NASA Astrophysics Data System (ADS)
LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.
2015-04-01
The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.
Radiation effects on science instruments in Grand Tour type missions
NASA Technical Reports Server (NTRS)
Parker, R. H.
1972-01-01
The extent of the radiation effects problem is delineated, along with the status of protective designs for 15 representative science instruments. Designs for protecting science instruments from radiation damage is discussed for the various instruments to be employed in the Grand Tour type missions. A literature search effort was undertaken to collect science instrument components damage/interference effects data on the various sensitive components such as Si detectors, vidicon tubes, etc. A small experimental effort is underway to provide verification of the radiation effects predictions.
NASA Astrophysics Data System (ADS)
Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.
2000-03-01
The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.
SAFARI new and improved: extending the capabilities of SPICA's imaging spectrometer
NASA Astrophysics Data System (ADS)
Roelfsema, Peter; Giard, Martin; Najarro, Francisco; Wafelbakker, Kees; Jellema, Willem; Jackson, Brian; Sibthorpe, Bruce; Audard, Marc; Doi, Yasuo; di Giorgio, Anna; Griffin, Matthew; Helmich, Frank; Kamp, Inga; Kerschbaum, Franz; Meyer, Michael; Naylor, David; Onaka, Takashi; Poglitch, Albrecht; Spinoglio, Luigi; van der Tak, Floris; Vandenbussche, Bart
2014-08-01
The Japanese SPace Infrared telescope for Cosmology and Astrophysics, SPICA, aims to provide astronomers with a truly new window on the universe. With a large -3 meter class- cold -6K- telescope, the mission provides a unique low background environment optimally suited for highly sensitive instruments limited only by the cosmic background itself. SAFARI, the SpicA FAR infrared Instrument SAFARI, is a Fourier Transform imaging spectrometer designed to fully exploit this extremely low far infrared background environment. The SAFARI consortium, comprised of European and Canadian institutes, has established an instrument reference design based on a Mach-Zehnder interferometer stage with outputs directed to three extremely sensitive Transition Edge Sensor arrays covering the 35 to 210 μm domain. The baseline instrument provides R > 1000 spectroscopic imaging capabilities over a 2' by 2' field of view. A number of modifications to the instrument to extend its capabilities are under investigation. With the reference design SAFARI's sensitivity for many objects is limited not only by the detector NEP but also by the level of broad band background radiation - the zodiacal light for the shorter wavelengths and satellite baffle structures for the longer wavelengths. Options to reduce this background are dedicated masks or dispersive elements which can be inserted in the optics as required. The resulting increase in sensitivity can directly enhance the prime science goals of SAFARI; with the expected enhanced sensitivity astronomers would be in a better position to study thousands of galaxies out to redshift 3 and even many hundreds out to redshifts of 5 or 6. Possibilities to increase the wavelength resolution, at least for the shorter wavelength bands, are investigated as this would significantly enhance SAFARI's capabilities to study star and planet formation in our own galaxy.
Effects of electrons and protons on science instruments
NASA Technical Reports Server (NTRS)
Parker, R. H.
1972-01-01
The radiation effects on typical science instruments according to the Jupiter trapped radiation design restraint model are described, and specific aspects of the model where an improved understanding would be beneficial are suggested. The spacecraft design used is the TOPS 12L configuration. Ionization and displacement damage are considered, and damage criteria are placed on the most sensitive components. Possible protective measures are mentioned: selecting components as radiation resistant as possible, using a difference in desired and undesired signal shapes for electronic shielding, orienting and locating the component on the spacecraft for better shielding, and adding passive shields to protect specific components. Available options are listed in decreasing order of attractiveness: attempt to lower the design restraints without compromising the success of the missions, trade off experiment objectives for increased reliability, alter the trajectory, and remove sensitive instruments from the payload.
NASA Astrophysics Data System (ADS)
Ryan, J. M.; Bravar, U.; Macri, J. R.; McConnell, M. L.; Woolf, R.; Moser, M.; Flueckiger, E.; Pirard, B.; MacKinnon, A.; Mallik, P.; Bruillard, P.
2007-12-01
We report on the technical development of SONNE (Solar Neutron Experiment), a solar neutron spectrometer intended for use on the ESA Solar Orbiter and/or the NASA Solar Sentinels Missions. Development has taken place on three fronts, (1) simulations of a flight instrument, including the spacecraft radiation environment, (2) calibrating a prototype instrument in a monoenergetic neutron beam and (3) mechanical and electrical design of a deep space mission instrument. SONNE will be sensitive to fast neutrons up to 20 MeV, using double scatter imaging techniques to dramatically reduce background. Preliminary beam measurement analysis, conducted just before this abstract, supports advertised design goals in terms of sensitivity and energy resolution, meaning that time stamping neutron emission from the Sun will be possible. Combined with gamma ray measurements, new insight into particle acceleration will emerge when deployed on an inner heliospheric mission. Progress will be reported on simulations and physical design as well as calibrations.
High-sensitivity ESCA instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, R.D.; Herglotz, H.K.; Lee, J.D.
1973-01-01
A new electron spectroscopy for chemical analysis (ESCA) instrument has been developed to provide high sensitivity and efficient operation for laboratory analysis of composition and chemical bonding in very thin surface layers of solid samples. High sensitivity is achieved by means of the high-intensity, efficient x-ray source described by Davies and Herglotz at the 1968 Denver X-Ray Conference, in combination with the new electron energy analyzer described by Lee at the 1972 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. A sample chamber designed to provide for rapid introduction and replacement of samples has adequate facilities for various sample treatmentsmore » and conditiouing followed immediately by ESCA analysis of the sample. Examples of application are presented, demonstrating the sensitivity and resolution achievable with this instrument. Its usefulness in trace surface analysis is shown and some chemical shifts'' measured by the instrument are compared with those obtained by x-ray spectroscopy. (auth)« less
Post launch performance of the Meteor-3/TOMS instrument
NASA Technical Reports Server (NTRS)
Jaross, Glen; Ahmad, Zia; Cebula, Richard P.; Krueger, Arlin J.
1994-01-01
The Meteor-3/TOMS instrument is the second in a series of Total Ozone Mapping Spectrometers (TOMS) following the 1978 launch of Nimbus-7/TOMS. TOMS instruments are designed to measure total ozone amounts over the entire earth on a daily basis, and have been the cornerstone of ozone trend monitoring. Consequently, calibration is a critical issue, and is receiving much attention on both instruments. Performance and calibration data obtained by monitoring systems aboard the Meteor-3 instrument have been analyzed through the first full year of operation, and indicate that the instrument is performing quite well. A new system for monitoring instrument sensitivity employing multiple diffusers has been used successfully and is providing encouraging results. The 3-diffuser system has monitored changes in instrument sensitivity of a few percent despite decreases in diffuser reflectivity approaching 50 percent since launch.
Optimization of PET instrumentation for brain activation studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlbom, M.; Cherry, S.R.; Hoffman, E.J.
By performing cerebral blood flow studies with positron emission tomography (PET), and comparing blood flow images of different states of activation, functional mapping of the brain is possible. The ability of current commercial instruments to perform such studies is investigated in this work, based on a comparison of noise equivalent count (NEC) rates. Differences in the NEC performance of the different scanners in conjunction with scanner design parameters, provide insights into the importance of block design (size, dead time, crystal thickness) and overall scanner design (sensitivity and scatter fraction) for optimizing data from activation studies. The newer scanners with removablemore » septa, operating with 3-D acquisition, have much higher sensitivity, but require new methodology for optimized operation. Only by administering multiple low doses (fractionation) of the flow tracer can the high sensitivity be utilized.« less
Review of biological mechanisms for application to instrument design
NASA Technical Reports Server (NTRS)
Healer, J.
1967-01-01
Biological sensors are the mechanisms which enable a living organism to monitor its environment. Ways in which the functional mechanism of biosensors can be applied to develop new concepts of instrumentation, enhance and extend the human senses, and improve the sensitivity of existing instrumentation are described in a review of these mechanisms.
A photophonic instrument concept to measure atmospheric aerosol absorption. M.S. Thesis
NASA Technical Reports Server (NTRS)
Engle, C. D.
1982-01-01
A laboratory model of an instrument to measure the absorption of atmospheric aerosols was designed, built, and tested. The design was based on the photophonic phenomenon discovered by Bell and an acoustic resonator developed by Helmholtz. Experiments were done to show ways the signal amplitude could be improved and the noise reduced and to confirm the instrument was sensitive enough to be practical. The research was undertaken to develop concepts which show promise of being improvements on the instruments that are presently used to measure the absorption of the Sun's radiation by the Earth's atmospheric aerosols.
Instrumentation for electrochemical performance characterization of neural electrodes
NASA Astrophysics Data System (ADS)
Marsh, Michael P.; Kruchowski, James N.; Hara, Seth A.; McIntosh, Malcom B.; Forsman, Renae M.; Reed, Terry L.; Kimble, Christopher; Lee, Kendall H.; Bennet, Kevin E.; Tomshine, Jonathan R.
2017-08-01
In an effort to determine the chronic stability, sensitivity, and thus the potential viability of various neurochemical recording electrode designs and compositions, we have developed a custom device called the Voltammetry Instrument for Neurochemical Applications (VINA). Here, we describe the design of the VINA and initial testing of its functionality for prototype neurochemical sensing electrodes. The VINA consists of multiple electrode fixtures, a flowing electrolyte bath, associated reservoirs, peristaltic pump, voltage waveform generator, data acquisition hardware, and system software written in National Instrument's LabVIEW. The operation of VINA was demonstrated on a set of boron-doped diamond neurochemical recording electrodes, which were subjected to an applied waveform for a period of eighteen days. Each electrode's cyclic voltammograms (CVs) were recorded, and sensitivity calibration to dopamine (DA) was performed. Results showed an initial decline with subsequent stabilization in the CV current measured during the voltammetric sweep, corresponding closely with changes in electrode sensitivity to DA. The VINA has demonstrated itself as a useful tool for the characterization of electrode stability and chronic electrochemical performance.
Sjoding, Michael W; Schoenfeld, David A; Brown, Samuel M; Hough, Catherine L; Yealy, Donald M; Moss, Marc; Angus, Derek C; Iwashyna, Theodore J
2017-01-01
After the sample size of a randomized clinical trial (RCT) is set by the power requirement of its primary endpoint, investigators select secondary endpoints while unable to further adjust sample size. How the sensitivity and specificity of an instrument used to measure these outcomes, together with their expected underlying event rates, affect an RCT's power to measure significant differences in these outcomes is poorly understood. Motivated by the design of an RCT of neuromuscular blockade in acute respiratory distress syndrome, we examined how power to detect a difference in secondary endpoints varies with the sensitivity and specificity of the instrument used to measure such outcomes. We derived a general formula and Stata code for calculating an RCT's power to detect differences in binary outcomes when such outcomes are measured with imperfect sensitivity and specificity. The formula informed the choice of instrument for measuring post-traumatic stress-like symptoms in the Reevaluation of Systemic Early Neuromuscular Blockade RCT ( www.clinicaltrials.gov identifier NCT02509078). On the basis of published sensitivities and specificities, the Impact of Events Scale-Revised was predicted to measure a 36% symptom rate, whereas the Post-Traumatic Stress Symptoms instrument was predicted to measure a 23% rate, if the true underlying rate of post-traumatic stress symptoms were 25%. Despite its lower sensitivity, the briefer Post-Traumatic Stress Symptoms instrument provided superior power to detect a difference in rates between trial arms, owing to its higher specificity. Examining instruments' power to detect differences in outcomes may guide their selection when multiple instruments exist, each with different sensitivities and specificities.
Partial pressure analysis in space testing
NASA Technical Reports Server (NTRS)
Tilford, Charles R.
1994-01-01
For vacuum-system or test-article analysis it is often desirable to know the species and partial pressures of the vacuum gases. Residual gas or Partial Pressure Analyzers (PPA's) are commonly used for this purpose. These are mass spectrometer-type instruments, most commonly employing quadrupole filters. These instruments can be extremely useful, but they should be used with caution. Depending on the instrument design, calibration procedures, and conditions of use, measurements made with these instruments can be accurate to within a few percent, or in error by two or more orders of magnitude. Significant sources of error can include relative gas sensitivities that differ from handbook values by an order of magnitude, changes in sensitivity with pressure by as much as two orders of magnitude, changes in sensitivity with time after exposure to chemically active gases, and the dependence of the sensitivity for one gas on the pressures of other gases. However, for most instruments, these errors can be greatly reduced with proper operating procedures and conditions of use. In this paper, data are presented illustrating performance characteristics for different instruments and gases, operating parameters are recommended to minimize some errors, and calibrations procedures are described that can detect and/or correct other errors.
ERIC Educational Resources Information Center
Elias, Ryan J.; Hopfer, Helene; Hofstaedter, Amanda N.; Hayes, John E.
2017-01-01
The human nose is a very sensitive detector and is able to detect potent aroma compounds down to low ng/L levels. These levels are often below detection limits of analytical instrumentation. The following laboratory exercise is designed to compare instrumental and human methods for the detection of volatile odor active compounds. Reference…
Seafloor Pressure Array Studies at Ultra-Low Frequencies
1991-01-01
broadband instrument design and deployment. In order to measure broadband noise routinely, a low frequency pressure gauge designed for deep ocean...below the microseism band (Moore et al, 1981). A differential pressure gauge , developed for low frequency recordings by Cox et al (1984) and sensitive to...design differential pressure gauge (Cox et al, 1984) with a sensitivity -3- ULF Seafloor Pressure Array Studies range of 0.01-5 Hz. The high
Intelligent Controller for a Compact Wide-Band Compositional Infrared Fourier Transform Spectrometer
NASA Astrophysics Data System (ADS)
Yiu, P.; Keymeulen, D.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.
2013-12-01
This paper presents the design and integration of an intelligent controller for CIRIS (Compositional InfraRed Interferometric Spectrometer) on a stand-alone field programmable gate array (FPGA) architecture. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. This design eliminates the need for periodically accelerating/decelerating mirrors inherent to canonical Michelson designs and allows for a compact and robust device that is intrinsically radiation-hard, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 μm) on planetary exploration missions. A traditional Michelson FTS passes a monochromatic light source (incident light from the sample) through a system of refractors/mirrors followed by a mirror moving linearly in the plane of the incident light. This process selectively blocks certain wavelengths and permits measurement of the sample's absorption rates as a function of the wavelengths blocked to produce an 'inteferogram.' This is subsequently processed using a Fourier transform to obtain the sample's spectrum and ascertain the sample's composition. With our prototype CIRIS instrument in development at Design and Prototype Inc. and NASA-JPL, we propose the use of a rotating refractor spinning at a constant velocity to variably phase shift incident light to the detector as an alternative to a linearly moving mirror. This design eliminates sensitivity to vibrations, minimizing path length and non-linear errors due to minor perturbations to the system, in addition to facilitating compact design critical to meeting the strict volume requirements of spacecraft. Further, this is done without sacrificing spectral resolution or throughput when compared to Michelson or diffractive designs. While Michelson designs typically achieve very high wavelength resolution, the intended application of our instrument (spectroscopic investigation of Europa's surface) places higher emphasis on the greater wavelength band sensitivity in the 2-12 μm range provided by a rotating refractor design. The instrument's embedded microcontroller is implemented on a flight-qualified VIRTEX-5 FPGA with the aim of sampling the instrument's detector and optical rotary encoder in order to construct an interferogram. Subsequent signal processing, including a Fast Fourier Transform (FFT), noise reduction/averaging, and spectral calibration techniques are applied in real-time to compose the sample spectrum. Deployment of an FPGA eliminates the instrument's need to share computing resources with the main spacecraft computer and takes advantage of the low power consumption and high-throughput hardware parallelism intrinsic to FPGA applications. This parallelism facilitates the high speed, low latency sampling/signal processing critical to instrument precision with minimal power consumption to achieve highly sensitive spectra within the constraints of available spacecraft resources. The instrument is characterized in simulated space-flight conditions and we demonstrate that this technology is capable of meeting the strict volume, sensitivity, and power consumption requirements for implementation in scientific space systems.
Schoenfeld, David A.; Brown, Samuel M.; Hough, Catherine L.; Yealy, Donald M.; Moss, Marc; Angus, Derek C.; Iwashyna, Theodore J.
2017-01-01
Rationale: After the sample size of a randomized clinical trial (RCT) is set by the power requirement of its primary endpoint, investigators select secondary endpoints while unable to further adjust sample size. How the sensitivity and specificity of an instrument used to measure these outcomes, together with their expected underlying event rates, affect an RCT’s power to measure significant differences in these outcomes is poorly understood. Objectives: Motivated by the design of an RCT of neuromuscular blockade in acute respiratory distress syndrome, we examined how power to detect a difference in secondary endpoints varies with the sensitivity and specificity of the instrument used to measure such outcomes. Methods: We derived a general formula and Stata code for calculating an RCT’s power to detect differences in binary outcomes when such outcomes are measured with imperfect sensitivity and specificity. The formula informed the choice of instrument for measuring post-traumatic stress–like symptoms in the Reevaluation of Systemic Early Neuromuscular Blockade RCT (www.clinicaltrials.gov identifier NCT02509078). Measurements and Main Results: On the basis of published sensitivities and specificities, the Impact of Events Scale-Revised was predicted to measure a 36% symptom rate, whereas the Post-Traumatic Stress Symptoms instrument was predicted to measure a 23% rate, if the true underlying rate of post-traumatic stress symptoms were 25%. Despite its lower sensitivity, the briefer Post-Traumatic Stress Symptoms instrument provided superior power to detect a difference in rates between trial arms, owing to its higher specificity. Conclusions: Examining instruments’ power to detect differences in outcomes may guide their selection when multiple instruments exist, each with different sensitivities and specificities. PMID:27788018
Development of a Fabry-Perot Interferometer for Ultra-Precise Measurements of Column CO2
NASA Technical Reports Server (NTRS)
Wilson, Emily L.; Georgieva, Elena M.; Heaps, William S.
2005-01-01
A passive Fabry-Perot based instrument is described for detecting column CO2 through absorption measurements at 1.58 microns . In this design, solar flux reaches the instrument platform and is directed through two channels. In the first channel, transmittance fi5nges from a Fabry-Perot interferometer are aligned with CO2 absorption lines so that absorption due to CO2 is primarily detected. The second channel encompasses the same frequency region as the first, but is comparatively more sensitive to changes in the solar flux than absorption due to CO2. The ratio of these channels is sensitive to changes in the total CO2 column, but not to changes in solar flux. This inexpensive instrument will offer high precision measurements (error 4%) in a compact package. Design of this instrument and preliminary ground-based measurements of column CO2 are presented here as well as strategies for deployment on aircraft and satellite platforms.
NASA Astrophysics Data System (ADS)
Bouchet, François R.; Piat, Michel; Lamarre, Jean-Michel
2003-10-01
Planck, a European Space Agency satellite to be launched in 2007, is dedicated to surveying the full sky at sub-millimetre and millimetre wavelength. The primary goal of the mission is the final mapping of the Cosmic Microwave Background Anisotropies (CMBA). With an angular resolution of 5 arcmin and a sensitivity of Δ TCMB/ TCMB=2×10 -6, the Planck mission will be about 1000 times more sensitive than COBE-DMR and at least 20 times more than WMAP. Planck has also very good capabilites for measurements of polarization, although it will not exhaust the information contained in the CMBA polarization pattern. Two instruments share the Planck focal plane; the High Frequency Instrument (HFI) covers the wavelength ranging from 300 μm to 3 mm by using 48 bolometers cooled to 100 mK. This instrument is realized by an international collaboration, led by the IAS at Orsay. The other part of the relevant electromagnetic spectrum is covered by the Low Frequency Instrument (LFI) using HEMT radiometers cooled at 18 K and realized by a consortium led by the CNR in Milano. The first part of this article presents expected results of Planck on CMBA, both in intensity and polarization. In a second part, the global design of the Planck mission will be presented. We describe in particular the implications of Planck scientific goals on the instruments design, and especially on HFI that is the most sensitive Planck instrument. To cite this article: F.R. Bouchet et al., C. R. Physique 4 (2003).
Optical system design for a Lunar Optical Interferometer
NASA Technical Reports Server (NTRS)
Colavita, M. M.; Shao, M.; Hines, B. E.; Levine, B. M.; Gershman, R.
1991-01-01
The moon offers particular advantages for interferometry, including a vacuum environment, a large stable base on which to assemble multi-kilometer baselines, and a cold nighttime temperature to allow for passive cooling of optics for high IR sensitivity. A baseline design for a Lunar Optical Interferometer (LOI) which exploits these features is presented. The instrument operates in the visible to mid-IL region, and is designed for both astrometry and synthesis imaging. The design uses a Y-shaped array of 12 siderostats, with maximum arm lengths of about 1 km. The inner siderostats are monitored in three dimensions from a central laser metrology structure to allow for high precision astrometry. The outer siderostats, used primarily for synthesis imaging, exploit the availability of bright reference stars in order to determine the instrument geometry. The path delay function is partitioned into coarse and fine components, the former accomplished with switched banks of range mirrors monitored with an absolute laser metrology system, and the latter with a short cat's eye delay line. The back end of the instrument is modular, allowing for beam combiners for astrometry, visible and IR synthesis imaging, and direct planet detection. With 1 m apertures, the instrument will have a point-source imaging sensitivity of about 29 mag; with the laser metrology system, astrometry at the microarcsecond level will be possible.
Design and Validation of a Straight-Copy Typewriting Prognostic Test Using Kinesthetic Sensitivity.
ERIC Educational Resources Information Center
Olson, Norma Jean
1979-01-01
Describes the development and application of a kinesthetic sensitivity test to determine whether it is a valid and reliable measure of straight-copy typing speed and accuracy. The author states that this kinesthetic sensitivity instrument may be used as a prognostic aptitude test and recommends administration methods. (MF)
MATADOR: Mars Atmosphere Tempeature And Density Orbiting Radiometer
NASA Astrophysics Data System (ADS)
Mlynczak, M. G.; Johnson, D. G.; Brown, S.; Esplin, R.; Miller, J.
2006-12-01
We describe a new instrument designed to observe the temperature, pressure, density, and composition of the Martian atmosphere with unprecedented accuracy and precision. The MATADOR instrument is a 12-channel limb scanning infrared radiometer and is an improved design based upon the highly successful Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument that has now achieved five years of operation in Earth orbit on the NASA TIMED mission. The twelve discrete MATADOR channels span a wavelength range from 1.27 um to 22.2 um. The focal plane is cooled by a small mechanical cryocooler. The mass of the instrument is approximately one-half that of the SABER-TIMED instrument. MATADOR is more than twice as sensitive as the SABER instrument. In addition to temperature and density, MATADOR will also provide vertical profiles of dust opacity (at several wavelengths), water vapor, water ice, carbon monoxide, carbon dioxide, and ozone. The instrument design and anticipated performance are reviewed, along with detailed simulations of the retrievals of Martian atmospheric composition.
Science Instrument Sensitivities to Radioisotope Power System Environment
NASA Technical Reports Server (NTRS)
Bairstow, Brian; Lee, Young; Smythe, William; Zakrajsek, June
2016-01-01
Radioisotope Power Systems (RPS) have been and will be enabling or significantly enhancing for many missions, including several concepts identified in the 2011 Planetary Science Decadal Survey. Some mission planners and science investigators might have concerns about possible impacts from RPS-induced conditions upon the scientific capabilities of their mission concepts. To alleviate these concerns, this paper looks at existing and potential future RPS designs, and examines their potential radiation, thermal, vibration, electromagnetic interference (EMI), and magnetic fields impacts on representative science instruments and science measurements. Radiation impacts from RPS on science instruments are of potential concern for instruments with optical detectors and instruments with high-voltage electronics. The two main areas of concern are noise effects on the instrument measurements, and long-term effects of instrument damage. While RPS by their nature will contribute to total radiation dose, their addition for most missions should be relatively small. For example, the gamma dose rate from one Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) would be an order of magnitude lower than the environmental dose rate at Mars, and would have a correspondingly lower contribution to instrument noise and to any permanent damage to payload sensors. Increasing the number of General Purpose Heat Source (GPHS) modules used in an RPS would be expected to increase the generated radiation proportionally; however, the effect of more GPHS modules is mitigated from a strictly linear relationship by self-shielding effects. The radiation field of an RPS is anisotropic due to the deviation of the modules from a point-source-geometry. For particularly sensitive instruments the total radiation dose could be mitigated with separation or application of spot shielding. Though a new, higher-power RPS could generate more heat per unit than current designs, thermal impact to the flight system could be mitigated with shading and pointing if required by the mission. Alternatively, excess heat could prove beneficial in providing needed heat to spacecraft components and instruments in some thermal environments. Vibration for a new higher-power Stirling Radioisotope Generator (SRG) would be expected to be similar to the recent Advanced Stirling Radioisotope Generator (ASRG) design. While vibration should be low, it must be considered and addressed during spacecraft and instrument design. EMI and magnetic fields for new RPS concepts are expected to be low as for the current RPS, but must be considered and addressed if the mission includes sensitive instruments such as magnetometers. The assessment conducted for this paper focused on orbiter instrument payloads for two representative mission concepts- a Titan Saturn System Mission (TSSM) and a Uranus Orbiter and Probe (UOP)-since both of these Decadal Survey concepts would include many diverse instruments on board. Quick-look design studies using notional new RPS concepts were carried out for these two mission concepts, and their specific instrument packages were analyzed for their interactions with new RPS designs. The original Decadal Survey TSSM and UOP concepts did not have complete instrument performance requirements so typical measurement requirements were used where needed. Then, the general RPS environments were evaluated for impacts to various types of instruments. This paper describes how the potential impacts of the RPS on science instruments and measurements were assessed, which impacts were addressed, proposed mitigation strategies against those impacts, and provides an overview of future work.
Subminiaturization for ERAST instrumentation (Environmental Research Aircraft and Sensor Technology)
NASA Technical Reports Server (NTRS)
Madou, Marc; Lowenstein, Max; Wegener, Steven
1995-01-01
We are focusing on the Argus as an example to demonstrate our philosophy on miniaturization of airborne analytical instruments for the study of atmospheric chemistry. Argus is a two channel, tunable-diode laser absorption spectrometer developed at NASA for the measurement of nitrogen dioxide (N2O) (4.5 micrometers) and ammonia (CH3) (3.3 micrometers) at the 0.1 parts per billion (ppb) level from the Perseus aircraft platform at altitudes up to 30 km. Although Argus' mass is down to 23 kg from the 197 kg Atlas, its predecessor, our goal is to design a next-generation subminiaturized instrument weighing less than 1 kg, measuring a few cm(exp 3) and able to eliminate dewars for cooling. Current designs enable use to make a small,inexpensive, monolithic spectrometer without the required sensitivity range. Further work is on its way to increase sensitivity. We are continuing to zero-base the technical approach in terms of the specifications for the given instrument. We are establishing a check list of questions to hone into the best micromachining approach and to superpose on the answers insights in scaling laws and flexible engineering designs to enable more relaxed tolerances for the smallest of the components.
A compact permanent magnet cyclotrino for accelerator mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, A.T.; Clark, D.J.; Kunkel, W.B.
1995-02-01
The authors describe the development of a new instrument for the detection of trace amounts of rare isotopes, a Cyclotron Mass Spectrometer (CMS). A compact low energy cyclotron optimized for high mass resolution has been designed and has been fabricated. The instrument has high sensitivity and is designed to measure carbon-14 at abundances of < 10{sup {minus}12}. A novel feature of the instrument is the use of permanent magnets to energize the iron poles of the cyclotron. The instrument uses axial injection, employing a spiral inflector. The instrument has been assembled and preliminary measurements of the magnetic field show thatmore » it has a uniformity on the order of 2 parts in 10{sup 4}.« less
NASA Technical Reports Server (NTRS)
Werrett, Stephen; Seivold, Alfred L.
1990-01-01
A detailed nodal computer model was developed to thermally represent the hardware, and sensitivity studies were performed to evaluate design parameters and orbital environmental effects of an instrument cooling system for IR detectors. Thermal-vacuum testing showed excellent performance of the system and a correspondence with math model predictions to within 3 K. Results show cold stage temperature sensitivity to cold patch backload, outer stage external surface emittance degradation, and cold stage emittance degradation, respectively. The increase in backload on the cold patch over the mission lifetime is anticipated to be less than 3.0 watts, which translates to less than a 3-degree increase in detector temperatures.
Aerial Radiological Measuring System (ARMS): systems, procedures and sensitivity (1976)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyns, P K
1976-07-01
This report describes the Aerial Radiological Measuring System (ARMS) designed and operated by EG and G, Inc., for the Energy Research and Development Administration's (ERDA) Division of Operational Safety with the cooperation of the Nuclear Regulatory Commission. Designed to rapidly survey large areas for low-level man-made radiation, the ARMS has also proven extremely useful in locating lost radioactive sources of relatively low activity. The system consists of sodium iodide scintillation detectors, data formatting and recording equipment, positioning equipment, meteorological instruments, direct readout hardware, and data analysis equipment. The instrumentation, operational procedures, data reduction techniques and system sensitivities are described, togethermore » with their applications and sample results.« less
Monitoring food pathogens: Novel instrumentation for cassette PCR testing
Hunt, Darin; Figley, Curtis; Lauzon, Jana; Figley, Rachel; Pilarski, Linda M.; McMullen, Lynn M.; Pilarski, Patrick M.
2018-01-01
In this manuscript, we report the design and development of a fast, reliable instrument to run gel-based cassette polymerase chain reactions (PCR). Here termed the GelCycler Mark II, our instrument is a miniaturized molecular testing system that is fast, low cost and sensitive. Cassette PCR utilizes capillary reaction units that carry all reagents needed for PCR, including primers and Taq polymerase, except the sample, which is loaded at the time of testing. Cassette PCR carries out real time quantitative PCR followed by melt curve analysis (MCA) to verify amplicon identity at the expected melt temperature (Tm). The cassette PCR technology is well developed, particularly for detecting pathogens, and has been rigorously validated for detecting pathogenic Escherichia coli in meat samples. However, the work has been hindered by the lack of a robust and stable instrument to carry out the PCR, which requires fast and accurate temperature regulation, improved light delivery and fluorescent recording, and faster PCR reactions that maintain a high sensitivity of detection. Here, we report design and testing of a new instrument to address these shortcomings and to enable standardized testing by cassette PCR and commercial manufacture of a robust and accurate instrument that can be mass produced to deliver consistent performance. As a corollary to our new instrument development, we also report the use of an improved design approach using a machined aluminum cassette to meet the new instrument standards, prevent any light bleed across different trenches in each cassette, and allow testing of a larger number of samples for more targets in a single run. The GelCycler Mark II can detect and report E. coli contamination in 41 minutes. Sample positives are defined in as having a melt curve comparable to the internal positive control, with peak height exceeding that of the internal negative control. In a fractional analysis, as little as 1 bacterium per capillary reaction unit is directly detectable, with no enrichment step, in 35 cycles of PCR/MCA, in a total time of 53 minutes, making this instrument and technology among the very best for speed and sensitivity in screening food for pathogenic contamination. PMID:29746561
Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong
2009-02-01
A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.
LIGO: The instruments that launched gravitational-wave astronomy
NASA Astrophysics Data System (ADS)
Fritschel, Peter; LIGO Scientific Collaboration
2018-01-01
After decades of development, the advanced gravitational wave detectors are now in the business of making detections of the types of astrophysical sources they were designed for. And yet these detectors still have a ways to go to reach their designed sensitivity levels. This talk will cover the design and performance of these advanced detectors, with emphasis on Advanced LIGO. I will lay out the path to reaching design sensitivity, and then turn to plans for future improvements to the existing LIGO detectors’ sensitivity. Looking even further into the future, I will discuss concepts for a new generation of detectors that will be needed to probe much deeper into the cosmos.
Sensitive observations with the Spacelab 2 infrared telescope
NASA Technical Reports Server (NTRS)
Young, E. T.; Rieke, G. H.; Gautier, T. N.; Hoffmann, W. F.; Low, F. J.; Poteet, W.; Fazio, G. G.; Koch, D.; Traub, W. A.; Urban, E. W.
1983-01-01
The small helium-cooled infrared telescope (Spacelab IRT) is a multiband instrument capable of highly sensitive observations from space. The experiment consists of a cryogenically cooled, very well baffled telescope with a ten channel focal plane array. During the Spacelab 2 flight of the Space Shuttle, this instrument will make observations between 5 and 120 micron wavelength that will be background limited by the expected zodiacal emission. Design considerations necessitated by this level of performance are discussed in this paper. In particular, the operation of a very sensitive focal plane array in the space environment is described. The Spacelab IRT will be used to map the extended, low-surface brightness celestial emission. During the seven day length of the mission better than 70 percent sky coverage is expected. The instrument will also be used to measure the infrared contamination environment of the Space Shuttle. This information will be important in the development of the next generation of infrared astronomical instruments. The performance of the Spacelab IRT, in particular its sensitivity to the contamination environment is detailed.
A Cosmic Dust Sensor Based on an Array of Grid Electrodes
NASA Astrophysics Data System (ADS)
Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.
2014-04-01
We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.
Advanced structural design for precision radial velocity instruments
NASA Astrophysics Data System (ADS)
Baldwin, Dan; Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam
2016-07-01
The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.
The Extreme Ultraviolet Explorer mission
NASA Technical Reports Server (NTRS)
Malina, R. F.; Battel, S. J.
1989-01-01
The Extreme Ultraviolet Explorer (EUVE) mission will be the first user of NASA's new Explorer platform. The instrumentation included on this mission consists of three grazing incidence scanning telescopes, a deep survey instrument and an EUV spectrometer. The bandpass covered is 80 to 900 A. During the first six months of the mission, the scanning telescopes will be used to make all-sky maps in four bandpasses; astronomical sources wil be detected and their positions determined to an accuracy of 0.1 deg. The deep survey instrument will survey the sky with higher sensitivity along the ecliptic in two bandpasses between 80 and 500 A. Engineering and design aspects of the science payload and features of the instrument design are described.
NASA Astrophysics Data System (ADS)
Paíga, Paula; Silva, Luís M. S.; Delerue-Matos, Cristina
2016-10-01
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 22 factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1995-01-01
This Interim report consists of a manuscript, 'Receiver Design for Satellite to Satellite Laser Ranging Instrument,' and copies of two papers we co-authored, 'Demonstration of High Sensitivity Laser Ranging System' and 'Semiconductor Laser-Based Ranging Instrument for Earth Gravity Measurements. ' These two papers were presented at the conference Semiconductor Lasers, Advanced Devices and Applications, August 21 -23, 1995, Keystone Colorado. The manuscript is a draft in the preparation for publication, which summarizes the theory we developed on space-borne laser ranging instrument for gravity measurements.
Compact Highly Sensitive Multi-species Airborne Mid-IR Spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Dirk; Weibring, P.; Walega, J.
2015-02-01
We report on the development and airborne field deployment of a mid-IR laser based spectrometer. The instrument was configured for the simultaneous in-situ detection of formaldehyde (CH2O) and ethane (C2H6). Numerous mechanical, optical, electronic, and software improvements over a previous instrument design resulted in reliable highly sensitive airborne operation with long stability times yielding 90% airborne measurement coverage during the recent air quality study over the Colorado front range, FRAPPÉ 2014. Airborne detection sensitivities of ~ 15 pptv (C2H6) and ~40 pptv (CH2O) were generally obtained for 1 s of averaging for simultaneous detection.
Spaceborne Gravity Gradiometers. Part 3: Instrument status and prospects
NASA Technical Reports Server (NTRS)
1984-01-01
Various technologies incorporated in the development of gravity gradiometers are demonstrated through descriptions of specific instruments. Concepts covered include: rotating, spherical, cryogenic, and superconducting gravity gradiometers with and without accelerometers. The application of superconducting cavity oscillators to mass-spring gradiometers, and cooperation of Italy's Piano Spaziale Nazionale with the Smithsonian Astrophysics Observatory in the design and development of a high sensitivity gradiometer are described. Schematics are provided for each instrument.
A near-infrared SETI experiment: instrument overview
NASA Astrophysics Data System (ADS)
Wright, Shelley A.; Werthimer, Dan; Treffers, Richard R.; Maire, Jérôme; Marcy, Geoffrey W.; Stone, Remington P. S.; Drake, Frank; Meyer, Elliot; Dorval, Patrick; Siemion, Andrew
2014-07-01
We are designing and constructing a new SETI (Search for Extraterrestrial Intelligence) instrument to search for direct evidence of interstellar communications via pulsed laser signals at near-infrared wavelengths. The new instrument design builds upon our past optical SETI experiences, and is the first step toward a new, more versatile and sophisticated generation of very fast optical and near-infrared pulse search devices. We present our instrumental design by giving an overview of the opto-mechanical design, detector selection and characterization, signal processing, and integration procedure. This project makes use of near-infrared (950 - 1650 nm) discrete amplification Avalanche Photodiodes (APD) that have > 1 GHz bandwidths with low noise characteristics and moderate gain (~104). We have investigated the use of single versus multiple detectors in our instrument (see Maire et al., this conference), and have optimized the system to have both high sensitivity and low false coincidence rates. Our design is optimized for use behind a 1m telescope and includes an optical camera for acquisition and guiding. A goal is to make our instrument relatively economical and easy to duplicate. We describe our observational setup and our initial search strategies for SETI targets, and for potential interesting compact astrophysical objects.
NASA Astrophysics Data System (ADS)
Seifollahi, Alireza
It is said that future of the world is based on space exploration which leads us to think more about low cost and light weight instruments. Cheap and sensitive instruments should be de-signed and replace the expensive ones. One of the required instruments in space ships is gyroscope controls the direction of space ship. In this article I am going to give an idea to use optical properties in a new gyroscope which will be cheaper as well as more sensitive in com-pare with most of the being used normal gyroscope nowadays. This instrument uses an optical system to measure the angular changes in the direction of a space craft movements in any of the three axels. Any movement, even very small one, will move a crystal bulb which is lashed by some narrow elastic bands in a fixed box surrounded by three optical sources and light meters. Light meters measure the attitude and the angel of changes in the light beams going through the bulb which is related to the amount of changes in the space craft directions. The system will be very sensitive even against movement around its access. As an electro digital device in connection to a Main Process Unit (MPU) it can be used in Stability Augmentation System (SAS) in a space ship. The sensitivity rate of the instrument will be based on the quality and sensitivity of the light meters.
SAFARI optical system architecture and design concept
NASA Astrophysics Data System (ADS)
Pastor, Carmen; Jellema, Willem; Zuluaga-Ramírez, Pablo; Arrazola, David; Fernández-Rodriguez, M.; Belenguer, Tomás.; González Fernández, Luis M.; Audley, Michael D.; Evers, Jaap; Eggens, Martin; Torres Redondo, Josefina; Najarro, Francisco; Roelfsema, Peter
2016-07-01
SpicA FAR infrared Instrument, SAFARI, is one of the instruments planned for the SPICA mission. The SPICA mission is the next great leap forward in space-based far-infrared astronomy and will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 2.5m-class telescope, provided by European industry, to realize zodiacal background limited performance, and high spatial resolution. The instrument SAFARI is a cryogenic grating-based point source spectrometer working in the wavelength domain 34 to 230 μm, providing spectral resolving power from 300 to at least 2000. The instrument shall provide low and high resolution spectroscopy in four spectral bands. Low Resolution mode is the native instrument mode, while the high Resolution mode is achieved by means of a Martin-Pupplet interferometer. The optical system is all-reflective and consists of three main modules; an input optics module, followed by the Band and Mode Distributing Optics and the grating Modules. The instrument utilizes Nyquist sampled filled linear arrays of very sensitive TES detectors. The work presented in this paper describes the optical design architecture and design concept compatible with the current instrument performance and volume design drivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricco, A.J.; Butler, M.A.; Grunthaner, F.J.
The authors have designed and built the prototype of an instrument that will use fiber optic micromirror-based chemical sensors to investigate the surprising reactivity of martian soil reported by several Viking Lander Experiments in the mid 1970s. The MOx (Mars Oxidant Experiment) Instrument, which will probe the reactivity of the near-surface martian atmosphere as well as soil, utilizes an array of chemically sensitive thin films including metals, organometallics, and organic dyes to produce a pattern of reflectivity changes characteristic of the species interacting with these sensing layers. The 850-g system includes LED light sources, optical fiber light guides, silicon micromachinedmore » fixtures, a line-array CCD detector, control-and-measurement electronics, microprocessor, memory, interface, batteries, and housing. This instrument monitors real-time reflectivities from an array of {approximately}200 separate micromirrors. The unmanned Russian Mars 96 mission is slated to carry the MOx Instrument along with experiments from several other nations. The principles of the chemically sensitive micromirror upon which this instrument is based will be described and preliminary data for reactions of micromirrors with oxidant materials believed to be similar to those on Mars will be presented. The general design of the instrument, including Si micromachined components, as well as the range of coatings and the rationale for their selection, will be discussed as well.« less
A Monte Carlo study of different detector geometries for HAWC
NASA Astrophysics Data System (ADS)
Gebauer, Iris
Compared to other parts of astronomy the study of the universe at energies above 100GeV is a relatively new field. Pointed instruments presently achieve the highest sensitivities. They have detected gamma-rays from at least 10 sources, but they are only able to monitor a relatively small fraction of the sky. The detection of exciting phenomena such as Gamma-ray Bursts (GRBs) requires a highly sensitive detector capable of continuously monitoring the entire overhead sky. Such an instrument could make an unbiased study of the entire field of view. With sufficient sensitivity it could detect short transients (~ 15 minutes) and study the time structure of Active galactic nuclei (AGN) flares at energies unattainable to space-based instruments. This thesis describes the design and performance of the next generation water Cherenkov detector HAWC (High Altitude Water Cherenkov). Focussing on the performance in background-rejection and sensitivity to point sources, two possible detector geometries, different in the way the photomultipliers (PMTs) are separated from each other, are compared.
NASA Astrophysics Data System (ADS)
Devilliers, C.; Du Jeu, C.; Costes, V.; Suau, A.; Girault, N.; Cornillon, L.
2017-11-01
Space telescopes pupil diameter increases continuously to reach higher resolutions and associated optical scheme become more sensitive. As a consequence the size of these telescopes but also their stability requirements increase. Therefore, mass of space telescopes becomes a strong design driver to be still compatible with price competitive launcher capabilities. Moreover satellite agility requirements are more and more severe and instruments shall be compatible with quick evolution of thermal environment.
Thirty-Meter Telescope: A Technical Study of the InfraRed Multiobject Spectrograph
NASA Astrophysics Data System (ADS)
U, Vivian; Dekany, R.; Mobasher, B.
2013-01-01
The InfraRed Multiobject Spectrograph (IRMS) is an adaptive optics (AO)-fed, reconfigurable near-infrared multi-object spectrograph and imager on the Thirty Meter Telescope (TMT). Its design is based on the MOSFIRE spectrograph currently operating on the Keck Observatory. As one of the first three first-light instruments on the TMT, IRMS is in a mini-conceptual design phase. Here we motivate the science goals of the instrument and present the anticipated sensitivity estimates based on the combination of MOSFIRE with the AO system NFIRAOS on TMT. An assessment of the IRMS on-instrument wavefront sensor performance and vignetting issue will also be discussed.
Theory and tests of a thermal ion detector sensitive only at Near-normal incidence
NASA Technical Reports Server (NTRS)
Robinson, J. W.
1981-01-01
Measurements of thermal ions are influenced by factors such as spacecraft potential, velocity, angle of attack, and sheath size. A theory is presented for the response of an instrument which accepts ions only within a small angle of incidence from normal. Although a more general theory is available and forms the basis of this one, the small angle restriction allows a simpler formulation which does not depend on sheath size. Furthermore, practical instruments are easily designed around this restriction. Laboratory tests verify that such instruments respond as expected and they illustrate how design details influence perturbations from the ideal response characteristics.
NASA Technical Reports Server (NTRS)
Kreplin, R. W.; Dohne, B.; Feldman, U.; Neupert, W. M.
1984-01-01
An account is given of a Get-Away-Special experiment flown on Space Shuttles 7 and 8 investigating the effect of the space environment on Shumann emulsions. Shumann emulsions, having low gelatin content and no protective gelatin overcoating, are useful detectors of ultraviolet radiation shorter than 2200 angstroms but are extremely sensitive to environmental conditions and handling. The instrument required no interface with the Shuttle. It was turned on by an aneroid switch at an altitude of 50,000 feet. After that, its operation was controlled completely by a CMOS digital controller. Each hour, two temperatures and one voltage were read and stored in a CMOS programmable read only memory. At intervals, valves were opened and closed to expose SO 652 film strips of three sensitivities to the cargo bay environment for various time periods. The design and operation of the instrument package is described.
Paíga, Paula; Silva, Luís M S; Delerue-Matos, Cristina
2016-10-01
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.
An Externally Dispersed Interferometer for Sensitive Doppler Extrasolar Planet Searches
NASA Astrophysics Data System (ADS)
Ge, Jian; Erskine, David J.; Rushford, Mike
2002-09-01
A new kind of instrument for sensitive Doppler extrasolar planet searches, called an externally dispersed interferometer, is described in this paper. It is a combination of an optical Michelson-type interferometer and an intermediate-resolution grating spectrometer. The interferometer measures Doppler radial velocity (RV) variations of starlight through the phase shifts of moiré fringes, created by multiplication of the interferometer fringes with stellar absorption lines. The intermediate-resolution spectrograph disperses the moiré fringes into thousands of parallel-wavelength channels. This increases the instrument bandwidth and fringe visibility by preventing fringe cross-talk between neighboring spectral lines. This results in a net increase in the signal-to-noise ratio over an interferometer used alone with broadband light. Compared to current echelle spectrometers for extrasolar planet searches, this instrument offers two unique instrument properties: a simple, stable, well-defined sinusoidal instrument response function (point-spread function) and magnification of Doppler motion through moiré fringe techniques. Since instrument noise is chiefly limited by the ability to characterize the instrument response, this new technique provides unprecedented low instrumental noise in an economical compact apparatus, enabling higher precision for Doppler RV measurements. In practice, the moiré magnification can be 5-10 times depending on the interferometer comb angle. This instrument has better sensitivity for smaller Doppler shifts than echelle spectrometers. The instrument can be designed with much lower spectral resolving power without losing Doppler sensitivity and optimized for higher throughput than echelle spectrometers to allow a potential survey for planets around fainter stars than current magnitude limits. Lab-based experiments with a prototype instrument with a spectral resolution of R~20,000 demonstrated ~0.7 m s-1 precision for short-term RV measurements. A fiber-fed version of the prototype with R~5600 was tested with starlight at the Lick 1 m telescope and demonstrated ~7 m s-1 RV precision at 340 Å bandwidth. The increased velocity noise is attributed to the lower spectral resolution, lower fringe visibility, and uncontrolled instrument environment.
Spectroscopic Instrumentation in Undergraduate Astronomy Laboratories
NASA Astrophysics Data System (ADS)
Ludovici, Dominic; Mutel, Robert Lucien; Lang, Cornelia C.
2017-01-01
We have designed and built two spectrographs for use in undergraduate astronomy laboratories at the University of Iowa. The first, a low cost (appx. $500) low resolution (R ~ 150 - 300) grating-prism (grism) spectrometer consists of five optical elements and is easily modified to other telescope optics. The grism spectrometer is designed to be used in a modified filter wheel. This type of spectrometer allows students to undertake projects requiring sensitive spectral measurements, such as determining the redshifts of quasars. The second instrument is a high resolution (R ~ 8000), moderate cost (appx. $5000) fiber fed echelle spectrometer. The echelle spectrometer will allow students to conduct Doppler measurements such as those used to study spectroscopic binaries. Both systems are designed to be used with robotic telescope systems. The availability of 3D printing enables both of these spectrographs to be constructed in hands-on instrumentation courses where students build and commission their own instruments. Additionally, these instruments enable introductory majors and non-majors laboratory students to gain experience conducting their own spectroscopic observations.
A 2 THz Heterodyne Array Receiver for SOFIA
NASA Technical Reports Server (NTRS)
Walker, Christopher K.
1996-01-01
We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The beam parameters are an excellent match to what is expected from theory. The success of this experiment demonstrates the viability of using laser micromachined components in the development of high performance, large format array receivers. Unfortunately, our instrument proposal was not selected as a first generation SOFIA instrument. However, we have continued our development efforts and will propose to build a 2nd generation instrument based on the same design concepts.
The Wide Field/Planetary Camera 2 (WFPC-2) molecular adsorber
NASA Technical Reports Server (NTRS)
Barengoltz, Jack; Moore, Sonya; Soules, David; Voecks, Gerald
1995-01-01
A device has been developed at the Jet Propulsion Laboratory, California Institute of Technology, for the adsorption of contaminants inside a space instrument during flight. The molecular adsorber was developed for use on the Wide Field Planetary Camera 2, and it has been shown to perform at its design specifications in the WFPC-2. The basic principle of the molecular adsorber is a zeolite-coated ceramic honeycomb. The arrangement is efficient for adsorption and also provides the needed rigidity to retain the special zeolite coating during the launch vibrational environment. The adsorber, on other forms, is expected to be useful for all flight instruments sensitive to internal sources of contamination. Typically, some internal contamination is unavoidable. A common design solution is to increase the venting to the exterior. However, for truly sensitive instruments, the external contamination environment is more severe. The molecular adsorber acts as a one-way vent to solve this problem. Continued development is planned for this device.
New pediatric vision screener, part II: electronics, software, signal processing and validation.
Gramatikov, Boris I; Irsch, Kristina; Wu, Yi-Kai; Guyton, David L
2016-02-04
We have developed an improved pediatric vision screener (PVS) that can reliably detect central fixation, eye alignment and focus. The instrument identifies risk factors for amblyopia, namely eye misalignment and defocus. The device uses the birefringence of the human fovea (the most sensitive part of the retina). The optics have been reported in more detail previously. The present article focuses on the electronics and the analysis algorithms used. The objective of this study was to optimize the analog design, data acquisition, noise suppression techniques, the classification algorithms and the decision making thresholds, as well as to validate the performance of the research instrument on an initial group of young test subjects-18 patients with known vision abnormalities (eight male and 10 female), ages 4-25 (only one above 18) and 19 controls with proven lack of vision issues. Four statistical methods were used to derive decision making thresholds that would best separate patients with abnormalities from controls. Sensitivity and specificity were calculated for each method, and the most suitable one was selected. Both the central fixation and the focus detection criteria worked robustly and allowed reliable separation between normal test subjects and symptomatic subjects. The sensitivity of the instrument was 100 % for both central fixation and focus detection. The specificity was 100 % for central fixation and 89.5 % for focus detection. The overall sensitivity was 100 % and the overall specificity was 94.7 %. Despite the relatively small initial sample size, we believe that the PVS instrument design, the analysis methods employed, and the device as a whole, will prove valuable for mass screening of children.
MEGA: the next generation Medium Energy Gamma-ray Telescope
NASA Astrophysics Data System (ADS)
Paciesas, W.; Miller, R. S.; Andritschke, R.; Kanbach, G.; Zoglauer, A.; Bloser, P.; Hunter, S.; Cravens, J.; Cherry, M.; Guzik, T. G.; Stacy, J. G.; Wefel, J. P.; Di Cocco, G.; Hartmann, D.; Kippen, R. M.; Vestrand, W. T.; Kurfess, J.; Phlips, B.; Strickman, M.; Wulf, E.; Macri, J. R.; McConnell, M. L.; Ryan, J. M.; Reglero, V.; Zych, A. D.
2004-08-01
The MEGA mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.3-50 MeV). This mission will bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL and the visionary ACT mission. It will, among other things, serve to compile a much larger catalog of sources in this energy range, perform far deeper searches for supernovae, better measure the galactic continuum emission as well as identify the components of the cosmic diffuse emission. It will accomplish these goals with a stack of Si-strip detector (SSD) planes surrounded by a dense high-Z calorimeter. At lower photon energies (below ˜ 30 MeV), the design is sensitive to Compton interactions, with the SSD system serving as a scattering medium that also detects and measures the Compton recoil energy deposit. If the energy of the recoil electron is sufficiently high (> 2 MeV), the track of the recoil electron can also be defined. At higher photon energies (above ˜ 10 MeV), the design is sensitive to pair production events, with the SSD system measuring the tracks of the electron and positron. We will discuss the various types of event signatures in detail and describe the advantages of this design over previous Compton telescope designs. Effective area, sensitivity and resolving power estimates are also presented along with simulations of expected scientific results and beam calibration results from the prototype instrument.
Prototype ultrasonic instrument for quantitative testing
NASA Technical Reports Server (NTRS)
Lynnworth, L. C.; Dubois, J. L.; Kranz, P. R.
1972-01-01
A prototype ultrasonic instrument has been designed and developed for quantitative testing. The complete delivered instrument consists of a pulser/receiver which plugs into a standard oscilloscope, an rf power amplifier, a standard decade oscillator, and a set of broadband transducers for typical use at 1, 2, 5 and 10 MHz. The system provides for its own calibration, and on the oscilloscope, presents a quantitative (digital) indication of time base and sensitivity scale factors and some measurement data.
Design constraints of the LST fine guidance sensor
NASA Technical Reports Server (NTRS)
Wissinger, A. B.
1975-01-01
The LST Fine Guidance Sensor design is shaped by the rate of occurrence of suitable guide stars, the competition for telescope focal plane space with the Science Instruments, and the sensitivity of candidate image motion sensors. The relationship between these parameters is presented, and sensitivity to faint stars is shown to be of prime importance. An interferometric technique of image motion sensing is shown to have improved sensitivity and, therefore, a reduced focal plane area requirement in comparison with other candidate techniques (image-splitting prism and image dissector tube techniques). Another design requirement is speed in acquiring the guide star in order to maximize the time available for science observations. The design constraints are shown parametrically, and modelling results are presented.
Dynamic Compression of the Signal in a Charge Sensitive Amplifier: From Concept to Design
NASA Astrophysics Data System (ADS)
Manghisoni, Massimo; Comotti, Daniele; Gaioni, Luigi; Ratti, Lodovico; Re, Valerio
2015-10-01
This work is concerned with the design of a low-noise Charge Sensitive Amplifier featuring a dynamic signal compression based on the non-linear features of an inversion-mode MOS capacitor. These features make the device suitable for applications where a non-linear characteristic of the front-end is required, such as in imaging instrumentation for free electron laser experiments. The aim of the paper is to discuss a methodology for the proper design of the feedback network enabling the dynamic signal compression. Starting from this compression solution, the design of a low-noise Charge Sensitive Amplifier is also discussed. The study has been carried out by referring to a 65 nm CMOS technology.
ERIC Educational Resources Information Center
Adedokun, Omolola A.
2018-01-01
This article provides an illustrative description of the pre-post difference index (PPDI), a simple, nontechnical yet robust tool for examining the instructional sensitivity of assessment items. Extension educators often design pretest-posttest instruments to assess the impact of their curricula on participants' knowledge and understanding of the…
Raman Spectrograph for Ocean Worlds: Integrating Cavity Enhanced Spectroscopy
NASA Astrophysics Data System (ADS)
Retherford, Kurt D.; Moore, Thomas Z.; Davis, Michael W.; Howett, Carly; Soto, Alejandro; Raut, Ujjwal; Molyneux, Philippa M.; Nowicki, Keith; Mandt, Kathleen; E Schmidt, Britney; Mason, John; Yakovlev, Vladislav V.; Fry, Edward S.; RSO Team
2017-10-01
We present a new concept for a Raman spectrograph instrument designed to conduct high sensitivity measurements of biomarkers within Ocean Worlds environments. Our Raman Spectrograph for Ocean worlds (RSO) instrument is a UV+IR multi-laser enhanced Raman system capable of detecting complex, biologically-relevant molecular species mixed within icy surfaces in the outer Solar System. Incorporating two or more lasers with different excitation-emission pathways is crucial for thorough and definitive interpretation of the spectral fingerprints that identify unknown constituents within a sample. Our approach strives to remove fluorescence-driven ambiguities from degenerate, non-unique signatures expected for the most interesting trace constituents, i.e., those best revealed by UV excitation. Our design for deep-UV measurements is based on a novel high-reflectivity integrating cavity invented at Texas A&M University and further developed at SwRI. We report nanomole-range sensitivities of several complex organic molecules measured with our laboratory prototype cavities. Weak optical signals from Raman or fluorescence based instruments require sensitive low-noise detectors and long integration times, which by comparison are undesirable for the high radiation environment and limited battery power conditions anticipated for the Europa Lander mission. The two-to-five orders of magnitude enhanced sensitivity over standard Raman spectroscopy enabled by the integrating cavity enhanced spectroscopy technique makes it well suited for the Europa Lander payload and other future Ocean Worlds missions.
The high throughput virtual slit enables compact, inexpensive Raman spectral imagers
NASA Astrophysics Data System (ADS)
Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.
2018-02-01
Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.
The POLARBEAR Experiment: Design and Characterization
NASA Astrophysics Data System (ADS)
Kermish, Zigmund David
We present the design and characterization of the
NASA Astrophysics Data System (ADS)
Burr, Steven Reed
Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.
Validation of a patient-centered culturally sensitive health care office staff inventory.
Tucker, Carolyn M; Wall, Whitney; Marsiske, Michael; Nghiem, Khanh; Roncoroni, Julia
2015-09-01
Research suggests that patient-perceived culturally sensitive health care encompasses multiple components of the health care delivery system including the cultural sensitivity of front desk office staff. Despite this, research on culturally sensitive health care focuses almost exclusively on provider behaviors, attitudes, and knowledge. This is due in part to the paucity of instruments available to assess the cultural sensitivity of front desk office staff. Thus, the objective of the present study is to determine the psychometric properties of the pilot Tucker-Culturally Sensitive Health Care Office Staff Inventory-Patient Form (T-CSHCOSI-PF), which is an instrument designed to enable patients to evaluate the patient-defined cultural sensitivity of their front desk office staff. A sample of 1648 adult patients was recruited by staff at 67 health care sites across the United States. These patients anonymously completed the T-CSHCOSI-PF, a demographic data questionnaire, and a patient satisfaction questionnaire. Findings Confirmatory factor analyses of the TCSHCOSI-PF revealed that this inventory has two factors with high internal consistency reliability and validity (Cronbach's αs=0.97 and 0.95). It is concluded that the T-CSHCOSI-PF is a psychometrically strong and useful inventory for assessing the cultural sensitivity of front desk office staff. This inventory can be used to support culturally sensitive health care research, evaluate the job performance of front desk office staff, and aid in the development of trainings designed to improve the cultural sensitivity of these office staff.
Exploring cosmic origins with CORE: The instrument
NASA Astrophysics Data System (ADS)
de Bernardis, P.; Ade, P. A. R.; Baselmans, J. J. A.; Battistelli, E. S.; Benoit, A.; Bersanelli, M.; Bideaud, A.; Calvo, M.; Casas, F. J.; Castellano, M. G.; Catalano, A.; Charles, I.; Colantoni, I.; Columbro, F.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; Delabrouille, J.; Doyle, S.; Franceschet, C.; Gomez, A.; Goupy, J.; Hanany, S.; Hills, M.; Lamagna, L.; Macias-Perez, J.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; McCarthy, D.; Mennella, A.; Monfardini, A.; Noviello, F.; Paiella, A.; Piacentini, F.; Piat, M.; Pisano, G.; Signorelli, G.; Tan, C. Y.; Tartari, A.; Trappe, N.; Triqueneaux, S.; Tucker, C.; Vermeulen, G.; Young, K.; Zannoni, M.; Achúcarro, A.; Allison, R.; Artall, E.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z. Y.; Carvalho, C. S.; Challinor, A.; Chluba, J.; Clesse, S.; De Gasperis, G.; De Zotti, G.; Di Valentino, E.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Hagstotz, S.; Greenslade, J.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Martins, C. J. A. P.; Matarrese, S.; Melchiorri, A.; Melin, J. B.; Molinari, D.; Natoli, P.; Negrello, M.; Notari, A.; Paoletti, D.; Patanchon, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J. A.; Salvati, L.; Tomasi, M.; Tramonte, D.; Trombetti, T.; Väliviita, J.; Van de Weyjgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.
2018-04-01
We describe a space-borne, multi-band, multi-beam polarimeter aiming at a precise and accurate measurement of the polarization of the Cosmic Microwave Background. The instrument is optimized to be compatible with the strict budget requirements of a medium-size space mission within the Cosmic Vision Programme of the European Space Agency. The instrument has no moving parts, and uses arrays of diffraction-limited Kinetic Inductance Detectors to cover the frequency range from 60 GHz to 600 GHz in 19 wide bands, in the focal plane of a 1.2 m aperture telescope cooled at 40 K, allowing for an accurate extraction of the CMB signal from polarized foreground emission. The projected CMB polarization survey sensitivity of this instrument, after foregrounds removal, is 1.7 μKṡarcmin. The design is robust enough to allow, if needed, a downscoped version of the instrument covering the 100 GHz to 600 GHz range with a 0.8 m aperture telescope cooled at 85 K, with a projected CMB polarization survey sensitivity of 3.2 μKṡarcmin.
