Sample records for sensitive method based

  1. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  2. Evaluation and recommendation of sensitivity analysis methods for application to Stochastic Human Exposure and Dose Simulation models.

    PubMed

    Mokhtari, Amirhossein; Christopher Frey, H; Zheng, Junyu

    2006-11-01

    Sensitivity analyses of exposure or risk models can help identify the most significant factors to aid in risk management or to prioritize additional research to reduce uncertainty in the estimates. However, sensitivity analysis is challenged by non-linearity, interactions between inputs, and multiple days or time scales. Selected sensitivity analysis methods are evaluated with respect to their applicability to human exposure models with such features using a testbed. The testbed is a simplified version of a US Environmental Protection Agency's Stochastic Human Exposure and Dose Simulation (SHEDS) model. The methods evaluated include the Pearson and Spearman correlation, sample and rank regression, analysis of variance, Fourier amplitude sensitivity test (FAST), and Sobol's method. The first five methods are known as "sampling-based" techniques, wheras the latter two methods are known as "variance-based" techniques. The main objective of the test cases was to identify the main and total contributions of individual inputs to the output variance. Sobol's method and FAST directly quantified these measures of sensitivity. Results show that sensitivity of an input typically changed when evaluated under different time scales (e.g., daily versus monthly). All methods provided similar insights regarding less important inputs; however, Sobol's method and FAST provided more robust insights with respect to sensitivity of important inputs compared to the sampling-based techniques. Thus, the sampling-based methods can be used in a screening step to identify unimportant inputs, followed by application of more computationally intensive refined methods to a smaller set of inputs. The implications of time variation in sensitivity results for risk management are briefly discussed.

  3. Inverse solutions for electrical impedance tomography based on conjugate gradients methods

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2002-01-01

    A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.

  4. A comparison of analysis methods to estimate contingency strength.

    PubMed

    Lloyd, Blair P; Staubitz, Johanna L; Tapp, Jon T

    2018-05-09

    To date, several data analysis methods have been used to estimate contingency strength, yet few studies have compared these methods directly. To compare the relative precision and sensitivity of four analysis methods (i.e., exhaustive event-based, nonexhaustive event-based, concurrent interval, concurrent+lag interval), we applied all methods to a simulated data set in which several response-dependent and response-independent schedules of reinforcement were programmed. We evaluated the degree to which contingency strength estimates produced from each method (a) corresponded with expected values for response-dependent schedules and (b) showed sensitivity to parametric manipulations of response-independent reinforcement. Results indicated both event-based methods produced contingency strength estimates that aligned with expected values for response-dependent schedules, but differed in sensitivity to response-independent reinforcement. The precision of interval-based methods varied by analysis method (concurrent vs. concurrent+lag) and schedule type (continuous vs. partial), and showed similar sensitivities to response-independent reinforcement. Recommendations and considerations for measuring contingencies are identified. © 2018 Society for the Experimental Analysis of Behavior.

  5. A Bayesian Network Based Global Sensitivity Analysis Method for Identifying Dominant Processes in a Multi-physics Model

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2016-12-01

    Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.

  6. Adjoint-based sensitivity analysis of low-order thermoacoustic networks using a wave-based approach

    NASA Astrophysics Data System (ADS)

    Aguilar, José G.; Magri, Luca; Juniper, Matthew P.

    2017-07-01

    Strict pollutant emission regulations are pushing gas turbine manufacturers to develop devices that operate in lean conditions, with the downside that combustion instabilities are more likely to occur. Methods to predict and control unstable modes inside combustion chambers have been developed in the last decades but, in some cases, they are computationally expensive. Sensitivity analysis aided by adjoint methods provides valuable sensitivity information at a low computational cost. This paper introduces adjoint methods and their application in wave-based low order network models, which are used as industrial tools, to predict and control thermoacoustic oscillations. Two thermoacoustic models of interest are analyzed. First, in the zero Mach number limit, a nonlinear eigenvalue problem is derived, and continuous and discrete adjoint methods are used to obtain the sensitivities of the system to small modifications. Sensitivities to base-state modification and feedback devices are presented. Second, a more general case with non-zero Mach number, a moving flame front and choked outlet, is presented. The influence of the entropy waves on the computed sensitivities is shown.

  7. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhao; Gao, Kun; Chen, Jian

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using themore » error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.« less

  8. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    The method proposed for estimating sensitivity derivatives is based on the Recursive Quadratic Programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This method is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RQP algorithm. Initial testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity.

  9. Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants.

    PubMed

    Gerner, Nadine V; Cailleaud, Kevin; Bassères, Anne; Liess, Matthias; Beketov, Mikhail A

    2017-11-01

    Hydrocarbons have an utmost economical importance but may also cause substantial ecological impacts due to accidents or inadequate transportation and use. Currently, freshwater biomonitoring methods lack an indicator that can unequivocally reflect the impacts caused by hydrocarbons while being independent from effects of other stressors. The aim of the present study was to develop a sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants, which can be used in hydrocarbon-specific bioindicators. We employed the Relative Sensitivity method and developed the sensitivity ranking S hydrocarbons based on literature ecotoxicological data supplemented with rapid and mesocosm test results. A first validation of the sensitivity ranking based on an earlier field study has been conducted and revealed the S hydrocarbons ranking to be promising for application in sensitivity based indicators. Thus, the first results indicate that the ranking can serve as the core component of future hydrocarbon-specific and sensitivity trait based bioindicators.

  10. Empirical Observations on the Sensitivity of Hot Cathode Ionization Type Vacuum Gages

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1969-01-01

    A study of empirical methods of predicting tile relative sensitivities of hot cathode ionization gages is presented. Using previously published gage sensitivities, several rules for predicting relative sensitivity are tested. The relative sensitivity to different gases is shown to be invariant with gage type, in the linear range of gage operation. The total ionization cross section, molecular and molar polarizability, and refractive index are demonstrated to be useful parameters for predicting relative gage sensitivity. Using data from the literature, the probable error of predictions of relative gage sensitivity based on these molecular properties is found to be about 10 percent. A comprehensive table of predicted relative sensitivities, based on empirical methods, is presented.

  11. A Novel Quantum Dots-Based Point of Care Test for Syphilis

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Li, Ding; He, Rong; Guo, Qin; Wang, Kan; Zhang, Xueqing; Huang, Peng; Cui, Daxiang

    2010-05-01

    One-step lateral flow test is recommended as the first line screening of syphilis for primary healthcare settings in developing countries. However, it generally shows low sensitivity. We describe here the development of a novel fluorescent POC (Point Of Care) test method to be used for screening for syphilis. The method was designed to combine the rapidness of lateral flow test and sensitiveness of fluorescent method. 50 syphilis-positive specimens and 50 healthy specimens conformed by Treponema pallidum particle agglutination (TPPA) were tested with Quantum Dot-labeled and colloidal gold-labeled lateral flow test strips, respectively. The results showed that both sensitivity and specificity of the quantum dots-based method reached up to 100% (95% confidence interval [CI], 91-100%), while those of the colloidal gold-based method were 82% (95% CI, 68-91%) and 100% (95% CI, 91-100%), respectively. In addition, the naked-eye detection limit of quantum dot-based method could achieve 2 ng/ml of anti-TP47 polyclonal antibodies purified by affinity chromatography with TP47 antigen, which was tenfold higher than that of colloidal gold-based method. In conclusion, the quantum dots were found to be suitable for labels of lateral flow test strip. Its ease of use, sensitiveness and low cost make it well-suited for population-based on-the-site syphilis screening.

  12. A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks.

    PubMed

    Zhang, Haitao; Wu, Chenxue; Chen, Zewei; Liu, Zhao; Zhu, Yunhong

    2017-01-01

    Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules.

  13. A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks

    PubMed Central

    Wu, Chenxue; Liu, Zhao; Zhu, Yunhong

    2017-01-01

    Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules. PMID:28767687

  14. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling

    NASA Astrophysics Data System (ADS)

    Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Zachara, John M.

    2017-05-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study, we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multilayer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially distributed input variables.

  15. A Geostatistics-Informed Hierarchical Sensitivity Analysis Method for Complex Groundwater Flow and Transport Modeling

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2017-12-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multi-layer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed input variables.

  16. Multi-capillary based optical sensors for highly sensitive protein detection

    NASA Astrophysics Data System (ADS)

    Okuyama, Yasuhira; Katagiri, Takashi; Matsuura, Yuji

    2017-04-01

    A fluorescence measuring method based on glass multi-capillary for detecting trace amounts of proteins is proposed. It promises enhancement of sensitivity due to effects of the adsorption area expansion and the longitudinal excitation. The sensitivity behavior of this method was investigated by using biotin-streptavidin binding. According to experimental examinations, it was found that the sensitivity was improved by a factor of 70 from common glass wells. We also confirmed our measuring system could detect 1 pg/mL of streptavidin. These results suggest that multi-capillary has a potential as a high-sensitive biosensor.

  17. Sensitivity-based virtual fields for the non-linear virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  18. Sensitivity-Uncertainty Based Nuclear Criticality Safety Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    2016-09-20

    These are slides from a seminar given to the University of Mexico Nuclear Engineering Department. Whisper is a statistical analysis package developed to support nuclear criticality safety validation. It uses the sensitivity profile data for an application as computed by MCNP6 along with covariance files for the nuclear data to determine a baseline upper-subcritical-limit for the application. Whisper and its associated benchmark files are developed and maintained as part of MCNP6, and will be distributed with all future releases of MCNP6. Although sensitivity-uncertainty methods for NCS validation have been under development for 20 years, continuous-energy Monte Carlo codes such asmore » MCNP could not determine the required adjoint-weighted tallies for sensitivity profiles. The recent introduction of the iterated fission probability method into MCNP led to the rapid development of sensitivity analysis capabilities for MCNP6 and the development of Whisper. Sensitivity-uncertainty based methods represent the future for NCS validation – making full use of today’s computer power to codify past approaches based largely on expert judgment. Validation results are defensible, auditable, and repeatable as needed with different assumptions and process models. The new methods can supplement, support, and extend traditional validation approaches.« less

  19. Enhanced Sensitivity to Detection Nanomolar Level of Cu2 + Compared to Spectrophotometry Method by Functionalized Gold Nanoparticles: Design of Sensor Assisted by Exploiting First-order Data with Chemometrics

    NASA Astrophysics Data System (ADS)

    Rasouli, Zolaikha; Ghavami, Raouf

    2018-02-01

    A simple, sensitive and efficient colorimetric assay platform for the determination of Cu2 + was proposed with the aim of developing sensitive detection based on the aggregation of AuNPs in presence of a histamine H2-receptor antagonist (famotidine, FAM) as recognition site. This study is the first to demonstrate that the molar extinction coefficients of the complexes formed by FAM and Cu2 + are very low (by analyzing the chemometrics methods on the first order data arising from different metal to ligand ratio method), leading to the undesirable sensitivity of FAM-based assays. To resolve the problem of low sensitivity, the colorimetry method based on the Cu2 +-induced aggregation of AuNPs functionalized with FAM was introduced. This procedure is accompanied by a color change from bright red to blue which can be observed with the naked eyes. Detection sensitivity obtained by the developed method increased about 100 fold compared with the spectrophotometry method. This sensor exhibited a good linear relation between the absorbance ratios at 670 to 520 nm (A670/520) and the concentration in the range 2-110 nM with LOD = 0.76 nM. The satisfactory analytical performance of the proposed sensor facilitates the development of simple and affordable UV-Vis chemosensors for environmental applications.

  20. Combining Monte Carlo methods with coherent wave optics for the simulation of phase-sensitive X-ray imaging

    PubMed Central

    Peter, Silvia; Modregger, Peter; Fix, Michael K.; Volken, Werner; Frei, Daniel; Manser, Peter; Stampanoni, Marco

    2014-01-01

    Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging. PMID:24763652

  1. Sensitivity analysis and approximation methods for general eigenvalue problems

    NASA Technical Reports Server (NTRS)

    Murthy, D. V.; Haftka, R. T.

    1986-01-01

    Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.

  2. An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1992-01-01

    Research conducted during the period from July 1991 through December 1992 is covered. A method based upon the quasi-analytical approach was developed for computing the aerodynamic sensitivity coefficients of three dimensional wings in transonic and subsonic flow. In addition, the method computes for comparison purposes the aerodynamic sensitivity coefficients using the finite difference approach. The accuracy and validity of the methods are currently under investigation.

  3. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avonto, Cristina; Chittiboyina, Amar G.; Rua, Diego

    2015-12-01

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles aftermore » incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, ‘HTS-DCYA assay’, is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. - Highlights: • A novel fluorescence-based method to detect electrophilic sensitizers is proposed. • A model fluorescent thiol was used to directly quantify the reaction products. • A discussion of the reaction workflow and critical parameters is presented. • The method could provide a useful tool to complement existing chemical assays.« less

  4. Accurate evaluation of sensitivity for calibration between a LiDAR and a panoramic camera used for remote sensing

    NASA Astrophysics Data System (ADS)

    García-Moreno, Angel-Iván; González-Barbosa, José-Joel; Ramírez-Pedraza, Alfonso; Hurtado-Ramos, Juan B.; Ornelas-Rodriguez, Francisco-Javier

    2016-04-01

    Computer-based reconstruction models can be used to approximate urban environments. These models are usually based on several mathematical approximations and the usage of different sensors, which implies dependency on many variables. The sensitivity analysis presented in this paper is used to weigh the relative importance of each uncertainty contributor into the calibration of a panoramic camera-LiDAR system. Both sensors are used for three-dimensional urban reconstruction. Simulated and experimental tests were conducted. For the simulated tests we analyze and compare the calibration parameters using the Monte Carlo and Latin hypercube sampling techniques. Sensitivity analysis for each variable involved into the calibration was computed by the Sobol method, which is based on the analysis of the variance breakdown, and the Fourier amplitude sensitivity test method, which is based on Fourier's analysis. Sensitivity analysis is an essential tool in simulation modeling and for performing error propagation assessments.

  5. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.

    PubMed

    Sun, Ming-An; Zhang, Qing; Wang, Yejun; Ge, Wei; Guo, Dianjing

    2016-08-24

    Reactive oxygen species can modify the structure and function of proteins and may also act as important signaling molecules in various cellular processes. Cysteine thiol groups of proteins are particularly susceptible to oxidation. Meanwhile, their reversible oxidation is of critical roles for redox regulation and signaling. Recently, several computational tools have been developed for predicting redox-sensitive cysteines; however, those methods either only focus on catalytic redox-sensitive cysteines in thiol oxidoreductases, or heavily depend on protein structural data, thus cannot be widely used. In this study, we analyzed various sequence-based features potentially related to cysteine redox-sensitivity, and identified three types of features for efficient computational prediction of redox-sensitive cysteines. These features are: sequential distance to the nearby cysteines, PSSM profile and predicted secondary structure of flanking residues. After further feature selection using SVM-RFE, we developed Redox-Sensitive Cysteine Predictor (RSCP), a SVM based classifier for redox-sensitive cysteine prediction using primary sequence only. Using 10-fold cross-validation on RSC758 dataset, the accuracy, sensitivity, specificity, MCC and AUC were estimated as 0.679, 0.602, 0.756, 0.362 and 0.727, respectively. When evaluated using 10-fold cross-validation with BALOSCTdb dataset which has structure information, the model achieved performance comparable to current structure-based method. Further validation using an independent dataset indicates it is robust and of relatively better accuracy for predicting redox-sensitive cysteines from non-enzyme proteins. In this study, we developed a sequence-based classifier for predicting redox-sensitive cysteines. The major advantage of this method is that it does not rely on protein structure data, which ensures more extensive application compared to other current implementations. Accurate prediction of redox-sensitive cysteines not only enhances our understanding about the redox sensitivity of cysteine, it may also complement the proteomics approach and facilitate further experimental investigation of important redox-sensitive cysteines.

  6. Comparison of Non-Culture-Based Methods for Detection of Systemic Fungal Infections, with an Emphasis on Invasive Candida Infections

    PubMed Central

    White, P. Lewis; Archer, Alice E.; Barnes, Rosemary A.

    2005-01-01

    The accepted limitations associated with classic culture techniques for the diagnosis of invasive fungal infections have lead to the emergence of many non-culture-based methods. With superior sensitivities and quicker turnaround times, non-culture-based methods may aid the diagnosis of invasive fungal infections. In this review of the diagnostic service, we assessed the performances of two antigen detection techniques (enzyme-linked immunosorbent assay [ELISA] and latex agglutination) with a molecular method for the detection of invasive Candida infection and invasive aspergillosis. The specificities for all three assays were high (≥97%), although the Candida PCR method had enhanced sensitivity over both ELISA and latex agglutination with values of 95%, 75%, and 25%, respectively. However, calculating significant sensitivity values for the Aspergillus detection methods was not feasible due to a low number of proven/probable cases. Despite enhanced sensitivity, the PCR method failed to detect nucleic acid in a probable case of invasive Candida infection that was detected by ELISA. In conclusion, both PCR and ELISA techniques should be used in unison to aid the detection of invasive fungal infections. PMID:15872239

  7. Highly sensitive determination of iron (III) ion based on phenanthroline probe: Surface-enhanced Raman spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Ma, Ning; Park, Yeonju; Jin, Sila; Hwang, Hoon; Jiang, Dayu; Jung, Young Mee

    2018-05-01

    In this paper, we introduced Raman spectroscopy techniques that were based on the traditional Fe3 + determination method with phenanthroline as a probe. Interestingly, surface-enhanced Raman spectroscopy (SERS)-based approach exhibited excellent sensitivities to phenanthroline. Different detection mechanisms were observed for the RR and SERS techniques, in which the RR intensity increased with increasing Fe3 + concentration due to the observation of the RR effect of the phenanthroline-Fe2 + complex, whereas the SERS intensity increased with decreasing Fe3 + concentration due to the observation of the SERS effect of the uncomplexed phenanthroline. More importantly, the determination sensitivity was substantially improved in the presence of a SERS-active substrate, giving a detection limit as low as 0.001 μg/mL, which is 20 times lower than the limit of the UV-vis and RR methods. Furthermore, the proposed SERS method was free from other ions interference and can be used quality and sensitivity for the determination of the city tap water.

  8. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1988-01-01

    Parameter sensitivity is defined as the estimation of changes in the modeling functions and the design variables due to small changes in the fixed parameters of the formulation. There are currently several methods for estimating parameter sensitivities requiring either difficult to obtain second order information, or do not return reliable estimates for the derivatives. Additionally, all the methods assume that the set of active constraints does not change in a neighborhood of the estimation point. If the active set does in fact change, than any extrapolations based on these derivatives may be in error. The objective here is to investigate more efficient new methods for estimating parameter sensitivities when the active set changes. The new method is based on the recursive quadratic programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RPQ algorithm. Inital testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity. To handle changes in the active set, a deflection algorithm is proposed for those cases where the new set of active constraints remains linearly independent. For those cases where dependencies occur, a directional derivative is proposed. A few simple examples are included for the algorithm, but extensive testing has not yet been performed.

  9. Simulation-based sensitivity analysis for non-ignorably missing data.

    PubMed

    Yin, Peng; Shi, Jian Q

    2017-01-01

    Sensitivity analysis is popular in dealing with missing data problems particularly for non-ignorable missingness, where full-likelihood method cannot be adopted. It analyses how sensitively the conclusions (output) may depend on assumptions or parameters (input) about missing data, i.e. missing data mechanism. We call models with the problem of uncertainty sensitivity models. To make conventional sensitivity analysis more useful in practice we need to define some simple and interpretable statistical quantities to assess the sensitivity models and make evidence based analysis. We propose a novel approach in this paper on attempting to investigate the possibility of each missing data mechanism model assumption, by comparing the simulated datasets from various MNAR models with the observed data non-parametrically, using the K-nearest-neighbour distances. Some asymptotic theory has also been provided. A key step of this method is to plug in a plausibility evaluation system towards each sensitivity parameter, to select plausible values and reject unlikely values, instead of considering all proposed values of sensitivity parameters as in the conventional sensitivity analysis method. The method is generic and has been applied successfully to several specific models in this paper including meta-analysis model with publication bias, analysis of incomplete longitudinal data and mean estimation with non-ignorable missing data.

  10. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods

    NASA Astrophysics Data System (ADS)

    Liu, Qinya; Tromp, Jeroen

    2008-07-01

    We determine adjoint equations and Fréchet kernels for global seismic wave propagation based upon a Lagrange multiplier method. We start from the equations of motion for a rotating, self-gravitating earth model initially in hydrostatic equilibrium, and derive the corresponding adjoint equations that involve motions on an earth model that rotates in the opposite direction. Variations in the misfit function χ then may be expressed as , where δlnm = δm/m denotes relative model perturbations in the volume V, δlnd denotes relative topographic variations on solid-solid or fluid-solid boundaries Σ, and ∇Σδlnd denotes surface gradients in relative topographic variations on fluid-solid boundaries ΣFS. The 3-D Fréchet kernel Km determines the sensitivity to model perturbations δlnm, and the 2-D kernels Kd and Kd determine the sensitivity to topographic variations δlnd. We demonstrate also how anelasticity may be incorporated within the framework of adjoint methods. Finite-frequency sensitivity kernels are calculated by simultaneously computing the adjoint wavefield forward in time and reconstructing the regular wavefield backward in time. Both the forward and adjoint simulations are based upon a spectral-element method. We apply the adjoint technique to generate finite-frequency traveltime kernels for global seismic phases (P, Pdiff, PKP, S, SKS, depth phases, surface-reflected phases, surface waves, etc.) in both 1-D and 3-D earth models. For 1-D models these adjoint-generated kernels generally agree well with results obtained from ray-based methods. However, adjoint methods do not have the same theoretical limitations as ray-based methods, and can produce sensitivity kernels for any given phase in any 3-D earth model. The Fréchet kernels presented in this paper illustrate the sensitivity of seismic observations to structural parameters and topography on internal discontinuities. These kernels form the basis of future 3-D tomographic inversions.

  11. DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments

    NASA Astrophysics Data System (ADS)

    Park, Jihoon; Yang, Guang; Satija, Addy; Scheidt, Céline; Caers, Jef

    2016-12-01

    Sensitivity analysis plays an important role in geoscientific computer experiments, whether for forecasting, data assimilation or model calibration. In this paper we focus on an extension of a method of regionalized sensitivity analysis (RSA) to applications typical in the Earth Sciences. Such applications involve the building of large complex spatial models, the application of computationally extensive forward modeling codes and the integration of heterogeneous sources of model uncertainty. The aim of this paper is to be practical: 1) provide a Matlab code, 2) provide novel visualization methods to aid users in getting a better understanding in the sensitivity 3) provide a method based on kernel principal component analysis (KPCA) and self-organizing maps (SOM) to account for spatial uncertainty typical in Earth Science applications and 4) provide an illustration on a real field case where the above mentioned complexities present themselves. We present methods that extend the original RSA method in several ways. First we present the calculation of conditional effects, defined as the sensitivity of a parameter given a level of another parameters. Second, we show how this conditional effect can be used to choose nominal values or ranges to fix insensitive parameters aiming to minimally affect uncertainty in the response. Third, we develop a method based on KPCA and SOM to assign a rank to spatial models in order to calculate the sensitivity on spatial variability in the models. A large oil/gas reservoir case is used as illustration of these ideas.

  12. Pyridoxylamine reactivity kinetics as an amine based nucleophile for screening electrophilic dermal sensitizers

    PubMed Central

    Chipinda, Itai; Mbiya, Wilbes; Adigun, Risikat Ajibola; Morakinyo, Moshood K.; Law, Brandon F.; Simoyi, Reuben H.; Siegel, Paul D.

