic resonance imaging (MRI) has been problematic since its introduction as a clinical imaging modality. While sensitivity to particle motion or blood flow can be used to provide useful image contrast, bulk motion presents a considerable problem in the majority of clinical applications. It is one of the most frequent sources of artifacts. Over 30 years of research have produced numerous methods to mitigate or correct for motion artifacts, but no single method can be applied in all imaging situations. Instead, a "toolbox" of methods exists, where each tool is suitable for some tasks, but not for others. This article reviews the origins of motion artifacts and presents current mitigation and correction methods. In some imaging situations, the currently available motion correction tools are highly effective; in other cases, appropriate tools still need to be developed. It seems likely that this multifaceted approach will be what eventually solves the motion sensitivity problem in MRI, rather than a single solution that is effective in all situations. This review places a strong emphasis on explaining the physics behind the occurrence of such artifacts, with the aim of aiding artifact detection and mitigation in particular clinical situations. © 2015 Wiley Periodicals, Inc.
Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources
NASA Astrophysics Data System (ADS)
Boppart, Stephen A.; King, Matthew D.; Liu, Yuan; Tu, Haohua; Gruebele, Martin
Optical imaging is essential in medicine and in fundamental studies of biological systems. Although many existing imaging modalities can supply valuable information, not all are capable of label-free imaging with high-contrast and molecular specificity. The application of molecular or nanoparticle contrast agents may adversely influence the biological system under investigation. These substances also present ongoing concerns over toxicity or particle clearance, which must be properly addressed before their approval for in vivo human imaging. Hence there is an increasing appreciation for label-free imaging techniques. It is of primary importance to develop imaging techniques that can indiscriminately identify and quantify biochemical compositions to high degrees of sensitivity and specificity through only the intrinsic optical response of endogenous molecular species. The development and use of nonlinear interferometric vibrational imaging, which is based on the interferometric detection of optical signals from coherent anti-Stokes Raman scattering (CARS), along with novel optical sources, offers the potential for label-free molecular imaging.
Resolution improvement in positron emission tomography using anatomical Magnetic Resonance Imaging.
Chu, Yong; Su, Min-Ying; Mandelkern, Mark; Nalcioglu, Orhan
2006-08-01
An ideal imaging system should provide information with high-sensitivity, high spatial, and temporal resolution. Unfortunately, it is not possible to satisfy all of these desired features in a single modality. In this paper, we discuss methods to improve the spatial resolution in positron emission imaging (PET) using a priori information from Magnetic Resonance Imaging (MRI). Our approach uses an image restoration algorithm based on the maximization of mutual information (MMI), which has found significant success for optimizing multimodal image registration. The MMI criterion is used to estimate the parameters in the Sharpness-Constrained Wiener filter. The generated filter is then applied to restore PET images of a realistic digital brain phantom. The resulting restored images show improved resolution and better signal-to-noise ratio compared to the interpolated PET images. We conclude that a Sharpness-Constrained Wiener filter having parameters optimized from a MMI criterion may be useful for restoring spatial resolution in PET based on a priori information from correlated MRI.
Fourier Spectral Filter Array for Optimal Multispectral Imaging.
Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo
2016-04-01
Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data.
Imaging for Appendicitis: Should Radiation-induced Cancer Risks Affect Modality Selection?
Kiatpongsan, Sorapop; Meng, Lesley; Eisenberg, Jonathan D.; Herring, Maurice; Avery, Laura L.; Kong, Chung Yin
2014-01-01
Purpose To compare life expectancy (LE) losses attributable to three imaging strategies for appendicitis in adults—computed tomography (CT), ultrasonography (US) followed by CT for negative or indeterminate US results, and magnetic resonance (MR) imaging—by using a decision-analytic model. Materials and Methods In this model, for each imaging strategy, LE losses for 20-, 40-, and 65-year-old men and women were computed as a function of five key variables: baseline cohort LE, test performance, surgical mortality, risk of death from delayed diagnosis (missed appendicitis), and LE loss attributable to radiation-induced cancer death. Appendicitis prevalence, test performance, mortality rates from surgery and missed appendicitis, and radiation doses from CT were elicited from the published literature and institutional data. LE loss attributable to radiation exposure was projected by using a separate organ-specific model that accounted for anatomic coverage during a typical abdominopelvic CT examination. One- and two-way sensitivity analyses were performed to evaluate effects of model input variability on results. Results Outcomes across imaging strategies differed minimally—for example, for 20-year-old men, corresponding LE losses were 5.8 days (MR imaging), 6.8 days (combined US and CT), and 8.2 days (CT). This order was sensitive to differences in test performance but was insensitive to variation in radiation-induced cancer deaths. For example, in the same cohort, MR imaging sensitivity had to be 91% at minimum (if specificity were 100%), and MR imaging specificity had to be 62% at minimum (if sensitivity were 100%) to incur the least LE loss. Conversely, LE loss attributable to radiation exposure would need to decrease by 74-fold for combined US and CT, instead of MR imaging, to incur the least LE loss. Conclusion The specific imaging strategy used to diagnose appendicitis minimally affects outcomes. Paradigm shifts to MR imaging owing to concerns over radiation should be considered only if MR imaging test performance is very high. © RSNA, 2014 PMID:24988435
An x-ray fluorescence imaging system for gold nanoparticle detection.
Ricketts, K; Guazzoni, C; Castoldi, A; Gibson, A P; Royle, G J
2013-11-07
Gold nanoparticles (GNPs) may be used as a contrast agent to identify tumour location and can be modified to target and image specific tumour biological parameters. There are currently no imaging systems in the literature that have sufficient sensitivity to GNP concentration and distribution measurement at sufficient tissue depth for use in in vivo and in vitro studies. We have demonstrated that high detecting sensitivity of GNPs can be achieved using x-ray fluorescence; furthermore this technique enables greater depth imaging in comparison to optical modalities. Two x-ray fluorescence systems were developed and used to image a range of GNP imaging phantoms. The first system consisted of a 10 mm(2) silicon drift detector coupled to a slightly focusing polycapillary optic which allowed 2D energy resolved imaging in step and scan mode. The system has sensitivity to GNP concentrations as low as 1 ppm. GNP concentrations different by a factor of 5 could be resolved, offering potential to distinguish tumour from non-tumour. The second system was designed to avoid slow step and scan image acquisition; the feasibility of excitation of the whole specimen with a wide beam and detection of the fluorescent x-rays with a pixellated controlled drift energy resolving detector without scanning was investigated. A parallel polycapillary optic coupled to the detector was successfully used to ascertain the position where fluorescence was emitted. The tissue penetration of the technique was demonstrated to be sufficient for near-surface small-animal studies, and for imaging 3D in vitro cellular constructs. Previous work demonstrates strong potential for both imaging systems to form quantitative images of GNP concentration.
Avci, Oguzhan; Lortlar Ünlü, Nese; Yalçın Özkumur, Ayça; Ünlü, M. Selim
2015-01-01
Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS), and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i) low-magnification (ensemble biomolecular mass measurements) and (ii) high-magnification (digital detection of individual nanoparticles) along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses. PMID:26205273
Introduction to clinical and laboratory (small-animal) image registration and fusion.
Zanzonico, Pat B; Nehmeh, Sadek A
2006-01-01
Imaging has long been a vital component of clinical medicine and, increasingly, of biomedical research in small-animals. Clinical and laboratory imaging modalities can be divided into two general categories, structural (or anatomical) and functional (or physiological). The latter, in particular, has spawned what has come to be known as "molecular imaging". Image registration and fusion have rapidly emerged as invaluable components of both clinical and small-animal imaging and has lead to the development and marketing of a variety of multi-modality, e.g. PET-CT, devices which provide registered and fused three-dimensional image sets. This paper briefly reviews the basics of image registration and fusion and available clinical and small-animal multi-modality instrumentation.
A dedicated breast-PET/CT scanner: Evaluation of basic performance characteristics.
Raylman, Raymond R; Van Kampen, Will; Stolin, Alexander V; Gong, Wenbo; Jaliparthi, Gangadhar; Martone, Peter F; Smith, Mark F; Sarment, David; Clinthorne, Neal H; Perna, Mark
2018-04-01
Application of advanced imaging techniques, such as PET and x ray CT, can potentially improve detection of breast cancer. Unfortunately, both modalities have challenges in the detection of some lesions. The combination of the two techniques, however, could potentially lead to an overall improvement in diagnostic breast imaging. The purpose of this investigation is to test the basic performance of a new dedicated breast-PET/CT. The PET component consists of a rotating pair of detectors. Its performance was evaluated using the NEMA NU4-2008 protocols. The CT component utilizes a pulsed x ray source and flat panel detector mounted on the same gantry as the PET scanner. Its performance was assessed using specialized phantoms. The radiation dose to a breast during CT imaging was explored by the measurement of free-in-air kerma and air kerma measured at the center of a 16 cm-diameter PMMA cylinder. Finally, the combined capabilities of the system were demonstrated by imaging of a micro-hot-rod phantom. Overall, performance of the PET component is comparable to many pre-clinical and other dedicated breast-PET scanners. Its spatial resolution is 2.2 mm, 5 mm from the center of the scanner using images created with the single-sliced-filtered-backprojection algorithm. Peak NECR is 24.6 kcps; peak sensitivity is 1.36%; the scatter fraction is 27%. Spatial resolution of the CT scanner is 1.1 lp/mm at 10% MTF. The free-in-air kerma is 2.33 mGy, while the PMMA-air kerma is 1.24 mGy. Finally, combined imaging of a micro-hot-rod phantom illustrated the potential utility of the dual-modality images produced by the system. The basic performance characteristics of a new dedicated breast-PET/CT scanner are good, demonstrating that its performance is similar to current dedicated PET and CT scanners. The potential value of this system is the capability to produce combined duality-modality images that could improve detection of breast disease. The next stage in development of this system is testing with more advanced phantoms and human subjects. © 2018 American Association of Physicists in Medicine.
[Guidelines for wise utilization of knee imaging].
Finestone, Aharon S; Eshed, Iris; Freedman, Yehuda; Beer, Yiftah; Bar-Sever, Zvi; Kots, Yavvgeni; Adar, Eliyahu; Mann, Gideon
2012-02-01
The knee is a complex structure afflicted with diverse pathologies. Correct management of knee complaints demands wise utilization of imaging modalities, considering their accuracy in the specific clinical situation, the patient's safety and availability and financial issues. Some of these considerations are universal, while others are local, depending on medical and insurance systems. There is controversy and unclearness regarding the best imaging modality in different clinical situations. To develop clinical guidelines for utilizing knee imaging. Leading physicians in specialties associated with knee disease and imaging were invited to participate in a panel on the guidelines. Controversies were settled in the main panel or in sub-panels. The panel agreed on the principles in choosing from the various modalities, primarily medical accuracy, followed by patient safety, availability and cost. There was agreement that the physician is responsible to choose the most appropriate diagnostic tool, consulting, when necessary, on the advantages, limitations and risks of the various imaging modalities. A comprehensive table was compiled with the importance of the different imaging modalities in various clinical situations. For the first time, Israeli guidelines on wise utilization of knee imaging are presented. They take into consideration the clinical situations and also availability and financial issues specific to Israel. These guidelines will serve physicians of several disciplines and medical insurers to improve patient management efficiently.
Cross-sectional imaging in cancers of the head and neck: how we review and report.
Tshering Vogel, Dechen Wangmo; Thoeny, Harriet C
2016-08-03
Cancer of the head and neck is the sixth most frequent cancer worldwide and associated with significant morbidity. The head and neck area is complex and divided into various anatomical and functional subunits. Imaging is performed by cross-sectional modalities like computed tomography, magnetic resonance imaging, ultrasound and positron emission tomography-computed tomography, usually with fluorine-18-deoxy-D-glucose. Therefore, knowledge of the cross-sectional anatomy is very important. This article seeks to give an overview of the various cross-sectional imaging modalities used in the evaluation of head and neck cancers. It briefly describes the anatomy of the extracranial head and neck and the role of imaging as well as the imaging appearance of tumours and their extension to lymph nodes, bone and surrounding tissue. The advantages and disadvantages as well as basic requirements of the various modalities are described along with ways of optimizing imaging quality. A general guideline for prescription of the various modalities is given. Pitfalls are many and varied and can be due to anatomical variation, due to pathology which can be misinterpreted and technical due to peculiarities of the various imaging modalities. Knowledge of these pitfalls can help to avoid misinterpretation. The important points to be mentioned while reporting are also enumerated.
Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann
2018-04-01
Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin
2013-03-01
Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"
Kheirkhah, Ahmad; Syed, Zeba A; Satitpitakul, Vannarut; Goyal, Sunali; Müller, Rodrigo; Tu, Elmer Y; Dana, Reza
2017-07-01
To determine sensitivity and specificity of laser-scanning in vivo confocal microscopy (LS-IVCM) for detection of filamentous fungi in patients with microbial keratitis and to evaluate the effect of observer's imaging experience on these parameters. Retrospective reliability study. This study included 21 patients with filamentous fungal keratitis and 24 patients with bacterial keratitis (as controls). The etiology of infection was confirmed based on the response to specific therapy regardless of culture results. All patients had undergone full-thickness corneal imaging by a LS-IVCM (Heidelberg Retina Tomograph 3 with Rostock Cornea Module; Heidelberg Engineering, Heidelberg, Germany). The images were evaluated for the presence of fungal filaments by 2 experienced observers and 2 inexperienced observers. All observers were masked to the clinical and microbiologic data. The mean number of images obtained per eye was 917 ± 353. The average sensitivity of LS-IVCM for detecting fungal filaments was 71.4% ± 0% for the experienced observers and 42.9% ± 6.7% for the inexperienced observers. The average specificity was 89.6% ± 3.0% and 87.5% ± 17.7% for these 2 groups of observers, respectively. Although there was a good agreement between the 2 experienced observers (κ = 0.77), the inexperienced observers showed only a moderate interobserver agreement (κ = 0.51). The LS-IVCM sensitivity was higher in patients with fungal infections who had positive culture or longer duration of the disease. Although LS-IVCM has a high specificity for diagnosing filamentous fungal keratitis, its sensitivity is moderate and highly dependent on the level of the observer's experience and training with this imaging modality. Copyright © 2017 Elsevier Inc. All rights reserved.
Tamm, Alexander S; Abele, Jonathan T
2017-02-01
Spondylodiscitis has historically been a difficult clinical diagnosis. Two imaging techniques that address this problem are magnetic resonance imaging (MRI) and combined bone ( 99m Tc-methylene diphosphonate) and gallium-67 single-photon emission computed tomography-computed tomography (SPECT-CT). Their accuracies have not been adequately compared. The purpose of this study is to compare the sensitivities and specificities of bone and gallium SPECT-CT and MRI in infectious spondylodiscitis. This retrospective study assessed all patients who underwent a bone or gallium SPECT-CT of the spine to assess for infectious spondylodiscitis from January 1, 2010, to May 2, 2012, at a single tertiary care centre. Thirty-four patients (23 men; average 62 ± 14 years of age) were included. The results of the bone or gallium SPECT-CT were compared against MRI for all patients in the cohort who underwent an MRI within 12 weeks of the SPECT-CT. A diagnosis of spondylodiscitis in the discharge summary was considered the reference standard, and was based on a combination of clinical scenario, response to therapy, imaging, or microbiology. Spondylodiscitis was diagnosed in 18 patients and excluded in 16. Bone or gallium SPECT-CT and MRI had similar (P > .05; κ = 0.74) sensitivities (0.94 vs 0.94), specificities (1.00 vs 1.00), positive predictive values (1.00 vs 1.00), negative predictive values (0.94 vs 0.80), and accuracies (0.97 vs 0.95) when compared to the reference standard. Although MRI remains the initial modality of choice in diagnosing spondylodiscitis, bone and gallium SPECT-CT appears diagnostically equivalent and should be considered a viable supplementary or alternative imaging modality particularly if there is contraindication or inaccessibility to MRI. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Principles of Simultaneous PET/MR Imaging.
Catana, Ciprian
2017-05-01
Combined PET/MR imaging scanners capable of acquiring simultaneously the complementary information provided by the 2 imaging modalities are now available for human use. After addressing the hardware challenges for integrating the 2 imaging modalities, most of the efforts in the field have focused on developing MR-based attenuation correction methods for neurologic and whole-body applications, implementing approaches for improving one modality by using the data provided by the other and exploring research and clinical applications that could benefit from the synergistic use of the multimodal data. Copyright © 2017 Elsevier Inc. All rights reserved.
Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures.
Grossberg, S
1997-07-01
This article develops the FACADE theory of 3-dimensional (3-D) vision and figure-ground separation to explain data concerning how 2-dimensional pictures give rise to 3-D percepts of occluding and occluded objects. The model describes how geometrical and contrastive properties of a picture can either cooperate or compete when forming the boundaries and surface representation that subserve conscious percepts. Spatially long-range cooperation and spatially short-range competition work together to separate the boundaries of occluding figures from their occluded neighbors. This boundary ownership process is sensitive to image T junctions at which occluded figures contact occluding figures. These boundaries control the filling-in of color within multiple depth-sensitive surface representations. Feedback between surface and boundary representations strengthens consistent boundaries while inhibiting inconsistent ones. Both the boundary and the surface representations of occluded objects may be amodally completed, while the surface representations of unoccluded objects become visible through modal completion. Functional roles for conscious modal and amodal representations in object recognition, spatial attention, and reaching behaviors are discussed. Model interactions are interpreted in terms of visual, temporal, and parietal cortices.
Tanna, Preena; Kasilian, Melissa; Strauss, Rupert; Tee, James; Kalitzeos, Angelos; Tarima, Sergey; Visotcky, Alexis; Dubra, Alfredo; Carroll, Joseph; Michaelides, Michel
2017-07-01
To assess reliability and repeatability of cone density measurements by using confocal and (nonconfocal) split-detector adaptive optics scanning light ophthalmoscopy (AOSLO) imaging. It will be determined whether cone density values are significantly different between modalities in Stargardt disease (STGD) and retinitis pigmentosa GTPase regulator (RPGR)-associated retinopathy. Twelve patients with STGD (aged 9-52 years) and eight with RPGR-associated retinopathy (aged 11-31 years) were imaged using both confocal and split-detector AOSLO simultaneously. Four graders manually identified cone locations in each image that were used to calculate local densities. Each imaging modality was evaluated independently. The data set consisted of 1584 assessments of 99 STGD images (each image in two modalities and four graders who graded each image twice) and 928 RPGR assessments of 58 images (each image in two modalities and four graders who graded each image twice). For STGD assessments the reliability for confocal and split-detector AOSLO was 67.9% and 95.9%, respectively, and the repeatability was 71.2% and 97.3%, respectively. The differences in the measured cone density values between modalities were statistically significant for one grader. For RPGR assessments the reliability for confocal and split-detector AOSLO was 22.1% and 88.5%, respectively, and repeatability was 63.2% and 94.5%, respectively. The differences in cone density between modalities were statistically significant for all graders. Split-detector AOSLO greatly improved the reliability and repeatability of cone density measurements in both disorders and will be valuable for natural history studies and clinical trials using AOSLO. However, it appears that these indices may be disease dependent, implying the need for similar investigations in other conditions.
Tanna, Preena; Kasilian, Melissa; Strauss, Rupert; Tee, James; Kalitzeos, Angelos; Tarima, Sergey; Visotcky, Alexis; Dubra, Alfredo; Carroll, Joseph; Michaelides, Michel
2017-01-01
Purpose To assess reliability and repeatability of cone density measurements by using confocal and (nonconfocal) split-detector adaptive optics scanning light ophthalmoscopy (AOSLO) imaging. It will be determined whether cone density values are significantly different between modalities in Stargardt disease (STGD) and retinitis pigmentosa GTPase regulator (RPGR)–associated retinopathy. Methods Twelve patients with STGD (aged 9–52 years) and eight with RPGR-associated retinopathy (aged 11–31 years) were imaged using both confocal and split-detector AOSLO simultaneously. Four graders manually identified cone locations in each image that were used to calculate local densities. Each imaging modality was evaluated independently. The data set consisted of 1584 assessments of 99 STGD images (each image in two modalities and four graders who graded each image twice) and 928 RPGR assessments of 58 images (each image in two modalities and four graders who graded each image twice). Results For STGD assessments the reliability for confocal and split-detector AOSLO was 67.9% and 95.9%, respectively, and the repeatability was 71.2% and 97.3%, respectively. The differences in the measured cone density values between modalities were statistically significant for one grader. For RPGR assessments the reliability for confocal and split-detector AOSLO was 22.1% and 88.5%, respectively, and repeatability was 63.2% and 94.5%, respectively. The differences in cone density between modalities were statistically significant for all graders. Conclusions Split-detector AOSLO greatly improved the reliability and repeatability of cone density measurements in both disorders and will be valuable for natural history studies and clinical trials using AOSLO. However, it appears that these indices may be disease dependent, implying the need for similar investigations in other conditions. PMID:28738413
Joint Probability Models of Radiology Images and Clinical Annotations
ERIC Educational Resources Information Center
Arnold, Corey Wells
2009-01-01
Radiology data, in the form of images and reports, is growing at a high rate due to the introduction of new imaging modalities, new uses of existing modalities, and the growing importance of objective image information in the diagnosis and treatment of patients. This increase has resulted in an enormous set of image data that is richly annotated…
Evaluation of osteoarthritis progression using polarization-sensitive optical coherence tomography
NASA Astrophysics Data System (ADS)
Nassif, Nader A.; Pierce, Mark C.; Park, B. Hyle; Cense, Barry; de Boer, Johannes F.
2004-07-01
Osteoarthritis is a prevalent medical condition that presents a diagnostic and therapeutic challenge to physicians today because of the inability to assess the integrity of the articular cartilage early in the disease. Polarization sensitive optical coherence tomography (PS-OCT) is a high resolution, non-contact imaging modality that provides cross-sectional images with additional information regarding the integrity of the collagen matrix. Using PS-OCT to image provides information regarding thickness of the articular cartilage and gives an index of biochemical changes based on alterations in optical properties (i.e. birefringence) of the tissue. We demonstrate initial experiments performed on specimens collected following total knee replacement surgery. Articular cartilage was imaged using a 1310 nm PS-OCT system where both intensity and phase images were acquired. PS-OCT images were compared with histology, and the changes in tissue optical properties were characterized. Analysis of the intensity images demonstrates differences between healthy and diseased cartilage surface and thickness. Phase maps of the tissue demonstrated distinct differences between healthy and diseased tissue. PS-OCT was able to image a gradual loss of birefringence as the tissue became more diseased. In this way, determining the rate of change of the phase provides a quantitative measure of pathology. Thus, imaging and evaluation of osteoarthritis using PS-OCT can be a useful means of quantitative assessment of the disease.
Molecular imaging in the framework of personalized cancer medicine.
Belkić, Dzevad; Belkić, Karen
2013-11-01
With our increased understanding of cancer cell biology, molecular imaging offers a strategic bridge to oncology. This complements anatomic imaging, particularly magnetic resonance (MR) imaging, which is sensitive but not specific. Among the potential harms of false positive findings is lowered adherence to recommended surveillance post-therapy and by persons at increased cancer risk. Positron emission tomography (PET) plus computerized tomography (CT) is the molecular imaging modality most widely used in oncology. In up to 40% of cases, PET-CT leads to changes in therapeutic management. Newer PET tracers can detect tumor hypoxia, bone metastases in androgen-sensitive prostate cancer, and human epidermal growth factor receptor type 2 (HER2)-expressive tumors. Magnetic resonance spectroscopy provides insight into several metabolites at the same time. Combined with MRI, this yields magnetic resonance spectroscopic imaging (MRSI), which does not entail ionizing radiation and is thus suitable for repeated monitoring. Using advanced signal processing, quantitative information can be gleaned about molecular markers of brain, breast, prostate and other cancers. Radiation oncology has benefited from molecular imaging via PET-CT and MRSI. Advanced mathematical approaches can improve dose planning in stereotactic radiosurgery, stereotactic body radiotherapy and high dose-rate brachytherapy. Molecular imaging will likely impact profoundly on clinical decision making in oncology. Molecular imaging via MR could facilitate early detection especially in persons at high risk for specific cancers.
SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters.
Xiao, Ming; Lin, Liang; Li, Zefan; Liu, Jie; Hong, Senlian; Li, Yaya; Zheng, Meiling; Duan, Xuanming; Chen, Xing
2014-08-01
Live imaging of biomolecules with high specificity and sensitivity as well as minimal perturbation is essential for studying cellular processes. Here, we report the development of a bioorthogonal surface-enhanced Raman scattering (SERS) imaging approach that exploits small Raman reporters for visualizing cell-surface biomolecules. The cells were cultured and imaged by SERS microscopy on arrays of Raman-enhancing nanoparticles coated on silicon wafers or glass slides. The Raman reporters including azides, alkynes, and carbondeuterium bonds are small in size and spectroscopically bioorthogonal (background-free). We demonstrated that various cell-surface biomolecules including proteins, glycans, and lipids were metabolically incorporated with the corresponding precursors bearing a Raman reporter and visualized by SERS microscopy. The coupling of SERS microscopy with bioorthogonal Raman reporters expands the capabilities of live-cell microscopy beyond the modalities of fluorescence and label-free imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging
Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.