Hydrogen Epoch of Reionization Array (HERA)
NASA Astrophysics Data System (ADS)
DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bernardi, Gianni; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; de Lera Acedo, Eloy; Dillon, Joshua S.; Ewall-Wice, Aaron; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Hewitt, Jacqueline N.; Hickish, Jack; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Patra, Nipanjana; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Thyagarajan, Nithyanandan; Williams, Peter K. G.; Zheng, Haoxuan
2017-04-01
The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z = 6-12), and to explore earlier epochs of our Cosmic Dawn (z ˜ 30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14 m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA’s scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.
EUV high resolution imager on-board solar orbiter: optical design and detector performances
NASA Astrophysics Data System (ADS)
Halain, J. P.; Mazzoli, A.; Rochus, P.; Renotte, E.; Stockman, Y.; Berghmans, D.; BenMoussa, A.; Auchère, F.
2017-11-01
The EUV high resolution imager (HRI) channel of the Extreme Ultraviolet Imager (EUI) on-board Solar Orbiter will observe the solar atmospheric layers at 17.4 nm wavelength with a 200 km resolution. The HRI channel is based on a compact two mirrors off-axis design. The spectral selection is obtained by a multilayer coating deposited on the mirrors and by redundant Aluminum filters rejecting the visible and infrared light. The detector is a 2k x 2k array back-thinned silicon CMOS-APS with 10 μm pixel pitch, sensitive in the EUV wavelength range. Due to the instrument compactness and the constraints on the optical design, the channel performance is very sensitive to the manufacturing, alignments and settling errors. A trade-off between two optical layouts was therefore performed to select the final optical design and to improve the mirror mounts. The effect of diffraction by the filter mesh support and by the mirror diffusion has been included in the overall error budget. Manufacturing of mirror and mounts has started and will result in thermo-mechanical validation on the EUI instrument structural and thermal model (STM). Because of the limited channel entrance aperture and consequently the low input flux, the channel performance also relies on the detector EUV sensitivity, readout noise and dynamic range. Based on the characterization of a CMOS-APS back-side detector prototype, showing promising results, the EUI detector has been specified and is under development. These detectors will undergo a qualification program before being tested and integrated on the EUI instrument.
Cosmic ray composition investigations using ICE/ISEE-3
NASA Technical Reports Server (NTRS)
Wiedenbeck, Mark E.
1992-01-01
The analysis of data from the high energy cosmic experiment on ISEE-3 and associated modeling and interpretation activities are discussed. The ISEE-3 payload included two instruments capable of measuring the composition of heavy cosmic rays. The designs of these two instruments incorporated innovations which made it possible, for the first time, to measure isotopic as well as the chemical composition for a wide range of elements. As the result of the demonstrations by these two instruments of the capability to resolve individual cosmic ray isotopes, a new generation of detectors was developed using very similar designs, but having improved reliability and increased sensitive area. The composition measurements which were obtained from the ISEE-3 experiment are summarized.
Design Studies for a Far Infrared Absolute Spectrometer for the Cosmic Background Explorer
NASA Technical Reports Server (NTRS)
Johnson, N. J. E.
1980-01-01
Unrelenting symmetry of design is required to assure the thermal balance of a cryogenically cooled, rapid scan interferometer spectrometer to be mounted in vacuum with the Cosmic Background Explorer liquid helium dewar. The instrument receives inputs from Winston cone optical flux collectors, one open to space and a second coupled to a black body reference source. A differential instrument, the spectrometer produces outputs corresponding to the Fourier transform of the spectral radiance difference between the two inputs. The two outputs are sensed by four detectors, two optimized for shorter wavelength response, and two optimized for longer wavelengths. The optical design, detector and signal channel, system sensitivity, mechanics, thermal control and cryogenics, electronics and power systems, command and control, calibration, system test requirements, and the instrument interface are discussed. Recommendations for continued work are indicated for the superconducting reflective horns, the motor bearing and drive, and design detail.
NASA Technical Reports Server (NTRS)
Holen, J. T.; Royer, E. R.
1976-01-01
A card configuration which combines the functions of identification, enumeration and antibiotic sensitivity into one card was developed. An instrument package was designed around the card to integrate the card filling, incubation reading, computation and decision making process into one compact unit. Support equipment was also designed to prepare the expandable material used in the MLM.
The current status of the mission instruments of GOSAT-2
NASA Astrophysics Data System (ADS)
Nakajima, Masakatsu; Yajima, Yukie; Hashimoto, Makiko; Shiomi, Kei; Suto, Hiroshi; Imai, Hiroko
2017-04-01
The GOSAT-2 is the successor satellite to the GOSAT which is the satellite dedicated to the measurements of the greenhouse gases such as carbon dioxide and methane. GOSAT was launched in January of 2009 and has been operated for about seven years. The development of the GOSAT-2 has been continued for three years, and currently the proto-flight model is under manufacturing. The mission instruments of the GOSAT-2 are TANSO-FTS-2 and TANSO-CAI-2. TANSO-FTS-2 is the Fourier Transform Spectrometer observing greenhouse gases such as Carbon Dioxide and Methane and TANSO-CAI-2 is the imager observing the aerosols and clouds to compensate the TANSO-FTS-2 data and to grasp the movements of the aerosols such as PM2.5. The mission instruments will adopt the same kinds of instruments as GOSAT. But some improvements will be carried. Based on the results of the critical design, the manufacturing of the proto-flight model was started and through the manufacturing, the gap has emerged between the design and manufacturing. Especially, the results of the polarization sensitivity of the TANSO-CAI-2 was lower than 3% which is the requirements and the results of the test manufacturing has shown that it has been over than 40%. The root cause of this anomaly was that the thickness of the anti-reflecting coating had varied from place to place. Therefore the design of the thickness of the anti-reflecting coating has been changed with consideration for the difference of the thickness of the coat between the center and edge of the lens. And we could meet the polarization sensitivity requirement. In this presentation, the root cause and the investigation process of the polarization sensitivity anomaly will be presented as well as the current status of the manufacturing of the mission instruments of GOSAT-2.
The Advanced Gamma-ray Imaging System (AGIS)-Simulation Studies
NASA Astrophysics Data System (ADS)
Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V. V.
2008-12-01
The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.
Galyean, Anne A; Filliben, James J; Holbrook, R David; Vreeland, Wyatt N; Weinberg, Howard S
2016-11-18
Asymmetric flow field flow fractionation (AF 4 ) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF 4 primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2 (5-1) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF 4 instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2 (5-2) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF 4 instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
[Valuating public health in some zoos in Colombia. Phase 1: designing and validating instruments].
Agudelo-Suárez, Angela N; Villamil-Jiménez, Luis C
2009-10-01
Designing and validating instruments for identifying public health problems in some zoological parks in Colombia, thereby allowing them to be evaluated. Four instruments were designed and validated along with the participation of five zoos. The instruments were validated regarding appearance, content, sensitivity to change, reliability tests and determining the tools' usefulness. An evaluation scale was created which assigned a maximum of 400 points, having the following evaluation intervals: 350-400 points meant good public health management, 100-349 points for regular management and 0-99 points for deficient management. The instruments were applied to the five zoos as part of the validation, forming a base-line for future evaluation of public health in them. Four valid and useful instruments were obtained for evaluating public health in zoos in Colombia. The five zoos presented regular public health management. The base-line obtained when validating the instruments led to identifying strengths and weaknesses regarding public health management in the zoos. The instruments obtained generally and specifically evaluated public health management; they led to diagnosing, identifying, quantifying and scoring zoos in Colombia in terms of public health. The base-line provided a starting point for making comparisons and enabling future follow-up of public health in Colombian zoos.
The effects of amphetamine exposure on outcome-selective Pavlovian-instrumental transfer in rats
Shiflett, Michael W.
2012-01-01
Rationale Repeated exposure to psychostimulants alters behavioral responses to reward-related cues; however, the motivational underpinnings of this effect have not been fully characterized. Objectives The following study was designed to examine how amphetamine sensitization affects performance in rats on a series of Pavlovian and operant tasks that distinguish between general-incentive and outcome-selective forms of conditioned responses. Methods Adult male rats underwent Pavlovian and instrumental training for food pellet rewards. Following training, rats were sensitized to d-amphetamine (2 mg/kg for 7 days). Rats were subsequently tested on an outcome-selective Pavlovian-instrumental transfer (PIT) task, an outcome-reinstatement task, and an outcome devaluation task. Additionally, in a separate experiment PIT was assessed in amphetamine-sensitized and control rats using a Pavlovian backward-conditioned stimulus. Results Repeated amphetamine exposure sensitized locomotor activity to acute amphetamine challenge. Amphetamine altered responses to CS presentations by increasing conditioned approach. During tests of PIT amphetamine-treated rats showed no outcome-selectivity in their responding, responding to a CS whether or not it shared a common outcome with the instrumental response. No effect of amphetamine sensitization was observed on tests of outcome-selective reinstatement by outcome delivery, or action selection based on outcome value. Amphetamine-sensitized rats showed impaired outcome-selective PIT to a backward CS but were unaltered in conditioned approach. Conclusions Amphetamine sensitization prevents outcome-selective responding during PIT, which is dissociable from amphetamine’s effects on conditioned approach. These data suggest fundamental alterations in how stimuli motivate action in addiction. PMID:22562522
The Soft X-ray Imager (SXI) on the SMILE Mission
NASA Astrophysics Data System (ADS)
Sembay, S.; Branduardi-Raymont, G.; Drumm, P.; Escoubet, C. P.; Genov, G.; Gow, J.; Hall, D.; Holland, A.; Hudec, R.; Mas-Hesse, J. M.; Kennedy, T.; Kuntz, K. D.; Nakamura, R.; Ostgaard, N.; Ottensamer, R.; Raab, W.; Read, A.; Rebuffat, D.; Romstedt, J.; Schyns, E.; Sibeck, D. G.; Srp, A.; Steller, M.; Sun, T.; Sykes, J. M.; Thornhill, J.; Walsh, B.; Walton, D.; Wang, C.; Wei, F.; Wielders, A.; Whittaker, I. C.
2016-12-01
SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) is a space mission dedicated to study the interaction of the solar wind with the Earth's magnetic field. SMILE will investigate the dynamic response of the Earth's magnetosphere to the impact of the solar wind in a unique manner, never attempted before: it will combine soft X-ray imaging of the Earth's magnetic boundaries and magnetospheric cusps with simultaneous UV imaging of the Northern aurora, while simultaneously providing context measurements via an in situ plasma and magnetometer instrument package. SMILE is a joint European Space Agency (ESA) and Chinese Academy of Sciences (CAS) collaborative mission due for launch in 2021. This talk will describe the Soft X-ray Imager (SXI) on SMILE. The SXI is designed for good detection sensitivity of the soft X-rays (0.2 - 2.0 keV) produced in the Earth's exosphere by the solar wind charge exchange process. This process is the mechanism by which it is possible to globally image the Earth's dayside magnetosheath, magnetopause boundary, bowshock and cusps. The wide field of view of the instrument (27° x 16°) is achieved by the use of a micropore optic (MPO) with a Lobster-eye focusing geometry. The detector consists of two large format CCDs (each 8.1 cm x 6.8 cm sensitive area) providing high quantum efficiency and medium energy resolution for soft X-rays. The instrument design will be presented along with simulation results indicating the instrument sensitivity and science return.
Design of an Airborne Portable Remote Imaging Spectrometer (PRISM) for the Coastal Ocean
NASA Technical Reports Server (NTRS)
Mouroulis, P.; vanGorp, B.; Green, R. O.; Cohen, D.; Wilson, D.; Randall, D.; Rodriguez, J.; Polanco, O.; Dierssen, H.; Balasubramanian, K.;
2010-01-01
PRISM is a pushbroom imaging spectrometer currently under development at the Jet Propulsion Laboratory, intended to address the needs of airborne coastal ocean science research. We describe here the instrument design and the technologies that enable it to achieve its distinguishing characteristics. PRISM covers the 350-1050 nm range with a 3.1 nm sampling and a 33(deg) field of view. The design provides for high signal to noise ratio, high uniformity of response, and low polarization sensitivity. The complete instrument also incorporates two additional wavelength bands at 1240 and 1610 nm in a spot radiometer configuration to aid with atmospheric correction.
Experimental design and quality assurance: in situ fluorescence instrumentation
Conmy, Robyn N.; Del Castillo, Carlos E.; Downing, Bryan D.; Chen, Robert F.
2014-01-01
Both instrument design and capabilities of fluorescence spectroscopy have greatly advanced over the last several decades. Advancements include solid-state excitation sources, integration of fiber optic technology, highly sensitive multichannel detectors, rapid-scan monochromators, sensitive spectral correction techniques, and improve data manipulation software (Christian et al., 1981, Lochmuller and Saavedra, 1986; Cabniss and Shuman, 1987; Lakowicz, 2006; Hudson et al., 2007). The cumulative effect of these improvements have pushed the limits and expanded the application of fluorescence techniques to numerous scientific research fields. One of the more powerful advancements is the ability to obtain in situ fluorescence measurements of natural waters (Moore, 1994). The development of submersible fluorescence instruments has been made possible by component miniaturization and power reduction including advances in light sources technologies (light-emitting diodes, xenon lamps, ultraviolet [UV] lasers) and the compatible integration of new optical instruments with various sampling platforms (Twardowski et at., 2005 and references therein). The development of robust field sensors skirt the need for cumbersome and or time-consuming filtration techniques, the potential artifacts associated with sample storage, and coarse sampling designs by increasing spatiotemporal resolution (Chen, 1999; Robinson and Glenn, 1999). The ability to obtain rapid, high-quality, highly sensitive measurements over steep gradients has revolutionized investigations of dissolved organic matter (DOM) optical properties, thereby enabling researchers to address novel biogeochemical questions regarding colored or chromophoric DOM (CDOM). This chapter is dedicated to the origin, design, calibration, and use of in situ field fluorometers. It will serve as a review of considerations to be accounted for during the operation of fluorescence field sensors and call attention to areas of concern when making this type of measurement. Attention is also given to ways in which in-water fluorescence measurements have revolutionized biogeochemical studies of CDOM and how those measurements can be used in conjunction with remotely sense satellite data to understand better the biogeochemistry of DOM in aquatic environments.
Linder, Suzanne K.; Kamath, Geetanjali R.; Pratt, Gregory F.; Saraykar, Smita S.; Volk, Robert J.
2015-01-01
Objective To compare the effectiveness of two search methods in identifying studies that used the Control Preferences Scale (CPS), a healthcare decision-making instrument commonly used in clinical settings. Study Design & Setting We searched the literature using two methods: 1) keyword searching using variations of “control preferences scale” and 2) cited reference searching using two seminal CPS publications. We searched three bibliographic databases [PubMed, Scopus, Web of Science (WOS)] and one full-text database (Google Scholar). We report precision and sensitivity as measures of effectiveness. Results Keyword searches in bibliographic databases yielded high average precision (90%), but low average sensitivity (16%). PubMed was the most precise, followed closely by Scopus and WOS. The Google Scholar keyword search had low precision (54%) but provided the highest sensitivity (70%). Cited reference searches in all databases yielded moderate sensitivity (45–54%), but precision ranged from 35–75% with Scopus being the most precise. Conclusion Cited reference searches were more sensitive than keyword searches, making it a more comprehensive strategy to identify all studies that use a particular instrument. Keyword searches provide a quick way of finding some but not all relevant articles. Goals, time and resources should dictate the combination of which methods and databases are used. PMID:25554521
MEGA: the next generation Medium Energy Gamma-ray Telescope
NASA Astrophysics Data System (ADS)
Ryan, James M.; Andritschke, Robert; Bloser, Peter F.; Cravens, James P.; Cherry, Michael L.; Di Cocco, Guido; Guzik, T. G.; Hartmann, Dieter H.; Hunter, Stanley H.; Kanbach, Gottfried; Kippen, R. M.; Kurfess, James; Macri, John R.; McConnell, Mark L.; Miller, Richard S.; Paciesas, William S.; Phlips, Bernard; Reglero, Victor; Stacy, J. G.; Strickman, Mark; Vestrand, W. Thomas; Wefel, John P.; Wulf, Eric; Zoglauer, Andreas; Zych, Allen D.
2004-10-01
The MEGA mission would enable a sensitive all-sky survey of the medium-energy ?-ray sky (0.3-50 MeV). This mission will bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL and the visionary ACT mission. It will, among other things, serve to compile a much larger catalog of sources in this energy range, perform far deeper searches for supernovae, better measure the galactic continuum emission as well as identify the components of the cosmic diffuse emission. The large field of view will allow MEGA to continuously monitor the sky for transient and variable sources. It will accomplish these goals with a stack of Si-strip detector (SSD) planes surrounded by a dense high-Z calorimeter. At lower photon energies (below ~30 MeV), the design is sensitive to Compton interactions, with the SSD system serving as a scattering medium that also detects and measures the Compton recoil energy deposit. If the energy of the recoil electron is sufficiently high (> 2 MeV), the track of the recoil electron can also be defined. At higher photon energies (above ~10 MeV), the design is sensitive to pair production events, with the SSD system measuring the tracks of the electron and positron. We will discuss the various types of event signatures in detail and describe the advantages of this design over previous Compton telescope designs. Effective area, sensitivity and resolving power estimates are also presented along with simulations of expected scientific results and beam calibration results from the prototype instrument.
Development of sensitized pick coal interface detector system
NASA Technical Reports Server (NTRS)
Burchill, R. F.
1982-01-01
One approach for detection of the coal interface is measurement of pick cutting loads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telemetry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder. The design of components in the test data system were finalized, the required instruments were assembled, the instrument system was evaluated in an above-ground simulation test, and an underground test series to obtain tape recorded sensor data was conducted.
Interchangeable end effector tools utilized on the PFMA
NASA Technical Reports Server (NTRS)
Cody, Joe; Carroll, John; Crow, George; Gierow, Paul; Littles, Jay; Maness, Michael; Morrison, Jim
1992-01-01
An instrumented task board, used for measuring forces applied by the Protoflight Manipulator Arm (PFMA) to the task board, was fabricated and delivered to Marshall Space Flight Center. SRS Technologies phased out the existing IBM compatible data acquisition system, used with a instrumented task board, and integrated the force measuring electronic hardware in with the Macintosh II data acquisition system. The purpose of this change was to acquire all data with the same time tag, allowing easier and more accurate data reduction in addition to real-time graphics. A three-dimensional optical position sensing system for determining the location of the PFMA's end effect or in reference to the center of the instrumented task board was also designed and delivered under. An improved task board was fabricated which included an improved instrumented beam design. The modified design of the task board improved the force/torque measurement system by increasing the sensitivity, reliability, load range and ease of maintenance. A calibration panel for the optical position system was also designed and fabricated. The calibration method developed for the position sensors enhanced the performance of the sensors as well as simplified the installation and calibration procedures required. The modifications made under this effort expanded the capabilities of the task board system. The system developed determines the arm's position relative to the task board and measures the signals to the joints resulting from the operator's control signals in addition to the task board forces. The software and hardware required to calculate and record the position of the PFMA during the performance of tasks with the instrumented task board were defined, designed and delivered to MSFC. PFMA joint input signals can be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to realtime force and position sensor data presentation.
Interchangeable end effector tools utilized on the PFMA
NASA Astrophysics Data System (ADS)
Cody, Joe; Carroll, John; Crow, George; Gierow, Paul; Littles, Jay; Maness, Michael; Morrison, Jim
1992-02-01
An instrumented task board, used for measuring forces applied by the Protoflight Manipulator Arm (PFMA) to the task board, was fabricated and delivered to Marshall Space Flight Center. SRS Technologies phased out the existing IBM compatible data acquisition system, used with a instrumented task board, and integrated the force measuring electronic hardware in with the Macintosh II data acquisition system. The purpose of this change was to acquire all data with the same time tag, allowing easier and more accurate data reduction in addition to real-time graphics. A three-dimensional optical position sensing system for determining the location of the PFMA's end effect or in reference to the center of the instrumented task board was also designed and delivered under. An improved task board was fabricated which included an improved instrumented beam design. The modified design of the task board improved the force/torque measurement system by increasing the sensitivity, reliability, load range and ease of maintenance. A calibration panel for the optical position system was also designed and fabricated. The calibration method developed for the position sensors enhanced the performance of the sensors as well as simplified the installation and calibration procedures required. The modifications made under this effort expanded the capabilities of the task board system. The system developed determines the arm's position relative to the task board and measures the signals to the joints resulting from the operator's control signals in addition to the task board forces. The software and hardware required to calculate and record the position of the PFMA during the performance of tasks with the instrumented task board were defined, designed and delivered to MSFC. PFMA joint input signals can be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to realtime force and position sensor data presentation.
Reliability analysis of instrument design of noninvasive bone marrow disease detector
NASA Astrophysics Data System (ADS)
Su, Yu; Li, Ting; Sun, Yunlong
2016-02-01
Bone marrow is an important hematopoietic organ, and bone marrow lesions (BMLs) may cause a variety of complications with high death rate and short survival time. Early detection and follow up care are particularly important. But the current diagnosis methods rely on bone marrow biopsy/puncture, with significant limitations such as invasion, complex operation, high risk, and discontinuous. It is highly in need of a non-invasive, safe, easily operated, and continuous monitoring technology. So we proposed to design a device aimed for detecting bone marrow lesions, which was based on near infrared spectrum technology. Then we fully tested its reliabilities, including the sensitivity, specificity, signal-to-noise ratio (SNR), stability, and etc. Here, we reported this sequence of reliability test experiments, the experimental results, and the following data analysis. This instrument was shown to be very sensitive, with distinguishable concentration less than 0.002 and with good linearity, stability and high SNR. Finally, these reliability-test data supported the promising clinical diagnosis and surgery guidance of our novel instrument in detection of BMLs.
Characterization of the LIGO detectors during their sixth science run
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deleeuw, E.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; az, M. Dí; Dietz, A.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endröczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Nanda Kumar, D.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2015-06-01
In 2009-2010, the Laser Interferometer Gravitational-Wave Observatory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves (GWs) of astrophysical origin. The sensitivity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the GW readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the detectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources.
Systematic Error Mitigation for the PIXIE Instrument
NASA Technical Reports Server (NTRS)
Kogut, Alan; Fixsen, Dale J.; Nagler, Peter; Tucker, Gregory
2016-01-01
The Primordial Ination Explorer (PIXIE) uses a nulling Fourier Transform Spectrometer to measure the absoluteintensity and linear polarization of the cosmic microwave background and diuse astrophysical foregrounds.PIXIE will search for the signature of primordial ination and will characterize distortions from a blackbodyspectrum, both to precision of a few parts per billion. Rigorous control of potential instrumental eects isrequired to take advantage of the raw sensitivity. PIXIE employs a highly symmetric design using multipledierential nulling to reduce the instrumental signature to negligible levels. We discuss the systematic errorbudget and mitigation strategies for the PIXIE mission.
NASA Technical Reports Server (NTRS)
Woodfill, J. R.; Thomson, F. J.
1979-01-01
The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.
Airborne tests of an OAWL Doppler lidar: Results and potential for space deployment
NASA Astrophysics Data System (ADS)
Hardesty, Michael; Tucker, Sara; Baidar, Sunil; Beubien, Mark
2018-04-01
The 532 nm Green Optical Covariance Wind Lidar (GrOAWL) was flown on a NASA WB-57 research aircraft during the summer of 2016 to validate the instrument design and evaluate wind measurement capability and sensitivity. Comparisons with dropsondes and atmospheric models showed good agreement, demonstrating that a GrOAWL type instrument could provide high-value wind measurements from both airborne and space-based platforms
NASA Technical Reports Server (NTRS)
Gaier, T.; Kangaslahti, P.; Lawrence, C. R.; Leitch, E. M.; Wollack, E. J.
2012-01-01
The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ( approx 1 deg.) . Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 micro Ks(exp 1/2)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 micro Ks(exp 1/2) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01 (QUIET Collaboration 2012) The two arrays together cover multipoles in the range l approximately equals 25-975 . These are the largest HEMT-ba.sed arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument,
NIR light propagation in a digital head model for traumatic brain injury (TBI)
Francis, Robert; Khan, Bilal; Alexandrakis, George; Florence, James; MacFarlane, Duncan
2015-01-01
Near infrared spectroscopy (NIRS) is capable of detecting and monitoring acute changes in cerebral blood volume and oxygenation associated with traumatic brain injury (TBI). Wavelength selection, source-detector separation, optode density, and detector sensitivity are key design parameters that determine the imaging depth, chromophore separability, and, ultimately, clinical usefulness of a NIRS instrument. We present simulation results of NIR light propagation in a digital head model as it relates to the ability to detect intracranial hematomas and monitor the peri-hematomal tissue viability. These results inform NIRS instrument design specific to TBI diagnosis and monitoring. PMID:26417498
Research lessons learned: occupational therapy with culturally diverse mothers of premature infants.
Reid, Denise T; Chiu, Teresa M L
2011-06-01
Evaluation studies of the effectiveness of home-based occupational therapy are scarce but are needed to justify the impact of occupational therapy intervention. When the intervention is for persons from diverse cultural backgrounds, additional research challenges arise. To share lessons learned in conducting home-based occupational therapy research with Canadian, and immigrant South Asian and Chinese mothers of premature infants in a large Canadian city. Lessons learned were to implement a culturally sensitive recruitment process, change the research design to include more interviews and focus groups, and be aware of the need for culturally appropriate instruments. Researchers need to be sensitized to the Western cultural values upon which most research designs and instrumentation are constructed. Involvement of a culturally diverse research team, openness to feedback, adaptability, and critical reflection on what is important to the cultural groups are among the suggestions for researchers planning home-based occupational therapy research with culturally diverse populations.
NASA Technical Reports Server (NTRS)
Esposito, J. A.; Bertsch, D. L.; Chen, A. W.; Dingus, B. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.;
1998-01-01
The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory has been operating for over seven years since its launch in 1991 April. This span of time far exceeds the design lifetime of two years. As the instrument has aged, several changes have occurred due to spark chamber gas exchanges as well as some hardware degradation and failures, all of which have an influence on the instrument sensitivity. This paper describes post-launch measurements and analysis that are done to calibrate the instrument response functions. The updated instrument characteristics are incorporated into the analysis software.
Rocket instrument for far-UV spectrophotometry of faint astronomical objects.
Hartig, G F; Fastie, W G; Davidsen, A F
1980-03-01
A sensitive sounding rocket instrument for moderate (~10-A) resolution far-UV (lambda1160-lambda1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employs a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed.
STS-40 orbital acceleration research experiment flight results during a typical sleep period
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.
1992-01-01
The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities was flown aboard Shuttle on STS-40. The instrument is designed to measure and record the Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarefied flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument detects aerodynamic behavior of the Shuttle while in low-earth orbit. A 2-h orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low-frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight liner corrections for drift.
Optimized merging of search coil and fluxgate data for MMS
NASA Astrophysics Data System (ADS)
Fischer, David; Magnes, Werner; Hagen, Christian; Dors, Ivan; Chutter, Mark W.; Needell, Jerry; Torbert, Roy B.; Le Contel, Olivier; Strangeway, Robert J.; Kubin, Gernot; Valavanoglou, Aris; Plaschke, Ferdinand; Nakamura, Rumi; Mirioni, Laurent; Russell, Christopher T.; Leinweber, Hannes K.; Bromund, Kenneth R.; Le, Guan; Kepko, Lawrence; Anderson, Brian J.; Slavin, James A.; Baumjohann, Wolfgang
2016-11-01
The Magnetospheric Multiscale mission (MMS) targets the characterization of fine-scale current structures in the Earth's tail and magnetopause. The high speed of these structures, when traversing one of the MMS spacecraft, creates magnetic field signatures that cross the sensitive frequency bands of both search coil and fluxgate magnetometers. Higher data quality for analysis of these events can be achieved by combining data from both instrument types and using the frequency bands with best sensitivity and signal-to-noise ratio from both sensors. This can be achieved by a model-based frequency compensation approach which requires the precise knowledge of instrument gain and phase properties. We discuss relevant aspects of the instrument design and the ground calibration activities, describe the model development and explain the application on in-flight data. Finally, we show the precision of this method by comparison of in-flight data. It confirms unity gain and a time difference of less than 100 µs between the different magnetometer instruments.
NASA Technical Reports Server (NTRS)
Orr, H. D., III; Rarig, P. L.
1981-01-01
A pressure modulator radiometer operated in a nadir viewing mode from the top of a midlatitude summer model of the atmosphere was theoretically studied for monitoring the mean volumetric mixing ratio of carbon monoxide in the troposphere. The mechanical characteristics of the instrument on the Nimbus 7 stratospheric and mesospheric sounder experiment are assumed and CO is assumed to be the only infrared active constituent. A line by line radiative transfer computer program is used to simulate the upwelling radiation reaching the top of the atmosphere. The performance of the instrument is examined as a function of the mean pressure in and the length of the instrument gas correlation cell. Instrument sensitivity is described in terms of signal to noise ratio for a 10 percent change in CO mixing ratio. Sensitivity to mixing ratio changes is also studied. It is concluded that tropospheric monitoring requires a pressure modulator drive having a larger swept volume and producing higher compression ratios at higher mean cell pressures than the Nimbus 7 design.
Exoplanetary Science: Instrumentation, Observations, and Expectations
NASA Technical Reports Server (NTRS)
McElwain, Michael
2011-01-01
More than 700 exoplanets have been discovered and studied using indirect techniques, leading our field into the exciting new era of comparative exoplanetology. However, the direct detection of exoplanetary systems still remains at the sensitivity limits of both ground- and space-based observatories. The development of new technologies for adaptive optics systems and high contrast instruments continues to increase the ability to directly study exoplanets. The scientific impact of these developments has promising prospects for both short and long timescales. In my talk, I will discuss recent highlights from the SEEDS survey and the current instrumentation in use at the Subaru telescope. SEEDS is a high contrast imaging strategic observing program with 120 nights of time allocated at the NAOJ's flagship optical and infrared telescope. I will also describe new instrumentation I designed to improve the SEEDS capabilities and efficiency. Finally, I will briefly discuss the conceptual design of a transiting planet camera to fly as a potential second generation instrument on-board NASA's SOFIA observatory.
Micro-spec: an Integrated Direct-detection Spectrometer for Far-infrared Space Telescopes
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.
2014-01-01
The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements.Micro-Spec (µ-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 (micrometers) wavelength range which will enable a wide range of flight missions that would otherwise be challenging due tothe large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 sq cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for micro-Spec is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance.Two point designs with resolving power of 260 and 520 and an RMS phase error less than approximately 0.004 radians were developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe
2014-01-01
The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (u-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 micromillimeter wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a approximately 10 square cm silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for Micro-Spec is presented, with particular attention given to its twodimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. A point design with resolving power of 257, an RMS phase error less than 0.1 radians and four stigmatic points was developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.
Micro-Spec: an integrated direct-detection spectrometer for far-infrared space telescopes
NASA Astrophysics Data System (ADS)
Cataldo, Giuseppe; Hseih, Wen-Ting; Huang, Wei-Chung; Moseley, S. H.; Stevenson, Thomas R.; Wollack, Edward J.
2014-08-01
The far-infrared and submillimeter portions of the electromagnetic spectrum provide a unique view of the astrophysical processes present in the early universe. Our ability to fully explore this rich spectral region has been limited, however, by the size and cost of the cryogenic spectrometers required to carry out such measurements. Micro-Spec (μ-Spec) is a high-sensitivity, direct-detection spectrometer concept working in the 450-1000 μm wavelength range which will enable a wide range of flight missions that would otherwise be challenging due to the large size of current instruments with the required spectral resolution and sensitivity. The spectrometer design utilizes two internal antenna arrays, one for transmitting and one for receiving, superconducting microstrip transmission lines for power division and phase delay, and an array of microwave kinetic inductance detectors (MKIDs) to achieve these goals. The instrument will be integrated on a ~10 cm2 silicon chip and can therefore become an important capability under the low background conditions accessible via space and high-altitude borne platforms. In this paper, an optical design methodology for μ-Spec is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the maximization of the instrument resolving power and minimization of the RMS phase error on the instrument focal plane. This two-step optimization can generate geometrical configurations given specific requirements on spectrometer size, operating spectral range and performance. Two point designs with resolving power of 260 and 520 and an RMS phase error less than ~0:004 radians were developed for initial demonstration and will be the basis of future instruments with resolving power up to about 1200.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, Adrienne M.; Ulrich, Timothy J. II; Menlove, Howard O.
Objective is to investigate the use of Passive Neutron Albedo Reactivity (PNAR) and Self-Interrogation Neutron Resonance Densitometry (SINRD) to quantify fissile content in FUGEN spent fuel assemblies (FAs). Methodology used is: (1) Detector was designed using fission chambers (FCs); (2) Optimized design via MCNPX simulations; and (3) Plan to build and field test instrument in FY13. Significance was to improve safeguards verification of spent fuel assemblies in water and increase sensitivity to partial defects. MCNPX simulations were performed to optimize the design of the SINRD+PNAR detector. PNAR ratio was less sensitive to FA positioning than SINRD and SINRD ratio wasmore » more sensitive to Pu fissile mass than PNAR. Significance was that the integration of these techniques can be used to improve verification of spent fuel assemblies in water.« less
Modeling and Error Analysis of a Superconducting Gravity Gradiometer.
1979-08-01
fundamental limit to instrument - -1- sensitivity is the thermal noise of the sensor . For the gradiometer design outlined above, the best sensitivity...Mapoles at Stanford. Chapter IV determines the relation between dynamic range, the sensor Q, and the thermal noise of the cryogenic accelerometer. An...C.1 Accelerometer Optimization (1) Development and optimization of the loaded diaphragm sensor . (2) Determination of the optimal values of the
Greeff, Minrie; Chepuka, Lignet M; Chilemba, Winnie; Chimwaza, Angela F; Kululanga, Lucy I; Kgositau, Mabedi; Manyedi, Eva; Shaibu, Sheila; Wright, Susan C D
2014-01-01
The relationship between quality of life (QoL) and antiretroviral treatment (ART) has mainly been studied using quantitative scales often not appropriate for use in other contexts and without taking peoples' lived experiences into consideration. Sub-Saharan Africa has the highest incidence of HIV and AIDS yet there is paucity in research done on QoL. This research report is intended to give an account of the use of a mixed method convergent parallel design as a novice approach to evaluate an instrument's context specificity, appropriateness and usefulness in another context for which it was designed. Data were collected through a qualitative exploration of the experiences of QoL of people living with HIV or AIDS (PLHA) in Africa since being on ART, as well as the quantitative measurements obtained from the HIV/AIDS-targeted quality of life (HAT-QoL) instrument. This study was conducted in three African countries. Permission and ethical approval to conduct the study were obtained. Purposive voluntary sampling was used to recruit PLHA through mediators working in community-based HIV/AIDS organisations and health clinics. Interviews were analysed through open coding and the quantitative data through descriptive statistics and the Cronbach's alpha coefficient. A much wider range and richness of experiences were expressed than measured by the HAT-QoL instrument. Although an effective instrument for use in the USA, it was found not to be sensitive, appropriate and useful in an African context in its present form. The recommendations focus on adapting the instrument using the data from the in-depth interviews or to develop a context-sensitive instrument that could measure QoL of PLHA in Africa.
BEAMS Lab: Novel approaches to finding a balance between throughput and sensitivity
NASA Astrophysics Data System (ADS)
Liberman, Rosa G.; Skipper, Paul L.; Prakash, Chandra; Shaffer, Christopher L.; Flarakos, Jimmy; Tannenbaum, Steven R.
2007-06-01
Development of 14C AMS has long pursued the twin goals of maximizing both sensitivity and precision in the interest, among others, of optimizing radiocarbon dating. Application of AMS to biomedical research is less constrained with respect to sensitivity requirements, but more demanding of high throughput. This work presents some technical and conceptual developments in sample processing and analytical instrumentation designed to streamline the process of extracting quantitative data from the various types of samples encountered in analytical biochemistry.
NASA Astrophysics Data System (ADS)
Jones, Michael; Chodas, Mark; Smith, Matthew J.; Masterson, Rebecca A.
2014-07-01
OSIRIS-REx is a NASA New Frontiers mission scheduled for launch in 2016 that will travel to the asteroid Bennu and return a pristine sample of the asteroid to Earth. The REgolith X-ray Imaging Spectrometer (REXIS) is a student collaboration instrument on-board the OSIRIS-REx spacecraft. REXIS is a NASA risk Class D instrument, and its design and development is largely student led. The engineering team consists of MIT graduate and undergraduate students and staff at the MIT Space Systems Laboratory. The primary goal of REXIS is the education of science and engineering students through participation in the development of light hardware. In light, REXIS will contribute to the mission by providing an elemental abundance map of the asteroid and by characterizing Bennu among the known meteorite groups. REXIS is sensitive to X-rays between 0.5 and 7 keV, and uses coded aperture imaging to map the distribution of iron with 50 m spatial resolution. This paper describes the science goals, concept of operations, and overall engineering design of the REXIS instrument. Each subsystem of the instrument is addressed with a high-level description of the design. Critical design elements such as the Thermal Isolation Layer (TIL), radiation cover, coded-aperture mask, and Detector Assembly Mount (DAM) are discussed in further detail.
Halme, Nina; Tarkka, Marja-Terttu; Paavilainen, Eija; Nummi, Tapio; Astedt-Kurki, Päivi
2010-06-01
Despite the fact that father-child involvement has extensive effects on the health and well-being of the family, there is a paucity of research on fathers' presence in health care research. The design and development of an instrument for assessing the characteristics of fathers' availability and engagement with their preschool-aged children in Finland is presented. Data collection was undertaken in two separate periods involving 263 and 821 fathers. Results indicate that the father-child instrument (FCI) is ready for use in research seeking to assess fathers' availability and engagement with their preschoolers. Further research is nonetheless required to assess the potential for a more sensitive interaction and for the generalization of the FCI.
A general study of techniques for ultraviolet astrophysical studies on space vehicles
NASA Technical Reports Server (NTRS)
Moos, H. W.; Fastie, W. G.; Davidsen, A. F.
1977-01-01
Recent accomplishments in three areas of UV instrumentation for space astronomy are discussed. These areas include reliable UV photometry, sensitive photon-detection techniques, and precise telescope pointing. Calibration facilities for spectrometers designed to operate in the spectral regions above 1200 A and down to 400 A are described which employ a series of diodes calibrated against electron synchrotron radiation as well as other radiometric standards. Improvements in photon-detection sensitivity achieved with the aid of pulse-counting electronics and multispectral detectors are reported, and the technique of precise subarcsecond telescope pointing is briefly noted. Some observational results are presented which demonstrate the advantages and precision of the instruments and techniques considered.
Recent Developments in PET Instrumentation
Peng, Hao; Levin, Craig S.
2013-01-01
Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121
Safari: instrument design of the far-infrared imaging spectrometer for spica
NASA Astrophysics Data System (ADS)
Jellema, W.; Pastor, C.; Naylor, D.; Jackson, B.; Sibthorpe, B.; Roelfsema, P.
2017-11-01
The next great leap forward in space-based far-infrared astronomy will be made by the Japanese-led SPICA mission, which is anticipated to be launched late 2020's as the next large astrophysics mission of JAXA, in partnership with ESA and with key European contributions. Filling in the gap between JWST and ALMA, the SPICA mission will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 3m-class telescope, provided by European industry, to realize zodiacal background limited performance, high spatial resolution and large collecting area. Making full advantage of the deeply cooled telescope (<6K), the SAFARI instrument on SPICA is a highly sensitive wide-field imaging photometer and spectrometer operating in the 34-210 μm wavelength range. Utilizing Nyquist-sampled focal-plane arrays of very sensitive Transition Edge Sensors (TES), SAFARI will offer a photometric imaging (R ≍ 2), and a low (R = 100) and medium resolution (R = 2000 at 100 μm) imaging spectroscopy mode in three photometric bands within a 2'x2' instantaneous FoV by means of a cryogenic Mach-Zehnder Fourier Transform Spectrometer. In this paper we will provide an overview of the SAFARI instrument design and system architecture. We will describe the reference design of the SAFARI focal- plane unit, the implementation of the various optical instrument functions designed around the central large-stroke FTS system, the photometric band definition and out-of-band filtering by quasioptical elements, the control of straylight, diffraction and thermal emission in the long-wavelength limit, and how we interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end. We will briefly discuss the key performance drivers with special emphasis on the optical techniques adopted to overcome issues related to very low background operation of SAFARI. A summary and discussion of the expected instrument performance and an overview of the astronomical capabilities finally conclude the paper.
A 2 THz Heterodyne Array Receiver for SOFIA: Summary of Research
NASA Technical Reports Server (NTRS)
Walker, Christopher K.
1998-01-01
We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approximately 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the Far-Infra Red (FIR) portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galactic evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (> 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The beam parameters are an excellent match to what is expected from theory. The success of this experiment demonstrates the viability of using laser micromachined components in the development of high performance, large format array receivers. We have continued our development efforts and will propose to build a 2nd generation instrument based on the same design concepts.
The HEAO-A Scanning Modulation Collimator instrument
NASA Technical Reports Server (NTRS)
Roy, A.; Ballas, J.; Jagoda, N.; Mckinnon, P.; Ramsey, A.; Wester, E.
1977-01-01
The Scanning Modulation Collimator X-ray instrument for the HEAO-A satellite was designed to measure celestial radiation in the range between 1 and 15 KeV and to resolve, and correlate, the position of X-ray sources with visible light sources on the celestial sphere to within 5 arc seconds. The positional accuracy is made possible by mechanical collimation of the X-ray sources viewed by the instrument. High sensitivity is provided from two systems each containing four gas filled proportional counters followed by preamplification, signal summing, pulse height analysis, pulse shape discrimination, X-ray event accumulators and telemetry processing electronics.
NASA Astrophysics Data System (ADS)
de Lera Acedo, E.; Razavi-Ghods, N.; Troop, N.; Drought, N.; Faulkner, A. J.
2015-10-01
The very demanding requirements of the SKA-low instrument call for a challenging antenna design capable of delivering excellent performance in radiation patterns, impedance matching, polarization purity, cost, longevity, etc. This paper is devoted to the development (design and test of the first prototypes) of an active ultra-wideband antenna element for the low-frequency instrument of the SKA radio telescope. The antenna element and differential low noise amplifier described here were originally designed to cover the former SKA-low band (70-450 MHz) but it is now aimed to cover the re-defined SKA-low band (50-350 MHz) and furthermore the antenna is capable of performing up to 650 MHz with the current design. The design is focused on maximum sensitivity in a wide field of view (+/- 45° from zenith) and low cross-polarization ratios. Furthermore, the size and cost of the element has to be kept to a minimum as millions of these antennas will need to be deployed for the full SKA in very compact configurations. The primary focus of this paper is therefore to discuss various design implications for the SKA-low telescope.
NASA Astrophysics Data System (ADS)
Aguilar, Mariela C.; Gonzalez, Alex; Rowaan, Cornelis; De Freitas, Carolina; Rosa, Potyra R.; Alawa, Karam; Lam, Byron L.; Parel, Jean-Marie A.
2016-03-01
As there is no clinically available instrument to systematically and reliably determine the photosensitivity thresholds of patients with dry eyes, blepharospasms, migraines, traumatic brain injuries, and genetic disorders such as Achromatopsia, retinitis pigmentosa and other retinal dysfunctions, a computer-controlled optoelectronics system was designed. The BPEI Photosensitivity System provides a light stimuli emitted from a bi-cupola concave, 210 white LED array with varying intensity ranging from 1 to 32,000 lux. The system can either utilize a normal or an enhanced testing mode for subjects with low light tolerance. The automated instrument adjusts the intensity of each light stimulus. The subject is instructed to indicate discomfort by pressing a hand-held button. Reliability of the responses is tracked during the test. The photosensitivity threshold is then calculated after 10 response reversals. In a preliminary study, we demonstrated that subjects suffering from Achromatopsia experienced lower photosensitivity thresholds than normal subjects. Hence, the system can safely and reliably determine the photosensitivity thresholds of healthy and light sensitive subjects by detecting and quantifying the individual differences. Future studies will be performed with this system to determine the photosensitivity threshold differences between normal subjects and subjects suffering from other conditions that affect light sensitivity.
The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies
NASA Astrophysics Data System (ADS)
Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration
2008-03-01
The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.
NASA Astrophysics Data System (ADS)
Ortega-Robles, Emmanuel; Cruz-Orea, Alfredo; Elías-Viñas, David
2018-03-01
The lock-in amplifier is a very useful instrument for observing very small signals under adverse signal-to-noise conditions. In this work, we describe a simple and portable lock-in amplifier designed to be used in photoacoustic measurements. The device was used to measure the thermal effusivity of eight different liquid samples (distilled water, glycerol, acetone, ethanol, 2-propanol, chloroform, hexane, and methanol), as well as the effusivity of acetone in aqueous solution at distinct concentrations, giving good results. The instrument has a bandwidth of 10 Hz-10 kHz and a sensitivity of 1 μV.
A 2 THz Heterodyne Array Receiver for SOFIA
NASA Technical Reports Server (NTRS)
Walker, Christopher K.
1998-01-01
We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. Figure 1 is a photograph of the 2 THz double feedhorn structure designed and constructed under the auspices of this grant. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. Figure 2 is the beam pattern obtained from it. The beam parameters are an excellent match to what is expected from theory. The success of this experiment demonstrates the viability of using laser micromachined components in the development of high performance, large format array receivers. Figure 3 is an illustration of the focal plane array concept we developed lot- SOFIA base upon this work. Un- fortunately, our instrument proposal was not selected as a first generation SOFIA instrument. However, we have continued our development efforts and will propose to build a 2nd generation instrument based on the same design concepts. Our work under NAG 2-1057 was very rewarding and we appreciate the opportunity provided by NASA to pursue it. The research led directly to publishing 2 papers (listed below) and the award of an NSF grant to our group to construct a laser micromachining system on the University of Arizona campus.
The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) in the New Framework
NASA Astrophysics Data System (ADS)
Bradford, Charles; SPICA Consortium, the SAFARI Consortium
2016-01-01
SPICA is a cryogenic space-borne observatory designed for optimal sensitivity in the mid-infrared through submillimeter range: 17-230 microns. The mission is an ESA / JAXA collaboration, now considered for the ESA Cosmic Visions M5 opportunity. SPICA will feature a 2.5-meter telescope cooled to below 8K, this offers the potential for 100-1000-fold advances in sensitivity beyond that obtained with Herschel and SOFIA in the far-IR. With a line sensitivity of ~5x10^-20 W/m^2 (1 h, 5 sigma), SPICA will be a complement to JWST and ALMA for deep spectroscopic observations. Integrated over cosmic history, star formation has occurred predominantly in dust-obscured regions which are inaccessible in the rest-frame UV and optical. Both the luminosity history and the detailed physics that govern it can only be directly measured in the mid-IR-submillimeter. Similarly, forming stars and planetary systems cool primarily through the far-IR. By taking advantage of the low-background platform, the SPICA instruments are designed for these topics. The SPICA mid-IR instrument (SMI) will provide R~50 imaging spectroscopy and R~1,000 full-band slit-fed spectroscopy from 17 to 36 microns, with a high-resolution (R=25,000) capability from 12-18 microns. The SPICA far-IR instrument (SAFARI) will cover 34 to at least 230 microns with multiple R~300 wide-band grating spectrometer modules coupling to high-sensitivity far-IR detectors. A R~3,000 scanned-etalon module will also be available for Galactic targets with bright continua and/or dense line spectra. SPICA has emerged with a new ESA-JAXA collaborative framework. In the current division of responsibilities, ESA will take the lead role, provide the telescope, the fine-attitude sensor, and the spacecraft bus. JAXA will provide the cryogenic system, the SMI instrument, integrate the telescope and instruments, and provide the launch vehicle. The SAFARI instrument will be provided by a consortium funded by the European national agencies led by SRON. Key detector and spectrometer contributions to SAFARI are under consideration in the US. The mission timeline is set by the Cosmic Visions M5 schedule, which has final approval in 2018-19, and launch in the late 2020s.
The Space Infrared Telescope for Cosmology and Astrophysics and Pending US Contribution
NASA Astrophysics Data System (ADS)
Bradford, Charles; SPICA Consortium; SAFARI Consortium
2017-01-01
SPICA is a cryogenic space-borne observatory designed for optimal sensitivity in the mid-infrared through submillimeter range: 17-250 microns. The mission is an ESA / JAXA collaboration, now under review in the ESA Cosmic Visions M5 opportunity, which has final approval in 2019, and launch in the late 2020 decade. SPICA will feature a 2.5-meter telescope cooled to below 8K, this offers the potential for 100-1000-fold advances in sensitivity beyond that obtained with Herschel and SOFIA in the far-IR. With a line sensitivity of ~5x10^-20 W/m^2 (1 h, 5 sigma), SPICA will be a complement to JWST and ALMA for deep spectroscopic observations. Integrated over cosmic history, star formation has occurred predominantly in dust-obscured regions which are inaccessible in the rest-frame UV and optical. Both the luminosity history and the detailed physics that govern it can only be directly measured in the mid-IR-submillimeter. Similarly, forming stars and planetary systems cool primarily through the far-IR. By taking advantage of the low-background platform, the SPICA instruments are designed for these investigations. The SPICA mid-IR instrument (SMI) will provide R~50 imaging spectroscopy and R~1,000 full-band slit-fed spectroscopy from 17 to 36 microns, with a high-resolution (R=25,000) capability from 12-18 microns. The SPICA far-IR instrument (SAFARI) will cover 34 to at least 250 microns with multiple R~300 wide-band grating spectrometer modules coupling to high-sensitivity far-IR detectors. A R~3,000 scanned-etalon module will also be available for Galactic targets with bright continua and/or dense line spectra. In the current SPICA division of responsibilities, ESA will take the lead role, provide the telescope, the fine-attitude sensor, and the spacecraft bus. JAXA will provide the cryogenic system, the SMI instrument, integrate the telescope and instruments, and provide the launch vehicle. The SAFARI instrument will be provided by a consortium funded by the European national agencies led by SRON. We highlight in this poster the far-IR detector and spectrometer contributions to SAFARI envisioned by our US team; this package is under review at NASA as a Mission of Opportunity.
The Science and Design of the AGIS Observatory
NASA Astrophysics Data System (ADS)
Schroedter, Martin
2010-02-01
The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100 GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05^o diameter) camera. The instrument is designed to provide millicrab sensitivity over a wide (8^o diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. I will describe science drivers behind the AGIS observatory and the design and status of the project. )
The Science and Design of the AGIS Observatory
NASA Astrophysics Data System (ADS)
Falcone, Abraham; Aliu, E.; Arlen, T.; Benbow, W.; Buckley, J.; Bugaev, S.; Byrum, K.; Ciupik, L.; Coppi, P.; Digel, S.; Drake, G.; Finley, J.; Fortson, L.; Franco, J.; Funk, S.; Guarino, V.; Gyuk, G.; Hanna, D.; Hiriart, D.; Humensky, B.; Holder, J.; Kaaret, P.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; LeBohec, S.; Maier, G.; Mukherjee, R.; Ong, R.; Otte, N.; Pareschi, G.; Pohl, M.; Quinn, J.; Ramsey, B.; Romani, R.; Rovero, A. C.; Schroedter, M.; Sinnis, C.; Slane, P.; Smith, A.; Swordy, S.; Tajima, H.; Vassiliev, V.; Wagner, R.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Williams, D.
2010-01-01
The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05 degree/pixel) camera. The instrument is designed to provide millicrab sensitivity over a wide (8 degree diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. This presentation will include a description of science drivers behind the AGIS observatory and the design and status of the project.
NASA Astrophysics Data System (ADS)
Stockton, A. M.; Kim, J.; Willis, P. A.; Lillis, R.; Amundson, R.; Beegle, L.; Butterworth, A.; Curtis, D.; Ehrenfreund, P.; Grunthaner, F.; Hazen, R.; Kaiser, R.; Ludlam, M.; Mora, M. F.; Scherer, J.; Turin, P.; Welten, K.; Williford, K.; Mathies, R. A.
2014-07-01
Mars Organic Analyzer was designed to give the Mars 2020 Mission capability to look for organic molecules, including amines, aldehydes, ketones, organic acids, thiols and polycyclic aromatic hydrocarbons, in martian samples with sub-ppb sensitivity.
Development of a portable multispectral thermal infrared camera
NASA Technical Reports Server (NTRS)
Osterwisch, Frederick G.
1991-01-01
The purpose of this research and development effort was to design and build a prototype instrument designated the 'Thermal Infrared Multispectral Camera' (TIRC). The Phase 2 effort was a continuation of the Phase 1 feasibility study and preliminary design for such an instrument. The completed instrument designated AA465 has application in the field of geologic remote sensing and exploration. The AA465 Thermal Infrared Camera (TIRC) System is a field-portable multispectral thermal infrared camera operating over the 8.0 - 13.0 micron wavelength range. Its primary function is to acquire two-dimensional thermal infrared images of user-selected scenes. Thermal infrared energy emitted by the scene is collected, dispersed into ten 0.5 micron wide channels, and then measured and recorded by the AA465 System. This multispectral information is presented in real time on a color display to be used by the operator to identify spectral and spatial variations in the scenes emissivity and/or irradiance. This fundamental instrument capability has a wide variety of commercial and research applications. While ideally suited for two-man operation in the field, the AA465 System can be transported and operated effectively by a single user. Functionally, the instrument operates as if it were a single exposure camera. System measurement sensitivity requirements dictate relatively long (several minutes) instrument exposure times. As such, the instrument is not suited for recording time-variant information. The AA465 was fabricated, assembled, tested, and documented during this Phase 2 work period. The detailed design and fabrication of the instrument was performed during the period of June 1989 to July 1990. The software development effort and instrument integration/test extended from July 1990 to February 1991. Software development included an operator interface/menu structure, instrument internal control functions, DSP image processing code, and a display algorithm coding program. The instrument was delivered to NASA in March 1991. Potential commercial and research uses for this instrument are in its primary application as a field geologists exploration tool. Other applications have been suggested but not investigated in depth. These are measurements of process control in commercial materials processing and quality control functions which require information on surface heterogeneity.
Lock Acquisition and Sensitivity Analysis of Advanced LIGO Interferometers
NASA Astrophysics Data System (ADS)
Martynov, Denis
Laser interferometer gravitational wave observatory (LIGO) consists of two complex large-scale laser interferometers designed for direct detection of gravitational waves from distant astrophysical sources in the frequency range 10Hz - 5kHz. Direct detection of space-time ripples will support Einstein's general theory of relativity and provide invaluable information and new insight into physics of the Universe. The initial phase of LIGO started in 2002, and since then data was collected during the six science runs. Instrument sensitivity improved from run to run due to the effort of commissioning team. Initial LIGO has reached designed sensitivity during the last science run, which ended in October 2010. In parallel with commissioning and data analysis with the initial detector, LIGO group worked on research and development of the next generation of detectors. Major instrument upgrade from initial to advanced LIGO started in 2010 and lasted until 2014. This thesis describes results of commissioning work done at the LIGO Livingston site from 2013 until 2015 in parallel with and after the installation of the instrument. This thesis also discusses new techniques and tools developed at the 40m prototype including adaptive filtering, estimation of quantization noise in digital filters and design of isolation kits for ground seismometers. The first part of this thesis is devoted to the description of methods for bringing the interferometer into linear regime when collection of data becomes possible. States of longitudinal and angular controls of interferometer degrees of freedom during lock acquisition process and in low noise configuration are discussed in details. Once interferometer is locked and transitioned to low noise regime, instrument produces astrophysics data that should be calibrated to units of meters or strain. The second part of this thesis describes online calibration technique set up in both observatories to monitor the quality of the collected data in real time. Sensitivity analysis was done to understand and eliminate noise sources of the instrument. The coupling of noise sources to gravitational wave channel can be reduced if robust feedforward and optimal feedback control loops are implemented. Static and adaptive feedforward noise cancellation techniques applied to Advanced LIGO interferometers and tested at the 40m prototype are described in the last part of this thesis. Applications of optimal time domain feedback control techniques and estimators to aLIGO control loops are also discussed. Commissioning work is still ongoing at the sites. First science run of advanced LIGO is planned for September 2015 and will last for 3-4 months. This run will be followed by a set of small instrument upgrades that will be installed on a time scale of few months. Second science run will start in spring 2016 and last for about six months. Since current sensitivity of advanced LIGO is already more than a factor of 3 higher compared to initial detectors and keeps improving on a monthly basis, the upcoming science runs have a good chance for the first direct detection of gravitational waves.
Nguyen, Richard; Perfetto, Stephen; Mahnke, Yolanda D; Chattopadhyay, Pratip; Roederer, Mario
2013-03-01
After compensation, the measurement errors arising from multiple fluorescences spilling into each detector become evident by the spreading of nominally negative distributions. Depending on the instrument configuration and performance, and reagents used, this "spillover spreading" (SS) affects sensitivity in any given parameter. The degree of SS had been predicted theoretically to increase with measurement error, i.e., by the square root of fluorescence intensity, as well as directly related to the spectral overlap matrix coefficients. We devised a metric to quantify SS between any pair of detectors. This metric is intrinsic, as it is independent of fluorescence intensity. The combination of all such values for one instrument can be represented as a spillover spreading matrix (SSM). Single-stained controls were used to determine the SSM on multiple instruments over time, and under various conditions of signal quality. SSM values reveal fluorescence spectrum interactions that can limit the sensitivity of a reagent in the presence of brightly-stained cells on a different color. The SSM was found to be highly reproducible; its non-trivial values show a CV of less than 30% across a 2-month time frame. In addition, the SSM is comparable between similarly-configured instruments; instrument-specific differences in the SSM reveal underperforming detectors. Quantifying and monitoring the SSM can be a useful tool in instrument quality control to ensure consistent sensitivity and performance. In addition, the SSM is a key element for predicting the performance of multicolor immunofluorescence panels, which will aid in the optimization and development of new panels. We propose that the SSM is a critical component of QA/QC in evaluation of flow cytometer performance. Published 2013 Wiley Periodicals, Inc.
The Atacama Cosmology Telescope: Instrument
NASA Astrophysics Data System (ADS)
Thornton, Robert J.; Atacama Cosmology Telescope Team
2010-01-01
The 6-meter Atacama Cosmology Telescope (ACT) is making detailed maps of the Cosmic Microwave Background at Cerro Toco in northern Chile. In this talk, I focus on the design and operation of the telescope and its commissioning instrument, the Millimeter Bolometer Array Camera. The camera contains three independent sets of optics that operate at 148 GHz, 217 GHz, and 277 GHz with arcminute resolution, each of which couples to a 1024-element array of Transition Edge Sensor (TES) bolometers. I will report on the camera performance, including the beam patterns, optical efficiencies, and detector sensitivities. Under development for ACT is a new polarimeter based on feedhorn-coupled TES devices that have improved sensitivity and are planned to operate at 0.1 K.
Design and performance of a Near Ultra High Vacuum Helium Ion Microscope
NASA Astrophysics Data System (ADS)
Poelsema, Bene; van Gastel, Raoul; Hlawacek, Gregor; Zandvliet, Harold J. W.
2012-02-01
The advent of He Ion Microscopy (HIM) as a new nanoscopic technique to image materials has enabled a new look at materials that is based on the interaction of swift light ions with matter. Initial HIM instruments have demonstrated high-resolution imaging, combined with great surface sensitivity, the ability to neutralize charge very efficiently, and with enhanced materials contrast when ion induced secondary electrons are used for imaging. To achieve ultimate performance, the chamber vacuum of the existing platform may be improved. For instance, carbon deposits due to beam interaction are readily seen due to the surface sensitivity of the technique. At high current densities the sharply focused beam may very efficiently decompose residual hydrocarbons. Not only can this obscure a clear view of the sample, thereby negating the benefits of the small spot size, it also limits the available acquisition time. This has proven extremely useful for nanopatterning for sensors, and other device fabrication applications at the sub-10nm level. However, it is undesirable when the instrument is used for materials characterization. We will discuss the basic considerations that went into the design of a Near-UHV He Ion Microscope [1]. First applications that the instrument was used for will be highlighted and its impact in surface physics and other research areas that require increased imaging sensitivity will be discussed. [4pt] [1] R.van Gastel et al, Microscopy and Microanalysis 17, 928-929 (2011)
A simple pendulum borehole tiltmeter based on a triaxial optical-fibre displacement sensor
NASA Astrophysics Data System (ADS)
Chawah, P.; Chéry, J.; Boudin, F.; Cattoen, M.; Seat, H. C.; Plantier, G.; Lizion, F.; Sourice, A.; Bernard, P.; Brunet, C.; Boyer, D.; Gaffet, S.