    2015-01-01

    Chemical allergens bind directly, or after metabolic or abiotic activation, to endogenous proteins to become allergenic. Assessment of this initial binding has been suggested as a target for development of assays to screen chemicals for their allergenic potential. Recently we reported a nitrobenzenethiol (NBT) based method for screening thiol reactive skin sensitizers, however, amine selective sensitizers are not detected by this assay. In the present study we describe an amine (pyridoxylamine (PDA)) based kinetic assay to complement the NBT assay for identification of amine-selective and non-selective skin sensitizers. UV-Vis spectrophotometry and fluorescence were used to measure PDA reactivity for 57 chemicals including anhydrides, aldehydes, and quinones where reaction rates ranged from 116 to 6.2 × 10−6 M−1 s−1 for extreme to weak sensitizers, respectively. No reactivity towards PDA was observed with the thiol-selective sensitizers, non-sensitizers and prohaptens. The PDA rate constants correlated significantly with their respective murine local lymph node assay (LLNA) threshold EC3 values (R2 = 0.76). The use of PDA serves as a simple, inexpensive amine based method that shows promise as a preliminary screening tool for electrophilic, amine-selective skin sensitizers. PMID:24333919

  13. Monte Carlo Perturbation Theory Estimates of Sensitivities to System Dimensions

    DOE PAGES

    Burke, Timothy P.; Kiedrowski, Brian C.

    2017-12-11

    Here, Monte Carlo methods are developed using adjoint-based perturbation theory and the differential operator method to compute the sensitivities of the k-eigenvalue, linear functions of the flux (reaction rates), and bilinear functions of the forward and adjoint flux (kinetics parameters) to system dimensions for uniform expansions or contractions. The calculation of sensitivities to system dimensions requires computing scattering and fission sources at material interfaces using collisions occurring at the interface—which is a set of events with infinitesimal probability. Kernel density estimators are used to estimate the source at interfaces using collisions occurring near the interface. The methods for computing sensitivitiesmore » of linear and bilinear ratios are derived using the differential operator method and adjoint-based perturbation theory and are shown to be equivalent to methods previously developed using a collision history–based approach. The methods for determining sensitivities to system dimensions are tested on a series of fast, intermediate, and thermal critical benchmarks as well as a pressurized water reactor benchmark problem with iterated fission probability used for adjoint-weighting. The estimators are shown to agree within 5% and 3σ of reference solutions obtained using direct perturbations with central differences for the majority of test problems.« less

  14. An improved method for detecting circulating microRNAs with S-Poly(T) Plus real-time PCR

    PubMed Central

    Niu, Yanqin; Zhang, Limin; Qiu, Huiling; Wu, Yike; Wang, Zhiwei; Zai, Yujia; Liu, Lin; Qu, Junle; Kang, Kang; Gou, Deming

    2015-01-01

    We herein describe a simple, sensitive and specific method for analysis of circulating microRNAs (miRNA), termed S-Poly(T) Plus real-time PCR assay. This new method is based on our previously developed S-Poly(T) method, in which a unique S-Poly(T) primer is used during reverse-transcription to increase sensitivity and specificity. Further increased sensitivity and simplicity of S-Poly(T) Plus, in comparison with the S-Poly(T) method, were achieved by a single-step, multiple-stage reaction, where RNAs were polyadenylated and reverse-transcribed at the same time. The sensitivity of circulating miRNA detection was further improved by a modified method of total RNA isolation from serum/plasma, S/P miRsol, in which glycogen was used to increase the RNA yield. We validated our methods by quantifying miRNA expression profiles in the sera of the patients with pulmonary arterial hypertension associated with congenital heart disease. In conclusion, we developed a simple, sensitive, and specific method for detecting circulating miRNAs that allows the measurement of 266 miRNAs from 100 μl of serum or plasma. This method presents a promising tool for basic miRNA research and clinical diagnosis of human diseases based on miRNA biomarkers. PMID:26459910

  15. A Most Probable Point-Based Method for Reliability Analysis, Sensitivity Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Hou, Gene J.-W; Newman, Perry A. (Technical Monitor)

    2004-01-01

    A major step in a most probable point (MPP)-based method for reliability analysis is to determine the MPP. This is usually accomplished by using an optimization search algorithm. The minimum distance associated with the MPP provides a measurement of safety probability, which can be obtained by approximate probability integration methods such as FORM or SORM. The reliability sensitivity equations are derived first in this paper, based on the derivatives of the optimal solution. Examples are provided later to demonstrate the use of these derivatives for better reliability analysis and reliability-based design optimization (RBDO).

  16. Can currently available non-animal methods detect pre and pro-haptens relevant for skin sensitization?

    PubMed

    Patlewicz, Grace; Casati, Silvia; Basketter, David A; Asturiol, David; Roberts, David W; Lepoittevin, Jean-Pierre; Worth, Andrew P; Aschberger, Karin

    2016-12-01

    Predictive testing to characterize substances for their skin sensitization potential has historically been based on animal tests such as the Local Lymph Node Assay (LLNA). In recent years, regulations in the cosmetics and chemicals sectors have provided strong impetus to develop non-animal alternatives. Three test methods have undergone OECD validation: the direct peptide reactivity assay (DPRA), the KeratinoSens™ and the human Cell Line Activation Test (h-CLAT). Whilst these methods perform relatively well in predicting LLNA results, a concern raised is their ability to predict chemicals that need activation to be sensitizing (pre- or pro-haptens). This current study reviewed an EURL ECVAM dataset of 127 substances for which information was available in the LLNA and three non-animal test methods. Twenty eight of the sensitizers needed to be activated, with the majority being pre-haptens. These were correctly identified by 1 or more of the test methods. Six substances were categorized exclusively as pro-haptens, but were correctly identified by at least one of the cell-based assays. The analysis here showed that skin metabolism was not likely to be a major consideration for assessing sensitization potential and that sensitizers requiring activation could be identified correctly using one or more of the current non-animal methods. Published by Elsevier Inc.

  17. Characterization of Adrenal Adenoma by Gaussian Model-Based Algorithm.

    PubMed

    Hsu, Larson D; Wang, Carolyn L; Clark, Toshimasa J

    2016-01-01

    We confirmed that computed tomography (CT) attenuation values of pixels in an adrenal nodule approximate a Gaussian distribution. Building on this and the previously described histogram analysis method, we created an algorithm that uses mean and standard deviation to estimate the percentage of negative attenuation pixels in an adrenal nodule, thereby allowing differentiation of adenomas and nonadenomas. The institutional review board approved both components of this study in which we developed and then validated our criteria. In the first, we retrospectively assessed CT attenuation values of adrenal nodules for normality using a 2-sample Kolmogorov-Smirnov test. In the second, we evaluated a separate cohort of patients with adrenal nodules using both the conventional 10HU unit mean attenuation method and our Gaussian model-based algorithm. We compared the sensitivities of the 2 methods using McNemar's test. A total of 183 of 185 observations (98.9%) demonstrated a Gaussian distribution in adrenal nodule pixel attenuation values. The sensitivity and specificity of our Gaussian model-based algorithm for identifying adrenal adenoma were 86.1% and 83.3%, respectively. The sensitivity and specificity of the mean attenuation method were 53.2% and 94.4%, respectively. The sensitivities of the 2 methods were significantly different (P value < 0.001). In conclusion, the CT attenuation values within an adrenal nodule follow a Gaussian distribution. Our Gaussian model-based algorithm can characterize adrenal adenomas with higher sensitivity than the conventional mean attenuation method. The use of our algorithm, which does not require additional postprocessing, may increase workflow efficiency and reduce unnecessary workup of benign nodules. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: A User’s Guide

    DOE PAGES

    Favorite, Jeffrey A.; Perko, Zoltan; Kiedrowski, Brian C.; ...

    2017-03-01

    The ability to perform sensitivity analyses using adjoint-based first-order sensitivity theory has existed for decades. This paper provides guidance on how adjoint sensitivity methods can be used to predict the effect of material density and composition uncertainties in critical experiments, including when these uncertain parameters are correlated or constrained. Two widely used Monte Carlo codes, MCNP6 (Ref. 2) and SCALE 6.2 (Ref. 3), are both capable of computing isotopic density sensitivities in continuous energy and angle. Additionally, Perkó et al. have shown how individual isotope density sensitivities, easily computed using adjoint methods, can be combined to compute constrained first-order sensitivitiesmore » that may be used in the uncertainty analysis. This paper provides details on how the codes are used to compute first-order sensitivities and how the sensitivities are used in an uncertainty analysis. Constrained first-order sensitivities are computed in a simple example problem.« less

  19. Computer-Based Radiographic Quantification of Joint Space Narrowing Progression Using Sequential Hand Radiographs: Validation Study in Rheumatoid Arthritis Patients from Multiple Institutions.

    PubMed

    Ichikawa, Shota; Kamishima, Tamotsu; Sutherland, Kenneth; Fukae, Jun; Katayama, Kou; Aoki, Yuko; Okubo, Takanobu; Okino, Taichi; Kaneda, Takahiko; Takagi, Satoshi; Tanimura, Kazuhide

    2017-10-01

    We have developed a refined computer-based method to detect joint space narrowing (JSN) progression with the joint space narrowing progression index (JSNPI) by superimposing sequential hand radiographs. The purpose of this study is to assess the validity of a computer-based method using images obtained from multiple institutions in rheumatoid arthritis (RA) patients. Sequential hand radiographs of 42 patients (37 females and 5 males) with RA from two institutions were analyzed by a computer-based method and visual scoring systems as a standard of reference. The JSNPI above the smallest detectable difference (SDD) defined JSN progression on the joint level. The sensitivity and specificity of the computer-based method for JSN progression was calculated using the SDD and a receiver operating characteristic (ROC) curve. Out of 314 metacarpophalangeal joints, 34 joints progressed based on the SDD, while 11 joints widened. Twenty-one joints progressed in the computer-based method, 11 joints in the scoring systems, and 13 joints in both methods. Based on the SDD, we found lower sensitivity and higher specificity with 54.2 and 92.8%, respectively. At the most discriminant cutoff point according to the ROC curve, the sensitivity and specificity was 70.8 and 81.7%, respectively. The proposed computer-based method provides quantitative measurement of JSN progression using sequential hand radiographs and may be a useful tool in follow-up assessment of joint damage in RA patients.

  20. Adjoint Sensitivity Analysis for Scale-Resolving Turbulent Flow Solvers

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Garai, Anirban; Diosady, Laslo; Murman, Scott

    2017-11-01

    Adjoint-based sensitivity analysis methods are powerful design tools for engineers who use computational fluid dynamics. In recent years, these engineers have started to use scale-resolving simulations like large-eddy simulations (LES) and direct numerical simulations (DNS), which resolve more scales in complex flows with unsteady separation and jets than the widely-used Reynolds-averaged Navier-Stokes (RANS) methods. However, the conventional adjoint method computes large, unusable sensitivities for scale-resolving simulations, which unlike RANS simulations exhibit the chaotic dynamics inherent in turbulent flows. Sensitivity analysis based on least-squares shadowing (LSS) avoids the issues encountered by conventional adjoint methods, but has a high computational cost even for relatively small simulations. The following talk discusses a more computationally efficient formulation of LSS, ``non-intrusive'' LSS, and its application to turbulent flows simulated with a discontinuous-Galkerin spectral-element-method LES/DNS solver. Results are presented for the minimal flow unit, a turbulent channel flow with a limited streamwise and spanwise domain.

  1. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    DTIC Science & Technology

    2015-03-16

    sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity Analysis of the Reduced Order Coagulation...sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the performance of the reduced order model [69]. We...Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates

  2. Dynamic Modeling of the Human Coagulation Cascade Using Reduced Order Effective Kinetic Models (Open Access)

    DTIC Science & Technology

    2015-03-16

    shaded region around each total sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity...Performance We conducted a global sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the...Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear

  3. Comparison of Two Global Sensitivity Analysis Methods for Hydrologic Modeling over the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Hameed, M.; Demirel, M. C.; Moradkhani, H.

    2015-12-01

    Global Sensitivity Analysis (GSA) approach helps identify the effectiveness of model parameters or inputs and thus provides essential information about the model performance. In this study, the effects of the Sacramento Soil Moisture Accounting (SAC-SMA) model parameters, forcing data, and initial conditions are analysed by using two GSA methods: Sobol' and Fourier Amplitude Sensitivity Test (FAST). The simulations are carried out over five sub-basins within the Columbia River Basin (CRB) for three different periods: one-year, four-year, and seven-year. Four factors are considered and evaluated by using the two sensitivity analysis methods: the simulation length, parameter range, model initial conditions, and the reliability of the global sensitivity analysis methods. The reliability of the sensitivity analysis results is compared based on 1) the agreement between the two sensitivity analysis methods (Sobol' and FAST) in terms of highlighting the same parameters or input as the most influential parameters or input and 2) how the methods are cohered in ranking these sensitive parameters under the same conditions (sub-basins and simulation length). The results show the coherence between the Sobol' and FAST sensitivity analysis methods. Additionally, it is found that FAST method is sufficient to evaluate the main effects of the model parameters and inputs. Another conclusion of this study is that the smaller parameter or initial condition ranges, the more consistency and coherence between the sensitivity analysis methods results.

  4. [Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model].

    PubMed

    He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong

    2016-02-01

    Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect.

  5. Sensitive determination of carbohydrates by fluorimetric method with Ce(IV) and sodium triphosphate.

    PubMed

    Yang, Jinghe; Cao, Xihui; Sun, Changxia; Wu, Xia; Li, Lei

    2004-05-01

    A new simple and sensitive fluorimetric method for the determination of carbohydrates is described. The method is based on the reaction between carbohydrates and Ce(IV) in the presence of sulfuric acid. All the reductive carbohydrates can be detected indirectly by the fluorescence of Ce(III) produced. The addition of sodium triphate enhances the sensitivity of the method by more than 10-folds. Under optimum conditions, an excellent linear relationship was obtained between the fluorescence intensity and the concentration of carbohydrates. The limits of detection lie in the range of 9.3 x 10(-10) - 1.3 x 10(-9) mol/L. As compared to the normal fluorimetric method, the proposed method is faster and more sensitive.

  6. Applying under-sampling techniques and cost-sensitive learning methods on risk assessment of breast cancer.

    PubMed

    Hsu, Jia-Lien; Hung, Ping-Cheng; Lin, Hung-Yen; Hsieh, Chung-Ho

    2015-04-01

    Breast cancer is one of the most common cause of cancer mortality. Early detection through mammography screening could significantly reduce mortality from breast cancer. However, most of screening methods may consume large amount of resources. We propose a computational model, which is solely based on personal health information, for breast cancer risk assessment. Our model can be served as a pre-screening program in the low-cost setting. In our study, the data set, consisting of 3976 records, is collected from Taipei City Hospital starting from 2008.1.1 to 2008.12.31. Based on the dataset, we first apply the sampling techniques and dimension reduction method to preprocess the testing data. Then, we construct various kinds of classifiers (including basic classifiers, ensemble methods, and cost-sensitive methods) to predict the risk. The cost-sensitive method with random forest classifier is able to achieve recall (or sensitivity) as 100 %. At the recall of 100 %, the precision (positive predictive value, PPV), and specificity of cost-sensitive method with random forest classifier was 2.9 % and 14.87 %, respectively. In our study, we build a breast cancer risk assessment model by using the data mining techniques. Our model has the potential to be served as an assisting tool in the breast cancer screening.

  7. Estimation of Spatiotemporal Sensitivity Using Band-limited Signals with No Additional Acquisitions for k-t Parallel Imaging.

    PubMed

    Takeshima, Hidenori; Saitoh, Kanako; Nitta, Shuhei; Shiodera, Taichiro; Takeguchi, Tomoyuki; Bannae, Shuhei; Kuhara, Shigehide

    2018-03-13

    Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k - t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x - f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k - t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x - f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k - t SENSE. The processing time is reduced from 4.1 s for k - t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k - t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. In the present study, k - t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x - f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k - t SENSE method.

  8. Decision Tree based Prediction and Rule Induction for Groundwater Trichloroethene (TCE) Pollution Vulnerability

    NASA Astrophysics Data System (ADS)

    Park, J.; Yoo, K.

    2013-12-01

    For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.

  9. The Role of Attention in Somatosensory Processing: A Multi-trait, Multi-method Analysis

    PubMed Central

    Puts, Nicolaas A. J.; Mahone, E. Mark; Edden, Richard A. E.; Tommerdahl, Mark; Mostofsky, Stewart H.

    2016-01-01

    Sensory processing abnormalities in autism have largely been described by parent report. This study used a multi-method (parent-report and measurement), multi-trait (tactile sensitivity and attention) design to evaluate somatosensory processing in ASD. Results showed multiple significant within-method (e.g., parent report of different traits)/cross-trait (e.g., attention and tactile sensitivity) correlations, suggesting that parent-reported tactile sensory dysfunction and performance-based tactile sensitivity describe different behavioral phenomena. Additionally, both parent-reported tactile functioning and performance-based tactile sensitivity measures were significantly associated with measures of attention. Findings suggest that sensory (tactile) processing abnormalities in ASD are multifaceted, and may partially reflect a more global deficit in behavioral regulation (including attention). Challenges of relying solely on parent-report to describe sensory difficulties faced by children/families with ASD are also highlighted. PMID:27448580

  10. Computational methods for efficient structural reliability and reliability sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.

    1993-01-01

    This paper presents recent developments in efficient structural reliability analysis methods. The paper proposes an efficient, adaptive importance sampling (AIS) method that can be used to compute reliability and reliability sensitivities. The AIS approach uses a sampling density that is proportional to the joint PDF of the random variables. Starting from an initial approximate failure domain, sampling proceeds adaptively and incrementally with the goal of reaching a sampling domain that is slightly greater than the failure domain to minimize over-sampling in the safe region. Several reliability sensitivity coefficients are proposed that can be computed directly and easily from the above AIS-based failure points. These probability sensitivities can be used for identifying key random variables and for adjusting design to achieve reliability-based objectives. The proposed AIS methodology is demonstrated using a turbine blade reliability analysis problem.

  11. A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers.

    PubMed

    Avonto, Cristina; Chittiboyina, Amar G; Rua, Diego; Khan, Ikhlas A

    2015-12-01

    Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles after incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, 'HTS-DCYA assay', is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. MethylMeter®: bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples

    PubMed Central

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-01-01

    Aim: Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Materials & methods: Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter®. Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. Results: MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. Conclusion: MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas. PMID:27337298

  13. Tracing the conformational changes in BSA using FRET with environmentally-sensitive squaraine probes

    NASA Astrophysics Data System (ADS)

    Govor, Iryna V.; Tatarets, Anatoliy L.; Obukhova, Olena M.; Terpetschnig, Ewald A.; Gellerman, Gary; Patsenker, Leonid D.

    2016-06-01

    A new potential method of detecting the conformational changes in hydrophobic proteins such as bovine serum albumin (BSA) is introduced. The method is based on the change in the Förster resonance energy transfer (FRET) efficiency between protein-sensitive fluorescent probes. As compared to conventional FRET based methods, in this new approach the donor and acceptor dyes are not covalently linked to protein molecules. Performance of the new method is demonstrated using the protein-sensitive squaraine probes Square-634 (donor) and Square-685 (acceptor) to detect the urea-induced conformational changes of BSA. The FRET efficiency between these probes can be considered a more sensitive parameter to trace protein unfolding as compared to the changes in fluorescence intensity of each of these probes. Addition of urea followed by BSA unfolding causes a noticeable decrease in the emission intensities of these probes (factor of 5.6 for Square-634 and 3.0 for Square-685), and the FRET efficiency changes by a factor of up to 17. Compared to the conventional method the new approach therefore demonstrates to be a more sensitive way to detect the conformational changes in BSA.

  14. Parameter screening: the use of a dummy parameter to identify non-influential parameters in a global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2017-04-01

    Parameter estimation is a major concern in hydrological modeling, which may limit the use of complex simulators with a large number of parameters. To support the selection of parameters to include in or exclude from the calibration process, Global Sensitivity Analysis (GSA) is widely applied in modeling practices. Based on the results of GSA, the influential and the non-influential parameters are identified (i.e. parameters screening). Nevertheless, the choice of the screening threshold below which parameters are considered non-influential is a critical issue, which has recently received more attention in GSA literature. In theory, the sensitivity index of a non-influential parameter has a value of zero. However, since numerical approximations, rather than analytical solutions, are utilized in GSA methods to calculate the sensitivity indices, small but non-zero indices may be obtained for the indices of non-influential parameters. In order to assess the threshold that identifies non-influential parameters in GSA methods, we propose to calculate the sensitivity index of a "dummy parameter". This dummy parameter has no influence on the model output, but will have a non-zero sensitivity index, representing the error due to the numerical approximation. Hence, the parameters whose indices are above the sensitivity index of the dummy parameter can be classified as influential, whereas the parameters whose indices are below this index are within the range of the numerical error and should be considered as non-influential. To demonstrated the effectiveness of the proposed "dummy parameter approach", 26 parameters of a Soil and Water Assessment Tool (SWAT) model are selected to be analyzed and screened, using the variance-based Sobol' and moment-independent PAWN methods. The sensitivity index of the dummy parameter is calculated from sampled data, without changing the model equations. Moreover, the calculation does not even require additional model evaluations for the Sobol' method. A formal statistical test validates these parameter screening results. Based on the dummy parameter screening, 11 model parameters are identified as influential. Therefore, it can be denoted that the "dummy parameter approach" can facilitate the parameter screening process and provide guidance for GSA users to define a screening-threshold, with only limited additional resources. Key words: Parameter screening, Global sensitivity analysis, Dummy parameter, Variance-based method, Moment-independent method

  15. Eigenvalue sensitivity analysis of planar frames with variable joint and support locations

    NASA Technical Reports Server (NTRS)

    Chuang, Ching H.; Hou, Gene J. W.

    1991-01-01

    Two sensitivity equations are derived in this study based upon the continuum approach for eigenvalue sensitivity analysis of planar frame structures with variable joint and support locations. A variational form of an eigenvalue equation is first derived in which all of the quantities are expressed in the local coordinate system attached to each member. Material derivative of this variational equation is then sought to account for changes in member's length and orientation resulting form the perturbation of joint and support locations. Finally, eigenvalue sensitivity equations are formulated in either domain quantities (by the domain method) or boundary quantities (by the boundary method). It is concluded that the sensitivity equation derived by the boundary method is more efficient in computation but less accurate than that of the domain method. Nevertheless, both of them in terms of computational efficiency are superior to the conventional direct differentiation method and the finite difference method.

  16. Statistical method evaluation for differentially methylated CpGs in base resolution next-generation DNA sequencing data.

    PubMed

    Zhang, Yun; Baheti, Saurabh; Sun, Zhifu

    2018-05-01

    High-throughput bisulfite methylation sequencing such as reduced representation bisulfite sequencing (RRBS), Agilent SureSelect Human Methyl-Seq (Methyl-seq) or whole-genome bisulfite sequencing is commonly used for base resolution methylome research. These data are represented either by the ratio of methylated cytosine versus total coverage at a CpG site or numbers of methylated and unmethylated cytosines. Multiple statistical methods can be used to detect differentially methylated CpGs (DMCs) between conditions, and these methods are often the base for the next step of differentially methylated region identification. The ratio data have a flexibility of fitting to many linear models, but the raw count data take consideration of coverage information. There is an array of options in each datatype for DMC detection; however, it is not clear which is an optimal statistical method. In this study, we systematically evaluated four statistic methods on methylation ratio data and four methods on count-based data and compared their performances with regard to type I error control, sensitivity and specificity of DMC detection and computational resource demands using real RRBS data along with simulation. Our results show that the ratio-based tests are generally more conservative (less sensitive) than the count-based tests. However, some count-based methods have high false-positive rates and should be avoided. The beta-binomial model gives a good balance between sensitivity and specificity and is preferred method. Selection of methods in different settings, signal versus noise and sample size estimation are also discussed.

  17. Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Tolson, Bryan

    2017-04-01

    The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters or model processes. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method independency of the convergence testing method, we applied it to three widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991, Campolongo et al., 2000), the variance-based Sobol' method (Solbol' 1993, Saltelli et al. 2010) and a derivative-based method known as Parameter Importance index (Goehler et al. 2013). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. Subsequently, we focus on the model-independency by testing the frugal method using the hydrologic model mHM (www.ufz.de/mhm) with about 50 model parameters. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an efficient way. The appealing feature of this new technique is the necessity of no further model evaluation and therefore enables checking of already processed (and published) sensitivity results. This is one step towards reliable and transferable, published sensitivity results.

  18. [Analysis and experimental verification of sensitivity and SNR of laser warning receiver].