2015-01-01
Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288
Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer
2014-01-01
This review article is meant to help biomedical engineers and nonphysical scientists better understand the principles of, and the main trends in modern scanning and imaging modalities used in ophthalmology. It is intended to ease the communication between physicists, medical doctors and engineers, and hopefully encourage “classical” biomedical engineers to generate new ideas and to initiate projects in an area which has traditionally been dominated by optical physics. Most of the methods involved are applicable to other areas of biomedical optics and optoelectronics, such as microscopic imaging, spectroscopy, spectral imaging, opto-acoustic tomography, fluorescence imaging etc., all of which are with potential biomedical application. Although all described methods are novel and important, the emphasis of this review has been placed on three technologies introduced in the 1990’s and still undergoing vigorous development: Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and polarization-sensitive retinal scanning. PMID:24779618
NASA Astrophysics Data System (ADS)
Dontu, S.; Miclos, S.; Savastru, D.; Tautan, M.
2017-09-01
In recent years many optoelectronic techniques have been developed for improvement and the development of devices for tissue analysis. Spectral-Domain Optical Coherence Tomography (SD-OCT) is a new medical interferometric imaging modality that provides depth resolved tissue structure information with resolution in the μm range. However, SD-OCT has its own limitations and cannot offer the biochemical information of the tissue. These data can be obtained with hyperspectral imaging, a non-invasive, sensitive and real time technique. In the present study we have combined Spectral-Domain Optical Coherence Tomography (SD-OCT) with Hyperspectral imaging (HSI) for tissue analysis. The Spectral-Domain Optical Coherence Tomography (SD-OCT) and Hyperspectral imaging (HSI) are two methods that have demonstrated significant potential in this context. Preliminary results using different tissue have highlighted the capabilities of this technique of combinations.
Initial Investigation of preclinical integrated SPECT and MR imaging.
Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan
2010-02-01
Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.
Initial Investigation of Preclinical Integrated SPECT and MR Imaging
Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan
2014-01-01
Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source. PMID:20082527
Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery
NASA Astrophysics Data System (ADS)
Klein, Justin S.; Mitchell, Gregory S.; Cherry, Simon R.
2017-05-01
Cerenkov luminescence imaging (CLI) is a developing imaging modality that detects radiolabeled molecules via visible light emitted during the radioactive decay process. We used a Monte Carlo based computer simulation to quantitatively investigate CLI compared to direct detection of the ionizing radiation itself as an intraoperative imaging tool for assessment of brain tumor margins. Our brain tumor model consisted of a 1 mm spherical tumor remnant embedded up to 5 mm in depth below the surface of normal brain tissue. Tumor to background contrast ranging from 2:1 to 10:1 were considered. We quantified all decay signals (e±, gamma photon, Cerenkov photons) reaching the brain volume surface. CLI proved to be the most sensitive method for detecting the tumor volume in both imaging and non-imaging strategies as assessed by contrast-to-noise ratio and by receiver operating characteristic output of a channelized Hotelling observer.
Dual-Responsive Molecular Probe for Tumor Targeted Imaging and Photodynamic Therapy
Meng, Xiaoqing; Yang, Yueting; Zhou, Lihua; Zhang, li; Lv, Yalin; Li, Sanpeng; Wu, Yayun; Zheng, Mingbin; Li, Wenjun; Gao, Guanhui; Deng, Guanjun; Jiang, Tao; Ni, Dapeng; Gong, Ping; Cai, Lintao
2017-01-01
The precision oncology significantly relies on the development of multifunctional agents to integrate tumor targeting, imaging and therapeutics. In this study, a first small-molecule theranostic probe, RhoSSCy is constructed by conjugating 5′-carboxyrhodamines (Rho) and heptamethine cyanine IR765 (Cy) using a reducible disulfide linker and pH tunable amino-group to realize thiols/pH dual sensing. In vitro experiments verify that RhoSSCy is highly sensitive for quantitative analysis and imaging intracellular pH gradient and biothiols. Furthermore, RhoSSCy shows superb tumor targeted dual-modal imaging via near-infrared fluorescence (NIRF) and photoacoustic (PA). Importantly, RhoSSCy also induces strongly reactive oxygen species for tumor photodynamic therapy (PDT) with robust antitumor activity both in vitro and in vivo. Such versatile small-molecule theranostic probe may be promising for tumor targeted imaging and precision therapy. PMID:28638467
Magnetic resonance imaging of breast implants.
Shah, Mala; Tanna, Neil; Margolies, Laurie
2014-12-01
Silicone breast implants have significantly evolved since their introduction half a century ago, yet implant rupture remains a common and expected complication, especially in patients with earlier-generation implants. Magnetic resonance imaging is the primary modality for assessing the integrity of silicone implants and has excellent sensitivity and specificity, and the Food and Drug Administration currently recommends periodic magnetic resonance imaging screening for silent silicone breast implant rupture. Familiarity with the types of silicone implants and potential complications is essential for the radiologist. Signs of intracapsular rupture include the noose, droplet, subcapsular line, and linguine signs. Signs of extracapsular rupture include herniation of silicone with a capsular defect and extruded silicone material. Specific sequences including water and silicone suppression are essential for distinguishing rupture from other pathologies and artifacts. Magnetic resonance imaging provides valuable information about the integrity of silicone implants and associated complications.
Radiolabeling of Nanoparticles and Polymers for PET Imaging
Stockhofe, Katharina; Postema, Johannes M.; Schieferstein, Hanno; Ross, Tobias L.
2014-01-01
Nanomedicine has become an emerging field in imaging and therapy of malignancies. Nanodimensional drug delivery systems have already been used in the clinic, as carriers for sensitive chemotherapeutics or highly toxic substances. In addition, those nanodimensional structures are further able to carry and deliver radionuclides. In the development process, non-invasive imaging by means of positron emission tomography (PET) represents an ideal tool for investigations of pharmacological profiles and to find the optimal nanodimensional architecture of the aimed-at drug delivery system. Furthermore, in a personalized therapy approach, molecular imaging modalities are essential for patient screening/selection and monitoring. Hence, labeling methods for potential drug delivery systems are an indispensable need to provide the radiolabeled analog. In this review, we describe and discuss various approaches and methods for the labeling of potential drug delivery systems using positron emitters. PMID:24699244
Whole-brain ex-vivo quantitative MRI of the cuprizone mouse model
Hurley, Samuel A.; Vernon, Anthony C.; Torres, Joel; Dell’Acqua, Flavio; Williams, Steve C.R.; Cash, Diana
2016-01-01
Myelin is a critical component of the nervous system and a major contributor to contrast in Magnetic Resonance (MR) images. However, the precise contribution of myelination to multiple MR modalities is still under debate. The cuprizone mouse is a well-established model of demyelination that has been used in several MR studies, but these have often imaged only a single slice and analysed a small region of interest in the corpus callosum. We imaged and analyzed the whole brain of the cuprizone mouse ex-vivo using high-resolution quantitative MR methods (multi-component relaxometry, Diffusion Tensor Imaging (DTI) and morphometry) and found changes in multiple regions, including the corpus callosum, cerebellum, thalamus and hippocampus. The presence of inflammation, confirmed with histology, presents difficulties in isolating the sensitivity and specificity of these MR methods to demyelination using this model. PMID:27833805
Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging
NASA Astrophysics Data System (ADS)
Sharma, Ramesh; Xu, Youwen; Kim, Sung Won; Schueller, Michael J.; Alexoff, David; Smith, S. David; Wang, Wei; Schlyer, David
2013-07-01
Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment.Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment. Electronic supplementary information (ESI) available: Synthesis and functionalization of NPs. Fig. S1, TEM data of NPs before labeling. Fig. S2, magnetization curve of iron-oxide NPs. Fig. S3, radioactivity measurements for 11C-labeled NPs. Fig. S4, TGA data of iron-oxide NPs. Fig. S5-S8, Radio-TLC chromatograms of 11C-labeled NPs. Fig. S9, radio-HPLC chromatograms of supernatant solutions from washing 11C-labeled NPs to check for impurities. See DOI: 10.1039/c3nr02519e
A pain in the bud? Implications of cross-modal sensitivity for pain experience.
Perkins, Monica; de Bruyne, Marien; Giummarra, Melita J
2016-11-01
There is growing evidence that enhanced sensitivity to painful clinical procedures and chronic pain are related to greater sensitivity to other sensory inputs, such as bitter taste. We examined cross-modal sensitivities in two studies. Study 1 assessed associations between bitter taste sensitivity, pain tolerance, and fear of pain in 48 healthy young adults. Participants were classified as non-tasters, tasters and super-tasters using a bitter taste test (6-n-propythiouracil; PROP). The latter group had significantly higher fear of pain (Fear of Pain Questionnaire) than tasters (p=.036, effect size r = .48). There was only a trend for an association between bitter taste intensity ratings and intensity of pain at the point of pain tolerance in a cold pressor test (p=.04). In Study 2, 40 healthy young adults completed the Adolescent/Adult Sensory Profile before rating intensity and unpleasantness of innocuous (33 °C), moderate (41 °C), and high intensity (44 °C) thermal pain stimulations. The sensory-sensitivity subscale was positively correlated with both intensity and unpleasantness ratings. Canonical correlation showed that only sensitivity to audition and touch (not taste/smell) were associated with intensity of moderate and high (not innocuous) thermal stimuli. Together these findings suggest that there are cross-modal associations predominantly between sensitivity to exteroceptive inputs (i.e., taste, touch, sound) and the affective dimensions of pain, including noxious heat and intolerable cold pain, in healthy adults. These cross-modal sensitivities may arise due to greater psychological aversion to salient sensations, or from shared neural circuitry for processing disparate sensory modalities.
Fiber-Optic Surface Temperature Sensor Based on Modal Interference.
Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc
2016-07-28
Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.
NASA Astrophysics Data System (ADS)
Nadkarni, Seemantini K.
2013-12-01
During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.
Neonatal brain resting-state functional connectivity imaging modalities.
Mohammadi-Nejad, Ali-Reza; Mahmoudzadeh, Mahdi; Hassanpour, Mahlegha S; Wallois, Fabrice; Muzik, Otto; Papadelis, Christos; Hansen, Anne; Soltanian-Zadeh, Hamid; Gelovani, Juri; Nasiriavanaki, Mohammadreza
2018-06-01
Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.
Viscous optical clearing agent for in vivo optical imaging
NASA Astrophysics Data System (ADS)
Deng, Zijian; Jing, Lijia; Wu, Ning; lv, Pengyu; Jiang, Xiaoyun; Ren, Qiushi; Li, Changhui
2014-07-01
By allowing more photons to reach deeper tissue, the optical clearing agent (OCA) has gained increasing attention in various optical imaging modalities. However, commonly used OCAs have high fluidity, limiting their applications in in vivo studies with oblique, uneven, or moving surfaces. In this work, we reported an OCA with high viscosity. We measured the properties of this viscous OCA, and tested its successful performances in the imaging of a living animal's skin with two optical imaging modalities: photoacoustic microscopy and optical coherence tomography. Our results demonstrated that the viscous OCA has a great potential in the study of different turbid tissues using various optical imaging modalities.
Computational method for multi-modal microscopy based on transport of intensity equation
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao
2017-02-01
In this paper, we develop the requisite theory to describe a hybrid virtual-physical multi-modal imaging system which yields quantitative phase, Zernike phase contrast, differential interference contrast (DIC), and light field moment imaging simultaneously based on transport of intensity equation(TIE). We then give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens based TIE system, combined with the appropriate post-processing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.
Multi-Modality Imaging in the Evaluation and Treatment of Mitral Regurgitation.
Bouchard, Marc-André; Côté-Laroche, Claudia; Beaudoin, Jonathan
2017-10-13
Mitral regurgitation (MR) is frequent and associated with increased mortality and morbidity when severe. It may be caused by intrinsic valvular disease (primary MR) or ventricular deformation (secondary MR). Imaging has a critical role to document the severity, mechanism, and impact of MR on heart function as selected patients with MR may benefit from surgery whereas other will not. In patients planned for a surgical intervention, imaging is also important to select candidates for mitral valve (MV) repair over replacement and to predict surgical success. Although standard transthoracic echocardiography is the first-line modality to evaluate MR, newer imaging modalities like three-dimensional (3D) transesophageal echocardiography, stress echocardiography, cardiac magnetic resonance (CMR), and computed tomography (CT) are emerging and complementary tools for MR assessment. While some of these modalities can provide insight into MR severity, others will help to determine its mechanism. Understanding the advantages and limitations of each imaging modality is important to appreciate their respective role for MR assessment and help to resolve eventual discrepancies between different diagnostic methods. With the increasing use of transcatheter mitral procedures (repair or replacement) for high-surgical-risk patients, multimodality imaging has now become even more important to determine eligibility, preinterventional planning, and periprocedural guidance.