2015-11-01
Sensitive instruments like strainmeters and tiltmeters are necessary for measuring slowly varying low amplitude Earth deformations. Nonetheless, laser and fibre interferometers are particularly suitable for interrogating such instruments due to their extreme precision and accuracy. In this paper, a practical design of a simple pendulum borehole tiltmeter based on laser fibre interferometric displacement sensors is presented. A prototype instrument has been constructed using welded borosilicate with a pendulum length of 0.85 m resulting in a main resonance frequency of 0.6 Hz. By implementing three coplanar extrinsic fibre Fabry-Perot interferometric probes and appropriate signal filtering, our instrument provides tilt measurements that are insensitive to parasitic deformations caused by temperature and pressure variations. This prototype has been installed in an underground facility (Rustrel, France) where results show accurate measurements of Earth strains derived from Earth and ocean tides, local hydrologic effects, as well as local and remote earthquakes. The large dynamic range and the high sensitivity of this tiltmeter render it an invaluable tool for numerous geophysical applications such as transient fault motion, volcanic strain and reservoir monitoring.
Thermal architecture of the SPICA/SAFARI instrument
NASA Astrophysics Data System (ADS)
Charles, Ivan; Duband, Lionel; Duval, Jean-Marc; Jackson, Brian; Jellema, Willem; Kooijman, Peter Paul; Luchier, Nicolas; Tirolien, Thierry; van Weers, Henk
2012-09-01
The SAFARI instrument is a far infrared imaging spectrometer that is a core instrument of the SPICA mission. Thanks to the large (3 meter) SPICA cold telescope, the ultra sensitive detectors and a powerful Fourier Transform Spectrometer, this instrument will give access to the faintest light never observed in the 34 μm - 210 μm bandwidth with a high spectral resolution. To achieve this goal, TES detectors, that need to be cooled at a temperature as low as 50 mK, have been chosen. The thermal architecture of the SAFARI focal plane unit (FPU) which fulfils the TES detector thermal requirements is presented. In particular, an original 50 mK cooler concept based on a sorption cooler in series with an adiabatic demagnetization refrigerator will be used. The thermal design of the detector focal plane array (FPA) that uses three temperature stages to limit the loads on the lowest temperature stage, will be also described. The current SAFARI thermal budget estimations are presented and discussed regarding the limited SPICA allocations. Finally, preliminary thermal sensitivity analysis dealing with thermal stability requirements is presented.
Cowsik, R.
2007-01-01
The rotations around the vertical axis associated with the normal mode oscillations of the Earth and those induced by the seismic and other disturbances have been very difficult to observe directly. Such observations will provide additional information for 3D modeling of the Earth and for understanding earthquakes and other underground explosions. In this paper, we describe the design of an instrument capable of measuring the rotational motions associated with the seismic oscillations of the Earth, including the lowest frequency normal mode at ν ≈ 3.7 × 10−4 Hz. The instrument consists of a torsion balance with a natural frequency of ν0 ≈ 1.6 × 10−4 Hz, which is observed by an autocollimating optical lever of high angular resolution and dynamic range. Thermal noise limits the sensitivity of the apparatus to amplitudes of ≈ 1.5 × 10−9 rad at the lowest frequency normal mode and the sensitivity improves as ν−3/2 with increasing frequency. Further improvements in sensitivity by about two orders of magnitude may be achieved by operating the balance at cryogenic temperatures. Alternatively, the instrument can be made more robust with a reduced sensitivity by increasing ν0 to ≈10−2 Hz. This instrument thus complements the ongoing effort by Igel and others to study rotational motions using ring laser gyroscopes and constitutes a positive response to the clarion call for developments in rotation seismology by Igel, Lee, and Todorovska [H. Igel, W.H.K. Lee and M.I. Todorovska, AGU Fall Meeting 2006, Rotational Seismology Sessions: S22A,S23B, Inauguration of the International Working Group on Rotational Seismology (IWGoRS)]. PMID:17438268
Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb.
Korth, Haje; Strohbehn, Kim; Tejada, Francisco; Andreou, Andreas G; Kitching, John; Knappe, Svenja; Lehtonen, S John; London, Shaughn M; Kafel, Matiwos
2016-08-01
A miniature atomic scalar magnetometer based on the rubidium isotope 87 Rb was developed for operation in space. The instrument design implements both M x and M z mode operation and leverages a novel microelectromechanical system (MEMS) fabricated vapor cell and a custom silicon-on-sapphire (SOS) complementary metal-oxide-semiconductor (CMOS) integrated circuit. The vapor cell has a volume of only 1 mm 3 so that it can be efficiently heated to its operating temperature by a specially designed, low-magnetic-field-generating resistive heater implemented in multiple metal layers of the transparent sapphire substrate of the SOS-CMOS chips. The SOS-CMOS chip also hosts the Helmholtz coil and associated circuitry to stimulate the magnetically sensitive atomic resonance and temperature sensors. The prototype instrument has a total mass of fewer than 500 g and uses less than 1 W of power, while maintaining a sensitivity of 15 pT/√Hz at 1 Hz, comparable to present state-of-the-art absolute magnetometers.
Balloon Borne Instrumentation for Detection of Gamma Ray Glows
NASA Astrophysics Data System (ADS)
Sterpka, C. F.; Bagheri, M.; Dwyer, J. R.; Liu, N.; Morman, K.; Gadbois, J. L.; Bozarth, A.; Boggs, L.; Mailyan, B. G.; Nag, A.; Lazarus, S. M.; Austin, M.; Aguirre, F.; Colvin, J.; Haley, V.; Rassoul, H.
2017-12-01
Gamma-ray glows are emissions of gamma rays that last from seconds to minutes and are produced by runaway electrons in high-field regions of thunderclouds. The lightning group at the University of New Hampshire in collaboration with the Florida Institute of Technology has designed balloon-based instrumentation for flying into thunderstorms with the aim of detecting such radiation. The instrumentation includes two Geiger-Muller tubes, sensitive to both gamma rays and charged particles, and a low-power lightweight electric field mill, designed and calibrated to measure both polarity and amplitude of the vertical electric field inside the thunderstorm region. With the polarity measurement provided by the field mill, the Geiger-Muller tubes should be capable of differentiating energetic electrons from positrons. Additionally, a lead sheet is placed between the Geiger-Muller tubes to differentiate between charged particles and gamma rays. We have conducted several test flights of this system during the summer of 2017. In this study, we will present an overview of the instrumentation and discuss preliminary results from the test flights.
Closed and Not Closed: Mitigating a Mystery on Chandra's Door
NASA Technical Reports Server (NTRS)
Odom, Brian
2015-01-01
The Chandra X-ray Observatory is part of NASA's fleet of "Great Observatories" along with the Hubble Space Telescope, the Spitzer Space Telescope, and the now deorbited Compton Gamma Ray Observatory. The observatory was designed to detect x-ray emissions from some of the hottest regions of the galaxy including exploded stars, clusters of galaxies, and matter around black holes. One of the observatory's key scientific instruments is the Advanced CCD Imaging Spectrometer (ACIS), which is one of four primary and two focal plane instruments. Due to the sensitivity of the charged coupled devices (CCD's), an aperture door was designed and built by Lockheed-Martin that protected the instrument during testing and the time leading up to launch. The design called for a system of wax actuators (manufactured by STARSYS Corp) to be used as components in a rotary actuator that would open and close the door during ground testing and on-orbit operations. Another feature of the design was an internal shear disc located in each actuator to prevent excessive internal pressure and to shield other components from damage.
Scali, Marta; Pusch, Tim P; Breedveld, Paul; Dodou, Dimitra
2017-03-01
High accuracy and precision in reaching target locations inside the human body is necessary for the success of percutaneous procedures, such as tissue sample removal (biopsy), brachytherapy, and localized drug delivery. Flexible steerable needles may allow the surgeon to reach targets deep inside solid organs while avoiding sensitive structures (e.g. blood vessels). This article provides a systematic classification of possible mechanical solutions for three-dimensional steering through solid organs. A scientific and patent literature search of steerable instrument designs was conducted using Scopus and Web of Science Derwent Innovations Index patent database, respectively. First, we distinguished between mechanisms in which deflection is induced by the pre-defined shape of the instrument versus mechanisms in which an actuator changes the deflection angle of the instrument on demand. Second, we distinguished between mechanisms deflecting in one versus two planes. The combination of deflection method and number of deflection planes led to eight logically derived mechanical solutions for three-dimensional steering, of which one was dismissed because it was considered meaningless. Next, we classified the instrument designs retrieved from the scientific and patent literature into the identified solutions. We found papers and patents describing instrument designs for six of the seven solutions. We did not find papers or patents describing instruments that steer in one-plane on-demand via an actuator and in a perpendicular plane with a pre-defined deflection angle via a bevel tip or a pre-curved configuration.
Analysis of Particulate Contamination During Launch of MMS Mission
NASA Technical Reports Server (NTRS)
Brieda, Lubos; Barrie, Alexander; Hughes, David; Errigo, Therese
2010-01-01
NASA's Magnetospheric MultiScale (MMS) is an unmanned constellation of four identical spacecraft designed to investigate magnetic reconnection by obtaining detailed measurements of plasma properties in Earth's magnetopause and magnetotail. Each of the four identical satellites carries a suite of instruments which characterize the ambient ion and electron energy spectrum and composition. Some of these instruments utilize microchannel plates and are sensitive to particulate contamination. In this paper, we analyze the transport of particulates during pre-launch, launch and ascent events, and use the analysis to obtain quantitative predictions of contamination impact on the instruments. Viewfactor calculation is performed by considering the gravitational and aerodynamic forces acting on the particles.
Development of a motorized cryovalve for the control of superfluid liquid helium
NASA Technical Reports Server (NTRS)
Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Frank, D. J.
1988-01-01
Recent advances in the technology of infrared detectors have made possible a wide range of scientific measurements and investigations. One of the requirements for the use of sensitive IR detectors is that the entire instrument be cooled to temperatures approaching absolute zero. The cryogenic cooling system for these instruments is commonly designed as a large dewar containing liquid helium which completely surrounds the apparatus. Thus, there is a need for a remotely controlled, motorized cryovalve that is simple, reliable, and compact and can operate over extended periods of time in cryo-vac conditions. The design, development, and test of a motorized cryovalve with application to a variety of cryogenic systems currently under development is described.
Calibration strategy for the COROT photometry
NASA Astrophysics Data System (ADS)
Buey, J.-T.; Auvergne, M.; Lapeyrere, V.; Boumier, P.
2004-01-01
Like Eddington, the COROT photometer will measure very small fluctutions on a large signal: the amplitudes of planetary transits and solar-like oscillations are expressed in ppm (parts per million). For such an instrument, specific calibration has to be done during the different phases of the development of the instrument and of all the subsystems. Two main things have to be taken into account: - the calibration during the study phase; - the calibration of the sub-systems and building of numerical models. The first item allows us to clearly understand all the perturbations (internal and external) and to identify their relative impacts on the expected signal (by numerical models including expected values of perturbations and sensitivity of the instrument). Methods and a schedule for the calibration process can also be introduced, in good agreement with the development plan of the instrument. The second item is more related to the measurement of the sensitivity of the instrument and all its sub-systems. As the instrument is designed to be as stable as possible, we have to mix measurements (with larger fluctuations of parameters than expected) and numerical models. Some typical reasons for that are: - there are many parameters to introduce in the measurements and results from some models (bread-board for example) may be extrapolated to the flight model; - larger fluctuations than expected are used (to measure precisely the sensitivity) and numerical models give the real value of noise with the expected fluctuations. - Characteristics of sub-systems may be measured and models used to give the sensitivity of the whole system built with them, as end-to-end measurements may be impossible (time, budget, physical limitations). Also, house-keeping measurements have to be set up on the critical parts of the sub-systems: measurements on thermal probes, power supply, pointing, etc. All these house-keeping data are used during ground calibration and during the flight, so that correct correlation between signal and house-keeping can be achieved.
LiteBIRD: mission overview and design tradeoffs
NASA Astrophysics Data System (ADS)
Matsumura, T.; Akiba, Y.; Borrill, J.; Chinone, Y.; Dobbs, M.; Fuke, H.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hazumi, M.; Holzapfel, W.; Hori, Y.; Inatani, J.; Inoue, M.; Inoue, Y.; Ishidoshiro, K.; Ishino, H.; Ishitsuka, H.; Karatsu, K.; Kashima, S.; Katayama, N.; Kawano, I.; Kibayashi, A.; Kibe, Y.; Kimura, K.; Kimura, N.; Komatsu, E.; Kozu, M.; Koga, K.; Lee, A.; Matsuhara, H.; Mima, S.; Mitsuda, K.; Mizukami, K.; Morii, H.; Morishima, T.; Nagai, M.; Nagata, R.; Nakamura, S.; Naruse, M.; Namikawa, T.; Natsume, K.; Nishibori, T.; Nishijo, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ogawa, H.; Oguri, S.; Ohta, I. S.; Okada, N.; Otani, C.; Richards, P.; Sakai, S.; Sato, N.; Sato, Y.; Segawa, Y.; Sekimoto, Y.; Shinozaki, K.; Sugita, H.; Suzuki, A.; Suzuki, T.; Tajima, O.; Takada, S.; Takakura, S.; Takei, Y.; Tomaru, T.; Uzawa, Y.; Wada, T.; Watanabe, H.; Yamada, Y.; Yamaguchi, H.; Yamasaki, N.; Yoshida, M.; Yoshida, T.; Yotsumoto, K.
2014-08-01
We present the mission design of LiteBIRD, a next generation satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation (CMB) detection. The science goal of LiteBIRD is to measure the CMB polarization with the sensitivity of δr = 0:001, and this allows testing the major single-field slow-roll inflation models experimentally. The LiteBIRD instrumental design is purely driven to achieve this goal. At the earlier stage of the mission design, several key instrumental specifications, e.g. observing band, optical system, scan strategy, and orbit, need to be defined in order to process the rest of the detailed design. We have gone through the feasibility studies for these items in order to understand the tradeoffs between the requirements from the science goal and the compatibilities with a satellite bus system. We describe the overview of LiteBIRD and discuss the tradeoffs among the choices of scientific instrumental specifications and strategies. The first round of feasibility studies will be completed by the end of year 2014 to be ready for the mission definition review and the target launch date is in early 2020s.
NASA Technical Reports Server (NTRS)
Kratz, David P.; Priestley, Kory J.; Green, Richard N.
1999-01-01
Observing Earth s radiant energy budget from space is critical to improving our understanding of Earth s climate system. The Earth Radiation Budget Experiment (ERBE) was the first initiative to provide simultaneous observations of Earth s radiant energy with identical instruments flying aboard separate satellites. The design of the ERBE instrument was based upon three complementary broadband radiometers which measured the shortwave (< 5 mm), longwave (> 5 mm), and total regions of the spectrum. Since any two of the ERBE radiometers could be used to simulate the third, a three channel intercomparison, based on redundancy, was available to uncover any changes in the relative sensitivities of the individual radiometers. Such a three channel intercomparison thus provided confidence in the application of the ERBE measurements over the lifetime of the instrument while mitigating the concern over instrument degradation.
POLIX: A Thomson X-ray polarimeter for a small satellite mission
NASA Astrophysics Data System (ADS)
Paul, Biswajit; Gopala Krishna, M. R.; Puthiya Veetil, Rishin
2016-07-01
POLIX is a Thomson X-ray polarimeter for a small satellite mission of ISRO. The instrument consists of a collimator, a scatterer and a set proportional counters to detect the scattered X-rays. We will describe the design, specifications, sensitivity, and development status of this instrument and some of the important scientific goals. This instrument will provide unprecedented opportunity to measure X-ray polarisation in the medium energy range in a large number of sources of different classes with a minimum detectable linear polarisation degree of 2-3%. The prime objects for observation with this instrument are the X-ray bright accretion powered neutron stars, accreting black holes in different spectral states, rotation powered pulsars, magnetars, and active galactic nuclei. This instrument will be a bridge between the soft X-ray polarimeters and the Compton polarimeters.
Hard x-ray imager for the NeXT mission
NASA Astrophysics Data System (ADS)
Nakazawa, Kazuhiro; Fukazawa, Yasushi; Kamae, Tuneyoshi; Kataoka, Jun; Kokubun, Motohide; Makishima, Kazuo; Mizuno, Tsunefumi; Murakami, Toshio; Nomachi, Masaharu; Tajima, Hiroyasu; Takahashi, Tadayuki; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Watanabe, Shin; Yamaoka, Kazutaka; Yonetoku, Daisuke
2006-06-01
The hard X-ray imager (HXI) is the primary detector of the NeXT mission, proposed to explore high-energy non-thermal phenomena in the universe. Combined with a novel hard X-ray mirror optics, the HXI is designed to provide better than arc-minutes imaging capability with 1 keV level spectroscopy, and more than 30 times higher sensitivity compared with any existing hard X-ray instruments. The base-line design of the HXI is improving to secure high sensitivity. The key is to reduce the detector background as far as possible. Based on the experience of the Suzaku satellite launched in July 2005, the current design has a well-type tight active shield and multi layered, multi material imaging detector made of Si and CdTe. Technology has been under development for a few years so that we have reached the level where a basic detector performance is satisfied. Design tuning to further improve the sensitivity and reliability is on-going.
Kettlitz, Siegfried W; Valouch, Sebastian; Sittel, Wiebke; Lemmer, Uli
2012-01-07
Detection of fluorescence particles is a key method of flow cytometry. We evaluate the performance of a design for a microfluidic fluorescence particle detection device. Due to the planar design with low layer thicknesses, we avoid optical components such as lenses or dichroic mirrors and substitute them with a shadow mask and colored film filters. A commercially available LED is used as the light source and a PIN-photodiode as detector. This design approach reduces component cost and power consumption and enables supplying the device with power from a standard USB port. From evaluation of this design, we obtain a maximum particle detection frequency of up to 600 particles per second at a sensitivity of better than 4.7 × 10(5) MESF (molecules of equivalent soluble fluorochrome) measured with particles for FITC sensitivity calibration. Lowering the flow rate increases the instrument sensitivity by an order of magnitude enabling the detection of particles with 4.5 × 10(4) MESF.
LIF-instrument for Airborne and Ground-Based Measurement of OH and HO2 Radicals in the Troposphere.
NASA Astrophysics Data System (ADS)
Broch, Sebastian; Bachner, Mathias; Dahlhoff, Knut; Holland, Frank; Hofzumahaus, Andreas; Jansen, Peter; Meier, Andreas; Raak, Dominik; Wolters, Jörg; Wahner, Andreas
2010-05-01
The radicals OH and HO2 (also named HOx) play an important role in the chemical degradation and transformation of most trace gases in the troposphere. The rate of these processes depends strongly on the magnitude of the radical concentrations. Due to their high reactivity, their concentrations are very low (sub pptv and pptv range) and exhibit a strong regional variability. Therefore exact measurement of HOx in different regions and at different altitudes in the troposphere are very important for the understanding and modelling of the self cleaning ability of the atmosphere. Here, we present the technical concept and results of laboratory test measurements of a new, mobile instrument for measurement of OH and HO2 radicals based on the proven laser induced fluorescence (LIF) technique (Holland et al., 1995, 2003; Schlosser et al., 2007, 2009). The instrument is planned to be used for ground-based field measurements, for airborne application on a Zeppelin (h = 0-2 km) and on the new German research aircraft HALO (Gulfstream V, h = 0-15 km). The setup of the new instrument is modular to allow different configurations for different applications and all components are newly designed to reduce weight, size and power requirement. For the implementation on HALO completely new air-inlet systems for OH and HO2 were developed at Forschungszentrum Jülich. The OH inlet is based on the shrouded-inlet design by Eisele et al. (1997). The design has been modified to reduce size and weight, and cope with the flight conditions and certification requirements of HALO. These are different than those for the original design, like higher speed, greater ceiling height and strength against bird strike. Compared to our ground-based measurement system, the aircraft inlet requires long inlet tubes which modify the detection sensitivity and possible interferences. Since the sensitivity of our instrument depends on ambient pressure, the OH inlet system is equipped with a calibration system, which allows calibration of the OH measuring channel during flight at different altitudes. Furthermore, both inlet systems allow heating of the inlet tubes and contain flight safety features like de-icing and bird strike resistance. We present results of the characterisation of the new instrument especially with regard to the sensitivity achievable with the long inlet tubes and of laboratory testing of the OH "in-flight" calibration system. Literature: Holland et al., J. Atmos. Sci., 52, 3393, 1995 Holland et al., J. Geophys. Res., 108, 8246, 2003 Schlosser et al., J. Atmos. Chem., 56, 187, 2007 Schlosser et al., Atmos. Chem. Phys., 9, 7923, 2009 Eisele et al., J. Geophys. Res., 102, 27993, 1997
Measuring the Epoch of Reionization using [CII] Intensity Mapping with TIME-Pilot
NASA Astrophysics Data System (ADS)
Crites, Abigail; Bock, James; Bradford, Matt; Bumble, Bruce; Chang, Tzu-Ching; Cheng, Yun-Ting; Cooray, Asantha R.; Hailey-Dunsheath, Steve; Hunacek, Jonathon; Li, Chao-Te; O'Brient, Roger; Shirokoff, Erik; Staniszewski, Zachary; Shiu, Corwin; Uzgil, Bade; Zemcov, Michael B.; Sun, Guochao
2017-01-01
TIME-Pilot (the Tomographic Ionized carbon Intensity Mapping Experiment) is a new instrument designed to probe the epoch of reionization (EoR) by measuring the 158 um ionized carbon emission line [CII] from redshift 5 - 9. TIME-Pilot will also probe the molecular gas content of the universe during the epoch spanning the peak of star formation (z ~ 1 -3) by making an intensity mapping measurement of the CO transitions in the TIME-Pilot band (CO(3-2), CO(4-3), CO(5-4), and CO(6-5)). I will describe the instrument we are building which is an R of ~100 spectrometer sensitive to the 200-300 GHz radiation. The camera is designed to measure the line emission from galaxies using an intensity mapping technique. This instrument will allow us to detect the [CII] clustering fluctuations from faint galaxies during EoR and compare these measurements to predicted [CII] amplitudes from current models. The CO measurements will allow us to constrain models for galaxies at lower redshift. The [CII] intensity mapping measurements that will be made with TIME-Pilot and detailed measurements made with future more sensitive mm-wavelength spectrometers are complimentary to 21-cm measurements of the EoR and complimentary to direct detections of high redshift galaxies with HST, ALMA, and, in the future, JWST.
Airborne UV photon-counting radiometer
NASA Astrophysics Data System (ADS)
Bauer, Marc C.; Wilcher, George; Banks, Calvin R.; Wood, Ronald L.
2000-11-01
The radiometric measurements group at the Arnold Engineering Development Center (AEDC) has developed new solar-blind radiometers for the SENSOR TALON flight test. These radiometers will be flown in an instrument pod by the 46th Test Wing at Eglin AFB. The radiometers are required to fit into a single quadrant of a 22-in.-diam sphere turret of the instrument pod. Because of minimal space requirements and photon-counting sensitivity needs, the radiometric measurements group used image intensifiers instead of the standard photomultiplier tubes (PMTs). The new design concept improved the photon-counting sensitivity, dynamic range, and uniformity of the field of view as compared to standard PMTs. A custom data acquisition system was required to miniaturize the electronics and generate a pulse code-modulated (PCM) data stream to the standard tape recording system.
NASA Astrophysics Data System (ADS)
Becklin, E. E.; Davidson, J. A.
The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began earlier this year. Universities Space Research Association (USRA), teamed with Raytheon E-Systems and United Airlines, was selected by NASA to develop and operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies lead by MAN-GHH. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, US science instrument complement, and operations concept for the SOFIA observatory, with an emphasis on the science community's participation, are discussed.
OMPS Limb Profiler Instrument Performance Assessment
NASA Technical Reports Server (NTRS)
Jaross, Glen R.; Bhartia, Pawan K.; Chen, Grace; Kowitt, Mark; Haken, Michael; Chen, Zhong; Xu, Philippe; Warner, Jeremy; Kelly, Thomas
2014-01-01
Following the successful launch of the Ozone Mapping and Profiler Suite (OMPS) aboard the Suomi National Polar-orbiting Partnership (SNPP) spacecraft, the NASA OMPS Limb team began an evaluation of instrument and data product performance. The focus of this paper is the instrument performance in relation to the original design criteria. Performance that is closer to expectations increases the likelihood that limb scatter measurements by SNPP OMPS and successor instruments can form the basis for accurate long-term monitoring of ozone vertical profiles. The team finds that the Limb instrument operates mostly as designed and basic performance meets or exceeds the original design criteria. Internally scattered stray light and sensor pointing knowledge are two design challenges with the potential to seriously degrade performance. A thorough prelaunch characterization of stray light supports software corrections that are accurate to within 1% in radiances up to 60 km for the wavelengths used in deriving ozone. Residual stray light errors at 1000nm, which is useful in retrievals of stratospheric aerosols, currently exceed 10%. Height registration errors in the range of 1 km to 2 km have been observed that cannot be fully explained by known error sources. An unexpected thermal sensitivity of the sensor also causes wavelengths and pointing to shift each orbit in the northern hemisphere. Spectral shifts of as much as 0.5nm in the ultraviolet and 5 nm in the visible, and up to 0.3 km shifts in registered height, must be corrected in ground processing.
NASA Astrophysics Data System (ADS)
Cataldo, Giuseppe; Moseley, S. H.; Wollack, E.; Hsieh, W.; Huang, W.; Stevenson, T.
2013-06-01
Micro-Spec (µ-Spec) is a high-sensitivity direct-detection spectrometer operating in the far-infrared and submillimeter regime. When combined with a cryogenic telescope, it provides an enabling technology for studying the epoch of reionization and initial galaxy formation. As a direct-detection spectrometer, µ-Spec can provide high sensitivity under the low background conditions provided by cryogenic telescopes such as the space infrared telescope for cosmology and astrophysics SPICA. The µ-Spec modules use low-loss superconducting microstrip transmission lines implemented on a single 4-inch-diameter wafer. Such a dramatic size reduction is enabled by the use of silicon, a material with an index of refraction about three times that of vacuum, which thus allows the microstrip lines to be one third their vacuum length. Using a large number of modules as well as reducing the negative effects of stray light also contributes positively to the enhanced sensitivity of such an instrument. µ-Spec can be compared to a grating spectrometer, in which the phase retardation generated by the reflection from the grating grooves is instead produced by propagation through transmission lines of different length. The µ-Spec optical design is based on the stigmatization and minimization of the light path function in a two-dimensional diffractive region. The power collected through a broadband antenna is progressively divided by binary microstrip power dividers. The position of the radiators is selected to provide zero phase errors at two stigmatic points, and a third stigmatic point is generated by introducing a differential phase shift in each radiator. To optimize the overall efficiency of the instrument, the emitters are directed to the center of the focal surface. A point design was developed for initial demonstration. Because of losses to other diffraction orders, the efficiency of the design presented is about 30%. Design variations on this implementation are illustrated which can lead to near-unit efficiency and will be the basis of future instruments. Measurements are being conducted to validate the designs.
Mokel, Melissa Jennifer; Shellman, Juliette M
2013-01-01
Many instruments in which religious involvement is measured often (a) contain unclear, poorly developed constructs; (b) lack methodological rigor in scale development; and (c) contain language and content culturally incongruent with the religious experiences of diverse ethnic groups. The primary aims of this review were to (a) synthesize the research on instruments designed to measure religious involvement, (b) evaluate the methodological quality of instruments that measure religious involvement, and (c) examine these instruments for conceptual congruency with African American religious involvement. An updated integrative research review method guided the process (Whittemore & Knafl, 2005). 152 articles were reviewed and 23 articles retrieved. Only 3 retained instruments were developed under methodologically rigorous conditions. All 3 instruments were congruent with a conceptual model of African American religious involvement. The Fetzer Multidimensional Measure of Religious Involvement and Spirituality (FMMRS; Idler et al., 2003) was found to have favorable characteristics. Further examination and psychometric testing is warranted to determine its acceptability, readability, and cultural sensitivity in an African American population.
NASA Astrophysics Data System (ADS)
Spanu, Antonio; Weinzierl, Bernadett; Freudenthaler, Volker; Sauer, Daniel; Gasteiger, Josef
2016-04-01
Explosive volcanic eruptions inject large amounts of gas and particles into the atmosphere resulting in strong impacts on anthropic systems and climate. Fine ash particles in suspension, even if at low concentrations, are a serious aviation safety hazard. A key point to predict the dispersion and deposition of volcanic ash is the knowledge of emitted mass and its particle size distribution. Usually the deposit is used to characterize the source but a large uncertainty is present for fine and very fine ash particles which are usually not well preserved. Conversely, satellite observations provide only column-integrated information and are strongly sensitive to cloud conditions above the ash plumes. Consequently, in situ measurements are fundamental to extend our knowledge on ash clouds, their properties, and interactions over the vertical extent of the atmosphere. Different in-situ instruments are available covering different particle size ranges using a variety of measurement techniques. Depending on the measurement technique, artefacts due to instrument setup and ambient conditions can strongly modify the measured number concentration and size distribution of the airborne particles. It is fundamental to correct for those effects to quantify the uncertainty associated with the measurement. Here we evaluate the potential of our optical light-scattering spectrometer CAS-DPOL to detect airborne mineral dust and volcanic ash (in the size range between 0.7μm and 50μm) and to provide a reliable estimation of the mass concentration, investigating the associate uncertainty. The CAS-DPOL instrument sizes particles by detecting the light scattered off the particle into a defined angle. The associated uncertainty depends on the optical instrument design and on unknown particles characteristics such as shape and material. Indirect measurements of mass concentrations are statistically reconstructed using the air flow velocity. Therefore, the detected concentration is strongly sensitive to the sample flow and on the mechanical instrument design. Using a fluid dynamics model coupled with an optical model we analyze the effects of instrument design on the measurement, identify measurement uncertainties and recommend strategies to reduce the uncertainties. The two main results are that the optical design of the CAS-DPOL aerosol spectrometer can lead to an under-counting bias of up to 40% for larger particles and an over-counting bias of 20%-30% for smaller particles. Secondly, depending on how the instrument is mounted on the plane, the sampling can be subject to a significantly larger size selection bias than typically recognized, especially if the mounting leads to irregular sampling conditions. To correct both problems a new correction algorithm is described generalizing the results also to other optical particle counters. Finally, a comparison study is presented showing the effects on mass estimation and radiative forcing for uncorrected and corrected data also stating the resulting uncertainty.
NASA Astrophysics Data System (ADS)
Murata, C. H.; Fernandes, D. C.; Lavínia, N. C.; Caldas, L. V. E.; Pires, S. R.; Medeiros, R. B.
2014-02-01
The performance of radiological equipment can be assessed using non-invasive methods and portable instruments that can analyze an X-ray beam with just one exposure. These instruments use either an ionization chamber or a state solid detector (SSD) to evaluate X-ray beam parameters. In Brazil, no such instruments are currently being manufactured; consequently, these instruments come at a higher cost to users due to importation taxes. Additionally, quality control tests are time consuming and impose a high workload on the X-ray tubes when evaluating their performance parameters. The assessment of some parameters, such as the half-value layer (HVL), requires several exposures; however, this can be reduced by using a SSD that requires only a single exposure. One such SSD uses photodiodes designed for high X-ray sensitivity without the use of scintillation crystals. This sensitivity allows one electron-hole pair to be created per 3.63 eV of incident energy, resulting in extremely high and stable quantum efficiencies. These silicon photodiodes operate by absorbing photons and generating a flow of current that is proportional to the incident power. The aim of this study was to show the response of the solid sensor PIN RD100A detector in a multifunctional X-ray analysis system that is designed to evaluate the average peak voltage (kVp), exposure time, and HVL of radiological equipment. For this purpose, a prototype board that uses four SSDs was developed to measure kVp, exposure time, and HVL using a single exposure. The reproducibility and accuracy of the results were compared to that of different X-ray beam analysis instruments. The kVp reproducibility and accuracy results were 2% and 3%, respectively; the exposure time reproducibility and accuracy results were 2% and 1%, respectively; and the HVL accuracy was ±2%. The prototype's methodology was able to calculate these parameters with appropriate reproducibility and accuracy. Therefore, the prototype can be considered a multifunctional instrument that can appropriately evaluate the performance of radiological equipment.
Vázquez, Gustavo Héctor; Romero, Ester; Fabregues, Fernando; Pies, Ronald; Ghaemi, Nassir; Mota-Castillo, Manuel
2010-01-01
Bipolar disorder is commonly misdiagnosed, perhaps more so in Latin American and Spanish-speaking populations than in the United States. The Bipolar Spectrum Diagnostic Scale (BSDS) is a 19-item screening instrument designed to assist in screening for all types of bipolar disorder. The authors investigated the sensitivity of a Spanish-language version of the BSDS in a cohort of 65 outpatients with a diagnosis of bipolar disorder, based on a semi-structured interview and Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria. To determine specificity, we assessed a control group of 36 outpatients with diagnosis of unipolar major depressive disorder. The overall sensitivity of the BSDS Spanish version with bipolar disorders types I, II, and NOS was 0.70, which was slightly lower than the sensitivity in the study using the English version of the BSDS (0.76). The specificity was 0.89. When the threshold was decreased from 13 to 12, the sensitivity of the Spanish BSDS increased to 0.76 and specificity dropped to 0.81. The Spanish version of the BSDS is promising as a screening instrument in Spanish-speaking populations. Copyright 2010 Elsevier Inc. All rights reserved.
Space Infrared Telescope Facility (SIRTF) science instruments
NASA Technical Reports Server (NTRS)
Ramos, R.; Hing, S. M.; Leidich, C. A.; Fazio, G.; Houck, J. R.
1989-01-01
Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem.
Star Formation Studies in the SPICA/SAFARI Era
NASA Astrophysics Data System (ADS)
Sibthorpe, Bruce; Goicoechea, Javier
2013-07-01
The Japanese JAXA SPICA space observatory, due for launch in 2022, will provide astronomers with a long awaited new window on the universe. Having a large cold telescope, cooled to only 6K above absolute zero, SPICA will provide a unique environment in which instruments are limited only by the cosmic background itself. A consortium of European and Canadian institutes has been established to design and implement the SpicA FAR infrared Instrument, SAFARI, an imaging FTS spectrometer designed to fully exploit this extremely low far infrared background environment provided by the SPICA observatory. With SAFARI it will be possible to obtain continuous spectra spanning 34 -\\ 210 um within an instantaneous 2'x2' field-of-view, at spectral resolutions of up to R = 2000 @ 100um (4000 @ 50um), within a single telescope pointing. This capability, coupled with the exquisite sensitivity provided by the cold SPICA telescope, makes SAFARI the ideal instrument to perform large area spectroscopic mapping surveys in the far-infrared. SPICA/SFARI will provide new insights into a range of astronomical sources. By obtaining spectra for large, statistically significant samples, we can obtain a fundamental understanding of their chemistry and physical processes, and thereby characterise and understand the nature of these sources. Moreover, with the high sensitivity of SAFARI, it will be possible to extend current far-infrared studies of star formation processes to nearby galaxies, thereby putting our current understanding in a wider, universal, context. This poster provides a description of the SAFARI instrument and its capabilities. A brief representative sample of the contribution SAFARI can make in the field of star formation studies is also given, and compared to similar observations made using the Herschel-PACS instrument.
Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, N.; Chu, Y. N.; Broadbent, A.
2010-08-30
The Hard X-ray Nanoprobe (HXN) Beamline of National Synchrotron Light Source II (NSLS-lI) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic and NSLS II operating systems have been studied using state of the art simulations and an array of field data. Further, final stage vibrationmore » isolation principles have been explored in order to be utilized in supporting endstation instruments. This paper presents results of the various study aspects and their influence on the HXN design optimization.« less
NASA Astrophysics Data System (ADS)
King, Bruce H.; Ellis, Thomas; Old, Tom E.
2009-05-01
A fast-scanning, high-resolution FTIR spectroradiometer has been designed and built for use in remote sensing, stand-off detection, and spectral-temporal characterization of fast, energetic infrared events. The instrument design uses a Michelson-type interferometer with a rotary modulator which is capable of continuous measurement of infrared spectra at a rate of 1000 scans per second with 4 cm-1 resolution in the 2 - 25 micron spectral range. Sensitivity, spectral accuracy, and radiometric precision are discussed along with specific design parameters. This instrument can be used for passive sensing as a stand-alone sensor, or for active sensing as a receiver when used in conjunction with a highenergy excitation source such as a laser. Applications include muzzle flash signature measurement, ordnance detonation characterization, missile plume identification, and rocket motor combustion diagnostics.
Development of a near-infrared spectroscopy instrument for applications in urology.
Macnab, Andrew J; Stothers, Lynn
2008-10-01
Near infrared spectroscopy (NIRS) is an established technology using photons of light in the near infrared spectrum to monitor changes in tissue of naturally occurring chromophores, including oxygenated and deoxygenated hemoglobin. Technology and methodology have been validated for measurement of a range of physiologic parameters. NIRS has been applied successfully in urology research; however current instruments are designed principally for brain and muscle study. To describe development of a NIRS instrument specifically designed for monitoring changes in chromophore concentration in the bladder detrusor in real time, to facilitate research to establish the role of this non-invasive technology in the evaluation of patients with voiding dysfunction The portable continuous wave NIRS instrument has a 3 laser diode light source (785, 808 and 830 nanometers), fiber optic cables for light transmission, a self adhesive patient interface patch with an emitter and sensor, and software to detect the difference between the light transmitted and received by the instrument. Software incorporated auto-attenuates the optical signals and converts raw optical data into chromophore concentrations displayed graphically. The prototype was designed, tested, and iteratively developed to achieve optimal suprapubic transcutaneous monitoring of the detrusor in human subjects during bladder filling and emptying. Evaluation with simultaneous invasive urodynamic measurement in men and women indicates good specificity and sensitivity of NIRS chromophore concentration changes by receiver operator curve analysis, and correlation between NIRS data and urodynamic pressures. Urological monitoring with this NIRS instrument is feasible and generates data of potential diagnostic value.
Sensitivity studies and laboratory measurements for the laser heterodyne spectrometer experiment
NASA Technical Reports Server (NTRS)
Allario, F.; Katzberg, S. J.; Larsen, J. C.
1980-01-01
Several experiments involving spectral scanning interferometers and gas filter correlation radiometers (ref. 2) using limb scanning solar occultation techniques under development for measurements of stratospheric trace gases from Spacelab and satellite platforms are described. An experiment to measure stratospheric trace constituents by Laser Heterodyne Spectroscopy, a summary of sensitivity analyses, and supporting laboratory measurements are presented for O3, ClO, and H2O2 in which the instrument transfer function is modeled using a detailed optical receiver design.
A high-sensitivity torsional pendulum for polymeric films and fibres
NASA Technical Reports Server (NTRS)
Aghili-Kermani, H.; Obrien, T.; Armeniades, C. D.; Roberts, J. M.
1976-01-01
A free oscillation torsion pendulum is described, which has been designed to measure accurately the dynamic shear modulus and logarithmic decrement of polymeric thin films and fibers, at frequencies of 0.1 to 10 Hz and a temperature range of 4.2 to 450 K. The instrument can also provide in situ tensile deformations of up to 5%. The specimen geometry necessary to obtain reliable modulus measurements with thin films is discussed, and typical data are presented which exhibit hitherto unreported relaxation processes, discernible by this instrument.
Method for Ground-to-Satellite Laser Calibration System
NASA Technical Reports Server (NTRS)
Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)
2015-01-01
The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.
Method for Ground-to-Space Laser Calibration System
NASA Technical Reports Server (NTRS)
Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)
2014-01-01
The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.
Far-infrared spectrophotometer for astronomical observations
NASA Technical Reports Server (NTRS)
Moseley, H.; Silverberg, R. F.
1981-01-01
A liquid-helium-cooled far infrared spectrophotometer was built and used to make low resolution observations of the continua of several kinds of astronomical objects using the Kuiper Airborne Observatory. This instrument fills a gap in both sensitivity to continuum sources and spectral resolution between the broadband photometers with lambda/Delta lambda approximately 1 and spectrometers with lambda/Delta lambda greater than 50. While designed primarily to study planetary nebulae, the instrument permits study of the shape of the continua of many weak sources which cannot easily be observed with high resolution systems.
Contamination control program for the Extreme Ultraviolet Explorer instruments
NASA Technical Reports Server (NTRS)
Ray, David C.; Malina, Roger F.; Welsh, Barry Y.; Austin, James D.; Teti, Bonnie Gray
1989-01-01
A contamination-control program has been instituted for the optical components of the EUV Explorer satellite, whose 80-900 A range performance is easily degraded by particulate and molecular contamination. Cleanliness requirements have been formulated for the design, fabrication, and test phases of these instruments; in addition, contamination-control steps have been taken which prominently include the isolation of sensitive components in a sealed optics cavity. Prelaunch monitoring systems encompass the use of quartz crystal microbalances, particle witness plates, direct flight hardware sampling, and optical witness sampling of EUV scattering and reflectivity.
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Del Hoyo, Javier; Boris, David R.; Walton, Scott
2017-01-01
This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF3 overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.
Columbia University OSO-8 instrument for stellar and solar X-ray spectroscopy and polarimetry
NASA Technical Reports Server (NTRS)
Wolff, R. S.
1976-01-01
A spectrometer and a polarimeter consisting of large-area panels of mosaic crystals have been constructed and prepared for use in the OSO-8 satellite. The instrumentation is planned for study of stellar and solar X-ray spectra between 1.8-8 keV and stellar X-ray polarization at 2.6 keV. Aspects of the design which enable the instrument to make measurements of the diverse range of stellar and solar phenomena are described. Some of the unique features, such as high sensitivity, high temporal resolution, and spectral range, are discussed. The applicability of the spectrometer and polarimeter to various current problems in X-ray astronomy is considered.
NASA Astrophysics Data System (ADS)
Quijada, Manuel A.; del Hoyo, Javier; Boris, David R.; Walton, Scott G.
2017-09-01
This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with fluorine ions in order to form a thin AlF3 overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.
Asilian-Mahabadi, Hassan; Khosravi, Yahya; Hassanzadeh-Rangi, Narmin; Hajizadeh, Ebrahim; Behzadan, Amir H
2018-02-05
Occupational safety in general, and construction safety in particular, is a complex phenomenon. This study was designed to develop a new valid measure to evaluate factors affecting unsafe behavior in the construction industry. A new questionnaire was generated from qualitative research according to the principles of grounded theory. Key measurement properties (face validity, content validity, construct validity, reliability and discriminative validity) were examined using qualitative and quantitative approaches. The receiver operating characteristic curve was used to estimate the discriminating power and the optimal cutoff score. Construct validity revealed an interpretable 12-factor structure which explained 61.87% of variance. Good internal consistency (Cronbach's α = 0.94) and stability (intra-class correlation coefficient = 0.93) were found for the new instrument. The area under the curve, sensitivity and specificity were 0.80, 0.80 and 0.75, respectively. The new instrument also discriminated safety performance among the construction sites with different workers' accident histories (F = 6.40, p < 0.05). The new instrument appears to be a valid, reliable and sensitive instrument that will contribute to investigating the root causes of workers' unsafe behaviors, thus promoting safety performance in the construction industry.
Novel approaches to the construction of miniaturized analytical instrumentation
NASA Technical Reports Server (NTRS)
Porter, Marc D.; Otoole, Ronald P.; Coldiron, Shelley J.; Deninger, William D.; Deinhammer, Randall S.; Burns, Stanley G.; Bastiaans, Glenn J.; Braymen, Steve D.; Shanks, Howard R.
1992-01-01
This paper focuses on the design, construction, preliminary testing, and potential applications of three forms of miniaturized analytical instrumentation. The first is an optical fiber instrument for monitoring pH and other cations in aqueous solutions. The instrument couples chemically selective indicators that were immobilized at porous polymeric films with a hardware package that provides the excitation light source, required optical components, and detection and data processing hardware. The second is a new form of a piezoelectric mass sensor. The sensor was fabricated by the deposition of a thin (5.5 micron) film of piezoelectric aluminum nitride (AIN). The completed deposition process yields a thin film resonator (TFR) that is shaped as a 400 micron square and supports a standing bulk acoustic wave in a longitudinal mode at frequencies of approx. 1 GHz. Various deposition and vapor sorption studies indicate that the mass sensitivity of the TFR's rival those of the most sensitive mass sensors currently available, though offering such performance in a markedly smaller device. The third couples a novel form of liquid chromatography with microlithographic miniaturization techniques. The status of the miniaturization effort, the goal of which is to achieve chip-scale separations, is briefly discussed.
The MetOp second generation 3MI mission
NASA Astrophysics Data System (ADS)
Manolis, Ilias; Caron, Jérôme; Grabarnik, Semen; Bézy, Jean-Loup; Betto, Maurizio; Barré, Hubert; Mason, Graeme; Meynart, Roland
2017-11-01
ESA is currently running two parallel, competitive phase A/B1 studies for MetOp Second Generation (MetOp-SG). MetOp-SG is the space segment of EUMETSAT Polar System (EPS-SG) consisting of the satellites and instruments. The Phase A/B1 studies will be completed in the first quarter of 2013. The final implementation phases (B2/C/D) are planned to start 2013. ESA is responsible for instrument design of five missions, namely Microwave Sounding Mission (MWS), Scatterometer mission (SCA), Radio Occultation mission (RO), Microwave Imaging mission (MWI), Ice Cloud Imaging (ICI) mission, and Multiviewing, Multi-channel, Multi-polarization imaging mission (3MI). This paper will present the instrument main design elements of the 3MI mission, primarily aimed at providing aerosol characterization for climate monitoring, Numerical Weather Prediction (NWP), atmospheric chemistry and air quality. The 3MI instrument is a passive radiometer measuring the polarized radiances reflected by the Earth under different viewing geometries and across several spectral bands spanning the visible and short-wave infrared spectrum. The paper will present the main performances of the instrument and will concentrate mainly on the performance improvements with respect to its heritage derived by the POLDER instrument. The engineering of some key performance requirements (multiviewing, polarization sensitivity, etc.) will also be discussed.
Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.
2011-01-01
Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.
The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument
NASA Technical Reports Server (NTRS)
Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angile, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.;
2016-01-01
The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3deg field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev-Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.
The Atacama Cosmology Telescope: The Polarization-sensitive ACTPol Instrument
NASA Astrophysics Data System (ADS)
Thornton, R. J.; Ade, P. A. R.; Aiola, S.; Angilè, F. E.; Amiri, M.; Beall, J. A.; Becker, D. T.; Cho, H.-M.; Choi, S. K.; Corlies, P.; Coughlin, K. P.; Datta, R.; Devlin, M. J.; Dicker, S. R.; Dünner, R.; Fowler, J. W.; Fox, A. E.; Gallardo, P. A.; Gao, J.; Grace, E.; Halpern, M.; Hasselfield, M.; Henderson, S. W.; Hilton, G. C.; Hincks, A. D.; Ho, S. P.; Hubmayr, J.; Irwin, K. D.; Klein, J.; Koopman, B.; Li, Dale; Louis, T.; Lungu, M.; Maurin, L.; McMahon, J.; Munson, C. D.; Naess, S.; Nati, F.; Newburgh, L.; Nibarger, J.; Niemack, M. D.; Niraula, P.; Nolta, M. R.; Page, L. A.; Pappas, C. G.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sievers, J. L.; Simon, S. M.; Staggs, S. T.; Tucker, C.; Uehara, M.; van Lanen, J.; Ward, J. T.; Wollack, E. J.
2016-12-01
The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermal Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.
The MetOp second generation 3MI instrument
NASA Astrophysics Data System (ADS)
Manolis, Ilias; Grabarnik, Semen; Caron, Jérôme; Bézy, Jean-Loup; Loiselet, Marc; Betto, Maurizio; Barré, Hubert; Mason, Graeme; Meynart, Roland
2013-10-01
The MetOp-SG programme is a joint Programme of EUMETSAT and ESA. ESA develops the prototype MetOp-SG satellites (including associated instruments) and procures, on behalf of EUMETSAT, the recurrent satellites (and associated instruments). Two parallel, competitive phase A/B1 studies for MetOp Second Generation (MetOp-SG) have been concluded in May 2013. The implementation phases (B2/C/D/E) are planned to start the first quarter of 2014. ESA is responsible for instrument design of six missions, namely Microwave Sounding Mission (MWS), Scatterometer mission (SCA), Radio Occultation mission (RO), Microwave Imaging mission (MWI), Ice Cloud Imager (ICI) and Multi-viewing, Multi-channel, Multi-polarisation imaging mission (3MI). The paper will present the main performances of the 3MI instrument and will highlight the performance improvements with respect to its heritage derived by the POLDER instrument, such as number of spectral channels and spectral range coverage, swath and ground spatial resolution. The engineering of some key performance requirements (multi-viewing, polarisation sensitivity, straylight etc.) will also be discussed. The results of the feasibility studies will be presented together with the programmatics for the instrument development. Several pre-development activities have been initiated to retire highest risks and to demonstrate the ultimate performances of the 3MI optics. The scope, objectives and current status of those activities will be presented. Key technologies involved in the 3MI instrument design and implementation are considered to be: the optical design featuring aspheric optics, the implementation of broadband Anti Reflection coatings featuring low polarisation and low de-phasing properties, the development and qualification of polarisers with acceptable performances as well as spectral filters with good uniformities over a large clear aperture.
Ultra-Low-Noise W-Band MMIC Detector Modules
NASA Technical Reports Server (NTRS)
Gaier, Todd C.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Van Vinkle, Dan; Tantawi, Sami; Fox, John; Church, Sarah E.; Lau, Jusy M.; Sieth, Matthew M.; Voll, Patricia E.;
2010-01-01
A monolithic microwave integrated circuit (MMIC) receiver can be used as a building block for next-generation radio astronomy instruments that are scalable to hundreds or thousands of pixels. W-band (75-110 GHz) low-noise receivers are needed for radio astronomy interferometers and spectrometers, and can be used in missile radar and security imagers. These receivers need to be designed to be mass-producible to increase the sensitivity of the instrument. This innovation is a prototyped single-sideband MMIC receiver that has all the receiver front-end functionality in one small and planar module. The planar module is easy to assemble in volume and does not require tuning of individual receivers. This makes this design low-cost in large volumes.
Optimal Design of Calibration Signals in Space-Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Ferroni, Valerio;
2016-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterisation of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
Optimal Design of Calibration Signals in Space Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Thorpe, James I.
2014-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterization of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
A Measurement of the Energy Spectra of Cosmic Rays from 20 to 1000 GeV Per Amu
NASA Technical Reports Server (NTRS)
Gregory, J. C.; Thoburn, C.; Smith, A. E.; Petruzzo, J. J., III; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.; Masheder, M. R. W.; Fowler, P. H.
1997-01-01
The design features and operational performance from the test flight of the fourth generation of spherical geometry cosmic ray detectors developed at Bristol University (Bristol University Gas Scintillator 4 - BUGS-4) are presented. The flight from Ft. Sumner (NM) in Sept. 1993 was the premier flight of a large (1m radius) spherical drift chamber which also gave gas scintillation and Cerenkov signals. The combinations of this chamber with one gas and two solid Cerenkov radiators lead to a large aperture factor (4.5 m2sr), but low (approximately 3.5 g/sq cm) instrument mass over the energy sensitive range 1 to several hundred GeV/a. Moreover, one simple timing measurement determined the impact parameter which provided a trajectory (path length) correction for all detector elements. This innovative and efficient design will be of interest to experimental groups engaged in studies of energetic charged particles. Although there were technical problems on the flight, which were compounded by the total destruction of BUGS-4 by fire while landing in Oklahoma, there was a period of stable operation during which the instrument was exposed at float altitude (approximately 125,000 ft.) to high energy cosmic rays. We present the performance of the instrument as determined from the analysis of these data and an appraisal of its novel design features. Suggestions for design improvements in a future instrument are made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The bibliography contains citations concerning chemiluminescence assays. The citations include sample system design, sample collection, measurement techniques, and sensitivity of the instrumentation. Applications in high altitude air pollution studies are emphasized. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)
Protective Factor Screening for Prevention Practice: Sensitivity and Specificity of the Dessa-Mini
ERIC Educational Resources Information Center
Shapiro, Valerie B.; Kim, B. K. Elizabeth; Robitaille, Jennifer L.; LeBuffe, Paul A.
2017-01-01
The Devereux Student Strengths Assessment Mini (DESSA-Mini; Naglieri, LeBuffe, & Shapiro, 2011/2014) was designed to overcome practical obstacles to universal prevention screening. This article seeks to determine whether an entirely strength-based, 8-item screening instrument achieves technical accuracy in routine practice. Data come from a…
Ultra-low-noise preamplifier for condenser microphones.
Starecki, Tomasz
2010-12-01
The paper presents the design of a low-noise preamplifier dedicated for condenser measurement microphones used in high sensitivity applications, in which amplifier noise is the main factor limiting sensitivity of the measurements. In measurement microphone preamplifiers, the dominant source of noise at lower frequencies is the bias resistance of the input stage. In the presented solution, resistors were connected to the input stage by means of switches. The switches are opened during measurements, which disconnects the resistors from the input stage and results in noise reduction. Closing the switches allows for fast charging of the microphone capacitance. At low frequencies the noise of the designed preamplifier is a few times lower in comparison to similar, commercially available instruments.
NASA Astrophysics Data System (ADS)
Eshelman, E.; Wanger, G.; Manatt, K.; Malaska, M.; Willis, M.; Abbey, W.; Doloboff, I.; Beegle, L. W.; DeFlores, L. P.; Priscu, J. C.; Lane, A. L.; Carrier, B. L.; Mellerowicz, B.; Kim, D.; Paulsen, G.; Zacny, K.; Bhartia, R.
2017-12-01
Future astrobiological missions to Europa and other ocean worlds may benefit from next-generation instrumentation capable of in situ organic and life detection in subsurface ice environments. WATSON (Wireline Analysis Tool for in Situ Observation of Northern ice sheets) is an instrument under development at NASA's Jet Propulsion Laboratory. WATSON contains high-TRL instrumentation developed for SHERLOC, the Mars 2020 deep-UV fluorescence and Raman spectrometer, including a 248.6 nm NeCu hollow cathode laser as an excitation source. In WATSON, these technologies provide spectroscopic capabilities highly sensitive to many organic compounds, including microbes, in an instrument package approximately 1.2 m long with a 101.6 mm diameter, designed to accommodate a 108 mm ice borehole. Interrogation into the ice wall with a laser allows for a non-destructive in situ measurement that preserves the spatial distribution of material within the ice. We report on a successful deployment of WATSON to Kangerlussuaq, Greenland, where the instrument was lowered to a 4.5 m depth in a hand-cored hole on the Kangerlussuaq sector of the Greenland ice sheet. Motorized stages within the instrument were used to raster a laser across cm-scale regions of the interior surface of the borehole, obtaining fluorescence spectral maps with a 200 µm spatial resolution and a spectral range from 265 nm to 440 nm. This region includes the UV emission bands of many aromatic compounds and microbes, and includes the water and ice Raman O-H stretching modes. We additionally report on experiments designed to inform an early-2018 deployment to Kangerlussuaq where WATSON will be incorporated into a Honeybee Robotics planetary deep drill, with a goal of drilling to a depth of 100 m and investigating the distribution of organic material within the ice sheet. These experiments include laboratory calibrations to determine the sensitivity to organic compounds embedded in ice at various depths, as well as analysis of ice cores obtained during the deployment and returned for subsequent study.
Sensitivity analysis of a new SWIR-channel measuring tropospheric CH 4 and CO from space
NASA Astrophysics Data System (ADS)
Jongma, Rienk T.; Gloudemans, Annemieke M. S.; Hoogeveen, Ruud W. M.; Aben, Ilse; de Vries, Johan; Escudero-Sanz, Isabel; van den Oord, Gijsbertus; Levelt, Pieternel F.
2006-08-01
In preparation for future atmospheric space missions a consortium of Dutch organizations is performing design studies on a nadir viewing grating-based imaging spectrometer using OMI and SCIAMACHY heritage. The spectrometer measures selected species (O 3, NO II, HCHO, H IIO, SO II, aerosols (optical depth, type and absorption index), CO and CH4) with sensitivity down to the Earth's surface, thus addressing science issues on air quality and climate. It includes 3 UV-VIS channels continuously covering the 270-490 nm range, a NIR-channel covering the 710-775 nm range, and a SWIR-channel covering the 2305-2385 nm range. This instrument concept is, named TROPOMI, part of the TRAQ-mission proposal to ESA in response to the Call for Earth Explorer Ideas 2005, and, named TROPI, part of the CAMEO-proposal prepared for the US NRC decadal study-call on Earth science and applications from space. The SWIR-channel is optional in the TROPOMI/TRAQ instrument and included as baseline in the TROPI/CAMEO instrument. This paper focuses on derivation of the instrument requirements of the SWIR-channel by presenting the results of retrieval studies. Synthetic detector spectra are generated by the combination of a forward model and an instrument simulator that includes the properties of state-of-the-art detector technology. The synthetic spectra are input to the CO and CH 4 IMLM retrieval algorithm originally developed for SCIAMACHY. The required accuracy of the Level-2 SWIR data products defines the main instrument parameters like spectral resolution and sampling, telescope aperture, detector temperature, and optical bench temperature. The impact of selected calibration and retrieval errors on the Level-2 products has been characterized. The current status of the SWIR-channel optical design with its demanding requirements on ground-pixel size, spectral resolution, and signal-to-noise ratio will be presented.
Stars and their Environments at High-Resolution with IGRINS
NASA Astrophysics Data System (ADS)
Mace, Gregory; Jaffe, Daniel; Kaplan, Kyle; Kidder, Benjamin; Oh, Heeyoung; Sneden, Christopher; Afşar, Melike
2016-06-01
TheImmersion Grating Infrared Spectrometer (IGRINS) is a revolutionary instrument that exploits broad spectral coverage at high-resolution in the near-infrared. There are no moving parts in IGRINS and its high-throughput white-pupil design maximizes sensitivity. IGRINS on the 2.7 meter Harlan J. Smith Telescope at McDonald Observatory is nearly as sensitive as CRIRES at the 8 meter Very Large Telescope. However, IGRINS at R=45,000 has more than 30 times the spectral grasp of CRIRES. The use of an immersion grating facilitates a compact cryostat while providing simultaneous H and K band observations with complete wavelength coverage from 1.45 - 2.45 microns. Here we discuss details of instrument performance and summarize the application of IGRINS to stellar characterization, star formation in regions like Taurus and Ophiuchus, the interstellar medium, and photodissociation regions. IGRINS has the largest spectral grasp of any high-resolution, near-infrared spectrograph, allowing us to study star formation and evolution in unprecedented detail. With its fixed format and high sensitivity, IGRINS is a great survey instrument for star clusters, high signal-to-noise (SNR>300) studies of field stars, and for mapping the interstellar medium. As a prototype for GMTNIRS on the Giant Magellan Telescope, IGRINS represents the future of high-resolution spectroscopy. In the future IGRINS will be deployed to numerous facilities and will remain a versatile instrument for the community while producing a rich archive of uniform spectra.
Simulation and Laboratory results of the Hard X-ray Polarimeter: X-Calibur
NASA Astrophysics Data System (ADS)
Guo, Qingzhen; Beilicke, M.; Kislat, F.; Krawczynski, H.
2014-01-01
X-ray polarimetry promises to give qualitatively new information about high-energy sources, such as binary black hole (BH) systems, Microquasars, active galactic nuclei (AGN), GRBs, etc. We designed, built and tested a hard X-ray polarimeter 'X-Calibur' to be flown in the focal plane of the InFOCuS grazing incidence hard X-ray telescope in 2014. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20- 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the E field orientation. X-Calibur achieves a high detection efficiency of order unity. We optimized of the design of the instrument based on Monte Carlo simulations of polarized and unpolarized X-ray beams and of the most important background components. We have calibrated and tested X-Calibur extensively in the laboratory at Washington University and at the Cornell High-Energy Synchrotron Source (CHESS). Measurements using the highly polarized synchrotron beam at CHESS confirm the polarization sensitivity of the instrument. In this talk we report on the optimization of the design of the instrument based on Monte Carlo simulations, as well as results of laboratory calibration measurements characterizing the performance of the instrument.
A radiation hardened digital fluxgate magnetometer for space applications
NASA Astrophysics Data System (ADS)
Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.
2013-02-01
Space-based measurements of the Earth's magnetic field are required to understand the plasma processes responsible for energizing particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of the Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT per square-root Hz at 1 Hz. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory showing that the mostly-digital design matches or exceeds its radiation-soft analog predecessor in sensitivity, noise, frequency range, and RMS accuracy.