    PubMed

    Zhang, Ji-Long; Wang, Ming; Tian, Er-Ming; Li, Xiao; Wang, Zhi-Bin; Zhang, Yue

    2009-01-01

    In order to countermeasure increasingly serious threat from hostile laser in modern war, it is urgent to do research on laser warning technology and system, and the sensitivity and signal to noise ratio (SNR) are two important performance parameters in laser warning system. In the present paper, based on the signal statistical detection theory, a method for calculation of the sensitivity and SNR in coherent detection laser warning receiver (LWR) has been proposed. Firstly, the probabilities of the laser signal and receiver noise were analyzed. Secondly, based on the threshold detection theory and Neyman-Pearson criteria, the signal current equation was established by introducing detection probability factor and false alarm rate factor, then, the mathematical expressions of sensitivity and SNR were deduced. Finally, by using method, the sensitivity and SNR of the sinusoidal grating laser warning receiver developed by our group were analyzed, and the theoretic calculation and experimental results indicate that the SNR analysis method is feasible, and can be used in performance analysis of LWR.

  19. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples.

    PubMed

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-06-01

    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  20. A sensitivity analysis method for the body segment inertial parameters based on ground reaction and joint moment regressor matrices.

    PubMed

    Futamure, Sumire; Bonnet, Vincent; Dumas, Raphael; Venture, Gentiane

    2017-11-07

    This paper presents a method allowing a simple and efficient sensitivity analysis of dynamics parameters of complex whole-body human model. The proposed method is based on the ground reaction and joint moment regressor matrices, developed initially in robotics system identification theory, and involved in the equations of motion of the human body. The regressor matrices are linear relatively to the segment inertial parameters allowing us to use simple sensitivity analysis methods. The sensitivity analysis method was applied over gait dynamics and kinematics data of nine subjects and with a 15 segments 3D model of the locomotor apparatus. According to the proposed sensitivity indices, 76 segments inertial parameters out the 150 of the mechanical model were considered as not influent for gait. The main findings were that the segment masses were influent and that, at the exception of the trunk, moment of inertia were not influent for the computation of the ground reaction forces and moments and the joint moments. The same method also shows numerically that at least 90% of the lower-limb joint moments during the stance phase can be estimated only from a force-plate and kinematics data without knowing any of the segment inertial parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Quantitative real-time in vivo detection of magnetic nanoparticles by their nonlinear magnetization

    NASA Astrophysics Data System (ADS)

    Nikitin, M. P.; Torno, M.; Chen, H.; Rosengart, A.; Nikitin, P. I.

    2008-04-01

    A novel method of highly sensitive quantitative detection of magnetic nanoparticles (MP) in biological tissues and blood system has been realized and tested in real time in vivo experiments. The detection method is based on nonlinear magnetic properties of MP and the related device can record a very small relative variation of nonlinear magnetic susceptibility up to 10-8 at room temperature, providing sensitivity of several nanograms of MP in 0.1ml volume. Real-time quantitative in vivo measurements of dynamics of MP concentration in blood flow have been performed. A catheter that carried the blood flow of a rat passed through the measuring device. After an MP injection, the quantity of MP in the circulating blood was continuously recorded. The method has also been used to evaluate the MP distribution between rat's organs. Its sensitivity was compared with detection of the radioactive MP based on isotope of Fe59. The comparison of magnetic and radioactive signals in the rat's blood and organ samples demonstrated similar sensitivity for both methods. However, the proposed magnetic method is much more convenient as it is safe, less expensive, and provides real-time measurements in vivo. Moreover, the sensitivity of the method can be further improved by optimization of the device geometry.

  2. GIS coupled Multiple Criteria based Decision Support for Classification of Urban Coastal Areas in India

    NASA Astrophysics Data System (ADS)

    Dhiman, R.; Kalbar, P.; Inamdar, A. B.

    2017-12-01

    Coastal area classification in India is a challenge for federal and state government agencies due to fragile institutional framework, unclear directions in implementation of costal regulations and violations happening at private and government level. This work is an attempt to improvise the objectivity of existing classification methods to synergies the ecological systems and socioeconomic development in coastal cities. We developed a Geographic information system coupled Multi-criteria Decision Making (GIS-MCDM) approach to classify urban coastal areas where utility functions are used to transform the costal features into quantitative membership values after assessing the sensitivity of urban coastal ecosystem. Furthermore, these membership values for costal features are applied in different weighting schemes to derive Coastal Area Index (CAI) which classifies the coastal areas in four distinct categories viz. 1) No Development Zone, 2) Highly Sensitive Zone, 3) Moderately Sensitive Zone and 4) Low Sensitive Zone based on the sensitivity of urban coastal ecosystem. Mumbai, a coastal megacity in India is used as case study for demonstration of proposed method. Finally, uncertainty analysis using Monte Carlo approach to validate the sensitivity of CAI under specific multiple scenarios is carried out. Results of CAI method shows the clear demarcation of coastal areas in GIS environment based on the ecological sensitivity. CAI provides better decision support for federal and state level agencies to classify urban coastal areas according to the regional requirement of coastal resources considering resilience and sustainable development. CAI method will strengthen the existing institutional framework for decision making in classification of urban coastal areas where most effective coastal management options can be proposed.

  3. Perspectives on Non-Animal Alternatives for Assessing Sensitization Potential in Allergic Contact Dermatitis

    PubMed Central

    Sharma, Nripen S.; Jindal, Rohit; Mitra, Bhaskar; Lee, Serom; Li, Lulu; Maguire, Tim J.; Schloss, Rene; Yarmush, Martin L.

    2014-01-01

    Skin sensitization remains a major environmental and occupational health hazard. Animal models have been used as the gold standard method of choice for estimating chemical sensitization potential. However, a growing international drive and consensus for minimizing animal usage have prompted the development of in vitro methods to assess chemical sensitivity. In this paper, we examine existing approaches including in silico models, cell and tissue based assays for distinguishing between sensitizers and irritants. The in silico approaches that have been discussed include Quantitative Structure Activity Relationships (QSAR) and QSAR based expert models that correlate chemical molecular structure with biological activity and mechanism based read-across models that incorporate compound electrophilicity. The cell and tissue based assays rely on an assortment of mono and co-culture cell systems in conjunction with 3D skin models. Given the complexity of allergen induced immune responses, and the limited ability of existing systems to capture the entire gamut of cellular and molecular events associated with these responses, we also introduce a microfabricated platform that can capture all the key steps involved in allergic contact sensitivity. Finally, we describe the development of an integrated testing strategy comprised of two or three tier systems for evaluating sensitization potential of chemicals. PMID:24741377

  4. A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method

    NASA Astrophysics Data System (ADS)

    Chen, Leilei; Zheng, Changjun; Chen, Haibo

    2013-09-01

    This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.

  5. Functional connectivity analysis of the neural bases of emotion regulation: A comparison of independent component method with density-based k-means clustering method.

    PubMed

    Zou, Ling; Guo, Qian; Xu, Yi; Yang, Biao; Jiao, Zhuqing; Xiang, Jianbo

    2016-04-29

    Functional magnetic resonance imaging (fMRI) is an important tool in neuroscience for assessing connectivity and interactions between distant areas of the brain. To find and characterize the coherent patterns of brain activity as a means of identifying brain systems for the cognitive reappraisal of the emotion task, both density-based k-means clustering and independent component analysis (ICA) methods can be applied to characterize the interactions between brain regions involved in cognitive reappraisal of emotion. Our results reveal that compared with the ICA method, the density-based k-means clustering method provides a higher sensitivity of polymerization. In addition, it is more sensitive to those relatively weak functional connection regions. Thus, the study concludes that in the process of receiving emotional stimuli, the relatively obvious activation areas are mainly distributed in the frontal lobe, cingulum and near the hypothalamus. Furthermore, density-based k-means clustering method creates a more reliable method for follow-up studies of brain functional connectivity.

  6. Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Eleshaky, Mohamed E.

    1991-01-01

    A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown that the method is more efficient than the traditional methods.

  7. Ribozyme-mediated signal augmentation on a mass-sensitive biosensor.

    PubMed

    Knudsen, Scott M; Lee, Joonhyung; Ellington, Andrew D; Savran, Cagri A

    2006-12-20

    Mass-based detection methods such as the quartz crystal microbalance (QCM) offer an attractive option to label-based methods; however the sensitivity is generally lower by comparison. In particular, low-molecular-weight analytes can be difficult to detect based on mass addition alone. In this communication, we present the use of effector-dependent ribozymes (aptazymes) as reagents for augmenting small ligand detection on a mass-sensitive device. Two distinct aptazymes were chosen: an L1-ligase-based aptazyme (L1-Rev), which is activated by a small peptide (MW approximately 2.4 kDa) from the HIV-1 Rev protein, and a hammerhead cleavase-based aptazyme (HH-theo3) activated by theophylline (MW = 180 Da). Aptazyme activity was observed in real time, and low-molecular-weight analyte detection has been successfully demonstrated with both aptazymes.

  8. Visual and highly sensitive detection of cancer cells by a colorimetric aptasensor based on cell-triggered cyclic enzymatic signal amplification.

    PubMed

    Zhang, Xianxia; Xiao, Kunyi; Cheng, Liwei; Chen, Hui; Liu, Baohong; Zhang, Song; Kong, Jilie

    2014-06-03

    Rapid and efficient detection of cancer cells at their earliest stages is one of the central challenges in cancer diagnostics. We developed a simple, cost-effective, and highly sensitive colorimetric method for visually detecting rare cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and linker DNAs stably coexist in solution, and the linker DNA assembles DNA-AuNPs, producing a purple solution. In the presence of target cells, the specific binding of HAPs to the target cells triggers a conformational switch that results in linker DNA hybridization and cleavage by nicking endonuclease-strand scission cycles. Consequently, the cleaved fragments of linker DNA can no longer assemble into DNA-AuNPs, resulting in a red color. UV-vis spectrometry and photograph analyses demonstrated that this CTCESA-based method exhibited selective and sensitive colorimetric responses to the presence of target CCRF-CEM cells, which could be detected by the naked eye. The linear response for CCRF-CEM cells in a concentration range from 10(2) to 10(4) cells was obtained with a detection limit of 40 cells, which is approximately 20 times lower than the detection limit of normal AuNP-based methods without amplification. Given the high specificity and sensitivity of CTCESA, this colorimetric method provides a sensitive, label-free, and cost-effective approach for early cancer diagnosis and point-to-care applications.

  9. Estimating Sobol Sensitivity Indices Using Correlations

    EPA Science Inventory

    Sensitivity analysis is a crucial tool in the development and evaluation of complex mathematical models. Sobol's method is a variance-based global sensitivity analysis technique that has been applied to computational models to assess the relative importance of input parameters on...

  10. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes

    NASA Astrophysics Data System (ADS)

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J. H.; Trau, Matt; Wang, Yuling; Botella, Jose R.

    2017-01-01

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  11. Specific and Sensitive Isothermal Electrochemical Biosensor for Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes.

    PubMed

    Lau, Han Yih; Wu, Haoqi; Wee, Eugene J H; Trau, Matt; Wang, Yuling; Botella, Jose R

    2017-01-17

    Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.

  12. PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines

    USGS Publications Warehouse

    Jarvi, Susan I.; Schultz, Jeffrey J.; Atkinson, Carter T.

    2002-01-01

    Several polymerase chain reaction (PCR)-based methods have recently been developed for diagnosing malarial infections in both birds and reptiles, but a critical evaluation of their sensitivity in experimentally-infected hosts has not been done. This study compares the sensitivity of several PCR-based methods for diagnosing avian malaria (Plasmodium relictum) in captive Hawaiian honeycreepers using microscopy and a recently developed immunoblotting technique. Sequential blood samples were collected over periods of up to 4.4 yr after experimental infection and rechallenge to determine both the duration and detectability of chronic infections. Two new nested PCR approaches for detecting circulating parasites based on P. relictum 18S rRNA genes and the thrombospondin-related anonymous protein (TRAP) gene are described. The blood smear and the PCR tests were less sensitive than serological methods for detecting chronic malarial infections. Individually, none of the diagnostic methods was 100% accurate in detecting subpatent infections, although serological methods were significantly more sensitive (97%) than either nested PCR (61–84%) or microscopy (27%). Circulating parasites in chronically infected birds either disappear completely from circulation or to drop to intensities below detectability by nested PCR. Thus, the use of PCR as a sole means of detection of circulating parasites may significantly underestimate true prevalence.

  13. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    PubMed Central

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  14. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    PubMed

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-08

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  15. Fluorescence polarization immunoassays for rapid, accurate, and sensitive determination of mycotoxins

    USDA-ARS?s Scientific Manuscript database

    Analytical methods for the determination of mycotoxins in foods are commonly based on chromatographic techniques (GC, HPLC or LC-MS). Although these methods permit a sensitive and accurate determination of the analyte, they require skilled personnel and are time-consuming, expensive, and unsuitable ...

  16. Terbium-sensitized luminescence screening method for fluoroquinolones in beef serum

    USDA-ARS?s Scientific Manuscript database

    Enrofloxacin is one of only two fluoroquinolone antibiotics approved for use in cattle in the U.S. Microbial screening methods commonly used for monitoring veterinary drug residues are not sensitive or selective for fluoroquinolones. In this work, a luminescence-based screening assay was developed...

  17. A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses.

    PubMed

    Yamamoto, F; Yamamoto, M

    2004-07-01

    We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.

  18. Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten

    2015-04-01

    Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.

  19. Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles.

    PubMed

    Nguyen, Lich Quang; Phan, Pho Quoc; Duong, Huyen Ngoc; Nguyen, Chien Duc; Nguyen, Lam Huu

    2013-01-30

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH(3) gas sensing applications. The MWCNT-based sensor is sensitive to NH(3) gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH(3), compared with alcohol and LPG.

  20. Efficient sensitivity analysis method for chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao

    2016-05-01

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results in an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.

  1. Geology-based method of assessing sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland

    USGS Publications Warehouse

    Rice, Karen C.; Bricker, Owen P.

    1991-01-01

    The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streams in these counties are sensitive to acidification by acidic deposition.

  2. Measuring geographic access to health care: raster and network-based methods

    PubMed Central

    2012-01-01

    Background Inequalities in geographic access to health care result from the configuration of facilities, population distribution, and the transportation infrastructure. In recent accessibility studies, the traditional distance measure (Euclidean) has been replaced with more plausible measures such as travel distance or time. Both network and raster-based methods are often utilized for estimating travel time in a Geographic Information System. Therefore, exploring the differences in the underlying data models and associated methods and their impact on geographic accessibility estimates is warranted. Methods We examine the assumptions present in population-based travel time models. Conceptual and practical differences between raster and network data models are reviewed, along with methodological implications for service area estimates. Our case study investigates Limited Access Areas defined by Michigan’s Certificate of Need (CON) Program. Geographic accessibility is calculated by identifying the number of people residing more than 30 minutes from an acute care hospital. Both network and raster-based methods are implemented and their results are compared. We also examine sensitivity to changes in travel speed settings and population assignment. Results In both methods, the areas identified as having limited accessibility were similar in their location, configuration, and shape. However, the number of people identified as having limited accessibility varied substantially between methods. Over all permutations, the raster-based method identified more area and people with limited accessibility. The raster-based method was more sensitive to travel speed settings, while the network-based method was more sensitive to the specific population assignment method employed in Michigan. Conclusions Differences between the underlying data models help to explain the variation in results between raster and network-based methods. Considering that the choice of data model/method may substantially alter the outcomes of a geographic accessibility analysis, we advise researchers to use caution in model selection. For policy, we recommend that Michigan adopt the network-based method or reevaluate the travel speed assignment rule in the raster-based method. Additionally, we recommend that the state revisit the population assignment method. PMID:22587023

  3. High sensitivity optical measurement of skin gloss

    PubMed Central

    Ezerskaia, Anna; Ras, Arno; Bloemen, Pascal; Pereira, Silvania F.; Urbach, H. Paul; Varghese, Babu

    2017-01-01

    We demonstrate a low-cost optical method for measuring the gloss properties with improved sensitivity in the low gloss regime, relevant for skin gloss properties. The gloss estimation method is based on, on the one hand, the slope of the intensity gradient in the transition regime between specular and diffuse reflection and on the other on the sum over the intensities of pixels above threshold, derived from a camera image obtained using unpolarized white light illumination. We demonstrate the improved sensitivity of the two proposed methods using Monte Carlo simulations and experiments performed on ISO gloss calibration standards with an optical prototype. The performance and linearity of the method was compared with different professional gloss measurement devices based on the ratio of specular to diffuse intensity. We demonstrate the feasibility for in-vivo skin gloss measurements by quantifying the temporal evolution of skin gloss after application of standard paraffin cream bases on skin. The presented method opens new possibilities in the fields of cosmetology and dermatopharmacology for measuring the skin gloss and resorption kinetics and the pharmacodynamics of various external agents. PMID:29026683

  4. High sensitivity optical measurement of skin gloss.

    PubMed

    Ezerskaia, Anna; Ras, Arno; Bloemen, Pascal; Pereira, Silvania F; Urbach, H Paul; Varghese, Babu

    2017-09-01

    We demonstrate a low-cost optical method for measuring the gloss properties with improved sensitivity in the low gloss regime, relevant for skin gloss properties. The gloss estimation method is based on, on the one hand, the slope of the intensity gradient in the transition regime between specular and diffuse reflection and on the other on the sum over the intensities of pixels above threshold, derived from a camera image obtained using unpolarized white light illumination. We demonstrate the improved sensitivity of the two proposed methods using Monte Carlo simulations and experiments performed on ISO gloss calibration standards with an optical prototype. The performance and linearity of the method was compared with different professional gloss measurement devices based on the ratio of specular to diffuse intensity. We demonstrate the feasibility for in-vivo skin gloss measurements by quantifying the temporal evolution of skin gloss after application of standard paraffin cream bases on skin. The presented method opens new possibilities in the fields of cosmetology and dermatopharmacology for measuring the skin gloss and resorption kinetics and the pharmacodynamics of various external agents.

  5. Developing a Method for Resolving NOx Emission Inventory Biases Using Discrete Kalman Filter Inversion, Direct Sensitivities, and Satellite-Based Columns

    EPA Science Inventory

    An inverse method was developed to integrate satellite observations of atmospheric pollutant column concentrations and direct sensitivities predicted by a regional air quality model in order to discern biases in the emissions of the pollutant precursors.

  6. Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview.

    PubMed

    Deshmukh, Rehan A; Joshi, Kopal; Bhand, Sunil; Roy, Utpal

    2016-12-01

    Waterborne diseases have emerged as global health problems and their rapid and sensitive detection in environmental water samples is of great importance. Bacterial identification and enumeration in water samples is significant as it helps to maintain safe drinking water for public consumption. Culture-based methods are laborious, time-consuming, and yield false-positive results, whereas viable but nonculturable (VBNCs) microorganisms cannot be recovered. Hence, numerous methods have been developed for rapid detection and quantification of waterborne pathogenic bacteria in water. These rapid methods can be classified into nucleic acid-based, immunology-based, and biosensor-based detection methods. This review summarizes the principle and current state of rapid methods for the monitoring and detection of waterborne bacterial pathogens. Rapid methods outlined are polymerase chain reaction (PCR), digital droplet PCR, real-time PCR, multiplex PCR, DNA microarray, Next-generation sequencing (pyrosequencing, Illumina technology and genomics), and fluorescence in situ hybridization that are categorized as nucleic acid-based methods. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence are classified into immunology-based methods. Optical, electrochemical, and mass-based biosensors are grouped into biosensor-based methods. Overall, these methods are sensitive, specific, time-effective, and important in prevention and diagnosis of waterborne bacterial diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts

    NASA Astrophysics Data System (ADS)

    Yan, Kun; Cheng, Gengdong

    2018-03-01

    For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.

  8. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications.

    PubMed

    Li, Jie; Guo, Hao; Liu, Jun; Tang, Jun; Ni, Haiqiao; Shi, Yunbo; Xue, Chenyang; Niu, Zhichuan; Zhang, Wendong; Li, Mifeng; Yu, Ying

    2013-05-08

    As a highly sensitive strain gauge element, GaAs-based resonant tunneling diode (RTD) has already been applied in microelectromechanical system (MEMS) sensors. Due to poor mechanical properties and high cost, GaAs-based material has been limited in applications as the substrate for MEMS. In this work, we present a method to fabricate the GaAs-based RTD on Si substrate. From the experimental results, it can be concluded that the piezoresistive coefficient achieved with this method reached 3.42 × 10-9 m2/N, which is about an order of magnitude higher than the Si-based semiconductor piezoresistors.

  9. Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo

    2017-08-01

    This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.

  10. A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase.

    PubMed

    Leng, Pei-Qiang; Zhao, Feng-Lan; Yin, Bin-Cheng; Ye, Bang-Ce

    2015-05-21

    We developed a novel colorimetric method for rapid detection of biogenic amines based on arylalkylamine N-acetyltransferase (aaNAT). The proposed method offers distinct advantages including simple handling, high speed, low cost, good sensitivity and selectivity.

  11. Sensitivity curves for searches for gravitational-wave backgrounds

    NASA Astrophysics Data System (ADS)

    Thrane, Eric; Romano, Joseph D.

    2013-12-01

    We propose a graphical representation of detector sensitivity curves for stochastic gravitational-wave backgrounds that takes into account the increase in sensitivity that comes from integrating over frequency in addition to integrating over time. This method is valid for backgrounds that have a power-law spectrum in the analysis band. We call these graphs “power-law integrated curves.” For simplicity, we consider cross-correlation searches for unpolarized and isotropic stochastic backgrounds using two or more detectors. We apply our method to construct power-law integrated sensitivity curves for second-generation ground-based detectors such as Advanced LIGO, space-based detectors such as LISA and the Big Bang Observer, and timing residuals from a pulsar timing array. The code used to produce these plots is available at https://dcc.ligo.org/LIGO-P1300115/public for researchers interested in constructing similar sensitivity curves.

  12. A Non-Intrusive Algorithm for Sensitivity Analysis of Chaotic Flow Simulations

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2017-01-01

    We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.

  13. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces.

    PubMed

    Jung, Sungmook; Kim, Ji Hoon; Kim, Jaemin; Choi, Suji; Lee, Jongsu; Park, Inhyuk; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2014-07-23

    A novel method to produce porous pressure-sensitive rubber is developed. For the controlled size distribution of embedded micropores, solution-based procedures using reverse micelles are adopted. The piezosensitivity of the pressure sensitive rubber is significantly increased by introducing micropores. Using this method, wearable human-machine interfaces are fabricated, which can be applied to the remote control of a robot. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Unlocking Sensitivity for Visibility-based Estimators of the 21 cm Reionization Power Spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfan Gerry; Liu, Adrian; Parsons, Aaron R.

    2018-01-01

    Radio interferometers designed to measure the cosmological 21 cm power spectrum require high sensitivity. Several modern low-frequency interferometers feature drift-scan antennas placed on a regular grid to maximize the number of instantaneously coherent (redundant) measurements. However, even for such maximum-redundancy arrays, significant sensitivity comes through partial coherence between baselines. Current visibility-based power-spectrum pipelines, though shown to ease control of systematics, lack the ability to make use of this partial redundancy. We introduce a method to leverage partial redundancy in such power-spectrum pipelines for drift-scan arrays. Our method cross-multiplies baseline pairs at a time lag and quantifies the sensitivity contributions of each pair of baselines. Using the configurations and beams of the 128-element Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-128) and staged deployments of the Hydrogen Epoch of Reionization Array, we illustrate how our method applies to different arrays and predict the sensitivity improvements associated with pairing partially coherent baselines. As the number of antennas increases, we find partial redundancy to be of increasing importance in unlocking the full sensitivity of upcoming arrays.