Papayiannis, Vassilis; Tsaousis, Konstantinos T; Kouskouras, Constantinos A; Haritanti, Afroditi; Diakonis, Vasilios F; Tsinopoulos, Ioannis T
2017-01-01
Objective To investigate the homogeneity and vascularity of choroidal melanoma through magnetic resonance imaging (MRI) and brightness modulation (B-mode) ultrasound scan and their correlation with dimensions of tumor, as well as to measure the sensitivity of both modalities in retinal detachment (RD) detection. Materials and methods This retrospective chart review included patients diagnosed with choroidal melanoma. All these patients underwent MRI scans using T2-weighted (T2-WI) and T1-weighted (T1-WI) sequences, before and after an intravenous injection of paramagnetic contrast material. The patients were also examined using a B-mode ultrasound scan, and the results from both modalities were compared (tumor homogeneity, tumor height, tumor base diameter, and tumor vascularity). Results Forty-two patients (mean age=65.33±12.51 years) with choroidal melanoma were included in the study. Homogeneity was confirmed in 16 patients through ultrasound scan, in 19 patients through T1-WI sequence, in 21 patients through T2-WI sequence, and in 25 patients through T1-WI sequence + contrast (gadolinium). Patients with homogenous tumors presented with lower (P=0.0045) mean height than that of those with nonhomogenous tumors, whereas no statistically significant difference was found for base diameter measurements (P=0.056). Patients with tumors of high vascularity presented with greater mean height (P=0.000638) and greater mean base diameter compared with those with tumors of low vascularity (P=0.019543). RD was detected in 26 patients through T1-WI sequence, in 13 patients through T2-WI sequence, in 26 patients through T1-WI sequence + contrast, and in 32 patients through ultrasound scan, which proved to be the most sensitive modality. Conclusion The height of choroidal melanoma was positively correlated with tumor’s homogeneity. Melanomas of greater height were found to be less homogenous, due to increased degeneration and higher occurrence of intratumoral hemorrhage. In addition, choroidal melanoma’s height was also positively correlated with the level of its vascularity. Finally, ultrasound scan was found to be more sensitive than MRI in the detection of RD. PMID:28860706
Seymer, A; Keinrath, P; Holzmannhofer, J; Pirich, C; Hergan, K; Meissnitzer, M W
2015-01-01
Objective: To prospectively analyse the diagnostic value of semi-quantitative breast-specific gamma imaging (BSGI) in the work-up of suspicious breast lesions compared with that of mammography (MG), breast ultrasound and MRI of the breast. Methods: Within a 15-month period, 67 patients with 92 breast lesions rated as Category IV or V according to the breast imaging reporting and data system detected with MG and/or ultrasound were included into the study. After the injection of 740–1110 MBq of Technetium-99m (99mTc) SestaMIBI intravenously, scintigrams were obtained in two projections comparable to MG. The BSGI was analysed visually and semi-quantitatively by calculating a relative uptake factor (X). With the exception of two patients with cardiac pacemakers, all patients underwent 3-T breast MRI. Biopsy results were obtained as the reference standard in all patients. Sensitivity, specificity, positive- and negative-predictive values, accuracy and area under the curve were calculated for each modality. Results: Among the 92 lesions, 67 (72.8%) were malignant. 60 of the 67 cancers of any size were detected by BSGI with an overall sensitivity of 90%, only exceeded by ultrasound with a sensitivity of 99%. The sensitivity of BSGI for lesions <1 cm declined significantly to 60%. Overall specificity of ultrasound was only 20%. Specificity, accuracy and positive-predictive value were the highest for BSGI (56%, 80% and 85%, respectively). X was significantly higher for malignant lesions (mean, 4.27) and differed significantly between ductal types (mean, 4.53) and the other histopathological entities (mean, 3.12). Conclusion: Semi-quantitative BSGI with calculation of the relative uptake factor (X) can help to characterize breast lesions. BSGI negativity may obviate the need for biopsy of breast lesions >1 cm with low or intermediate prevalence for malignancy. Advances in knowledge: Compared with morphological imaging modalities, specificity, positive-predictive value for malignancy and accuracy were the highest for BSGI in our study. BSGI negativity may support the decision not to biopsy in selected lesions with a low or low-to-moderate pre-test probability for malignancy. PMID:25882690
Multimodal Diffuse Optical Imaging
NASA Astrophysics Data System (ADS)
Intes, Xavier; Venugopal, Vivek; Chen, Jin; Azar, Fred S.
Diffuse optical imaging, particularly diffuse optical tomography (DOT), is an emerging clinical modality capable of providing unique functional information, at a relatively low cost, and with nonionizing radiation. Multimodal diffuse optical imaging has enabled a synergistic combination of functional and anatomical information: the quality of DOT reconstructions has been significantly improved by incorporating the structural information derived by the combined anatomical modality. In this chapter, we will review the basic principles of diffuse optical imaging, including instrumentation and reconstruction algorithm design. We will also discuss the approaches for multimodal imaging strategies that integrate DOI with clinically established modalities. The merit of the multimodal imaging approaches is demonstrated in the context of optical mammography, but the techniques described herein can be translated to other clinical scenarios such as brain functional imaging or muscle functional imaging.
Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography
Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael
2012-01-01
We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108
Michaud, Laure; Balogova, Sona; Burgess, Alice; Ohnona, Jessica; Huchet, Virginie; Kerrou, Khaldoun; Lefèvre, Marine; Tassart, Marc; Montravers, Françoise; Périé, Sophie; Talbot, Jean-Noël
2015-01-01
Abstract We compared 18F-fluorocholine hybrid positron emission tomography/X-ray computed tomography (FCH-PET/CT) with ultrasonography (US) and scintigraphy in patients with hyperparathyroidism and discordant, or equivocal results of US and 123I/99mTc-sesta-methoxyisobutylisonitrile (sestaMIBI) dual-phase parathyroid scintigraphy. FCH-PET/CT was performed in 17 patients with primary (n = 11) lithium induced (n = 1) or secondary hyperparathyroidism (1 dialyzed, 4 renal-transplanted). The reference standard was based on results of surgical exploration and histopathological examination. The results of imaging modalities were evaluated, on site and by masked reading, on per-patient and per-lesion bases. In a first approach, equivocal images/foci were considered as negative. On a per-patient level, the sensitivity was for US 38%, for scintigraphy 69% by open and 94% by masked reading, and for FCH-PET/CT 88% by open and 94% by masked reading. On a per-lesion level, sensitivity was for US 42%, for scintigraphy 58% by open and 83% by masked reading, and for FCH-PET/CT 88% by open and 96% by masked reading. One ectopic adenoma was missed by the 3 imaging modalities. Considering equivocal images/foci as positive increased the accuracy of the open reading of scintigraphy or of FCH-PET/CT, but not of US. FCH-PET/CT was significantly superior to US in all approaches, whereas it was more sensitive than scintigraphy only for open reading considering equivocal images/foci as negative (P = 0.04). FCH uptake was more intense in adenomas than in hyperplastic parathyroid glands. Thyroid lesions were suspected in 9 patients. They may induce false-positive results as in one case of oncocytic thyroid adenoma, or false-negative results as in one case of intrathyroidal parathyroid adenoma. Thyroid cancer (4 cases) can be visualized with FCH as with 99mTc-sestaMIBI, but the intensity of uptake was moderate, similar to that of parathyroid hyperplasia. This pilot study confirmed that FCH-PET/CT is an adequate imaging tool in patients with primary or secondary hyperparathyroidism, since both adenomas and hyperplastic parathyroid glands can be detected. The sensitivity of FCH-PET/CT was better than that of US and was not inferior to that of dual-phase dual-isotope 123I/99mTc-scintigraphy. Further studies should evaluate whether FCH could replace 99mTc-sestaMIBI as the functional agent for parathyroid imaging, but US would still be useful to identify thyroid lesions. PMID:26469908
Disrupting the old order of imaging.
Jha, Saurabh; Lexa, Frank J
2013-06-01
The purpose of this article is to expand on the economic concepts of creative destruction and disruptive innovation to imagine scenarios in which diagnostic imaging modalities and certain imaging paradigms can be rendered obsolete. Potential disrupters of imaging are novel drugs, clinical trials, accurate biomarkers, and government regulations. A taxonomic schema can be used to better predict the decline of certain imaging modalities.
A prototype PET/SPECT/X-rays scanner dedicated for whole body small animal studies.
Rouchota, Maritina; Georgiou, Maria; Fysikopoulos, Eleftherios; Fragogeorgi, Eirini; Mikropoulos, Konstantinos; Papadimitroulas, Panagiotis; Kagadis, George; Loudos, George
2017-01-01
To present a prototype tri-modal imaging system, consisting of a single photon emission computed tomography (SPET), a positron emission tomography (PET), and a computed tomography (CT) subsystem, evaluated in planar mode. The subsystems are mounted on a rotating gantry, so as to be able to allow tomographic imaging in the future. The system, designed and constructed by our group, allows whole body mouse imaging of competent performance and is currently, to the best of our knowledge, unequaled in a national and regional level. The SPET camera is based on two Position Sensitive Photomultiplier Tubes (PSPMT), coupled to a pixilated Sodium Iodide activated with Thallium (NaI(Tl)) scintillator, having an active area of 5x10cm 2 . The dual head PET camera is also based on two pairs of PSPMT, coupled to pixelated berillium germanium oxide (BGO) scintillators, having an active area of 5x10cm 2 . The X-rays system consists of a micro focus X-rays tube and a complementary metal-oxide-semiconductor (CMOS) detector, having an active area of 12x12cm 2 . The scintigraphic mode has a spatial resolution of 1.88mm full width at half maximum (FWHM) and a sensitivity of 107.5cpm/0.037MBq at the collimator surface. The coincidence PET mode has an average spatial resolution of 3.5mm (FWHM) and a peak sensitivity of 29.9cpm/0.037MBq. The X-rays spatial resolution is 3.5lp/mm and the contrast discrimination function value is lower than 2%. A compact tri-modal system was successfully built and evaluated for planar mode operation. The system has an efficient performance, allowing accurate and informative anatomical and functional imaging, as well as semi-quantitative results. Compared to other available systems, it provides a moderate but comparable performance, at a fraction of the cost and complexity. It is fully open, scalable and its main purpose is to support groups on a national and regional level and provide an open technological platform to study different detector components and acquisition strategies.
NASA Astrophysics Data System (ADS)
Wan, Yuqing
Approximately 240,890 men were diagnosed with prostate cancer and 33,720 men were expected to die from it in the year of 2011 in the United States. Unfortunately, the current clinical diagnostic methods (e.g. prostate-specific antigen (PSA), digital rectal examination, ultrasound guided biopsy) used for detecting and staging prostate cancer are limited. It has been shown that cancerous prostate tissue has significantly different electrical properties when compared to benign tissues. Based on these electrical property findings, a transrectal electrical impedance tomography (TREIT) system is proposed as a novel prostate imaging modality. An ultrasound probe is incorporated with TREIT to achieve anatomic information of the prostate and guide electrical property reconstruction. Without the guidance of the ultrasound, the TREIT system can easily discern high contrast inclusions of 1 cm in diameter at distances centered at two times the radius of the TREIT probe away from the probe surface. Furthermore, we have demonstrated that our system is able to detect low contrast inclusions. With the guidance of the ultrasound, our system is capable of detecting a plastic inclusion embedded in a gelatin phantom, indicating the potential to detect cancer. In addition, the results of preliminary in vivo clinical trials using the imaging system are also presented in the thesis. After collecting data for a total 66 patients, we demonstrated that the in vivo conductivity of cancerous tissue is significantly greater than that of benign tissue (p=0.0015 at 400 Hz) and the conductivity of BPH tissue is significantly lower than that of normal tissue (p=0.0009 at 400 Hz). Additionally at 25.6 kHz, the dual-modal imaging system is able to differentiate cancerous tissue from benign tissue with sensitivity of 0.6012 and specificity of 0.5498, normal tissue from BPH tissue with sensitivity of 0.6085 and specificity of 0.5813 and differentiate cancerous tissue from BPH tissue with sensitivity of 0.6510 and specificity of 0.6539, respectively. This research demonstrated the potential and feasibility of detecting the prostate cancer by measuring electrical properties. We hope to incorporate needle electrodes to improve the system performance in the future.