He, Xingchi; Handa, James; Gehlbach, Peter; Taylor, Russell; Iordachita, Iulian
2013-01-01
Vitreoretinal surgery requires very fine motor control to perform precise manipulation of the delicate tissue in the interior of the eye. Besides physiological hand tremor, fatigue, poor kinesthetic feedback, and patient movement, the absence of force sensing is one of the main technical challenges. Previous two degrees of freedom (DOF) force sensing instruments have demonstrated robust force measuring performance. The main design challenge is to incorporate high sensitivity axial force sensing. This paper reports the development of a sub-millimetric 3-DOF force sensing pick instrument based on fiber Bragg grating (FBG) sensors. The configuration of the four FBG sensors is arranged to maximize the decoupling between axial and transverse force sensing. A super-elastic nitinol flexure is designed to achieve high axial force sensitivity. An automated calibration system was developed for repeatability testing, calibration, and validation. Experimental results demonstrate a FBG sensor repeatability of 1.3 pm. The linear model for calculating the transverse forces provides an accurate global estimate. While the linear model for axial force is only locally accurate within a conical region with a 30° vertex angle, a second-order polynomial model can provide a useful global estimate for axial force. Combining the linear model for transverse forces and nonlinear model for axial force, the 3-DOF force sensing instrument can provide sub-millinewton resolution for axial force and a quarter millinewton for transverse forces. Validation with random samples show the force sensor can provide consistent and accurate measurement of three dimensional forces. PMID:24108455
Hand-held optical imager (Gen-2): improved instrumentation and target detectability
Gonzalez, Jean; DeCerce, Joseph; Erickson, Sarah J.; Martinez, Sergio L.; Nunez, Annie; Roman, Manuela; Traub, Barbara; Flores, Cecilia A.; Roberts, Seigbeh M.; Hernandez, Estrella; Aguirre, Wenceslao; Kiszonas, Richard
2012-01-01
Abstract. Hand-held optical imagers are developed by various researchers towards reflectance-based spectroscopic imaging of breast cancer. Recently, a Gen-1 handheld optical imager was developed with capabilities to perform two-dimensional (2-D) spectroscopic as well as three-dimensional (3-D) tomographic imaging studies. However, the imager was bulky with poor surface contact (∼30%) along curved tissues, and limited sensitivity to detect targets consistently. Herein, a Gen-2 hand-held optical imager that overcame the above limitations of the Gen-1 imager has been developed and the instrumentation described. The Gen-2 hand-held imager is less bulky, portable, and has improved surface contact (∼86%) on curved tissues. Additionally, the forked probe head design is capable of simultaneous bilateral reflectance imaging of both breast tissues, and also transillumination imaging of a single breast tissue. Experimental studies were performed on tissue phantoms to demonstrate the improved sensitivity in detecting targets using the Gen-2 imager. The improved instrumentation of the Gen-2 imager allowed detection of targets independent of their location with respect to the illumination points, unlike in Gen-1 imager. The developed imager has potential for future clinical breast imaging with enhanced sensitivity, via both reflectance and transillumination imaging. PMID:23224163
Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft
NASA Astrophysics Data System (ADS)
Wagner, N. L.; Dubé, W. P.; Washenfelder, R. A.; Young, C. J.; Pollack, I. B.; Ryerson, T. B.; Brown, S. S.
2011-06-01
This article presents a diode laser-based, cavity ring-down spectrometer for simultaneous in situ measurements of four nitrogen oxide species, NO3, N2O5, NO, NO2, as well as O3, designed for deployment on aircraft. The instrument measures NO3 and NO2 by optical extinction at 662 nm and 405 nm, respectively; N2O5 is measured by thermal conversion to NO3, while NO and O3 are measured by chemical conversion to NO2. The instrument has several advantages over previous instruments developed by our group for measurement of NO2, NO3 and N2O5 alone, based on a pulsed Nd:YAG and dye laser. First, the use of continuous wave diode lasers reduces the requirements for power and weight and eliminates hazardous materials. Second, detection of NO2 at 405 nm is more sensitive than our previously reported 532 nm instrument, and does not have a measurable interference from O3. Third, the instrument includes chemical conversion of NO and O3 to NO2 to provide measurements of total NOx (= NO + NO2) and Ox (= NO2 + O3) on two separate channels; mixing ratios of NO and O3 are determined by subtraction of NO2. Finally, all five species are calibrated against a single standard based on 254 nm O3 absorption to provide high accuracy. Disadvantages include an increased sensitivity to water vapor on the 662 nm NO3 and N2O5 channels and a modest reduction in sensitivity for these species compared to the pulsed laser instrument. The in-flight detection limit for both NO3 and N2O5 is 3 pptv (2 σ, 1 s) and for NO, NO2 and O3 is 140, 90, and 120 pptv (2 σ, 1 s) respectively. Demonstrated performance of the instrument in a laboratory/ground based environment is better by approximately a factor of 2-3. The NO and NO2 measurements are less precise than research-grade chemiluminescence instruments. However, the combination of these five species in a single instrument, calibrated to a single analytical standard, provides a complete and accurate picture of nighttime nitrogen oxide chemistry. The instrument performance is demonstrated using data acquired during a recent field campaign in California.
NASA Astrophysics Data System (ADS)
Byrum, Karen L.; Vassiliev, V.; AGIS Collaboration
2010-03-01
AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of AGIS telescopes. In this submission, we outline the status of the development of the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic telescope. This design can provide a field of view and angular resolution significantly better to those offered by the traditional Davies-Cotton optics utilized in present-day IACTs. Other benefits of the novel design include isochronous focusing and compatibility with cost-effective, high quantum efficiency image sensors such as multi-anode PMTs, silicon PMTs (SiPMs), or image intensifiers.
A design of driving circuit for star sensor imaging camera
NASA Astrophysics Data System (ADS)
Li, Da-wei; Yang, Xiao-xu; Han, Jun-feng; Liu, Zhao-hui
2016-01-01
The star sensor is a high-precision attitude sensitive measuring instruments, which determine spacecraft attitude by detecting different positions on the celestial sphere. Imaging camera is an important portion of star sensor. The purpose of this study is to design a driving circuit based on Kodak CCD sensor. The design of driving circuit based on Kodak KAI-04022 is discussed, and the timing of this CCD sensor is analyzed. By the driving circuit testing laboratory and imaging experiments, it is found that the driving circuits can meet the requirements of Kodak CCD sensor.
Momentum rate probe for use with two-phase flows
NASA Astrophysics Data System (ADS)
Bush, S. G.; Bennett, J. B.; Sojka, P. E.; Panchagnula, M. V.; Plesniak, M. W.
1996-05-01
An instrument for measuring the momentum rate of two-phase flows is described, and design and construction details are provided. The device utilizes a conelike body to turn the flow from the axial to the radial direction. The force resulting from the change in momentum rate of the turning flow is measured using a strain-gage-instrumented cantilevered beam. The instrument is applicable to a wide range of flows including nuclear reactor coolant streams, refrigerants in heating-ventilating air-conditioning equipment, impingement cooling of small scale electronic hardware (computer chips are one example), supercritical fuel injection (in Diesel engines, for instance), and consumer product sprays (such as hair-care product sprays produced using effervescent atomizers). The latter application is discussed here. Features of the instrument include sensitivity to a wide range of forces and the ability to damp oscillations of the deflection cone. Instrument sensitivity allows measurement of momentum rates considerably lower (below 0.01 N) than those that could be obtained using previous devices. This feature is a direct result of our use of precision strain gages, capable of sensing strains below 20 μm/m, and the damping of oscillations which can overwhelm the force measurements. Oscillation damping results from a viscous fluid damper whose resistance is easily varied by changing fluids. Data used to calibrate the instrument are presented to demonstrate the effectiveness of the technique. As an example of the instrument's utility, momentum rate data obtained using it will be valuable in efforts to explain entrainment of surrounding air into effervescent atomizer-produced sprays and also to model the effervescent atomization process.
A Microseismometer for Terrestrial and Extraterrestrial Applications
NASA Technical Reports Server (NTRS)
Banerdt, W.; Kaiser, W.; Vanzandt, T.
1993-01-01
The scientific and technical requirements of extraterrestrial seismology place severe demands on instrumentation. Performance in terms of sensitivity, stability, and frequency band must match that of the best terrestrial instruments, at a fraction of the size, mass, and power. In addition, this performance must be realized without operator intervention in harsh temperature, shock, and radiation environments. These constraints have forced us to examine some fundamental limits of accelerometer design in order to produce a small, rugged, sensitive seismometer. Silicon micromachined sensor technology offers techniques for the fabrication of monolithic, robust, compact, low-power and -mass accelerometers. However, currently available sensors offer inadequate sensitivity and bandwidth. Our implementation of an advanced silicon micro machined seismometer is based on principles developed at JPL for high-sensitivity position sensor technology. The use of silicon micro machining technology with these new principles should enable the fabrication of a 10(exp -11) g sensitivity seismometer with a bandwidth of at least 0.01 to 20 Hz. The low Q properties of pure single-crystal silicon are essential in order to minimize the Brownian thermal noise limitations generally characteristic of seismometers with small proof masses. A seismometer consists of a spring-supported proof mass and a transducer for measuring its motion. For long period motion a position sensor is generally used, for which the displacement is proportional to the ground acceleration. The mechanical sensitivity can be increased either by increasing the proof mass or decreasing the spring stiffness, neither of which is desirable for planetary applications. Our approach has been to use an ultra sensitive capacitive position sensor with a sensitivity of better than 10(exp -13) m/Hz(exp 1/2). This allows the use of a stiffer suspension and a smaller proof mass. We have built several prototypes using these principles, and tests show that these devices can exhibit performance comparable to state-of-the-art instruments.
Microlens Array/Pinhole Mask to Suppress Starlight for Direct Exoplanet Detection
NASA Astrophysics Data System (ADS)
Zimmerman, Neil
Direct imaging of habitable exoplanets is a key priority of NASA’s Astrophysics roadmap, “Enduring Quests, Daring Visions.” A coronagraphic starlight suppression system situated on a large space telescope offers a viable path to achieving this goal. This type of instrument is central to both the LUVOIR and HabEx mission concepts currently under study for the 2020 Decadal Survey. To directly image an Earth-like exoplanet, an instrument must be sensitive to objects ten billion times dimmer than their parent star. Advanced coronagraphs are designed to modify the shape of the star’s image so that it does not overwhelm the planet's light. Coronagraphs are complex to design and fabricate, tend to sacrifice a significant portion of the exoplanet light entering the telescope, and are highly sensitive to errors in the telescope. The proposed work reduces the demands on the coronagraph and its sensitivity to errors in the telescope, by changing how we implement optics in the spectrograph following the coronagraph. Through optical analysis and modeling, we have found that a microlens array with a specially arranged pattern of pinholes can suppress residual starlight in the scientific image after the coronagraph by more than two orders of magnitude. This added layer of starlight rejection could be used to relax the extreme observatory stability requirements for exo-Earth imaging applications, for example shifting the wavefront stability requirement from a few picometers to a few nanometers. Ultimately this translates to the instrument detecting and spectrally characterizing more exoplanets than a conventional coronagraph system. This microlens/pinhole concept is also compatible with starshadebased starlight suppression systems. The proposed microlens/pinhole device is entirely passive and augments the performance of existing coronagraph designs, while potentially reducing their cost and risk for mission implementation. Our APRA proposal would support a testbed demonstration of this novel concept. Our plan is to design and procure the combined microlens-pinhole array, verify its fundamental optical properties on a breadboard at Goddard Space Flight Center, integrate the device onto an existing coronagraph testbed at Space Telescope Science Institute, and test its performance.
Development, characterization, and modeling of a tunable filter camera
NASA Astrophysics Data System (ADS)
Sartor, Mark Alan
1999-10-01
This paper describes the development, characterization, and modeling of a Tunable Filter Camera (TFC). The TFC is a new multispectral instrument with electronically tuned spectral filtering and low-light-level sensitivity. It represents a hybrid between hyperspectral and multispectral imaging spectrometers that incorporates advantages from each, addressing issues such as complexity, cost, lack of sensitivity, and adaptability. These capabilities allow the TFC to be applied to low- altitude video surveillance for real-time spectral and spatial target detection and image exploitation. Described herein are the theory and principles of operation for the TFC, which includes a liquid crystal tunable filter, an intensified CCD, and a custom apochromatic lens. The results of proof-of-concept testing, and characterization of two prototype cameras are included, along with a summary of the design analyses for the development of a multiple-channel system. A significant result of this effort was the creation of a system-level model, which was used to facilitate development and predict performance. It includes models for the liquid crystal tunable filter and intensified CCD. Such modeling was necessary in the design of the system and is useful for evaluation of the system in remote-sensing applications. Also presented are characterization data from component testing, which included quantitative results for linearity, signal to noise ratio (SNR), linearity, and radiometric response. These data were used to help refine and validate the model. For a pre-defined source, the spatial and spectral response, and the noise of the camera, system can now be predicted. The innovation that sets this development apart is the fact that this instrument has been designed for integrated, multi-channel operation for the express purpose of real-time detection/identification in low- light-level conditions. Many of the requirements for the TFC were derived from this mission. In order to provide background for the design requirements for the TFC development, the mission and principles of operation behind the multi-channel system will be reviewed. Given the combination of the flexibility, simplicity, and sensitivity, the TFC and its multiple-channel extension can play a significant role in the next generation of remote-sensing instruments.
Measuring social impacts of breast carcinoma treatment in Chinese women.
Fielding, Richard; Lam, Wendy W T
2004-06-15
There is no existing instrument that is suitable for measuring the social impact of breast carcinoma (BC) and its treatment among women of Southern Chinese descent. In the current study, the authors assessed the validity of the Chinese Social Adjustment Scale, which was designed to address the need for such an instrument. Five dimensions of social concern were identified in a previous study of Cantonese-speaking Chinese women with BC; these dimensions were family and other relationships, intimacy, private self-image, and public self-image. The authors designed 40 items to address perceptions of change in these areas. These items were administered to a group of 226 women who had received treatment for BC, and factor analysis subsequently was performed to determine construct characteristics. The resulting draft instrument then was administered, along with other measures for the assessment of basic psychometric properties, to a second group of 367 women who recently had undergone surgery for BC. Factor analysis optimally identified 5 factors (corresponding to 33 items): 1) Relationships with Family (10 items, accounting for 22% of variance); 2) Self-Image (7 items, accounting for 15% of variance); 3) Relationships with Friends (7 items, accounting for 8% of variance); 4) Social Enjoyment (4 items, accounting for 6% of variance); and 5) Attractiveness and Sexuality (5 items, accounting for 5% of variance). Subscales were reliable (alpha = 0.63-0.93) and exhibited convergent validity in positive correlations with related measures and divergent validity in appropriate inverse or nonsignificant correlations with other measures. Criterion validity was good, and sensitivity was acceptable. Patterns of change on the scales were consistent with reports in the literature. Self-administration resulted in improved sensitivity. The 33-item Chinese Social Adjustment Scale validly, reliably, and sensitively measures the social impact of BC on Cantonese-speaking Hong Kong Chinese women. Further development of the scale to increase its sensitivity is underway. Copyright 2004 American Cancer Society.
Nassar, Nada; Helou, Nancy; Madi, Chantal
2014-06-01
To assess the predictive value of two instruments (the Morse Fall Scale (MFS) and the Heindrich II Fall Risk Model (HFRM)] in a Middle Eastern country (Lebanon) and to evaluate the factors that are related to falls. A prospective observational cross-sectional design was used. Falls and fall-related injuries in the acute care settings contribute a substantial health and economic burden on patients and organisations. Preventing falls is a priority for most healthcare organisations. While the risk of falling cannot be eliminated, it can be significantly reduced through accurate assessment of patients' risk of falling. Data from 1815 inpatients at the American University of Beirut Medical Center (AUBMC) in Lebanon were evaluated using two instruments to predict falls: the MFS and the HFRM. The incidence of falls was 2·7% in one year. The results indicate that while the instruments were significantly correlated, the HFRM was more sensitive in predicting falls than the MFS. The internal consistency of both scales was moderate, but inter-rater reliability was high. Patients using antiepileptic drugs and assistance devises had higher odds of falling. Although both instruments were easy to use in a Middle Eastern country, the HFRM rather than the MFS is recommended for inpatients in an acute care setting as it had higher sensitivity and specificity. It is recommended that while the HFRM had adequate sensitivity, it is not seamless, and as such, nurses should not rely entirely on it. Rather, nurses should use their expert clinical judgement, their ethical obligations and cultural considerations to implement a safer environment of care for the patient. © 2013 John Wiley & Sons Ltd.
Identifying Galactic Cosmic Ray Origins With Super-TIGER
NASA Technical Reports Server (NTRS)
deNolfo, Georgia; Binns, W. R.; Israel, M. H.; Christian, E. R.; Mitchell, J. W.; Hams, T.; Link, J. T.; Sasaki, M.; Labrador, A. W.; Mewaldt, R. A.;
2009-01-01
Super-TIGER (Super Trans-Iron Galactic Element Recorder) is a new long-duration balloon-borne instrument designed to test and clarify an emerging model of cosmic-ray origins and models for atomic processes by which nuclei are selected for acceleration. A sensitive test of the origin of cosmic rays is the measurement of ultra heavy elemental abundances (Z > or equal 30). Super-TIGER is a large-area (5 sq m) instrument designed to measure the elements in the interval 30 < or equal Z < or equal 42 with individual-element resolution and high statistical precision, and make exploratory measurements through Z = 60. It will also measure with high statistical accuracy the energy spectra of the more abundant elements in the interval 14 < or equal Z < or equal 30 at energies 0.8 < or equal E < or equal 10 GeV/nucleon. These spectra will give a sensitive test of the hypothesis that microquasars or other sources could superpose spectral features on the otherwise smooth energy spectra previously measured with less statistical accuracy. Super-TIGER builds on the heritage of the smaller TIGER, which produced the first well-resolved measurements of elemental abundances of the elements Ga-31, Ge-32, and Se-34. We present the Super-TIGER design, schedule, and progress to date, and discuss the relevance of UH measurements to cosmic-ray origins.
Ast, Cindy; Foret, Jessica; Oltrogge, Luke M; De Michele, Roberto; Kleist, Thomas J; Ho, Cheng-Hsun; Frommer, Wolf B
2017-09-05
Sensitivity, dynamic and detection range as well as exclusion of expression and instrumental artifacts are critical for the quantitation of data obtained with fluorescent protein (FP)-based biosensors in vivo. Current biosensors designs are, in general, unable to simultaneously meet all these criteria. Here, we describe a generalizable platform to create dual-FP biosensors with large dynamic ranges by employing a single FP-cassette, named GO-(Green-Orange) Matryoshka. The cassette nests a stable reference FP (large Stokes shift LSSmOrange) within a reporter FP (circularly permuted green FP). GO- Matryoshka yields green and orange fluorescence upon blue excitation. As proof of concept, we converted existing, single-emission biosensors into a series of ratiometric calcium sensors (MatryoshCaMP6s) and ammonium transport activity sensors (AmTryoshka1;3). We additionally identified the internal acid-base equilibrium as a key determinant of the GCaMP dynamic range. Matryoshka technology promises flexibility in the design of a wide spectrum of ratiometric biosensors and expanded in vivo applications.Single fluorescent protein biosensors are susceptible to expression and instrumental artifacts. Here Ast et al. describe a dual fluorescent protein design whereby a reference fluorescent protein is nested within a reporter fluorescent protein to control for such artifacts while preserving sensitivity and dynamic range.
NASA Technical Reports Server (NTRS)
Wilson, Emily L.; McLinden, Matthew L.; Miller, J. Houston
2011-01-01
We present a new passive ground-network instrument capable of measuring carbon dioxide (CO2) at 1.57 microns and methane (CH4) at 1.62 microns -- key for validation of OCO-2, ASCENDS, OCO-3, and GOSAT. Designed to piggy-back on an AERONET sun tracker (AERONET is a global network of more than 450 aerosol sensing instruments), this instrument could be rapidly deployed into the established AERONET network of ground sensors. Because aerosols induce a radiative effect that influences terrestrial carbon exchange, this simultaneous measure of aerosols and carbon cycle gases offers a uniquely comprehensive approach. This instrument is a variation of a laser heterodyne radiometer (LHR) that leverages recent advances in telecommunications lasers to miniaturize the instrument (the current version fits in a carry-on suitcase). In this technique, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. By dividing this RF signal into a filter bank, concentrations at different altitudes can be resolved. For a one second integration, we estimate column sensitivities of 0.1 ppmv for CO2, and <1 ppbv for CH4.
NASA Astrophysics Data System (ADS)
Canella, Lea; Kudějová, Petra; Schulze, Ralf; Türler, Andreas; Jolie, Jan
2011-04-01
At the research reactor Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) a new Prompt Gamma-ray Activation Analysis (PGAA) facility was installed. The instrument was originally built and operating at the spallation source at the Paul Scherrer Institute in Switzerland. After a careful re-design in 2004-2006, the new PGAA instrument was ready for operation at FRM II. In this paper the main characteristics and the current operation conditions of the facility are described. The neutron flux at the sample position can reach up 6.07×1010 [cm-2 s-1], thus the optimisation of some parameters, e.g. the beam background, was necessary in order to achieve a satisfactory analytical sensitivity for routine measurements. Once the optimal conditions were reached, detection limits and sensitivities for some elements, like for example H, B, C, Si, or Pb, were calculated and compared with other PGAA facilities. A standard reference material was also measured in order to show the reliability of the analysis under different conditions at this instrument.
The Cryogenic Near Infrared Spectropolarimeter for the Daniel K. Inouye Solar Telescope
NASA Astrophysics Data System (ADS)
Fehlmann, Andre; Giebink, Cindy; Kuhn, Jeffrey Richard; Mickey, D. L.; Scholl, Isabelle
2017-08-01
The Cryogenic Near Infrared Spectropolarimeter is one of the first light instruments for the Daniel K. Inouye Solar Telescope. This dual-beam instrument, which is currently characterized at the University of Hawaii’s Institute for Astronomy, is designed to sensitively measure the solar spectrum at wavelengths from 1 to 5 μm. The high dynamic range of the spectrograph and its context imager will provide sensitive data of the solar disk in the CO bands; unique observations of the low corona and unprecedented measurements of the coronal magnetic field. Observations near the limb and in the corona will greatly benefit from DKIST’s limb occulting system. The initial suite of filters includes selecting filters for the spectrograph at He I / Fe XIII 1080 nm, Si X 1430 nm, Si IX 3934 nm and CO 4651 nm as well as narrow band filters for the context imager at Fe XIII 1074.7 nm, He I 1083.0, Si X 1430.0 nm and J band 1250 nm. In this paper we will present an update on the ongoing instrument characterization and CryoNIRSP’s capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reents, W.D. Jr.
Particles present in the environment have significant affects in many areas from personal health due to atmospheric particles to various industrial processes that can be ruined due to particulate contamination such as semiconductor device manufacture and manufacture of sterile health products. The ability to detect deleterious contamination requires appropriate instrumentation to detect these particles. To prevent such contamination, the particle source must be identified by determining the composition of the offending particles. In a controlled environment, particle contamination often occurs in transients. In order to identify unknown particles, a technique must obtain compositional and size information regardless of particle identity,more » and perform this analysis in real-time so as to separate {open_quotes}background{close_quotes} particles from those produced in the transient event. Since processes are sensitive to certain particle size regimes and possibly, compositions, the instrumentation must be designed with these needs in mind. The authors have developed an instrument, the Ultra-Sensitive Particle Analysis System (USPAS) for situations where ultrafine particles, down to 0.002 micron, are of concern, such as the semiconductor manufacturing industry and the ambient environment.« less
NASA Technical Reports Server (NTRS)
1990-01-01
Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.
Measuring the impostor phenomenon: a comparison of Clance's IP Scale and Harvey's I-P Scale.
Holmes, S W; Kertay, L; Adamson, L B; Holland, C L; Clance, P R
1993-02-01
Many of the discrepancies reported to date in empirical investigations of the impostor phenomenon (IP) may be due in part to (a) the use of different methods for identifying individuals suffering from this syndrome (impostors), (b) the common use of a median split procedure to classify subjects and (c) the fact that subjects in many studies were drawn from impostor-prone samples. In this study, we compared the scores of independently identified impostors and nonimpostors on two instruments designed to measure the IP: Harvey's I-P Scale and Clance's IP Scale. The results suggest that Clance's scale may be the more sensitive and reliable instrument. Cutoff score suggestions for both instruments are offered.
James Webb Space Telescope Project (JWST) Overview
NASA Technical Reports Server (NTRS)
Dutta, Mitra
2008-01-01
This presentation provides an overview of the James Webb Space Telescope (JWST) Project. The JWST is an infrared telescope designed to collect data in the cosmic dark zone. Specifically, the mission of the JWST is to study the origin and evolution of galaxies, stars and planetary systems. It is a deployable telescope with a 6.5 m diameter, segmented, adjustable primary mirror. outfitted with cryogenic temperature telescope and instruments for infrared performance. The JWST is several times more sensitive than previous telescope and other photographic and electronic detection methods. It hosts a near infrared camera, near infrared spectrometer, mid-infrared instrument and a fine guidance sensor. The JWST mission objection and architecture, integrated science payload, instrument overview, and operational orbit are described.
Portable gas chromatograph-mass spectrometer
Andresen, Brian D.; Eckels, Joel D.; Kimmons, James F.; Myers, David W.
1996-01-01
A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.
Psychometric testing of an instrument to measure the experience of home.
Molony, Sheila L; McDonald, Deborah Dillon; Palmisano-Mills, Christine
2007-10-01
Research related to quality of life in long-term care has been hampered by a paucity of measurement tools sensitive to environmental interventions. The primary aim of this study was to test the psychometric properties of a new instrument, the Experience of Home (EOH) Scale, designed to measure the strength of the experience of meaningful person-environment transaction. The instrument was administered to 200 older adults in diverse dwelling types. Principal components analysis provided support for construct validity, eliciting a three-factor solution accounting for 63.18% of variance in scores. Internal consistency reliability was supported with Cronbach's alpha of .96 for the entire scale. The EOH Scale is a unique research tool to evaluate interventions to improve quality of living in residential environments.
NASA Astrophysics Data System (ADS)
Hansford, Graeme M.; Freshwater, Ray A.; Eden, Louise; Turnbull, Katharine F. V.; Hadaway, David E.; Ostanin, Victor P.; Jones, Roderic L.
2006-01-01
The design of a very lightweight dew-/frost-point hygrometer for balloon-borne atmospheric water vapor profiling is described. The instrument is based on a surface-acoustic-wave sensor. The low instrument weight is a key feature, allowing flights on meteorological balloons which brings many more flight opportunities. The hygrometer shows consistently good performance in the troposphere and while water vapor measurements near the tropopause and in the stratosphere are possible with the current instrument, the long-time response in these regions hampers realistic measurements. The excellent intrinsic sensitivity of the surface-acoustic-wave sensor should permit considerable improvement in the hygrometer performance in the very dry regions of the atmosphere.
Practical SQUID Instrument for Nondestructive Testing
NASA Technical Reports Server (NTRS)
Tralshawala, N.; Claycomb, J. R.; Miller, John H., Jr.
1997-01-01
We report on the development of a scanning eddy-current imaging system designed to detect deep subsurface flaws in conducting materials. A high transition temperature (high-T c) superconducting quantum interference device (SQUID) magnetometer is employed to provide the required sensitivity at low frequencies, while a combination of small cylindrical high-Tc superconducting and A-metal shields enable the instrument to be scanned in a magnetically noisy environment, rather than the object under test. The shields are arranged to prevent unwanted excitation and ambient noise fields from reaching the SQUID, and to enhance spatial resolution and minimize undesirable edge effects. Thus far, the instrument has successfully detected cracks and pits through 10 layers of aluminum, with a combined thickness of 5 cm at room temperature.
NASA Astrophysics Data System (ADS)
Eyler, E. E.
2013-10-01
Several high-performance lab instruments suitable for manual assembly have been developed using low-pin-count 32-bit microcontrollers that communicate with an Android tablet via a USB interface. A single Android tablet app accommodates multiple interface needs by uploading parameter lists and graphical data from the microcontrollers, which are themselves programmed with easily modified C code. The hardware design of the instruments emphasizes low chip counts and is highly modular, relying on small "daughter boards" for special functions such as USB power management, waveform generation, and phase-sensitive signal detection. In one example, a daughter board provides a complete waveform generator and direct digital synthesizer that fits on a 1.5 in. × 0.8 in. circuit card.
A combined Compton and coded-aperture telescope for medium-energy gamma-ray astrophysics
NASA Astrophysics Data System (ADS)
Galloway, Michelle; Zoglauer, Andreas; Boggs, Steven E.; Amman, Mark
2018-06-01
A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, such as a possible explanation for the excess positron emission from the Galactic center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. Additionally, further observation in this energy regime would significantly extend the search parameter space for low-mass dark matter. In order to achieve these objectives, an instrument with good energy resolution, good angular resolution, and high sensitivity is required. In this paper we present the design and simulation of a Compton telescope consisting of cubic-centimeter cadmium zinc telluride detectors as absorbers behind a silicon tracker with the addition of a passive coded mask. The goal of the design was to create a very sensitive instrument that is capable of high angular resolution. The simulated telescope achieved energy resolutions of 1.68% FWHM at 511 keV and 1.11% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63° FWHM at 511 keV and 1.30° FWHM at 1809 keV, and is capable of resolving sources to at least 0.2° at lower energies with the use of the coded mask. An initial assessment of the instrument in Compton-imaging mode yields an effective area of 183 cm2 at 511 keV and an anticipated all-sky sensitivity of 3.6 × 10-6 photons cm-2 s-1 for a broadened 511 keV source over a two-year observation time. Additionally, combining a coded mask with a Compton imager to improve point-source localization for positron detection has been demonstrated.
Enzyme-Cascade Analysis of the Rio Tinto Subsurface Environment: A Biosensor Experiment
NASA Technical Reports Server (NTRS)
McKay, David S.; Lynch, Kennda; Wainwright, Norman; Child, Alice; Williams, Kendra; McKay, David; Amils, Ricardo; Gonzalez, Elena; Stoker, Carol
2004-01-01
The Portable Test System (PTS), designed & developed by Charles Rivers Laboratories, Inc. (Charleston, SC) is a portable instrument that was designed to perform analysis of enzymatic assays related to rapid assessment of microbial contamination (Wainwright, 2003). The enzymatic cascade of Limulus Amebocyte Lysate (LAL) is known to be one of the most sensitive techniques available for microbial detection, enabling the PTS to be evaluated as a potential life detection instrument for in situ Astrobiology missions. In the summer of 2003 the system was tested as a part of the Mars Astrobiology Research and Technology Experiment (MARTE) ground truth science campaign in the Rio Tinto Analogue environment near Nerva, Spain. The preliminary results show that the PTS analysis correlates well with the contamination control tests and the more traditional lab-based biological assays performed during the MARTE field mission. Further work will be conducted on this research during a second field campaign in 2004 and a technology demonstration of a prototype instrument that includes autonomous sample preparation will occur in 2005.
Kalkan, Erol; Banga, Krishna; Ulusoy, Hasan S.; Fletcher, Jon Peter B.; Leith, William S.; Reza, Shahneam; Cheng, Timothy
2012-01-01
In collaboration with the U.S. Department of Veterans Affairs (VA), the National Strong Motion Project (NSMP; http://nsmp.wr.usgs.gov/) of the U.S. Geological Survey has been installing sophisticated seismic systems that will monitor the structural integrity of 28 VA hospital buildings located in seismically active regions of the conterminous United States, Alaska, and Puerto Rico during earthquake shaking. These advanced monitoring systems, which combine the use of sensitive accelerometers and real-time computer calculations, are designed to determine the structural health of each hospital building rapidly after an event, helping the VA to ensure the safety of patients and staff. This report presents the instrumentation component of this project by providing details of each hospital building, including a summary of its structural, geotechnical, and seismic hazard information, as well as instrumentation objectives and design. The structural-health monitoring component of the project, including data retrieval and processing, damage detection and localization, automated alerting system, and finally data dissemination, will be presented in a separate report.
Ultrafine Condensation Particle Counter Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuang, C.
2016-02-01
The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.
Turbulence Characteristics of Swirling Flowfields. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jackson, T. W.
1983-01-01
Combustor design phenomena; recirculating flows research; single-wire, six-orientation, eddy dissipation rate, and turbulence modeling measurement; directional sensitivity (DS); calibration equipment, confined jet facility, and hot-wire instrumentation; effects of swirl, strong contraction nozzle, and expansion ratio; and turbulence parameters; uncertain; and DS in laminar jets; turbulent nonswirling jets, and turbulent swirling jets are discussed.
Edwards, D. L.; Saleh, A. A.; Greenspan, S. L.
2015-01-01
Summary We performed a systematic review and meta-analysis of the performance of clinical risk assessment instruments for screening for DXA-determined osteoporosis or low bone density. Commonly evaluated risk instruments showed high sensitivity approaching or exceeding 90 % at particular thresholds within various populations but low specificity at thresholds required for high sensitivity. Simpler instruments, such as OST, generally performed as well as or better than more complex instruments. Introduction The purpose of the study is to systematically review the performance of clinical risk assessment instruments for screening for dual-energy X-ray absorptiometry (DXA)-determined osteoporosis or low bone density. Methods Systematic review and meta-analysis were performed. Multiple literature sources were searched, and data extracted and analyzed from included references. Results One hundred eight references met inclusion criteria. Studies assessed many instruments in 34 countries, most commonly the Osteoporosis Self-Assessment Tool (OST), the Simple Calculated Osteoporosis Risk Estimation (SCORE) instrument, the Osteoporosis Self-Assessment Tool for Asians (OSTA), the Osteoporosis Risk Assessment Instrument (ORAI), and body weight criteria. Meta-analyses of studies evaluating OST using a cutoff threshold of <1 to identify US postmenopausal women with osteoporosis at the femoral neck provided summary sensitivity and specificity estimates of 89 % (95%CI 82–96 %) and 41 % (95%CI 23–59 %), respectively. Meta-analyses of studies evaluating OST using a cutoff threshold of 3 to identify US men with osteoporosis at the femoral neck, total hip, or lumbar spine provided summary sensitivity and specificity estimates of 88 % (95%CI 79–97 %) and 55 % (95%CI 42–68 %), respectively. Frequently evaluated instruments each had thresholds and populations for which sensitivity for osteoporosis or low bone mass detection approached or exceeded 90 % but always with a trade-off of relatively low specificity. Conclusions Commonly evaluated clinical risk assessment instruments each showed high sensitivity approaching or exceeding 90 % for identifying individuals with DXA-determined osteoporosis or low BMD at certain thresholds in different populations but low specificity at thresholds required for high sensitivity. Simpler instruments, such as OST, generally performed as well as or better than more complex instruments. PMID:25644147
Scanning sky monitor (SSM) onboard AstroSat
NASA Astrophysics Data System (ADS)
Ramadevi, M. C.; Seetha, S.; Bhattacharya, Dipankar; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Sharma, M. Ramakrishna; Kulkarni, Ravi; Babu, V. Chandra; Kumar; Singh, Brajpal; Jain, Anand; Yadav, Reena; Vaishali, S.; Ashoka, B. N.; Agarwal, Anil; Balaji, K.; Nagesh, G.; Kumar, Manoj; Gaan, Dhruti Ranjan; Kulshresta, Prashanth; Agarwal, Pankaj; Sebastian, Mathew; Rajarajan, A.; Radhika, D.; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Kushwaha, Ankur; Iyer, Nirmal Kumar
2017-10-01
Scanning Sky Monitor (SSM) onboard AstroSat is an Xray sky monitor in the soft X-ray band designed with a large field of view to detect and locate transient X-ray sources and alert the astronomical community about interesting phenomena in the X-ray sky. SSM comprises position sensitive proportional counters with 1D coded mask for imaging. There are three detector units mounted on a platform capable of rotation which helps covering about 50% of the sky in one full rotation. This paper discusses the elaborate details of the instrument and few immediate results from the instrument after launch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, E.; Yan, H.; Lauer, K.
2016-08-30
The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm 2 spatial resolution x-ray fluorescence images.
Development of sensitized pick coal interface detector system
NASA Technical Reports Server (NTRS)
Burchill, R. F.
1979-01-01
One approach for detection of the coal interface is measurement of the pick cutting hoads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telementry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder.
NASA Technical Reports Server (NTRS)
Paik, H. J.; Richard, J. P.
1986-01-01
A sensitive and stable gravity gradiometer would provide high resolution gravity measurements from space. The instrument could also provide precision tests of fundamental laws of physics and be applied to inertial guidance systems of the future. This report describes research on the superconducting gravity gradiometer program at the University of Maryland from July 1980 to July 1985. The report describes the theoretical and experimental work on a prototype superconducting gravity gradiometer. The design of an advanced three-axis superconducting gravity gradiometer is also discussed.
Flip-Flop Recovery System for sounding rocket payloads
NASA Technical Reports Server (NTRS)
Flores, A., Jr.
1986-01-01
The design, development, and testing of the Flip-Flop Recovery System, which protects sensitive forward-mounted instruments from ground impact during sounding rocket payload recovery operations, are discussed. The system was originally developed to reduce the impact damage to the expensive gold-plated forward-mounted spectrometers in two existing Taurus-Orion rocket payloads. The concept of the recovery system is simple: the payload is flipped over end-for-end at a predetermined time just after parachute deployment, thus minimizing the risk of damage to the sensitive forward portion of the payload from ground impact.
NASA Astrophysics Data System (ADS)
Blankenhorn, M.; Heintze, E.; Slota, M.; van Slageren, J.; Moores, B. A.; Degen, C. L.; Bogani, L.; Dressel, M.
2017-09-01
The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.
Blankenhorn, M; Heintze, E; Slota, M; van Slageren, J; Moores, B A; Degen, C L; Bogani, L; Dressel, M
2017-09-01
The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.
Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft
NASA Astrophysics Data System (ADS)
Wagner, N. L.; Dubé, W. P.; Washenfelder, R. A.; Young, C. J.; Pollack, I. B.; Ryerson, T. B.; Brown, S. S.
2011-03-01
This article presents a diode laser based, cavity ring-down spectrometer for simultaneous in situ measurements of four nitrogen oxide species, NO3, N2O5, NO, NO2, as well as O3, designed for deployment on aircraft. The instrument measures NO3 and NO2 by optical extinction at 662 nm and 405 nm, respectively; N2O5 is measured by thermal conversion to NO3, while NO and O3 are measured by chemical conversion to NO2. The instrument has several advantages over previous instruments developed by our group for measurement of NO2, NO3 and N2O5 alone, based on a pulsed Nd:YAG and dye laser. First, the use of continuous wave diode lasers reduces the requirements for power and weight and eliminates hazardous materials. Second, detection of NO2 at 405 nm is more sensitive than our previously reported 532 nm instrument, and does not have a measurable interference from O3. Third, the instrument includes chemical conversion of NO and O3 to NO2 to provide measurements of total NOx (= NO + NO2) and Ox (= NO2 + O3) on two separate channels; mixing ratios of NO and O3 are determined by subtraction of NO2. Finally, all five species are calibrated against a single standard based on 254 nm O3 absorption to provide high accuracy. Disadvantages include an increased sensitivity to water vapor on the 662 nm NO3 and N2O5 channels and a modest reduction in sensitivity for these species compared to the pulsed laser instrument. The measurement precision for both NO3 and N2O5 is below 1 pptv (2σ, 1 s) and for NO, NO2 and O3 is 170, 46, and 56 pptv (2σ, 1 s) respectively. The NO and NO2 measurements are less precise than research-grade chemiluminescence instruments. However, the combination of these five species in a single instrument, calibrated to a single analytical standard, provides a complete and accurate picture of nighttime nitrogen oxide chemistry. The instrument performance is demonstrated using data acquired during a recent field campaign in California.
ATSR - The Along Track Scanning Radiometer For ERS-1
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, David T.; Mutlow, C. T.
1990-04-01
The ATSR instrument is an advanced imaging radiometer designed to measure global sea surface temperature to an accuracy of the order of 0.3C from the ESA's ERS-1 satellite, due to be launched in late 1990. The instrument is designed to achieve a very precise correction for atmospheric effects through the use of carefully selected spectral bands, and a new "along-track" scanning technique. This involves viewing the same geophysical scene at two different angles, hence using two different atmospheric paths, so that the difference in radiative signal from the two scenes is due only to atmospheric effects, which can then be quantitatively estimated. ATSR is also a high performance radiometer, and embodies two important technological features; the first of these is the use of closed-cycle coolers, especially developed for space applications, and which were used to cool the sensitive infrared detectors. The radiometer also incorporates two purpose-designed on-board blackbody calibration targets which will also be described in detail. These two features enable the instrument to meet the stringent requirements of sensitivity and absolute radiometric accuracy demanded by this application. ATSR also incorporates a passive nadir-viewing two-channel microwave sounder. Measurements from this instrument will enable total atmospheric water vapour to be inferred, which will not only lead to improved SST retrievals, but will also considerably improve the atmospheric range correction required by the ERS-1 radar altimeter. ATSR is provided by a consortium of research institutes including the University of Oxford, Department of Atmospheric Oceanic and Planetary Physics, who are primarily responsible for scientific calibration of the instrument; University College London's Mullard Space Science Laboratory, who are responsible for the development of the blackbodies; the UK Meteorological Office, whose contributions include the focal plane assembly; the French laboratory CRPE, who are responsible for providing the microwave part of ATSR. Some of the industrial development work has been funded by the Department of Trade and Industry. There is also a significant contribution from Australia in the area of digital electronics. The ATSR consortium is co-ordinated and led by the Rutherford Appleton Laboratory.
Highly charged ion based time of flight emission microscope
Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney
2001-01-01
A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.
Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.
Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai
2014-03-31
Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.
COBE looks back to the Big Bang
NASA Technical Reports Server (NTRS)
Mather, John C.
1993-01-01
An overview is presented of NASA-Goddard's Cosmic Background Explorer (COBE), the first NASA satellite designed to observe the primeval explosion of the universe. The spacecraft carries three extremely sensitive IR and microwave instruments designed to measure the faint residual radiation from the Big Bang and to search for the formation of the first galaxies. COBE's far IR absolute spectrophotometer has shown that the Big Bang radiation has a blackbody spectrum, proving that there was no large energy release after the explosion.
NASA Technical Reports Server (NTRS)
Metzger, A. E.; Parker, R. H.; Arnold, J. R.; Reedy, R. C.; Trombka, J. I.
1975-01-01
A knowledge of the composition of planets, satellites, and asteroids is of primary importance in understanding the formation and evolution of the solar system. Gamma-ray spectroscopy is capable of measuring the composition of meter-depth surface material from orbit around any body possessing little or no atmosphere. Measurement sensitivity is determined by detector efficiency and resolution, counting time, and the background flux while the effective spatial resolution depends upon the field-of-view and counting time together with the regional contrast in composition. The advantages of using germanium as a detector of gamma rays in space are illustrated experimentally and a compact instrument cooled by passive thermal radiation is described. Calculations of the expected sensitivity of this instrument at the Moon and Mars show that at least a dozen elements will be detected, twice the number which have been isolated in the Apollo gamma-ray data.
NASA Technical Reports Server (NTRS)
Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.
1991-01-01
The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.
Canterbury, Jesse D.; Merrihew, Gennifer E.; Goodlett, David R.; MacCoss, Michael J.; Shaffer, Scott A.
2015-01-01
A common strategy in mass spectrometry analyses of complex protein mixtures is to digest the proteins to peptides, separate the peptides by microcapillary liquid chromatography and collect tandem mass spectra (MS/MS) on the eluting, complex peptide mixtures, a process commonly termed “shotgun proteomics”. For years, the most common way of data collection was via data-dependent acquisition (DDA), a process driven by an automated instrument control routine that directs MS/MS acquisition from the highest abundant signals to the lowest, a process often leaving lower abundant signals unanalyzed and therefore unidentified in the experiment. Advances in both instrumentation duty cycle and sensitivity allow DDA to probe to lower peptide abundance and therefore enable mapping proteomes to a more significant depth. An alternative to acquiring data by DDA is by data-independent acquisition (DIA), in which a specified range in m/z is fragmented without regard to prioritization of a precursor ion or its relative abundance in the mass spectrum. As a consequence, DIA acquisition potentially offers more comprehensive analysis of peptides than DDA and in principle can yield tandem mass spectra of all ionized molecules following their conversion to the gas-phase. In this work, we evaluate both DDA and DIA on three different linear ion trap instruments: an LTQ, an LTQ modified in-house with an electrodynamic ion funnel, and an LTQ-Velos. These instruments were chosen as they are representative of both older (LTQ) and newer (LTQ-Velos) ion trap designs i.e., linear ion trap and dual ion traps, respectively, and allow direct comparison of peptide identification using both DDA and DIA analysis. Further, as the LTQ-Velos has an improved “S-lens” ion guide in the high-pressure region to improve ion flux, we found it logical to determine if the former LTQ model could be leveraged by improving sensitivity by modifying with an electrodynamic ion guide of significantly different design to the S-lens. We find that the ion funnel enabled LTQ identifies more proteins in the insoluble fraction of a yeast lysate than the other two instruments in DIA mode, while the faster scanning LTQ-Velos performs better in DDA mode. We explore reasons for these results, including differences in scan speed, source ion optics, and linear ion trap design. PMID:25261218
Blue camera of the Keck cosmic web imager, fabrication and testing
NASA Astrophysics Data System (ADS)
Rockosi, Constance; Cowley, David; Cabak, Jerry; Hilyard, David; Pfister, Terry
2016-08-01
The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20" x 33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. In this paper, models of the expected KCWI sensitivity and background subtraction capability are presented, along with a detailed description of the instrument design. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces). The optical design of the blue camera for the Keck Cosmic Web Imager (KCWI) by Harland Epps of the University of California, Santa Cruz is a lens assembly consisting of eight spherical optical elements. Half the elements are calcium fluoride and all elements are air spaced. The design of the camera barrel is unique in that all the optics are secured in their respective cells with an RTV annulus without additional hardware such as retaining rings. The optical design and the robust lens mounting concept has allowed UCO/Lick to design a straightforward lens camera assembly. However, alignment sensitivity is a strict 15 μm for most elements. This drives the fabrication, assembly, and performance of the camera barrel.
Whitley, Kevin D.; Comstock, Matthew J.; Chemla, Yann R.
2017-01-01
Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection—fluorescence optical tweezers, or “fleezers”—is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities. PMID:27844430
A Quantitative Evaluation of Dissolved Oxygen Instrumentation
NASA Technical Reports Server (NTRS)
Pijanowski, Barbara S.
1971-01-01
The implications of the presence of dissolved oxygen in water are discussed in terms of its deleterious or beneficial effects, depending on the functional consequences to those affected, e.g., the industrialist, the oceanographer, and the ecologist. The paper is devoted primarily to an examination of the performance of five commercially available dissolved oxygen meters. The design of each is briefly reviewed and ease or difficulty of use in the field described. Specifically, the evaluation program treated a number of parameters and user considerations including an initial check and trial calibration for each instrument and a discussion of the measurement methodology employed. Detailed test results are given relating to the effects of primary power variation, water-flow sensitivity, response time, relative accuracy of dissolved-oxygen readout, temperature accuracy (for those instruments which included this feature), error and repeatability, stability, pressure and other environmental effects, and test results obtained in the field. Overall instrument performance is summarized comparatively by chart.
NASA Astrophysics Data System (ADS)
Wahl, Michael; Rahn, Hans-Jürgen; Gregor, Ingo; Erdmann, Rainer; Enderlein, Jörg
2007-03-01
Time-correlated single photon counting is a powerful method for sensitive time-resolved fluorescence measurements down to the single molecule level. The method is based on the precisely timed registration of single photons of a fluorescence signal. Historically, its primary goal was the determination of fluorescence lifetimes upon optical excitation by a short light pulse. This goal is still important today and therefore has a strong influence on instrument design. However, modifications and extensions of the early designs allow for the recovery of much more information from the detected photons and enable entirely new applications. Here, we present a new instrument that captures single photon events on multiple synchronized channels with picosecond resolution and over virtually unlimited time spans. This is achieved by means of crystal-locked time digitizers with high resolution and very short dead time. Subsequent event processing in programmable logic permits classical histogramming as well as time tagging of individual photons and their streaming to the host computer. Through the latter, any algorithms and methods for the analysis of fluorescence dynamics can be implemented either in real time or offline. Instrument test results from single molecule applications will be presented.
Solid state neutron dosimeter for space applications
NASA Technical Reports Server (NTRS)
Entine, Gerald; Nagargar, Vivek; Sharif, Daud
1990-01-01
Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter.
The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument
Thornton, R. J.; Ade, P. A. R.; Aiola, S.; ...
2016-12-09
The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less
THE ATACAMA COSMOLOGY TELESCOPE: THE POLARIZATION-SENSITIVE ACTPol INSTRUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, R. J.; Ade, P. A. R.; Aiola, S.
The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel’dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less
The Atacama Cosmology Telescope: The Polarization-Sensitive ACTPol Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, R. J.; Ade, P. A. R.; Aiola, S.
The Atacama Cosmology Telescope (ACT) makes high angular resolution measurements of anisotropies in the Cosmic Microwave Background (CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3° field of view, 100 mK cryogenics with continuous cooling, and meta material antireflection coatings. ACTPol comprises three arrays with separate cryogenic optics: two arrays at a central frequency of 148 GHz and one array operating simultaneously at both 97 GHz and 148 GHz. The combined instrument sensitivity, angular resolution, and sky coverage are optimized for measuring angular power spectra, clusters via the thermalmore » Sunyaev–Zel'dovich (SZ) and kinetic SZ signals, and CMB lensing due to large-scale structure. The receiver was commissioned with its first 148 GHz array in 2013, observed with both 148 GHz arrays in 2014, and has recently completed its first full season of operations with the full suite of three arrays. This paper provides an overview of the design and initial performance of the receiver and related systems.« less
AstroBioLab: A Mobile Biotic and Soil Analysis Laboratory
NASA Technical Reports Server (NTRS)
Bada, J. L.; Zent, A. P.; Grunthaner, F. J.; Quinn, R. C.; Navarro-Gonzalex, R.; Gonez-Silva, B.; McKay, C. P.
2003-01-01
The Jet Propulsion Laboratory, Scripps Institution of Oceanography, and NASA Ames Research Center are currently developing a mobile Astrobiology Laboratory (AstroBioLab) for a series of field campaigns using the Chilean Atacama Desert as a Martian surface analog site. The Astrobiology Science and Technology for Exploring Planets (ASTEP) program funded AstroBioLab is designed around the Mars Organic Detector (MOD) instrument and the Mars Oxidant Instrument (MOI) which provide complementary data sets. Using this suite of Mars Instrument Development Program (MIDP) and Planetary Instrument Definition and Development Program (PIDDP) derived in situ instruments, which provide state-of-the-art organic compound detection (attomolar sensitivity) and depth profiling of oxidation chemistry, we measure and correlate the interplay of organic compounds, inorganic oxidants, UV irradiation and water abundance. This mobile laboratory studies the proposition that intense UV irradiation coupled with low levels of liquid water generates metastable oxidizing species that can consume moderate amounts of seeded organic compounds. Results from the initial spring 2003 field campaign will be presented.
Campiñez Navarro, Manuel; Pérula de Torres, Luis Ángel; Bosch Fontcuberta, Josep M; Barragán Brun, Nieves; Arbonies Ortiz, Juan Carlos; Novo Rodríguez, Jesús Manuel; Bóveda Fontán, Julia; Martín Alvarez, Remedios; Prados Castillejo, Jose Antonio; Rivas Doutreleau, Gabriela Renée; Domingo Peña, Carmen; Castro Moreno, Jaime Jesús; Romero Rodríguez, Esperanza María
2016-09-01
Motivational interviewing (MI) is a collaborative, goal-oriented method to help patients change behaviour. Tools that are often used to measure MI are the motivational interviewing skills code' (MISC), the 'motivational interviewing treatment integrity' (MITI) and the 'behaviour change counselling index' (BECCI). The first two instruments have not been designed to be used in primary healthcare (PHC) settings. The BECCI actually is time-consuming. The motivational interviewing assessment scale (MIAS, 'EVEM' in Spanish) was developed to measure MI in PHC encounters as an alternative to the previous instruments. To validate MIAS as an instrument to assess the quality of MI in PHC settings. (a) Sixteen experts in MI participated in the design, face and consensus validity, using a Delphi-type methodology. (b) 27 PHC centres located in Spain. four experts in MI tested its psychometric properties with 332 video recordings coming from the Dislip-EM study (consultations provided by 37 practitioners). dimensionality, internal consistency, reliability (intra-class correlation coefficient-ICC), sensitivity to change and convergent validity with the BECCI scale. A 14-item scale was obtained after the validation process. Factor analysis: two factors explained 76.6% of the total variance. Internal consistency, α = 0.99. Reliability: intra-rater ICC = 0.96; inter-rater ICC = 0.97. Sensitivity to change: means before and after training were 23.63 versus 38.57 (P < 0.001). Spearman's coefficient between the MIAS and the BECCI scale was 0.98 (P < 0.001). The MIAS is a consistent and reliable instrument to assess the use of MI in PHC settings. [Box: see text].
Theory and Development of Position-Sensitive Quantum Calorimeters. Degree awarded by Stanford Univ.
NASA Technical Reports Server (NTRS)
Figueroa-Feliciano, Enectali; White, Nicholas E. (Technical Monitor)
2001-01-01
Quantum calorimeters are being developed as imaging spectrometers for future X-ray astrophysics observatories. Much of the science to be done by these instruments could benefit greatly from larger focal-plane coverage of the detector (without increasing pixel size). An order of magnitude more area will greatly increase the science throughput of these future instruments. One of the main deterrents to achieving this goal is the complexity of the readout schemes involved. We have devised a way to increase the number of pixels from the current baseline designs by an order of magnitude without increasing the number of channels required for readout. The instrument is a high energy resolution, distributed-readout imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (POST). A POST is a quantum calorimeter consisting of two Transition-Edge Sensors (TESS) on the ends of a long absorber capable of one-dimensional imaging spectroscopy. Comparing rise time and energy information from the two TESS, the position of the event in the POST is determined. The energy of the event is inferred from the sum of the two pulses. We have developed a generalized theoretical formalism for distributed-readout calorimeters and apply it to our devices. We derive the noise theory and calculate the theoretical energy resolution of a POST. Our calculations show that a 7-pixel POST with 6 keV saturation energy can achieve 2.3 eV resolution, making this a competitive design for future quantum calorimeter instruments. For this thesis we fabricated 7- and 15-pixel POSTS using Mo/Au TESs and gold absorbers, and moved from concept drawings on scraps of napkins to a 32 eV energy resolution at 1.5 keV, 7-pixel POST calorimeter.
Sensitivity of VIIRS Polarization Measurements
NASA Technical Reports Server (NTRS)
Waluschka, Eugene
2010-01-01
The design of an optical system typically involves a sensitivity analysis where the various lens parameters, such as lens spacing and curvatures, to name two parameters, are (slightly) varied to see what, if any, effect this has on the performance and to establish manufacturing tolerances. A sinular analysis was performed for the VIIRS instruments polarization measurements to see how real world departures from perfectly linearly polarized light entering VIIRS effects the polarization measurement. The methodology and a few of the results of this polarization sensitivity analysis are presented and applied to the construction of a single polarizer which will cover the VIIRS VIS/NIR spectral range. Keywords: VIIRS, polarization, ray, trace; polarizers, Bolder Vision, MOXTEK
NASA Astrophysics Data System (ADS)
Tulej, M.; Riedo, A.; Meyer, S.; Iakovleva, M.; Neuland, M.; Wurz, P.
2012-04-01
Detailed knowledge of the elemental and isotopic composition of solar system objects imposes critical constraints on models describing the origin of our solar system and can provide insight to chemical and physical processes taking place during the planetary evolution. So far, the investigation of chemical composition of planetary surfaces could be conducted almost exclusively by remotely controlled spectroscopic instruments from orbiting spacecraft, landers or rovers. With some exceptions, the sensitivity of these techniques is, however, limited and often only abundant elements can be investigated. Nevertheless, the spectroscopic techniques proved to be successful for global chemical mapping of entire planetary objects such as the Moon, Mars and asteroids. A combined afford of the measurements from orbit, landers and rovers can also yield the determination of local mineralogy. New instruments including Laser Induced Breakdown Spectroscopy (LIBS) and Laser Ablation/Ionisation Mass Spectrometer (LIMS), have been recently included for several landed missions. LIBS is thought to improve flexibility of the investigations and offers a well localised chemical probing from distances up to 10-13 m. Since LIMS is a mass spectrometric technique it allows for very sensitive measurements of elements and isotopes. We will demonstrate the results of the current performance tests obtained by application of a miniaturised laser ablation/ionisation mass spectrometer, a LIMS instrument, developed in Bern for the chemical analysis of solids. So far, the only LIMS instrument on a spacecraft is the LAZMA instrument. This spectrometer was a part of the payload for PHOBOS-GRUNT mission and is also currently selected for LUNA-RESURCE and LUNA-GLOB missions to the lunar south poles (Managadze et al., 2011). Our LIMS instrument has the dimensions of 120 x Ø60 mm and with a weight of about 1.5 kg (all electronics included), it is the lightest mass analyser designed for in situ chemical analysis of solid materials on the planetary surfaces (Rohner et al., 2003). Initial laboratory tests that were conducted with an IR laser radiation for the ablation, atomisation and ionisation of the material, indicated a high performance of the instrument in terms of sensitivity, dynamic range and mass resolution (Tulej et al., 2011). After some technical improvements and implementation of a computer-controlled performance optimiser we have achieved further improvements of both, the instrumental sensitivity down to sub-ppm level and reproducibility of the measurements. We will demonstrate the potential of the mass analyser to perform the quantitative elemental analysis of solids with a spatial (vertical, lateral) resolution commensurate with typical grain sizes, and its capabilities for investigation of isotopic patterns with accuracy and precision comparable to that of large analytical laboratory instruments, e.g., TIMS, SIMS, LA-ICP-MS. The results can be of considerable interest for in situ dating or investigation of other fine isotopic fractionation effects including studies of bio-markers.
ERIC Educational Resources Information Center
Bemis, Katherine A.; Liberty, Paul G.
The Southwestern Cooperative Interaction Observation Schedule (SCIOS) is a classroom observation instrument designed to record pupil-teacher interaction. The classification of pupil behavior is based on Krathwohl's (1964) theory of the three lowest levels of the affective domain. The levels are (1) receiving: the learner should be sensitized to…
Background simulations for the wide field imager aboard the ATHENA X-ray Observatory
NASA Astrophysics Data System (ADS)
Hauf, Steffen; Kuster, Markus; Hoffmann, Dieter H. H.; Lang, Philipp-Michael; Neff, Stephan; Pia, Maria Grazia; Strüder, Lothar
2012-09-01
The ATHENA X-ray observatory was a European Space Agency project for a L-class mission. ATHENA was to be based upon a simplified IXO design with the number of instruments and the focal length of the Wolter optics being reduced. One of the two instruments, the Wide Field Imager (WFI) was to be a DePFET based focal plane pixel detector, allowing for high time and spatial resolution spectroscopy in the energy-range between 0.1 and 15 keV. In order to fulfill the mission goals a high sensitivity is essential, especially to study faint and extended sources. Thus a detailed understanding of the detector background induced by cosmic ray particles is crucial. During the mission design generally extensive Monte-Carlo simulations are used to estimate the detector background in order to optimize shielding components and software rejection algorithms. The Geant4 toolkit1,2 is frequently the tool of choice for this purpose. Alongside validation of the simulation environment with XMM-Newton EPIC-pn and Space Shuttle STS-53 data we present estimates for the ATHENA WFI cosmic ray induced background including long-term activation, which demonstrate that DEPFET-technology based detectors are able to achieve the required sensitivity.
The Advanced Gamma-ray Imaging System (AGIS): Next-generation Cherenkov telescopes array.
NASA Astrophysics Data System (ADS)
Vassiliev, Vladimir; AGIS Collaboration
2010-03-01
AGIS is a concept for a next-generation ground-based gamma-ray observatory in the energy range from 50 GeV to 200 TeV. AGIS is being designed to have significantly improved sensitivity, angular resolution, and reliability of operation relative to the present generation instruments such as VERITAS and H.E.S.S. The novel technologies of AGIS are expected to enable great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way (e.g. SNR, X-ray binaries, dense molecular clouds) and outside the Galaxy (e.g. AGN, GRBs, galaxy clusters, and star-forming galaxies). AGIS will complement and extend the results now being obtained in the GeV range with the Fermi mission providing wide energy coverage, superior angular resolution, and sensitivity to variability on short time scales. AGIS will be a key instrument for identifying and characterizing Fermi LAT sources. In this submission we outline the status of the development of AGIS project, design concept, and principal technologies. As illustrations of the scientific capabilities of AGIS, we review its potential to indirectly search for dark matter and measure cosmological magnetic fields.
Gold nanoparticles based colorimetric nanodiagnostics for cancer and infectious diseases
NASA Astrophysics Data System (ADS)
Valentini, Paola; Persano, Stefano; Cecere, Paola; Sabella, Stefania; Pompa, Pier Paolo
2014-03-01
Traditional in vitro diagnostics requires specialized laboratories and costly instrumentation, both for the amplification of nucleic acid targets (usually achieved by PCR) and for the assay readout, often based on fluorescence. We are developing hybrid nanomaterials-based sensors for the rapid and low-cost diagnosis of various disease biomarkers, for applications in portable platforms for diagnostics at the point-of-care. To this aim, we exploited the size and distancedependent optical properties of gold nanoparticles (AuNPs) to achieve colorimetric detection. Moreover, in order to avoid the complexity of thermal cycles associated to traditional PCR, the design of our systems includes signal amplification schemes, achieved by the use of enzymes (nucleases, helicase) or DNAzymes. Focused on instrument-free and sensitive detection, we carefully combined the intrinsic sensitivity by multivalency of functionalized AuNPs with isothermal and non-stringent enzyme-aided reaction conditions, controlled AuNPs aggregates, universal reporters and magnetic microparticles, the latter used both as a substrate and as a means for the colorimetric detection. We obtained simple and robust assays for the sensitive (pM range or better) naked-eye detection of cancer or infectious diseases (HPV, HCV) biomarkers, requiring no instrumentation except for a simple heating plate. Finally, we are also developing non-medical applications of these bio-nanosensors, such as in the development of on-field rapid tests for the detection of pollutants and other food and water contaminants.