  15. Rapid detection of pandemic influenza in the presence of seasonal influenza

    PubMed Central

    2010-01-01

    Background Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance) for influenza-like illness (ILI) in Scotland. Methods We develop an algorithm based on the weekly case ratio (WCR) of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data. Results We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum) and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT) of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5%) and 99% specificity, the WCR and threshold methods, respectively, have MDT of 5 and 6 weeks with both having sensitivity close to 100% while the Mov-Avg Cusum method can only manage sensitivity of 77% with MDT of 6 weeks. However, the WCR and Mov-Avg Cusum methods outperform the ILI threshold method by 1 week in retrospective detection of the 2009 pandemic in Scotland. Conclusions While computationally and statistically simple to implement, the WCR algorithm is capable of raising alarms, rapidly and sensitively, for influenza pandemics against a background of seasonal influenza. Although the algorithm was developed using the SERVIS data, it has the capacity to be used at other geographic scales and for different disease systems where buying some early extra time is critical. PMID:21106071

  16. Evaluation of the performance of the reduced local lymph node assay for skin sensitization testing.

    PubMed

    Ezendam, Janine; Muller, Andre; Hakkert, Betty C; van Loveren, Henk

    2013-06-01

    The local lymph node assay (LLNA) is the preferred method for classification of sensitizers within REACH. To reduce the number of mice for the identification of sensitizers the reduced LLNA was proposed, which uses only the high dose group of the LLNA. To evaluate the performance of this method for classification, LLNA data from REACH registrations were used and classification based on all dose groups was compared to classification based on the high dose group. We confirmed previous examinations of the reduced LLNA showing that this method is less sensitive compared to the LLNA. The reduced LLNA misclassified 3.3% of the sensitizers identified in the LLNA and misclassification occurred in all potency classes and that there was no clear association with irritant properties. It is therefore not possible to predict beforehand which substances might be misclassified. Another limitation of the reduced LLNA is that skin sensitizing potency cannot be assessed. For these reasons, it is not recommended to use the reduced LLNA as a stand-alone assay for skin sensitization testing within REACH. In the future, the reduced LLNA might be of added value in a weight of evidence approach to confirm negative results obtained with non-animal approaches. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Lazzara, David; Haimes, Robert

    2010-01-01

    The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.

  18. An integrated molecular docking and rescoring method for predicting the sensitivity spectrum of various serine hydrolases to organophosphorus pesticides.

    PubMed

    Yang, Ling-Ling; Yang, Xiao; Li, Guo-Bo; Fan, Kai-Ge; Yin, Peng-Fei; Chen, Xiang-Gui

    2016-04-01

    The enzymatic chemistry method is currently the most widely used method for the rapid detection of organophosphorus (OP) pesticides, but the enzymes used, such as cholinesterases, lack sufficient sensitivity to detect low concentrations of OP pesticides present in given samples. Serine hydrolase is considered an ideal enzyme source in seeking high-sensitivity enzymes used for OP pesticide detection. However, it is difficult to systematically evaluate sensitivities of various serine hydrolases to OP pesticides by in vitro experiments. This study aimed to establish an in silico method to predict the sensitivity spectrum of various serine hydrolases to OP pesticides. A serine hydrolase database containing 219 representative serine hydrolases was constructed. Based on this database, an integrated molecular docking and rescoring method was established, in which the AutoDock Vina program was used to produce the binding poses of OP pesticides to various serine hydrolases and the ID-Score method developed recently by us was adopted as a rescoring method to predict their binding affinities. In retrospective case studies, this method showed good performance in predicting the sensitivities of known serine hydrolases to two OP pesticides: paraoxon and diisopropyl fluorophosphate. The sensitivity spectrum of the 219 collected serine hydrolases to 37 commonly used OP pesticides was finally obtained using this method. Overall, this study presented a promising in silico tool to predict the sensitivity spectrum of various serine hydrolases to OP pesticides, which will help in finding high-sensitivity serine hydrolases for OP pesticide detection. © 2015 Society of Chemical Industry.

  19. Assessment of statistic analysis in non-radioisotopic local lymph node assay (non-RI-LLNA) with alpha-hexylcinnamic aldehyde as an example.

    PubMed

    Takeyoshi, Masahiro; Sawaki, Masakuni; Yamasaki, Kanji; Kimber, Ian

    2003-09-30

    The murine local lymph node assay (LLNA) is used for the identification of chemicals that have the potential to cause skin sensitization. However, it requires specific facility and handling procedures to accommodate a radioisotopic (RI) endpoint. We have developed non-radioisotopic (non-RI) endpoint of LLNA based on BrdU incorporation to avoid a use of RI. Although this alternative method appears viable in principle, it is somewhat less sensitive than the standard assay. In this study, we report investigations to determine the use of statistical analysis to improve the sensitivity of a non-RI LLNA procedure with alpha-hexylcinnamic aldehyde (HCA) in two separate experiments. Consequently, the alternative non-RI method required HCA concentrations of greater than 25% to elicit a positive response based on the criterion for classification as a skin sensitizer in the standard LLNA. Nevertheless, dose responses to HCA in the alternative method were consistent in both experiments and we examined whether the use of an endpoint based upon the statistical significance of induced changes in LNC turnover, rather than an SI of 3 or greater, might provide for additional sensitivity. The results reported here demonstrate that with HCA at least significant responses were, in each of two experiments, recorded following exposure of mice to 25% of HCA. These data suggest that this approach may be more satisfactory-at least when BrdU incorporation is measured. However, this modification of the LLNA is rather less sensitive than the standard method if employing statistical endpoint. Taken together the data reported here suggest that a modified LLNA in which BrdU is used in place of radioisotope incorporation shows some promise, but that in its present form, even with the use of a statistical endpoint, lacks some of the sensitivity of the standard method. The challenge is to develop strategies for further refinement of this approach.

  20. Sobol‧ sensitivity analysis of NAPL-contaminated aquifer remediation process based on multiple surrogates

    NASA Astrophysics Data System (ADS)

    Luo, Jiannan; Lu, Wenxi

    2014-06-01

    Sobol‧ sensitivity analyses based on different surrogates were performed on a trichloroethylene (TCE)-contaminated aquifer to assess the sensitivity of the design variables of remediation duration, surfactant concentration and injection rates at four wells to remediation efficiency First, the surrogate models of a multi-phase flow simulation model were constructed by applying radial basis function artificial neural network (RBFANN) and Kriging methods, and the two models were then compared. Based on the developed surrogate models, the Sobol‧ method was used to calculate the sensitivity indices of the design variables which affect the remediation efficiency. The coefficient of determination (R2) and the mean square error (MSE) of these two surrogate models demonstrated that both models had acceptable approximation accuracy, furthermore, the approximation accuracy of the Kriging model was slightly better than that of the RBFANN model. Sobol‧ sensitivity analysis results demonstrated that the remediation duration was the most important variable influencing remediation efficiency, followed by rates of injection at wells 1 and 3, while rates of injection at wells 2 and 4 and the surfactant concentration had negligible influence on remediation efficiency. In addition, high-order sensitivity indices were all smaller than 0.01, which indicates that interaction effects of these six factors were practically insignificant. The proposed Sobol‧ sensitivity analysis based on surrogate is an effective tool for calculating sensitivity indices, because it shows the relative contribution of the design variables (individuals and interactions) to the output performance variability with a limited number of runs of a computationally expensive simulation model. The sensitivity analysis results lay a foundation for the optimal groundwater remediation process optimization.

  1. Global Sensitivity Analysis for Process Identification under Model Uncertainty

    NASA Astrophysics Data System (ADS)

    Ye, M.; Dai, H.; Walker, A. P.; Shi, L.; Yang, J.

    2015-12-01

    The environmental system consists of various physical, chemical, and biological processes, and environmental models are always built to simulate these processes and their interactions. For model building, improvement, and validation, it is necessary to identify important processes so that limited resources can be used to better characterize the processes. While global sensitivity analysis has been widely used to identify important processes, the process identification is always based on deterministic process conceptualization that uses a single model for representing a process. However, environmental systems are complex, and it happens often that a single process may be simulated by multiple alternative models. Ignoring the model uncertainty in process identification may lead to biased identification in that identified important processes may not be so in the real world. This study addresses this problem by developing a new method of global sensitivity analysis for process identification. The new method is based on the concept of Sobol sensitivity analysis and model averaging. Similar to the Sobol sensitivity analysis to identify important parameters, our new method evaluates variance change when a process is fixed at its different conceptualizations. The variance considers both parametric and model uncertainty using the method of model averaging. The method is demonstrated using a synthetic study of groundwater modeling that considers recharge process and parameterization process. Each process has two alternative models. Important processes of groundwater flow and transport are evaluated using our new method. The method is mathematically general, and can be applied to a wide range of environmental problems.

  2. Projection-based estimation and nonuniformity correction of sensitivity profiles in phased-array surface coils.

    PubMed

    Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook

    2007-03-01

    To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.

  3. Shape optimization using a NURBS-based interface-enriched generalized FEM

    DOE PAGES

    Najafi, Ahmad R.; Safdari, Masoud; Tortorelli, Daniel A.; ...

    2016-11-26

    This study presents a gradient-based shape optimization over a fixed mesh using a non-uniform rational B-splines-based interface-enriched generalized finite element method, applicable to multi-material structures. In the proposed method, non-uniform rational B-splines are used to parameterize the design geometry precisely and compactly by a small number of design variables. An analytical shape sensitivity analysis is developed to compute derivatives of the objective and constraint functions with respect to the design variables. Subtle but important new terms involve the sensitivity of shape functions and their spatial derivatives. As a result, verification and illustrative problems are solved to demonstrate the precision andmore » capability of the method.« less

  4. A sediment graph model based on SCS-CN method

    NASA Astrophysics Data System (ADS)

    Singh, P. K.; Bhunya, P. K.; Mishra, S. K.; Chaube, U. C.

    2008-01-01

    SummaryThis paper proposes new conceptual sediment graph models based on coupling of popular and extensively used methods, viz., Nash model based instantaneous unit sediment graph (IUSG), soil conservation service curve number (SCS-CN) method, and Power law. These models vary in their complexity and this paper tests their performance using data of the Nagwan watershed (area = 92.46 km 2) (India). The sensitivity of total sediment yield and peak sediment flow rate computations to model parameterisation is analysed. The exponent of the Power law, β, is more sensitive than other model parameters. The models are found to have substantial potential for computing sediment graphs (temporal sediment flow rate distribution) as well as total sediment yield.

  5. Modified graphene oxide sensors for ultra-sensitive detection of nitrate ions in water.

    PubMed

    Ren, Wen; Mura, Stefania; Irudayaraj, Joseph M K

    2015-10-01

    Nitrate ions is a very common contaminant in drinking water and has a significant impact on the environment, necessitating routine monitoring. Due to its chemical and physical properties, it is hard to directly detect nitrate ions with high sensitivity in a simple and inexpensive manner. Herein with amino group modified graphene oxide (GO) as a sensing element, we show a direct and ultra-sensitive method to detect nitrate ions, at a lowest detected concentration of 5 nM in river water samples, much lower than the reported methods based on absorption spectroscopy. Furthermore, unlike the reported strategies based on absorption spectroscopy wherein the nitrate concentration is determined by monitoring an increase in aggregation of gold nanoparticles (GNPs), our method evaluates the concentration of nitrate ions based on reduction in aggregation of GNPs for monitoring in real samples. To improve sensitivity, several optimizations were performed, including the assessment of the amount of modified GO required, concentration of GNPs and incubation time. The detection methodology was characterized by zeta potential, TEM and SEM. Our results indicate that an enrichment of modified GO with nitrate ions contributed to excellent sensitivity and the entire detection procedure could be completed within 75 min with only 20 μl of sample. This simple and rapid methodology was applied to monitor nitrate ions in real samples with excellent sensitivity and minimum pretreatment. The proposed approach paves the way for a novel means to detect anions in real samples and highlights the potential of GO based detection strategy for water quality monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Combining isothermal rolling circle amplification and electrochemiluminescence for highly sensitive point mutation detection

    NASA Astrophysics Data System (ADS)

    Su, Qiang; Zhou, Xiaoming

    2008-12-01

    Many pathogenic and genetic diseases are associated with changes in the sequence of particular genes. We describe here a rapid and highly efficient assay for the detection of point mutation. This method is a combination of isothermal rolling circle amplification (RCA) and high sensitive electrochemluminescence (ECL) detection. In the design, a circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase using a biotinylated primer. The elongation products were hybridized with tris (bipyridine) ruthenium (TBR)-tagged probes and detected in a magnetic bead based ECL platform, indicating the mutation occurrence. P53 was chosen as a model for the identification of this method. The method allowed sensitive determination of the P53 mutation from wild-type and mutant samples. The main advantage of RCA-ECL is that it can be performed under isothermal conditions and avoids the generation of false-positive results. Furthermore, ECL provides a faster, more sensitive, and economical option to currently available electrophoresis-based methods.

  7. Pressure-Sensitive Paint: Effect of Substrate

    PubMed Central

    Quinn, Mark Kenneth; Yang, Leichao; Kontis, Konstantinos

    2011-01-01

    There are numerous ways in which pressure-sensitive paint can be applied to a surface. The choice of substrate and application method can greatly affect the results obtained. The current study examines the different methods of applying pressure-sensitive paint to a surface. One polymer-based and two porous substrates (anodized aluminum and thin-layer chromatography plates) are investigated and compared for luminescent output, pressure sensitivity, temperature sensitivity and photodegradation. Two luminophores [tris-Bathophenanthroline Ruthenium(II) Perchlorate and Platinum-tetrakis (pentafluorophenyl) Porphyrin] will also be compared in all three of the substrates. The results show the applicability of the different substrates and luminophores to different testing environments. PMID:22247685

  8. Effective classification of the prevalence of Schistosoma mansoni.

    PubMed

    Mitchell, Shira A; Pagano, Marcello

    2012-12-01

    To present an effective classification method based on the prevalence of Schistosoma mansoni in the community. We created decision rules (defined by cut-offs for number of positive slides), which account for imperfect sensitivity, both with a simple adjustment of fixed sensitivity and with a more complex adjustment of changing sensitivity with prevalence. To reduce screening costs while maintaining accuracy, we propose a pooled classification method. To estimate sensitivity, we use the De Vlas model for worm and egg distributions. We compare the proposed method with the standard method to investigate differences in efficiency, measured by number of slides read, and accuracy, measured by probability of correct classification. Modelling varying sensitivity lowers the lower cut-off more significantly than the upper cut-off, correctly classifying regions as moderate rather than lower, thus receiving life-saving treatment. The classification method goes directly to classification on the basis of positive pools, avoiding having to know sensitivity to estimate prevalence. For model parameter values describing worm and egg distributions among children, the pooled method with 25 slides achieves an expected 89.9% probability of correct classification, whereas the standard method with 50 slides achieves 88.7%. Among children, it is more efficient and more accurate to use the pooled method for classification of S. mansoni prevalence than the current standard method. © 2012 Blackwell Publishing Ltd.

  9. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B

    NASA Astrophysics Data System (ADS)

    Hwang, Joonki; Lee, Sangyeop; Choo, Jaebum

    2016-06-01

    A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner.A novel surface-enhanced Raman scattering (SERS)-based lateral flow immunoassay (LFA) biosensor was developed to resolve problems associated with conventional LFA strips (e.g., limits in quantitative analysis and low sensitivity). In our SERS-based biosensor, Raman reporter-labeled hollow gold nanospheres (HGNs) were used as SERS detection probes instead of gold nanoparticles. With the proposed SERS-based LFA strip, the presence of a target antigen can be identified through a colour change in the test zone. Furthermore, highly sensitive quantitative evaluation is possible by measuring SERS signals from the test zone. To verify the feasibility of the SERS-based LFA strip platform, an immunoassay of staphylococcal enterotoxin B (SEB) was performed as a model reaction. The limit of detection (LOD) for SEB, as determined with the SERS-based LFA strip, was estimated to be 0.001 ng mL-1. This value is approximately three orders of magnitude more sensitive than that achieved with the corresponding ELISA-based method. The proposed SERS-based LFA strip sensor shows significant potential for the rapid and sensitive detection of target markers in a simplified manner. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07243c

  10. Quantitative Evaluation of Aged AISI 316L Stainless Steel Sensitization to Intergranular Corrosion: Comparison Between Microstructural Electrochemical and Analytical Methods

    NASA Astrophysics Data System (ADS)

    Sidhom, H.; Amadou, T.; Sahlaoui, H.; Braham, C.

    2007-06-01

    The evaluation of the degree of sensitization (DOS) to intergranular corrosion (IGC) of a commercial AISI 316L austenitic stainless steel aged at temperatures ranging from 550 °C to 800 °C during 100 to 80,000 hours was carried out using three different assessment methods. (1) The microstructural method coupled with the Strauss standard test (ASTM A262). This method establishes the kinetics of the precipitation phenomenon under different aging conditions, by transmission electronic microscope (TEM) examination of thin foils and electron diffraction. The subsequent chromium-depleted zones are characterized by X-ray microanalysis using scanning transmission electronic microscope (STEM). The superimposition of microstructural time-temperature-precipitation (TTP) and ASTM A262 time-temperature-sensitization (TTS) diagrams provides the relationship between aged microstructure and IGC. Moreover, by considering the chromium-depleted zone characteristics, sensitization and desensitization criteria could be established. (2) The electrochemical method involving the double loop-electrochemical potentiokinetic reactivation (DL-EPR) test. The operating conditions of this test were initially optimized using the experimental design method on the bases of the reliability, the selectivity, and the reproducibility of test responses for both annealed and sensitized steels. The TTS diagram of the AISI 316L stainless steel was established using this method. This diagram offers a quantitative assessment of the DOS and a possibility to appreciate the time-temperature equivalence of the IGC sensitization and desensitization. (3) The analytical method based on the chromium diffusion models. Using the IGC sensitization and desensitization criteria established by the microstructural method, numerical solving of the chromium diffusion equations leads to a calculated AISI 316L TTS diagram. Comparison of these three methods gives a clear advantage to the nondestructive DL-EPR test when it is used with its optimized operating conditions. This quantitative method is simple to perform; it is fast, reliable, economical, and presents the best ability to detect the lowest DOS to IGC. For these reasons, this method can be considered as a serious candidate for IGC checking of stainless steel components of industrial plants.

  11. Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine.

    PubMed

    Jiang, Hu; Li, Xiangmin; Xiong, Ying; Pei, Ke; Nie, Lijuan; Xiong, Yonghua

    2017-02-28

    A silver nanoparticle (AgNP)-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA) was developed for sensitive detection of ochratoxin A (OTA) in grape juice and wine samples in the present study. The Ru(phen) 3 2 + -doped silica nanoparticles (RuNPs) were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs.

  12. Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine

    PubMed Central

    Jiang, Hu; Li, Xiangmin; Xiong, Ying; Pei, Ke; Nie, Lijuan; Xiong, Yonghua

    2017-01-01

    A silver nanoparticle (AgNP)-based fluorescence-quenching lateral flow immunoassay with competitive format (cLFIA) was developed for sensitive detection of ochratoxin A (OTA) in grape juice and wine samples in the present study. The Ru(phen)32+-doped silica nanoparticles (RuNPs) were sprayed on the test and control line zones as background fluorescence signals. The AgNPs were designed as the fluorescence quenchers of RuNPs because they can block the exciting light transferring to the RuNP molecules. The proposed method exhibited high sensitivity for OTA detection, with a detection limit of 0.06 µg/L under optimized conditions. The method also exhibited a good linear range for OTA quantitative analysis from 0.08 µg/L to 5.0 µg/L. The reliability of the fluorescence-quenching cLFIA method was evaluated through analysis of the OTA-spiked red grape wine and juice samples. The average recoveries ranged from 88.0% to 110.0% in red grape wine and from 92.0% to 110.0% in grape juice. Meanwhile, less than a 10% coefficient variation indicated an acceptable precision of the cLFIA method. In summary, the new AgNP-based fluorescence-quenching cLFIA is a simple, rapid, sensitive, and accurate method for quantitative detection of OTA in grape juice and wine or other foodstuffs. PMID:28264472

  13. A novel sensitivity-based method for damage detection of structures under unknown periodic excitations

    NASA Astrophysics Data System (ADS)

    Naseralavi, S. S.; Salajegheh, E.; Fadaee, M. J.; Salajegheh, J.

    2014-06-01

    This paper presents a technique for damage detection in structures under unknown periodic excitations using the transient displacement response. The method is capable of identifying the damage parameters without finding the input excitations. We first define the concept of displacement space as a linear space in which each point represents displacements of structure under an excitation and initial condition. Roughly speaking, the method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering this novel geometrical viewpoint, an equation called kernel parallelization equation (KPE) is derived for damage detection under unknown periodic excitations and a sensitivity-based algorithm for solving KPE is proposed accordingly. The method is evaluated via three case studies under periodic excitations, which confirm the efficiency of the proposed method.

  14. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    PubMed Central

    Nguyen, Lich Quang; Phan, Pho Quoc; Duong, Huyen Ngoc; Nguyen, Chien Duc; Nguyen, Lam Huu

    2013-01-01

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH3, compared with alcohol and LPG. PMID:23364198

  15. An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating

    NASA Astrophysics Data System (ADS)

    Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze

    2017-12-01

    This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.

  16. An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating

    NASA Astrophysics Data System (ADS)

    Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze

    2018-02-01

    This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.

  17. Lessons learned from participating in D3R 2016 Grand Challenge 2: compounds targeting the farnesoid X receptor

    NASA Astrophysics Data System (ADS)

    Duan, Rui; Xu, Xianjin; Zou, Xiaoqin

    2018-01-01

    D3R 2016 Grand Challenge 2 focused on predictions of binding modes and affinities for 102 compounds against the farnesoid X receptor (FXR). In this challenge, two distinct methods, a docking-based method and a template-based method, were employed by our team for the binding mode prediction. For the new template-based method, 3D ligand similarities were calculated for each query compound against the ligands in the co-crystal structures of FXR available in Protein Data Bank. The binding mode was predicted based on the co-crystal protein structure containing the ligand with the best ligand similarity score against the query compound. For the FXR dataset, the template-based method achieved a better performance than the docking-based method on the binding mode prediction. For the binding affinity prediction, an in-house knowledge-based scoring function ITScore2 and MM/PBSA approach were employed. Good performance was achieved for MM/PBSA, whereas the performance of ITScore2 was sensitive to ligand composition, e.g. the percentage of carbon atoms in the compounds. The sensitivity to ligand composition could be a clue for the further improvement of our knowledge-based scoring function.

  18. Heteroleptic Cu-Based Sensitizers in Photoredox Catalysis.

    PubMed

    Hernandez-Perez, Augusto C; Collins, Shawn K

    2016-08-16

    Photochemistry is an important tool in organic synthesis that has largely been underdeveloped in comparison to thermal activation. Recent advances in technology have ushered in a new era in synthetic photochemistry. The emergence of photocatalysis, which exploits sensitizers for the absorption of visible light, has provided organic chemists with a new route to the generation of radical intermediates for synthesis. Of particular interest is the development of Cu-based complexes for photocatalysis, which possess variable photophysical properties and can display complementary reactivity with common photocatalysts based on heavier transition metals such as Ru or Ir. Heteroleptic Cu-based sensitizers incorporating the presence of both a bisphosphine and diamine ligand bound to the copper center are a promising class of photocatalysts. Their synthesis is a single step, often involving only precipitation for purification. In addition, it was shown that the sensitizers could be formed in situ in the reaction mixture, simplifying the experimental setup. The heteroleptic nature of the Cu-complexes also affords opportunities to fine-tune properties. For example, structurally rigidified bisphosphines reinforce geometries about the metal center to extend the excited state lifetime. Variation of the diamine ligand can influence the excited state oxidation/reduction potentials and optical absorbances. The heteroleptic complex Cu(XantPhos)(neo)BF4 has demonstrated utility in the synthesis of helical polyaromatic carbocycles. The synthesis of [5]helicene, a relatively simple member of the helicene family, was improved from the existing UV-light mediated method by eliminating the formation of unwanted byproducts. In addition, the Cu-based sensitizers also promoted the formation of novel pyrene/helicene hybrids for materials science applications. The synthetic methods that were developed were augmented when combined with continuous flow technology. The irradiation of reaction mixtures as they are pumped through small diameter tubing provides a more homogeneous and increased photon flux compared with irradiation in round-bottom flasks or other batch reactors. The value of continuous flow methods is also evident when examining UV-light photochemistry, where the simple and safe experimental set-ups allow for further exploration of high energy light for synthetic purposes. The synthesis of functionalized complex carbazoles was also studied using both a visible light method exploiting a heteroleptic copper-based sensitizer and a UV-light mediated method. It was demonstrated that both the photocatalysis methods and UV light photochemistries were rendered more user-friendly, safe, and reproducible when using continuous flow methods. Interestingly, the two photochemical methods often afford contrasting selectivities as a result of their inherently different mechanisms. It can be expected that the complementarity of the various photochemical methods will be an asset to synthetic chemists as the field continues to evolve.