Helmberger, T; Gregor, M; Holzknecht, N; Rau, H; Scheidler, J; Reiser, M
2000-03-01
Evaluation of the diagnostic efficacy and cost-benefit of contrast enhanced CT (CT) and MRI pre- and post-SPIO-particles in focal hepatic disease with consideration of therapeutic outcome. In 52 patients with the suspicion of primary or secondary hepatic malignancy, biphasic spiral CT and breath-hold gradient-echo T1- and fast spin-echo T2-weighted MRI pre- and post-iron oxide administration (1.5 T, body-phased-array coil) were compared. The number of hepatic lesions and the related diagnoses resulting from each imaging modality were recorded and statistically correlated to the final diagnoses established by biopsy/OP (34/52), long term follow-up of 12 months (18/52), and a consensus reading of all imaging modalities considering all clinical imaging information. The most likely induced therapy resulting from each imaging test was correlated to the final therapy. Based on data from the hospitals accountants, the therapy-related costs were estimated without hospitalization costs. In 34/52 (65.4%) of the cases the correct diagnosis was primarily stated by CT (sensitivity [se.] 85.2%, specificity [sp.] 44.0%). In additional 10/52 of the cases unenhanced MRI (se. 91.4%, sp. 75.0%) enabled correct diagnoses, and in another 6 cases the diagnosis was established only by SPIO-MRI (se. 100%, sp. 86.7%). Considering the possible therapeutic recommendation arising from each modality, CT would have induced needles therapy costs of 191,042 DM, unenhanced MRI of 171,035 DM, and SPIO-MRI of 7,311 DM. In comparison to the real therapy costs of 221,873 DM, this would have corresponded to an unnecessary increase of therapy costs of 86.1%, 77.1%, and 3.3%, respectively. In two cases (1 hemangioma, 1 regenerative nodule) all modalities failed, causing unnecessary surgery in one patient. In this problem-oriented scenario unenhanced and SPIO-enhanced MRI proved to be superior to CT regarding diagnostic efficacy. The cost-benefit resulted mainly due to preserving patients from unnecessary surgical procedures.
Weis, Jared A.; Flint, Katelyn M.; Sanchez, Violeta; Yankeelov, Thomas E.; Miga, Michael I.
2015-01-01
Abstract. Cancer progression has been linked to mechanics. Therefore, there has been recent interest in developing noninvasive imaging tools for cancer assessment that are sensitive to changes in tissue mechanical properties. We have developed one such method, modality independent elastography (MIE), that estimates the relative elastic properties of tissue by fitting anatomical image volumes acquired before and after the application of compression to biomechanical models. The aim of this study was to assess the accuracy and reproducibility of the method using phantoms and a murine breast cancer model. Magnetic resonance imaging data were acquired, and the MIE method was used to estimate relative volumetric stiffness. Accuracy was assessed using phantom data by comparing to gold-standard mechanical testing of elasticity ratios. Validation error was <12%. Reproducibility analysis was performed on animal data, and within-subject coefficients of variation ranged from 2 to 13% at the bulk level and 32% at the voxel level. To our knowledge, this is the first study to assess the reproducibility of an elasticity imaging metric in a preclinical cancer model. Our results suggest that the MIE method can reproducibly generate accurate estimates of the relative mechanical stiffness and provide guidance on the degree of change needed in order to declare biological changes rather than experimental error in future therapeutic studies. PMID:26158120
NASA Astrophysics Data System (ADS)
Eclancher, Bernard; Chambron, Jacques; Dumitresco, Barbu; Karman, Miklos; Pszota, Agnes; Simon, Atilla; Didon-Poncelet, Anna; Demangeat, Jean
2002-04-01
The quantification of rapid hemodynamic reactions to wide and slow breathing movements has been performed, by two modalities (gamma) -left ventriculography of 99mTc-labeled blood volume, in anterior oblique incidence on standing and even exercising healthy volunteers and cardiac patients. A highly sensitive stethoscope delivered whole (gamma) -counts acquired at 30 msec intervals in a square field of view including the left ventricle, in a one dimensional low resolution imaging mode for beat to beat analysis. A planar 2D (gamma) -camera imaging of the same cardiac area was then performed without cardiac gating for alternate acquisitions during deep inspiration and deep expiration, completed by a 3D MRI assessment of the stethoscope detection field. Young healthy volunteers displayed wide variations of diastolic times and stroke volumes, as a result of enhanced baroreflex control, together with +/- 16% variations of the stethoscope's background blood volume counts. Any of the components of these responses were shifted, abolished or even inverted as a result of either obesity, hypertension, aging or cardiac pathologies. The assessment of breathing control of the cardiovascular system by the beat to beat (gamma) -ventriculography combined with nuclear 2D and 3D MRI imaging is a kinetic method allowing the detection of functional anomalies in still ambulatory patients.
The taste-visual cross-modal Stroop effect: An event-related brain potential study.
Xiao, X; Dupuis-Roy, N; Yang, X L; Qiu, J F; Zhang, Q L
2014-03-28
Event-related potentials (ERPs) were recorded to explore, for the first time, the electrophysiological correlates of the taste-visual cross-modal Stroop effect. Eighteen healthy participants were presented with a taste stimulus and a food image, and asked to categorize the image as "sweet" or "sour" by pressing the relevant button as quickly as possible. Accurate categorization of the image was faster when it was presented with a congruent taste stimulus (e.g., sour taste/image of lemon) than with an incongruent one (e.g., sour taste/image of ice cream). ERP analyses revealed a negative difference component (ND430-620) between 430 and 620ms in the taste-visual cross-modal Stroop interference. Dipole source analysis of the difference wave (incongruent minus congruent) indicated that two generators localized in the prefrontal cortex and the parahippocampal gyrus contributed to this taste-visual cross-modal Stroop effect. This result suggests that the prefrontal cortex is associated with the process of conflict control in the taste-visual cross-modal Stroop effect. Also, we speculate that the parahippocampal gyrus is associated with the process of discordant information in the taste-visual cross-modal Stroop effect. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Development of a c-scan photoacoutsic imaging probe for prostate cancer detection
NASA Astrophysics Data System (ADS)
Valluru, Keerthi S.; Chinni, Bhargava K.; Rao, Navalgund A.; Bhatt, Shweta; Dogra, Vikram S.
2011-03-01
Prostate cancer is the second leading cause of death in American men after lung cancer. The current screening procedures include Digital Rectal Exam (DRE) and Prostate Specific Antigen (PSA) test, along with Transrectal Ultrasound (TRUS). All suffer from low sensitivity and specificity in detecting prostate cancer in early stages. There is a desperate need for a new imaging modality. We are developing a prototype transrectal photoacoustic imaging probe to detect prostate malignancies in vivo that promises high sensitivity and specificity. To generate photoacoustic (PA) signals, the probe utilizes a high energy 1064 nm laser that delivers light pulses onto the prostate at 10Hz with 10ns duration through a fiber optic cable. The designed system will generate focused C-scan planar images using acoustic lens technology. A 5 MHz custom fabricated ultrasound sensor array located in the image plane acquires the focused PA signals, eliminating the need for any synthetic aperture focusing. The lens and sensor array design was optimized towards this objective. For fast acquisition times, a custom built 16 channel simultaneous backend electronics PCB has been developed. It consists of a low-noise variable gain amplifier and a 16 channel ADC. Due to the unavailability of 2d ultrasound arrays, in the current implementation several B-scan (depth-resolved) data is first acquired by scanning a 1d array, which is then processed to reconstruct either 3d volumetric images or several C-scan planar images. Experimental results on excised tissue using a in-vitro prototype of this technology are presented to demonstrate the system capability in terms of resolution and sensitivity.
Chang, Melinda Y; Velez, Federico G; Demer, Joseph L; Bonelli, Laura; Quiros, Peter A; Arnold, Anthony C; Sadun, Alfredo A; Pineles, Stacy L
2017-12-01
To identify the most accurate diagnostic imaging modality for classifying pediatric eyes as papilledema (PE) or pseudopapilledema (PPE). Prospective observational study. Nineteen children between the ages of 5 and 18 years were recruited. Five children (10 eyes) with PE, 11 children (19 eyes) with PPE owing to suspected buried optic disc drusen (ODD), and 3 children (6 eyes) with PPE owing to superficial ODD were included. All subjects underwent imaging with B-scan ultrasonography, fundus photography, autofluorescence, fluorescein angiography (FA), optical coherence tomography (OCT) of the retinal nerve fiber layer (RNFL), and volumetric OCT scans through the optic nerve head with standard spectral-domain (SD OCT) and enhanced depth imaging (EDI OCT) settings. Images were read by 3 masked neuro-ophthalmologists, and the final image interpretation was based on 2 of 3 reads. Image interpretations were compared with clinical diagnosis to calculate accuracy and misinterpretation rates of each imaging modality. Accuracy of each imaging technique for classifying eyes as PE or PPE, and misinterpretation rates of each imaging modality for PE and PPE. Fluorescein angiography had the highest accuracy (97%, 34 of 35 eyes, 95% confidence interval 92%-100%) for classifying an eye as PE or PPE. FA of eyes with PE showed leakage of the optic nerve, whereas eyes with suspected buried ODD demonstrated no hyperfluorescence, and eyes with superficial ODD showed nodular staining. Other modalities had substantial likelihood (30%-70%) of misinterpretation of PE as PPE. The best imaging technique for correctly classifying pediatric eyes as PPE or PE is FA. Other imaging modalities, if used in isolation, are more likely to lead to misinterpretation of PE as PPE, which could potentially result in failure to identify a life-threatening disorder causing elevated intracranial pressure and papilledema. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W; Chen, Zhuo Georgia; Fei, Baowei
2015-01-01
Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.
NASA Astrophysics Data System (ADS)
Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W.; Chen, Zhuo Georgia; Fei, Baowei
2015-12-01
Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.
EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma
Timmers, Henri J.; Hindié, Elif; Guillet, Benjamin A.; Neumann, Hartmut P.; Walz, Martin K.; Opocher, Giuseppe; de Herder, Wouter W.; Boedeker, Carsten C.; de Krijger, Ronald R.; Chiti, Arturo; Al-Nahhas, Adil; Pacak, Karel
2016-01-01
Purpose Radionuclide imaging of phaeochromocytomas (PCCs) and paragangliomas (PGLs) involves various functional imaging techniques and approaches for accurate diagnosis, staging and tumour characterization. The purpose of the present guidelines is to assist nuclear medicine practitioners in performing, interpreting and reporting the results of the currently available SPECT and PET imaging approaches. These guidelines are intended to present information specifically adapted to European practice. Methods Guidelines from related fields, issued by the European Association of Nuclear Medicine and the Society of Nuclear Medicine, were taken into consideration and are partially integrated within this text. The same was applied to the relevant literature, and the final result was discussed with leading experts involved in the management of patients with PCC/PGL. The information provided should be viewed in the context of local conditions, laws and regulations. Conclusion Although several radionuclide imaging modalities are considered herein, considerable focus is given to PET imaging which offers high sensitivity targeted molecular imaging approaches. PMID:22926712
A review of performance of near-infrared fluorescence imaging devices used in clinical studies
Zhu, B
2015-01-01
Near-infrared fluorescence (NIRF) molecular imaging holds great promise as a new “point-of-care” medical imaging modality that can potentially provide the sensitivity of nuclear medicine techniques, but without the radioactivity that can otherwise place limitations of usage. Recently, NIRF imaging devices of a variety of designs have emerged in the market and in investigational clinical studies using indocyanine green (ICG) as a non-targeting NIRF contrast agent to demark the blood and lymphatic vasculatures both non-invasively and intraoperatively. Approved in the USA since 1956 for intravenous administration, ICG has been more recently used off label in intradermal or subcutaneous administrations for fluorescence imaging of the lymphatic vasculature and lymph nodes. Herein, we summarize the devices of a variety of designs, summarize their performance in lymphatic imaging in a tabular format and comment on necessary efforts to develop standards for device performance to compare and use these emerging devices in future, NIRF molecular imaging studies. PMID:25410320
[Redox Molecular Imaging Using ReMI].
Hyodo, Fuminori; Ito, Shinji; Utsumi, Hideo
2015-01-01
Tissue redox status is one of the most important parameters to maintain homeostasis in the living body. Numerous redox reactions are involved in metabolic processes, such as energy production in the mitochondrial electron transfer system. A variety of intracellular molecules such as reactive oxygen species, glutathione, thioredoxins, NADPH, flavins, and ascorbic acid may contribute to the overall redox status in tissues. Breakdown of redox balance may lead to oxidative stress and can induce many pathological conditions such as cancer, neurological disorders, and aging. Therefore imaging of tissue redox status and monitoring antioxidant levels in living organisms can be useful in the diagnosis of disease states and assessment of treatment response. In vivo redox molecular imaging technology such as electron spin resonance imaging (ESRI), magnetic resonance imaging (MRI), and dynamic nuclear polarization (DNP)-MRI (redox molecular imaging; ReMI) is emerging as a viable redox status imaging modality. This review focuses on the application of magnetic resonance technologies using MRI or DNP-MRI and redox-sensitive contrast agents.
Magnetic resonance features of cerebral malaria.
Yadav, P; Sharma, R; Kumar, S; Kumar, U
2008-06-01
Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm(2), and apparent diffusion coefficient (ADC) maps were obtained. Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients.
NASA Astrophysics Data System (ADS)
Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.
2018-02-01
While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.
Innovations in diagnostic imaging of localized prostate cancer.