El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.
2016-01-01
The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759
Portable gas chromatograph-mass spectrometer
Andresen, B.D.; Eckels, J.D.; Kimmons, J.F.; Myers, D.W.
1996-06-11
A gas chromatograph-mass spectrometer (GC-MS) is described for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units. 4 figs.
Science Results From The ARCADE Open-Aperture Cryogenic Balloon Payload
NASA Technical Reports Server (NTRS)
Kogut, Alan J.
2010-01-01
The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) is a balloon-borne instrument to measure the frequency spectrum of the cosmic microwave background and diffuse Galactic foregrounds at centimeter wavelengths. ARCADE greatly reduces measurement uncertainties compared to previous balloon-borne or ground-based instrument using a double-nulled design that features fully cryogenic optics with no windows between the atmosphere and the 2.7 K instrument. A four-hour flight in 2006 achieved sensitivity comparable to the COBE/FIRAS satellite measurement while providing new insights for emission ranging from spinning dust in the interstellar medium to an unexpectedly bright extragalactic radio background. I will discuss scientific results from the ARCADE program and implications of the ARCADE cold optics for millimeter and sub-mm astronomy.
Agile Mcal, the Mini-Calorimeter
NASA Astrophysics Data System (ADS)
Bastia, Paolo; Poulsen, Jens Michael; Monzani, Franco; Radaelli, Paolo; Marchesi, Paolo; Labanti, Claudio; Marisaldi, Martino; Fuschino, Fabio; Bulgarelli, Andrea
2006-04-01
AGILE is a scientific mission dedicated to gamma-ray astrophysics in space, and the mini-calorimeter MCAL is one of four detector systems on the satellite. The MCAL instrument is sensitive in the energy range: 300 keV - 100 MeV. It has two main functions: one autonomous mode for detection of impulsive cosmic events and the other as “a slave” supporting the energy measurements of the pair-conversion tracker. The AGILE Small Mission is funded by the Italian Space Agency (ASI), and the INAF-IASF section at Bologna has the scientific responsibility for MCAL. LABEN develops the MCAL instrument with its detectors and electronics. This paper gives an overview of the detectors on AGILE, and then it gives details on the design of MCAL, and finally we report on the tests at instrument level.
Development of an advanced spacecraft tandem mass spectrometer
NASA Astrophysics Data System (ADS)
Drew, Russell C.
1992-03-01
The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology could lead to a new family of environmental test instruments that would be small and portable, yet would give quick analyses of complex samples.
Development of an advanced spacecraft tandem mass spectrometer
NASA Technical Reports Server (NTRS)
Drew, Russell C.
1992-01-01
The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology could lead to a new family of environmental test instruments that would be small and portable, yet would give quick analyses of complex samples.
Air, telescope, and instrument temperature effects on the Gemini Planet Imager’s image quality
NASA Astrophysics Data System (ADS)
Tallis, Melisa; Bailey, Vanessa P.; Macintosh, Bruce; Hayward, Thomas L.; Chilcote, Jeffrey K.; Ruffio, Jean-Baptiste; Poyneer, Lisa A.; Savransky, Dmitry; Wang, Jason J.; GPIES Team
2018-01-01
We present results from an analysis of air, telescope, and instrument temperature effects on the Gemini Planet Imager’s (GPI) image quality. GPI is a near-infrared, adaptive optics-fed, high-contrast imaging instrument at the Gemini South telescope, designed to directly image and characterize exoplanets and circumstellar disks. One key metric for instrument performance is “contrast,” which quantifies the sensitivity of an image in terms of the flux ratio of the noise floor vs. the primary star. Very high contrast signifies that GPI could succeed at imaging a dim, close companion around the primary star. We examine relationships between multiple temperature sensors placed on the instrument and telescope vs. image contrast. These results show that there is a strong correlation between image contrast and the presence of temperature differentials between the instrument and the temperature outside the dome. We discuss potential causes such as strong induced dome seeing or optical misalignment due to thermal gradients. We then assess the impact of the current temperature control and ventilation strategy and discuss potential modifications.
Measuring Tropospheric Winds from Space Using a Coherent Doppler Lidar Technique
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; Kavaya, Michael J.; Emmitt, G. David
1999-01-01
The global measurement of tropospheric wind profiles has been cited by the operational meteorological community as the most important missing element in the present and planned observing system. The most practical and economical method for obtaining this measurement is from low earth orbit, utilizing a Doppler lidar (laser radar) technique. Specifically, this paper will describe the coherent Doppler wind lidar (CDWL) technique, the design and progress of a current space flight project to fly such a system on the Space Shuttle, and plans for future flights of similar instruments. The SPARCLE (SPAce Readiness Coherent Lidar Experiment) is a Shuttle-based instrument whose flight is targeted for March, 2001. The objectives of SPARCLE are three-fold: Confirm that the coherent Doppler lidar technique can measure line-of-sight winds to within 1-2 m/s accuracy; Collect data to permit validation and improvement of instrument performance models to enable better design of future missions; and Collect wind and backscatter data for future mission optimization and for atmospheric studies. These objectives reflect the nature of the experiment and its program sponsor, NASA's New Millennium Program. The experiment is a technology validation mission whose primary purpose is to provide a space flight validation of this particular technology. (It should be noted that the CDWL technique has successfully been implemented from ground-based and aircraft-based platforms for a number of years.) Since the conduct of the SPARCLE mission is tied to future decisions on the choice of technology for free-flying, operational missions, the collection of data is intrinsically tied to the validation and improvement of instrument performance models that predict the sensitivity and accuracy of any particular present or future instrument system. The challenges unique to space flight for an instrument such as SPARCLE and follow-ons include: Obtaining the required lidar sensitivity from the long distance of orbit height to the lower atmosphere; Maintaining optical alignments after launch to orbit, and during operations in "microgravity"; Obtaining pointing knowledge of sufficient accuracy to remove the speed of the spacecraft (and the rotating Earth) from the measurements; Providing sufficient power (not a problem on the Shuttle) and cooling to the instrument. The paper will describe the status and challenges of the SPARCLE project, the value of obtaining wind data from orbit, and will present a roadmap to future instruments for scientific research and operational meteorology.
X-ray polarization capabilities of a small explorer mission
NASA Astrophysics Data System (ADS)
Jahoda, Keith M.; Black, J. Kevin; Hill, Joanne E.; Kallman, Timothy R.; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru
2014-07-01
X-ray polarization measurements hold great promise for studying the geometry and emission mechanisms in the strong gravitational and magnetic fields that surround black holes and neutron stars. In spite of this, the observational situation remains very limited; the last instrument dedicated to X-ray polarimetry flew decades ago on OSO-8, and the few recent measurements have been made by instruments optimized for other purposes. However, the technical capabilities to greatly advance the observational situation are in hand. Recent developments in micro-pattern gas detectors allow use of the polarization sensitivity of the photo-electric effect, which is the dominant interaction in the band above 2 keV. We present the scientific and technical requirements for an X-ray polarization observatory consistent with the scope of a NASA Small Explorer (SMEX) mission, along with a representative catalog of what the observational capabilities and expected sensitivities for the first year of operation could be. The mission is based on the technically robust design of the Gravity and Extreme Magnetism SMEX (GEMS) which completed a Phase B study and Preliminary Design Review in 2012. The GEMS mission is enabled by time projection detectors sensitive to the photo-electric effect. Prototype detectors have been designed, and provide engineering and performance data which support the mission design. The detectors are further characterized by low background, modest spectral resolution, and sub-millisecond timing resolution. The mission also incorporates high efficiency grazing incidence X-ray mirrors, design features that reduce systematic errors (identical telescopes at different azimuthal angles with respect to the look axis, and mounted on a rotating spacecraft platform), and a moderate capability to perform Target of Opportunity observations. The mission operates autonomously in a low earth, low inclination orbit with one to ten downlinks per day and one or more uplinks per week. Data and calibration products will be made available through the High Energy Astrophysics Science and Archival Research Center (HEASARC).
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented dealing with latest advances in the design of scintillation counters, semiconductor radiation detectors, gas and position sensitive radiation detectors, and the application of these detectors in biomedicine, satellite instrumentation, and environmental and reactor instrumentation. Some of the topics covered include entopistic scintillators, neutron spectrometry by diamond detector for nuclear radiation, the spherical drift chamber for X-ray imaging applications, CdTe detectors in radioimmunoassay analysis, CAMAC and NIM systems in the space program, a closed loop threshold calibrator for pulse height discriminators, an oriented graphite X-ray diffraction telescope, design of a continuous digital-output environmental radon monitor, and the optimization of nanosecond fission ion chambers for reactor physics. Individual items are announced in this issue.
Sterilization of endoscopic instruments.
Sabnis, Ravindra B; Bhattu, Amit; Vijaykumar, Mohankumar
2014-03-01
Sterilization of endoscopic instruments is an important but often ignored topic. The purpose of this article is to review the current literature on the sterilization of endoscopic instruments and elaborate on the appropriate sterilization practices. Autoclaving is an economic and excellent method of sterilizing the instruments that are not heat sensitive. Heat sensitive instruments may get damaged with hot sterilization methods. Several new endoscopic instruments such as flexible ureteroscopes, chip on tip endoscopes, are added in urologists armamentarium. Many of these instruments are heat sensitive and hence alternative efficacious methods of sterilization are necessary. Although ethylene oxide and hydrogen peroxide are excellent methods of sterilization, they have some drawbacks. Gamma irradiation is mainly for disposable items. Various chemical agents are widely used even though they achieve high-level disinfection rather than sterilization. This article reviews various methods of endoscopic instrument sterilization with their advantages and drawbacks. If appropriate sterilization methods are adopted, then it not only will protect patients from procedure-related infections but prevent hypersensitive allergic reactions. It will also protect instruments from damage and increase its longevity.
Shiflett, Michael W; Riccie, Meaghan; DiMatteo, RoseMarie
2013-11-01
Psychostimulant sensitization heightens behavioral and motivational responses to reward-associated stimuli; however, its effects on stimuli associated with reward absence are less understood. We examined whether amphetamine sensitization alters performance during Pavlovian-instrumental transfer (PIT) to conditioned excitors and inhibitors. We further sought to characterize the effects of amphetamine sensitization on learning versus performance by exposing rats to amphetamine prior to Pavlovian training or between training and test. Adult male Long-Evans rats were given conditioned inhibition (A+/AX-) and Pavlovian (B+) training, followed by variable-interval instrumental conditioning. Rats were sensitized to D-amphetamine (2 mg/kg daily injections for 7 days) or served as non-exposed controls. Rats were given a PIT test, in which they were presented with stimulus B alone or in compound with the conditioned inhibitor (BX). During the PIT test, control rats significantly reduced instrumental responding on BX trials (to approximately 50 % of responding to B). Amphetamine sensitization prior to Pavlovian conditioning increased lever pressing on BX trials and reduced lever pressing on B trials compared to controls. Amphetamine sensitization between training and test increased lever pressing on B and BX trials compared to controls. No effects of sensitization were observed on conditioned food cup approach. Amphetamine sensitization increases instrumental responding during PIT to a conditioned inhibitor by enhancing the excitation of conditioned stimuli and reducing the inhibition of conditioned inhibitors.
Thermal control system of the Exoplanet Characterisation Observatory Payload: design and predictions
NASA Astrophysics Data System (ADS)
Morgante, G.; Terenzi, L.; Eccleston, P.; Bradshaw, T.; Crook, M.; Linder, M.; Hunt, T.; Winter, B.; Focardi, M.; Malaguti, G.; Micela, G.; Pace, E.; Tinetti, G.
2015-12-01
The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to investigate exoplanetary atmospheres by undertaking spectroscopy of transiting planets in a wide spectral region from the visible to the mid-InfraRed (IR). The high sensitivity and the long exposures required by the mission need an extremely stable thermo-mechanical platform. The instrument is passively cooled down to approximately 40 K, together with the telescope assembly, by a V-Groove based design that exploits the L2 orbit favourable thermal conditions. The visible and short-IR wavelength detectors are maintained at the operating temperature of 40 K by a dedicated radiator coupled to the cold space. The mid-IR channels, require a lower operating temperature and are cooled by an active refrigerator: a 28 K Neon Joule-Thomson (JT) cold end, fed by a mechanical compressor. Temperature stability is one of the challenging issues of the whole architecture: periodical perturbations must be controlled before they reach the sensitive units of the instrument. An efficient thermal control system is required: the design is based on a combination of passive and active solutions. In this paper we describe the thermal architecture of the payload with the main cryo-chain stages and their temperature control systems. The requirements that drive the design and the trade-offs needed to enable the EChO exciting science in a technically feasible payload design are discussed. Thermal modelling results and preliminary performance predictions in terms of steady state and transient conditions are also reported. This paper is presented on behalf of the EChO Consortium.
Microgravity Level Measurement of the Beijing Drop Tower Using a Sensitive Accelerometer
Liu, T. Y.; Wu, Q. P.; Sun, B. Q.; Han, F. T.
2016-01-01
Drop tower is the most common ground-based facility to provide microgravity environment and widely used in many science experiments. A differential space accelerometer has been proposed to test the spin-gravity interaction between rotating extended bodies onboard a drag-free satellite. In order to assist design and test of this inertial sensor in a series of ground- based pre-flight experiments, it is very important to know accurately the residual acceleration of drop towers. In this report, a sensitive instrument for this purpose was built with a high-performance servo quartz accelerometer, and the dedicated interface electronics design providing small full-scale range and high sensitivity, up to 136.8 V/g0. The residual acceleration at the Beijing drop tower was measured using two different drop capsules. The experimental result shows that the microgravity level of the free-falling double capsule is better than 2 × 10−4g0 (Earth’s gravity). The measured data in this report provides critical microgravity information for design of the following ground experiments. PMID:27530726
Far ultraviolet wide field imaging with a SPARTAN /Experiment of Opportunity/ Payload
NASA Technical Reports Server (NTRS)
Carruthers, G. R.; Heckathorn, H. M.; Opal, C. B.
1982-01-01
A wide-field electrographic Schmidt camera, sensitive in the far UV (1230-2000 A), has been developed and utilized in three sounding rocket flights. It is now being prepared for Shuttle flight as an Experiment of Opportunity Payload (EOP) (recently renamed as the SPARTAN program). In this paper, we discuss (1) design of the instrument and payload, particularly as influenced by our experience in rocket flights; (2) special problems of EOP in comparison to sounding rocket missions; (3) relationship of this experiment to, and special capabilities in comparison to, other space astronomy instruments such as Space Telescope; and (4) a tentative observing plan for an EOP mission.
Improved Lyman Ultraviolet Astronomy Capabilities through Enhanced Coatings
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; del Hoyo, Javier; Boris, David; Walton, Scott
2017-01-01
This paper will describe efforts at developing broadband mirror coatings with high performance that will extend from infrared wavelengths down to the Far-Ultraviolet (FUV) spectral region. These mirror coatings would be realized by passivating the surface of freshly made aluminum coatings with XeF2 gas in order to form a thin AlF$_3$ overcoat that will protect the aluminum from oxidation and, hence, realize the high-reflectance of this material down to its intrinsic cut-off wavelength of 90 nm. Improved reflective coatings for optics, particularly in the FUV region (90-120 nm), could yield dramatically more sensitive instruments and permit more instrument design freedom.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Chuss, David T.
2010-01-01
The Primordial Inflation Polarization Explorer (PIPER) is a ba1loon-borne instrument designed to search for the faint signature of inflation in the polarized component of the cosmic microwave background (CMB). PIPER will measure the CMB polarization at 4 frequencies (l per flight) using a pair of cryogenic telescopes, one for measuring each of Stokes Q and U in the instrument frame. Each telescope receives both linear orthogonal polarizations in two 32 by 40 element planar arrays that utilize Transition-Edge Sensors (TES). The first element in each telescope is a variable-delay polarization modulator (VPM) that fully modulates the Stokes parameter to which the telescope is sensitive.
High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing.
Maclachlan, Robert A; Riviere, Cameron N
2009-06-01
Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling.
The NGST Science Instrument Procurement Plan
NASA Astrophysics Data System (ADS)
NGST Project Office Team
1999-05-01
The NGST will carry approximately 3 science instruments (SI) that together enable the wide field imaging and spectroscopic capability needed to perform the Design Reference Mission (http://www.ngst.nasa.gov/science/drm.html). The NGST telescope will permit these instruments to achieve Zodiacal light limited sensitivity over a wavelength range of 0.6 - 10+ microns. During April 2000, responsibility to provide these instruments will be allocated among the NGST partner agencies: NASA, ESA, and CSA. Instruments allocated to NASA will be solicited via a NASA Announcement of Opportunity (AO) during June 2001. This AO will be open to university, government, and industry scientists. At the present time, 11 science instrument concept studies are being conducted by US, European, and Canadian teams. Final results from these 1 year studies will be presented at the NGST Science and Technology Exposition at Woods Hole MA during September 1999 (http://ngst.gsfc.nasa.gov/science/meetings/WHannouncement.html). It is not necessary to have participated in these pre-Phase A activities in order to answer the up coming instrument technologies NRA or the flight instrument AO. In this poster, we present the process by which SI concepts will be allocated among NASA, ESA, and CSA prior to the AO solicitation as well as top level time lines for instrument acquisition and development.
Global gravity survey by an orbiting gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung; Leung, Jurn-Sun; Morgan, Samuel H.; Parker, Joseph
1988-01-01
The scientific aims, design, and mission profile of the Superconducting Gravity Gradiometer Mission (SGGM), a NASA spacecraft mission proposed for the late 1990s, are discussed and illustrated with drawings and diagrams. SGGM would complement the two other planned gravimetry missions, GRM and Aristoteles, and would provide gravitational-field measurements with accuracy 2-3 mGal in 55 x 55-km blocks. The principal instruments are a (1) three-axis superconducting gravity gradiometer with intrinsic sensitivity 100 microeotvos/sq rt Hz, (2) a six-axis superconducting accelerometer with sensitivity 100 fg(E)/sq rt Hz linear and 10 prad/sec squared sq rt Hz angular, and (3) a six-axis shaker for active control of the platform. Consideration is given to the error budget and platform requirements, the orbit selection criteria, and the spacecraft design.
NASA Astrophysics Data System (ADS)
Raj, Prasoon; Angelone, Maurizio; Döring, Toralf; Eberhardt, Klaus; Fischer, Ulrich; Klix, Axel; Schwengner, Ronald
2018-01-01
Neutron and gamma flux measurements in designated positions in the test blanket modules (TBM) of ITER will be important tasks during ITER's campaigns. As part of the ongoing task on development of nuclear instrumentation for application in European ITER TBMs, experimental investigations on self-powered detectors (SPD) are undertaken. This paper reports the findings of neutron and photon irradiation tests performed with a test SPD in flat sandwich-like geometry. Whereas both neutrons and gammas can be detected with appropriate optimization of geometries, materials and sizes of the components, the present sandwich-like design is more sensitive to gammas than 14 MeV neutrons. Range of SPD current signals achievable under TBM conditions are predicted based on the SPD sensitivities measured in this work.
Recent Results from the 2015 flight of Spider
NASA Astrophysics Data System (ADS)
Jones, William C.
2016-06-01
Spider is a balloon borne mm-wave polarimeter designed to provide high fidelity measurements of the large scale polarization of the microwave sky. Spider flew a 17 day mission in January 2015, mapping roughly 10% of the full sky (4500 square degrees) in the southern Galactic hemisphere at each of 94 and 150 GHz. Spider achieved an instrumental sensitivity of 4 μ K_{CMB}√{s}, providing maps that exceed the sensitivity of the Planck data. We discuss these data, the current status of our science analysis, and our understanding of the Galacticforeground emission in this high latitude region.
Calibration of the QCM/SAW Cascade Impactor for Measurement of Ozone
NASA Technical Reports Server (NTRS)
Williams, Cassandra K.; Peterson, C. B.; Morris, V. R.
1997-01-01
The Quartz Crystal Microbalance Surface Acoustic Wave (QCM/SAW) cascade impactor is an instrument designed to collect size-fractionated distributions of aerosols on a series of quartz crystals and employ SAW devices coated with chemical sensors for gas detection. We are calibrating the cascade impactor in our laboratory for future deployment for in-situ experiments to measure ozone. Experiments have been performed to characterize the QCM and SAW mass loading, saturation limits, mass frequency relationships, and sensitivity. The characteristics of mass loading, saturation limits, mass-frequency relationships, sensitivity, and the loss of ozone on different materials have been quantified.
NASA Astrophysics Data System (ADS)
Kang, M.; Ahn, M.
2013-12-01
The next generation of geostationary earth observing satellite program of Korea (GEO-KOMPSAT-2A&B) is under development. While the GEO-KOMPSAT-2A is dedicated for the operational weather mission and planed to be launched in 2017, the second one will have ocean and environmental mission with planed launch of 2018. For the environmental mission, a hyperspectral spectrometer named the Global Environment Measuring Spectrometer (GEMS) designed to monitor the important trace gases such as O3, SO2, NO2, HCHO and aerosols which affect directly and indirectly the air quality will be onboard the second satellite with a ocean color imager. Based on the preliminary design concept, the GEMS instrument utilizes a reflecting telescope with the Offner spectrometer which uses the grating and 2D CCD (1 for spatial and another for spectral). Due to the nature of instrumentations, there is always possibility of wavelength shift and squeeze at the measured raw radiance from the CCD. Thus, it is important to have a proper algorithm for the accurate spectral calibration. Currently, we plan to have a two-step process for an accurate spectral calibration. First step is done by the application of spectral calibration process provided by instrument manufacturer which will be applied to whole observation wavelength band. The second step which will be applied for each wavelength bands used for the retrieval will be using the high resolution solar spectrum for the reference spectrum used for fitting the measured radiances and irradiances. For the application of second step, there are several important pre-requisite information which could be obtained through the ground test of the instrument or through the actual measurement data or through assumptions. Here we investigate the sensitivity of the spectral calibration accuracy to the important parameters such as the spectral response function of each band, band width, undersampling correction, and so on, The simulated sensitivity tests will be applied to the real hyperspectral data such as from OMI, OMPS, etc.
NASA Technical Reports Server (NTRS)
Weinstock, E. M.; Smith, J. B.; Sayres, D.; Pittman, J. V.; Allen, N.; Demusz, J.; Greenberg, M.; Rivero, M.; Anderson, J. G.
2003-01-01
We describe an instrument mounted in a pallet on the NASA WB-57 aircraft that is designed to measure the sum of gas phase and solid phase water, or total water, in cirrus clouds. Using an isokinetic inlet, a 600-watt heater mounted directly in the flow, and Lyman-alpha photofragment fluorescence technique for detection, accurate measurements of total water have been made over almost three orders of magnitude. Isokinetic flow is achieved with an actively controlled roots pump by referencing aircraft pressure, temperature, and true air speed, together with instrument flow velocity, temperature, and pressure. During CRYSTAL FACE, the instrument operated at duct temperatures sufficiently warm to completely evaporate particles up to 150 microns diameter. In flight diagnostics, intercomparison with water measured by absorption in flight, as well as intercomparisons in clear air with water vapor measured by the Harvard water vapor instrument and the JPL infrared tunable diode laser hygrometer validate the detection sensitivity of the instrument and illustrate minimal hysteresis from instrument surfaces. The simultaneous measurement of total water and water vapor in cirrus clouds yields their ice water content.
NASA Astrophysics Data System (ADS)
Assis, P.; Barres de Almeida, U.; Blanco, A.; Conceição, R.; D'Ettorre Piazzoli, B.; De Angelis, A.; Doro, M.; Fonte, P.; Lopes, L.; Matthiae, G.; Pimenta, M.; Shellard, R.; Tomé, B.
2018-05-01
Current detectors for Very-High-Energy γ-ray astrophysics are either pointing instruments with a small field of view (Cherenkov telescopes), or large field-of-view instruments with relatively large energy thresholds (extensive air shower detectors). In this article, we propose a new hybrid extensive air shower detector sensitive in an energy region starting from about 100 GeV. The detector combines a small water-Cherenkov detector, able to provide a calorimetric measurement of shower particles at ground, with resistive plate chambers which contribute significantly to the accurate shower geometry reconstruction. A full simulation of this detector concept shows that it is able to reach better sensitivity than any previous gamma-ray wide field-of-view experiment in the sub-TeV energy region. It is expected to detect with a 5σ significance a source fainter than the Crab Nebula in one year at 100 GeV and, above 1 TeV a source as faint as 10% of it. As such, this instrument is suited to detect transient phenomena making it a very powerful tool to trigger observations of variable sources and to detect transients coupled to gravitational waves and gamma-ray bursts.
Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.
1999-01-01
The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.
The infrared imaging spectrograph (IRIS) for TMT: latest science cases and simulations
NASA Astrophysics Data System (ADS)
Wright, Shelley A.; Walth, Gregory; Do, Tuan; Marshall, Daniel; Larkin, James E.; Moore, Anna M.; Adamkovics, Mate; Andersen, David; Armus, Lee; Barth, Aaron; Cote, Patrick; Cooke, Jeff; Chisholm, Eric M.; Davidge, Timothy; Dunn, Jennifer S.; Dumas, Christophe; Ellerbroek, Brent L.; Ghez, Andrea M.; Hao, Lei; Hayano, Yutaka; Liu, Michael; Lopez-Rodriguez, Enrique; Lu, Jessica R.; Mao, Shude; Marois, Christian; Pandey, Shashi B.; Phillips, Andrew C.; Schoeck, Matthias; Subramaniam, Annapurni; Subramanian, Smitha; Suzuki, Ryuji; Tan, Jonathan C.; Terai, Tsuyoshi; Treu, Tommaso; Simard, Luc; Weiss, Jason L.; Wincentsen, James; Wong, Michael; Zhang, Kai
2016-07-01
The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.
Rugged, Low Cost, Environmental Sensors for a Turbulent World
NASA Astrophysics Data System (ADS)
Schulz, B.; Sandell, C. T.; Wickert, A. D.
2017-12-01
Ongoing scientific research and resource management require a diverse range of high-quality and low-cost sensors to maximize the number and type of measurements that can be obtained. To accomplish this, we have developed a series of diversified sensors for common environmental applications. The TP-DownHole is an ultra-compact temperature and pressure sensor designed for use in CMT (Continuous Multi-channel Tubing) multi-level wells. Its 1 mm water depth resolution, 30 cm altitude resolution, and rugged design make it ideal for both water level measurements and monitoring barometric pressure and associated temperature changes. The TP-DownHole sensor has also been incorporated into a self-contained, fully independent data recorder for extreme and remote environments. This device (the TP-Solo) is based around the TP-DownHole design, but has self-contained power and data storage and is designed to collect data independently for up to 6 months (logging at once an hour), creating a specialized tool for extreme environment data collection. To gather spectral information, we have also developed a very low cost photodiode-based Lux sensor to measure spectral irradiance; while this does not measure the entire solar radiation spectrum, simple modeling to rescale the remainder of the solar spectrum makes this a cost-effective alternative to a thermopile pyranometer. Lastly, we have developed an instrumentation amplifier which is designed to interface a wide range of sensitive instruments to common data logging systems, such as thermopile pyranometers, thermocouples, and many other analog output sensors. These three instruments are the first in a diverse family aimed to give researchers a set of powerful and low-cost tools for environmental instrumentation.
NASA Astrophysics Data System (ADS)
Ryan, James M.; Bancroft, Christopher; Bloser, Peter; Bravar, Ulisse; Fourguette, Dominique; Frost, Colin; Larocque, Liane; McConnell, Mark L.; Legere, Jason; Pavlich, Jane; Ritter, Greg; Wassick, Greg; Wood, Joshua; Woolf, Richard
2010-08-01
We have developed, fabricated and tested a prototype imaging neutron spectrometer designed for real-time neutron source location and identification. Real-time detection and identification is important for locating materials. These materials, specifically uranium and transuranics, emit neutrons via spontaneous or induced fission. Unlike other forms of radiation (e.g. gamma rays), penetrating neutron emission is very uncommon. The instrument detects these neutrons, constructs images of the emission pattern, and reports the neutron spectrum. The device will be useful for security and proliferation deterrence, as well as for nuclear waste characterization and monitoring. The instrument is optimized for imaging and spectroscopy in the 1-20 MeV range. The detection principle is based upon multiple elastic neutron-proton scatters in organic scintillator. Two detector panel layers are utilized. By measuring the recoil proton and scattered neutron locations and energies, the direction and energy spectrum of the incident neutrons can be determined and discrete and extended sources identified. Event reconstruction yields an image of the source and its location. The hardware is low power, low mass, and rugged. Its modular design allows the user to combine multiple units for increased sensitivity. We will report the results of laboratory testing of the instrument, including exposure to a calibrated Cf-252 source. Instrument parameters include energy and angular resolution, gamma rejection, minimum source identification distances and times, and projected effective area for a fully populated instrument.
Gordon, H R; Du, T; Zhang, T
1997-09-20
We provide an analysis of the influence of instrument polarization sensitivity on the radiance measured by spaceborne ocean color sensors. Simulated examples demonstrate the influence of polarization sensitivity on the retrieval of the water-leaving reflectance rho(w). A simple method for partially correcting for polarization sensitivity--replacing the linear polarization properties of the top-of-atmosphere reflectance with those from a Rayleigh-scattering atmosphere--is provided and its efficacy is evaluated. It is shown that this scheme improves rho(w) retrievals as long as the polarization sensitivity of the instrument does not vary strongly from band to band. Of course, a complete polarization-sensitivity characterization of the ocean color sensor is required to implement the correction.
BASD: SIRTF Telescope Instrument Changeout and Cryogen Replenishment (STICCR) study
NASA Technical Reports Server (NTRS)
Mord, A. J.; Urbach, A. R.; Poyer, M. E.; Andreozzi, L. C.; Hermanson, L. A.; Snyder, H. A.; Blalock, W. R.; Haight, R. P.
1985-01-01
The Space Infrared Telescope Facility (SIRTF) is a long-life cryogenically cooled space-based telescope for infrared astronomy from 2 micrometer to 700 miocrometers currently under study by NASA-ARC, and planned for launch in approximately the mid 90's. SIRTF will operate as a multi-user facility, initially carrying 3 instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and is currently baselined to be 2 years. The telescope changes required to allow in-space replenishment of the 2,000 liter superfluid helium tank are investigated. A preliminary design for the space services equipment is also developed. The impacts of basing the equipment and servicing on the space station are investigated. Space replenishment and changeout of instruments requires changes to the telescope design and preliminary concepts are presented.
SIRTF Telescope Instrument Changeout and Cryogen Replenishment (STICCR) Study
NASA Technical Reports Server (NTRS)
Nast, T. C.; Frank, D.; Liu, C. K.; Parmley, R. T.; Jaekle, D.; Builteman, H.; Schmidt, J.; Frederking, T. H. K.
1985-01-01
The Space Infrared Telescope Facility (SIRTF) is a long-life cryogenically cooled space-based telescope for infrared astronomy from 2 to 700 micrometers. SIRTF is currently under study by NASA-ARC (Reference AP) and planned for launch in approximately the mid 1990s. SIRTF will operate as a multiuser facility, initially carrying three instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and baseline is currently to be 2 years. The telescope changes required to allow in-space replenishment of the 4,000-L superfluid helium tank was investigated. A preliminary design for the space services equipment was also developed. The impacts of basing the equipment and servicing on the space station were investigated. Space replenishment and changeout of instruments required changes to the telescope design. Preliminary concepts are presented.
Development of a compact laser-based single photon ionization time-of-flight mass spectrometer
NASA Astrophysics Data System (ADS)
Tonokura, Kenichi; Kanno, Nozomu; Yamamoto, Yukio; Yamada, Hiroyuki
2010-02-01
We have developed a compact, laser-based, single photon ionization time-of-flight mass spectrometer (SPI-TOF-MS) for on-line monitoring of trace organic species. To obtain the mass spectrum, we use a nearly fragmentation-free SPI technique with 10.5 eV (118 nm) vacuum ultraviolet laser pulses generated by frequency tripling of the third harmonic of an Nd:YAG laser. The instrument can be operated in a linear TOF-MS mode or a reflectron TOF-MS mode in the coaxial design. We designed ion optics to optimize detection sensitivity and mass resolution. For data acquisition, the instrument is controlled using LabVIEW control software. The total power requirement for the vacuum unit, control electronics unit, ion optics, and detection system is approximately 100 W. We achieve a detection limit of parts per billion by volume (ppbv) for on-line trace analysis of several organic compounds. A mass resolution of 800 at about 100 amu is obtained for reflectron TOF-MS mode in a 0.35 m long instrument. The application of on-line monitoring of diesel engine exhaust was demonstrated.
Simulating the WFIRST coronagraph integral field spectrograph
NASA Astrophysics Data System (ADS)
Rizzo, Maxime J.; Groff, Tyler D.; Zimmermann, Neil T.; Gong, Qian; Mandell, Avi M.; Saxena, Prabal; McElwain, Michael W.; Roberge, Aki; Krist, John; Riggs, A. J. Eldorado; Cady, Eric J.; Mejia Prada, Camilo; Brandt, Timothy; Douglas, Ewan; Cahoy, Kerri
2017-09-01
A primary goal of direct imaging techniques is to spectrally characterize the atmospheres of planets around other stars at extremely high contrast levels. To achieve this goal, coronagraphic instruments have favored integral field spectrographs (IFS) as the science cameras to disperse the entire search area at once and obtain spectra at each location, since the planet position is not known a priori. These spectrographs are useful against confusion from speckles and background objects, and can also help in the speckle subtraction and wavefront control stages of the coronagraphic observation. We present a software package, the Coronagraph and Rapid Imaging Spectrograph in Python (crispy) to simulate the IFS of the WFIRST Coronagraph Instrument (CGI). The software propagates input science cubes using spatially and spectrally resolved coronagraphic focal plane cubes, transforms them into IFS detector maps and ultimately reconstructs the spatio-spectral input scene as a 3D datacube. Simulated IFS cubes can be used to test data extraction techniques, refine sensitivity analyses and carry out design trade studies of the flight CGI-IFS instrument. crispy is a publicly available Python package and can be adapted to other IFS designs.
Advances in handheld FT-IR instrumentation
NASA Astrophysics Data System (ADS)
Arnó, Josep; Cardillo, Len; Judge, Kevin; Frayer, Maxim; Frunzi, Michael; Hetherington, Paul; Levy, Dustin; Oberndorfer, Kyle; Perec, Walter; Sauer, Terry; Stein, John; Zuidema, Eric
2012-06-01
FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenges of ConOps (Concepts of Operation) in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the advances resulting from a project designed to overcome the challenges associated with miniaturizing FT-IR instruments. The project team developed a disturbance-corrected permanently aligned cube corner interferometer for improved robustness and optimized opto-mechanical design to maximize optical throughput and signal-to-noise ratios. Thermal management and heat flow were thoroughly modeled and studied to isolate sensitive components from heat sources and provide the widest temperature operation range. Similarly, extensive research on mechanical designs and compensation techniques to protect against shock and vibration will be discussed. A user interface was carefully created for military and emergency response applications to provide actionable information in a visual, intuitive format. Similar to the HazMatID family of products, state-of-the-art algorithms were used to quickly identify the chemical composition of complex samples based on the spectral information. This article includes an overview of the design considerations, tests results, and performance validation of the mechanical ruggedness, spectral, and thermal performance.
ERIC Educational Resources Information Center
Carise, Deni; McLellan, A. Thomas
The Addiction Severity Index (ASI), used throughout the United States and other countries, is the most widely used assessment tool in the addictions field. It is a semi-structured assessment instrument designed for use with clients for substance abuse treatment. The ASI gathers information in seven important areas of a patient's life: medical,…
Tucker, Carolyn M; Wall, Whitney A; Wippold, Guillermo; Roncoroni, Julia; Marsiske, Michael; Linn, Gabriel S
2016-04-27
Patient-centered culturally sensitive health care (PC-CSHC) is a best practice approach for improving health-care delivery to culturally diverse populations and reducing health disparities. Despite patients' report that cultural sensitivity by health-care office staff is an important aspect of PC-CSHC, the majority of available research on PC-CSHC focuses exclusively on health-care providers. This may be due in part to the paucity of instruments available to assess the cultural sensitivity of health-care office staff. The objective of the present study is to determine the psychometric properties of the Tucker-Culturally Sensitive Health Care Office Staff Inventory-Self-Assessment Form (T-CSHCOSI-SAF). This instrument is designed to enable health-care office staff to self-assess their level of agreement that they display behaviors and attitudes that culturally diverse patients have identified as office staff cultural sensitivity indicators. A sample of 510 health-care office staff were recruited at 67 health-care sites across the United States. These health-care office staff anonymously completed the T-CSHCOSI-SAF and a demographic data questionnaire. Confirmatory factor analyses of the T-CSHCOSI-SAF revealed that this inventory has 2 factors with high internal consistency reliability (Cronbach's αs= .916 and .912). The T-CSHCOSI-SAF is a useful inventory for health-care office staff to assess their own level of patient-centered cultural sensitivity. Such self-assessment data can be used in the development and implementation of trainings to promote patient-centered cultural sensitivity of health-care office staff and to help draw the attention of these staff to displaying patient-centered cultural sensitivity.
EUNIS: An Extreme-Ultraviolet Normal-Incidence Spectrometer
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Davila, Joseph M.; Fisher, Richard R. (Technical Monitor)
2001-01-01
GSFC is in the process of assembling an Extreme-Ultraviolet Normal-Incidence Spectrometer called EUNIS, to be flown as a sounding rocket payload. This instrument builds on the many technical innovations pioneered by our highly successful SERTS experiment over its past ten flights. The new design will have somewhat improved spatial and spectral resolutions, as well as 100 times greater sensitivity, permitting EUV spectroscopy with a temporal resolution near 1-second for the first time ever. To achieve such high time cadence, a novel Active-Pixel-Sensor detector is being developed as a key component of our design. The high sensitivity of EUNIS will allow entirely new studies of transient coronal phenomena, such as the rapid loop dynamics seen by TRACE, and searches for non-thermal motions indicative of magnetic reconnection or wave heating. The increased sensitivity will also permit useful EUV spectra at heights of 2-3-R$ \\odot$ above the limb, where the transition between the static corona and the solar wind might occur. In addition, the new design features two independent optical systems, more than doubling the spectral bandwidth covered on each flight. Its 300-370\\AA\\ bandpass includes He-II 304\\AA\\ and strong lines from Fe-XI-XVI, extending the current SERTS range of 300-355\\AA\\ to further improve our ongoing series of calibration under-flights for SOHO/CDS and EIT. The second bandpass of 170-230\\AA\\ has a sequence of very strong Fe-IX-XIV lines, and will allow under-flight support for two more channels on SOHO/EIT, two channels on TRACE, one on Solar-B/EIS, and all four channels on the STEREO/EUVI instrument. First flight of the new EUNIS payload is scheduled for 2002 October.
Calibration, characterization, and first results with the Ocean PHILLS hyperspectral imager
NASA Astrophysics Data System (ADS)
Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Fisher, John; Antoniades, John A.; Carney, Megan
1999-10-01
The Ocean Portable Hyperspectral Imager for Low-Light spectroscopy (Ocean PHILLS), is a new hyperspectral imager specifically designed for imaging the coastal ocean. It uses a thinned, backside illuminated CCD for high sensitivity, and an all-reflective spectrograph with a convex grating in an Offner configuration to produce a distortion free image. Here we describe the instrument design and present the results of laboratory calibration and characterization and example results from a two week field experiment imaging the coastal waters off Lee Stocking, Island, Bahamas.
Air Monitoring for Hazardous Gas Detection
NASA Technical Reports Server (NTRS)
Arkin, C. Richard; Griffin, Timothy P.; Adams, Frederick W.; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Follistein, Duke W.
2004-01-01
The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response times and detection limits. A Table lists common gases monitored for aerospace applications. The first five gases, hydrogen, helium, nitrogen, oxygen, and argon are historically the focus of the HGDL.
Recent advances in photoluminescence detection of fingerprints.
Menzel, E R
2001-10-02
Photoluminescence detection of latent fingerprints has over the last quarter century brought about a new level of fingerprint detection sensitivity. The current state of the art is briefly reviewed to set the stage for upcoming new fingerprint processing strategies. These are designed for suppression of background fluorescence from articles holding latent prints, an often serious problem. The suppression of the background involves time-resolved imaging, which is dealt with from the perspective of instrumentation as well as the design of fingerprint treatment strategies. These focus on lanthanide chelates, nanocrystals, and nanocomposites functionalized to label fingerprints.
Mechanical monolithic horizontal sensor for low frequency seismic noise measurement
NASA Astrophysics Data System (ADS)
Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio
2008-07-01
This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70mHz with a Q =140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning.
Mechanical monolithic sensor for low frequency seismic noise measurement
NASA Astrophysics Data System (ADS)
Acernese, Fausto; De Rosa, Rosario; Giordano, Gerardo; Romano, Rocco; Barone, Fabrizio
2007-10-01
This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2006), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a new laser optical lever and laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, calculated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is that the measured natural resonance frequency of the instrument is ~ 70mHz with a Q ~ 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of 5 mHz with a more refined mechanical tuning.
Mechanical monolithic horizontal sensor for low frequency seismic noise measurement.
Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio
2008-07-01
This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70 mHz with a Q=140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning.
A First: NASA Spots Single Methane Leak from Space
2016-06-14
Atmospheric methane is a potent greenhouse gas, but the percentage of it produced through human activities is still poorly understood. Future instruments on orbiting satellites can help address this issue by surveying human-produced methane emissions. Recent data from the Aliso Canyon event, a large accidental methane release near Porter Ranch, California, demonstrates this capability. The Hyperion imaging spectrometer onboard NASA's EO-1 satellite successfully detected this release event on three different overpasses during the winter of 2015-2016. This is the first time the methane plume from a single facility has been observed from space. The orbital observations were consistent with airborne measurements. This image pair shows a comparison of detected methane plumes over Aliso Canyon, California, acquired 11 days apart in Jan. 2016 by: (left) NASA's AVIRIS instrument on a NASA ER-2 aircraft at 4.1 miles (6.6 kilometers) altitude and (right) by the Hyperion instrument on NASA's Earth Observing-1 satellite in low-Earth orbit. The additional red streaks visible in the EO-1 Hyperion image result from measurement noise -- Hyperion was not specifically designed for methane sensing and is not as sensitive as AVIRIS-NG. Additionally, the EO-1 satellite's current orbit provided poor illumination conditions. Future instruments with much greater sensitivity on orbiting satellites can survey the biggest sources of human-produced methane around the world. http://photojournal.jpl.nasa.gov/catalog/PIA20716
Shiflett, Michael W.; Riccie, Meaghan; DiMatteo, RoseMarie
2013-01-01
Rationale Psychostimulant sensitization heightens behavioral and motivational responses to reward-associated stimuli; however, its effects on stimuli associated with reward absence are less understood. Objectives We examined whether amphetamine sensitization alters performance during Pavlovian-instrumental transfer (PIT) to conditioned excitors and inhibitors. We further sought to characterize the effects of amphetamine sensitization on learning versus performance by exposing rats to amphetamine prior to Pavlovian training or between training and test. Methods Adult male Long Evans rats were given conditioned inhibition (A+/AX−) and Pavlovian (B+) training, followed by variable-interval instrumental conditioning. Rats were sensitized to d-amphetamine (2 mg/kg daily injections for seven days), or served as non-exposed controls. Rats were given a PIT test, in which they were presented with stimulus B alone or in compound with the conditioned inhibitor (BX). Results During the PIT test, control rats significantly reduced instrumental responding on BX trials (to approximately 50% of responding to B). Amphetamine sensitization prior to Pavlovian conditioning increased lever-pressing on BX trials and reduced lever-pressing on B trials compared to controls. Amphetamine sensitization between training and test increased lever-pressing on B and BX trials compared to controls. No effects of sensitization were observed on conditioned food-cup approach. Conclusions Amphetamine sensitization increases instrumental responding during PIT to a conditioned inhibitor, by enhancing excitation of conditioned stimuli and reducing inhibition of conditioned inhibitors. PMID:23715640
NASA Technical Reports Server (NTRS)
Sande, C. B.; Brasoveanu, D.; Miller, A. C.; Home, A. T.; Tracewell, D. A.; Warren, W. H., Jr.
1998-01-01
The SKY2000 Master Star Catalog (MC), Version 2 and its predecessors have been designed to provide the basic astronomical input data needed for satellite acquisition and attitude determination on NASA spacecraft. Stellar positions and proper motions are the primary MC data required for operations support followed closely by the stellar brightness observed in various standard astronomical passbands. The instrumental red-magnitude prediction subsystem (REDMAG) in the MMSCAT software package computes the expected instrumental color index (CI) [sensor color correction] from an observed astronomical stellar magnitude in the MC and the characteristics of the stellar spectrum, astronomical passband, and sensor sensitivity curve. The computation is more error prone the greater the mismatch of the sensor sensitivity curve characteristics and those of the observed astronomical passbands. This paper presents the preliminary performance analysis of a typical red-sensitive CCDST during acquisition of sensor data from the two Ball CT-601 ST's onboard the Rossi X-Ray Timing Explorer (RXTE). A comparison is made of relative star positions measured in the ST FOV coordinate system with the expected results computed from the recently released Tycho Catalogue. The comparison is repeated for a group of observed stars with nearby, bright neighbors in order to determine the tracker behavior in the presence of an interfering, near neighbor (NN). The results of this analysis will be used to help define a new photoelectric photometric instrumental sensor magnitude system (S) that is based on several thousand bright star magnitudes observed with the PXTE ST's. This new system will be implemented in Version 2 of the SKY2000 MC to provide improved predicted magnitudes in the mission run catalogs.
STS-40 orbital acceleration research experiment flight results during a typical sleep period
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Nicholson, J. Y.; Ritter, J. R.
1992-01-01
The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities, was flown for the first time aboard the Space Shuttle on STS-40. This is also the first time an accelerometer package with nano-g sensitivity and a calibration facility has flown aboard the Space Shuttle. The instrument is designed to measure and record the Space Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarified flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument defects aerodynamic behavior of the Space Shuttle while in low-earth orbit. A 2-hour orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. During the flight, a 'trimmed-mean' filter was used to produce high quality, low frequency data which was successfully stored aboard the Space Shuttle in the OARE data storage system. Initial review of the data indicated that, although the expected precision was achieved, some equipment problems occurred resulting in uncertain accuracy. An acceleration model which includes aerodynamic, gravity-gradient, and rotational effects was constructed and compared with flight data. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight linear corrections for drift. The other axis does not exhibit these difficulties and gives good agreement with the acceleration model.
Uncertainty estimates in broadband seismometer sensitivities using microseisms
Ringler, Adam T.; Storm, Tyler L.; Gee, Lind S.; Hutt, Charles R.; Wilson, David C.
2015-01-01
The midband sensitivity of a seismic instrument is one of the fundamental parameters used in published station metadata. Any errors in this value can compromise amplitude estimates in otherwise high-quality data. To estimate an upper bound in the uncertainty of the midband sensitivity for modern broadband instruments, we compare daily microseism (4- to 8-s period) amplitude ratios between the vertical components of colocated broadband sensors across the IRIS/USGS (network code IU) seismic network. We find that the mean of the 145,972 daily ratios used between 2002 and 2013 is 0.9895 with a standard deviation of 0.0231. This suggests that the ratio between instruments shows a small bias and considerable scatter. We also find that these ratios follow a standard normal distribution (R 2 = 0.95442), which suggests that the midband sensitivity of an instrument has an error of no greater than ±6 % with a 99 % confidence interval. This gives an upper bound on the precision to which we know the sensitivity of a fielded instrument.
Patterson, P Daniel; Weaver, Matthew D; Fabio, Anthony; Teasley, Ellen M; Renn, Megan L; Curtis, Brett R; Matthews, Margaret E; Kroemer, Andrew J; Xun, Xiaoshuang; Bizhanova, Zhadyra; Weiss, Patricia M; Sequeira, Denisse J; Coppler, Patrick J; Lang, Eddy S; Higgins, J Stephen
2018-02-15
This study sought to systematically search the literature to identify reliable and valid survey instruments for fatigue measurement in the Emergency Medical Services (EMS) occupational setting. A systematic review study design was used and searched six databases, including one website. The research question guiding the search was developed a priori and registered with the PROSPERO database of systematic reviews: "Are there reliable and valid instruments for measuring fatigue among EMS personnel?" (2016:CRD42016040097). The primary outcome of interest was criterion-related validity. Important outcomes of interest included reliability (e.g., internal consistency), and indicators of sensitivity and specificity. Members of the research team independently screened records from the databases. Full-text articles were evaluated by adapting the Bolster and Rourke system for categorizing findings of systematic reviews, and the rated data abstracted from the body of literature as favorable, unfavorable, mixed/inconclusive, or no impact. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology was used to evaluate the quality of evidence. The search strategy yielded 1,257 unique records. Thirty-four unique experimental and non-experimental studies were determined relevant following full-text review. Nineteen studies reported on the reliability and/or validity of ten different fatigue survey instruments. Eighteen different studies evaluated the reliability and/or validity of four different sleepiness survey instruments. None of the retained studies reported sensitivity or specificity. Evidence quality was rated as very low across all outcomes. In this systematic review, limited evidence of the reliability and validity of 14 different survey instruments to assess the fatigue and/or sleepiness status of EMS personnel and related shift worker groups was identified.
Interface contributions to peak broadening in CE-ESI-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udseth, H.R.; Barinaga, C.J.; Smith, R.D.
1991-06-01
The applications of capillary electrophoresis (CE) are expanding, and a number of commercial CE instruments are now available. Combining CE with mass spectroscopy (MS), first done with an electrospray ionization (ESI) interface, yields additional advantages. Other interfaces have been proposed, but CE-ESI-MS offers better sensitivity, reduced background, applicability to higher molecular weight (MW) compounds and a better interface design. Our aim has been to exploit the advantages of automated CE coupled to MS for separation of biological materials. Details of our instrument design are provided. Samples used for these studies were a mixture of myoglobin proteins (MW {approximately}17 kilodaltons) andmore » a tryptic digest of tuna cytochrome c. The results show the ESI-MS interface does not broaden bands, and ion dissociation in the mass spectrometer permits the unambiguous identification of fragments in cases where mass alone is insufficient. 2 refs., 2 figs. (MHB)« less
NASA Astrophysics Data System (ADS)
Lueker, Martin; Benson, Bradford A.; Chang, Clarence L.; Cho, Hsiao-Mei; Dobbs, Matt; Holzapfel, William L.; Lanting, Trevor; Lee, Adrian T.; Mehl, Jared; Plagge, Thomas; Shirokoff, Erik; Spieler, Helmuth G.; Vieira, Joaquin D.
2009-06-01
In contemporary cosmic microwave background experiments, bolometric detectors are often background limited, and in this case the sensitivity of instruments can only be improved by increasing the number of background-limited detectors, and so contemporary TES receivers contain as many pixels as possible. Frequency-domain multiplexing (fMUX) is one strategy for reading out many detectors with one SQUID. For any readout system, it is important to carefully evaluate the thermal design of detector, in conjunction with the readout bandwidth, in order to ensure stable electro-thermal feedback (ETF). We demonstrate a novel technique for characterizing the thermal circuit of our detectors, using am AC-bias and the fMUX electronics. This technique is used to study the internal thermal coupling of a TES bolometer. We illustrate how the insights gathered by this technique have been instrumental in improving the stability of our multiplexed detectors for the south pole telescope (SPT).
The optical design concept of SPICA-SAFARI
NASA Astrophysics Data System (ADS)
Jellema, Willem; Kruizinga, Bob; Visser, Huib; van den Dool, Teun; Pastor Santos, Carmen; Torres Redondo, Josefina; Eggens, Martin; Ferlet, Marc; Swinyard, Bruce; Dohlen, Kjetil; Griffin, Doug; Gonzalez Fernandez, Luis Miguel; Belenguer, Tomas; Matsuhara, Hideo; Kawada, Mitsunobu; Doi, Yasuo
2012-09-01
The Safari instrument on the Japanese SPICA mission is a zodiacal background limited imaging spectrometer offering a photometric imaging (R ≍ 2), and a low (R = 100) and medium spectral resolution (R = 2000 at 100 μm) spectroscopy mode in three photometric bands covering the 34-210 μm wavelength range. The instrument utilizes Nyquist sampled filled arrays of very sensitive TES detectors providing a 2’x2’ instantaneous field of view. The all-reflective optical system of Safari is highly modular and consists of an input optics module containing the entrance shutter, a calibration source and a pair of filter wheels, followed by an interferometer and finally the camera bay optics accommodating the focal-plane arrays. The optical design is largely driven and constrained by volume inviting for a compact three-dimensional arrangement of the interferometer and camera bay optics without compromising the optical performance requirements associated with a diffraction- and background-limited spectroscopic imaging instrument. Central to the optics we present a flexible and compact non-polarizing Mach-Zehnder interferometer layout, with dual input and output ports, employing a novel FTS scan mechanism based on magnetic bearings and a linear motor. In this paper we discuss the conceptual design of the focal-plane optics and describe how we implement the optical instrument functions, define the photometric bands, deal with straylight control, diffraction and thermal emission in the long-wavelength limit and interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Erik
In this successful SBIR Phase II effort, HJ Science & Technology, Inc. has designed and built a novel portable instrument capable of performing automated aqueous organochloride (chlorinated solvent) speciation analysis for environmental monitoring at DoE sites. Our technique employs performing organochloride conjugation, labeling the conjugate with an efficient fluorophore, and performing on-chip capillary electrophoresis separation with laser induced fluorescence detection. The key component of the portable instrument is a novel microfluidic chip capable of complete “end-to-end” automation of sample preparation, conjugation, labeling, and μCE separation and detection. In addition, the Phase II prototype includes key supporting instrumentation such as themore » optical module, pneumatic manifold, electronics, software, etc. As such, we have achieved all of the following 4 Phase II technical objectives: 1) Further refine and optimize the “on-chip” automation of the organochloride conjugation and labeling protocol, 2) Further improve the microfluidic chip fabrication process and the pneumatic manifold design in order to address issues related to performance consistency, product yield, performance reliability, and user friendliness, 3) Design and build the supporting components of the Phase II prototype including optical module, electronics, and software, and 4) Assemble the Phase II prototype hardware.« less
The Detector Subsystem for the SXS Instrument on the Astro-H Observatory
NASA Technical Reports Server (NTRS)
Porter, Frederick; Adams, J. S.; Brown, G. V.; Chervenak, J. A.; Chiao, M. P.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.;
2011-01-01
The Soft X-ray Spectrometer (SXS) instrument on the Astro-H observatory is based on a 36 pixel x-ray calorimeter array cooled to 50 mK in a sophisticated spaceflight cryostat. The SXS is a true spatial-spectral instrument, where each spatially discrete pixel functions as a high-resolution spectrometer. Here we discuss the SXS detector subsystem that includes the detector array, the anticoincidence detector, the first stage amplifiers, the thermal and mechanical staging of the detector, and the cryogenic bias electronics. The design of the SXS detector subsystem has significant heritage from the Suzaku/XRS instrument but has some important modifications that increase performance margins and simplify the focal plane assembly. Notable improvements include x-ray absorbers with significantly lower heat capacity, improved load resistors, improved thermometry, and a decreased sensitivity to thermal radiation. These modifications have yielded an energy resolution of 3.5-4.0 eV FWHM at 6 keV for representative devices in the laboratory, giving considerable margin against the 7 eV instrument requirement. We expect similar performance in flight
Design of a multiband near-infrared sky brightness monitor using an InSb detector.
Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo
2018-02-01
Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.
Design of a multiband near-infrared sky brightness monitor using an InSb detector
NASA Astrophysics Data System (ADS)
Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo
2018-02-01
Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.
Temperature sensitivity of Eppley broadband radiometers
NASA Technical Reports Server (NTRS)
Smith, William L., Jr.; Cox, Stephen K.
1990-01-01
Broadband radiometers manufactured by Eppley Laboratories Inc. are commonly used to measure irradiance from both ground-based and aircraft platforms. Namely, the pyranometer (Model PSP) measures irradiance in the .3 to 3.0 micron spectral region while the pyrgeometer (Model PIR) senses energy in the 4 to 50 micron region. The two instruments have a similar thermopile construction but different filters to achieve the appropriate spectral selection. During the fall of 1986, the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) commenced with the first cirrus Intensive Field Observation (IFO) conducted in Central Wisconsin. Due to the nature of this field project, pyranometers and pyrgeometers manufactured by Eppley were flown on NCAR's high altitude research aircraft, the Sabreliner. Inherent in the construction of these radiometers is temperature compensation circuitry designed to make the instrument sensitivity nominally constant over a temperature range from -20 to +40 C. Because the Sabreliner flew at high altitudes where temperatures were as cold as -70 C, it was necessary to determine the radiometers relative sensitivity to temperatures below -20 C and apply appropriate corrections to the FIRE radiation data set. A procedure to perform this calibration is outlined. It is meant to serve as a supplement to calibration procedures.
Contamination Effects on EUV Optics
NASA Technical Reports Server (NTRS)
Tveekrem, J.
1999-01-01
During ground-based assembly and upon exposure to the space environment, optical surfaces accumulate both particles and molecular condensibles, inevitably resulting in degradation of optical instrument performance. Currently, this performance degradation (and the resulting end-of-life instrument performance) cannot be predicted with sufficient accuracy using existing software tools. Optical design codes exist to calculate instrument performance, but these codes generally assume uncontaminated optical surfaces. Contamination models exist which predict approximate end-of-life contamination levels, but the optical effects of these contamination levels can not be quantified without detailed information about the optical constants and scattering properties of the contaminant. The problem is particularly pronounced in the extreme ultraviolet (EUV, 300-1,200 A) and far (FUV, 1,200-2,000 A) regimes due to a lack of data and a lack of knowledge of the detailed physical and chemical processes involved. Yet it is in precisely these wavelength regimes that accurate predictions are most important, because EUV/FUV instruments are extremely sensitive to contamination.
INITIAL ASSESSMENT OF SURFACE PRESSURE CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS
NASA Technical Reports Server (NTRS)
Jones, Henry E.; Wong, Oliver D.; Watkins, A. Neal; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.; Ingram, Joanne L.
2006-01-01
This paper presents results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of fixed system pressure coefficient response to changes in configuration attitude and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect the magnitude of the response. Pressure coefficients were measured using both conventional pressure taps and via pressure sensitive paint. Comparisons between the two methods are presented and demonstrate that the pressure sensitive paint is a promising method; however, further work on the technique is required.
Neutron Decay with PERC: a Progress Report
NASA Astrophysics Data System (ADS)
Konrad, G.; Abele, H.; Beck, M.; Drescher, C.; Dubbers, D.; Erhart, J.; Fillunger, H.; Gösselsberger, C.; Heil, W.; Horvath, M.; Jericha, E.; Klauser, C.; Klenke, J.; Märkisch, B.; Maix, R. K.; Mest, H.; Nowak, S.; Rebrova, N.; Roick, C.; Sauerzopf, C.; Schmidt, U.; Soldner, T.; Wang, X.; Zimmer, O.; Perc Collaboration
2012-02-01
The PERC collaboration will perform high-precision measurements of angular correlations in neutron beta decay at the beam facility MEPHISTO of the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany. The new beam station PERC, a clean, bright, and versatile source of neutron decay products, is designed to improve the sensitivity of neutron decay studies by one order of magnitude. The charged decay products are collected by a strong longitudinal magnetic field directly from inside a neutron guide. This combination provides the highest phase space density of decay products. A magnetic mirror serves to perform precise cuts in phase space, reducing related systematic errors. The new instrument PERC is under development by an international collaboration. The physics motivation, sensitivity, and applications of PERC as well as the status of the design and preliminary results on uncertainties in proton spectroscopy are presented in this paper.