  19. Sensitivity Enhancement of FBG-Based Strain Sensor.

    PubMed

    Li, Ruiya; Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Li, Tianliang; Mao, Jian

    2018-05-17

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments.

  20. Sensitivity Enhancement of FBG-Based Strain Sensor

    PubMed Central

    Chen, Yiyang; Tan, Yuegang; Zhou, Zude; Mao, Jian

    2018-01-01

    A novel fiber Bragg grating (FBG)-based strain sensor with a high-sensitivity is presented in this paper. The proposed FBG-based strain sensor enhances sensitivity by pasting the FBG on a substrate with a lever structure. This typical mechanical configuration mechanically amplifies the strain of the FBG to enhance overall sensitivity. As this mechanical configuration has a high stiffness, the proposed sensor can achieve a high resonant frequency and a wide dynamic working range. The sensing principle is presented, and the corresponding theoretical model is derived and validated. Experimental results demonstrate that the developed FBG-based strain sensor achieves an enhanced strain sensitivity of 6.2 pm/με, which is consistent with the theoretical analysis result. The strain sensitivity of the developed sensor is 5.2 times of the strain sensitivity of a bare fiber Bragg grating strain sensor. The dynamic characteristics of this sensor are investigated through the finite element method (FEM) and experimental tests. The developed sensor exhibits an excellent strain-sensitivity-enhancing property in a wide frequency range. The proposed high-sensitivity FBG-based strain sensor can be used for small-amplitude micro-strain measurement in harsh industrial environments. PMID:29772826

  1. HCPCF-based in-line fiber Fabry-Perot refractometer and high sensitivity signal processing method

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Geng, Xiangyi; Song, Furong

    2017-12-01

    An in-line fiber Fabry-Perot interferometer (FPI) based on the hollow-core photonic crystal fiber (HCPCF) for refractive index (RI) measurement is proposed in this paper. The FPI is formed by splicing both ends of a short section of the HCPCF to single mode fibers (SMFs) and cleaving the SMF pigtail to a proper length. The RI response of the sensor is analyzed theoretically and demonstrated experimentally. The results show that the FPI sensor has linear response to external RI and good repeatability. The sensitivity calculated from the maximum fringe contrast is -136 dB/RIU. A new spectrum differential integration (SDI) method for signal processing is also presented in this study. In this method, the RI is obtained from the integrated intensity of the absolute difference between the interference spectrum and its smoothed spectrum. The results show that the sensitivity obtained from the integrated intensity is about -1.34×105 dB/RIU. Compared with the maximum fringe contrast method, the new SDI method can provide the higher sensitivity, better linearity, improved reliability, and accuracy, and it's also convenient for automatic and fast signal processing in real-time monitoring of RI.

  2. Two-channel highly sensitive sensors based on 4 × 4 multimode interference couplers

    NASA Astrophysics Data System (ADS)

    Le, Trung-Thanh

    2017-12-01

    We propose a new kind of microring resonators (MRR) based on 4 × 4 multimode interference (MMI) couplers for multichannel and highly sensitive chemical and biological sensors. The proposed sensor structure has advantages of compactness and high sensitivity compared with the reported sensing structures. By using the transfer matrix method (TMM) and numerical simulations, the designs of the sensor based on silicon waveguides are optimized and demonstrated in detail. We apply our structure to detect glucose and ethanol concentrations simultaneously. A high sensitivity of 9000 nm/RIU, detection limit of 2 × 10‒4 for glucose sensing and sensitivity of 6000 nm/RIU, detection limit of 1.3 × 10‒5 for ethanol sensing are achieved.

  3. Genetics-based methods for detection of Salmonella spp. in foods.

    PubMed

    Mozola, Mark A

    2006-01-01

    Genetic methods are now at the forefront of foodborne pathogen testing. The sensitivity, specificity, and inclusivity advantages offered by deoxyribonucleic acid (DNA) probe technology have driven an intense effort in methods development over the past 20 years. DNA probe-based methods for Salmonella spp. and other pathogens have progressed from time-consuming procedures involving the use of radioisotopes to simple, high throughput, automated assays. The analytical sensitivity of nucleic acid amplification technology has facilitated a reduction in analysis time by allowing enriched samples to be tested for previously undetectable quantities of analyte. This article will trace the evolution of the development of genetic methods for detection of Salmonella in foods, review the basic assay formats and their advantages and limitations, and discuss method performance characteristics and considerations for selection of methods.

  4. A branch-migration based fluorescent probe for straightforward, sensitive and specific discrimination of DNA mutations

    PubMed Central

    Xiao, Xianjin; Wu, Tongbo; Xu, Lei; Chen, Wei

    2017-01-01

    Abstract Genetic mutations are important biomarkers for cancer diagnostics and surveillance. Preferably, the methods for mutation detection should be straightforward, highly specific and sensitive to low-level mutations within various sequence contexts, fast and applicable at room-temperature. Though some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a branch-migration based fluorescent probe (BM probe) which is able to identify the presence of known or unknown single-base variations at abundances down to 0.3%-1% within 5 min, even in highly GC-rich sequence regions. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 89–311 by measurement of their respective branch-migration products via polymerase elongation reactions. The BM probe not only enabled sensitive detection of two types of EGFR-associated point mutations located in GC-rich regions, but also successfully identified the BRAF V600E mutation in the serum from a thyroid cancer patient which could not be detected by the conventional sequencing method. The new method would be an ideal choice for high-throughput in vitro diagnostics and precise clinical treatment. PMID:28201758

  5. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers

    PubMed Central

    Steenkeste, Nicolas; Incardona, Sandra; Chy, Sophy; Duval, Linda; Ekala, Marie-Thérèse; Lim, Pharath; Hewitt, Sean; Sochantha, Tho; Socheat, Doung; Rogier, Christophe; Mercereau-Puijalon, Odile; Fandeur, Thierry; Ariey, Frédéric

    2009-01-01

    Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the molecular methods. Dot18S and CYTB, the new methods reported herein are highly sensitive, allow parasite DNA extraction as well as genus- and species-specific diagnosis of several hundreds of samples, and are amenable to high-throughput scaling up for larger sample sizes. Such methods provide novel information on malaria prevalence and epidemiology and are suited for active malaria detection. The usefulness of such sensitive malaria diagnosis tools, especially in low endemic areas where eradication plans are now on-going, is discussed in this paper. PMID:19402894

  6. Self-homodyne free-space optical communication system based on orthogonally polarized binary phase shift keying.

    PubMed

    Cai, Guangyu; Sun, Jianfeng; Li, Guangyuan; Zhang, Guo; Xu, Mengmeng; Zhang, Bo; Yue, Chaolei; Liu, Liren

    2016-06-10

    A self-homodyne laser communication system based on orthogonally polarized binary phase shift keying is demonstrated. The working principles of this method and the structure of a transceiver are described using theoretical calculations. Moreover, the signal-to-noise ratio, sensitivity, and bit error rate are analyzed for the amplifier-noise-limited case. The reported experiment validates the feasibility of the proposed method and demonstrates its advantageous sensitivity as a self-homodyne communication system.

  7. Comparison of methods for the detection of coliphages in recreational water at two California, United States beaches.

    PubMed

    Rodríguez, Roberto A; Love, David C; Stewart, Jill R; Tajuba, Julianne; Knee, Jacqueline; Dickerson, Jerold W; Webster, Laura F; Sobsey, Mark D

    2012-04-01

    Methods for detection of two fecal indicator viruses, F+ and somatic coliphages, were evaluated for application to recreational marine water. Marine water samples were collected during the summer of 2007 in Southern California, United States from transects along Avalon Beach (n=186 samples) and Doheny Beach (n=101 samples). Coliphage detection methods included EPA method 1601 - two-step enrichment (ENR), EPA method 1602 - single agar layer (SAL), and variations of ENR. Variations included comparison of two incubation times (overnight and 5-h incubation) and two final detection steps (lysis zone assay and a rapid latex agglutination assay). A greater number of samples were positive for somatic and F+ coliphages by ENR than by SAL (p<0.01). The standard ENR with overnight incubation and detection by lysis zone assay was the most sensitive method for the detection of F+ and somatic coliphages from marine water, although the method takes up to three days to obtain results. A rapid 5-h enrichment version of ENR also performed well, with more positive samples than SAL, and could be performed in roughly 24h. Latex agglutination-based detection methods require the least amount of time to perform, although the sensitivity was less than lysis zone-based detection methods. Rapid culture-based enrichment of coliphages in marine water may be possible by further optimizing culture-based methods for saline water conditions to generate higher viral titers than currently available, as well as increasing the sensitivity of latex agglutination detection methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications

    PubMed Central

    2013-01-01

    As a highly sensitive strain gauge element, GaAs-based resonant tunneling diode (RTD) has already been applied in microelectromechanical system (MEMS) sensors. Due to poor mechanical properties and high cost, GaAs-based material has been limited in applications as the substrate for MEMS. In this work, we present a method to fabricate the GaAs-based RTD on Si substrate. From the experimental results, it can be concluded that the piezoresistive coefficient achieved with this method reached 3.42 × 10−9 m2/N, which is about an order of magnitude higher than the Si-based semiconductor piezoresistors. PMID:23651496

  9. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto

    2018-06-04

    In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.

  10. Dataset of surface plasmon resonance based on photonic crystal fiber for chemical sensing applications.

    PubMed

    Khalek, Md Abdul; Chakma, Sujan; Paul, Bikash Kumar; Ahmed, Kawsar

    2018-08-01

    In this research work a perfectly circular lattice Photonic Crystal Fiber (PCF) based surface Plasmon resonance (SPR) based sensor has been proposed. The investigation process has been successfully carried out using finite element method (FEM) based commercial available software package COMSOL Multiphysics version 4.2. The whole investigation module covers the wider optical spectrum ranging from 0.48 µm to 1.10 µm. Using the wavelength interrogation method the proposed model exposed maximum sensitivity of 9000 nm/RIU(Refractive Index Unit) and using the amplitude interrogation method it obtained maximum sensitivity of 318 RIU -1 . Moreover the maximum sensor resolution of 1.11×10 -5 in the sensing ranges between 1.34 and 1.37. Based on the suggested sensor model may provide great impact in biological area such as bio-imaging.

  11. Evaluation of four novel isothermal amplification assays towards simple and rapid genotyping of chloroquine resistant Plasmodium falciparum.

    PubMed

    Chahar, Madhvi; Anvikar, Anup; Dixit, Rajnikant; Valecha, Neena

    2018-07-01

    Loop mediated isothermal amplification (LAMP) assay is sensitive, prompt, high throughput and field deployable technique for nucleic acid amplification under isothermal conditions. In this study, we have developed and optimized four different visualization methods of loop-mediated isothermal amplification (LAMP) assay to detect Pfcrt K76T mutants of P. falciparum and compared their important features for one-pot in-field applications. Even though all the four tested LAMP methods could successfully detect K76T mutants of P. falciparum, however considering the time, safety, sensitivity, cost and simplicity, the malachite green and HNB based methods were found more efficient. Among four different visual dyes uses to detect LAMP products accurately, hydroxynaphthol blue and malachite green could produce long stable color change and brightness in a close tube-based approach to prevent cross-contamination risk. Our results indicated that the LAMP offers an interesting novel and convenient best method for the rapid, sensitive, cost-effective, and fairly user friendly tool for detection of K76T mutants of P. falciparum and therefore presents an alternative to PCR-based assays. Based on our comparative analysis, better field based LAMP visualization method can be chosen easily for the monitoring of other important drug targets (Kelch13 propeller region). Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Solid-phase synthesis of oligo-2-pyrimidinone-2'-deoxyribonucleotides and oligo-2-pyrimidinone-2'-deoxyriboside methylphosphonates.

    PubMed Central

    Zhou, Y; Ts'o, P O

    1996-01-01

    A synthetic method was developed for the synthesis of oligodeoxyribonucleotides and oligodeoxyribonucleoside methylphosphonates comprised exclusively of the fluorescent 2-pyrimidinone base for the first time. The method utilized the solid-phase 2-cyanoethylphosphoramidite and methylphosphonamidite chemistry for internucleotide couplings and a baselabile oxalyl linkage to anchor the oligomers onto the CPG support. Cleavage of the oligomers from the support was effected by a short treatment of the support with 5% ammonium hydroxide in methanol at room temperature, without any degradation of the base-sensitive 2-pyrimidinone residues or the base-sensitive methylphosphonate backbone. PMID:8758991

  13. Detection of lead(II) ions with a DNAzyme and isothermal strand displacement signal amplification.

    PubMed

    Li, Wenying; Yang, Yue; Chen, Jian; Zhang, Qingfeng; Wang, Yan; Wang, Fangyuan; Yu, Cong

    2014-03-15

    A DNAzyme based method for the sensitive and selective quantification of lead(II) ions has been developed. A DNAzyme that requires Pb(2+) for activation was selected. An RNA containing DNA substrate was cleaved by the DNAzyme in the presence of Pb(2+). The 2',3'-cyclic phosphate of the cleaved 5'-part of the substrate was efficiently removed by Exonuclease III. The remaining part of the single stranded DNA (9 or 13 base long) was subsequently used as the primer for the strand displacement amplification reaction (SDAR). The method is highly sensitive, 200 pM lead(II) could be easily detected. A number of interference ions were tested, and the sensor showed good selectivity. Underground water samples were also tested, which demonstrated the feasibility of the current approach for real sample applications. It is feasible that our method could be used for DNAzyme or aptazyme based new sensing method developments for the quantification of other target analytes with high sensitivity and selectivity. © 2013 Elsevier B.V. All rights reserved.

  14. A collision history-based approach to Sensitivity/Perturbation calculations in the continuous energy Monte Carlo code SERPENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuseppe Palmiotti

    In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the eects of nuclear data perturbation on several response functions: the eective multiplication factor, reaction rate ratios and bilinear ratios (e.g., eective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators.

  15. A Systematic Comparison of Linear Regression-Based Statistical Methods to Assess Exposome-Health Associations.

    PubMed

    Agier, Lydiane; Portengen, Lützen; Chadeau-Hyam, Marc; Basagaña, Xavier; Giorgis-Allemand, Lise; Siroux, Valérie; Robinson, Oliver; Vlaanderen, Jelle; González, Juan R; Nieuwenhuijsen, Mark J; Vineis, Paolo; Vrijheid, Martine; Slama, Rémy; Vermeulen, Roel

    2016-12-01

    The exposome constitutes a promising framework to improve understanding of the effects of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many correlated exposures. We compared the performances of linear regression-based statistical methods in assessing exposome-health associations. In a simulation study, we generated 237 exposure covariates with a realistic correlation structure and with a health outcome linearly related to 0 to 25 of these covariates. Statistical methods were compared primarily in terms of false discovery proportion (FDP) and sensitivity. On average over all simulation settings, the elastic net and sparse partial least-squares regression showed a sensitivity of 76% and an FDP of 44%; Graphical Unit Evolutionary Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm revealed a sensitivity of 81% and an FDP of 34%. The environment-wide association study (EWAS) underperformed these methods in terms of FDP (average FDP, 86%) despite a higher sensitivity. Performances decreased considerably when assuming an exposome exposure matrix with high levels of correlation between covariates. Correlation between exposures is a challenge for exposome research, and the statistical methods investigated in this study were limited in their ability to efficiently differentiate true predictors from correlated covariates in a realistic exposome context. Although GUESS and DSA provided a marginally better balance between sensitivity and FDP, they did not outperform the other multivariate methods across all scenarios and properties examined, and computational complexity and flexibility should also be considered when choosing between these methods. Citation: Agier L, Portengen L, Chadeau-Hyam M, Basagaña X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R. 2016. A systematic comparison of linear regression-based statistical methods to assess exposome-health associations. Environ Health Perspect 124:1848-1856; http://dx.doi.org/10.1289/EHP172.

  16. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics.

    PubMed

    Prien, Justin M; Prater, Bradley D; Qin, Qiang; Cockrill, Steven L

    2010-02-15

    Fast, sensitive, robust methods for "high-level" glycan screening are necessary during various stages of a biotherapeutic product's lifecycle, including clone selection, process changes, and quality control for lot release testing. Traditional glycan screening involves chromatographic or electrophoretic separation-based methods, and, although reproducible, these methods can be time-consuming. Even ultrahigh-performance chromatographic and microfluidic integrated LC/MS systems, which work on the tens of minute time scale, become lengthy when hundreds of samples are to be analyzed. Comparatively, a direct infusion mass spectrometry (MS)-based glycan screening method acquires data on a millisecond time scale, exhibits exquisite sensitivity and reproducibility, and is amenable to automated peak annotation. In addition, characterization of glycan species via sequential mass spectrometry can be performed simultaneously. Here, we demonstrate a quantitative high-throughput MS-based mapping approach using stable isotope 2-aminobenzoic acid (2-AA) for rapid "high-level" glycan screening.

  17. Comparison of PCR-Based Diagnosis with Centrifuged-Based Enrichment Method for Detection of Borrelia persica in Animal Blood Samples.

    PubMed

    Naddaf, S R; Kishdehi, M; Siavashi, Mr

    2011-01-01

    The mainstay of diagnosis of relapsing fever (RF) is demonstration of the spirochetes in Giemsa-stained thick blood smears, but during non fever periods the bacteria are very scanty and rarely detected in blood smears by microscopy. This study is aimed to evaluate the sensitivity of different methods developed for detection of low-grade spirochetemia. Animal blood samples with low degrees of spirochetemia were tested with two PCRs and a nested PCR targeting flaB, GlpQ, and rrs genes. Also, a centrifuged-based enrichment method and Giemsa staining were performed on blood samples with various degrees of spirochetemia. The flaB-PCR and nested rrs-PCR turned positive with various degrees of spirochetemia including the blood samples that turned negative with dark-field microscopy. The GlpQ-PCR was positive as far as at least one spirochete was seen in 5-10 microscopic fields. The sensitivity of GlpQ-PCR increased when DNA from Buffy Coat Layer (BCL) was used as template. The centrifuged-based enrichment method turned positive with as low concentration as 50 bacteria/ml blood, while Giemsa thick staining detected bacteria with concentrations ≥ 25000 bacteria/ml. Centrifuged-based enrichment method appeared as much as 500-fold more sensitive than thick smears, which makes it even superior to some PCR assays. Due to simplicity and minimal laboratory requirements, this method can be considered a valuable tool for diagnosis of RF in rural health centers.

  18. Quantitative methods to direct exploration based on hydrogeologic information

    USGS Publications Warehouse

    Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.

    2006-01-01

    Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.

  19. Performance analysis of higher mode spoof surface plasmon polariton for terahertz sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Haizi; Tu, Wanli; Zhong, Shuncong, E-mail: zhongshuncong@hotmail.com

    2015-04-07

    We investigated the spoof surface plasmon polaritons (SSPPs) on 1D grooved metal surface for terahertz sensing of refractive index of the filling analyte through a prism-coupling attenuated total reflection setup. From the dispersion relation analysis and the finite element method-based simulation, we revealed that the dispersion curve of SSPP got suppressed as the filling refractive index increased, which cause the coupling resonance frequency redshifting in the reflection spectrum. The simulated results for testing various refractive indexes demonstrated that the incident angle of terahertz radiation has a great effect on the performance of sensing. Smaller incident angle will result in amore » higher sensitive sensing with a narrower detection range. In the meanwhile, the higher order mode SSPP-based sensing has a higher sensitivity with a narrower detection range. The maximum sensitivity is 2.57 THz/RIU for the second-order mode sensing at 45° internal incident angle. The proposed SSPP-based method has great potential for high sensitive terahertz sensing.« less

  20. On the sensitivity of complex, internally coupled systems

    NASA Technical Reports Server (NTRS)

    Sobieszczanskisobieski, Jaroslaw

    1988-01-01

    A method is presented for computing sensitivity derivatives with respect to independent (input) variables for complex, internally coupled systems, while avoiding the cost and inaccuracy of finite differencing performed on the entire system analysis. The method entails two alternative algorithms: the first is based on the classical implicit function theorem formulated on residuals of governing equations, and the second develops the system sensitivity equations in a new form using the partial (local) sensitivity derivatives of the output with respect to the input of each part of the system. A few application examples are presented to illustrate the discussion.

  1. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes.

    PubMed

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.

  2. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    PubMed Central

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes. PMID:29250096

  3. Quenching of cascade reaction between triplet and photochrome probes with nitroxide radicals. A novel labeling method in study of membranes and surface systems.

    PubMed

    Papper, V; Medvedeva, N; Fishov, I; Likhtenshtein, G I

    2000-01-01

    We proposed a new method for the study of molecular dynamics and fluidity of the living and model biomembranes and surface systems. The method is based on the measurements of the sensitized photoisomerization kinetics of a photochrome probe. The cascade triplet cis-trans photoisomerization of the excited stilbene derivative sensitized with the excited triplet Erythrosin B has been studied in a model liposome membrane. The photoisomerization reaction is depressed with nitroxide radicals quenching the excited triplet state of the sensitizer. The enhanced fluorescence polarization of the stilbene probe incorporated into liposome membranes indicates that the stilbene molecules are squeezed in a relatively viscous media of the phospholipids. Calibration of the "triple" cascade system is based on a previously proposed method that allows the measurement of the product of the quenching rate constant and the sensitizer's triplet lifetime, as well as the quantitative detection of the nitroxide radicals in the vicinity of the membrane surface. The experiment was conducted using the constant-illumination fluorescence technique. Sensitivity of the method using a standard commercial spectrofluorimeter is about 10(-12) mol of fluorescence molecules per sample and can be improved using an advanced fluorescence technique. The minimal local concentration of nitroxide radicals or any other quenchers being detected is about 10(-5) M. This method enables the investigation of any chemical and biological surface processes of microscopic scale when the minimal volume is about 10(-3) microL or less.

  4. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Interference-threshold storage of optical data

    NASA Astrophysics Data System (ADS)

    Efimkov, V. F.; Zubarev, I. G.; Kolobrodov, V. V.; Sobolev, V. B.

    1989-08-01

    A method for the determination of the spatial characteristics of a laser beam is proposed and implemented. This method is based on the interaction of an interference field of two laser beams, which are spatially similar to the one being investigated, with a light-sensitive material characterized by a sensitivity threshold.

  5. A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor

    NASA Astrophysics Data System (ADS)

    Kim, Sungho; Ahn, Jae-Hyuk; Park, Tae Jung; Lee, Sang Yup; Choi, Yang-Kyu

    2009-06-01

    A unique direct electrical detection method of biomolecules, charge pumping, was demonstrated using a nanogap embedded field-effect-transistor (FET). With aid of a charge pumping method, sensitivity can fall below the 1 ng/ml concentration regime in antigen-antibody binding of an avian influenza case. Biomolecules immobilized in the nanogap are mainly responsible for the acute changes of the interface trap density due to modulation of the energy level of the trap. This finding is supported by a numerical simulation. The proposed detection method for biomolecules using a nanogap embedded FET represents a foundation for a chip-based biosensor capable of high sensitivity.

  6. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review.