Pummer, Karl; Rieken, Malte; Augustin, Herbert; Gutschi, Thomas; Shariat, Shahrokh F
2014-08-01
In recent years, various imaging modalities have been developed to improve diagnosis, staging, and localization of early-stage prostate cancer (PCa). A MEDLINE literature search of the time frame between 01/2007 and 06/2013 was performed on imaging of localized PCa. Conventional transrectal ultrasound (TRUS) is mainly used to guide prostate biopsy. Contrast-enhanced ultrasound is based on the assumption that PCa tissue is hypervascularized and might be better identified after intravenous injection of a microbubble contrast agent. However, results on its additional value for cancer detection are controversial. Computer-based analysis of the transrectal ultrasound signal (C-TRUS) appears to detect cancer in a high rate of patients with previous biopsies. Real-time elastography seems to have higher sensitivity, specificity, and positive predictive value than conventional TRUS. However, the method still awaits prospective validation. The same is true for prostate histoscanning, an ultrasound-based method for tissue characterization. Currently, multiparametric MRI provides improved tissue visualization of the prostate, which may be helpful in the diagnosis and targeting of prostate lesions. However, most published series are small and suffer from variations in indication, methodology, quality, interpretation, and reporting. Among ultrasound-based techniques, real-time elastography and C-TRUS seem the most promising techniques. Multiparametric MRI appears to have advantages over conventional T2-weighted MRI in the detection of PCa. Despite these promising results, currently, no recommendation for the routine use of these novel imaging techniques can be made. Prospective studies defining the value of various imaging modalities are urgently needed.
Chen, Chuang; Zhao, Hui; Fu, Xu; Huang, LuoShun; Tang, Min; Yan, XiaoPeng; Sun, ShiQuan; Jia, WenJun; Mao, Liang; Shi, Jiong; Chen, Jun; He, Jian; Zhu, Jin; Qiu, YuDong
2017-05-02
Accurate gross classification through imaging is critical for determination of hepatocellular carcinoma (HCC) patient prognoses and treatment strategies. The present retrospective study evaluated the utility of contrast-enhanced computed tomography (CE-CT) combined with gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (EOB-MRI) for diagnosis and classification of HCCs prior to surgery. Ninety-four surgically resected HCC nodules were classified as simple nodular (SN), SN with extranodular growth (SN-EG), confluent multinodular (CMN), or infiltrative (IF) types. SN-EG, CMN and IF samples were grouped as non-SN. The abilities of the two imaging modalities to differentiate non-SN from SN HCCs were assessed using the EOB-MRI hepatobiliary phase and CE-CT arterial, portal, and equilibrium phases. Areas under the ROC curves for non-SN diagnoses were 0.765 (95% confidence interval [CI]: 0.666-0.846) for CE-CT, 0.877 (95% CI: 0.793-0.936) for EOB-MRI, and 0.908 (95% CI: 0.830-0.958) for CE-CT plus EOB-MRI. Sensitivities, specificities, and accuracies with respect to identification of non-SN tumors of all sizes were 71.4%, 81.6%, and 75.5% for CE-CT; 96.4%, 78.9%, and 89.3% for EOB-MRI; and 98.2%, 84.2%, and 92.5% for CE-CT plus EOB-MRI. These results show that CE-CT combined with EOB-MRI offers a more accurate imaging evaluation for HCC gross classification than either modality alone.
Cross-Modal Retrieval With CNN Visual Features: A New Baseline.
Wei, Yunchao; Zhao, Yao; Lu, Canyi; Wei, Shikui; Liu, Luoqi; Zhu, Zhenfeng; Yan, Shuicheng
2017-02-01
Recently, convolutional neural network (CNN) visual features have demonstrated their powerful ability as a universal representation for various recognition tasks. In this paper, cross-modal retrieval with CNN visual features is implemented with several classic methods. Specifically, off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval. To further enhance the representational ability of CNN visual features, based on the pretrained CNN model on ImageNet, a fine-tuning step is performed by using the open source Caffe CNN library for each target data set. Besides, we propose a deep semantic matching method to address the cross-modal retrieval problem with respect to samples which are annotated with one or multiple labels. Extensive experiments on five popular publicly available data sets well demonstrate the superiority of CNN visual features for cross-modal retrieval.
Fusion Imaging: A Novel Staging Modality in Testis Cancer
Sterbis, Joseph R.; Rice, Kevin R.; Javitt, Marcia C.; Schenkman, Noah S.; Brassell, Stephen A.
2010-01-01
Objective: Computed tomography and chest radiographs provide the standard imaging for staging, treatment, and surveillance of testicular germ cell neoplasms. Positron emission tomography has recently been utilized for staging, but is somewhat limited in its ability to provide anatomic localization. Fusion imaging combines the metabolic information provided by positron emission tomography with the anatomic precision of computed tomography. To the best of our knowledge, this represents the first study of the effectiveness using fusion imaging in evaluation of patients with testis cancer. Methods: A prospective study of 49 patients presenting to Walter Reed Army Medical Center with testicular cancer from 2003 to 2009 was performed. Fusion imaging was compared with conventional imaging, tumor markers, pathologic results, and clinical follow-up. Results: There were 14 true positives, 33 true negatives, 1 false positive, and 1 false negative. Sensitivity, specificity, positive predictive value, and negative predictive value were 93.3, 97.0, 93.3, and 97.0% respectively. In 11 patient scenarios, fusion imaging differed from conventional imaging. Utility was found in superior lesion detection compared to helical computed tomography due to anatomical/functional image co-registration, detection of micrometastasis in lymph nodes (pathologic nodes < 1cm), surveillance for recurrence post-chemotherapy, differentiating fibrosis from active disease in nodes < 2.5cm, and acting as a quality assurance measure to computed tomography alone. Conclusions: In addition to demonstrating a sensitivity and specificity comparable or superior to conventional imaging, fusion imaging shows promise in providing additive data that may assist in clinical decision-making. PMID:21103077
Fusion imaging: a novel staging modality in testis cancer.
Sterbis, Joseph R; Rice, Kevin R; Javitt, Marcia C; Schenkman, Noah S; Brassell, Stephen A
2010-11-05
Computed tomography and chest radiographs provide the standard imaging for staging, treatment, and surveillance of testicular germ cell neoplasms. Positron emission tomography has recently been utilized for staging, but is somewhat limited in its ability to provide anatomic localization. Fusion imaging combines the metabolic information provided by positron emission tomography with the anatomic precision of computed tomography. To the best of our knowledge, this represents the first study of the effectiveness using fusion imaging in evaluation of patients with testis cancer. A prospective study of 49 patients presenting to Walter Reed Army Medical Center with testicular cancer from 2003 to 2009 was performed. Fusion imaging was compared with conventional imaging, tumor markers, pathologic results, and clinical follow-up. There were 14 true positives, 33 true negatives, 1 false positive, and 1 false negative. Sensitivity, specificity, positive predictive value, and negative predictive value were 93.3, 97.0, 93.3, and 97.0% respectively. In 11 patient scenarios, fusion imaging differed from conventional imaging. Utility was found in superior lesion detection compared to helical computed tomography due to anatomical/functional image co-registration, detection of micrometastasis in lymph nodes (pathologic nodes < 1cm), surveillance for recurrence post-chemotherapy, differentiating fibrosis from active disease in nodes < 2.5cm, and acting as a quality assurance measure to computed tomography alone. In addition to demonstrating a sensitivity and specificity comparable or superior to conventional imaging, fusion imaging shows promise in providing additive data that may assist in clinical decision-making.
Cerenkov imaging - a new modality for molecular imaging
Thorek, Daniel LJ; Robertson, Robbie; Bacchus, Wassifa A; Hahn, Jaeseung; Rothberg, Julie; Beattie, Bradley J; Grimm, Jan
2012-01-01
Cerenkov luminescence imaging (CLI) is an emerging hybrid modality that utilizes the light emission from many commonly used medical isotopes. Cerenkov radiation (CR) is produced when charged particles travel through a dielectric medium faster than the speed of light in that medium. First described in detail nearly 100 years ago, CR has only recently applied for biomedical imaging purposes. The modality is of considerable interest as it enables the use of widespread luminescence imaging equipment to visualize clinical diagnostic (all PET radioisotopes) and many therapeutic radionuclides. The amount of light detected in CLI applications is significantly lower than other that in other optical imaging techniques such as bioluminescence and fluorescence. However, significant advantages include the use of approved radiotracers and lack of an incident light source, resulting in high signal to background ratios. As well, multiple subjects may be imaged concurrently (up to 5 in common bioluminescent equipment), conferring both cost and time benefits. This review summarizes the field of Cerenkov luminescence imaging to date. Applications of CLI discussed include intraoperative radionuclide-guided surgery, monitoring of therapeutic efficacy, tomographic optical imaging capabilities, and the ability to perform multiplexed imaging using fluorophores excited by the Cerenkov radiation. While technical challenges still exist, Cerenkov imaging has materialized as an important molecular imaging modality. PMID:23133811
Design analysis of an MPI human functional brain scanner
Mason, Erica E.; Cooley, Clarissa Z.; Cauley, Stephen F.; Griswold, Mark A.; Conolly, Steven M.; Wald, Lawrence L.
2017-01-01
MPI’s high sensitivity makes it a promising modality for imaging brain function. Functional contrast is proposed based on blood SPION concentration changes due to Cerebral Blood Volume (CBV) increases during activation, a mechanism utilized in fMRI studies. MPI offers the potential for a direct and more sensitive measure of SPION concentration, and thus CBV, than fMRI. As such, fMPI could surpass fMRI in sensitivity, enhancing the scientific and clinical value of functional imaging. As human-sized MPI systems have not been attempted, we assess the technical challenges of scaling MPI from rodent to human brain. We use a full-system MPI simulator to test arbitrary hardware designs and encoding practices, and we examine tradeoffs imposed by constraints that arise when scaling to human size as well as safety constraints (PNS and central nervous system stimulation) not considered in animal scanners, thereby estimating spatial resolutions and sensitivities achievable with current technology. Using a projection FFL MPI system, we examine coil hardware options and their implications for sensitivity and spatial resolution. We estimate that an fMPI brain scanner is feasible, although with reduced sensitivity (20×) and spatial resolution (5×) compared to existing rodent systems. Nonetheless, it retains sufficient sensitivity and spatial resolution to make it an attractive future instrument for studying the human brain; additional technical innovations can result in further improvements. PMID:28752130
Shima, Toshihide; Mizuno, Masayuki; Otsuji, Hideaki; Mizuno, Chiemi; Obata, Hirozumi; Park, Hyohun; Nakajo, Shinobu; Okanoue, Takeshi
2005-09-01
The aim of this study was to assess and compare the sensitivity of power Doppler sonography, contrast-enhanced sonography, plain computed tomography (CT), and dynamic magnetic resonance imaging (MRI) for detecting hepatocellular carcinoma (HCC) nodules incompletely treated with transcatheter arterial embolization (TAE). A total of 63 unresectable HCC nodules were examined in this study. The HCCs were treated with TAE. All patients underwent plain CT, power Doppler sonography, contrast-enhanced harmonic power Doppler sonography, and dynamic MRI 1 week after TAE. The sensitivity of each modality to incompletely treated HCC nodules was compared. Detection of the residual viable HCC on angiography or tumor biopsy was regarded as the gold standard for the diagnosis of incomplete treatment. Twenty-four nodules (38%) were diagnosed as incompletely treated. The sensitivities of plain CT, power Doppler sonography, contrast-enhanced harmonic power Doppler sonography, and dynamic MRI to these incompletely treated nodules were 42% (10/24), 46% (11/24), 88% (21/24), and 79% (19/24), respectively. Eighty percent (19 nodules) of the 24 incompletely treated nodules were located within a depth of less than 8 cm. The sensitivities of plain CT, power Doppler sonography, contrast-enhanced harmonic power Doppler sonography, and dynamic MRI to these superficial incompletely treated nodules were 37% (7/19), 53% (10/19), 100% (19/19), and 74% (14/19), respectively. In contrast, the sensitivities of each modality to deeply located nodules were 60% (3/5), 20% (1/5), 40% (2/5), and 100% (5/5), respectively. Plain CT and power Doppler sonography had a low sensitivity to HCC nodules incompletely treated with TAE. Except for those that were deeply located, contrast-enhanced harmonic sonography showed the highest sensitivity in detecting incompletely treated HCC nodules.
Cardiovascular applications of magnetic resonance imaging
Pflugfelder, Peter W.; Wisenberg, Gerald; Prato, Frank S.
1985-01-01
Magnetic resonance (MR) imaging is a unique imaging modality that is gaining rapid acceptance for a variety of medical indications. Diagnostic information is obtained noninvasively, without the potential hazards of ionizing radiation. The spatial resolution and anatomic detail of MR imaging rival those of other currently available imaging methods. By gating to an electrocardiographic signal cardiac imaging is possible. Since March 1983 the authors have had experience with cardiac MR imaging in both animals and humans. Cardiac anatomy is well shown by this technique, which allows detection and characterization of intracardiac masses, congenital heart disease and anomalies of the great vessels. Myocardial infarction has been detected in both animals and humans without the use of contrast agents, and acute cardiac transplant rejection has been visualized in an animal model. Limitations of MR imaging primarily have been lengthy imaging times and the sensitivity of the images to motion. With further investigation and experience this technique may become useful for studying a wide variety of cardiovascular disorders. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:3904969
Stendahl, John C; Sinusas, Albert J
2015-10-01
Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Chen, Cheng; Wang, Wei; Ozolek, John A.; Rohde, Gustavo K.