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter
NASA Astrophysics Data System (ADS)
Korablev, O.; Montmessin, F.; Trokhimovskiy, A.; Fedorova, A. A.; Shakun, A. V.; Grigoriev, A. V.; Moshkin, B. E.; Ignatiev, N. I.; Forget, F.; Lefèvre, F.; Anufreychik, K.; Dzuban, I.; Ivanov, Y. S.; Kalinnikov, Y. K.; Kozlova, T. O.; Kungurov, A.; Makarov, V.; Martynovich, F.; Maslov, I.; Merzlyakov, D.; Moiseev, P. P.; Nikolskiy, Y.; Patrakeev, A.; Patsaev, D.; Santos-Skripko, A.; Sazonov, O.; Semena, N.; Semenov, A.; Shashkin, V.; Sidorov, A.; Stepanov, A. V.; Stupin, I.; Timonin, D.; Titov, A. Y.; Viktorov, A.; Zharkov, A.; Altieri, F.; Arnold, G.; Belyaev, D. A.; Bertaux, J. L.; Betsis, D. S.; Duxbury, N.; Encrenaz, T.; Fouchet, T.; Gérard, J.-C.; Grassi, D.; Guerlet, S.; Hartogh, P.; Kasaba, Y.; Khatuntsev, I.; Krasnopolsky, V. A.; Kuzmin, R. O.; Lellouch, E.; Lopez-Valverde, M. A.; Luginin, M.; Määttänen, A.; Marcq, E.; Martin Torres, J.; Medvedev, A. S.; Millour, E.; Olsen, K. S.; Patel, M. R.; Quantin-Nataf, C.; Rodin, A. V.; Shematovich, V. I.; Thomas, I.; Thomas, N.; Vazquez, L.; Vincendon, M.; Wilquet, V.; Wilson, C. F.; Zasova, L. V.; Zelenyi, L. M.; Zorzano, M. P.
2018-02-01
The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7-1.6 μm spectral range with a resolving power of ˜20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2-4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.3 cm-1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ˜60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocampo, Luis
Abstract— Arrays of position-sensitive virtual Frisch-grid CdZnTe (CZT) detectors with enhanced energy resolution have been proposed for spectroscopy and imaging of gamma-ray sources in different applications. The flexibility of the array design, which can employ CZT crystals with thicknesses up to several centimeters in the direction of electron drift, allows for integration into different kinds of field-portable instruments. These can include small hand-held devices, compact gamma cameras and large field-of-view imaging systems. In this work, we present results for a small linear array of such detectors optimized for the low-energy region, 50-400 keV gamma-rays, which is principally intended for incorporationmore » into hand-held instruments. There are many potential application areas for such instruments, including uranium enrichment measurements, storage monitoring, dosimetry and other safeguards-related tasks that can benefit from compactness and isotope-identification capability. The array described here provides a relatively large area with a minimum number of readout channels, which potentially allows the developers to avoid using an ASIC-based electronic readout by substituting it with hybrid preamplifiers followed by digitizers. The array prototype consists of six (5x5.7x25 mm3) CZT detectors positioned in a line facing the source to achieve a maximum exposure area (~10 cm2). Each detector is furnished with 5 mm-wide charge-sensing pads placed near the anode. The pad signals are converted into X-Y coordinates for each interaction event, which are combined with the cathode signals (for determining the Z coordinates) to give 3D positional information for all interaction points. This information is used to correct the response non-uniformity caused by material inhomogeneity, which therefore allows the usage of standard-grade (unselected) CZT crystals, while achieving high-resolution spectroscopic performance for the instrument. In this presentation we describe the design of the array, the results from detailed laboratory tests, and preliminary results from measurements taken during a field test.« less
pyZELDA: Python code for Zernike wavefront sensors
NASA Astrophysics Data System (ADS)
Vigan, A.; N'Diaye, M.
2018-06-01
pyZELDA analyzes data from Zernike wavefront sensors dedicated to high-contrast imaging applications. This modular software was originally designed to analyze data from the ZELDA wavefront sensor prototype installed in VLT/SPHERE; simple configuration files allow it to be extended to support several other instruments and testbeds. pyZELDA also includes simple simulation tools to measure the theoretical sensitivity of a sensor and to compare it to other sensors.
NASA Astrophysics Data System (ADS)
Kislat, Fabian; Abarr, Quin; Beheshtipour, Banafsheh; De Geronimo, Gianluigi; Dowkontt, Paul; Tang, Jason; Krawczynski, Henric
2018-01-01
X-ray polarimetry promises exciting insights into the physics of compact astrophysical objects by providing two observables: the polarization fraction and angle as function of energy. X-Calibur is a balloon-borne hard x-ray scattering polarimeter for the 15- to 60-keV energy range. After the successful test flight in September 2016, the instrument is now being prepared for a long-duration balloon (LDB) flight in December 2018 through January 2019. During the LDB flight, X-Calibur will make detailed measurements of the polarization of Vela X-1 and constrain the polarization of a sample of between 4 and 9 additional sources. We describe the upgraded polarimeter design, including the use of a beryllium scattering element, lower-noise front-end electronics, and an improved fully active CsI(Na) anticoincidence shield, which will significantly increase the instrument sensitivity. We present estimates of the improved polarimeter performance based on simulations and laboratory measurements. We present some of the results from the 2016 flight and show that we solved several problems, which led to a reduced sensitivity during the 2016 flight. We end with a description of the planned Vela X-1 observations, including a Swift/BAT-guided observation strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sourav; Chandratre, V. B.; Sukhwani, Menka
2011-10-20
Monolithic optical sensor with readout electronics are needed in optical communication, medical imaging and scintillator based gamma spectroscopy system. This paper presents the design of three different CMOS photodiode test structures and two readout channels in a commercial CMOS technology catering to the need of nuclear instrumentation. The three photodiode structures each of 1 mm{sup 2} with readout electronics are fabricated in 0.35 um, 4 metal, double poly, N-well CMOS process. These photodiode structures are based on available P-N junction of standard CMOS process i.e. N-well/P-substrate, P+/N-well/P-substrate and inter-digitized P+/N-well/P-substrate. The comparisons of typical characteristics among three fabricated photo sensorsmore » are reported in terms of spectral sensitivity, dark current and junction capacitance. Among the three photodiode structures N-well/P-substrate photodiode shows higher spectral sensitivity compared to the other two photodiode structures. The inter-digitized P+/N-well/P-substrate structure has enhanced blue response compared to N-well/P-substrate and P+/N-well/P-substrate photodiode. Design and test results of monolithic readout electronics, for three different CMOS photodiode structures for application related to nuclear instrumentation, are also reported.« less
WINERED: a warm near-infrared high-resolution spectrograph
NASA Astrophysics Data System (ADS)
Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Motohara, Kentaro; Minami, Atsushi
2006-06-01
We are developing a new near-infrared high-resolution (R max = 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9-1.35 μm. WINERED employs the following two novel approaches in the optical system: (1) portable design with a ZnSe immersion grating and (2) warm optics without any cold stops. These concepts result in several essential advantages as follows: easy to build, align, and maintain; these result in a short development time and low cost. WINERED employs a VIRGO HgCdTe 2k × 2k array by Raytheon as the detector. We are developing our own array control system that aims at a low readout noise (< 10 e -) with a readout time of about 3 sec. Our goal is to achieve a high sensitivity of R = 100,000 for a NIR spectroscopy of 15 mag and 17 mag point sources with 4 m and 10 m telescopes, respectively. We have just finalized the optical design and produced a prototype electronics, which are described in the companion papers by Yasui et al. and Kondo et al., respectively. We plan to complete this instrument by the end of 2008 and hope to attach it to various 4 to 10 m telescopes as a PI-type instrument.
Design of a portable fluoroquinolone analyzer based on terbium-sensitized luminescence
NASA Astrophysics Data System (ADS)
Chen, Guoying
2007-09-01
A portable fluoroquinolone (FQ) analyzer is designed and prototyped based on terbium-sensitized luminescence (TSL). The excitation source is a 327-nm light emitting diode (LED) operated in pulsed mode; and the luminescence signal is detected by a photomultiplier tube (PMT). In comparison to a conventional xenon flashlamp, an LED is small, light, robust, and energy efficient. More importantly, its narrow emission bandwidth and low residual radiation reduce background signal. In pulse mode, an LED operates at a current 1-2 orders of magnitude lower than that of a xenon flashlamp, thus minimizing electromagnetic interference (EMI) to the detector circuitry. The PMT is gated to minimize its response to the light source. These measures lead to reduced background noise in time domain. To overcome pulse-to-pulse variation signal normalization is implemented based on individual pulse energy. Instrument operation and data processing are controlled by a computer running a custom LabVIEW program. Enrofloxacin (ENRO) is used as a model analyte to evaluate instrument performance. The integrated TSL intensity reveals a linear dependence up to 2 ppm. A 1.1-ppb limit of detection (LOD) is achieved with relative standard deviation (RSD) averaged at 5.1%. The background noise corresponds to ~5 ppb. At 19 lbs, this portable analyzer is field deployable for agriculture, environmental and clinical analyses.
ERIC Educational Resources Information Center
Cowan, David T.; Fitzpatrick, Joanne M.; Roberts, Julia D.; While, Alison E.
2004-01-01
This paper discusses the sensitivity of instruments used to measure knowledge and attitudes toward older people. Existing standardized measurement instruments are reviewed, including a detailed examination of Palmore's Facts on Ageing Quiz (FAQ). A recent study conducted by the research team into the knowledge and attitudes of support workers (n =…
ERIC Educational Resources Information Center
Cowan, David T.; Fitzpatrick, Joanne M.; Roberts, Julia D.; While, Alison E.
2004-01-01
This paper discusses the sensitivity of instruments used to measure knowledge and attitudes toward older people. Existing standardized measurement instruments are reviewed, including a detailed examination of Palmore's Facts on Ageing Quiz (FAQ). A recent study conducted by the research team into the knowledge and attitudes of support workers…
Blind detection of giant pulses: GPU implementation
NASA Astrophysics Data System (ADS)
Ait-Allal, Dalal; Weber, Rodolphe; Dumez-Viou, Cédric; Cognard, Ismael; Theureau, Gilles
2012-01-01
Radio astronomical pulsar observations require specific instrumentation and dedicated signal processing to cope with the dispersion caused by the interstellar medium. Moreover, the quality of observations can be limited by radio frequency interference (RFI) generated by Telecommunications activity. This article presents the innovative pulsar instrumentation based on graphical processing units (GPU) which has been designed at the Nançay Radio Astronomical Observatory. In addition, for giant pulsar search, we propose a new approach which combines a hardware-efficient search method and some RFI mitigation capabilities. Although this approach is less sensitive than the classical approach, its advantage is that no a priori information on the pulsar parameters is required. The validation of a GPU implementation is under way.
NASA Technical Reports Server (NTRS)
Hammer, Philip D.; Valero, Francisco P. J.; Peterson, David L.; Smith, William Hayden
1991-01-01
The capabilities of the digital array scanned interferometer (DASI) class of instruments for measuring terrestrial radiation fields over the visible to mid-infrared are evaluated. DASI's are capable of high throughput, sensitivity and spectral resolution and have the potential for field-of-view spatial discrimination (an imaging spectrometer). The simplicity of design and operation of DASI's make them particularly suitable for field and airborne platform based remote sensing. The long term objective is to produce a versatile field instrument which may be applied toward a variety of atmospheric and surface studies. The operation of DASI and its advantages over other spectrometers are discussed.
The Optical Profiling of the Atmospheric Limb (OPAL) CubeSat Experiment
NASA Astrophysics Data System (ADS)
Jeppesen, M.; Miller, J.; Cox, W.; Taylor, M. J.; Swenson, C.; Neilsen, T. L.; Fish, C. S.; Scherliess, L.; Christensen, A. B.; Cleave, M.
2015-12-01
The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument, CubeSat bus and mission are being designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.
Optical Profiling of the Atmospheric Limb CubeSat Experiment
NASA Astrophysics Data System (ADS)
Jeppesen, M.; Taylor, M. J.; Swenson, C.; Marchant, A.
2014-12-01
The Earth's lower thermosphere is an important interface region between the neutral atmosphere and the "space weather" environment. While the high-latitude region of the thermosphere responds promptly to energy inputs, relatively little is known about the global/regional response to these energy inputs. Global temperatures are predicted to respond within 3-6 hours, but the details of the thermal response of the atmosphere as energy transports away from high-latitude source regions is not well understood. The Optical Profiling of the Atmospheric Limb (OPAL) mission aims to characterize this thermal response through observation of the temperature structure of the lower thermosphere at mid- and low-latitudes. The OPAL instrument is designed to map global thermospheric temperature variability over the critical "thermospheric gap" region (~100-140 km altitude) by spectroscopic analysis of molecular oxygen A-band emission (758 - 768 nm). The OPAL instrument is a grating-based imaging spectrometer with refractive optics and a high-efficiency volume holographic grating (VHG). The scene is sampled by 7 parallel slits that form non-overlapping spectral profiles at the focal plane with resolution of 0.5 nm (spectral), 1.5 km (limb profiling), and 60 km (horizontal sampling). A CCD camera at the instrument focal plane delivers low noise and high sensitivity. The instrument is designed to strongly reject stray light from daylight regions of the earth. The OPAL mission is funded by the National Science Foundation (NSF) CubeSat-based Science Missions for Geospace and Atmospheric Research program. The OPAL instrument and mission will be designed, built and executed by a team comprised of students and professors from Utah State University, Dixie State University and the University of Maryland Eastern Shore, with support from professional scientists and engineers from the Space Dynamics Laboratory and Hawk Institute for Space Science.
Spectral envelope sensitivity of musical instrument sounds.
Gunawan, David; Sen, D
2008-01-01
It is well known that the spectral envelope is a perceptually salient attribute in musical instrument timbre perception. While a number of studies have explored discrimination thresholds for changes to the spectral envelope, the question of how sensitivity varies as a function of center frequency and bandwidth for musical instruments has yet to be addressed. In this paper a two-alternative forced-choice experiment was conducted to observe perceptual sensitivity to modifications made on trumpet, clarinet and viola sounds. The experiment involved attenuating 14 frequency bands for each instrument in order to determine discrimination thresholds as a function of center frequency and bandwidth. The results indicate that perceptual sensitivity is governed by the first few harmonics and sensitivity does not improve when extending the bandwidth any higher. However, sensitivity was found to decrease if changes were made only to the higher frequencies and continued to decrease as the distorted bandwidth was widened. The results are analyzed and discussed with respect to two other spectral envelope discrimination studies in the literature as well as what is predicted from a psychoacoustic model.
Design analysis of an MPI human functional brain scanner
Mason, Erica E.; Cooley, Clarissa Z.; Cauley, Stephen F.; Griswold, Mark A.; Conolly, Steven M.; Wald, Lawrence L.
2017-01-01
MPI’s high sensitivity makes it a promising modality for imaging brain function. Functional contrast is proposed based on blood SPION concentration changes due to Cerebral Blood Volume (CBV) increases during activation, a mechanism utilized in fMRI studies. MPI offers the potential for a direct and more sensitive measure of SPION concentration, and thus CBV, than fMRI. As such, fMPI could surpass fMRI in sensitivity, enhancing the scientific and clinical value of functional imaging. As human-sized MPI systems have not been attempted, we assess the technical challenges of scaling MPI from rodent to human brain. We use a full-system MPI simulator to test arbitrary hardware designs and encoding practices, and we examine tradeoffs imposed by constraints that arise when scaling to human size as well as safety constraints (PNS and central nervous system stimulation) not considered in animal scanners, thereby estimating spatial resolutions and sensitivities achievable with current technology. Using a projection FFL MPI system, we examine coil hardware options and their implications for sensitivity and spatial resolution. We estimate that an fMPI brain scanner is feasible, although with reduced sensitivity (20×) and spatial resolution (5×) compared to existing rodent systems. Nonetheless, it retains sufficient sensitivity and spatial resolution to make it an attractive future instrument for studying the human brain; additional technical innovations can result in further improvements. PMID:28752130
Instrument pre-development activities for FLEX
NASA Astrophysics Data System (ADS)
Pettinato, L.; Fossati, E.; Coppo, P. M.; Taiti, A.; Labate, D.; Capanni, A.; Taccola, M.; Bézy, J. L.; Francois, M.; Meynart, R.; Erdmann, L.; Triebel, P.
2017-09-01
The FLuorescence Imaging Spectrometer (FLORIS) is the payload of the FLuorescence Explorer Mission (FLEX) of the European Space Agency. The mission objective is to perform quantitative measurements of the solar induced vegetation fluorescence to monitor photosynthetic activity. FLORIS works in a push-broom configuration and it is designed to acquire data in the 500-780 nm spectral range, with a sampling of 0.1 nm in the oxygen bands (759-769 nm and 686- 697 nm) and 0.5-2.0 nm in the red edge, chlorophyll absorption and Photochemical Reflectance Index bands. FLEX will fly in formation with Sentinel-3 to benefit of the measurements made by the Sentinel-3 instruments OLCI and SLSTR, particularly for cloud screening, proper characterization of the atmospheric state and determination of the surface temperature. The instrument concept is based on a common telescope and two modified Offner spectrometers with reflective concave gratings both for the High Resolution (HR) and Low Resolution (LR) spectrometers. In the frame of the instrument pre-development Leonardo Company (I) has built and tested an elegant breadboard of the instrument consisting of the telescope and the HR spectrometer. The development of the LR spectrometer is in charge of OHB System AG (D) and is currently in the manufacturing phase. The main objectives of the activity are: anticipate the development of the instrument and provide early risk retirement of critical components, evaluate the system performances such as imaging quality parameters, straylight, ghost, polarization sensitivity and environmental influences, verify the adequacy of critical tests such as spectral characterization and straylight, define and optimize instrument alignment procedures. Following a brief overview of the FLEX mission, the paper will cover the design and the development of the optics breadboard with emphasis on the results obtained during the tests and the lessons learned for the flight unit.
Measurement of unsteady surface pressure on rotor blades of fans by pressure-sensitive paint
NASA Astrophysics Data System (ADS)
Yokoyama, Hiroshi; Miura, Kouhei; Iida, Akiyoshi
2017-01-01
To clarify the unsteady pressure distributions on the rotor blades of an axial fan, a pressure-sensitive paint (PSP) technique was used. To capture the image of the rotating fan as a static image, an optical derotator method with a dove prism was adopted. It was confirmed by preliminary experiments with a resonator and a speaker that the pressure fluctuations with 347 Hz can be measured by the present PSP. The measured mean pressure distributions were compared with the predicted results based on large-eddy simulations. The measured instantaneous surface pressure is instrumental to identify acoustic source of fan noise in the design stage.
Expendable bubble tiltmeter for geophysical monitoring
Westphal, J.A.; Carr, M.A.; Miller, W.F.; Dzurisin, D.
1983-01-01
An unusually rugged highly sensitive and inexpensive bubble tiltmeter has been designed, tested, and built in quantity. These tiltmeters are presently used on two volcanoes and an Alaskan glacier, where they continuously monitor surface tilts of geological interest. This paper discusses the mechanical, thermal, and electric details of the meter, and illustrates its performance characteristics in both large (>10-4 radian) and small (<10-6 radian) tilt environments. The meter's ultimate sensitivity is better than 2??10-8 radians rms for short periods (hours), and its useful dynamic range is greater than 10 4. Included is a short description of field use of the instrument for volcano monitoring.
Regression of non-linear coupling of noise in LIGO detectors
NASA Astrophysics Data System (ADS)
Da Silva Costa, C. F.; Billman, C.; Effler, A.; Klimenko, S.; Cheng, H.-P.
2018-03-01
In 2015, after their upgrade, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors started acquiring data. The effort to improve their sensitivity has never stopped since then. The goal to achieve design sensitivity is challenging. Environmental and instrumental noise couple to the detector output with different, linear and non-linear, coupling mechanisms. The noise regression method we use is based on the Wiener–Kolmogorov filter, which uses witness channels to make noise predictions. We present here how this method helped to determine complex non-linear noise couplings in the output mode cleaner and in the mirror suspension system of the LIGO detector.
Voltage Sensors Monitor Harmful Static
NASA Technical Reports Server (NTRS)
2009-01-01
A tiny sensor, small enough to be worn on clothing, now monitors voltage changes near sensitive instruments after being created to alert Agency workers to dangerous static buildup near fuel operations and avionics. San Diego s Quasar Federal Systems received a Small Business Innovation Research (SBIR) contract from Kennedy Space Center to develop its remote voltage sensor (RVS), a dime-sized electrometer designed to measure triboelectric changes in the environment. One of the unique qualities of the RVS is that it can detect static at greater distances than previous devices, measuring voltage changes from a few centimeters to a few meters away, due to its much-improved sensitivity.
A Planar Two-Dimensional Superconducting Bolometer Array for the Green Bank Telescope
NASA Technical Reports Server (NTRS)
Benford, Dominic; Staguhn, Johannes G.; Chervenak, James A.; Chen, Tina C.; Moseley, S. Harvey; Wollack, Edward J.; Devlin, Mark J.; Dicker, Simon R.; Supanich, Mark
2004-01-01
In order to provide high sensitivity rapid imaging at 3.3mm (90GHz) for the Green Bank Telescope - the world's largest steerable aperture - a camera is being built by the University of Pennsylvania, NASA/GSFC, and NRAO. The heart of this camera is an 8x8 close-packed, Nyquist-sampled detector array. We have designed and are fabricating a functional superconducting bolometer array system using a monolithic planar architecture. Read out by SQUID multiplexers, the superconducting transition edge sensors will provide fast, linear, sensitive response for high performance imaging. This will provide the first ever superconducting bolometer array on a facility instrument.
Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT
NASA Astrophysics Data System (ADS)
Osborn, J.; Wilson, R. W.; Sarazin, M.; Butterley, T.; Chacón, A.; Derie, F.; Farley, O. J. D.; Haubois, X.; Laidlaw, D.; LeLouarn, M.; Masciadri, E.; Milli, J.; Navarrete, J.; Townson, M. J.
2018-04-01
Knowledge of the Earth's atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimisation of existing systems but it is required for the design of future instruments. As a minimum this includes integrated astro-atmospheric parameters such as seeing, coherence time and isoplanatic angle, but for more sophisticated systems such as wide field adaptive optics enabled instrumentation the vertical structure of the turbulence is also required. Stereo-SCIDAR is a technique specifically designed to characterise the Earth's atmospheric turbulence with high altitude resolution and high sensitivity. Together with ESO, Durham University has commissioned a Stereo-SCIDAR instrument at Cerro Paranal, Chile, the site of the Very Large Telescope (VLT), and only 20 km from the site of the future Extremely Large Telescope (ELT). Here we provide results from the first 18 months of operation at ESO Paranal including instrument comparisons and atmospheric statistics. Based on a sample of 83 nights spread over 22 months covering all seasons, we find the median seeing to be 0.64" with 50% of the turbulence confined to an altitude below 2 km and 40% below 600 m. The median coherence time and isoplanatic angle are found as 4.18 ms and 1.75" respectively. A substantial campaign of inter-instrument comparison was also undertaken to assure the validity of the data. The Stereo-SCIDAR profiles (optical turbulence strength and velocity as a function of altitude) have been compared with the Surface-Layer SLODAR, MASS-DIMM and the ECMWF weather forecast model. The correlation coefficients are between 0.61 (isoplanatic angle) and 0.84 (seeing).
Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption.
Hartwig, Fernando Pires; Davey Smith, George; Bowden, Jack
2017-12-01
Mendelian randomization (MR) is being increasingly used to strengthen causal inference in observational studies. Availability of summary data of genetic associations for a variety of phenotypes from large genome-wide association studies (GWAS) allows straightforward application of MR using summary data methods, typically in a two-sample design. In addition to the conventional inverse variance weighting (IVW) method, recently developed summary data MR methods, such as the MR-Egger and weighted median approaches, allow a relaxation of the instrumental variable assumptions. Here, a new method - the mode-based estimate (MBE) - is proposed to obtain a single causal effect estimate from multiple genetic instruments. The MBE is consistent when the largest number of similar (identical in infinite samples) individual-instrument causal effect estimates comes from valid instruments, even if the majority of instruments are invalid. We evaluate the performance of the method in simulations designed to mimic the two-sample summary data setting, and demonstrate its use by investigating the causal effect of plasma lipid fractions and urate levels on coronary heart disease risk. The MBE presented less bias and lower type-I error rates than other methods under the null in many situations. Its power to detect a causal effect was smaller compared with the IVW and weighted median methods, but was larger than that of MR-Egger regression, with sample size requirements typically smaller than those available from GWAS consortia. The MBE relaxes the instrumental variable assumptions, and should be used in combination with other approaches in sensitivity analyses. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association
Purging sensitive science instruments with nitrogen in the STS environment
NASA Technical Reports Server (NTRS)
Lumsden, J. M.; Noel, M. B.
1983-01-01
Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).
NASA Astrophysics Data System (ADS)
Galkin, A.; Klump, J.; Wiedenbeck, M.
2012-04-01
Secondary Ion Mass Spectrometers (SIMS) is an highly sensitive technique for analyzing the surfaces of solids and thin film samples, but has the major drawback that such instruments are both rare and expensive. The Virtual SIMS project aims to design, develop and operate the IT infrastructure around the CAMECA IMS 1280-HR SIMS at GFZ Potsdam. The system will cover the whole spectrum of the procedures in the lab - from the online application for measurement time, to the remote access to the instrument and finally the maintenance of the data for publishing and future re-use. A virtual lab infrastructure around the IMS 1280 will enable remote access to the instrument and make measurement time available to the broadest possible user community. Envisioned is that the IT infrastructure would consist of the following: web portal, data repository, sample repository, project management software, communication arrangements between the lab staff and distant researcher and remote access to the instruments. The web portal will handle online applications for the measurement time. The data from the experiments, the monitoring sensor logs and the lab logbook entries are to be stored and archived. Researchers will be able to access their data remotely in real time, thus imposing a user rights management strucuture. Also planned is that all samples and the standards will be assigned a unique International GeoSample Number (IGSN) and that the images of the samples will be stored and made accessible in addition to any additional documents which might be uploaded by the researcher. The project management application will schedule the application process, the measurements times, notifications and alerts. A video conference capability is forseen for communication between the Potsdam staff and the remote researcher. The remote access to the instruments requires a sophisticated client-server solution. This highly sensitive instrument has to be controlled in real-time with latencies diminished to a minimum. Also, failures and shortages of the internet connection, as well as possible outages on the client side, have to be considered and safe fallbacks for such events must be provided. The level of skills of the researcher remotely operating the instrument will define the scope of control given during an operating session. An important aspect of the project is the design of the virtual lab system in collaboration with the laboratory operators and the researchers who will use the instrument and its peripherals. Different approaches for the IT solutions will be tested and evaluated, so imporved guidelines can evolve from obsperved operating performance.
A continuous-flow capillary mixing method to monitor reactions on the microsecond time scale.
Shastry, M C; Luck, S D; Roder, H
1998-01-01
A continuous-flow capillary mixing apparatus, based on the original design of Regenfuss et al. (Regenfuss, P., R. M. Clegg, M. J. Fulwyler, F. J. Barrantes, and T. M. Jovin. 1985. Rev. Sci. Instrum. 56:283-290), has been developed with significant advances in mixer design, detection method and data analysis. To overcome the problems associated with the free-flowing jet used for observation in the original design (instability, optical artifacts due to scattering, poor definition of the geometry), the solution emerging from the capillary is injected directly into a flow-cell joined to the tip of the outer capillary via a ground-glass joint. The reaction kinetics are followed by measuring fluorescence versus distance downstream from the mixer, using an Hg(Xe) arc lamp for excitation and a digital camera with a UV-sensitized CCD detector for detection. Test reactions involving fluorescent dyes indicate that mixing is completed within 15 micros of its initiation and that the dead time of the measurement is 45 +/- 5 micros, which represents a >30-fold improvement in time resolution over conventional stopped-flow instruments. The high sensitivity and linearity of the CCD camera have been instrumental in obtaining artifact-free kinetic data over the time window from approximately 45 micros to a few milliseconds with signal-to-noise levels comparable to those of conventional methods. The scope of the method is discussed and illustrated with an example of a protein folding reaction. PMID:9591695
NASA Technical Reports Server (NTRS)
Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)
2001-01-01
Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with the lower superheat was sensitive to the thermal environment around the compensation chamber, while the LHP with the higher superheat (similar in design to DM LHP) was not. In response to the test results the placement of the starter heater will be optimized for the flight instrument testing for higher achieved superheat. This presentation discusses startup behavior, overall conductance of a radiator system, low power operation, high power operation, temperature control stability, and control heater power requirements as measured during this acceptance thermal vacuum test. A brief summary of 'lessons learned' will be included.
A New Airborne Submillimetre Demonstrator
NASA Astrophysics Data System (ADS)
Lee, Clare; Baran, Anthony; Fox, Stuart; Harlow, Chawn; King, Rob; Rogers, Stuart; Rule, Ian
2013-12-01
ISMAR (International SubMillimetre Airborne Radiometer) is a new aircraft remote sensing instrument, with heterodyne receivers from 118 to 664GHz. It has been funded by the Met Office and ESA, and has been designed to allow additional channels to be added, including 874GHz. Submillimetre frequencies are very sensitive to ice clouds and can provide direct retrievals of Ice Water Path [1] which is an important parameter in General Circulation Models. ISMAR will be used as a satellite demonstrator as well as for investigating specific scientific case studies. It can be used in the preparation for the usage of Ice Cloud Imager (ICI) data on MetOp- SG and for calibration/validation post satellite launch. The instrument has been certified on the FAAM BAe- 146 aircraft and is currently undergoing a channel upgrade. This paper describes the instrument, its applications and the future aircraft campaign plans.
Calibration and operation of the Faint Object Spectrograph
NASA Technical Reports Server (NTRS)
Harms, R.; Beaver, E.; Burbidge, E.; Hier, R.; Allen, R.; Angel, R.; Bartko, F.; Bohlin, R.; Ford, H.; Davidson, A.
1984-01-01
The design and basic performance characteristics of the Faint Object Spectrograph (FOS), one of five instruments built for use on the Space Telescope observatory, is summarized briefly. The results of the recently completed instrument-level calibration are presented with special emphasis on issues affecting plans for FOS astronomical observations. Examples include such fundamental characteristics as: limiting magnitudes (system sensitivity and noise figures), spectral coverage and resolution, scattered light properties, and instrumental polarization and modulation efficiencies. Also gated toward intended users, a rather detailed description of FOS operating modes is given. The discussion begins with the difficulties anticipated during target acquisition and their hoped-for resolution. Both the 'normal' spectroscopic operating modes of the FOS and its 'exotic' features (e.g. spectropolarimetric, time-tagged, and time-resolved modes) are presented. The paper concludes with an overview of the activities to assure proper alignment and operation of the FOS within the entire Space Telescope system (orbital and ground-based).
ASTER's First Views of Red Sea, Ethiopia - Thermal-Infrared (TIR) Image (monochrome)
NASA Technical Reports Server (NTRS)
2000-01-01
ASTER succeeded in acquiring this image at night, which is something Visible/Near Infrared VNIR) and Shortwave Infrared (SWIR) sensors cannot do. The scene covers the Red Sea coastline to an inland area of Ethiopia. White pixels represent areas with higher temperature material on the surface, while dark pixels indicate lower temperatures. This image shows ASTER's ability as a highly sensitive, temperature-discerning instrument and the first spaceborne TIR multi-band sensor in history.
The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately.The ASTER instrument was built in Japan for the Ministry of International Trade and Industry. A joint United States/Japan Science Team is responsible for instrument design, calibration, and data validation. ASTER is flying on the Terra satellite, which is managed by NASA's Goddard Space Flight Center, Greenbelt, MD.High Spectral Resolution Lidar for atmospheric temperature profiling.
NASA Astrophysics Data System (ADS)
Razenkov, I.; Eloranta, E. W.
2017-12-01
The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison is equipped with two iodine absorption filters with different line widths (1.8 GHz and 2.85 GHz). The filters are implemented to discriminate between Mie and Rayleigh backscattering and to resolve temperature sensitive changes in Rayleigh spectrum for atmospheric temperature profile measurements. This measurement capability makes the instrument intrinsically and absolutely calibrated. HSRL has a shared transmitter-receiver telescope and operates in the eye-safe mode with the product of laser average power and telescope aperture less than 0.025 𝑊𝑚2 at 532 nm. With this low-power prototype instrument we have achieved temperature profile measurements extending above tropopause with a time resolution of several hours. Further instrument optimizations will reduce systematic measurement errors and will improve a signal-to-noise ratio providing temperature data comparable to a standard radiosonde with higher time resolution.
Status of the Simbol-X Background Simulation Activities
NASA Astrophysics Data System (ADS)
Tenzer, C.; Briel, U.; Bulgarelli, A.; Chipaux, R.; Claret, A.; Cusumano, G.; Dell'Orto, E.; Fioretti, V.; Foschini, L.; Hauf, S.; Kendziorra, E.; Kuster, M.; Laurent, P.; Tiengo, A.
2009-05-01
The Simbol-X background simulation group is working towards a simulation based background and mass model which can be used before and during the mission. Using the Geant4 toolkit, a Monte-Carlo code to simulate the detector background of the Simbol-X focal plane instrument has been developed with the aim to optimize the design of the instrument. Achieving an overall low instrument background has direct impact on the sensitivity of Simbol-X and thus will be crucial for the success of the mission. We present results of recent simulation studies concerning the shielding of the detectors with respect to the diffuse cosmic hard X-ray background and to the cosmic-ray proton induced background. Besides estimates of the level and spectral shape of the remaining background expected in the low and high energy detector, also anti-coincidence rates and resulting detector dead time predictions are discussed.
NASA Technical Reports Server (NTRS)
Levy, G.; Brown, R. A.
1986-01-01
A simple economical objective analysis scheme is devised and tested on real scatterometer data. It is designed to treat dense data such as those of the Seasat A Satellite Scatterometer (SASS) for individual or multiple passes, and preserves subsynoptic scale features. Errors are evaluated with the aid of sampling ('bootstrap') statistical methods. In addition, sensitivity tests have been performed which establish qualitative confidence in calculated fields of divergence and vorticity. The SASS wind algorithm could be improved; however, the data at this point are limited by instrument errors rather than analysis errors. The analysis error is typically negligible in comparison with the instrument error, but amounts to 30 percent of the instrument error in areas of strong wind shear. The scheme is very economical, and thus suitable for large volumes of dense data such as SASS data.
Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J
2007-10-01
We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.
Multimode bolometer development for the PIXIE instrument
NASA Astrophysics Data System (ADS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-07-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polar- ization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With ˜ 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Multimode Bolometer Development for the PIXIE Instrument
NASA Technical Reports Server (NTRS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With approximately 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Multimode Bolometer Development for the Primordial Inflation Explorer (PIXIE) Instrument
NASA Technical Reports Server (NTRS)
Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.
2016-01-01
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background [1]. In this work, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a tensioning scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
Maintenance of contamination sensitive surfaces on board long-term space vehicles
NASA Technical Reports Server (NTRS)
Phillips, A.; Maag, C.
1984-01-01
In the current age, highly sensitive instruments are being flown on spacecraft, and questions of contamination have become important. The present investigation is concerned with the available approaches which can provide long-term protection for contamination sensitive surfaces. Aspects and sources of spacecraft contamination are examined, taking into account materials outgassing, particulates, propulsion system interaction, overboard venting, man-made and cosmic debris, and atomic oxygen/ambient atmosphere interaction. Suitable protection approaches provided by current technology are discussed, giving attention to aperture covers, a possibility for a retractable cover design, gaseous purges, options for prolonging the lifetime of the thermal control system, and plume shields. Some new possibilities considered are related to an early warning system for excessive amounts of contamination, a molecular/wake shield, and the use of atomic oxygen.
Teaching ethics in psychiatry: a one-day workshop for clinical students.
Green, B; Miller, P D; Routh, C P
1995-01-01
In this paper we describe the objectives of teaching medical ethics to undergraduates and the teaching methods used. We describe a workshop used in the University of Liverpool Department of Psychiatry, designed to enhance ethical sensitivity in psychiatry. The workshop reviews significant historical and current errors in the ethical practice of psychiatry and doctors' defence mechanisms against accepting responsibility for deficiencies in ethical practice. The workshop explores the student doctors' own group ethos in response to ethical dilemmas, and demonstrates how the individual contributes to and is responsible for the group ethos through participation and also through nonparticipation. The student feedback about the workshop is reviewed. The Toronto Ethical Sensitivity Instrument was used to assess whether or not the workshop altered sensitivity. Compared to a control group the attenders' sensitivity was significantly increased (on Student's t-test p equals or is less than 0.002). PMID:7473644
Inficon Transpector MPH Mass Spectrometer Random Vibration Test Report
NASA Technical Reports Server (NTRS)
Santiago-Bond, Jo; Captain, Janine
2015-01-01
The purpose of this test report is to summarize results from the vibration testing of the INFICON Transpector MPH100M model Mass Spectrometer. It also identifies requirements satisfied, and procedures used in the test. As a payload of Resource Prospector, it is necessary to determine the survivability of the mass spectrometer to proto-qualification level random vibration. Changes in sensitivity of the mass spectrometer can be interpreted as a change in alignment of the instrument. The results of this test will be used to determine any necessary design changes as the team moves forward with flight design.
NASA Astrophysics Data System (ADS)
Pestana, Noah Benjamin
Accurate quantification of circulating cell populations is important in many areas of pre-clinical and clinical biomedical research, for example, in the study of cancer metastasis or the immune response following tissue and organ transplants. Normally this is done "ex-vivo" by drawing and purifying a small volume of blood and then analyzing it with flow cytometry, hemocytometry or microfludic devices, but the sensitivity of these techniques are poor and the process of handling samples has been shown to affect cell viability and behavior. More recently "in vivo flow cytometry" (IVFC) techniques have been developed where fluorescently-labeled cells flowing in a small blood vessel in the ear or retina are analyzed, but the sensitivity is generally poor due to the small sampling volume. To address this, our group recently developed a method known as "Diffuse Fluorescence Flow Cytometry" (DFFC) that allows detection and counting of rare circulating cells with diffuse photons, offering extremely high single cell counting sensitivity. In this thesis, an improved DFFC prototype was designed and validated. The chief improvements were three-fold, i) improved optical collection efficiency, ii) improved detection electronics, and iii) development of a method to mitigate motion artifacts during in vivo measurements. In combination, these improvements yielded an overall instrument detection sensitivity better than 1 cell/mL in vivo, which is the most sensitive IVFC system reported to date. Second, development and validation of a low-cost microfluidic device reader for analysis of ocular fluids is described. We demonstrate that this device has equivalent or better sensitivity and accuracy compared a fluorescence microscope, but at an order-of-magnitude reduced cost with simplified operation. Future improvements to both instruments are also discussed.
Stable Imaging for Astronomy (SIA)
NASA Astrophysics Data System (ADS)
Beaulieu, Mathilde; Ottogalli, Sebastien; Preis, Olivier; Bresson, Yves; Rivet, Jean-Pierre; Abe, Lyu; Vakili, Farrokh
2014-07-01
One of the most challenging fields of astronomical instrumentation is probably high-contrast imaging since it ultimately combines ultra-high sensitivity at low flux and the ability to cope with photon flux contrasts of several hundreds of millions or even more. These two aspects implicitly require that high-contrast instruments should be highly stable in the sense of the reproducibility of their measurements at different times, but also, continuously stable over time. In most high contrast instruments or experiments, their sensitivity is broken after at most tens of minutes of operation due to uncontrolled and unknown behaviour of the whole experiment regarding the environmental conditions. In this paper, we introduce a general approach of an exhaustive stability study for high-contrast imaging that has been initiated at Lagrange Laboratory, Observatoire de la Côte d'Azur (OCA). On a practical ground, one of the fundamental issues of this study is the metrology, which is the basis of all reproducible measurements. We describe a small experiment designed to understand the behaviour of one of our ultra-precise metrology tools (a commercial sub-nanometric 3-way interferometer) and derive the conditions under which its operation delivers reliable results. The approach will apply to the high-contrast imaging test-bench SPEED, under development at OCA.
Satellite oceanography - The instruments
NASA Technical Reports Server (NTRS)
Stewart, R. H.
1981-01-01
It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.
NASA Technical Reports Server (NTRS)
Cook, William B.; Crawford, James H.; Diskin, Glenn S.; Gordley, Larry L.; Rubio, Manuel; Sachse, Glen W.
2008-01-01
We have developed an instrument concept that will enable the measurement of CO from the top of the atmosphere to the Earth's surface with very high sensitivity and at the high spatial and temporal resolutions required by the NRC Decadal Survey mission Active Sensing of Carbon Dioxide (CO2) over Nights, Days and Seasons (ASCENDS). We are developing an innovative CO sensor that will enable the ASCENDS mission to differentiate between anthropogenic and natural sources and sinks of global carbon. The NRC Decadal Survey places particular emphasis on retrieving CO information for the planetary boundary layer. Measurement made using both the 2.3 micron and 4.7 micron channels are needed to achieve the sensitivity required in the lower atmosphere where the degree of CO - CO2 correlation is indicative of anthropogenic sources of CO2. Measurements made using only the 4.7 micron channel cannot provide sufficient sensitivity to CO in the very lowest layers of the atmosphere. The fundamental method we use is Gas Filter Correlation Radiometry (GFCR), a highly successful technique used in other airborne and space-based missions for detecting trace species in the Earth's atmosphere. Our version of GFCR overcomes many of the limitations encountered by prior and existing instruments, allowing us to measure weak signals from small targets very quickly and with extremely high specificity by employing a new dual beam radiometer concept using a focal plane array. Our design will provide a means to make the desired CO measurements for the ASCENDS mission. A simple change in gas filter cell contents would allow the same hardware to measure CH4 with high precision under the nominal ASCENDS mission spatial and temporal constraints. All critical components in the sensor design are mature, many subsystems tested, and the system has been extensively modeled, bringing it to a present Technology Readiness Level (TRL) of 3 (though some individual components are at TRLs 6-9). We are presently developing critical components for the new spectrometer and advancing our understanding of the measurement requirements for both CO and CH4. This new GFCR technique/sensor will enable measurements of trace gases with high sensitivity while maintaining the inherent robustness and simplicity of the more traditional radiometer hardware. Initial estimates of cost/risk of a spacebased 2-channel GFCR indicate that our design is extremely cost effective and will fit within existing ASCENDS mission budget constraints as determined by the NRC Decadal Survey and a NASA-sponsored mission study.
NASA Astrophysics Data System (ADS)
Acernese, F.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.
2008-03-01
This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve both for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result, for example, is that the measured natural resonance frequency of the instrument is 70 mHz with a Q = 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of mHz with a more refined mechanical tuning. Results on the readout system based on polarimetric homodyne Michelson interferometer is discussed.
Design and Performance of the Antenna-Coupled Lumped-Element Kinetic Inductance Detector
NASA Astrophysics Data System (ADS)
Barry, P. S.; Doyle, S.; Hornsby, A. L.; Kofman, A.; Mayer, E.; Nadolski, A.; Tang, Q. Y.; Vieira, J.; Shirokoff, E.
2018-05-01
Focal plane arrays consisting of low-noise, polarisation-sensitive detectors have made possible the pioneering advances in the study of the cosmic microwave background (CMB). To make further progress, the next generation of CMB experiments (e.g. CMB-S4) will require a substantial increase in the number of detectors compared to current instruments. Arrays of kinetic inductance detectors (KIDs) provide a possible path to realising such large-format arrays owing to their intrinsic multiplexing advantage and relative cryogenic simplicity. In this paper, we report on the design of a variant of the traditional KID design: the antenna-coupled lumped-element KID. A polarisation-sensitive twin-slot antenna placed behind an optimised hemispherical lens couples power onto a thin-film superconducting microstrip line. The power is then guided into the inductive section of an aluminium KID, where it is absorbed and modifies both the resonant frequency and quality factor of the KID. We present the various aspects of the design and preliminary results from the first set of seven-element prototype arrays and compare to the expected modelled performance.
The SWIFT Gamma-Ray Burst X-Ray Telescope
NASA Technical Reports Server (NTRS)
Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.
2006-01-01
The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.
Angular and Polarization Response of Multimode Sensors with Resistive-Grid Absorbers
NASA Technical Reports Server (NTRS)
Kusaka, Akito; Wollack, Edward J.; Stevenson, Thomas R.
2014-01-01
High sensitivity receiver systems with near ideal polarization sensitivity are highly desirable for development of millimeter and sub-millimeter radio astronomy. Multimoded bolometers provide a unique solution to achieve such sensitivity, for which hundreds of single-mode sensors would otherwise be required. The primary concern in employing such multimoded sensors for polarimetery is the control of the polarization systematics. In this paper, we examine the angular- and polarization- dependent absorption pattern of a thin resistive grid or membrane, which models an absorber used for a multimoded bolometer. The result shows that a freestanding thin resistive absorber with a surface resistivity of eta/2, where eta is the impedance of free space, attains a beam pattern with equal E- and H-plane responses, leading to zero cross polarization. For a resistive-grid absorber, the condition is met when a pair of grids is positioned orthogonal to each other and both have a resistivity of eta/2. When a reflective backshort termination is employed to improve absorption efficiency, the cross-polar level can be suppressed below -30 dB if acceptance angle of the sensor is limited to < or approx. 60deg. The small cross-polar systematics have even-parity patterns and do not contaminate the measurements of odd-parity polarization patterns, for which many of recent instruments for cosmic microwave background are designed. Underlying symmetry that suppresses these cross-polar systematics is discussed in detail. The estimates and formalism provided in this paper offer key tools in the design consideration of the instruments using the multimoded polarimeters.
An alpha particle instrument with alpha, proton, and X-ray modes for planetary chemical analyses
NASA Technical Reports Server (NTRS)
Economou, T. E.; Turkevich, A. L.
1976-01-01
The interaction of alpha particles with matter is employed in a compact instrument that could provide rather complete in-situ chemical analyses of surfaces and thin atmospheres of extraterrestrial bodies. The instrument is a miniaturized and improved version of the Surveyor lunar instrument. The backscattering of alpha particles and (alpha, p) reactions provide analytical data on the light elements (carbon-iron). An X-ray mode that detects the photons produced by the alpha sources provides sensitivity and resolution for the chemical elements heavier than about silicon. The X-rays are detected by semiconductor detectors having a resolution between 150 and 250 eV at 5.9 keV. Such an instrument can identify and determine with good accuracy 99 percent of the atoms (except hydrogen) in rocks. For many trace elements, the detecting sensitivity is a few ppm. Auxiliary sources could be used to enhance the sensitivities for elements of special interest. The instrument could probably withstand the acceleration involved in semi-hard landings.
Sensitive, Specific Complementary - Strand Optical Detection of Viral RNA
1997-06-01
chemistry and molecular biology, positions us to obtain measurements leaps and bounds ahead of those any other research facility can make -- in...signal-to-noise will be much reduced. Secondly, that, in the ultimate design of our instrument, we can use this effect to generate a differential...sensor before, with avidin as mediator. We chose instead, however, to use goat anti-biotin IgG as a mediator; the anti-biotin offers the following
Qualification campaign of the 50 mK hybrid sorption-ADR cooler for SPICA/SAFARI
NASA Astrophysics Data System (ADS)
Duval, J.-M.; Duband, L.; Attard, A.
2015-12-01
SAFARI (SpicA FAR-infrared Instrument) is an infrared instrument planned to be part of the SPICA (SPace Infrared telescope for Cosmology and Astrophysics) Satellite. It will offer high spectral resolution in the 30 - 210 μm frequency range. SAFARI will benefit from the cold telescope of SPICA and to obtain the required detectors sensitivity, a temperature of 50 mK is required. This temperature is reached thanks to the use of a hybrid sorption - ADR (Adiabatic Demagnetization Refrigerator) cooler presented here. This cooler provides respectively 14 μW and 0.4 μW of cooling power at 300 mK and 50 mK. The cooler is planned to advantageously use two thermal interfaces of the instrument at 1.8 and 4.9 K. One of the challenges discussed in this paper is the low power available at each intercept. A dedicated laboratory electronic is being designed based on previous development with a particular focus on the 50 mK readout. Temperature regulation at 50 mK is also discussed. This cooler has been designed following flight constraints and will reach a high TRL, including mechanical and environmental tests at the end of the on-going qualification campaign.
Development of a Lunar Scintillometer as part of the national large optical telescope site survey
NASA Astrophysics Data System (ADS)
Surendran, Avinash; Parihar, Padmakar S.; Banyal, Ravinder K.; Kalyaan, Anusha
2018-03-01
Ground layer turbulence is a very important site characterization parameter used to assess the quality of an astronomical site. The Lunar Scintillometer is a simple and effective site-testing device for measuring the ground layer turbulence. It consists of a linear array of photodiodes which are sensitive to the slight variations in the moon's brightness due to scintillation by the lower layers of the Earth's atmosphere. The covariance of intensity values between the non-redundant photodiode baselines can be used to measure the turbulence profile from the ground up to a height determined by the furthest pair of detectors. The six channel lunar scintillometer that has been developed at the Indian Institute of Astrophysics is based closely on an instrument built by the team led by Andrei Tokovinin of Cerro Tololo Inter-American Observatory (CTIO), Chile (Tokovinin et al., Mon. Not. R. Astron. Soc. 404(3), 1186-1196 2010). We have fabricated the instrument based on the existing electronic design, and have worked on the noise analysis, an EMI (Electromagnetic Induction) resistant PCB design and the software pipeline for analyzing the data from the same. The results from the instrument's multi-year campaign at Mount Saraswati, Hanle is also presented.
Overview on grating developments at ESA
NASA Astrophysics Data System (ADS)
Guldimann, B.; Deep, A.; Vink, R.; Harnisch, B.; Kraft, S.; Sierk, B.; Bazalgette, G.; Bézy, J.-L.
2017-11-01
In the frame of recent studies and missions, ESA has been performing various pre-developments of optical gratings for instruments operating at wavelengths from the UV up to the SWIR. The instrument requirements of Sentinel-4, Sentinel-5, CarbonSat and FLEX are driving the need for advanced designs and technologies leading to gratings with high efficiency, high spectral resolution, low stray light and low polarization sensitivities. Typical ESA instruments (e.g. Sciamachy, GOME, MERIS, OLCI, NIRSpec) were and are based on ruled gratings or gratings manufactured with one holographic photoresist mask layer which is transferred to an optical substrate (e.g. glass, glass ceramic) with dry etching methods and subsequently either coated with a reflective coating or used as a mold for replication. These manufacturing methods lead to blazed grating profiles with a metallic reflective surface. The vast majority of spectrometers on ground are still based on such gratings. In general, gratings based on grooved metallic surfaces tend for instance to polarize the incoming light significantly and are therefore not always suitable for ESA's needs of today. Gratings made for space therefore evolved to many other designs and concepts which will be reported in this paper.
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.
2014-01-01
High-performance, integrated spectrometers operating in the far-infrared and submillimeter ranges promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a 4 inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (micron-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of (is) approximately 90% has been developed for initial demonstration and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S. Harvey; Stevenson, Thomas R.; Wollack, Edward J.
2013-01-01
High-performance, integrated spectrometers operating in the far-infrared and sub-millimeter promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a four-inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (mu-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of approx. 90% has been developed for initial demonstration, and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.
Microcontroller based spectrophotometer using compact disc as diffraction grid
NASA Astrophysics Data System (ADS)
Bano, Saleha; Altaf, Talat; Akbar, Sunila
2010-12-01
This paper describes the design and implementation of a portable, inexpensive and cost effective spectrophotometer. The device combines the use of compact disc (CD) media as diffraction grid and 60 watt bulb as a light source. Moreover it employs a moving slit along with stepper motor for obtaining a monochromatic light, photocell with spectral sensitivity in visible region to determine the intensity of light and an amplifier with a very high gain as well as an advanced virtual RISC (AVR) microcontroller ATmega32 as a control unit. The device was successfully applied to determine the absorbance and transmittance of KMnO4 and the unknown concentration of KMnO4 with the help of calibration curve. For comparison purpose a commercial spectrophotometer was used. There are not significant differences between the absorbance and transmittance values estimated by the two instruments. Furthermore, good results are obtained at all visible wavelengths of light. Therefore, the designed instrument offers an economically feasible alternative for spectrophotometric sample analysis in small routine, research and teaching laboratories, because the components used in the designing of the device are cheap and of easy acquisition.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng
2017-11-18
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang
2017-01-01
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587
Cataldo, Giuseppe; Hsieh, Wen-Ting; Huang, Wei-Chung; Moseley, S Harvey; Stevenson, Thomas R; Wollack, Edward J
2014-02-20
High-performance, integrated spectrometers operating in the far-infrared and submillimeter ranges promise to be powerful tools for the exploration of the epochs of reionization and initial galaxy formation. These devices, using high-efficiency superconducting transmission lines, can achieve the performance of a meter-scale grating spectrometer in an instrument implemented on a 4 inch silicon wafer. Such a device, when combined with a cryogenic telescope in space, provides an enabling capability for studies of the early universe. Here, the optical design process for Micro-Spec (μ-Spec) is presented, with particular attention given to its two-dimensional diffractive region, where the light of different wavelengths is focused on the different detectors. The method is based on the stigmatization and minimization of the light path function in this bounded region, which results in an optimized geometrical configuration. A point design with an efficiency of ~90% has been developed for initial demonstration and can serve as the basis for future instruments. Design variations on this implementation are also discussed, which can lead to lower efficiencies due to diffractive losses in the multimode region.
Callegary, J.B.; Ferré, T.P.A.; Groom, R.W.
2012-01-01
There is an ongoing effort to improve the understanding of the correlation of soil properties with apparent soil electrical conductivity as measured by low-induction-number electromagnetic-induction (LIN FEM) instruments. At a minimum, the dimensions of LIN FEM instruments' sample volume, the spatial distribution of sensitivity within that volume, and implications for surveying and analyses must be clearly defined and discussed. Therefore, a series of numerical simulations was done in which a conductive perturbation was moved systematically through homogeneous soil to elucidate the three-dimensional sample volume of LIN FEM instruments. For a small perturbation with electrical conductivity similar to that of the soil, instrument response is a measure of local sensitivity (LS). Our results indicate that LS depends strongly on the orientation of the instrument's transmitter and receiver coils and includes regions of both positive and negative LS. Integration of the absolute value of LS from highest to lowest was used to contour cumulative sensitivity (CS). The 90% CS contour was used to define the sample volume. For both horizontal and vertical coplanar coil orientations, the longest dimension of the sample volume was at the surface along the main instrument axis with a length of about four times the intercoil spacing (s) with maximum thicknesses of about 1 and 0.3 s, respectively. The imaged distribution of spatial sensitivity within the sample volume is highly complex and should be considered in conjunction with the expected scale of heterogeneity before the use and interpretation of LIN FEM for mapping and profiling. ?? Soil Science Society of America.
Ma, Wei-Fen; Wu, Po-Lun; Yang, Shu-Ju; Cheng, Kuang-Fu; Chiu, Hsien-Tsai; Lane, Hsien-Yuan
2010-12-01
Early interventions can improve treatment outcomes for individuals with major psychiatric disorders and with nonspecific symptoms but increasingly impaired cognitive perception, emotions, and behaviour. One way used to identify people susceptible to psychosis is through the schizotypal personality trait. Persons with schizotypal characteristics have been identified with the widely used Schizotypal Personality Questionnaire-Brief. However, no suitable instruments are available to screen individuals in the Taiwanese population for evidence of early psychotic symptoms. The purpose of this study was to test the sensitivity and specificity of the Chinese version of the Schizotypal Personality Questionnaire-Brief for identifying undergraduate students' susceptibility to psychosis. Two-stage, cross-sectional survey design. The self-administered scale was tested in a convenience sample of 618 undergraduate students at a medical university in Taiwan. Among these students, 54 completed the scale 2 weeks apart for test-retest reliability, and 80 were tested to identify their susceptibility to psychosis. In Stage I, participants with scores in the top 6.5% were classified as the high-score group (n=40). The control group (n=40) was randomly selected from the remaining participants with scores <15 and matched by gender. These 80 students were asked to participate in psychiatric interviews in Stage II. The instrument was tested for reliability using intraclass correlation coefficients and the Kuder-Richardson formula 20. The instrument was analysed for optimal sensitivity and specificity using odds-ratio analysis and receiver operating characteristic curves. The 22-item Chinese version of the Schizotypal Personality Questionnaire-Brief had a 2-week test-retest reliability of 0.82 and internal consistency of 0.76. The optimal cut-off score was 17, with odds ratios of 24.4 and an area under the receiver operating characteristic curves of 0.83. The instrument had a sensitivity of 80.0% and specificity of 85.9% in identifying undergraduate students' susceptibility to psychosis. The Chinese version Schizotypal Personality Questionnaire-Brief is a reliable instrument, but should not be used as a screening tool until its psychometric properties have been evaluated in more detail. Other screening tools need to be used in future studies with the CSPQ-B to improve the accuracy of identifying susceptibility to psychosis among young adults. Copyright © 2010. Published by Elsevier Ltd.
Measuring the Sensitivity and Construct Validity of 6 Utility Instruments in 7 Disease Areas.
Richardson, Jeff; Iezzi, Angelo; Khan, Munir A; Chen, Gang; Maxwell, Aimee
2016-02-01
Health services that affect quality of life (QoL) are increasingly evaluated using cost utility analyses (CUA). These commonly employ one of a small number of multiattribute utility instruments (MAUI) to assess the effects of the health service on utility. However, the MAUI differ significantly, and the choice of instrument may alter the outcome of an evaluation. The present article has 2 objectives: 1) to compare the results of 3 measures of the sensitivity of 6 MAUI and the results of 6 tests of construct validity in 7 disease areas and 2) to rank the MAUI by each of the test results in each disease area and by an overall composite index constructed from the tests. Patients and the general public were administered a battery of instruments, which included the 6 MAUI, disease-specific QoL instruments (DSI), and 6 other comparator instruments. In each disease area, instrument sensitivity was measured 3 ways: by the unadjusted mean difference in utility between public and patient groups, by the value of the effect size, and by the correlation between MAUI and DSI scores. Content and convergent validity were tested by comparison of MAUI utilities and scores from the 6 comparator instruments. These included 2 measures of health state preferences, measures of subjective well-being and capabilities, and generic measures of physical and mental QoL derived from the SF-36. The apparent sensitivity of instruments varied significantly with the measurement method and by disease area. Validation test results varied with the comparator instruments. Notwithstanding this variability, the 15D, AQoL-8D, and the SF-6D generally achieved better test results than the QWB and EQ-5D-5L. © The Author(s) 2015.
Measuring value sensitivity in medicine.
Ineichen, Christian; Christen, Markus; Tanner, Carmen
2017-01-28
Value sensitivity - the ability to recognize value-related issues when they arise in practice - is an indispensable competence for medical practitioners to enter decision-making processes related to ethical questions. However, the psychological competence of value sensitivity is seldom an explicit subject in the training of medical professionals. In this contribution, we outline the traditional concept of moral sensitivity in medicine and its revised form conceptualized as value sensitivity and we propose an instrument that measures value sensitivity. We developed an instrument for assessing the sensitivity for three value groups (moral-related values, values related to the principles of biomedical ethics, strategy-related values) in a four step procedure: 1) value identification (n = 317); 2) value representation (n = 317); 3) vignette construction and quality evaluation (n = 37); and 4) instrument validation by comparing nursing professionals with hospital managers (n = 48). We find that nursing professionals recognize and ascribe importance to principle-related issues more than professionals from hospital management. The latter are more likely to recognize and ascribe importance to strategy-related issues. These hypothesis-driven results demonstrate the discriminatory power of our newly developed instrument, which makes it useful not only for health care professionals in practice but for students and people working in the clinical context as well.
Theory and simulent design of a type of auto-self-protecting optical switches
NASA Astrophysics Data System (ADS)
Li, Binhong; Peng, Songcun
1990-06-01
As the use of lasers in the military and in the civilian economy increases with each passing day, it is often necessary for the human eye or sensitive instruments to observe weak lasers, such as the return waves of laser radar and laser communications signals; but it is also necessary to provide protection against damage to the eye from the strong lasers of enemy laser weapons. For this reason, it is necessary to have a kind of automatic optical self-protecting switch. Based upon a study of the transmitting and scattering characteristics of multilayer dielectric optical waveguides, a practical computer program is set up for designing a type of auto-self-protecting optical switch with a computer model by using the nonlinear property of dielectric layers and the plasma behavior of metal substrates. This technique can be used to protect the human eye and sensitive detectors from damage caused by strong laser beams.
Integration of a Fire Detector into a Spacecraft
NASA Technical Reports Server (NTRS)
Linford, R. M. F.
1972-01-01
A detector sensitive to only the ultraviolet radiation emitted by flames has been selected as the basic element of the NASA Skylab fire detection system. It is sensitive to approximately 10(exp -12)W of radiation and will detect small flames at distances in excess of 3m. The performance of the detector was verified by experiments in an aircraft flying zero-gravity parabolas to simulate the characteristics of a fire which the detector must sense. Extensive investigation and exacting design was necessary to exclude all possible sources of false alarms. Optical measurements were made on all the spacecraft windows to determine the amount of solar radiation transmitted. The lighting systems and the onboard experiments also were appraised for ultraviolet emissions. Proton-accelerator tests were performed to determine the interaction of the Earth's trapped radiation belts with the detectors and the design of the instrument was modified to negate these effects.
NASA Technical Reports Server (NTRS)
Tecza, J. A.; Darlow, M. S.; Smalley, A. J.
1979-01-01
Tests were performed on elastomer specimens of the material polybutadiene to determine the performance limitations imposed by strain, temperature, and frequency. Three specimens were tested: a shear specimen, a compression specimen, and a second compression specimen in which thermocouples were embedded in the elastomer buttons. Stiffness and damping were determined from all tests, and internal temperatures were recorded for the instrumented compression specimen. Measured results are presented together with comparisons between predictions of a thermo-viscoelastic analysis and the measured results. Dampers of polybutadiene and Viton were designed, built, and tested. Vibration measurements were made and sensitivity of vibration to change in unbalance was also determined. Values for log decrement were extracted from the synchronous response curves. Comparisons were made between measured sensitivity to unbalance and log decrement and predicted values for these quantities.