    PubMed

    Rahman, Md Musfiqur; Abd El-Aty, A M; Kim, Sung-Woo; Shin, Sung Chul; Shin, Ho-Chul; Shim, Jae-Han

    2017-01-01

    In pesticide residue analysis, relatively low-sensitivity traditional detectors, such as UV, diode array, electron-capture, flame photometric, and nitrogen-phosphorus detectors, have been used following classical sample preparation (liquid-liquid extraction and open glass column cleanup); however, the extraction method is laborious, time-consuming, and requires large volumes of toxic organic solvents. A quick, easy, cheap, effective, rugged, and safe method was introduced in 2003 and coupled with selective and sensitive mass detectors to overcome the aforementioned drawbacks. Compared to traditional detectors, mass spectrometers are still far more expensive and not available in most modestly equipped laboratories, owing to maintenance and cost-related issues. Even available, traditional detectors are still being used for analysis of residues in agricultural commodities. It is widely known that the quick, easy, cheap, effective, rugged, and safe method is incompatible with conventional detectors owing to matrix complexity and low sensitivity. Therefore, modifications using column/cartridge-based solid-phase extraction instead of dispersive solid-phase extraction for cleanup have been applied in most cases to compensate and enable the adaptation of the extraction method to conventional detectors. In gas chromatography, the matrix enhancement effect of some analytes has been observed, which lowers the limit of detection and, therefore, enables gas chromatography to be compatible with the quick, easy, cheap, effective, rugged, and safe extraction method. For liquid chromatography with a UV detector, a combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction was found to reduce the matrix interference and increase the sensitivity. A suitable double-layer column/cartridge-based solid-phase extraction might be the perfect solution, instead of a time-consuming combination of column/cartridge-based solid-phase extraction and dispersive solid-phase extraction. Therefore, replacing dispersive solid-phase extraction with column/cartridge-based solid-phase extraction in the cleanup step can make the quick, easy, cheap, effective, rugged, and safe extraction method compatible with traditional detectors for more sensitive, effective, and green analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer.

    PubMed

    Bernard, Guillaume; Chan, Cheong Xin; Ragan, Mark A

    2016-07-01

    Alignment-free (AF) approaches have recently been highlighted as alternatives to methods based on multiple sequence alignment in phylogenetic inference. However, the sensitivity of AF methods to genome-scale evolutionary scenarios is little known. Here, using simulated microbial genome data we systematically assess the sensitivity of nine AF methods to three important evolutionary scenarios: sequence divergence, lateral genetic transfer (LGT) and genome rearrangement. Among these, AF methods are most sensitive to the extent of sequence divergence, less sensitive to low and moderate frequencies of LGT, and most robust against genome rearrangement. We describe the application of AF methods to three well-studied empirical genome datasets, and introduce a new application of the jackknife to assess node support. Our results demonstrate that AF phylogenomics is computationally scalable to multi-genome data and can generate biologically meaningful phylogenies and insights into microbial evolution.

  8. Prediction of Chemical Respiratory Sensitizers Using GARD, a Novel In Vitro Assay Based on a Genomic Biomarker Signature

    PubMed Central

    Albrekt, Ann-Sofie; Borrebaeck, Carl A. K.; Lindstedt, Malin

    2015-01-01

    Background Repeated exposure to certain low molecular weight (LMW) chemical compounds may result in development of allergic reactions in the skin or in the respiratory tract. In most cases, a certain LMW compound selectively sensitize the skin, giving rise to allergic contact dermatitis (ACD), or the respiratory tract, giving rise to occupational asthma (OA). To limit occurrence of allergic diseases, efforts are currently being made to develop predictive assays that accurately identify chemicals capable of inducing such reactions. However, while a few promising methods for prediction of skin sensitization have been described, to date no validated method, in vitro or in vivo, exists that is able to accurately classify chemicals as respiratory sensitizers. Results Recently, we presented the in vitro based Genomic Allergen Rapid Detection (GARD) assay as a novel testing strategy for classification of skin sensitizing chemicals based on measurement of a genomic biomarker signature. We have expanded the applicability domain of the GARD assay to classify also respiratory sensitizers by identifying a separate biomarker signature containing 389 differentially regulated genes for respiratory sensitizers in comparison to non-respiratory sensitizers. By using an independent data set in combination with supervised machine learning, we validated the assay, showing that the identified genomic biomarker is able to accurately classify respiratory sensitizers. Conclusions We have identified a genomic biomarker signature for classification of respiratory sensitizers. Combining this newly identified biomarker signature with our previously identified biomarker signature for classification of skin sensitizers, we have developed a novel in vitro testing strategy with a potent ability to predict both skin and respiratory sensitization in the same sample. PMID:25760038

  9. Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method

    NASA Astrophysics Data System (ADS)

    Ma, Yunfei; Zhang, Honglian; Liu, Fangming; Wu, Zhenhua; Lu, Shaohua; Jin, Qinghui; Zhao, Jianlong; Zhong, Xinhua; Mao, Hongju

    2015-10-01

    DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers.DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers. Electronic supplementary information (ESI) available: Synthesis of CdSe/CdS/ZnS core/shell/shell QDs. Sequences of primers used for amplifying the promoter regions in bisulfate-modified DNA. Comparison of detected methylation levels in different gene promoters using the QD-based FRET method versus bisulfite pyrosequencing. Methylation levels of the RASSF1A gene in one pair of NT and cancer samples as indicated by pyrosequencing. Theoretical calculation of the Förster distance R0. See DOI: 10.1039/c5nr04956c

  10. A Sensitive Gel-based Method Combining Distinct Cyclophellitol-based Probes for the Identification of Acid/Base Residues in Human Retaining β-Glucosidases*

    PubMed Central

    Kallemeijn, Wouter W.; Witte, Martin D.; Voorn-Brouwer, Tineke M.; Walvoort, Marthe T. C.; Li, Kah-Yee; Codée, Jeroen D. C.; van der Marel, Gijsbert A.; Boot, Rolf G.; Overkleeft, Herman S.; Aerts, Johannes M. F. G.

    2014-01-01

    Retaining β-exoglucosidases operate by a mechanism in which the key amino acids driving the glycosidic bond hydrolysis act as catalytic acid/base and nucleophile. Recently we designed two distinct classes of fluorescent cyclophellitol-type activity-based probes (ABPs) that exploit this mechanism to covalently modify the nucleophile of retaining β-glucosidases. Whereas β-epoxide ABPs require a protonated acid/base for irreversible inhibition of retaining β-glucosidases, β-aziridine ABPs do not. Here we describe a novel sensitive method to identify both catalytic residues of retaining β-glucosidases by the combined use of cyclophellitol β-epoxide- and β-aziridine ABPs. In this approach putative catalytic residues are first substituted to noncarboxylic amino acids such as glycine or glutamine through site-directed mutagenesis. Next, the acid/base and nucleophile can be identified via classical sodium azide-mediated rescue of mutants thereof. Selective labeling with fluorescent β-aziridine but not β-epoxide ABPs identifies the acid/base residue in mutagenized enzyme, as only the β-aziridine ABP can bind in its absence. The Absence of the nucleophile abolishes any ABP labeling. We validated the method by using the retaining β-glucosidase GBA (CAZy glycosylhydrolase family GH30) and then applied it to non-homologous (putative) retaining β-glucosidases categorized in GH1 and GH116: GBA2, GBA3, and LPH. The described method is highly sensitive, requiring only femtomoles (nanograms) of ABP-labeled enzymes. PMID:25344605

  11. Hierarchical Nanogold Labels to Improve the Sensitivity of Lateral Flow Immunoassay

    NASA Astrophysics Data System (ADS)

    Serebrennikova, Kseniya; Samsonova, Jeanne; Osipov, Alexander

    2018-06-01

    Lateral flow immunoassay (LFIA) is a widely used express method and offers advantages such as a short analysis time, simplicity of testing and result evaluation. However, an LFIA based on gold nanospheres lacks the desired sensitivity, thereby limiting its wide applications. In this study, spherical nanogold labels along with new types of nanogold labels such as gold nanopopcorns and nanostars were prepared, characterized, and applied for LFIA of model protein antigen procalcitonin. It was found that the label with a structure close to spherical provided more uniform distribution of specific antibodies on its surface, indicative of its suitability for this type of analysis. LFIA using gold nanopopcorns as a label allowed procalcitonin detection over a linear range of 0.5-10 ng mL-1 with the limit of detection of 0.1 ng mL-1, which was fivefold higher than the sensitivity of the assay with gold nanospheres. Another approach to improve the sensitivity of the assay included the silver enhancement method, which was used to compare the amplification of LFIA for procalcitonin detection. The sensitivity of procalcitonin determination by this method was 10 times better the sensitivity of the conventional LFIA with gold nanosphere as a label. The proposed approach of LFIA based on gold nanopopcorns improved the detection sensitivity without additional steps and prevented the increased consumption of specific reagents (antibodies).

  12. Efficient Gradient-Based Shape Optimization Methodology Using Inviscid/Viscous CFD

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1997-01-01

    The formerly developed preconditioned-biconjugate-gradient (PBCG) solvers for the analysis and the sensitivity equations had resulted in very large error reductions per iteration; quadratic convergence was achieved whenever the solution entered the domain of attraction to the root. Its memory requirement was also lower as compared to a direct inversion solver. However, this memory requirement was high enough to preclude the realistic, high grid-density design of a practical 3D geometry. This limitation served as the impetus to the first-year activity (March 9, 1995 to March 8, 1996). Therefore, the major activity for this period was the development of the low-memory methodology for the discrete-sensitivity-based shape optimization. This was accomplished by solving all the resulting sets of equations using an alternating-direction-implicit (ADI) approach. The results indicated that shape optimization problems which required large numbers of grid points could be resolved with a gradient-based approach. Therefore, to better utilize the computational resources, it was recommended that a number of coarse grid cases, using the PBCG method, should initially be conducted to better define the optimization problem and the design space, and obtain an improved initial shape. Subsequently, a fine grid shape optimization, which necessitates using the ADI method, should be conducted to accurately obtain the final optimized shape. The other activity during this period was the interaction with the members of the Aerodynamic and Aeroacoustic Methods Branch of Langley Research Center during one stage of their investigation to develop an adjoint-variable sensitivity method using the viscous flow equations. This method had algorithmic similarities to the variational sensitivity methods and the control-theory approach. However, unlike the prior studies, it was considered for the three-dimensional, viscous flow equations. The major accomplishment in the second period of this project (March 9, 1996 to March 8, 1997) was the extension of the shape optimization methodology for the Thin-Layer Navier-Stokes equations. Both the Euler-based and the TLNS-based analyses compared with the analyses obtained using the CFL3D code. The sensitivities, again from both levels of the flow equations, also compared very well with the finite-differenced sensitivities. A fairly large set of shape optimization cases were conducted to study a number of issues previously not well understood. The testbed for these cases was the shaping of an arrow wing in Mach 2.4 flow. All the final shapes, obtained either from a coarse-grid-based or a fine-grid-based optimization, using either a Euler-based or a TLNS-based analysis, were all re-analyzed using a fine-grid, TLNS solution for their function evaluations. This allowed for a more fair comparison of their relative merits. From the aerodynamic performance standpoint, the fine-grid TLNS-based optimization produced the best shape, and the fine-grid Euler-based optimization produced the lowest cruise efficiency.

  13. Moiré deflectometry-based position detection for optical tweezers.

    PubMed

    Khorshad, Ali Akbar; Reihani, S Nader S; Tavassoly, Mohammad Taghi

    2017-09-01

    Optical tweezers have proven to be indispensable tools for pico-Newton range force spectroscopy. A quadrant photodiode (QPD) positioned at the back focal plane of an optical tweezers' condenser is commonly used for locating the trapped object. In this Letter, for the first time, to the best of our knowledge, we introduce a moiré pattern-based detection method for optical tweezers. We show, both theoretically and experimentally, that this detection method could provide considerably better position sensitivity compared to the commonly used detection systems. For instance, position sensitivity for a trapped 2.17 μm polystyrene bead is shown to be 71% better than the commonly used QPD-based detection method. Our theoretical and experimental results are in good agreement.

  14. Simple method to detect triacylglycerol biosynthesis in a yeast-based recombinant system

    USDA-ARS?s Scientific Manuscript database

    Standard methods to quantify the activity of triacylglycerol (TAG) synthesizing enzymes DGAT and PDAT (TAG-SE) require a sensitive but rather arduous laboratory assay based on radio-labeled substrates. Here we describe two straightforward methods to detect TAG production in baker’s yeast Saccharomyc...

  15. Polarization-dependent transverse-stress sensing characters of the gold-coated and liquid crystal filled photonic crystal fiber based on Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Liu, Hai; Zhu, Chenghao; Wang, Yan; Tan, Ce; Li, Hongwei

    2018-03-01

    A transverse-stress sensor with enhanced sensitivity based on nematic liquid crystal (NLC) filled photonic crystal fiber (PCF) is proposed and analyzed by using the finite element method (FEM). The central hole of the PCF is infiltrated with NLC material with an adjustable rotation angle to achieve the polarization-dependent wavelength-selective sensing. And the combined use of side-hole structure and Surface Plasmon Resonance (SPR) technology enhanced the transverse-stress sensitivity enormously. Results reveal that the sensor can achieve a high sensitivity based on the polarization filter characteristic at special wavelengths. Besides that, the temperature and the transverse-stress in either direction can be effectively discriminated through dual-parameter demodulation method by adjusting the rotation angle of the NLC to introduce a new degree of freedom for sensing.

  16. Cost-sensitive case-based reasoning using a genetic algorithm: application to medical diagnosis.

    PubMed

    Park, Yoon-Joo; Chun, Se-Hak; Kim, Byung-Chun

    2011-02-01

    The paper studies the new learning technique called cost-sensitive case-based reasoning (CSCBR) incorporating unequal misclassification cost into CBR model. Conventional CBR is now considered as a suitable technique for diagnosis, prognosis and prescription in medicine. However it lacks the ability to reflect asymmetric misclassification and often assumes that the cost of a positive diagnosis (an illness) as a negative one (no illness) is the same with that of the opposite situation. Thus, the objective of this research is to overcome the limitation of conventional CBR and encourage applying CBR to many real world medical cases associated with costs of asymmetric misclassification errors. The main idea involves adjusting the optimal cut-off classification point for classifying the absence or presence of diseases and the cut-off distance point for selecting optimal neighbors within search spaces based on similarity distribution. These steps are dynamically adapted to new target cases using a genetic algorithm. We apply this proposed method to five real medical datasets and compare the results with two other cost-sensitive learning methods-C5.0 and CART. Our finding shows that the total misclassification cost of CSCBR is lower than other cost-sensitive methods in many cases. Even though the genetic algorithm has limitations in terms of unstable results and over-fitting training data, CSCBR results with GA are better overall than those of other methods. Also the paired t-test results indicate that the total misclassification cost of CSCBR is significantly less than C5.0 and CART for several datasets. We have proposed a new CBR method called cost-sensitive case-based reasoning (CSCBR) that can incorporate unequal misclassification costs into CBR and optimize the number of neighbors dynamically using a genetic algorithm. It is meaningful not only for introducing the concept of cost-sensitive learning to CBR, but also for encouraging the use of CBR in the medical area. The result shows that the total misclassification costs of CSCBR do not increase in arithmetic progression as the cost of false absence increases arithmetically, thus it is cost-sensitive. We also show that total misclassification costs of CSCBR are the lowest among all methods in four datasets out of five and the result is statistically significant in many cases. The limitation of our proposed CSCBR is confined to classify binary cases for minimizing misclassification cost because our proposed CSCBR is originally designed to classify binary case. Our future work extends this method for multi-classification which can classify more than two groups. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. A rapid and sensitive assay method for measuring amine oxidase based on hydrogen peroxide-titanium complex formation.

    PubMed

    Nag; Saha; Choudhuri

    2000-08-22

    Hydrogenperoxide (H(2)O(2)) is an end product of diamine and polyamine oxidation by their respective oxidase enzymes. A new sensitive assay method is based on a H(2)O(2)-titanium (Ti) complex formation as an indicator of H(2)O(2) production due to polyamine oxidation. The orange-yellow coloured H(2)O(2)-Ti complex was measured at 410 nm in a Shimadzu spectrophotometer. The assay conditions for maximum diamine oxidase (DAO) and polyamine oxidase (PAO) as standardized here using the hypocotyl tissues of Vigna catjang Endl. cv Pusa Barsati consisted of pH 7.4 (40 mM potassium phosphate buffer), 3 mM substrate (putrescine or spermine), 37 degrees C incubation temperature and 30 min incubation time in the presence of catechol (10(-2) M) used as an inhibitor of both peroxidase and catalase activity. The method described here was significantly more sensitive than the starch-iodide method [T.A. Smith, Biochem. Biophys. Res. Commun. 41 (1970) 1452-1456], which could be improved further if measured under the same assay conditions as described for the H(2)O(2)-Ti method. Sensitivity of the present method was tested by assaying DAO/PAO activity in auxin treated hypocotyls of Vigna and comparing it with the starch-iodide method in two other plant samples.

  18. MMASS: an optimized array-based method for assessing CpG island methylation.

    PubMed

    Ibrahim, Ashraf E K; Thorne, Natalie P; Baird, Katie; Barbosa-Morais, Nuno L; Tavaré, Simon; Collins, V Peter; Wyllie, Andrew H; Arends, Mark J; Brenton, James D

    2006-01-01

    We describe an optimized microarray method for identifying genome-wide CpG island methylation called microarray-based methylation assessment of single samples (MMASS) which directly compares methylated to unmethylated sequences within a single sample. To improve previous methods we used bioinformatic analysis to predict an optimized combination of methylation-sensitive enzymes that had the highest utility for CpG-island probes and different methods to produce unmethylated representations of test DNA for more sensitive detection of differential methylation by hybridization. Subtraction or methylation-dependent digestion with McrBC was used with optimized (MMASS-v2) or previously described (MMASS-v1, MMASS-sub) methylation-sensitive enzyme combinations and compared with a published McrBC method. Comparison was performed using DNA from the cell line HCT116. We show that the distribution of methylation microarray data is inherently skewed and requires exogenous spiked controls for normalization and that analysis of digestion of methylated and unmethylated control sequences together with linear fit models of replicate data showed superior statistical power for the MMASS-v2 method. Comparison with previous methylation data for HCT116 and validation of CpG islands from PXMP4, SFRP2, DCC, RARB and TSEN2 confirmed the accuracy of MMASS-v2 results. The MMASS-v2 method offers improved sensitivity and statistical power for high-throughput microarray identification of differential methylation.

  19. Diagnosis of Cetacean morbillivirus: A sensitive one step real time RT fast-PCR method based on SYBR(®) Green.

    PubMed

    Sacristán, Carlos; Carballo, Matilde; Muñoz, María Jesús; Bellière, Edwige Nina; Neves, Elena; Nogal, Verónica; Esperón, Fernando

    2015-12-15

    Cetacean morbillivirus (CeMV) (family Paramyxoviridae, genus Morbillivirus) is considered the most pathogenic virus of cetaceans. It was first implicated in the bottlenose dolphin (Tursiops truncatus) mass stranding episode along the Northwestern Atlantic coast in the late 1980s, and in several more recent worldwide epizootics in different Odontoceti species. This study describes a new one step real-time reverse transcription fast polymerase chain reaction (real-time RT-fast PCR) method based on SYBR(®) Green to detect a fragment of the CeMV fusion protein gene. This primer set also works for conventional RT-PCR diagnosis. This method detected and identified all three well-characterized strains of CeMV: porpoise morbillivirus (PMV), dolphin morbillivirus (DMV) and pilot whale morbillivirus (PWMV). Relative sensitivity was measured by comparing the results obtained from 10-fold dilution series of PMV and DMV positive controls and a PWMV field sample, to those obtained by the previously described conventional phosphoprotein gene based RT-PCR method. Both the conventional and real-time RT-PCR methods involving the fusion protein gene were 100- to 1000-fold more sensitive than the previously described conventional RT-PCR method. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Three Dimensional Distribution of Sensitive Field and Stress Field Inversion of Force Sensitive Materials under Constant Current Excitation.

    PubMed

    Zhao, Shuanfeng; Liu, Min; Guo, Wei; Zhang, Chuanwei

    2018-02-28

    Force sensitive conductive composite materials are functional materials which can be used as the sensitive material of force sensors. However, the existing sensors only use one-dimensional electrical properties of force sensitive conductive materials. Even in tactile sensors, the measurement of contact pressure is achieved by large-scale arrays and the units of a large-scale array are also based on the one-dimensional electrical properties of force sensitive materials. The main contribution of this work is to study the three-dimensional electrical properties and the inversion method of three-dimensional stress field of a force sensitive material (conductive rubber), which pushes the application of force sensitive material from one dimensional to three-dimensional. First, the mathematical model of the conductive rubber current field distribution under a constant force is established by the effective medium theory, and the current field distribution model of conductive rubber with different geometry, conductive rubber content and conductive rubber relaxation parameters is deduced. Secondly, the inversion method of the three-dimensional stress field of conductive rubber is established, which provides a theoretical basis for the design of a new tactile sensor, three-dimensional stress field and space force based on force sensitive materials.

  1. NK sensitivity of neuroblastoma cells determined by a highly sensitive coupled luminescent method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogbomo, Henry; Hahn, Anke; Geiler, Janina

    2006-01-06

    The measurement of natural killer (NK) cells toxicity against tumor or virus-infected cells especially in cases with small blood samples requires highly sensitive methods. Here, a coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase release from injured target cells was used to evaluate the cytotoxicity of interleukin-2 activated NK cells against neuroblastoma cell lines. In contrast to most other methods, CLM does not require the pretreatment of target cells with labeling substances which could be toxic or radioactive. The effective killing of tumor cells was achieved by low effector/target ratios ranging from 0.5:1 to 4:1. CLM provides highly sensitive, safe,more » and fast procedure for measurement of NK cell activity with small blood samples such as those obtained from pediatric patients.« less

  2. Design sensitivity analysis using EAL. Part 1: Conventional design parameters

    NASA Technical Reports Server (NTRS)

    Dopker, B.; Choi, Kyung K.; Lee, J.

    1986-01-01

    A numerical implementation of design sensitivity analysis of builtup structures is presented, using the versatility and convenience of an existing finite element structural analysis code and its database management system. The finite element code used in the implemenatation presented is the Engineering Analysis Language (EAL), which is based on a hybrid method of analysis. It was shown that design sensitivity computations can be carried out using the database management system of EAL, without writing a separate program and a separate database. Conventional (sizing) design parameters such as cross-sectional area of beams or thickness of plates and plane elastic solid components are considered. Compliance, displacement, and stress functionals are considered as performance criteria. The method presented is being extended to implement shape design sensitivity analysis using a domain method and a design component method.

  3. Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics.

    PubMed

    Wang, Yang; Ruan, Qingyu; Lei, Zhi-Chao; Lin, Shui-Chao; Zhu, Zhi; Zhou, Leiji; Yang, Chaoyong

    2018-04-17

    Digital microfluidics (DMF) is a powerful platform for a broad range of applications, especially immunoassays having multiple steps, due to the advantages of low reagent consumption and high automatization. Surface enhanced Raman scattering (SERS) has been proven as an attractive method for highly sensitive and multiplex detection, because of its remarkable signal amplification and excellent spatial resolution. Here we propose a SERS-based immunoassay with DMF for rapid, automated, and sensitive detection of disease biomarkers. SERS tags labeled with Raman reporter 4-mercaptobenzoic acid (4-MBA) were synthesized with a core@shell nanostructure and showed strong signals, good uniformity, and high stability. A sandwich immunoassay was designed, in which magnetic beads coated with antibodies were used as solid support to capture antigens from samples to form a beads-antibody-antigen immunocomplex. By labeling the immunocomplex with a detection antibody-functionalized SERS tag, antigen can be sensitively detected through the strong SERS signal. The automation capability of DMF can greatly simplify the assay procedure while reducing the risk of exposure to hazardous samples. Quantitative detection of avian influenza virus H5N1 in buffer and human serum was implemented to demonstrate the utility of the DMF-SERS method. The DMF-SERS method shows excellent sensitivity (LOD of 74 pg/mL) and selectivity for H5N1 detection with less assay time (<1 h) and lower reagent consumption (∼30 μL) compared to the standard ELISA method. Therefore, this DMF-SERS method holds great potentials for automated and sensitive detection of a variety of infectious diseases.

  4. Evaluation by latent class analysis of a magnetic capture based DNA extraction followed by real-time qPCR as a new diagnostic method for detection of Echinococcus multilocularis in definitive hosts.