2013-01-01
We describe a new supervised learning-based template matching approach for segmenting cell nuclei from microscopy images. The method uses examples selected by a user for building a statistical model which captures the texture and shape variations of the nuclear structures from a given dataset to be segmented. Segmentation of subsequent, unlabeled, images is then performed by finding the model instance that best matches (in the normalized cross correlation sense) local neighborhood in the input image. We demonstrate the application of our method to segmenting nuclei from a variety of imaging modalities, and quantitatively compare our results to several other methods. Quantitative results using both simulated and real image data show that, while certain methods may work well for certain imaging modalities, our software is able to obtain high accuracy across several imaging modalities studied. Results also demonstrate that, relative to several existing methods, the template-based method we propose presents increased robustness in the sense of better handling variations in illumination, variations in texture from different imaging modalities, providing more smooth and accurate segmentation borders, as well as handling better cluttered nuclei. PMID:23568787
Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging
Joshi, Bishnu P.; Wang, Thomas D.
2010-01-01
Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839
A 31-channel MR brain array coil compatible with positron emission tomography.
Sander, Christin Y; Keil, Boris; Chonde, Daniel B; Rosen, Bruce R; Catana, Ciprian; Wald, Lawrence L
2015-06-01
Simultaneous acquisition of MR and positron emission tomography (PET) images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (signal to noise ratio [SNR], g-factor) and PET attenuation. The coil design showed an improvement in attenuation by 190% (average) compared with conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical region of interest) compared with a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. © 2014 Wiley Periodicals, Inc.
Evans, A; Whelehan, P; Thomson, K; Brauer, K; Jordan, L; Purdie, C; McLean, D; Baker, L; Vinnicombe, S; Thompson, A
2012-07-10
The aim of this study was to assess the performance of shear wave elastography combined with BI-RADS classification of greyscale ultrasound images for benign/malignant differentiation in a large group of patients. One hundred and seventy-five consecutive patients with solid breast masses on routine ultrasonography undergoing percutaneous biopsy had the greyscale findings classified according to the American College of Radiology BI-RADS. The mean elasticity values from four shear wave images were obtained. For mean elasticity vs greyscale BI-RADS, the performance results against histology were sensitivity: 95% vs 95%, specificity: 77% vs 69%, Positive Predictive Value (PPV): 88% vs 84%, Negative Predictive Value (NPV): 90% vs 91%, and accuracy: 89% vs 86% (all P>0.05). The results for the combination (positive result from either modality counted as malignant) were sensitivity 100%, specificity 61%, PPV 82%, NPV 100%, and accuracy 86%. The combination of BI-RADS greyscale and shear wave elastography yielded superior sensitivity to BI-RADS alone (P=0.03) or shear wave alone (P=0.03). The NPV was superior in combination compared with either alone (BI-RADS P=0.01 and shear wave P=0.02). Together, BI-RADS assessment of greyscale ultrasound images and shear wave ultrasound elastography are extremely sensitive for detection of malignancy.
Evans, A; Whelehan, P; Thomson, K; Brauer, K; Jordan, L; Purdie, C; McLean, D; Baker, L; Vinnicombe, S; Thompson, A
2012-01-01
Background: The aim of this study was to assess the performance of shear wave elastography combined with BI-RADS classification of greyscale ultrasound images for benign/malignant differentiation in a large group of patients. Methods: One hundred and seventy-five consecutive patients with solid breast masses on routine ultrasonography undergoing percutaneous biopsy had the greyscale findings classified according to the American College of Radiology BI-RADS. The mean elasticity values from four shear wave images were obtained. Results: For mean elasticity vs greyscale BI-RADS, the performance results against histology were sensitivity: 95% vs 95%, specificity: 77% vs 69%, Positive Predictive Value (PPV): 88% vs 84%, Negative Predictive Value (NPV): 90% vs 91%, and accuracy: 89% vs 86% (all P>0.05). The results for the combination (positive result from either modality counted as malignant) were sensitivity 100%, specificity 61%, PPV 82%, NPV 100%, and accuracy 86%. The combination of BI-RADS greyscale and shear wave elastography yielded superior sensitivity to BI-RADS alone (P=0.03) or shear wave alone (P=0.03). The NPV was superior in combination compared with either alone (BI-RADS P=0.01 and shear wave P=0.02). Conclusion: Together, BI-RADS assessment of greyscale ultrasound images and shear wave ultrasound elastography are extremely sensitive for detection of malignancy. PMID:22691969
Clinical applications of computerized thermography
NASA Technical Reports Server (NTRS)
Anbar, Michael
1988-01-01
Computerized or digital, thermography is a rapidly growing diagnostic imaging modality. It has superseded contact thermography and analog imaging thermography which do not allow effective quantization. Medical applications of digital thermography can be classified in two groups: static and dynamic imaging. They can also be classified into macro thermography (resolution greater than 1 mm) and micro thermography (resolution less than 100 microns). Both modalities allow a thermal resolution of 0.1 C. The diagnostic power of images produced by any of these modalities can be augmented by the use of digital image enhancement and image recognition procedures. Computerized thermography has been applied in neurology, cardiovascular and plastic surgery, rehabilitation and sports medicine, psychiatry, dermatology and ophthalmology. Examples of these applications are shown and their scope and limitations are discussed.
Improved scintimammography using a high-resolution camera mounted on an upright mammography gantry
NASA Astrophysics Data System (ADS)
Itti, Emmanuel; Patt, Bradley E.; Diggles, Linda E.; MacDonald, Lawrence; Iwanczyk, Jan S.; Mishkin, Fred S.; Khalkhali, Iraj
2003-01-01
99mTc-sestamibi scintimammography (SMM) is a useful adjunct to conventional X-ray mammography (XMM) for the assessment of breast cancer. An increasing number of studies has emphasized fair sensitivity values for the detection of tumors >1 cm, compared to XMM, particularly in situations where high glandular breast densities make mammographic interpretation difficult. In addition, SMM has demonstrated high specificity for cancer, compared to various functional and anatomic imaging modalities. However, large field-of-view (FOV) gamma cameras are difficult to position close to the breasts, which decreases spatial resolution and subsequently, the sensitivity of detection for tumors <1 cm. New dedicated detectors featuring small FOV and increased spatial resolution have recently been developed. In this setting, improvement in tumor detection sensitivity, particularly with regard to small cancers is expected. At Division of Nuclear Medicine, Harbor-UCLA Medical Center, we have performed over 2000 SMM within the last 9 years. We have recently used a dedicated breast camera (LumaGEM™) featuring a 12.8×12.8 cm 2 FOV and an array of 2×2×6 mm 3 discrete crystals coupled to a photon-sensitive photomultiplier tube readout. This camera is mounted on a mammography gantry allowing upright imaging, medial positioning and use of breast compression. Preliminary data indicates significant enhancement of spatial resolution by comparison with standard imaging in the first 10 patients. Larger series will be needed to conclude on sensitivity/specificity issues.
Bone Composition Diagnostics: Photoacoustics Versus Ultrasound
NASA Astrophysics Data System (ADS)
Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.
2015-06-01
Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.
Swy, Eric R; Schwartz-Duval, Aaron S; Shuboni, Dorela D; Latourette, Matthew T; Mallet, Christiane L; Parys, Maciej; Cormode, David P; Shapiro, Erik M
2014-11-07
Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.
SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fetterly, K
2014-06-01
Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalitiesmore » include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.« less
Ma, Teng; Zhou, Bill; Hsiai, Tzung K.; Shung, K. Kirk
2015-01-01
Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features—the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages—are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal “gold standard” for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability. PMID:26400676
Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences.
Ciarrocchi, Esther; Belcari, Nicola
2017-12-01
Cerenkov luminescence imaging (CLI) is a novel imaging modality to study charged particles with optical methods by detecting the Cerenkov luminescence produced in tissue. This paper first describes the physical processes that govern the production and transport in tissue of Cerenkov luminescence. The detectors used for CLI and their most relevant specifications to optimize the acquisition of the Cerenkov signal are then presented, and CLI is compared with the other optical imaging modalities sharing the same data acquisition and processing methods. Finally, the scientific work related to CLI and the applications for which CLI has been proposed are reviewed. The paper ends with some considerations about further perspectives for this novel imaging modality.
Photoacoustic sentinel lymph node imaging with self-assembled copper neodecanoate nanoparticles.
Pan, Dipanjan; Cai, Xin; Yalaz, Ceren; Senpan, Angana; Omanakuttan, Karthik; Wickline, Samuel A; Wang, Lihong V; Lanza, Gregory M
2012-02-28
Photoacoustic tomography (PAT) is emerging as a novel, hybrid, and non-ionizing imaging modality because of its satisfactory spatial resolution and high soft tissue contrast. PAT combines the advantages of both optical and ultrasonic imaging methods. It opens up the possibilities for noninvasive staging of breast cancer and may replace sentinel lymph node (SLN) biopsy in clinic in the near future. In this work, we demonstrate for the first time that copper can be used as a contrast metal for near-infrared detection of SLN using PAT. A unique strategy is adopted to encapsulate multiple copies of Cu as organically soluble small molecule complexes within a phospholipid-entrapped nanoparticle. The nanoparticles assumed a size of 80-90 nm, which is the optimum hydrodynamic diameter for its distribution throughout the lymphatic systems. These particles provided at least 6-fold higher signal sensitivity in comparison to blood, which is a natural absorber of light. We also demonstrated that high SLN detection sensitivity with PAT can be achieved in a rodent model. This work clearly demonstrates for the first time the potential use of copper as an optical contrast agent.
Greenfield, Susan A.; Badin, Antoine-Scott; Ferrati, Giovanni; Devonshire, Ian M.
2017-01-01
Abstract. Optical imaging with voltage-sensitive dyes enables the visualization of extensive yet highly transient coalitions of neurons (assemblies) operating throughout the brain on a subsecond time scale. We suggest that operating at the mesoscale level of brain organization, neuronal assemblies may provide a functional link between “bottom-up” cellular mechanisms and “top-down” cognitive ones within anatomically defined regions. We demonstrate in ex vivo rat brain slices how varying spatiotemporal dynamics of assemblies reveal differences not previously appreciated between: different stages of development in cortical versus subcortical brain areas, different sensory modalities (hearing versus vision), different classes of psychoactive drugs (anesthetics versus analgesics), different effects of anesthesia linked to hyperbaric conditions and, in vivo, depths of anesthesia. The strategy of voltage-sensitive dye imaging is therefore as powerful as it is versatile and as such can now be applied to the evaluation of neurochemical signaling systems and the screening of related new drugs, as well as to mathematical modeling and, eventually, even theories of consciousness. PMID:28573153
Greenfield, Susan A; Badin, Antoine-Scott; Ferrati, Giovanni; Devonshire, Ian M
2017-07-01
Optical imaging with voltage-sensitive dyes enables the visualization of extensive yet highly transient coalitions of neurons (assemblies) operating throughout the brain on a subsecond time scale. We suggest that operating at the mesoscale level of brain organization, neuronal assemblies may provide a functional link between "bottom-up" cellular mechanisms and "top-down" cognitive ones within anatomically defined regions. We demonstrate in ex vivo rat brain slices how varying spatiotemporal dynamics of assemblies reveal differences not previously appreciated between: different stages of development in cortical versus subcortical brain areas, different sensory modalities (hearing versus vision), different classes of psychoactive drugs (anesthetics versus analgesics), different effects of anesthesia linked to hyperbaric conditions and, in vivo , depths of anesthesia. The strategy of voltage-sensitive dye imaging is therefore as powerful as it is versatile and as such can now be applied to the evaluation of neurochemical signaling systems and the screening of related new drugs, as well as to mathematical modeling and, eventually, even theories of consciousness.
Yang, C; Paulson, E; Li, X
2012-06-01
To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Dumani, Diego S.; Brecht, Hans-Peter; Ivanov, Vassili; Deschner, Ryan; Harris, Justin T.; Homan, Kimberly A.; Cook, Jason R.; Emelianov, Stanislav Y.; Ermilov, Sergey A.