NASA Technical Reports Server (NTRS)
Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki
2001-01-01
Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.
An improved Overhauser magnetometer for Earth's magnetic field observation
NASA Astrophysics Data System (ADS)
Fan, Shifang; Chen, Shudong; Zhang, Shuang; Guo, Xin; Cao, Qiong
2016-09-01
Overhauser magnetometer is a kind of high-precision devices for magnetostatic field measurement. It is widely used in geological survey, earth field variations, UXO detection etc. However, the original Overhauser magnetometer JOM-2 shows great shortcomings of low signal to noise ratio (SNR) and high power consumption, which directly affect the performance of the device. In order to increase the sensitivity and reduce power consumption, we present an improved Overhauser magnetometer. Firstly, compared with the original power board which suffers from heavy noise for improper EMC design, an improved power broad with 20mV peak to peak noise is presented in this paper. Then, the junction field effect transistor (JFET) is used as pre-amplifier in our new design, to overcome the higher current noise produced by the original instrumentation amplifier. By adjusting the parameters carefully low noise factor down to 0.5 dB can be obtained. Finally, the new architecture of ARM + CPLD is adopted to replace the original one with DSP+CPLD. So lower power consumption and greater flash memory can be realized. With these measures, an improved Overhauser magnetometer with higher sensitivity and lower power consumption is design here. The experimental results indicate that the sensitivity of the improved Overhauser magnetometer is 0.071nT, which confirms that the new magnetometer is sensitive to earth field measurement.
Doddridge, Greg D; Shi, Zhenqi
2015-01-01
Since near infrared spectroscopy (NIRS) was introduced to the pharmaceutical industry, efforts have been spent to leverage the power of chemometrics to extract out the best possible signal to correlate with the analyte of the interest. In contrast, only a few studies addressed the potential impact of instrument parameters, such as resolution and co-adds (i.e., the number of averaged replicate spectra), on the method performance of error statistics. In this study, a holistic approach was used to evaluate the effect of the instrument parameters of a FT-NIR spectrometer on the performance of a content uniformity method with respect to a list of figures of merit. The figures of merit included error statistics, signal-to-noise ratio (S/N), sensitivity, analytical sensitivity, effective resolution, selectivity, limit of detection (LOD), and noise. A Bruker MPA FT-NIR spectrometer was used for the investigation of an experimental design in terms of resolution (4 cm(-1) and 32 cm(-1)) and co-adds (256 and 16) plus a center point at 8 cm(-1) and 32 co-adds. Given the balance among underlying chemistry, instrument parameters, chemometrics, and measurement time, 8 cm(-1) and 32 co-adds in combination with appropriate 2nd derivative preprocessing was found to fit best for the intended purpose as a content uniformity method. The considerations for optimizing both instrument parameters and chemometrics were proposed and discussed in order to maximize the method performance for its intended purpose for future NIRS method development in R&D. Copyright © 2014 Elsevier B.V. All rights reserved.
A programmable microsystem using system-on-chip for real-time biotelemetry.
Wang, Lei; Johannessen, Erik A; Hammond, Paul A; Cui, Li; Reid, Stuart W J; Cooper, Jonathan M; Cumming, David R S
2005-07-01
A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future projects. The present system was optimized for low-power and included mixed-signal sensor circuits, a programmable digital system, a feedback clock control loop and RF circuits integrated on a 5 mm x 5 mm silicon chip using a 0.6 microm, 3.3 V CMOS process. Undesirable signal coupling between circuit components has been investigated and current injection into sensitive instrumentation nodes was minimized by careful floor-planning. The chip, the sensors, a magnetic induction-based transmitter and two silver oxide cells were packaged into a 36 mm x 12 mm capsule format. A base station was built in order to retrieve the data from the microsystem in real-time. The base station was designed to be adaptive and timing tolerant since the microsystem design was simplified to reduce power consumption and size. The telemetry system was found to have a packet error rate of 10(-3) using an asynchronous simplex link. Trials in animal carcasses were carried out to show that the transmitter was as effective as a conventional RF device whilst consuming less power.
Ultraviolet Studies of Interstellar Molecular Hydrogen
NASA Astrophysics Data System (ADS)
Sarlin, Scott Peter
1998-12-01
This work covers the design and conduct of two experiments designed to observe molecular hydrogen in the interstellar medium. The first experiment was intended to directly observe the ratio between H2 and CO column densities in translucent molecular clouds in order to calibrate CO radio maps and observations of this galaxy and others. H2 cannot be directly observed from the ground under ordinary circumstances, so a novel high resolution (30,000 λΔλ) ultraviolet (UV) spectrograph was designed and built to observe it in absorption in the spectra of a distant star (HD 206267). The instrument operated properly, but the target was not acquired and the sounding rocket's parachute did not deploy, destroying the instrument. The second experiment was to observe H2 absorption towards γ Cassiopeia at very high spectral resolution (-240,000 λΔλ) with a space shuttle experiment called IMAPS. Despite several problems, including a dramatic loss in sensitivity, H2 absorption lines from J=0, 1, 2, and 3 were detected and measured. In conjunction with published atomic line observations, this gas was determined to be from a very small, thermally dominated cloud embedded in a larger H I region. The lack of higher J-state detections preclude a definitive statement concerning the radiation field, although the data point towards limited UV excitation. Future directions for instrument development are then briefly discussed.
NASA Technical Reports Server (NTRS)
Davis, G. R.; Furniss, I.; Patrick, T. J.; Sidey, R. C.; Towlson, W. A.
1991-01-01
The Infrared Space Observatory (ISO) is an ESA cornerstone mission for infrared astronomy. Schedules for launch in 1993, its four scientific instruments will provide unprecedented sensitivity and spectral resolution at wavelengths which are inaccessible using ground-based techniques. One of these, the Long Wavelength Spectrometer (LWS), will operate in the 45 to 180 micron region (Emery et. al., 1985) and features two Fabry-Perot interferometers mounted on an interchange mechanism. The entire payload module of the spacecraft, comprising the 60 cm telescope and the four focal plane instruments, is maintained at 2 to 4 K by an onboard supply of liquid helium. The mechanical design and testing of the cryogenic interferometer and interchange mechanisms are described.
The NEAR Multispectral Imager.
NASA Astrophysics Data System (ADS)
Hawkins, S. E., III
1998-06-01
Multispectral Imager, one of the primary instruments on the Near Earth Asteroid Rendezvous (NEAR) spacecraft, uses a five-element refractive optics telescope, an eight-position filter wheel, and a charge-coupled device detector to acquire images over its sensitive wavelength range of ≍400 - 1100 nm. The primary science objectives of the Multispectral Imager are to determine the morphology and composition of the surface of asteroid 433 Eros. The camera will have a critical role in navigating to the asteroid. Seven narrowband spectral filters have been selected to provide multicolor imaging for comparative studies with previous observations of asteroids in the same class as Eros. The eighth filter is broadband and will be used for optical navigation. An overview of the instrument is presented, and design parameters and tradeoffs are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. O. Tuemer; L. Doan; C. W. Su
2000-06-04
This paper describes the design and operation of a Compact Integrated Narcotics Detection Instrument (CINDI), which utilizes neutrons emitted from {sup 252}Cf. Neutrons emitted from the front face of CINDI penetrate dense compartment barrier materials with little change in energy but are backscattered by hydrogen-rich materials such as drugs. CINDI has led to a new technology that shows promise for identifying the concealed contraband. Carriers such as vehicles, marine vessels, airplanes, containers, cargo, and luggage will be scanned using both neutron and gamma-ray sources. The signal from both the neutron and gamma-ray backscattering and/or transmission can be used simultaneously tomore » detect and possibly identify the contrabands it has been trained for.« less
Zhang, Yang; Teng, Fei; Li, Suhang; Wan, Ling; Lin, Tingting
2017-10-27
The magnetic resonance sounding (MRS) technique is a non-invasive geophysical method that can provide unique insights into the hydrological properties of groundwater. The Cu coil sensor is the preferred choice for detecting the weak MRS signal because of its high sensitivity, low fabrication complexity and low cost. The tuned configuration was traditionally used for the MRS coil sensor design because of its high sensitivity and narrowband filtering. However, its narrow bandwidth may distort the MRS signals. To address this issue, a non-tuned design exhibiting a broad bandwidth has emerged recently, however, the sensitivity decreases as the bandwidth increases. Moreover, the effect of the MRS applications is often seriously influenced by power harmonic noises in the developed areas, especially low-frequency harmonics, resulting in saturation of the coil sensor, regardless of the tuned or non-tuned configuration. To solve the two aforementioned problems, we propose a matching network consisting of an LC broadband filter in parallel with a matching capacitor and provide a design for a coil sensor with a matching network (CSMN). The theoretical parameter calculations and the equivalent schematic of the CSMN with noise sources are investigated, and the sensitivity of the CSMN is evaluated by the Allan variance and the signal-to-noise ratio (SNR). Correspondingly, we constructed the CSMN with a 3 dB bandwidth, passband gain, normalized equivalent input noise and sensitivity (detection limit) of 1030 Hz, 4.6 dB, 1.78 nV/(Hz) 1/2 @ 2 kHz and 3 nV, respectively. Experimental tests in the laboratory show that the CSMN can not only improve the sensitivity, but also inhibit the signal distortion by suppressing power harmonic noises in the strong electromagnetic interference environment. Finally, a field experiment is performed with the CSMN to show a valid measurement of the signals of an MRS instrument system.
Zhang, Yang; Teng, Fei; Li, Suhang; Wan, Ling
2017-01-01
The magnetic resonance sounding (MRS) technique is a non-invasive geophysical method that can provide unique insights into the hydrological properties of groundwater. The Cu coil sensor is the preferred choice for detecting the weak MRS signal because of its high sensitivity, low fabrication complexity and low cost. The tuned configuration was traditionally used for the MRS coil sensor design because of its high sensitivity and narrowband filtering. However, its narrow bandwidth may distort the MRS signals. To address this issue, a non-tuned design exhibiting a broad bandwidth has emerged recently, however, the sensitivity decreases as the bandwidth increases. Moreover, the effect of the MRS applications is often seriously influenced by power harmonic noises in the developed areas, especially low-frequency harmonics, resulting in saturation of the coil sensor, regardless of the tuned or non-tuned configuration. To solve the two aforementioned problems, we propose a matching network consisting of an LC broadband filter in parallel with a matching capacitor and provide a design for a coil sensor with a matching network (CSMN). The theoretical parameter calculations and the equivalent schematic of the CSMN with noise sources are investigated, and the sensitivity of the CSMN is evaluated by the Allan variance and the signal-to-noise ratio (SNR). Correspondingly, we constructed the CSMN with a 3 dB bandwidth, passband gain, normalized equivalent input noise and sensitivity (detection limit) of 1030 Hz, 4.6 dB, 1.78 nV/(Hz)1/2 @ 2 kHz and 3 nV, respectively. Experimental tests in the laboratory show that the CSMN can not only improve the sensitivity, but also inhibit the signal distortion by suppressing power harmonic noises in the strong electromagnetic interference environment. Finally, a field experiment is performed with the CSMN to show a valid measurement of the signals of an MRS instrument system. PMID:29076986
NASA Astrophysics Data System (ADS)
Giono, G.; Ishikawa, R.; Narukage, N.; Kano, R.; Katsukawa, Y.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchère, F.; Trujillo Bueno, J.; Tsuneta, S.; Shimizu, T.; Sakao, T.; Cirtain, J.; Champey, P.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.
2017-04-01
The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket instrument designed to measure for the first time the linear polarization of the hydrogen Lyman-{α} line (121.6 nm). The instrument was successfully launched on 3 September 2015 and observations were conducted at the solar disc center and close to the limb during the five-minutes flight. In this article, the disc center observations are used to provide an in-flight calibration of the instrument spurious polarization. The derived in-flight spurious polarization is consistent with the spurious polarization levels determined during the pre-flight calibration and a statistical analysis of the polarization fluctuations from solar origin is conducted to ensure a 0.014% precision on the spurious polarization. The combination of the pre-flight and the in-flight polarization calibrations provides a complete picture of the instrument response matrix, and a proper error transfer method is used to confirm the achieved polarization accuracy. As a result, the unprecedented 0.1% polarization accuracy of the instrument in the vacuum ultraviolet is ensured by the polarization calibration.
The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument
NASA Technical Reports Server (NTRS)
Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.;
2016-01-01
This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.
Optical turbulence profiling with Stereo-SCIDAR for VLT and ELT
NASA Astrophysics Data System (ADS)
Osborn, J.; Wilson, R. W.; Sarazin, M.; Butterley, T.; Chacón, A.; Derie, F.; Farley, O. J. D.; Haubois, X.; Laidlaw, D.; LeLouarn, M.; Masciadri, E.; Milli, J.; Navarrete, J.; Townson, M. J.
2018-07-01
Knowledge of the Earth's atmospheric optical turbulence is critical for astronomical instrumentation. Not only does it enable performance verification and optimization of the existing systems, but it is required for the design of future instruments. As a minimum this includes integrated astro-atmospheric parameters such as seeing, coherence time, and isoplanatic angle, but for more sophisticated systems such as wide-field adaptive optics enabled instrumentation the vertical structure of the turbulence is also required. Stereo-SCIDAR (Scintillation Detection and Ranging) is a technique specifically designed to characterize the Earth's atmospheric turbulence with high-altitude resolution and high sensitivity. Together with ESO (European Southern Observatory), Durham University has commissioned a Stereo-SCIDAR instrument at Cerro Paranal, Chile, the site of the Very Large Telescope (VLT), and only 20 km from the site of the future Extremely Large Telescope (ELT). Here we provide results from the first 18 months of operation at ESO Paranal including instrument comparisons and atmospheric statistics. Based on a sample of 83 nights spread over 22 months covering all seasons, we find the median seeing to be 0.64″ with 50 per cent of the turbulence confined to an altitude below 2 km and 40 per cent below 600 m. The median coherence time and isoplanatic angle are found as 4.18 ms and 1.75″, respectively. A substantial campaign of inter-instrument comparison was also undertaken to assure the validity of the data. The Stereo-SCIDAR profiles (optical turbulence strength and velocity as a function of altitude) have been compared with the Surface-Layer Slope Detection And Ranging, Multi-Aperture Scintillation Sensor-Differential Image Motion Monitor, and the European Centre for Medium Range Weather Forecasts model. The correlation coefficients are between 0.61 (isoplanatic angle) and 0.84 (seeing).
The Vector Electric Field Investigation on the C/NOFS Satellite
NASA Technical Reports Server (NTRS)
Pfaff, R.; Acuna, M.; Kujawski, J.; Fourre, R.; Uribe, P.; Hunsaker, F.; Rowland, D.; Le, G.; Farrell, W.; Maynard, N.;
2008-01-01
We provide an overview of the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. VEFI is a NASA/GSFC instrument funded by the Air Force Research Laboratory whose main objectives are to: 1) investigate the role of the ambient electric fields in initiating nighttime ionospheric density depletions and turbulence; 2) determine the quasi-DC electric fields associated with abrupt, large amplitude, density depletions, and 3) quantify the spectrum of the wave electric fields and plasma densities (irregularities) associated with density depletions typically referred to as equatorial spread-F. The VEFI instrument includes a vector electric field double probe detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux-gate magnetometer, an optical lightning detector, and associated electronics. The heart of the instrument is the set of detectors designed to measure DC and AC electric fields using 6 identical booms that provide 3 axis, 20-m tip-to-tip orthogonal double probes. Each probe extends a 10 cm diameter sphere containing an embedded preamplifier. VEFI also includes a burst memory that enables snapshots of data from 1-8 channels of selected instruments to be sampled at rates of up to 32 kHz each. The bursts may be triggered by the detection of density depletions, intense electric field wave activity in a given band, lightning detector pulses, or an event at a pre-determined time or location. All VEFI instrument components are working exceptionally well. A description of the instrument, its sensors, and their sampling frequencies and sensitivities will be presented. Representative measurements will be shown.
Noninvasive detection of diabetes mellitus
NASA Astrophysics Data System (ADS)
Eppstein, Jonathan A.; Bursell, Sven-Erik
1992-05-01
Recent advances in fluorescence spectroscopy of the lens reveal the potential of a non-invasive device and methodology to sensitively measure changes in the lens of the eye associated with diabetes mellitus. The system relies on the detection of the spectrum of fluorescence emitted from a selected volume (approximately 1/10 mm3) of the lens of living human subjects using low power excitation illumination from monochromatic light sources. The sensitivity of this technique is based on the measurement of the fluorescence intensity in a selected region of the fluorescence spectrum and normalization of this fluorescence with respect to attenuation (scattering and absorption) of the incident excitation light. The amplitude of the unshifted Rayleigh line, measured as part of the fluorescence spectrum, is used as a measure of the attenuation of the excitation light in the lens. Using this methodology we have demonstrated that the normalized lens fluorescence provides a more sensitive discrimination between diabetic and non-diabetic lenses than more conventional measurements of fluorescence intensity from the lens. The existing instrumentation will be described as well as the proposed design for a commercial version of the instrument expected to be ready for FDA trials by late 1992. The results from clinical measurements are used to describe a relationship between normalized lens fluorescence and hemoglobin A1c levels in diabetic patients.
NASA Technical Reports Server (NTRS)
Reginald, Nelson L.
2000-01-01
In Cram's theory for the formation of the K-coronal spectrum he observed the existence of temperature sensitive anti-nodes, which were separated by temperature insensitive nodes, at certain wave-lengths in the K-coronal spectrum. Cram also showed these properties were remarkably independent of altitude above the solar limb. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurements of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 August 1999 in Elazig, Turkey. Here twenty fiber optic tips were positioned in the focal plane of the telescope to observe simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends were vertically stacked and placed at the primary focus of the spectrograph. By isolating the K-coronal spectrum from each fiber the temperature and the wind sensitive intensity ratios were calculated.
Planetary Protection Plan for an Antibody based instrument proposed for Mars2020
NASA Astrophysics Data System (ADS)
Smith, Heather; Parro, Víctor
The Signs Of Life Detector (SOLID) instrument is a high TRL level instrument proposed for the Mars 2020 instrument suite. In this presentation we describe the planetary protection instrument plan as if the instrument is classified as a life detection instrument compliant with Category IV(b) planetary protection mission requirements, NASA, ESA, and COSPAR policy. SOLID uses antibodies as a method for detecting organic and biomolecular components in soils. Due to the sensitive detection method, the scientific integrity of the instrument exceeds the planetary protection requirements. The instrument will be assembled and integrated in an ISO level 8 cleanroom or better (ISO 4 for the sample read out and fluidics components). Microbial reduction methods and assays employed are as follows: Wipe the outside and inside of the instrument with a mixture of isopropyl alcohol (70%) and water. Cell cultures will be the standard assay to determine enumeration of “viable” spores and other rapid assays such as LAL and ATP bioluminescence as secondary assays to verify the interior of the instrument is microbe free. SOLID’s design factors for contamination control include the following features: SOLID has the capability to heat the catchment tray to pyrolyze any Earth hitchhikers. There will also be an “air gap” of cm maintained between the sample acquisition device and the funnel inlet. This will prevent forward contamination of the sample collection device and reverse contamination of the detection unit. To mitigate false positives, SOLID will include anti-bodies for potential contaminants from organisms most commonly found in clean rooms. If selected for the Mars 2020 Rover, SOLID would be the first life detection instrument based on biomolecules sent by NASA, as such the planetary protection plan will set a precedence for future life detection instruments carrying biomolecules to other planetary bodies.
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Dutton, Ken; Martinez, Nelson; Smith, Dennis; Stone, Nobie H.
2004-01-01
A technique has been developed to measure the characteristics of space plasmas under highly disturbed conditions; e.g., non-Maxwellian plasmas with strong drifting populations and plasmas contaminated by spacecraft outgassing. The present method is an extension of the capabilities of the Differential Ion Flux Probe (DIFP) to include a mass measurement that does not include either high voltage or contamination sensitive devices such as channeltron electron multipliers or microchannel plates. This reduces the complexity and expense of instrument fabrication, testing, and integration of flight hardware as compared to classical mass analyzers. The new instrument design is called the Deflection Plate Analyzer (DPA) and can deconvolve multiple ion streams and analyze each stream for ion flux intensity (density), velocity (including direction of motion), mass, and temperature (or energy distribution). The basic functionality of the DPA is discussed. The performance characteristics of a flight instrument as built for an electrodynamic tether mission, the Propulsive Small Expendable Deployer System (ProSEDS), and the instrument s role in measuring key experimental conditions are also discussed.
The Low‐Energy Neutral Imager (LENI)
Mitchell, D. G.; Brandt, P. C.‐son.; Andrews, B. G.; Clark, G.
2016-01-01
Abstract To achieve breakthroughs in the areas of heliospheric and magnetospheric energetic neutral atom (ENA) imaging, a new class of instruments is required. We present a high angular resolution ENA imager concept aimed at the suprathermal plasma populations with energies between 0.5 and 20 keV. This instrument is intended for understanding the spatial and temporal structure of the heliospheric boundary recently revealed by Interstellar Boundary Explorer instrumentation and the Cassini Ion and Neutral Camera. The instrument is also well suited to characterize magnetospheric ENA emissions from low‐altitude ENA emissions produced by precipitation of magnetospheric ions into the terrestrial upper atmosphere, or from the magnetosheath where solar wind protons are neutralized by charge exchange, or from portions of the ring current region. We present a new technique utilizing ultrathin carbon foils, 2‐D collimation, and a novel electron optical design to produce high angular resolution (≤2°) and high‐sensitivity (≥10−3 cm2 sr/pixel) ENA imaging in the 0.5–20 keV energy range. PMID:27867800
Vibrational spectroscopy with neutrons: Recent developments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Stewart F.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.
Here in this short review, we will briefly summarise the differences between INS spectroscopy and conventional infrared and Raman spectroscopies. We will illustrate these with the current state-of-the art, using C 70 as an example. The main focus of the article will be on the key advances in INS spectroscopy over the last ten years or so, that are driving new areas of research. The developments fall into three broad categories: (i) new sources, (ii) new and/or upgraded instrumentation and (iii) novel uses for existing instruments. For (i) we summarise the new neutron sources that are now, or will be,more » operating. For (ii) we show the capabilities of new or upgraded instruments. These offer unprecedented levels of sensitivity: sub-millimole quantities of hydrogen can be measured and millimole quantities of low cross section materials. Recent work on hexahalo metallates and adsorbed CO 2 is used to demonstrate what is now feasible. For (iii), instruments that were designed for studies of magnetism, are now being used for molecular spectroscopy, especially for catalysts. This is illustrated with work on CuH and methanol synthesis catalysts.« less
Vibrational spectroscopy with neutrons: Recent developments
Parker, Stewart F.; Ramirez-Cuesta, Anibal J.; Daemen, Luke L.
2017-09-21
Here in this short review, we will briefly summarise the differences between INS spectroscopy and conventional infrared and Raman spectroscopies. We will illustrate these with the current state-of-the art, using C 70 as an example. The main focus of the article will be on the key advances in INS spectroscopy over the last ten years or so, that are driving new areas of research. The developments fall into three broad categories: (i) new sources, (ii) new and/or upgraded instrumentation and (iii) novel uses for existing instruments. For (i) we summarise the new neutron sources that are now, or will be,more » operating. For (ii) we show the capabilities of new or upgraded instruments. These offer unprecedented levels of sensitivity: sub-millimole quantities of hydrogen can be measured and millimole quantities of low cross section materials. Recent work on hexahalo metallates and adsorbed CO 2 is used to demonstrate what is now feasible. For (iii), instruments that were designed for studies of magnetism, are now being used for molecular spectroscopy, especially for catalysts. This is illustrated with work on CuH and methanol synthesis catalysts.« less
Development of the Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) Instrument
NASA Astrophysics Data System (ADS)
DeLand, M. T.; Colarco, P. R.; Kowalewski, M. G.; Gorkavyi, N.; Ramos-Izquierdo, L.
2017-12-01
Aerosol particles in the stratosphere ( 15-25 km altitude), both produced naturally and perturbed by volcanic eruptions and anthropogenic emissions, continue to be a source of significant uncertainty in the Earth's energy budget. Stratospheric aerosols can offset some of the warming effects caused by greenhouse gases. These aerosols are currently monitored using measurements from the Ozone Mapping and Profiling Suite (OMPS) Limb Profiler (LP) instrument on the Suomi NPP satellite. In order to improve the sensitivity and spatial coverage of these aerosol data, we are developing an aerosol-focused compact version of the OMPS LP sensor called Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) to fly on a 3U Cubesat satellite, using a NASA Instrument Incubator Program (IIP) grant. This instrument will make limb viewing measurements of the atmosphere in multiple directions simultaneously, and uses only a few selected wavelengths to reduce size and cost. An initial prototype version has been constructed using NASA GSFC internal funding and tested in the laboratory. Current design work is targeted towards a preliminary field test in Spring 2018. We will discuss the scientific benefits of MASTAR and the status of the project.
Vibrational spectroscopy with neutrons: Recent developments
NASA Astrophysics Data System (ADS)
Parker, Stewart F.; Ramirez-Cuesta, Anibal J.; Daemen, Luke
2018-02-01
In this short review, we will briefly summarise the differences between INS spectroscopy and conventional infrared and Raman spectroscopies. We will illustrate these with the current state-of-the art, using C70 as an example. The main focus of the article will be on the key advances in INS spectroscopy over the last ten years or so, that are driving new areas of research. The developments fall into three broad categories: (i) new sources, (ii) new and/or upgraded instrumentation and (iii) novel uses for existing instruments. For (i) we summarise the new neutron sources that are now, or will be, operating. For (ii) we show the capabilities of new or upgraded instruments. These offer unprecedented levels of sensitivity: sub-millimole quantities of hydrogen can be measured and millimole quantities of low cross section materials. Recent work on hexahalo metallates and adsorbed CO2 is used to demonstrate what is now feasible. For (iii), instruments that were designed for studies of magnetism, are now being used for molecular spectroscopy, especially for catalysts. This is illustrated with work on CuH and methanol synthesis catalysts.
NASA Technical Reports Server (NTRS)
Wright, Kenneth H., Jr.; Dutton, Ken; Martinez, Nelson; Smith, Dennis; Stone, Nobie H.
2003-01-01
A technique has been developed to measure the characteristics of space plasmas under highly disturbed conditions; e.g., non-Maxwellian plasmas with strong drifting populations and plasmas contaminated by spacecraft outgassing. The present method is an extension of the capabilities of the Differential Ion Flux Probe (DIFP) to include a mass measurement that does not include either high voltage or contamination sensitive devices such as channeltron electron multipliers or microchannel plates. This reduces the complexity and expense of instrument fabrication, testing, and integration of flight hardware as compared to classical mass analyzers. The new instrument design is called the Deflection Plate Analyzer (DPA) and can deconvolve multiple ion streams and analyze each stream for ion flux intensity (density), velocity (including direction of motion), mass, and temperature (or energy distribution). The basic functionality of the DPA is discussed. The performance characteristics of a flight instrument as built for an electrodynamic tether mission, the Propulsive Small Expendable Deployer System (ProSEDS), and the instrument s role in measuring key experimental conditions are also discussed.
Evaluation of telerobotic systems using an instrumented task board
NASA Technical Reports Server (NTRS)
Carroll, John D.; Gierow, Paul A.; Bryan, Thomas C.
1991-01-01
An instrumented task board was developed at NASA Marshall Space Flight Center (MSFC). An overview of the task board design, and current development status is presented. The task board was originally developed to evaluate operator performance using the Protoflight Manipulator Arm (PFMA) at MSFC. The task board evaluates tasks for Orbital Replacement Unit (ORU), fluid connect and transfers, electrical connect/disconnect, bolt running, and other basic tasks. The instrumented task board measures the 3-D forces and torques placed on the board, determines the robot arm's 3-D position relative to the task board using IR optics, and provides the information in real-time. The PFMA joint input signals can also be measured from a breakout box to evaluate the sensitivity or response of the arm operation to control commands. The data processing system provides the capability for post processing of time-history graphics and plots of the PFMA positions, the operator's actions, and the PFMA servo reactions in addition to real-time force/torque data presentation. The instrumented task board's most promising use is developing benchmarks for NASA centers for comparison and evaluation of telerobotic performance.
A near-infrared high-resolution spectroscopic survey of bulge stars - JASMINE prestudy
NASA Astrophysics Data System (ADS)
Tsujimoto, T.; Gouda, N.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.
2006-08-01
We are developing a new near-infrared high-resolution (R[max]= 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9-1.35 μm. WINERED employs the novelty in the optical system; a potable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide the exact positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical compositions will be measured by WINERED with high accuracies (δV< 1km/s). These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for the observation of a single object by the end of 2008 and hope to attach it to various 4-10m telescopes as a PI-type instrument. In succession, we will develop it to the design for a simultaneous multi-object spectroscopy.
A new, low-cost sun photometer for student use
NASA Astrophysics Data System (ADS)
Espinoza, A.; Pérez-Álvarez, H.; Parra-Vilchis, J. I.; Fauchey-López, E.; Fernando-González, L.; Faus-Landeros, G. E.; Celarier, E. A.; Robinson, D. Q.; Zepeda-Galbez, R.
2011-12-01
We have designed a sun photometer for the measurement of aerosol optical thickness (AOT) at 505 nm and 620 nm, using custom-made glass filters (9.5 nm bandpass, FWHM) and photodiodes. The recommended price-point (US150 - US200) allowed us to incorporate technologies such as microcontrollers, a sun target, a USB port for data uploading, nonvolatile memory to contain tables of up to 127 geolocation profiles, extensive calibration data, and a log of up to 2,000 measurements. The instrument is designed to be easy to use, and to provide instant display of AOT estimates. A diffuser in the fore-optics limits the sensitivity to pointing error. We have developed postprocessing software to refine the AOT estimates, format a spreadsheet file, and upload the data to the GLOBE website. We are currently finalizing hardware and firmware, and conducting extensive calibration/validation experiments. These instruments will soon be in production and available to the K-12 education community, including and especially the GLOBE program.
Polarimetry noise in fiber-based optical coherence tomography instrumentation
Zhang, Ellen Ziyi; Vakoc, Benjamin J.
2011-01-01
High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044
Improved Photon-Emission-Microscope System
NASA Technical Reports Server (NTRS)
Vu, Duc
2006-01-01
An improved photon-emission-microscope (PEM) instrumentation system has been developed for use in diagnosing failure conditions in semiconductor devices, including complex integrated circuits. This system is designed primarily to image areas that emit photons, at wavelengths from 400 to 1,100 nm, associated with device failures caused by leakage of electric current through SiO2 and other dielectric materials used in multilayer semiconductor structures. In addition, the system is sensitive enough to image areas that emit photons during normal operation.
Yang, Liyu; Amad, Ma'an; Winnik, Witold M; Schoen, Alan E; Schweingruber, Hans; Mylchreest, Iain; Rudewicz, Patrick J
2002-01-01
Triple quadrupole mass spectrometers, when operated in multiple reaction monitoring (MRM) mode, offer a unique combination of sensitivity, specificity, and dynamic range. Consequently, the triple quadrupole is the workhorse for high-throughput quantitation within the pharmaceutical industry. However, in the past, the unit mass resolution of quadrupole instruments has been a limitation when interference from matrix or metabolites cannot be eliminated. With recent advances in instrument design, triple quadrupole instruments now afford mass resolution of less than 0.1 Dalton (Da) full width at half maximum (FWHM). This paper describes the evaluation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput bioanalysis with emphasis on comparison of selectivity, sensitivity, dynamic range, precision, accuracy, and stability under both unit mass (1 Da FWHM) and enhanced (
Sowinski, Joseph A; Kakar, Ashish; Kakar, Kanupriya
2013-05-01
To compare the Jay Sensitivity Sensor Probe (Jay Probe), a new microprocessor-based, pre-calibrated instrument, with well accepted methods used to evaluate sensitivity, i.e. tactile response to the Yeaple Probe, air blast (Schiff scale), and patient responses by Visual Analog Score (VAS). Jay Probe assessments were accomplished using several approaches. With a cohort of 12 subjects, two clinical examiners compared the repeatability of the Jay and Yeaple Probes. A second evaluation of both probes was conducted during two independent parallel design clinical studies each enrolling 100 adults with dentin hypersensitivity (DH). In each study, subjects were evaluated for DH responses after twice daily oral hygiene with a negative control fluoride dentifrice or a positive control dentifrice formulated with ingredients proven to reduce sensitivity, i.e. potassium nitrate or 8.0% arginine with calcium carbonate. Tactile evaluations by the Jay and Yeaple Probes were conducted at baseline and recall visits over the 8-week duration of each study. Also evaluated at each visit were responses to air blast and to patient reported DH assessment by VAS. Low inter-examiner variability with no significant differences between replicate measurements (P > 0.05) was observed with the Jay Probe. Consistent with results from previous studies, subjects assigned dentifrices formulated with potassium nitrate or 8% arginine/calcium carbonate demonstrated improvements in Yeaple, air blast and VAS responses in comparison to those assigned the fluoride dentifrice (P < 0.05). Jay Probe responses correlated significantly with all other sensitivity measures (P < 0.05). Differences between these treatments were observed at all post-treatment evaluations using these methods.
Bulk sensitive hard x-ray photoemission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.
Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less
Predicted Sensitivity for Tests of Short-range Gravity with a Novel Parallel-plate Torsion Pendulum
NASA Astrophysics Data System (ADS)
Richards, Matthew; Baxley, Brandon; Hoyle, C. D.; Leopardi, Holly; Shook, David
2011-11-01
The parallel-plate torsion pendulum apparatus at Humboldt State University is designed to test the Weak Equivalence Principle (WEP) and the gravitational inverse-square law (ISL) of General Relativity at unprecedented levels in the sub-millimeter regime. Some versions of String Theory predict additional dimensions that might affect the gravitational inverse-square law (ISL) at sub-millimeter levels. Some models also predict the existence of unobserved subatomic particles, which if exist, could cause a violation in the WEP at short distances. Short-range tests of gravity and the WEP are also instrumental in investigating possible proposed mechanisms that attempt to explain the accelerated expansion of the universe, generally attributed to Dark Energy. The weakness of the gravitational force makes measurement very difficult at small scales. Testing such a minimal force requires highly isolated experimental systems and precise measurement and control instrumentation. Moreover, a dedicated test of the WEP has not been performed below the millimeter scale. This talk will discuss the improved sensitivity that we expect to achieve in short-range gravity tests with respect to previous efforts that employ different experimental configurations.
Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission
NASA Astrophysics Data System (ADS)
Li, Yanwei; Srama, Ralf; Henkel, Hartmut; Sternovsky, Zoltan; Kempf, Sascha; Wu, Yiyong; Grün, Eberhard
2014-11-01
One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.
Identification of lunar rock types and search for polar ice by gamma ray spectroscopy
NASA Astrophysics Data System (ADS)
Metzger, A. E.; Drake, D. M.
1990-01-01
This paper examines the possibility of mapping the surface composition of the moon from an orbiting spin-stabilized spacecraft, using gamma ray spectroscopy and a cooled germanium solid-state device as a detector. A design for accommodating the germanium detector gamma ray spectrometer was devised, and the detection sensitivity was applied to typical lunar-rock compositions. For sets comprising nine highland and 16 mare types, the most useful elements were found to be Mg, Al, K, Ti, Fe, U, and Th. An analysis of the expected instrument response to the gamma ray and neutron fluxes of water ice indicated that a neutron mode added to the spectrometer will be more sensitive than the gamma ray mode to the possible presence of polar ice. It was calculated that, with a pair of selected neutron absorbers and a model which provides that 2.5 percent of the area above 75-deg latitude is occupied by trapping sites, the instrument will provide a 1-yr mission detection limit of 0.056 percent H2O by weight for each polar region.
Richardson, Jeff; Khan, Munir A; Iezzi, Angelo; Maxwell, Aimee
2015-04-01
Cost utility analysis permits the comparison of disparate health services by measuring outcomes in comparable units, namely, quality-adjusted life-years, which equal life-years times the utility of the health state. However, comparability is compromised when different utility instruments predict different utilities for the same health state. The present paper measures the extent of, and reason for, differences between the utilities predicted by the EQ-5D-5L, SF-6D, HUI 3, 15D, QWB, and AQoL-8D. Data were obtained from patients in seven disease areas and members of the healthy public in six countries. Differences between public and patient utilities were estimated using each of the instruments. To explain discrepancies between the estimates, the measurement scales and content of the instruments were compared. The sensitivity of instruments to independently measured health dimensions was measured in pairwise comparisons of all combinations of the instruments. The difference between public and patient utilities varied with the choice of instrument by more than 50% for every disease group and in four of the seven groups by more than 100%. Discrepancies were associated with differences in both the instrument content and their measurement scales. Pairwise comparisons of instruments found that variation in the sensitivity to physical and psychosocial dimensions of health closely reflected the items in the instrument's descriptive systems. Results indicate that instruments measure related but different constructs. They imply that commonly used instruments systematically discriminate against some classes of services, most notably mental health services. Differences in the instrument scales imply the need for transformations between the instruments to increase the comparability of measurement. © The Author(s) 2014.
Horizontal film balance having wide range and high sensitivity
Abraham, B.M.; Miyano, K.; Ketterson, J.B.
1981-03-05
A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.
Horizontal film balance having wide range and high sensitivity
Abraham, B.M.; Miyano, K.; Ketterson, J.B.
1983-11-08
A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed. 5 figs.
Horizontal film balance having wide range and high sensitivity
Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.
1983-01-01
A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.
NASA Astrophysics Data System (ADS)
de Waal, D. J.; Schoeman, J.
2014-06-01
The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.
The psychosocial burden of human papillomavirus related disease and screening interventions.
Pirotta, M; Ung, L; Stein, A; Conway, E L; Mast, T C; Fairley, C K; Garland, S
2009-12-01
(i) To assess the psychosocial burden of testing for human papillomavirus (HPV) related genital disease or of a HPV-related diagnosis; (ii) to compare an instrument specifically designed to measure HPV-related psychosocial burden with other generic quality of life (QoL) instruments. A cross-sectional design. Researchers recruited women from outpatient clinics at a major tertiary women's hospital and a sexual health centre who completed surveys within 3 months of receiving 331 women, 18-45 years, who had experienced a normal cervical Papanicolaou (Pap) result, an abnormal Pap result, biopsy confirmed cervical intraepithelial neoplasia (CIN) or external genital warts (EGW). The HPV impact profile (HIP) designed to assess the psychosocial impact of HPV; two general health-related QoL surveys-the EuroQoL VAS and the Sheehan disability scale; and a HPV knowledge survey. Response rate was 78%. Significant psychosocial impacts were found for women screened for, or having a diagnosis of, HPV-related genital disease. The largest impact was in women with CIN 2/3 and EGW. This HPV-related psychosocial impact was most sensitively detected with the HIP. Relative to generic measures of QoL, the HIP provided insight into the full range of psychosocial impacts of HPV testing and diagnoses. Clinicians need to be aware of the potential psychosocial impact of testing for or diagnosing HPV-related genital disease, in particular CIN 2/3 and EGW. The HIP survey is a more sensitive measure of the psychosocial impact of HPV-related genital disease than generic QoL surveys.
Ring Laser Gyro G-Sensitive Misalignment Calibration in Linear Vibration Environments.
Wang, Lin; Wu, Wenqi; Li, Geng; Pan, Xianfei; Yu, Ruihang
2018-02-16
The ring laser gyro (RLG) dither axis will bend and exhibit errors due to the specific forces acting on the instrument, which are known as g-sensitive misalignments of the gyros. The g-sensitive misalignments of the RLG triad will cause severe attitude error in vibration or maneuver environments where large-amplitude specific forces and angular rates coexist. However, g-sensitive misalignments are usually ignored when calibrating the strapdown inertial navigation system (SINS). This paper proposes a novel method to calibrate the g-sensitive misalignments of an RLG triad in linear vibration environments. With the SINS is attached to a linear vibration bench through outer rubber dampers, rocking of the SINS can occur when the linear vibration is performed on the SINS. Therefore, linear vibration environments can be created to simulate the harsh environment during aircraft flight. By analyzing the mathematical model of g-sensitive misalignments, the relationship between attitude errors and specific forces as well as angular rates is established, whereby a calibration scheme with approximately optimal observations is designed. Vibration experiments are conducted to calibrate g-sensitive misalignments of the RLG triad. Vibration tests also show that SINS velocity error decreases significantly after g-sensitive misalignments compensation.
Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments.
Shen, Ya; Zhou, Hui-min; Zheng, Yu-feng; Peng, Bin; Haapasalo, Markus
2013-02-01
The performance and mechanical properties of nickel-titanium (NiTi) instruments are influenced by factors such as cross-section, flute design, raw material, and manufacturing processes. Many improvements have been proposed by manufacturers during the past decade to provide clinicians with safer and more efficient instruments. The mechanical performance of NiTi alloys is sensitive to their microstructure and associated thermomechanical treatment history. Heat treatment or thermal processing is one of the most fundamental approaches toward adjusting the transition temperature in NiTi alloy, which affects the fatigue resistance of NiTi endodontic files. The newly developed NiTi instruments made from controlled memory wire, M-Wire (Dentsply Tulsa Dental Specialties, Tulsa, OK), or R-phase wire represent the next generation of NiTi alloys with improved flexibility and fatigue resistance. The advantages of NiTi files for canal cleaning and shaping are decreased canal transportation and ledging, a reduced risk of file fracture, and faster and more efficient instrumentation. The clinician must understand the nature of different NiTi raw materials and their impact on instrument performance because many new instruments are introduced on a regular basis. This review summarizes the metallurgical properties of next-generation NiTi instruments, the impact of thermomechanical treatment on instrument flexibility, and the resistance to cyclic fatigue and torsion. The aim of this review was to provide clinicians with the knowledge necessary for evidence-based practices, maximizing the benefits from the selection and application of NiTi rotary instruments for root canal treatment. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review.
Hidding, Janine T; Viehoff, Peter B; Beurskens, Carien H G; van Laarhoven, Hanneke W M; Nijhuis-van der Sanden, Maria W G; van der Wees, Philip J
2016-12-01
Lymphedema is a common complication of cancer treatment, resulting in swelling and subjective symptoms. Reliable and valid measurement of this side effect of medical treatment is important. The purpose of this study was to provide best evidence regarding which measurement instruments are most appropriate in measuring lymphedema in its different stages. The PubMed and Web of Science databases were used, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Clinical studies on measurement instruments assessing lymphedema were reviewed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) scoring instrument for quality assessment. Data on reliability, concurrent validity, convergent validity, sensitivity, specificity, applicability, and costs were extracted. Pooled data showed good intrarater intraclass correlation coefficients (ICCs) (.89) for bioimpedance spectroscopy (BIS) in the lower extremities and high intrarater and interrater ICCs for water volumetry, tape measurement, and perometry (.98-.99) in the upper extremities. In the upper extremities, the standard error of measurement was 3.6% (σ=0.7%) for water volumetry, 5.6% (σ=2.1%) for perometry, and 6.6% (σ=2.6%) for tape measurement. Sensitivity of tape measurement in the upper extremities, using different cutoff points, varied from 0.73 to 0.90, and specificity values varied from 0.72 to 0.78. No uniform definition of lymphedema was available, and a gold standard as a reference test was lacking. Items concerning risk of bias were study design, patient selection, description of lymphedema, blinding of test outcomes, and number of included participants. Measurement instruments with evidence for good reliability and validity were BIS, water volumetry, tape measurement, and perometry, where BIS can detect alterations in extracellular fluid in stage 1 lymphedema and the other measurement instruments can detect alterations in volume starting from stage 2. In research, water volumetry is indicated as a reference test for measuring lymphedema in the upper extremities. © 2016 American Physical Therapy Association.
ARNICA, the Arcetri Near-Infrared Camera
NASA Astrophysics Data System (ADS)
Lisi, F.; Baffa, C.; Bilotti, V.; Bonaccini, D.; del Vecchio, C.; Gennari, S.; Hunt, L. K.; Marcucci, G.; Stanga, R.
1996-04-01
ARNICA (ARcetri Near-Infrared CAmera) is the imaging camera for the near-infrared bands between 1.0 and 2.5 microns that the Arcetri Observatory has designed and built for the Infrared Telescope TIRGO located at Gornergrat, Switzerland. We describe the mechanical and optical design of the camera, and report on the astronomical performance of ARNICA as measured during the commissioning runs at the TIRGO (December, 1992 to December 1993), and an observing run at the William Herschel Telescope, Canary Islands (December, 1993). System performance is defined in terms of efficiency of the camera+telescope system and camera sensitivity for extended and point-like sources. (SECTION: Astronomical Instrumentation)
NASA Astrophysics Data System (ADS)
Litvak, M. L.; Golovin, D. V.; Kolesnikov, A. B.; Vostrukhin, A. A.; Djachkova, M. V.; Kozyrev, A. S.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.
2017-05-01
This paper outlines the main research objectives and gives a description of the ADRON active gamma-ray and neutron spectrometer, which is designed specifically for the Russian lunar landing missions Luna-Glob and Luna-Resurs and for the ExoMars Martian landing platform. The measurement technique is described. The first ground-based calibration results are presented, making it possible to assess the sensitivity of the ADRON instruments in determining the average water content of the underlying surface in the range from 1% (dry ground) to 100% (water ice) to a depth of 0.5 m.
Advances toward submicron resolution optics for x-ray instrumentation and applications
NASA Astrophysics Data System (ADS)
Cordier, Mark; Stripe, Benjamin; Yun, Wenbing; Lau, S. H.; Lyon, Alan; Reynolds, David; Lewis, Sylvia J. Y.; Chen, Sharon; Semenov, Vladimir A.; Spink, Richard I.; Seshadri, Srivatsan
2017-08-01
Sigray's axially symmetric x-ray optics enable advanced microanalytical capabilities for focusing x-rays to microns-scale to submicron spot sizes, which can potentially unlock many avenues for laboratory micro-analysis. The design of these optics allows submicron spot sizes even at low x-ray energies, enabling research into low atomic number elements and allows increased sensitivity of grazing incidence measurements and surface analysis. We will discuss advances made in the fabrication of these double paraboloidal mirror lenses designed for use in laboratory x-ray applications. We will additionally present results from as-built paraboloids, including surface figure error and focal spot size achieved to-date.
Design and performance of a large area neutron sensitive anger camera
Visscher, Theodore; Montcalm, Christopher A.; Donahue, Jr., Cornelius; ...
2015-05-21
We describe the design and performance of a 157mm x 157mm two dimensional neutron detector. The detector uses the Anger principle to determine the position of neutrons. We have verified FWHM resolution of < 1.2mm with distortion < 0.5mm on over 50 installed Anger Cameras. The performance of the detector is limited by the light yield of the scintillator, and it is estimated that the resolution of the current detector could be doubled with a brighter scintillator. Data collected from small (<1mm 3) single crystal reference samples at the single crystal instrument TOPAZ provide results with low R w(F) values
Present status of aircraft instruments
NASA Technical Reports Server (NTRS)
1932-01-01
This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.
Note: A new design for a low-temperature high-intensity helium beam source
NASA Astrophysics Data System (ADS)
Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.
2013-02-01
A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.
Development of an Electrostatically Clean Solar Array Panel
NASA Technical Reports Server (NTRS)
Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira
2000-01-01
The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.
Note: Design and fabrication of a simple versatile microelectrochemical cell and its accessories
NASA Astrophysics Data System (ADS)
Rajan, Viswanathan; Neelakantan, Lakshman
2015-09-01
A microelectrochemical cell housed in an optical microscope and custom-made accessories have been designed and fabricated, which allows performing spatially resolved corrosion measurements. The cell assembly was designed to directly integrate the reference electrode close to the capillary tip to avoid air bubbles. A hard disk along with an old optical microscope was re-engineered into a microgrinder, which made the vertical grinding of glass capillary tips very easy. A stepper motor was customized into a microsyringe pump to dispense a controlled volume of electrolyte through the capillary. A force sensitive resistor was used to achieve constant wetting area. The functionality of the developed instrument is demonstrated by studying μ-electrochemical behavior of worn surface on AA2014-T6 alloy.
Müller-Staub, Maria; Lunney, Margaret; Odenbreit, Matthias; Needham, Ian; Lavin, Mary Ann; van Achterberg, Theo
2009-04-01
This paper aims to report the development stages of an audit instrument to assess standardised nursing language. Because research-based instruments were not available, the instrument Quality of documentation of nursing Diagnoses, Interventions and Outcomes (Q-DIO) was developed. Standardised nursing language such as nursing diagnoses, interventions and outcomes are being implemented worldwide and will be crucial for the electronic health record. The literature showed a lack of audit instruments to assess the quality of standardised nursing language in nursing documentation. A qualitative design was used for instrument development. Criteria were first derived from a theoretical framework and literature reviews. Second, the criteria were operationalized into items and eight experts assessed face and content validity of the Q-DIO. Criteria were developed and operationalized into 29 items. For each item, a three or five point scale was applied. The experts supported content validity and showed 88.25% agreement for the scores assigned to the 29 items of the Q-DIO. The Q-DIO provides a literature-based audit instrument for nursing documentation. The strength of Q-DIO is its ability to measure the quality of nursing diagnoses and related interventions and nursing-sensitive patient outcomes. Further testing of Q-DIO is recommended. Based on the results of this study, the Q-DIO provides an audit instrument to be used in clinical practice. Its criteria can set the stage for the electronic nursing documentation in electronic health records.
Directed searches for continuous gravitational waves from spinning neutron stars in binary systems
NASA Astrophysics Data System (ADS)
Meadors, Grant David
2014-09-01
Gravitational wave detectors such as the Laser Interferometer Gravitational-wave Observatory (LIGO) seek to observe ripples in space predicted by General Relativity. Black holes, neutron stars, supernovae, the Big Bang and other sources can radiate gravitational waves. Original contributions to the LIGO effort are presented in this thesis: feedforward filtering, directed binary neutron star searches for continuous waves, and scientific outreach and education, as well as advances in quantum optical squeezing. Feedforward filtering removes extraneous noise from servo-controlled instruments. Filtering of the last science run, S6, improves LIGO's astrophysical range (+4.14% H1, +3.60% L1: +12% volume) after subtracting noise from auxiliary length control channels. This thesis shows how filtering enhances the scientific sensitivity of LIGO's data set during and after S6. Techniques for non-stationarity and verifying calibration and integrity may apply to Advanced LIGO. Squeezing is planned for future interferometers to exceed the standard quantum limit on noise from electromagnetic vacuum fluctuations; this thesis discusses the integration of a prototype squeezer at LIGO Hanford Observatory and impact on astrophysical sensitivity. Continuous gravitational waves may be emitted by neutron stars in low-mass X-ray binary systems such as Scorpius X-1. The TwoSpect directed binary search is designed to detect these waves. TwoSpect is the most sensitive of 4 methods in simulated data, projecting an upper limit of 4.23e-25 in strain, given a year-long data set at an Advanced LIGO design sensitivity of 4e-24 Hz. (-1/2). TwoSpect is also used on real S6 data to set 95% confidence upper limits (40 Hz to 2040 Hz) on strain from Scorpius X-1. A millisecond pulsar, X-ray transient J1751-305, is similarly considered. Search enhancements for Advanced LIGO are proposed. Advanced LIGO and fellow interferometers should detect gravitational waves in the coming decade. Methods in these thesis will benefit both the instrumental and analytical sides of observation.
Direct Monitoring of Trace Atmospheric Species via Ion Trap Mass Spectrometry
NASA Technical Reports Server (NTRS)
Palmer, P. T.; Pearson, Richard; Saimonson, Jay D.; Wong, Carla M.; Lawless, James G. (Technical Monitor)
1994-01-01
There is an ever-increasing emphasis on the part of government agencies, academia, and industry on enhancing our understanding of atmospheric processes and assessing the impact of human activities on these processes. While issues such as the ozone hole and rising levels of greenhouse gases have received major attention. relatively little is known about the types, concentrations, sources, and sinks of hydrocarbons in the troposphere and stratosphere. Such information would be of tremendous utility in assessing the roles of various anthropogenic and biogenic processes on global carbon cycles. An ion trap mass spectrometer has been developed for monitoring trace levels of hydrocarbons in the atmosphere on NASA's DC-8 "flying laboratory". This aircraft is used to provide measurements in support of a number of "Mission to Planet Earth" activities and tropospheric chemistry experiments. In past missions, specific compounds have been monitored via highly specialized instrumentation, fast GO, or collection of whole air samples for subsequent ground-based analysis. The ion trap has several features. including small size. excellent sensitivity, and broad applicability, which make it highly atttrat:ive for atmospheric monitoring. The design of this instrument, its air sampling interface. and the various complications associated with aircraft-deployment will be described. Data showing the sensitivity of the instrument for detecting hydrocarbons at mixing ratios below one part-per-billion, and the use of MS/MS for direct, on-line, real-time monitoring will be presented.
Investigation into Practical Implementations of a Zero Knowledge Protocol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marleau, Peter; Krentz-Wee, Rebecca E.
In recent years, the concept of Zero Knowledge Protocols (ZKP) as a useful approach to nuclear warhead verification has become increasingly popular. Several implementations of ZKP have been proposed, driving technology development toward proof of concept demonstrations. Whereas proposed implementations seem to fall within the general class of template-based techniques, all physical implementations of ZKPs proposed to date have a complication: once the instrumentation is prepared, it is no longer authenticatable; the instrument physically contains sensitive information. In this work we explore three different concepts that may offer more authenticatable and practical ZKP implementations and evaluate the sensitive information thatmore » may be at risk when doing so: sharing a subset of detector counts in a preloaded image (with spatial information removed), real-time image subtraction, and a new concept, CONfirmation using a Fast-neutron Imaging Detector with Anti-image NULL-positive Time Encoding (CONFIDANTE). CONFIDANTE promises to offer an almost ideal implementation of ZKP: a positive result is indicated by a constant rate at all times enabling the monitoring party the possibility of full access to the instrument before, during, and after confirmation. A prototype of CONFIDANTE was designed, built, and its performance evaluated in a series of measurements of several objects including a set of plutonium dioxide Hemispheres. Very encouraging results proving feasibility are presented. 1 Rebecca is currently a graduate student in Nuclear Engineering at UC Berkeley« less
NASA Astrophysics Data System (ADS)
Cataldo, Giuseppe; Moseley, S. H.; Hsieh, W.; Huang, W.; Stevenson, T.; Wollack, E.
2014-01-01
Many space-based observatories, such as Spitzer and Herschel, have opened the far-infrared (IR) window to the universe, revealing rich line and continuum spectra from objects ranging from interplanetary dust particles to galactic mergers and young galaxies in the early universe. Micro-Spec (µ-Spec) is proposed as a novel technology concept to enable new discoveries in the far-IR spectral range. µ-Spec will be a high-sensitivity, direct-detection spectrometer operating in the 450-1000 µm regime. It will have two antenna arrays, one for transmitting and one for receiving, and superconducting microstrip transmission lines for power division and phase delay. Using superconducting materials reduces losses at a minimum, thereby providing background-limited sensitivity (noise equivalent power, NEP, less than 3x10^-21 W/√Hz) at a resolution 1200, potentially making µ-Spec four orders of magnitude more sensitive than its most capable predecessors. Materials being investigated for the development of the instrument transmission line and detectors include niobium and niobium-titanium nitride for the former, and molybdenum nitride for the latter. In addition, the instrument will be integrated on a four-inch-diameter silicon chip. Such a dramatic size reduction is made possible by the fact that silicon has a refraction index three times that of vacuum, thereby allowing the transmission lines to be shorter than in vacuum by a factor of three. For all these reasons, µ-Spec can become an important capability under the low background conditions provided by space telescopes such as the space infrared telescope for cosmology and astrophysics SPICA, possible Explorers and cryogenically-cooled balloons. The discussion will illustrate a point design developed for initial demonstration with a 30% efficiency due to losses to other diffraction orders. Design variations on this implementation will be shown that lead to near-unity efficiency and will be the basis of future instruments. Models to analyze the properties of the superconductors will also be described along with transmission data used to test and validate the models.
Integrated bio-fluorescence sensor.
Thrush, Evan; Levi, Ofer; Ha, Wonill; Wang, Ke; Smith, Stephen J; Harris, James S
2003-09-26
Due to the recent explosion in optoelectronics for telecommunication applications, novel optoelectronic sensing structures can now be realized. In this work, we explore the integration of optoelectronic components towards miniature and portable fluorescence sensors. The integration of these micro-fabricated sensors with microfluidics and capillary networks may reduce the cost and complexity of current research instruments and open up a world of new applications in portable biological analysis systems. A novel optoelectronic design that capitalizes on current vertical-cavity surface-emitting laser (VCSEL) technology is explored. Specifically, VCSELs, optical emission filters and PIN photodetectors are fabricated as part of a monolithically integrated near-infrared fluorescence detection system. High-performance lasers and photodetectors have been characterized and integrated to form a complete sensor. Experimental results show that sensor sensitivity is limited by laser background. The laser background is caused by spontaneous emission emitted from the side of the VCSEL excitation source. Laser background will limit sensitivity in most integrated sensing designs due to locating excitation sources and photodetectors in such close proximity, and methods are proposed to reduce the laser background in such designs so that practical fluorescent detection limits can be achieved.
Correcting for the effects of pupil discontinuities with the ACAD method
NASA Astrophysics Data System (ADS)
Mazoyer, Johan; Pueyo, Laurent; N'Diaye, Mamadou; Mawet, Dimitri; Soummer, Rémi; Norman, Colin
2016-07-01
The current generation of ground-based coronagraphic instruments uses deformable mirrors to correct for phase errors and to improve contrast levels at small angular separations. Improving these techniques, several space and ground based instruments are currently developed using two deformable mirrors to correct for both phase and amplitude errors. However, as wavefront control techniques improve, more complex telescope pupil geometries (support structures, segmentation) will soon be a limiting factor for these next generation coronagraphic instruments. The technique presented in this proceeding, the Active Correction of Aperture Discontinuities method, is taking advantage of the fact that most future coronagraphic instruments will include two deformable mirrors, and is proposing to find the shapes and actuator movements to correct for the effect introduced by these complex pupil geometries. For any coronagraph previously designed for continuous apertures, this technique allow to obtain similar performance in contrast with a complex aperture (with segmented and secondary mirror support structures), with high throughput and flexibility to adapt to changing pupil geometry (e.g. in case of segment failure or maintenance of the segments). We here present the results of the parametric analysis realized on the WFIRST pupil for which we obtained high contrast levels with several deformable mirror setups (size, separation between them), coronagraphs (Vortex charge 2, vortex charge 4, APLC) and spectral bandwidths. However, because contrast levels and separation are not the only metrics to maximize the scientific return of an instrument, we also included in this study the influence of these deformable mirror shapes on the throughput of the instrument and sensitivity to pointing jitters. Finally, we present results obtained on another potential space based telescope segmented aperture. The main result of this proceeding is that we now obtain comparable performance than the coronagraphs previously designed for WFIRST. First result from the parametric analysis strongly suggest that the 2 deformable mirror set up (size and distance between them) have a important impact on the performance in contrast and throughput of the final instrument.
The ISEE-C plasma wave investigation
NASA Technical Reports Server (NTRS)
Scarf, F. L.; Fredricks, R. W.; Gurnett, D. A.; Smith, E. J.
1978-01-01
The ISEE-C plasma wave investigation is designed to provide comprehensive information on interplanetary wave-particle interactions. Three spectrum analyzers with a total of 19 bandpass channels cover the frequency range 0.3 Hz to 100 kHz. The main analyzer, which uses 16 continuously active amplifiers, gives two complete spectral scans per second in each of 16 filter channels. The instrument sensors include a high-sensitivity magnetic search coil, and electric antennas with effective lengths of 0.6 and 45 m.
Pixelated coatings and advanced IR coatings
NASA Astrophysics Data System (ADS)
Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé
2017-09-01
Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.
SOFIA: Stratospheric Observatory for Infrared Astronomy
NASA Astrophysics Data System (ADS)
Becklin, E. E.
The SOFIA project to develop and operate a 2 5-meter infrared telescope in a Boeing 747-SP is in its final stages of development First science flights will begin in 2008 with the observatory designed to operate for over 20 years Status of the development and technical issues will be discussed along with the expected sensitivity and first light science instruments Also discussed will be examples of the science to be carried out and opportunities for the science community to use SOFIA
Strategy for Realizing High-Precision VUV Spectro-Polarimeter
NASA Astrophysics Data System (ADS)
Ishikawa, R.; Narukage, N.; Kubo, M.; Ishikawa, S.; Kano, R.; Tsuneta, S.