    PubMed

    Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke

    2016-10-30

    A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Highly sensitive distributed birefringence measurements based on a two-pulse interrogation of a dynamic Brillouin grating

    NASA Astrophysics Data System (ADS)

    Soto, Marcelo A.; Denisov, Andrey; Angulo-Vinuesa, Xabier; Martin-Lopez, Sonia; Thévenaz, Luc; Gonzalez-Herraez, Miguel

    2017-04-01

    A method for distributed birefringence measurements is proposed based on the interference pattern generated by the interrogation of a dynamic Brillouin grating (DBG) using two short consecutive optical pulses. Compared to existing DBG interrogation techniques, the method here offers an improved sensitivity to birefringence changes thanks to the interferometric effect generated by the reflections of the two pulses. Experimental results demonstrate the possibility to obtain the longitudinal birefringence profile of a 20 m-long Panda fibre with an accuracy of 10-8 using 16 averages and 30 cm spatial resolution. The method enables sub-metric and highly-accurate distributed temperature and strain sensing.

  6. Results of an integrated structure-control law design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1988-01-01

    Next generation air and space vehicle designs are driven by increased performance requirements, demanding a high level of design integration between traditionally separate design disciplines. Interdisciplinary analysis capabilities have been developed, for aeroservoelastic aircraft and large flexible spacecraft control for instance, but the requisite integrated design methods are only beginning to be developed. One integrated design method which has received attention is based on hierarchal problem decompositions, optimization, and design sensitivity analyses. This paper highlights a design sensitivity analysis method for Linear Quadratic Cost, Gaussian (LQG) optimal control laws, which predicts change in the optimal control law due to changes in fixed problem parameters using analytical sensitivity equations. Numerical results of a design sensitivity analysis for a realistic aeroservoelastic aircraft example are presented. In this example, the sensitivity of the optimally controlled aircraft's response to various problem formulation and physical aircraft parameters is determined. These results are used to predict the aircraft's new optimally controlled response if the parameter was to have some other nominal value during the control law design process. The sensitivity results are validated by recomputing the optimal control law for discrete variations in parameters, computing the new actual aircraft response, and comparing with the predicted response. These results show an improvement in sensitivity accuracy for integrated design purposes over methods which do not include changess in the optimal control law. Use of the analytical LQG sensitivity expressions is also shown to be more efficient that finite difference methods for the computation of the equivalent sensitivity information.

  7. "Fools Rush In": Developing Cross-Cultural Sensitivity Using Film-Based Group Projects.

    ERIC Educational Resources Information Center

    Tidwell, Charles H., Jr.

    Although role playing games and self-awareness surveys are typical methods of developing cross-cultural sensitivity, this presentation advocates the use small group projects focusing on feature films such as "Fools Rush In" as an effective class or training exercise to develop sensitivity to other cultures. Despite some disadvantages…

  8. METHODS FOR DETERMINING SMALL AMOUNTS OF NIOBIUM AND TANTALUM IN ORES (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykova, V.S.; Skrizhinskaya, V.I.

    1960-01-01

    Several current colorimetric methods for determining Nb and Ta were evaluated by comparing the results obtained from analyzing artificial mixtures and minerals, such as loparite, tantalite-columbite, perovskite, pyrochlore, cassiterite-tantalite and Ti-bearing minerals such as sphene. A modification of the thiosulfate method had a sensitivity of 0.05% Nb and was found useful when the sample contained less than 1% Ti. The dimethyl fluorene method for Ta was sensitive to 0.002% and could be used only if most of the Ti was previously removed from the sample. The pyrogallol extraction method, based on the extraction of complex Ta fluoride wtth cyclohexane, presentedmore » a sensitivity of 0.01% of Ta, similar to the pyrogallol-tannin method used for both elements. If their concentration is smaller, the samples must be analyzed subsequently according to the first two methods. The absorption method allows a determination of the two elements without separating them, if their concentration is higher than 0.5%, although the individual sensitivity of the method is 0.05% for Ta and 0.005% for Nb. (TTT)« less

  9. Panel-based Genetic Diagnostic Testing for Inherited Eye Diseases is Highly Accurate and Reproducible and More Sensitive for Variant Detection Than Exome Sequencing

    PubMed Central

    Bujakowska, Kinga M.; Sousa, Maria E.; Fonseca-Kelly, Zoë D.; Taub, Daniel G.; Janessian, Maria; Wang, Dan Yi; Au, Elizabeth D.; Sims, Katherine B.; Sweetser, David A.; Fulton, Anne B.; Liu, Qin; Wiggs, Janey L.; Gai, Xiaowu; Pierce, Eric A.

    2015-01-01

    Purpose Next-generation sequencing (NGS) based methods are being adopted broadly for genetic diagnostic testing, but the performance characteristics of these techniques have not been fully defined with regard to test accuracy and reproducibility. Methods We developed a targeted enrichment and NGS approach for genetic diagnostic testing of patients with inherited eye disorders, including inherited retinal degenerations, optic atrophy and glaucoma. In preparation for providing this Genetic Eye Disease (GEDi) test on a CLIA-certified basis, we performed experiments to measure the sensitivity, specificity, reproducibility as well as the clinical sensitivity of the test. Results The GEDi test is highly reproducible and accurate, with sensitivity and specificity for single nucleotide variant detection of 97.9% and 100%, respectively. The sensitivity for variant detection was notably better than the 88.3% achieved by whole exome sequencing (WES) using the same metrics, due to better coverage of targeted genes in the GEDi test compared to commercially available exome capture sets. Prospective testing of 192 patients with IRDs indicated that the clinical sensitivity of the GEDi test is high, with a diagnostic rate of 51%. Conclusion The data suggest that based on quantified performance metrics, selective targeted enrichment is preferable to WES for genetic diagnostic testing. PMID:25412400

  10. Probabilistic sensitivity analysis incorporating the bootstrap: an example comparing treatments for the eradication of Helicobacter pylori.

    PubMed

    Pasta, D J; Taylor, J L; Henning, J M

    1999-01-01

    Decision-analytic models are frequently used to evaluate the relative costs and benefits of alternative therapeutic strategies for health care. Various types of sensitivity analysis are used to evaluate the uncertainty inherent in the models. Although probabilistic sensitivity analysis is more difficult theoretically and computationally, the results can be much more powerful and useful than deterministic sensitivity analysis. The authors show how a Monte Carlo simulation can be implemented using standard software to perform a probabilistic sensitivity analysis incorporating the bootstrap. The method is applied to a decision-analytic model evaluating the cost-effectiveness of Helicobacter pylori eradication. The necessary steps are straightforward and are described in detail. The use of the bootstrap avoids certain difficulties encountered with theoretical distributions. The probabilistic sensitivity analysis provided insights into the decision-analytic model beyond the traditional base-case and deterministic sensitivity analyses and should become the standard method for assessing sensitivity.

  11. State of the art in non-animal approaches for skin sensitization testing: from individual test methods towards testing strategies.

    PubMed

    Ezendam, Janine; Braakhuis, Hedwig M; Vandebriel, Rob J

    2016-12-01

    The hazard assessment of skin sensitizers relies mainly on animal testing, but much progress is made in the development, validation and regulatory acceptance and implementation of non-animal predictive approaches. In this review, we provide an update on the available computational tools and animal-free test methods for the prediction of skin sensitization hazard. These individual test methods address mostly one mechanistic step of the process of skin sensitization induction. The adverse outcome pathway (AOP) for skin sensitization describes the key events (KEs) that lead to skin sensitization. In our review, we have clustered the available test methods according to the KE they inform: the molecular initiating event (MIE/KE1)-protein binding, KE2-keratinocyte activation, KE3-dendritic cell activation and KE4-T cell activation and proliferation. In recent years, most progress has been made in the development and validation of in vitro assays that address KE2 and KE3. No standardized in vitro assays for T cell activation are available; thus, KE4 cannot be measured in vitro. Three non-animal test methods, addressing either the MIE, KE2 or KE3, are accepted as OECD test guidelines, and this has accelerated the development of integrated or defined approaches for testing and assessment (e.g. testing strategies). The majority of these approaches are mechanism-based, since they combine results from multiple test methods and/or computational tools that address different KEs of the AOP to estimate skin sensitization potential and sometimes potency. Other approaches are based on statistical tools. Until now, eleven different testing strategies have been published, the majority using the same individual information sources. Our review shows that some of the defined approaches to testing and assessment are able to accurately predict skin sensitization hazard, sometimes even more accurate than the currently used animal test. A few defined approaches are developed to provide an estimate of the potency sub-category of a skin sensitizer as well, but these approaches need further independent evaluation with a new dataset of chemicals. To conclude, this update shows that the field of non-animal approaches for skin sensitization has evolved greatly in recent years and that it is possible to predict skin sensitization hazard without animal testing.

  12. Polarization sensitive localization based super-resolution microscopy with a birefringent wedge

    NASA Astrophysics Data System (ADS)

    Sinkó, József; Gajdos, Tamás; Czvik, Elvira; Szabó, Gábor; Erdélyi, Miklós

    2017-03-01

    A practical method has been presented for polarization sensitive localization based super-resolution microscopy using a birefringent dual wedge. The measurement of the polarization degree at the single molecule level can reveal the chemical and physical properties of the local environment of the fluorescent dye molecule and can hence provide information about the sub-diffraction sized structure of biological samples. Polarization sensitive STORM imaging of the F-Actins proved correlation between the orientation of fluorescent dipoles and the axis of the fibril.

  13. Chemically Amplified Bilevel Resist Based on Condensation of Siloxanes

    NASA Astrophysics Data System (ADS)

    Sakata, Miwa; Ito, Toshio; Yamashita, Yoshio

    1991-11-01

    This paper deals with a negative bilevel resist which is based on the acid-catalyzed condensation reaction of poly(siloxane)s. The resist systems consist of photoacid generators and poly(siloxane). Ph3S+OTf- reveals an efficient activity for silanol condensation and the system has a high sensitivity of 0.31 mJ/cm2. Tetrafunctional silane plays the role of crosslinker in this system. Sensitivity improvement of low-sensitivity systems such as benzoin p-toluenesulfonate/poly(siloxane) can be achieved by this method.

  14. Rapid and Highly Sensitive Detection of Lead Ions in Drinking Water Based on a Strip Immunosensor

    PubMed Central

    Kuang, Hua; Xing, Changrui; Hao, Changlong; Liu, Liqiang; Wang, Libing; Xu, Chuanlai

    2013-01-01

    In this study, we have first developed a rapid and sensitive strip immunosensor based on two heterogeneously-sized gold nanoparticles (Au NPs) probes for the detection of trace lead ions in drinking water. The sensitivity was 4-fold higher than that of the conventional LFA under the optimized conditions. The visual limit of detection (LOD) of the amplified method for qualitative detection lead ions was 2 ng/mL and the LOD for semi-quantitative detection could go down to 0.19 ng/mL using a scanning reader. The method suffered from no interference from other metal ions and could be used to detect trace lead ions in drinking water without sample enrichment. The recovery of the test samples ranged from 96% to 103%. As the detection method could be accomplished within 15 min, this method could be used as a potential tool for preliminary monitoring of lead contamination in drinking water. PMID:23539028

  15. N-bromosuccinimide-fluorescein based sensitive flow-injection chemiluminescence determination of phenformin.

    PubMed

    Wang, Zhouping; Zhang, Zhujun; Fu, Zhifeng; Fang, Luqiu; Zhang, Xiao

    2004-02-01

    A novel and highly sensitive method for the determination of phenformin over the range of 6 x 10(-9) - 1 x 10(-5) g ml(-1) in pharmaceutical formulations with flow-injection chemiluminescence (CL) detection is proposed. The method is based on the CL produced during the oxidation of N-bromosuccinimide (NBS) in an alkaline medium in the presence of fluorescein as an effective energy transfer agent. The use of cetyltrimethylammonium bromide (CTAB) as a sensitizer enhances the signal magnitude by about 100 times. The detection limit is 2 x 10(-9) g ml(-1) (3sigma) with a relative standard deviation of 2.3% (n = 11) at 1 x 10(-7) g ml(-1) phenformin. Ninety samples can be determined per hour. The method was evaluated by carrying out a recovery study and by the analysis of commercial formulations. The obtained results compared well with those by an official method, and demonstrated good accuracy and precision. The possible CL mechanism of the proposed system was also briefly analyzed.

  16. Sensitivity analysis of a sound absorption model with correlated inputs

    NASA Astrophysics Data System (ADS)

    Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.

    2017-04-01

    Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Haitao, E-mail: liaoht@cae.ac.cn

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results inmore » an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.« less

  18. Diffusion properties of conventional and calcium-sensitive MRI contrast agents in the rat cerebral cortex.

    PubMed

    Hagberg, Gisela E; Mamedov, Ilgar; Power, Anthony; Beyerlein, Michael; Merkle, Hellmut; Kiselev, Valerij G; Dhingra, Kirti; Kubìček, Vojtĕch; Angelovski, Goran; Logothetis, Nikos K

    2014-01-01

    Calcium-sensitive MRI contrast agents can only yield quantitative results if the agent concentration in the tissue is known. The agent concentration could be determined by diffusion modeling, if relevant parameters were available. We have established an MRI-based method capable of determining diffusion properties of conventional and calcium-sensitive agents. Simulations and experiments demonstrate that the method is applicable both for conventional contrast agents with a fixed relaxivity value and for calcium-sensitive contrast agents. The full pharmacokinetic time-course of gadolinium concentration estimates was observed by MRI before, during and after intracerebral administration of the agent, and the effective diffusion coefficient D* was determined by voxel-wise fitting of the solution to the diffusion equation. The method yielded whole brain coverage with a high spatial and temporal sampling. The use of two types of MRI sequences for sampling of the diffusion time courses was investigated: Look-Locker-based quantitative T(1) mapping, and T(1) -weighted MRI. The observation times of the proposed MRI method is long (up to 20 h) and consequently the diffusion distances covered are also long (2-4 mm). Despite this difference, the D* values in vivo were in agreement with previous findings using optical measurement techniques, based on observation times of a few minutes. The effective diffusion coefficient determined for the calcium-sensitive contrast agents may be used to determine local tissue concentrations and to design infusion protocols that maintain the agent concentration at a steady state, thereby enabling quantitative sensing of the local calcium concentration. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

    PubMed

    Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

    2011-08-15

    Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Reducing microwave absorption with fast frequency modulation.

    PubMed

    Qin, Juehang; Hubler, A

    2017-05-01

    We study the response of a two-level quantum system to a chirp signal, using both numerical and analytical methods. The numerical method is based on numerical solutions of the Schrödinger solution of the two-level system, while the analytical method is based on an approximate solution of the same equations. We find that when two-level systems are perturbed by a chirp signal, the peak population of the initially unpopulated state exhibits a high sensitivity to frequency modulation rate. We also find that the aforementioned sensitivity depends on the strength of the forcing, and weaker forcings result in a higher sensitivity, where the frequency modulation rate required to produce the same reduction in peak population would be lower. We discuss potential applications of this result in the field of microwave power transmission, as it shows applying fast frequency modulation to transmitted microwaves used for power transmission could decrease unintended absorption of microwaves by organic tissue.

  1. Development of a Sensitive Luciferase-Based Sandwich ELISA System for the Detection of Human Extracellular Matrix 1 Protein.

    PubMed

    Li, Ya; Li, Yanqing; Zhao, Junli; Zheng, Xiaojing; Mao, Qinwen; Xia, Haibin

    2016-12-01

    Enzyme-linked immunosorbent assay (ELISA) has been one of the main methods for detecting an antigen in an aqueous sample for more than four decades. Nowadays, one of the biggest concerns for ELISA is still how to improve the sensitivity of the assay, and the luciferase-luciferin reaction system has been noticed as a new detection method with high sensitivity. In this study, a luciferin-luciferase reaction system was used as the detection method for a sandwich ELISA system. It was shown that this new system led to an increase in the detection sensitivity of at least two times when compared with the traditional horseradish peroxidase (HRP) detection method. Lastly, the serum levels of the human extracellular matrix 1 protein of breast cancer patients were determined by the new system, which were overall similar to the HRP chemiluminescent system. Furthermore, this new luciferase reporter can be implemented into other ELISA systems for the purpose of increasing the assay sensitivity.

  2. Enzyme immunoassays for IgG and IgM antibodies to Toxoplasma gondii based on enhanced chemiluminescence.

    PubMed Central

    Crouch, C F

    1995-01-01

    AIMS--To evaluate the clinical performance of enzyme immunoassays for IgG and IgM antibodies to Toxoplasma gondii based on enhanced chemiluminescence. METHODS--Classification of routine clinical samples from the originating laboratories was compared with that obtained using the chemiluminescence based assays. Resolution of discordant results was achieved by testing in alternative enzyme immunoassays (IgM) or by an independent laboratory using the dye test (IgG). RESULTS--Compared with resolved data, the IgM assay was found to be highly specific (100%) with a cut off selected to give optimal performance with respect to both the early detection of specific IgM and the detection of persistent levels of specific IgM (sensitivity 98%). Compared with resolved data, the IgG assay was shown to have a sensitivity and a specificity of 99.4%. CONCLUSIONS--The Amerlite Toxo IgM assay possesses high levels of sensitivity and specificity. Assay interference due to rheumatoid factor like substances is not a problem. The Amerlite Toxo IgG assay possesses good sensitivity and specificity, but is less sensitive for the detection of seroconversion than methods detecting both IgG and IgM. PMID:7560174

  3. Micelle Enhanced Fluorimetric and Thin Layer Chromatography Densitometric Methods for the Determination of (±) Citalopram and its S – Enantiomer Escitalopram

    PubMed Central

    Taha, Elham A.; Salama, Nahla N.; Wang, Shudong

    2009-01-01

    Two sensitive and validated methods were developed for determination of a racemic mixture citalopram and its enantiomer S-(+) escitalopram. The first method was based on direct measurement of the intrinsic fluorescence of escitalopram using sodium dodecyl sulfate as micelle enhancer. This was further applied to determine escitalopram in spiked human plasma, as well as in the presence of common and co-administerated drugs. The second method was TLC densitometric based on various chiral selectors was investigated. The optimum TLC conditions were found to be sensitive and selective for identification and quantitative determination of enantiomeric purity of escitalopram in drug substance and drug products. The method can be useful to investigate adulteration of pure isomer with the cheap racemic form. PMID:19652757

  4. Micelle enhanced fluorimetric and thin layer chromatography densitometric methods for the determination of (+/-) citalopram and its S-enantiomer escitalopram.

    PubMed

    Taha, Elham A; Salama, Nahla N; Wang, Shudong

    2009-04-07

    Two sensitive and validated methods were developed for determination of a racemic mixture citalopram and its enantiomer S-(+) escitalopram. The first method was based on direct measurement of the intrinsic fluorescence of escitalopram using sodium dodecyl sulfate as micelle enhancer. This was further applied to determine escitalopram in spiked human plasma, as well as in the presence of common and co-administrated drugs. The second method was TLC densitometric based on various chiral selectors was investigated. The optimum TLC conditions were found to be sensitive and selective for identification and quantitative determination of enantiomeric purity of escitalopram in drug substance and drug products. The method can be useful to investigate adulteration of pure isomer with the cheap racemic form.

  5. A Calculation Method of Electric Distance and Subarea Division Application Based on Transmission Impedance

    NASA Astrophysics Data System (ADS)

    Fang, G. J.; Bao, H.

    2017-12-01

    The widely used method of calculating electric distances is sensitivity method. The sensitivity matrix is the result of linearization and based on the hypothesis that the active power and reactive power are decoupled, so it is inaccurate. In addition, it calculates the ratio of two partial derivatives as the relationship of two dependent variables, so there is no physical meaning. This paper presents a new method for calculating electrical distance, namely transmission impedance method. It forms power supply paths based on power flow tracing, then establishes generalized branches to calculate transmission impedances. In this paper, the target of power flow tracing is S instead of Q. Q itself has no direction and the grid delivers complex power so that S contains more electrical information than Q. By describing the power transmission relationship of the branch and drawing block diagrams in both forward and reverse directions, it can be found that the numerators of feedback parts of two block diagrams are all the transmission impedances. To ensure the distance is scalar, the absolute value of transmission impedance is defined as electrical distance. Dividing network according to the electric distances and comparing with the results of sensitivity method, it proves that the transmission impedance method can adapt to the dynamic change of system better and reach a reasonable subarea division scheme.

  6. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy.

    PubMed

    Hu, Hongyan; Huang, Xiangyi; Ren, Jicun

    2016-05-01

    Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA-based nanomaterials because of its direct recognition of natural double-stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single-strand DNA (ssDNA) fluorescent probes and fluorescent probe-double-strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (K(a)) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20-mer perfectly matched ssDNA probe and three single-base mismatched ssDNA probes with 146-mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single-base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd.

  7. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images.

    PubMed

    Christodoulidis, Argyrios; Hurtut, Thomas; Tahar, Houssem Ben; Cheriet, Farida

    2016-09-01

    Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in a subsequent lesion analysis stage. In this study, a new hybrid method for the segmentation of the smallest vessels is proposed. Line detection and perceptual organization techniques are combined in a multi-scale scheme. Small vessels are reconstructed from the perceptual-based approach via tracking and pixel painting. The segmentation was validated in a high resolution fundus image database including healthy and diabetic subjects using pixel-based as well as perceptual-based measures. The proposed method achieves 85.06% sensitivity rate, while the original multi-scale line detection method achieves 81.06% sensitivity rate for the corresponding images (p<0.05). The improvement in the sensitivity rate for the database is 6.47% when only the smallest vessels are considered (p<0.05). For the perceptual-based measure, the proposed method improves the detection of the vasculature by 7.8% against the original multi-scale line detection method (p<0.05). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty

    DOE PAGES

    Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.

    2016-09-12

    Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less

  9. Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.

    Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less

  10. Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification.

    PubMed

    Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P

    2015-09-01

    We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035  nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.

  11. Probabilistic Sensitivity Analysis for Launch Vehicles with Varying Payloads and Adapters for Structural Dynamics and Loads

    NASA Technical Reports Server (NTRS)

    McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.

    2012-01-01

    This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.

  12. Development of a Tandem Repeat-Based Polymerase Chain Displacement Reaction Method for Highly Sensitive Detection of 'Candidatus Liberibacter asiaticus'.

    PubMed

    Lou, Binghai; Song, Yaqin; RoyChowdhury, Moytri; Deng, Chongling; Niu, Ying; Fan, Qijun; Tang, Yan; Zhou, Changyong

    2018-02-01

    Huanglongbing (HLB) is one of the most destructive diseases in citrus production worldwide. Early detection of HLB pathogens can facilitate timely removal of infected citrus trees in the field. However, low titer and uneven distribution of HLB pathogens in host plants make reliable detection challenging. Therefore, the development of effective detection methods with high sensitivity is imperative. This study reports the development of a novel method, tandem repeat-based polymerase chain displacement reaction (TR-PCDR), for the detection of 'Candidatus Liberibacter asiaticus', a widely distributed HLB-associated bacterium. A uniquely designed primer set (TR2-PCDR-F/TR2-PCDR-1R) and a thermostable Taq DNA polymerase mutant with strand displacement activity were used for TR-PCDR amplification. Performed in a regular thermal cycler, TR-PCDR could produce more than two amplicons after each amplification cycle. Sensitivity of the developed TR-PCDR was 10 copies of target DNA fragment. The sensitive level was proven to be 100× higher than conventional PCR and similar to real-time PCR. Data from the detection of 'Ca. L. asiaticus' with filed samples using the above three methods also showed similar results. No false-positive TR-PCDR amplification was observed from healthy citrus samples and water controls. These results thereby illustrated that the developed TR-PCDR method can be applied to the reliable, highly sensitive, and cost-effective detection of 'Ca. L. asiaticus'.