2018-02-01
We introduce a preclinical imaging platform - a 3D photoacoustic/fluorescence tomography (PAFT) instrument augmented with an environmentally responsive dual-contrast biocompatible nanoprobe. The PAFT instrument was designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct co-registration of the two imaging modalities. The nanoprobe was based on liposomes loaded with J-aggregates of indocyanine green (PAtrace). Once PAtrace interacts with the environment, a transition from J-aggregate to monomeric ICG is induced. The subsequent recovery of monomeric ICG is characterized by dramatic changes in the optical absorption spectrum and reinstated fluorescence. In the activated state, PAtrace can be simultaneously detected by both imaging modes of the PAFT instrument using 780 nm excitation and fluorescence detection at 810 nm. The fluorescence imaging component is used to boost detection sensitivity by providing lowresolution map of activated nanoprobes, which are then more precisely mapped in 3D by the photoacoustic imaging component. Activated vs non-activated particles can be distinguished based on their different optical absorption peaks, removing the requirements for complex image registration between reference and detection scans. Preliminary phantom and in vivo animal imaging results showed successful activation and visualization of PAtrace with high sensitivity and resolution. The proposed PAFT-PAtrace imaging platform could be used in various functional and molecular imaging applications including multi-point in vivo assessment of early metastasis.
Ultrasonic image analysis and image-guided interventions.
Noble, J Alison; Navab, Nassir; Becher, H
2011-08-06
The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.
Wang, Yan; Ma, Guangkai; An, Le; Shi, Feng; Zhang, Pei; Lalush, David S.; Wu, Xi; Pu, Yifei; Zhou, Jiliu; Shen, Dinggang
2017-01-01
Objective To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semi-supervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion This work proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. PMID:27187939
Wee, Leonard; Hackett, Sara Lyons; Jones, Andrew; Lim, Tee Sin; Harper, Christopher Stirling
2013-01-01
This study evaluated the agreement of fiducial marker localization between two modalities — an electronic portal imaging device (EPID) and cone‐beam computed tomography (CBCT) — using a low‐dose, half‐rotation scanning protocol. Twenty‐five prostate cancer patients with implanted fiducial markers were enrolled. Before each daily treatment, EPID and half‐rotation CBCT images were acquired. Translational shifts were computed for each modality and two marker‐matching algorithms, seed‐chamfer and grey‐value, were performed for each set of CBCT images. The localization offsets, and systematic and random errors from both modalities were computed. Localization performances for both modalities were compared using Bland‐Altman limits of agreement (LoA) analysis, Deming regression analysis, and Cohen's kappa inter‐rater analysis. The differences in the systematic and random errors between the modalities were within 0.2 mm in all directions. The LoA analysis revealed a 95% agreement limit of the modalities of 2 to 3.5 mm in any given translational direction. Deming regression analysis demonstrated that constant biases existed in the shifts computed by the modalities in the superior–inferior (SI) direction, but no significant proportional biases were identified in any direction. Cohen's kappa analysis showed good agreement between the modalities in prescribing translational corrections of the couch at 3 and 5 mm action levels. Images obtained from EPID and half‐rotation CBCT showed acceptable agreement for registration of fiducial markers. The seed‐chamfer algorithm for tracking of fiducial markers in CBCT datasets yielded better agreement than the grey‐value matching algorithm with EPID‐based registration. PACS numbers: 87.55.km, 87.55.Qr PMID:23835391
X-ray cargo container inspection system with few-view projection imaging
NASA Astrophysics Data System (ADS)
Duan, Xinhui; Cheng, Jianping; Zhang, Li; Xing, Yuxiang; Chen, Zhiqiang; Zhao, Ziran
2009-01-01
An X-ray cargo inspection system with few-view projection imaging is developed for detecting contraband in air containers. This paper describes this developing inspection system, including its configuration and the process of inspection using three imaging modalities: digital radiography (DR), few view imaging and computed tomography (CT). The few-view imaging can provide 3D images with much faster scanning speed than CT and do great help to quickly locate suspicious cargo in a container. An algorithm to reconstruct tomographic images from severely sparse projection data of few-view imaging is discussed. A cooperative work manner of the three modalities is presented to make the inspection more convenient and effective. Numerous experiments of performance tests and modality comparison are performed on our system for inspecting air containers. Results demonstrate the effectiveness of our methods and implementation of few-view imaging in practical inspection systems.
Hamilton, S J
2017-05-22
Electrical impedance tomography (EIT) is an emerging imaging modality that uses harmless electrical measurements taken on electrodes at a body's surface to recover information about the internal electrical conductivity and or permittivity. The image reconstruction task of EIT is a highly nonlinear inverse problem that is sensitive to noise and modeling errors making the image reconstruction task challenging. D-bar methods solve the nonlinear problem directly, bypassing the need for detailed and time-intensive forward models, to provide absolute (static) as well as time-difference EIT images. Coupling the D-bar methodology with the inclusion of high confidence a priori data results in a noise-robust regularized image reconstruction method. In this work, the a priori D-bar method for complex admittivities is demonstrated effective on experimental tank data for absolute imaging for the first time. Additionally, the method is adjusted for, and tested on, time-difference imaging scenarios. The ability of the method to be used for conductivity, permittivity, absolute as well as time-difference imaging provides the user with great flexibility without a high computational cost.
Marolf, Angela; Blaik, Margaret; Ackerman, Norman; Watson, Elizabeth; Gibson, Nicole; Thompson, Margret
2008-01-01
The role of digital imaging is increasing as these systems are becoming more affordable and accessible. Advantages of computed radiography compared with conventional film/screen combinations include improved contrast resolution and postprocessing capabilities. Computed radiography's spatial resolution is inferior to conventional radiography; however, this limitation is considered clinically insignificant. This study prospectively compared digital imaging and conventional radiography in detecting small volume pneumoperitoneum. Twenty cadaver dogs (15-30 kg) were injected with 0.25, 0.25, and 0.5 ml for 1 ml total of air intra-abdominally, and radiographed sequentially using computed and conventional radiographic technologies. Three radiologists independently evaluated the images, and receiver operating curve (ROC) analysis compared the two imaging modalities. There was no statistical difference between computed and conventional radiography in detecting free abdominal air, but overall computed radiography was relatively more sensitive based on ROC analysis. Computed radiographic images consistently and significantly demonstrated a minimal amount of 0.5 ml of free air based on ROC analysis. However, no minimal air amount was consistently or significantly detected with conventional film. Readers were more likely to detect free air on lateral computed images than the other projections, with no significant increased sensitivity between film/screen projections. Further studies are indicated to determine the differences or lack thereof between various digital imaging systems and conventional film/screen systems.
Lee-Felker, Stephanie A; Tekchandani, Leena; Thomas, Mariam; Gupta, Esha; Andrews-Tang, Denise; Roth, Antoinette; Sayre, James; Rahbar, Guita
2017-11-01
Purpose To compare the diagnostic performances of contrast material-enhanced spectral mammography and breast magnetic resonance (MR) imaging in the detection of index and secondary cancers in women with newly diagnosed breast cancer by using histologic or imaging follow-up as the standard of reference. Materials and Methods This institutional review board-approved, HIPAA-compliant, retrospective study included 52 women who underwent breast MR imaging and contrast-enhanced spectral mammography for newly diagnosed unilateral breast cancer between March 2014 and October 2015. Of those 52 patients, 46 were referred for contrast-enhanced spectral mammography and targeted ultrasonography because they had additional suspicious lesions at MR imaging. In six of the 52 patients, breast cancer had been diagnosed at an outside institution. These patients were referred for contrast-enhanced spectral mammography and targeted US as part of diagnostic imaging. Images from contrast-enhanced spectral mammography were analyzed by two fellowship-trained breast imagers with 2.5 years of experience with contrast-enhanced spectral mammography. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were calculated for both imaging modalities and compared by using the Bennett statistic. Results Fifty-two women with 120 breast lesions were included for analysis (mean age, 50 years; range, 29-73 years). Contrast-enhanced spectral mammography had similar sensitivity to MR imaging (94% [66 of 70 lesions] vs 99% [69 of 70 lesions]), a significantly higher PPV than MR imaging (93% [66 of 71 lesions] vs 60% [69 of 115 lesions]), and fewer false-positive findings than MR imaging (five vs 45) (P < .001 for all results). In addition, contrast-enhanced spectral mammography depicted 11 of the 11 secondary cancers (100%) and MR imaging depicted 10 (91%). Conclusion Contrast-enhanced spectral mammography is potentially as sensitive as MR imaging in the evaluation of extent of disease in newly diagnosed breast cancer, with a higher PPV. © RSNA, 2017.
Comparison between Breast MRI and Contrast-Enhanced Spectral Mammography
Łuczyńska, Elżbieta; Heinze-Paluchowska, Sylwia; Hendrick, Edward; Dyczek, Sonia; Ryś, Janusz; Herman, Krzysztof; Blecharz, Paweł; Jakubowicz, Jerzy
2015-01-01
Background The main goal of this study was to compare contrast-enhanced spectral mammography (CESM) and breast magnetic resonance imaging (MRI) with histopathological results and to compare the sensitivity, accuracy, and positive and negative predictive values for both imaging modalities. Material/Methods After ethics approval, CESM and MRI examinations were performed in 102 patients who had suspicious lesions described in conventional mammography. All visible lesions were evaluated independently by 2 experienced radiologists using BI-RADS classifications (scale 1–5). Dimensions of lesions measured with each modality were compared to postoperative histopathology results. Results There were 102 patients entered into CESM/MRI studies and 118 lesions were identified by the combination of CESM and breast MRI. Histopathology confirmed that 81 of 118 lesions were malignant and 37 were benign. Of the 81 malignant lesions, 72 were invasive cancers and 9 were in situ cancers. Sensitivity was 100% with CESM and 93% with breast MRI. Accuracy was 79% with CESM and 73% with breast MRI. ROC curve areas based on BI-RADS were 0.83 for CESM and 0.84 for breast MRI. Lesion size estimates on CESM and breast MRI were similar, both slightly larger than those from histopathology. Conclusions Our results indicate that CESM has the potential to be a valuable diagnostic method that enables accurate detection of malignant breast lesions, has high negative predictive value, and a false-positive rate similar to that of breast MRI. PMID:25963880
High contrast two-photon imaging of fingermarks
NASA Astrophysics Data System (ADS)
Stoltzfus, Caleb R.; Rebane, Aleksander
2016-04-01
Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.
Bhimani, Chandni; Li, Luna; Liao, Lydia; Roth, Robyn G; Tinney, Elizabeth; Germaine, Pauline
2017-01-01
Contrast-enhanced spectral mammography (CESM) uses full field digital mammography with the added benefit of intravenous contrast administration to significantly reduce false-positive and false-negative results and improve specificity while maintaining high sensitivity. For CESM to fulfill its purpose, one should be aware of possible artifacts and other factors which may interfere with image quality, and attention should be taken to minimize these factors. This pictorial demonstration will depict types of artifacts detected and other factors that interfere with image acquisition in our practice since CESM implementation. Many of the artifacts and other factors we have encountered while using CESM have simple solutions to resolve them. The illustrated artifacts and other factors interfering with image quality will serve as a useful reference to anyone using CESM. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
High-sensitivity chemical imaging for biomedicine by SRS microscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Min, Wei
2017-02-01
Innovations in spectroscopy principles and microscopy technology have significantly impacted modern biology and medicine. While most of the contemporary bio-imaging modalities harness electronic transition, nuclear spin or radioactivity, vibrational spectroscopy has not been widely used yet. Here we will discuss an emerging chemical imaging platform, stimulated Raman scattering (SRS) microscopy, which can enhance the otherwise feeble spontaneous Raman eight orders of magnitude by virtue of stimulated emission. When coupled with stable isotopes (e.g., deuterium and 13C) or bioorthogonal chemical moieties (e.g., alkynes), SRS microscopy is well suited for probing in vivo metabolic dynamics of small bio-molecules which cannot be labeled by bulky fluorophores. Physical principle of the underlying optical spectroscopy and exciting biomedical applications such as imaging lipid metabolism, protein synthesis, DNA replication, protein degradation, RNA synthesis, glucose uptake, drug trafficking and tumor metabolism will be presented.
Magnetic resonance imaging using chemical exchange saturation transfer
NASA Astrophysics Data System (ADS)
Park, Jaeseok
2012-10-01
Magnetic resonance imaging (MRI) has been widely used as a valuable diagnostic imaging modality that exploits water content and water relaxation properties to provide both structural and functional information with high resolution. Chemical exchange saturation transfer (CEST) in MRI has been recently introduced as a new mechanism of image contrast, wherein exchangeable protons from mobile proteins and peptides are indirectly detected through saturation transfer and are not observable using conventional MRI. It has been demonstrated that CEST MRI can detect important tissue metabolites and byproducts such as glucose, glycogen, and lactate. Additionally, CEST MRI is sensitive to pH or temperature and can calibrate microenvironment dependent on pH or temperature. In this work, we provide an overview on recent trends in CEST MRI, introducing general principles of CEST mechanism, quantitative description of proton transfer process between water pool and exchangeable solute pool in the presence or absence of conventional magnetization transfer effect, and its applications