2014-12-01
Spectro-polarimetric observations in the vacuum ultraviolet (VUV) range are currently the only means to measure magnetic fields in the upper chromosphere and transition region of the solar atmosphere. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) aims to measure linear polarization at the hydrogen Lyman- α line (121.6 nm). This measurement requires a polarization sensitivity better than 0.1 %, which is unprecedented in the VUV range. We here present a strategy with which to realize such high-precision spectro-polarimetry. This involves the optimization of instrument design, testing of optical components, extensive analyses of polarization errors, polarization calibration of the instrument, and calibration with onboard data. We expect that this strategy will aid the development of other advanced high-precision polarimeters in the UV as well as in other wavelength ranges.
The ESA RADGLASS activity: a radiation study of non rad-hard glasses
NASA Astrophysics Data System (ADS)
Manolis, Ilias; Bézy, Jean-Loup; Costantino, Alessandra; Vink, Ramon; Deep, Atul; Ahmad, Munadi; Amorim, Emmanuel; Miranda, Micael D.; Meynart, Roland
2015-10-01
Only a small set of radiation hardened optical glasses are currently offered in the market, thus drastically limiting the optical design choices available to the engineers at the early phases of an instrument development. Furthermore, availability of those glasses cannot be easily guaranteed for the long term horizon of future space instrument developments. Radiation tests on conventional glasses on the other hand have shown significant sensitivity to high radiation levels but such levels are not necessarily representative of typical low Earth (LEO) orbits. We have conducted irradiation campaigns on several different types of conventional, non-radiation hard glasses, selected from the wider pool of the Schott "new" arsenic and lead free series (N-*) and characterized their spectral transmission properties before and after ionizing dose deposition. We report our first findings here.
NASA Technical Reports Server (NTRS)
Kendall, B. R.
1979-01-01
Theoretical and numerical analyses were made of planar, cylindrical and spherical electrode time-of-flight mass spectrometers in order to optimize their operating conditions. A numerical analysis of potential barrier gating in time-of-flight spectrometers was also made. The results were used in the design of several small mass spectrometers. These were constructed and tested in a laboratory space simulator. Detailed experimental studies of a miniature cylindrical electrode time of flight mass spectrometer and of a miniature hemispherical electrode time of flight mass spectrometer were made. The extremely high sensitivity of these instruments and their ability to operate at D region pressures with an open source make them ideal instruments for D region ion composition measurements.
The Sample Analysis at Mars Investigation and Instrument Suite
NASA Technical Reports Server (NTRS)
Mahaffy, Paul; Webster, Chris R.; Cabane, M.; Conrad, Pamela G.; Coll, Patrice; Atreya, Sushil K.; Arvey, Robert; Barciniak, Michael; Benna, Mehdi; Bleacher, L.;
2012-01-01
The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm.
Thurber, Steven; Wilson, Ann; Realmuto, George; Specker, Sheila
2018-03-01
To investigate the concurrent and criterion validity of two independently developed measurement instruments, INTERMED and LOCUS, designed to improve the treatment and clinical management of patients with complex symptom manifestations. Participants (N = 66) were selected from hospital records based on the complexity of presenting symptoms, with tripartite diagnoses across biological, psychiatric and addiction domains. Biopsychosocial information from hospital records were submitted to INTERMED and LOCUS grids. In addition, Global Assessment of Functioning (GAF) ratings were gathered for statistical analyses. The product moment correlation between INTERMED and LOCUS was 0.609 (p = .01). Inverse zero-order correlations for INTERMED and LOCUS total score and GAF were obtained. However, only the beta weight for LOCUS and GAF was significant. An exploratory principal components analysis further illuminated areas of convergence between the instruments. INTERMED and LOCUS demonstrated shared variance. INTERMED appeared more sensitive to complex medical conditions and severe physiological reactions, whereas LOCUS findings are more strongly related to psychiatric symptoms. Implications are discussed.
Lunar mass spectrometer test program
NASA Technical Reports Server (NTRS)
Torney, F. L.; Dobrott, J. R.
1972-01-01
The procedures are described along with results obtained in a test program conducted to demonstrate the performance of a candidate lunar mass spectrometer. The instrument was designed to sample and measure gases believed to exist in the lunar atmosphere at the surface. The subject instrument consists of a cold cathode ion source, a small quadrupole mass analyzer and an off axis electron multiplier ion counting detector. The major program emphasis was placed on demonstrating instrument resolution, sensitivity and S/N ratio over the mass range 0-150 amu and over a partial pressure range from 10 to the minus 9th power to 10 to the minus 13th power torr. Ultrahigh vacuum tests were conducted and the minimum detectable partial pressure for neon, argon, krypton and xenon was successfully determined for the spectrometer using isotopes of these gases. With the exception of neon, the minimum detectable partial pressure is approximately 4 x 10 to the minus 14th power torr for the above gases.
Simulation Studies of Satellite Laser CO2 Mission Concepts
NASA Technical Reports Server (NTRS)
Kawa, Stephan Randy; Mao, J.; Abshire, J. B.; Collatz, G. J.; Sun X.; Weaver, C. J.
2011-01-01
Results of mission simulation studies are presented for a laser-based atmospheric CO2 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to ASCENDS as recommended by the US National Academy of Sciences Decadal Survey. Compared to passive sensors, active (lidar) sensing of CO2 from space has several potentially significant advantages that hold promise to advance CO2 measurement capability in the next decade. Although the precision and accuracy requirements remain at unprecedented levels of stringency, analysis of possible instrument technology indicates that such sensors are more than feasible. Radiative transfer model calculations, an instrument model with representative errors, and a simple retrieval approach complete the cycle from "nature" run to "pseudodata" CO2. Several mission and instrument configuration options are examined, and the sensitivity to key design variables is shown. Examples are also shown of how the resulting pseudo-measurements might be used to address key carbon cycle science questions.
System implications of aperture-shade design for the SIRTF Observatory
NASA Technical Reports Server (NTRS)
Lee, J. H.; Brooks, W. F.; Maa, S.
1987-01-01
The 1-m-aperture Space Infrared Telescope Facility (SIRTF) will operate with a sensitivity limited only by the zodiacal background. This sensitivity requirement places severe restrictions on the amount of stray light which can reach the focal plane from off-axis sources such as the sun or earth limb. In addition, radiation from these sources can degrade the lifetime of the telescope and instrument cryogenic system which is now planned for two years before the first servicing. Since the aperture of the telescope represents a break in the telescope insulation system and is effectively the first element in the optical train, the aperture shade is a key system component. The mass, length, and temperature of the shade should be minimized to reduce system cost while maximizing the telescope lifetime and stray light performance. The independent geometric parameters that characterize an asymmetrical shade for a 600 km, 28 deg orbit were identified, and the system sensitivity to the three most important shade parameters were explored. Despite the higher heat loads compared to previously studied polar orbit missions, the analysis determined that passive radiators of a reasonable size are sufficient to meet the system requirements. An optimized design for the SIRTF mission, based on the sensitivity analysis, is proposed.
Harvey, John J; Chester, Stephanie; Burke, Stephen A; Ansbro, Marisela; Aden, Tricia; Gose, Remedios; Sciulli, Rebecca; Bai, Jing; DesJardin, Lucy; Benfer, Jeffrey L; Hall, Joshua; Smole, Sandra; Doan, Kimberly; Popowich, Michael D; St George, Kirsten; Quinlan, Tammy; Halse, Tanya A; Li, Zhen; Pérez-Osorio, Ailyn C; Glover, William A; Russell, Denny; Reisdorf, Erik; Whyte, Thomas; Whitaker, Brett; Hatcher, Cynthia; Srinivasan, Velusamy; Tatti, Kathleen; Tondella, Maria Lucia; Wang, Xin; Winchell, Jonas M; Mayer, Leonard W; Jernigan, Daniel; Mawle, Alison C
2016-02-01
In this study, a multicenter evaluation of the Life Technologies TaqMan(®) Array Card (TAC) with 21 custom viral and bacterial respiratory assays was performed on the Applied Biosystems ViiA™ 7 Real-Time PCR System. The goal of the study was to demonstrate the analytical performance of this platform when compared to identical individual pathogen specific laboratory developed tests (LDTs) designed at the Centers for Disease Control and Prevention (CDC), equivalent LDTs provided by state public health laboratories, or to three different commercial multi-respiratory panels. CDC and Association of Public Health Laboratories (APHL) LDTs had similar analytical sensitivities for viral pathogens, while several of the bacterial pathogen APHL LDTs demonstrated sensitivities one log higher than the corresponding CDC LDT. When compared to CDC LDTs, TAC assays were generally one to two logs less sensitive depending on the site performing the analysis. Finally, TAC assays were generally more sensitive than their counterparts in three different commercial multi-respiratory panels. TAC technology allows users to spot customized assays and design TAC layout, simplify assay setup, conserve specimen, dramatically reduce contamination potential, and as demonstrated in this study, analyze multiple samples in parallel with good reproducibility between instruments and operators. Copyright © 2015 Elsevier B.V. All rights reserved.
Total hydrocarbon analysis by ion mobility spectrometry
NASA Technical Reports Server (NTRS)
Cross, John H.; Limero, Thomas F.; James, John T.
1994-01-01
Astronauts must be alerted quickly to chemical leaks that compromise their health and the success of their missions. An ideal leak detector would be equally sensitive to all compounds that might constitute a hazard and insensitive to nontoxic compounds. No ideal sensor exists; thus, selection of a methodology is a series of compromises. The commonly used methods are either insensitive at the low exposure levels set by OSHA, NASA, and other organizations or are selectively insensitive to important classes of chemicals such as Freons. After extensive study and experience, the Toxicology Group at JSC has selected ion mobility spectrometry (IMS) for development into a broad range, sensitive detector. In addition to the sensing method, signal processing is important leak detection because a background signal can be expected at all times. The leak-detecting instrument must be programmed to discriminate between authentic leaks and background fluctuations caused by routine operations. The results of an evaluation of the prototype THA is presented in terms related to spacecraft operations. The evaluation included determination of instrumental parameters such as stability and response times. We also included responses to some common components of spacecraft atmospheres in pure form and in binary and ternary mixtures. The output of the four algorithms to the mixtures was found to be noticeably different. These responses are compared on the basis of their utility for signaling a chemical leak. As a means of evaluating its resistance to a falsely positive response, the THA was challenged with carbon dioxide and methane, compounds whose concentrations normally increase in spacecraft air during human habitation. The instrument showed virtually no response to these interferences. Although the prototype THA is designed for space flight, this detector is expected to be useful for field screening at chemical waste dumps and other environmentally sensitive locations.
The Primordial Inflation Polarization Explorer (PIPER)
NASA Technical Reports Server (NTRS)
Lazear, Justin Scott; Ade, Peter A.; Benford, Dominic J.; Bennett, Charles L.; Chuss, David T.; Dotson, Jessie L.; Eimer, Joseph R.; Fixsen, Dale J.; Halpern, Mark; Hinderks, James;
2014-01-01
The Primordial Inflation Polarization ExploreR (Piper) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. Bicep2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on approximately 2 degree scales. If the Bicep2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. Piper is currently the only suborbital instrument capable of fully testing and extending the Bicep2 results by measuring the B-mode power spectrum on angular scales theta ? = approximately 0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. Piper will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32×40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 milli-Kelvin. Polarization sensitivity and systematic control are provided by front-end Variabledelay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow Piper to instantaneously measure the full Stokes vector (I,Q,U,0V) for each pointing. We describe the Piper instrument and progress towards its first flight.
A Versatile High Speed 250 MHz Pulse Imager for Biomedical Applications
Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.
2009-01-01
A versatile 250 MHz pulse electron paramagnetic resonance (EPR) instrument for imaging of small animals is presented. Flexible design of the imager hardware and software makes it possible to use virtually any pulse EPR imaging modality. A fast pulse generation and data acquisition system based on general purpose PCI boards performs measurements with minimal additional delays. Careful design of receiver protection circuitry allowed us to achieve very high sensitivity of the instrument. In this article we demonstrate the ability of the instrument to obtain three dimensional images using the electron spin echo (ESE) and single point imaging (SPI) methods. In a phantom that contains a 1 mM solution of narrow line (16 μT, peak-to-peak) paramagnetic spin probe we achieved an acquisition time of 32 seconds per image with a fast 3D ESE imaging protocol. Using an 18 minute 3D phase relaxation (T2e) ESE imaging protocol in a homogeneous sample a spatial resolution of 1.4 mm and a standard deviation of T2e of 8.5% were achieved. When applied to in vivo imaging this precision of T2e determination would be equivalent to 2 torr resolution of oxygen partial pressure in animal tissues. PMID:19924261
Geostationary Coastal and Air Pollution Events (GEO-CAPE) Sensitivity Analysis Experiment
NASA Technical Reports Server (NTRS)
Lee, Meemong; Bowman, Kevin
2014-01-01
Geostationary Coastal and Air pollution Events (GEO-CAPE) is a NASA decadal survey mission to be designed to provide surface reflectance at high spectral, spatial, and temporal resolutions from a geostationary orbit necessary for studying regional-scale air quality issues and their impact on global atmospheric composition processes. GEO-CAPE's Atmospheric Science Questions explore the influence of both gases and particles on air quality, atmospheric composition, and climate. The objective of the GEO-CAPE Observing System Simulation Experiment (OSSE) is to analyze the sensitivity of ozone to the global and regional NOx emissions and improve the science impact of GEO-CAPE with respect to the global air quality. The GEO-CAPE OSSE team at Jet propulsion Laboratory has developed a comprehensive OSSE framework that can perform adjoint-sensitivity analysis for a wide range of observation scenarios and measurement qualities. This report discusses the OSSE framework and presents the sensitivity analysis results obtained from the GEO-CAPE OSSE framework for seven observation scenarios and three instrument systems.
A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring.
Yang, Tingting; Jiang, Xin; Zhong, Yujia; Zhao, Xuanliang; Lin, Shuyuan; Li, Jing; Li, Xinming; Xu, Jianlong; Li, Zhihong; Zhu, Hongwei
2017-07-28
Profuse medical information about cardiovascular properties can be gathered from pulse waveforms. Therefore, it is desirable to design a smart pulse monitoring device to achieve noninvasive and real-time acquisition of cardiovascular parameters. The majority of current pulse sensors are usually bulky or insufficient in sensitivity. In this work, a graphene-based skin-like sensor is explored for pulse wave sensing with features of easy use and wearing comfort. Moreover, the adjustment of the substrate stiffness and interfacial bonding accomplish the optimal balance between sensor linearity and signal sensitivity, as well as measurement of the beat-to-beat radial arterial pulse. Compared with the existing bulky and nonportable clinical instruments, this highly sensitive and soft sensing patch not only provides primary sensor interface to human skin, but also can objectively and accurately detect the subtle pulse signal variations in a real-time fashion, such as pulse waveforms with different ages, pre- and post-exercise, thus presenting a promising solution to home-based pulse monitoring.
Infrared detectors for Earth observation
NASA Astrophysics Data System (ADS)
Barnes, K.; Davis, R. P.; Knowles, P.; Shorrocks, N.
2016-05-01
IASI (Infrared Atmospheric Sounding Interferometer), developed by CNES and launched since 2006 on the Metop satellites, is established as a major source of data for atmospheric science and weather prediction. The next generation - IASI NG - is a French national contribution to the Eumetsat Polar System Second Generation on board of the Metop second generation satellites and is under development by Airbus Defence and Space for CNES. The mission aim is to achieve twice the performance of the original IASI instrument in terms of sensitivity and spectral resolution. In turn, this places very demanding requirements on the infrared detectors for the new instrument. Selex ES in Southampton has been selected for the development of the infrared detector set for the IASI-NG instruments. The wide spectral range, 3.6 to 15.5 microns, is covered in four bands, each served by a dedicated detector design, with a common 4 x 4 array format of 1.3 mm square macropixels. Three of the bands up to 8.7 microns employ photovoltaic MCT (mercury cadmium telluride) technology and the very long wave band employs photoconductive MCT, in common with the approach taken between Airbus and Selex ES for the SEVIRI instrument on Second Generation Meteosat. For the photovoltaic detectors, the MCT crystal growth of heterojunction photodiodes is by the MOVPE technique (metal organic vapour phase epitaxy). Novel approaches have been taken to hardening the photovoltaic macropixels against localised crystal defects, and integrating transimpedance amplifiers for each macropixel into a full-custom silicon read out chip, which incorporates radiation hard design.
The low cost Proton Precession Magnetometer developed at the Indian Institute of Geomagnetism
NASA Astrophysics Data System (ADS)
Mahavarkar, P.; Singh, S.; Labde, S.; Dongre, V.; Patil, A.
2017-05-01
Proton magnetometers are the oldest scalar magnetometers. The first commercial units were produced in early 1960s as portable instruments. In continuation airborne instruments appeared with optimized speed of readings and sensitivity, large sensors etc. Later development of Overhauser and optically pumped magnetometers has eliminated Proton magnetometers from airborne surveys. However they remain very popular in various ground surveys and observatories. With this primary purpose of generating the ground based magnetic data, the Indian Institute of Geomagnetism (IIG) for the last 3 decades have been developing low cost Proton Precession Magnetometers (PPM). Beginning with the 1 nT PPM which has undergone several changes in design, the successor PM7 the advanced version has been successfully developed by the institute and is installed at various observatories of the institute. PM7 records the total field `F' with accuracy of 0.1 nT and a sampling rate of 10 seconds/sample. This article briefly discusses the design and development of this IIG make PM7 and compares the data recorded by this instrument with one of the commercially available Overhauser magnetometer in the world market. The quality of data recorded by PM7 is in excellent agreement with the Overhauser. With the available quality of data generated by this instrument, PM7 is an affordable PPM for scientific institutions, schools and colleges intending to carry out geomagnetic studies. The commercial cost of PM7 is ≈ 20% of the cost of Overhauser available in market.
Status of the design of the ITER ECE diagnostic
Taylor, G.; Austin, M. E.; Beno, J. H.; ...
2015-03-12
In this study, the baseline design for the ITER electron cyclotron emission (ECE) diagnostic has entered the detailed preliminary design phase. Two plasma views are planned, a radial view and an oblique view that is sensitive to distortions in the electron momentum distribution near the average thermal momentum. Both views provide high spatial resolution electron temperature profiles when the momentum distribution remains Maxwellian. The ECE diagnostic system consists of the front-end optics, including two 1000 K calibration sources, in equatorial port plug EP9, the 70-1000 GHz transmission system from the front-end to the diagnostics hall, and the ECE instrumentation inmore » the diagnostics hall. The baseline ECE instrumentation will include two Michelson interferometers that can simultaneously measure ordinary and extraordinary mode ECE from 70 to 1000 GHz, and two heterodyne radiometer systems, covering 122-230 GHz and 244-355 GHz. Significant design challenges include 1) developing highly-reliable 1000 K calibration sources and the associated shutters/mirrors, 2) providing compliant couplings between the front-end optics and the polarization splitter box that accommodate displacements of the vacuum vessel during plasma operations and bake out, 3) protecting components from damage due to stray ECH radiation and other intense millimeter wave emission and 4) providing the low-loss broadband transmission system.« less
DESIGN OF MEDICAL RADIOMETER FRONT-END FOR IMPROVED PERFORMANCE
Klemetsen, Ø.; Birkelund, Y.; Jacobsen, S. K.; Maccarini, P. F.; Stauffer, P. R.
2011-01-01
We have investigated the possibility of building a singleband Dicke radiometer that is inexpensive, small-sized, stable, highly sensitive, and which consists of readily available microwave components. The selected frequency band is at 3.25–3.75 GHz which provides a reasonable compromise between spatial resolution (antenna size) and sensing depth for radiometry applications in lossy tissue. Foreseen applications of the instrument are non-invasive temperature monitoring for breast cancer detection and temperature monitoring during heating. We have found off-the-shelf microwave components that are sufficiently small (< 5 mm × 5 mm) and which offer satisfactory overall sensitivity. Two different Dicke radiometers have been realized: one is a conventional design with the Dicke switch at the front-end to select either the antenna or noise reference channels for amplification. The second design places a matched pair of low noise amplifiers in front of the Dicke switch to reduce system noise figure. Numerical simulations were performed to test the design concepts before building prototype PCB front-end layouts of the radiometer. Both designs provide an overall power gain of approximately 50 dB over a 500 MHz bandwidth centered at 3.5 GHz. No stability problems were observed despite using triple-cascaded amplifier configurations to boost the thermal signals. The prototypes were tested for sensitivity after calibration in two different water baths. Experiments showed superior sensitivity (36% higher) when implementing the low noise amplifier before the Dicke switch (close to the antenna) compared to the other design with the Dicke switch in front. Radiometer performance was also tested in a multilayered phantom during alternating heating and radiometric reading. Empirical tests showed that for the configuration with Dicke switch first, the switch had to be locked in the reference position during application of microwave heating to avoid damage to the active components (amplifiers and power meter). For the configuration with a low noise amplifier up front, damage would occur to the active components of the radiometer if used in presence of the microwave heating antenna. Nevertheless, this design showed significantly improved sensitivity of measured temperatures and merits further investigation to determine methods of protecting the radiometer for amplifier first front ends. PMID:21779411
NASA Technical Reports Server (NTRS)
Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; Rice, Frank; LeDuc, H. G.; Weinreb, Sander; Zmuidzinas, Jonas
2002-01-01
Millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We present the design for a broadband, sensitive, heterodyne spectrometer under development for the Caltech Submillimeter Observatory (CSO). The 180-300 GHz double-sideband design uses a single SIS device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss should be no more than 1-2 dB with mixer noise temperatures across the band within 10 K of the quantum limit. The single-sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and the first use on the CSO should occur in the spring of 2003.
Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D
2009-08-15
A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions (<3% cerium oxide ratio). At mass resolution (full width at half-maximum) M/DeltaM > 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When <15 elemental tags are used, a higher sensitivity mode at lower resolution (M/DeltaM > 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.
X-ray and gamma ray astronomy detectors
NASA Technical Reports Server (NTRS)
Decher, Rudolf; Ramsey, Brian D.; Austin, Robert
1994-01-01
X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.
Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.
2015-01-01
Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processingmore » to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.« less
Sanuki, Tetsuji; Yumoto, Eiji; Toya, Yutaka; Kumai, Yoshihiko
2016-10-01
Adductor spasmodic dysphonia is a rare voice disorder characterized by strained and strangled voice quality with intermittent phonatory breaks and adductory vocal fold spasms. Type II thyroplasty differs from previous treatments in that this surgery does not involve any surgical intervention into the laryngeal muscle, nerve or vocal folds. Type II thyroplasty intervenes in the thyroid cartilage, which is unrelated to the lesion. This procedure, conducted with the aim of achieving lateralization of the vocal folds, requires utmost surgical caution due to the extreme delicacy of the surgical site, critically sensitive adjustment, and difficult procedures to maintain the incised cartilages at a correct position. During surgery, the correct separation of the incised cartilage edges with voice monitoring is the most important factor determining surgical success and patient satisfaction. We designed new surgical instruments: a thyroid cartilage elevator for undermining the thyroid cartilage, and spacer devices to gauge width while performing voice monitoring. These devices were designed to prevent surgical complications, and to aid in selecting the optimal size of titanium bridges while temporally maintaining a separation during voice monitoring. We designed new surgical instruments, including a thyroid cartilage elevator and spacer devices. Precise surgical procedures and performing voice tuning during surgery with the optimal separation width of the thyroid cartilage are key points for surgical success. We introduce the technique of voice tuning using these surgical tools in order to achieve a better outcome with minimal surgical complications. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline
2012-01-01
The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.
Performance of a multistep fluorescence-gated proportional counter for hard X-ray astronomy
NASA Technical Reports Server (NTRS)
Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.
1992-01-01
Results from the first flight of our proportional counter in an imaging telescope led us to rebuild the detector. We have used a Penning gas mixture (xenon + 1 percent isobutylene) and introduced a preamplification region to improve the energy resolution. We have rebuilt the pressure vessel making novel use of molybdenum as the housing material in order to reduce the residual instrument background, particularly in the fluorescence-gated mode for which the detector design has been optimized. We have also increased the sensitive gas depth from 9 to 14 cm to further increase the sensitivity to both fluorescent pairs and conventional singles. Our calibrations have shown that the overall energy resolution of the detector has been enhanced by a factor of 2, and we predict that the sensitivity at float will increase by a factor of 3 in the 50-70 keV energy band.
How discriminating are discriminative instruments?
Hankins, Matthew
2008-05-27
The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL). The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness), but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta) is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.
Antenna-Coupled Bolometer Arrays for Astrophysics
NASA Astrophysics Data System (ADS)
Bock, James
Bolometers offer the best sensitivity in the far-infrared to millimeter-wave region of the electromagnetic spectrum. We are developing arrays of feedhorn-coupled bolometers for the ESA/NASA Planck Surveyor and Herschel Space Observatory. Advances in the format and sensitivity of bolometric focal plane array enables future astrophysics mission opportunities, such as CMB polarimetry and far-infrared/submillimeter spectral line surveys. Compared to bolometers with extended area radiation absorbers, antenna-coupled bolometers offer active volumes that are orders of magnitude smaller. Coupled to lithographed micro-strip filters and antennas, antenna-coupled bolometer arrays allow flexible focal plane architectures specialized for imaging, polarimetry, and spectroscopy. These architectures greatly reduce the mass of sub-Kelvin bolometer focal planes that drive the design of bolometric instrumentation.
Technical and commerical challenges in high Tc SQUIDs and their industrial applications
NASA Technical Reports Server (NTRS)
Lu, D. F.
1995-01-01
A SQUID is the most sensitive device for measuring changes in magnetic flux. Since its discovery in the sixties, scientists have made consistent efforts to apply SQUID's to various applications. Instruments that are the most sensitive in their respective categories have been built, such as SQUID DC susceptometer that is now manufactured by Quantum Design, pico-voltmeter which could measure 10(exp -14) volts, and gravitational wave detectors. One of the most successful applications of SQUID's is in magnetoencephalography, a non-invasive technique for investigating neuronal activity in the living human brain. This technique employs a multi-channel SQUID magnetometer that maps the weak magnetic field generated by small current when information is processed in brain, and its performance is marvelous.
Suk, Min Hyun; Oh, Won Oak; Im, Yeo Jin; Cho, Hun Ha
2015-09-01
This study examined the mediating effect of school nurses' self efficacy, which is one of the significant cognitive factors influencing cultural sensitivity, on the mutual relationships between multicultural attitude and cultural sensitivity in Korean elementary schools. A cross-sectional descriptive survey design was used. Participants were 157 school nurses in elementary schools located in Gyeonggi-do, South Korea. The survey instruments included Teacher Multicultural Attitude Survey, Teacher Efficacy Scale, and Multicultural Sensitivity Scale. Data were analyzed using three regression equations to test the mediation model. The mean score of the school nurses' cultural sensitivity was relatively low. A positive correlation among multicultural attitude, self efficacy, and cultural sensitivity was noted. Self efficacy of school nurses showed a significant mediating effect on the relationships between multicultural attitude and cultural sensitivity. Given the meaningful influence of positive multicultural attitude on cultural sensitivity and significant mediator effect of self efficacy as a school nurse between the two variables, the strategies to cultivate a positive multicultural attitude and enhance school nurses' self efficacy in their unique role should be considered in a training program. School nurses' health care services will benefit from the improvement of cultural sensitivity toward young children from multicultural families. Copyright © 2015. Published by Elsevier B.V.
SW-MW infrared spectrometer for lunar mission
NASA Astrophysics Data System (ADS)
Banerjee, Arup; Biswas, Amiya; Joshi, Shaunak; Kumar, Ankush; Rehman, Sami; Sharma, Satish; Somani, Sandip; Bhati, Sunil; Karelia, Jitendra; Saxena, Anish; Chowdhury, Arup R.
2016-04-01
SW-MW Imaging Infrared Spectrometer, the Hyperspectral optical imaging instrument is envisaged to map geomorphology and mineralogy of lunar surface. The instrument is designed to image the electro-magnetic energy emanating from moon's surface with high spectral and spatial resolution for the mission duration from an altitude of 100 km. It is designed to cover 0.8 to 5 μm in 250 spectral bands with GSD 80m and swath 20km. Primarily, there are three basic optical segments in the spectrometer. They are fore optics, dispersing element and focusing elements. The payload is designed around a custom developed multi-blaze convex grating optimized for system throughput. The considerations for optimization are lunar radiation, instrument background, optical throughput, and detector sensitivity. HgCdTe (cooled using a rotary stirling cooler) based detector array (500x256 elements, 30μm) is being custom developed for the spectrometer. Stray light background flux is minimized using a multi-band filter cooled to cryogenic temperature. Mechanical system realization is being performed considering requirements such as structural, opto-mechanical, thermal, and alignment. The entire EOM is planned to be maintained at 240K to reduce and control instrument background. Al based mirror, grating, and EOM housing is being developed to maintain structural requirements along with opto- mechanical and thermal. Multi-tier radiative isolation and multi-stage radiative cooling approach is selected for maintaining the EOM temperature. EOM along with precision electronics packages are planned to be placed on the outer and inner side of Anti-sun side (ASS) deck. Power and Cooler drive electronics packages are planned to be placed on bottom side of ASS panel. Cooler drive electronics is being custom developed to maintain the detector temperature within 100mK during the imaging phase. Low noise detector electronics development is critical for maintaining the NETD requirements at different target temperatures. Subsequent segments of the paper bring out system design aspects and trade-off analyses.
Kaszás, B; Kovács, N; Balás, I; Kállai, J; Aschermann, Z; Kerekes, Z; Komoly, S; Nagy, F; Janszky, J; Lucza, T; Karádi, K
2012-06-01
Among the non-motor features of Parkinson's disease (PD), cognitive impairment is one of the most troublesome problems. Highly sensitive and specific screening instruments for detecting dementia in PD (PDD) are required in the clinical practice. In our study we evaluated the sensitivity and specificity of different neuropsychological tests (Addenbrooke's Cognitive Examination, ACE; Frontal Assessment Battery, FAB and Mattis Dementia Rating Scale, MDRS) in 73 Parkinson's disease patients without depression. By receiver operating characteristic curve analysis, these screening instruments were tested against the recently established clinical diagnostic criteria of PDD. Best cut-off score for ACE to identify PDD was 80 points (sensitivity = 74.0%, specificity = 78.1%). For FAB the most optimal cut-off value was 12 points (sensitivity = 66.3%, specificity = 72.2%); whereas for MDRS it was 125 points (sensitivity = 89.8%, specificity = 98.3%). Among the examined test batteries, MDRS had the best clinicometric profile for detecting PDD. Although the types of applied screening instruments might differ from movement disorder clinic to clinic within a country, determination of the most specific and sensitive test for the given population remains to be an important task. Our results demonstrated that the specificity and sensitivity of MDRS was better than those of ACE, FAB and MMSE in Hungary. However, further studies with larger sample size and more uniform criteria for participation are required to determine the most suitable screening instrument for cognitive impairment. Copyright © 2012 Elsevier Ltd. All rights reserved.
A fast scintillator Compton telescope for medium-energy gamma-ray astronomy
NASA Astrophysics Data System (ADS)
Bloser, Peter F.; Ryan, James M.; Legere, Jason S.; Julien, Manuel; Bancroft, Christopher M.; McConnell, Mark L.; Wallace, Mark; Kippen, R. Marc; Tornga, Shawn
2010-07-01
The field of medium-energy gamma-ray astronomy urgently needs a new mission to build on the success of the COMPTEL instrument on the Compton Gamma Ray Observatory. This mission must achieve sensitivity significantly greater than that of COMPTEL in order to advance the science of relativistic particle accelerators, nuclear astrophysics, and diffuse backgrounds, and bridge the gap between current and future hard X-ray missions and the high-energy Fermi mission. Such an increase in sensitivity can only come about via a dramatic decrease in the instrumental background. We are currently developing a concept for a low-background Compton telescope that employs modern scintillator technology to achieve this increase in sensitivity. Specifically, by employing LaBr3 scintillators for the calorimeter, one can take advantage of the unique speed and resolving power of this material to improve the instrument sensitivity while simultaneously enhancing its spectroscopic and imaging performance. Also, using deuterated organic scintillator in the scattering detector will reduce internal background from neutron capture. We present calibration results from a laboratory prototype of such an instrument, including time-of-flight, energy, and angular resolution, and compare them to simulation results using a detailed Monte Carlo model. We also describe the balloon payload we have built for a test flight of the instrument in the fall of 2010.
NASA Astrophysics Data System (ADS)
Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.
2016-09-01
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought.
Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.
2016-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought. PMID:27624437
Low-cost microwave radiometry for remote sensing of soil moisture
NASA Astrophysics Data System (ADS)
Chikando, Eric Ndjoukwe
2007-12-01
Remote sensing is now widely regarded as a dominant means of studying the Earth and its surrounding atmosphere. This science is based on blackbody theory, which states that all objects emit broadband electromagnetic radiation proportional to their temperature. This thermal emission is detectable by radiometers---highly sensitive receivers capable of measuring extremely low power radiation across a continuum of frequencies. In the particular case of a soil surface, one important parameter affecting the emitted radiation is the amount of water content or, soil moisture. A high degree of precision is required when estimating soil moisture in order to yield accurate forecasting of precipitations and short-term climate variability such as storms and hurricanes. Rapid progress within the remote sensing community in tackling current limitations necessitates an awareness of the general public towards the benefits of the science. Information about remote sensing instrumentation and techniques remain inaccessible to many higher-education institutions due to the high cost of instrumentation and the current general inaccessibility of the science. In an effort to draw more talent within the field, more affordable and reliable scientific instrumentation are needed. This dissertation introduces the first low-cost handheld microwave instrumentation fully capable of surface soil moisture studies. The framework of this research is two-fold. First, the development of a low-cost handheld microwave radiometer using the well-known Dicke configuration is examined. The instrument features a super-heterodyne architecture and is designed following a microwave integrated circuit (MIC) system approach. Validation of the instrument is performed by applying it to various soil targets and comparing measurement results to gravimetric technique measured data; a proven scientific method for determining volumetric soil moisture content. Second, the development of a fully functional receiver RF front-end is presented. This receiver module is designed in support to a digital radiometer effort under development by the Center of Microwave Satellite and RF Engineering (COMSARE) at Morgan State University. The topology of the receiver includes a low-noise amplifier, bandpass filters and a three-stage gain amplifier. Design, characterization and evaluation of these system blocks are detailed within the framework of this dissertation.
A New Optical Design for Imaging Spectroscopy
NASA Astrophysics Data System (ADS)
Thompson, K. L.
2002-05-01
We present an optical design concept for imaging spectroscopy, with some advantages over current systems. The system projects monochromatic images onto the 2-D array detector(s). Faint object and crowded field spectroscopy can be reduced first using image processing techniques, then building the spectrum, unlike integral field units where one must first extract the spectra, build data cubes from these, then reconstruct the target's integrated spectral flux. Like integral field units, all photons are detected simultaneously, unlike tunable filters which must be scanned through the wavelength range of interest and therefore pay a sensitivity pentalty. Several sample designs are presented, including an instrument optimized for measuring intermediate redshift galaxy cluster velocity dispersions, one designed for near-infrared ground-based adaptive optics, and one intended for space-based rapid follow-up of transient point sources such as supernovae and gamma ray bursts.
NASA Astrophysics Data System (ADS)
Kiser, E.; Levander, A.; Harder, S. H.; Abers, G. A.; Creager, K. C.; Vidale, J. E.; Moran, S. C.; Malone, S. D.
2013-12-01
The multi-disciplinary imaging of Magma Under St. Helens (iMUSH) experiment seeks to understand the details of the magmatic system that feeds Mount St. Helens using active- and passive-source seismic, magnetotelluric, and petrologic data. The active-source seismic component of this experiment will take place in the summer of 2014 utilizing all of the 2600 PASSCAL 'Texan' Reftek instruments which will record twenty-four 1000-2000 lb shots distributed around the Mount St. Helens region. The instruments will be deployed as two consecutive refraction profiles centered on the volcano, and a series of areal arrays. The actual number of areal arrays, as well as their locations, will depend strongly on the length of the experiment (3-4 weeks), the number of instrument deployers (50-60), and the time it will take per deployment given the available road network. The current work shows how we are balancing these practical considerations against theoretical experiment designs in order to achieve the proposed scientific goals with the available resources. One of the main goals of the active-source seismic experiment is to image the magmatic system down to the Moho (35-40 km). Calculating sensitivity kernels for multiple shot/receiver offsets shows that direct P waves should be sensitive to Moho depths at offsets of 150 km, and therefore this will likely be the length of the refraction profiles. Another primary objective of the experiment is to estimate the locations and volumes of different magma accumulation zones beneath the volcano using the areal arrays. With this in mind, the optimal locations of these arrays, as well as their associated shots, are estimated using an eigenvalue analysis of the approximate Hessian for each possible experiment design. This analysis seeks to minimize the number of small eigenvalues of the approximate Hessian that would amplify the propagation of data noise into regions of interest in the model space, such as the likely locations of magma reservoirs. In addition, this analysis provides insight into the tradeoff between the number of areal array deployments and the information that will be gained from the experiment. An additional factor incorporated into this study is the expected data quality in different regions around Mount St. Helens. Expected data quality is determined using the signal-to-noise ratios of data from existing seismometers in the region, and from forward modeling the wavefields from different experiment designs using SPECFEM3D software. In particular, we are interested in evaluating how topography near the volcano and low velocity volcaniclastic layers affect data quality. This information is especially important within 5 km of the volcano where only hiking trails are available for instrument deployment, and in a large area north of the volcano where road maintenance has lagged since the 1980 eruption. Instrument deployment will be slow in these regions, and therefore it is essential to understand if deployment of instruments here is a reasonable use of resources. A final step of this study will be validating different experiment designs based upon the above criteria by inverting synthetic data from velocity models that contain a generalized representation of the magma system to confirm that the main features of the models can be recovered.
Orbital Gravity Gradiometry Beyond GOCE: Mission Concepts
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.; Paik, Ho Jung; Moody, M. Vol; Venkateswara, Krishna Y.; Han, Shin-Chan; Ditmar, Pavel; Klees, Roland; Jekeli, Christopher;
2010-01-01
Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade, including cryocoolers, spacecraft architectures and cryogenic amplifiers. These enable considerably more complex instruments to be put into orbit for long-duration missions. One such instrument is the Superconducting Gravity Gradiometer (SGG) developed by Paik, et al. A magnetically levitated version is under consideration for a follow-on mission to GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer). With its inherently greater rejection of common mode accelerations and ability to cancel the coupling of angular accelerations into the gradient signal, the SGG can achieve [an accuracy of] 0.01 milli-Eotvos (gravitational gradient of the Earth) divided by the square root of frequency in hertz, with requirements for attitude control that can be met with existing spacecraft. In addition, the use of a cryocooler for cooling the instrument will alleviate the previously severe constraint on mission lifetime imposed by the use of superfluid helium,. enabling mission durations in the 5-10 year range. Studies are underway to determine requirements for orbit (polar versus sun-synchronous), altitude (which affects spacecraft drag), instrument temperature and stability, cryocooler vibration control, and control and readout electronics. These will be used to determine the SGG's sensitivity and ultimate resolution for gravity recovery. This paper will discuss preliminary instrument and spacecraft design, and toplevel mission requirements.
Changes in the Radiometric Sensitivity of SeaWiFS
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Barnes, Robert A.; Eplee, Robert E., Jr.; Patt, Frederick S.
1998-01-01
We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument's input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1 through 6 (412 nm through 670 rim), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is about 1.5%, and for band 8 (865 nm) about 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Since SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date.
Low-energy particle experiments - electron analyzer (LEPe) for the Arase mission
NASA Astrophysics Data System (ADS)
Chang, T. F.; Kazama, Y.; Wang, B. J.; Wang, S. Y.; Chiang, C. Y.; Tam, S. W. Y.; Asamura, K.
2017-12-01
Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) and Institute of Space and Plasma Sciences (ISAPS) at National Cheng Kung University in Taiwan developed a low-energy electron instrument (LEPe) for the Exploration of Energization and Radiation in Geospace (ERG) mission, in collaboration with Institute of Space and Astronautical Science (ISAS), Japan. The LEPe instrument employs a toroidal tophat-type electrostatic analyzer with multi-channel plates, and measures electrons with energies of 20 eV to 19 keV. The analyzer was designed toward relatively large sensitivity for statistically better signals. Against background radiations, the analyzer has 6mm thick aluminum shields and one background anode for reduction and subtraction of radiation signals. The instrument measures three dimensional electron fluxes in approximately 8 seconds of one spin, with angular resolutions of 22.5 degrees. For the purpose of resolving loss cones, specific 45 degrees are divided into 12 channels, 3.75 degrees for each. The ERG spacecraft was successfully launched late in 2016, and science operations phase has started since late March, 2017. The LEPe instrument is functioning well and is measuring low-energy electrons that dominate in the inner magnetosphere and also control wave activities. In this presentation, we will explain the LEPe instrument onboard the ERG spacecraft and will introduce initial results of the measurements.
Design for gas chromatography-corona discharge-ion mobility spectrometry.
Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein
2012-11-20
A corona discharge ionization-ion mobility spectrometry (CD-IMS) with a novel sample inlet system was designed and constructed as a detector for capillary gas chromatography. In this design, a hollow needle was used instead of a solid needle which is commonly used for corona discharge creation, helping us to have direct axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in a reaction of effluents with reactant ions on the upstream side of the corona discharge ionization source. Using this sample introduction design, higher ionization efficiency was achieved relative to the entrance direction through the side of the drift tube. In addition, the volume of the ionization region was reduced to minimize the resistance time of compounds in the ionization source, increasing chromatographic resolution of the instrument. The effects of various parameters such as drift gas flow, makeup gas flow, and column tip position inside the needle were investigated. The designed instrument was exhaustively validated in terms of sensitivity, resolution, and reproducibility by analyzing the standard solutions of methyl isobutyl ketone, heptanone, nonanone, and acetophenone as the test compounds. The results obtained by CD-IMS detector were compared with those of the flame ionization detector, which revealed the capability of the proposed GC-IMS for two-dimensional separation (based on the retention time and drift time information) and identification of an analyte in complex matrixes.
Development of the Langmuir Electric Field Array (LEFA)
NASA Astrophysics Data System (ADS)
Sonnenfeld, R. G.; Eack, K.; Eastvedt, E.; Edens, H. E.; Hager, W. W.; Hunyady, S.; Alvidrez, V.; Lapierre, J.; Morris, K.; Vaive, G.; Wang, T.; Zhang, J.
2009-12-01
An electric-field-change (ΔE) sensor (also called a ``slow antenna'') is a long proven instrument in atmospheric electricity research. While there is still value to be derived from single-station measurements of ΔE, multi-station measurements better constrain the data interpretation. Modern publications still cite the work of Krehbiel [et al] for the insights gleaned from the 8-station array they deployed in 1979. In particular, with four independent measurements, one can locate the center of charge discharged in a cloud-to-ground (CG) flash. With seven measurements, one can locate the two charge centers connected during an intra-cloud (IC) flash. The measurements become more interesting when multi-station ΔE data is combined with radio-frequency emission data from a lightning mapping array (LMA). The ΔE array allows an independent check of the assumptions about charge layers made in the interpretation of LMA data, as well as giving greater visibility into the effects of positive streamers. The Langmuir Electric Field Array (LEFA) is designed to accommodate the very large amplitude range of ΔE data characteristic of lightning. Such design is more important in an array than a single station, as the goal is explicitly to correlate data from ten stations spaced some kilometers apart. To address the dynamic range challenge, every ΔE sensor is a set of three independent sensors, integrated into a 19-inch-steel-mixing bowl. The electronic gain is a factor of 4 greater for the sensitive (S) channel than for the medium (M) channel, and 20X greater for the (S) channel compared to the insensitive (I) channel. Further, the electrode sensor areas decrease by factors of 5, moving from S, to M, to I, so that the (S) channel is hundreds of times more sensitive than the (I) channel. Since each channel is digitized with 16-bits of resolution, the ideal full range of the instrument is roughly equal to a single channel digitized at 24 bits. Digitizing the same signal at three sensitivities also turns out to be useful in identifying noise sources and separating unusual ΔE effects from instrumental noise. The LEFA was also designed for rapid data integration and processing. All three channels of ΔE data are continuously digitized with embedded PC-104 computers (along with timing data) at 50 kSamples/second and streamed to large hard-drives. Instruments are linked by a 802.11 wireless network, and a network broadcast protocol enables central control. During fair-weather, the controller tells all instruments to shut down and to do a first pass analysis of their own data, discarding periods of electrical inactivity, and imaging all interesting data. While the full precision data occupies 24~Mbytes/minute, the quick images are 20~kBytes/min, and are automatically uploaded to a web-server. We learned over a summer of operation that this method is workable, and allows one student to wrangle the data from the entire network. We are currently working toward a full deployment, hopefully before local electrical activity ends for the season.
14 CFR 29.1303 - Flight and navigation instruments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight and navigation instruments. 29.1303... navigation instruments. The following are required flight and navigational instruments: (a) An airspeed... sensitive altimeter. (c) A magnetic direction indicator. (d) A clock displaying hours, minutes, and seconds...
Evaluation of PCR Systems for Field Screening of Bacillus anthracis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozanich, Richard M.; Colburn, Heather A.; Victry, Kristin D.
There is little published data on the performance of hand-portable polymerase chain reaction (PCR) instruments that could be used by first responders to determine if a suspicious powder contains a potential biothreat agent. We evaluated five commercially available hand-portable PCR instruments for detection of Bacillus anthracis (Ba). We designed a cost-effective, statistically-based test plan that allows instruments to be evaluated at performance levels ranging from 0.85-0.95 lower confidence bound (LCB) on the probability of detection (POD) at confidence levels of 80-95%. We assessed specificity using purified genomic DNA from 13 Ba strains and 18 Bacillus near neighbors, interference with 22more » common hoax powders encountered in the field, and PCR inhibition when Ba spores were spiked into these powders. Our results indicated that three of the five instruments achieved >0.95 LCB on the POD with 95% confidence at test concentrations of 2,000 genome equivalents/mL (comparable to 2,000 spores/mL), displaying more than sufficient sensitivity for screening suspicious powders. These instruments exhibited no false positive results or PCR inhibition with common hoax powders, and reliably detected Ba spores spiked into common hoax powders, though some issues with instrument controls were observed. Our testing approach enables efficient instrument performance testing to a statistically rigorous and cost-effective test plan to generate performance data that will allow users to make informed decisions regarding the purchase and use of biodetection equipment in the field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1999-06-01
The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detectionmore » level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.« less
Mosaic-Detector-Based Fluorescence Spectral Imager
NASA Technical Reports Server (NTRS)
Son, Kyung-Ah; Moon, Jeong
2007-01-01
A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The wavelength interval between adjacent pixels (and, thus, the spectral resolution) would typically be chosen by design to be approximately equal to the width of the total fluorescence wavelength range of interest divided by the number of pixels. The unitary structure comprising the photodetector array overlaid with the matching filter array would be denoted a hyperspectral mosaic detector (HMD) array.
NASA Astrophysics Data System (ADS)
Butterworth, A.; Stockton, A. M.; Turin, P.; Ludlam, M.; Diaz-Aguado, M.; Kim, J.; Mathies, R. A.
2015-12-01
Lab-on-a-chip instrumentation is providing an ever more powerful in situ approach for detecting organic molecules relevant for chemical/biochemical evolution in our solar system obviating the cost, risk and long mission duration associated with sample return. Microfabricated analysis systems are particularly feasible when directly sampling from comet comae, or ejecta from icy moons, such as targeting organic molecules in plumes from Enceladus. Furthermore, the superb ppm to ppb sensitivity of chip analyzers, like the Enceladus Organic Analyzer (EOA), coupled with the ability to examine organics with a wide variety of functional groups enhance the probability of detecting organic molecules and determining whether they have a biological origin. The EOA is based on 20 years of research and development of microfabricated capillary electrophoresis (CE) analyzers at Berkeley that provide ppb sensitivity for a wide variety of organic molecules including amino acids, carboxylic acids, amines, aldehydes, ketones and polycyclic aromatic hydrocarbons [1]. Organic molecules are labeled with a fluorescent reagent according to their functional group in a programmable microfluidic processor [2,3] and then separated in a CE system followed by laser-induced fluorescence detection to determine molecular size and concentration. The EOA will be flown through Enceladus plumes and uses a specially designed impact plate/door to capture ice-particles. After closing the door, the material in the capture chamber is dissolved, labeled and analyzed by the microfabricated CE system. Only a few thousand 2 μm diameter particles containing ppm organic concentrations will provide an EOA detectable signal. If amino acids are detected, their chirality is determined because chirality is the best indicator of a biologically produced molecule. We have developed a flight design of this instrument for planetary exploration that is compact (16x16x12 cm), has low mass (3 kg), and requires very low power. [1] Skelley et al. (2005) PNAS USA, 102, 1041-1046. [2] Kim et al. (2013) Anal. Chem., 85, 7682-7688. [3] Mora et al. (2012) Electrophoresis, 33, 2624-2638. [4] Stockton et al. (2014) Second International Workshop on Instrumentation for Planetary Missions, NASA Greenbelt MD, Nov. 4-7, 2014.
NASA Technical Reports Server (NTRS)
Bourkland, Kristin L.; Liu, Kuo-Chia
2011-01-01
The Solar Dynamics Observatory (SDO), launched in 2010, is a NASA-designed spacecraft built to study the Sun. SDO has tight pointing requirements and instruments that are sensitive to spacecraft jitter. Two High Gain Antennas (HGAs) are used to continuously send science data to a dedicated ground station. Preflight analysis showed that jitter resulting from motion of the HGAs was a cause for concern. Three jitter mitigation techniques were developed and implemented to overcome effects of jitter from different sources. These mitigation techniques include: the random step delay, stagger stepping, and the No Step Request (NSR). During the commissioning phase of the mission, a jitter test was performed onboard the spacecraft, in which various sources of jitter were examined to determine their level of effect on the instruments. During the HGA portion of the test, the jitter amplitudes from the single step of a gimbal were examined, as well as the amplitudes due to the execution of various gimbal rates. The jitter levels were compared with the gimbal jitter allocations for each instrument. The decision was made to consider implementing two of the jitter mitigating techniques on board the spacecraft: stagger stepping and the NSR. Flight data with and without jitter mitigation enabled was examined, and it is shown in this paper that HGA tracking is not negatively impacted with the addition of the jitter mitigation techniques. Additionally, the individual gimbal steps were examined, and it was confirmed that the stagger stepping and NSRs worked as designed. An Image Quality Test was performed to determine the amount of cumulative jitter from the reaction wheels, HGAs, and instruments during various combinations of typical operations. The HGA-induced jitter on the instruments is well within the jitter requirement when the stagger step and NSR mitigation options are enabled.
THOR Field and Wave Processor - FWP
NASA Astrophysics Data System (ADS)
Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek
2016-04-01
If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.
Patterson, Emma; Quetel, Anna-Karin; Lilja, Karin; Simma, Marit; Olsson, Linnea; Elinder, Liselotte Schäfer
2013-06-01
To develop a feasible, valid, reliable web-based instrument to objectively evaluate school meal quality in Swedish primary schools. The construct 'school meal quality' was operationalized by an expert panel into six domains, one of which was nutritional quality. An instrument was drafted and pilot-tested. Face validity was evaluated by the panel. Feasibility was established via a large national study. Food-based criteria to predict the nutritional adequacy of school meals in terms of fat quality, iron, vitamin D and fibre content were developed. Predictive validity was evaluated by comparing the nutritional adequacy of school menus based on these criteria with the results from a nutritional analysis. Inter-rater reliability was also assessed. The instrument was developed between 2010 and 2012. It is designed for use in all primary schools by school catering and/or management representatives. A pilot-test of eighty schools in Stockholm (autumn 2010) and a further test of feasibility in 191 schools nationally (spring 2011). The four nutrient-specific food-based criteria predicted nutritional adequacy with sensitivity ranging from 0.85 to 1.0, specificity from 0.45 to 1.0 and accuracy from 0.67 to 1.0. The sample in the national study was statistically representative and the majority of users rated the questionnaire positively, suggesting the instrument is feasible. The inter-rater reliability was fair to almost perfect for continuous variables and agreement was ≥ 67 % for categorical variables. An innovative web-based system to comprehensively monitor school meal quality across several domains, with validated questions in the nutritional domain, is available in Sweden for the first time.
CUBES: cassegrain U-band Brazil-ESO spectrograph
NASA Astrophysics Data System (ADS)
Barbuy, B.; Bawden Macanhan, V.; Bristow, P.; Castilho, B.; Dekker, H.; Delabre, B.; Diaz, M.; Gneiding, C.; Kerber, F.; Kuntschner, H.; La Mura, G.; Maciel, W.; Meléndez, J.; Pasquini, L.; Pereira, C. B.; Petitjean, P.; Reiss, R.; Siqueira-Mello, C.; Smiljanic, R.; Vernet, J.
2014-11-01
CUBES is a high-efficiency, medium-resolution ( R˜20,000) ground based UV (300-400 nm) spectrograph, to be installed in the cassegrain focus of one of ESO's VLT unit telescopes in 2017/18. The CUBES project is a joint venture between ESO and IAG/USP, and LNA/MCTI. CUBES will provide access to a wealth of new and relevant information for stellar as well as extragalactic sources. Main science cases include the study of beryllium and heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range, as well as the study of active galactic nuclei and the quasar absorption lines. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will give a significant gain in sensitivity over existing ground based medium-high resolution spectrographs, enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project including the status, science cases and a discussion of the design options.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
SLAC is helping to build and test the LUX-ZEPLIN or LZ detector, one of the biggest and most sensitive detectors ever designed to catch hypothetical dark matter particles known as WIMPs. Researchers at the Department of Energy’s SLAC National Accelerator Laboratory are on a quest to solve one of physics’ biggest mysteries: What exactly is dark matter – the invisible substance that accounts for 85 percent of all the matter in the universe but can’t be seen even with our most advanced scientific instruments? Most scientists believe it’s made of ghostly particles that rarely bump into their surroundings; that’s whymore » billions of dark matter particles might zip right through our bodies every second without us even noticing. Leading candidates for dark matter particles are WIMPs, or weakly interacting massive particles. Now SLAC is helping to build and test one of the biggest and most sensitive detectors ever designed to catch a WIMP – the LUX-ZEPLIN or LZ detector.« less
A 90GHz Bolometer Camera Detector System for the Green Bank Telescope
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.
2004-01-01
We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.
A 90GHz Bolometer Camera Detector System for the Green
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.
2004-01-01
We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.
The Large Deployable Reflector (LDR) report of the Science Coordination Group
NASA Technical Reports Server (NTRS)
1986-01-01
The Large Deployable Reflector (LDR) is a telescope designed to carry out high-angular resolution, high-sensitivity observations at far-infrared and submillimeter wavelengths. The scientific rationale for the LDR is discussed in light of the recent Infrared Astronomical Satellite (IRAS) and Kuiper Airborne Observatory (KAO) results and the several new ground-based observatories planned for the late 1980s. The importance of high sensitivity and high angular resolution observations from space in the submillimeter region is stressed. The scientific and technical problems of using the LDR in a light bucket mode at approx. less than 5 microns and in designing the LDR as an unfilled aperture with subarcsecond resolution are also discussed. The need for an aperture as large as 20 m is established, along with the requirements of beam-shape stability, spatial chopping, thermal control, and surface figure stability. The instrument complement required to cover the wavelength-spectral resolution region of interest to the LDR is defined.
An innovative, highly sensitive receiver system for the Square Kilometre Array Mid Radio Telescope
NASA Astrophysics Data System (ADS)
Tan, Gie Han; Lehmensiek, Robert; Billade, Bhushan; Caputa, Krzysztof; Gauffre, Stéphane; Theron, Isak P.; Pantaleev, Miroslav; Ljusic, Zoran; Quertier, Benjamin; Peens-Hough, Adriaan
2016-07-01
The Square Kilometre Array (SKA) Project is a global science and engineering project realizing the next-generation radio telescopes operating in the metre and centimetre wavelengths regions. This paper addresses design concepts of the broadband, exceptionally sensitive receivers and reflector antennas deployed in the SKA1-Mid radio telescope to be located in South Africa. SKA1-Mid (350 MHz - 13.8 GHz with an option for an upper limit of 24 GHz) will consist of 133 reflector antennas using an unblocked aperture, offset Gregorian configuration with an effective diameter of 15 m. Details on the unblocked aperture Gregorian antennas, low noise front ends and advanced direct digitization receivers, are provided from a system design perspective. The unblocked aperture results in increased aperture efficiency and lower side-lobe levels compared to a traditional on-axis configuration. The low side-lobe level reduces the noise contribution due to ground pick-up but also makes the antenna less susceptible to ground-based RFI sources. The addition of extra shielding on the sub-reflector provides a further reduction of ground pick-up. The optical design of the SKA1-Mid reflector antenna has been tweaked using advanced EM simulation tools in combination with sophisticated models for sky, atmospheric and ground noise contributions. This optimal antenna design in combination with very low noise, partially cryogenic, receivers and wide instantaneous bandwidth provide excellent receiving sensitivity in combination with instrumental flexibility to accommodate a wide range of astronomical observation modes.
14 CFR 121.325 - Instruments and equipment for operations under IFR or over-the-top.
Code of Federal Regulations, 2011 CFR
2011-01-01
... preventing malfunctioning due to icing. (b) A sensitive altimeter. (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable...
14 CFR 121.325 - Instruments and equipment for operations under IFR or over-the-top.
Code of Federal Regulations, 2014 CFR
2014-01-01
... preventing malfunctioning due to icing. (b) A sensitive altimeter. (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable...
14 CFR 121.325 - Instruments and equipment for operations under IFR or over-the-top.
Code of Federal Regulations, 2010 CFR
2010-01-01
... preventing malfunctioning due to icing. (b) A sensitive altimeter. (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable...
14 CFR 121.325 - Instruments and equipment for operations under IFR or over-the-top.
Code of Federal Regulations, 2013 CFR
2013-01-01
... preventing malfunctioning due to icing. (b) A sensitive altimeter. (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable...
14 CFR 121.325 - Instruments and equipment for operations under IFR or over-the-top.
Code of Federal Regulations, 2012 CFR
2012-01-01
... preventing malfunctioning due to icing. (b) A sensitive altimeter. (c) Instrument lights providing enough light to make each required instrument, switch, or similar instrument, easily readable and so installed that the direct rays are shielded from the flight crewmembers' eyes and that no objectionable...
The Primordial Inflation Explorer (PIXIE)
NASA Technical Reports Server (NTRS)
Kogut, Alan J.
2011-01-01
The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). Multi-moded non-imaging optics feed a polarizing Fourier Transform Spectrometer to produce a set of interference fringes, proportional to the difference spectrum between orthogonal linear polarizations from the two input beams. The differential design and multiple signal modulations spanning 11 orders of magnitude in time combine to reduce the instrumental signature and confusion from unpolarized sources to negligible levels. PIXIE will map the full sky in Stokes I, Q, and U parameters with angular resolution 2.6 deg and sensitivity 0.2 uK per 1 deg square pixel. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r <10(exp -3) at 5 standard deviations. In addition, the rich PIXIE data will constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to the physical conditions within the interstellar medium of the Galaxy. We describe the PIXIE instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.
NASA Astrophysics Data System (ADS)
Hall, J. A.; Felnagle, E.; Fries, M.; Spearing, S.; Monaco, L.; Steele, A.
2006-12-01
A Modular Assay System for Solar System Exploration (MASSE) is being developed to include sample handling, pre-treatment, separation and analysis of biological target compounds by both DNA and protein microarrays. To better design sensitive and accurate initial upstream sample handling of the MASSE instrument, experiments investigating the sensitivity and potential extraction bias of commercially available DNA extraction kits between classes of environmentally relevant prokaryotes such as gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Bacillus megatarium), and Archaea ( Haloarcula marismortui) were performed. For extractions of both planktonic cultures and spiked Mars simulated regolith, FTA ® paper demonstrated the highest sensitivity, with detection as low as ˜1×10 1 cells and ˜3.3×10 2 cells, respectively. In addition to the highest sensitivity, custom modified application of FTA ® paper extraction protocol is the simplest in terms of incorporation into MASSE and displayed little bias in sensitivity with respect to prokaryotic cell type. The implementation of FTA paper for environmental microbiology investigations appears to be a viable and effective option potentially negating the need for other pre-concentration steps such as filtration and negating concerns regarding extraction efficiency of cells. In addition to investigations on useful technology for upstream sample handling in MASSE, we have also evaluated the potential for μTAS to be employed in the MASSE instrument by employing proprietary lab-on-a-chip development technology to investigate the potential for microfluidic cell lysis of different prokaryotic cells employing both chemical and biological lysis agents. Real-time bright-field microscopy and quantitative PMT detection indicated that that gram positive, gram negative and archaeal cells were effectively lyzed in a few seconds using the microfluidic chip protocol developed. This included employing a lysis buffer with components including lysozyme, Protease, Proteinase K, Tween-20 and TritonX-100. The effectiveness of antibiotics and other chemical lysis agents were also screened and demonstrated partial effectiveness on all three cell types. This work demonstrates a step wise approach to evaluating the efficacy and sensitivity of commercial macro-scale technology and state-of-the-art developmental microfluidic technology under consideration for incorporation into the remotely operated MASSE instrument currently under development at the Carnegie Institution of Washington.