  13. A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson's disease.

    PubMed

    Peng, Bo; Wang, Suhong; Zhou, Zhiyong; Liu, Yan; Tong, Baotong; Zhang, Tao; Dai, Yakang

    2017-06-09

    Machine learning methods have been widely used in recent years for detection of neuroimaging biomarkers in regions of interest (ROIs) and assisting diagnosis of neurodegenerative diseases. The innovation of this study is to use multilevel-ROI-features-based machine learning method to detect sensitive morphometric biomarkers in Parkinson's disease (PD). Specifically, the low-level ROI features (gray matter volume, cortical thickness, etc.) and high-level correlative features (connectivity between ROIs) are integrated to construct the multilevel ROI features. Filter- and wrapper- based feature selection method and multi-kernel support vector machine (SVM) are used in the classification algorithm. T1-weighted brain magnetic resonance (MR) images of 69 PD patients and 103 normal controls from the Parkinson's Progression Markers Initiative (PPMI) dataset are included in the study. The machine learning method performs well in classification between PD patients and normal controls with an accuracy of 85.78%, a specificity of 87.79%, and a sensitivity of 87.64%. The most sensitive biomarkers between PD patients and normal controls are mainly distributed in frontal lobe, parental lobe, limbic lobe, temporal lobe, and central region. The classification performance of our method with multilevel ROI features is significantly improved comparing with other classification methods using single-level features. The proposed method shows promising identification ability for detecting morphometric biomarkers in PD, thus confirming the potentiality of our method in assisting diagnosis of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of image recognition-based automatic hyphae detection in fungal keratitis.

    PubMed

    Wu, Xuelian; Tao, Yuan; Qiu, Qingchen; Wu, Xinyi

    2018-03-01

    The purpose of this study is to evaluate the accuracy of two methods in diagnosis of fungal keratitis, whereby one method is automatic hyphae detection based on images recognition and the other method is corneal smear. We evaluate the sensitivity and specificity of the method in diagnosis of fungal keratitis, which is automatic hyphae detection based on image recognition. We analyze the consistency of clinical symptoms and the density of hyphae, and perform quantification using the method of automatic hyphae detection based on image recognition. In our study, 56 cases with fungal keratitis (just single eye) and 23 cases with bacterial keratitis were included. All cases underwent the routine inspection of slit lamp biomicroscopy, corneal smear examination, microorganism culture and the assessment of in vivo confocal microscopy images before starting medical treatment. Then, we recognize the hyphae images of in vivo confocal microscopy by using automatic hyphae detection based on image recognition to evaluate its sensitivity and specificity and compare with the method of corneal smear. The next step is to use the index of density to assess the severity of infection, and then find the correlation with the patients' clinical symptoms and evaluate consistency between them. The accuracy of this technology was superior to corneal smear examination (p < 0.05). The sensitivity of the technology of automatic hyphae detection of image recognition was 89.29%, and the specificity was 95.65%. The area under the ROC curve was 0.946. The correlation coefficient between the grading of the severity in the fungal keratitis by the automatic hyphae detection based on image recognition and the clinical grading is 0.87. The technology of automatic hyphae detection based on image recognition was with high sensitivity and specificity, able to identify fungal keratitis, which is better than the method of corneal smear examination. This technology has the advantages when compared with the conventional artificial identification of confocal microscope corneal images, of being accurate, stable and does not rely on human expertise. It was the most useful to the medical experts who are not familiar with fungal keratitis. The technology of automatic hyphae detection based on image recognition can quantify the hyphae density and grade this property. Being noninvasive, it can provide an evaluation criterion to fungal keratitis in a timely, accurate, objective and quantitative manner.

  15. Chemiluminescence Resonance Energy Transfer-based Detection for Microchip Electrophoresis

    PubMed Central

    Huang, Yong; Shi, Ming; Liu, Rongjun

    2010-01-01

    Since the channels in micro- and nanofluidic devices are extremely small, a sensitive detection is required following microchip electrophoresis (MCE). This work describes a highly sensitive and yet universal detection scheme based on chemiluminescence resonance energy transfer (CRET) for MCE. It was found that an efficient CRET occurred between a luminol donor and a CdTe quantum dot (QD) acceptor in the luminol-NaBrO-QD system, and that it was sensitively suppressed by the presence of certain organic compounds of biological interest including biogenic amines and thiols, amino acids, organic acids, and steroids. These findings allowed developing sensitive MCE-CL assays for the tested compounds. The proposed MCE-CL methods showed desired analytical figures of merit such as a wide concentration range of linear response. Detection limits obtained were ~10−9 M for biogenic amines including dopamine and epinephrine, and ~ 10−8 M for biogenic thiols (e.g. glutathione and acetylcysteine), organic acids (i.e. ascorbic acid and uric acid), estrogens, and native amino acids. These were 10 to 1000 times more sensitive than those of previously reported MCE-based methods with chemiluminescence, electrochemical, or laser induced fluorescence detection for quantifying corresponding compounds. To evaluate the applicability of the present MCE-CL method for analyzing real biological samples, it was used to determine amino acids in individual human red blood cells. Nine amino acids including Lys, Ser, Ala, Glu, Trp, etc. were detected. The contents ranged from 3 to 31 amol /cell. The assay proved to be simple, quick, reproducible, and very sensitive. PMID:20121202

  16. Highly sensitive catalytic spectrophotometric determination of ruthenium

    NASA Astrophysics Data System (ADS)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  17. Efficacy of the FilmArray blood culture identification panel for direct molecular diagnosis of infectious diseases from samples other than blood.

    PubMed

    Micó, Miquel; Navarro, Ferran; de Miniac, Daniela; González, Yésica; Brell, Albert; López, Cristina; Sánchez-Reus, Ferran; Mirelis, Beatriz; Coll, Pere

    2015-12-01

    Molecular-based techniques reduce the delay in diagnosing infectious diseases and therefore contribute to better patient outcomes. We assessed the FilmArray blood culture identification (BCID) panel (Biofire Diagnostics/bioMérieux) directly on clinical specimens other than blood: cerebrospinal, joint, pleural and ascitic fluids, bronchoscopy samples and abscesses. We compared the results from 88 samples obtained by culture-based techniques. The percentage of agreement between the two methods was 75 % with a Cohen κ value of 0.51. Global sensitivity and specificity using the FilmArray BCID panel were 71 and 97 %, respectively. Sensitivity was poorer in samples with a low bacterial load, such as ascitic and pleural fluids (25 %), whereas the sensitivity for abscess samples was high (89 %). These findings suggest that the FilmArray BCID panel could be useful to perform microbiological diagnosis directly from samples other than positive blood cultures, as it offers acceptable sensitivity and moderate agreement with conventional microbiological methods. Nevertheless, cost-benefit studies should be performed before introducing this method into algorithms for microbiological diagnostics.

  18. Graphene oxide-coated stir bar sorptive extraction of trace aflatoxins from soy milk followed by high performance liquid chromatography-laser-induced fluorescence detection.

    PubMed

    Ma, Haiyan; Ran, Congcong; Li, Mengjiao; Gao, Jinglin; Wang, Xinyu; Zhang, Lina; Bian, Jing; Li, Junmei; Jiang, Ye

    2018-04-01

    Mycotoxins are potential food pollutants produced by fungi. Among them, aflatoxins (AFs) are the most toxic. Therefore, AFs were selected as models, and a sensitive, simple and green graphene oxide (GO)-based stir bar sorptive extraction (SBSE) method was developed for extraction and determination of AFs with high performance liquid chromatography-laser-induced fluorescence detector (HPLC-LIF). This method improved the sensitivity of AFs detection and solved the deposition difficulty of the direct use of GO as adsorbent. Several parameters including a spiked amount of NaCl, stirring rate, extraction time and desorption time were investigated. Under optimal conditions, the quantitative method had low limits of detection of 2.4-8.0 pg/mL, which were better than some reported AFs analytical methods. The developed method has been applied to soy milk samples with good recoveries ranging from 80.5 to 102.3%. The prepared GO-based SBSE can be used as a sensitive screening technique for detecting AFs in soy milk.

  19. Methods of determining complete sensor requirements for autonomous mobility

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2012-01-01

    A method of determining complete sensor requirements for autonomous mobility of an autonomous system includes computing a time variation of each behavior of a set of behaviors of the autonomous system, determining mobility sensitivity to each behavior of the autonomous system, and computing a change in mobility based upon the mobility sensitivity to each behavior and the time variation of each behavior. The method further includes determining the complete sensor requirements of the autonomous system through analysis of the relative magnitude of the change in mobility, the mobility sensitivity to each behavior, and the time variation of each behavior, wherein the relative magnitude of the change in mobility, the mobility sensitivity to each behavior, and the time variation of each behavior are characteristic of the stability of the autonomous system.

  20. Qualitative and quantitative evaluation of a local lymph node assay based on ex vivo interleukin-2 production.

    PubMed

    Azam, Philippe; Peiffer, Jean-Luc; Ourlin, Jean-Claude; Bonnet, Pierre-Antoine; Tissier, Marie-Hélène; Vian, Laurence; Fabre, Isabelle

    2005-01-15

    The local lymph node assay (LLNA) is a regular method for the detection of sensitizing chemicals in mice which measures the incorporation of tritiated thymidine in lymph node cells. We have evaluated an alternative to this method based on the interleukin-2 (IL-2) production of lymph node cells. At the mRNA level, no change in the IL-2 gene expression level was detected by real-time PCR analysis. At the protein level, various experimental conditions were checked in order to improve the irritant versus sensitizer discrimination with a restricted set of prototypic compounds. In particular, the use of phytohemagglutinin A (PHA) in an ex vivo cell culture step showed an improvement of both signal and discrimination. In these optimised conditions, a panel of irritants and potency-graded sensitizers was used to assess the performance of the modified method. IFN-gamma production was used as a positive control. For each compound, a dose-response was performed and stimulation indexes (SI) were determined. Effective concentrations (EC) for each sensitizers were then extracted and compared to the literature data of the regular LLNA. The IL-2-based LLNA showed similar performances at both qualitative and quantitative levels compared to regular LLNA.

  1. Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data.

    PubMed

    Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z

    2017-03-01

    Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. A highly sensitive monoclonal antibody based biosensor for quantifying 3-5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples.

    PubMed

    Li, Xin; Kaattari, Stephen L; Vogelbein, Mary A; Vadas, George G; Unger, Michael A

    2016-03-01

    Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC 50 values between 1.68-31 μg/L (ppb). 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3-5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC-MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples.

  3. Integrated Droplet-Based Microextraction with ESI-MS for Removal of Matrix Interference in Single-Cell Analysis.

    PubMed

    Zhang, Xiao-Chao; Wei, Zhen-Wei; Gong, Xiao-Yun; Si, Xing-Yu; Zhao, Yao-Yao; Yang, Cheng-Dui; Zhang, Si-Chun; Zhang, Xin-Rong

    2016-04-29

    Integrating droplet-based microfluidics with mass spectrometry is essential to high-throughput and multiple analysis of single cells. Nevertheless, matrix effects such as the interference of culture medium and intracellular components influence the sensitivity and the accuracy of results in single-cell analysis. To resolve this problem, we developed a method that integrated droplet-based microextraction with single-cell mass spectrometry. Specific extraction solvent was used to selectively obtain intracellular components of interest and remove interference of other components. Using this method, UDP-Glc-NAc, GSH, GSSG, AMP, ADP and ATP were successfully detected in single MCF-7 cells. We also applied the method to study the change of unicellular metabolites in the biological process of dysfunctional oxidative phosphorylation. The method could not only realize matrix-free, selective and sensitive detection of metabolites in single cells, but also have the capability for reliable and high-throughput single-cell analysis.

  4. Computer-based objective quantitative assessment of pulmonary parenchyma via x-ray CT

    NASA Astrophysics Data System (ADS)

    Uppaluri, Renuka; McLennan, Geoffrey; Sonka, Milan; Hoffman, Eric A.

    1998-07-01

    This paper is a review of our recent studies using a texture- based tissue characterization method called the Adaptive Multiple Feature Method. This computerized method is automated and performs tissue classification based upon the training acquired on a set of representative examples. The AMFM has been applied to several different discrimination tasks including normal subjects, subjects with interstitial lung disease, smokers, asbestos-exposed subjects, and subjects with cystic fibrosis. The AMFM has also been applied to data acquired using different scanners and scanning protocols. The AMFM has shown to be successful and better than other existing techniques in discriminating the tissues under consideration. We demonstrate that the AMFM is considerably more sensitive and specific in characterizing the lung, especially in the presence of mixed pathology, as compared to more commonly used methods. Evidence is presented suggesting that the AMFM is highly sensitive to some of the earliest disease processes.

  5. Phenotypic detection of broad-spectrum beta-lactamases in microbiological practice

    PubMed Central

    Sedlakova, Miroslava Htoutou; Hanulik, Vojtech; Chroma, Magdalena; Hricova, Kristyna; Kolar, Milan; Latal, Tomas; Schaumann, Reiner; Rodloff, Arne C.

    2011-01-01

    Summary Background Enterobacteriaceae producing ESBL and AmpC enzymes can be associated with failure of antibiotic therapy and related morbidity and mortality. Their routine detection in microbiology laboratories is still a problem. The aim of this study was to compare the sensitivity of selected phenotypic methods. Material/Methods A total of 106 strains of the Enterobacteriaceae family were tested, in which molecular biology methods confirmed the presence of genes encoding ESBL or AmpC. In ESBL-positive strains, the sensitivity of the ESBL Etest (AB Biodisk) and a modified double-disk synergy test (DDST) were evaluated. AmpC strains were tested by a modified AmpC disk method using 3-aminophenylboronic acid. For simultaneous detection of ESBL and AmpC, the microdilution method with a modified set of antimicrobial agents was used. Results The sensitivity of the ESBL Etest was 95%; the modified DDST yielded 100% sensitivity for ESBL producers and the AmpC test correctly detected 95% of AmpC-positive strains. The sensitivity of the modified microdilution method was 87% and 95% for ESBL and AmpC beta lactamases, respectively. Conclusions The detection of ESBL and AmpC beta lactamases should be based on specific phenotypic methods such as the modified DDST, ESBL Etest, AmpC disk test and the modified microdilution method. PMID:21525803

  6. A simple method to measure critical angles for high-sensitivity differential refractometry.

    PubMed

    Zilio, S C

    2012-01-16

    A total internal reflection-based differencial refractometer, capable of measuring the real and imaginary parts of the complex refractive index in real time, is presented. The device takes advantage of the phase difference acquired by s- and p-polarized light to generate an easily detectable minimum at the reflected profile. The method allows to sensitively measuring transparent and turbid liquid samples.

  7. Estimation of biomedical optical properties by simultaneous use of diffuse reflectometry and photothermal radiometry: investigation of light propagation models

    NASA Astrophysics Data System (ADS)

    Fonseca, E. S. R.; de Jesus, M. E. P.

    2007-07-01

    The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.

  8. Carbon dots based fluorescent sensor for sensitive determination of hydroquinone.

    PubMed

    Ni, Pengjuan; Dai, Haichao; Li, Zhen; Sun, Yujing; Hu, Jingting; Jiang, Shu; Wang, Yilin; Li, Zhuang

    2015-11-01

    In this paper, a novel biosensor based on Carbon dots (C-dots) for sensitive detection of hydroquinone (H2Q) is reported. It is interesting to find that the fluorescence of the C-dots could be quenched by H2Q directly. The possible quenching mechanism is proposed, which shows that the quenching effect may be caused by the electron transfer from C-dots to oxidized H2Q-quinone. Based on the above principle, a novel C-dots based fluorescent probe has been successfully applied to detect H2Q. Under the optimal condition, detection limit down to 0.1 μM is obtained, which is far below U.S. Environmental Protection Agency estimated wastewater discharge limit of 0.5 mg/L. Moreover, the proposed method shows high selectivity for H2Q over a number of potential interfering species. Finally, several water samples spiked with H2Q are analyzed utilizing the sensing method with satisfactory recovery. The proposed method is simple with high sensitivity and excellent selectivity, which provides a new approach for the detection of various analytes that can be transformed into quinone. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Benchmark On Sensitivity Calculation (Phase III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Tatiana; Laville, Cedric; Dyrda, James

    2012-01-01

    The sensitivities of the keff eigenvalue to neutron cross sections have become commonly used in similarity studies and as part of the validation algorithm for criticality safety assessments. To test calculations of the sensitivity coefficients, a benchmark study (Phase III) has been established by the OECD-NEA/WPNCS/EG UACSA (Expert Group on Uncertainty Analysis for Criticality Safety Assessment). This paper presents some sensitivity results generated by the benchmark participants using various computational tools based upon different computational methods: SCALE/TSUNAMI-3D and -1D, MONK, APOLLO2-MORET 5, DRAGON-SUSD3D and MMKKENO. The study demonstrates the performance of the tools. It also illustrates how model simplifications impactmore » the sensitivity results and demonstrates the importance of 'implicit' (self-shielding) sensitivities. This work has been a useful step towards verification of the existing and developed sensitivity analysis methods.« less

  10. Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.

    1998-01-01

    This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.

  11. Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Mai, J.; Tolson, B.

    2017-12-01

    The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method's independency of the convergence testing method, we applied it to two widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991) and the variance-based Sobol' method (Solbol' 1993). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an efficient way. The appealing feature of this new technique is the necessity of no further model evaluation and therefore enables checking of already processed sensitivity results. This is one step towards reliable and transferable, published sensitivity results.

  12. DIVERSITY: A new method for evaluating sensitivity of groundwater to contamination

    NASA Astrophysics Data System (ADS)

    Ray, J. A.; O'Dell, P. W.

    1993-12-01

    This study outlines an improved method, DIVERSITY, for delineating and rating groundwater sensitivity. It is an acronym for DIspersion/VElocity-Rated SensitivITY, which is based on an assessment of three aquifer characteristics: recharge potential, flow velocity, and flow directions. The primary objective of this method is to produce sensitivity maps at the county or state scale that illustrate intrinsic potential for contamination of the uppermost aquifer. Such maps can be used for recognition of aquifer sensitivity and for protection of groundwater quality. We suggest that overriding factors that strongly affect one or more of the three basic aquifer characteristics may systematically elevate or lower the sensitivity rating. The basic method employs a three-step procedure: (1) Hydrogeologic settings are delineated on the basis of geology and groundwater recharge/discharge position within a terrane. (2) A sensitivity envelope or model for each setting is outlined on a three-component rating graph. (3) Sensitivity ratings derived from the envelope are extrapolated to hydrogeologic setting polygons utilizing overriding and key factors, when appropriate. The three-component sensitivity rating graph employs two logarithmic scales and a relative area scale on which measured and estimated values may be plotted. The flow velocity scale ranging from 0.01 to more than 10,000 m/d is the keystone of the rating graph. Whenever possible, actual time-of-travel values are plotted on the velocity scale to bracket the position of a sensitivity envelope. The DIVERSITY method was developed and tested for statewide use in Kentucky, but we believe it is also practical and applicable for use in almost any other area.

  13. Qualitative Methods in Field Research: An Indonesian Experience in Community Based Practice.

    ERIC Educational Resources Information Center

    Lysack, Catherine L.; Krefting, Laura

    1994-01-01

    Cross-cultural evaluation of a community-based rehabilitation project in Indonesia used three methods: focus groups, questionnaires, and key informant interviews. A continuous cyclical approach to data collection and concern for cultural sensitivity increased the rigor of the research. (SK)

  14. Novel fabrication of flexible graphene-based chemical sensors with heaters using soft lithographic patterning method.

    PubMed

    Jung, Min Wook; Myung, Sung; Song, Wooseok; Kang, Min-A; Kim, Sung Ho; Yang, Cheol-Soo; Lee, Sun Sook; Lim, Jongsun; Park, Chong-Yun; Lee, Jeong-O; An, Ki-Seok

    2014-08-27

    We have fabricated graphene-based chemical sensors with flexible heaters for the highly sensitive detection of specific gases. We believe that increasing the temperature of the graphene surface significantly enhanced the electrical signal change of the graphene-based channel, and reduced the recovery time needed to obtain a normal state of equilibrium. In addition, a simple and efficient soft lithographic patterning process was developed via surface energy modification for advanced, graphene-based flexible devices, such as gas sensors. As a proof of concept, we demonstrated the high sensitivity of NO2 gas sensors based on graphene nanosheets. These devices were fabricated using a simple soft-lithographic patterning method, where flexible graphene heaters adjacent to the channel of sensing graphene were utilized to control graphene temperature.

  15. Estimation of beam material random field properties via sensitivity-based model updating using experimental frequency response functions

    NASA Astrophysics Data System (ADS)

    Machado, M. R.; Adhikari, S.; Dos Santos, J. M. C.; Arruda, J. R. F.

    2018-03-01

    Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson's ratio, Young's modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.

  16. Reduced size first-order subsonic and supersonic aeroelastic modeling

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1990-01-01

    Various aeroelastic, aeroservoelastic, dynamic-response, and sensitivity analyses are based on a time-domain first-order (state-space) formulation of the equations of motion. The formulation of this paper is based on the minimum-state (MS) aerodynamic approximation method, which yields a low number of aerodynamic augmenting states. Modifications of the MS and the physical weighting procedures make the modeling method even more attractive. The flexibility of constraint selection is increased without increasing the approximation problem size; the accuracy of dynamic residualization of high-frequency modes is improved; and the resulting model is less sensitive to parametric changes in subsequent analyses. Applications to subsonic and supersonic cases demonstrate the generality, flexibility, accuracy, and efficiency of the method.

  17. Failure Bounding And Sensitivity Analysis Applied To Monte Carlo Entry, Descent, And Landing Simulations

    NASA Technical Reports Server (NTRS)

    Gaebler, John A.; Tolson, Robert H.

    2010-01-01

    In the study of entry, descent, and landing, Monte Carlo sampling methods are often employed to study the uncertainty in the designed trajectory. The large number of uncertain inputs and outputs, coupled with complicated non-linear models, can make interpretation of the results difficult. Three methods that provide statistical insights are applied to an entry, descent, and landing simulation. The advantages and disadvantages of each method are discussed in terms of the insights gained versus the computational cost. The first method investigated was failure domain bounding which aims to reduce the computational cost of assessing the failure probability. Next a variance-based sensitivity analysis was studied for the ability to identify which input variable uncertainty has the greatest impact on the uncertainty of an output. Finally, probabilistic sensitivity analysis is used to calculate certain sensitivities at a reduced computational cost. These methods produce valuable information that identifies critical mission parameters and needs for new technology, but generally at a significant computational cost.

  18. Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification.

    PubMed

    Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J

    2018-07-01

    Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

  19. Iodinated Al(III)-based phthalocyanines are promising sensitizers for dye-sensitized solar cells; a theoretical comparison between Zn(II), Mg(II), and Al(III)-based phthalocyanine sensitizers.

    PubMed

    Yang, Li-Na; Sun, Zhu-Zhu; Chen, Shi-Lu; Li, Ze-Sheng

    2014-02-24

    To design efficient dyes for dye-sensitized solar cells (DSSCs), using a Zn-coordinated phthalocyanine (TT7) as the prototype, a series of phthalocyanine dyes (Pcs) with different metal ions and peripheral/axial groups have been investigated by means of density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Computational results show that the iodinated Al-based dye with a peripheral amino group (Al-I-NH2-Pc) exhibits the largest redshift in the maximum absorbance (λ(max)). In addition, Al-based dyes have appropriate energy-level arrangements of frontier orbitals to keep excellent balance between electron injection and regeneration of oxidized dyes. Further, it has been found that the intermolecular π-staking interaction in Al-I-Pc molecules is weaker than the other metal-based Pcs, which may effectively reduce dye aggregation on the semi-conductor surface. All these results suggest iodinated Al-based Pcs (Al-I-Pcs) to be potentially promising sensitizers in DSSCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Survey of methods for calculating sensitivity of general eigenproblems

    NASA Technical Reports Server (NTRS)

    Murthy, Durbha V.; Haftka, Raphael T.

    1987-01-01

    A survey of methods for sensitivity analysis of the algebraic eigenvalue problem for non-Hermitian matrices is presented. In addition, a modification of one method based on a better normalizing condition is proposed. Methods are classified as Direct or Adjoint and are evaluated for efficiency. Operation counts are presented in terms of matrix size, number of design variables and number of eigenvalues and eigenvectors of interest. The effect of the sparsity of the matrix and its derivatives is also considered, and typical solution times are given. General guidelines are established for the selection of the most efficient method.

  1. The use of carbon black-TiO2 composite prepared using solid state method as counter electrode and E. conferta as sensitizer for dye-sensitized solar cell (DSSC) applications

    NASA Astrophysics Data System (ADS)

    Jaafar, Hidayani; Ahmad, Zainal Arifin; Ain, Mohd Fadzil

    2018-05-01

    In this paper, counter electrodes based on carbon black (CB)-TiO2 composite are proposed as a cost-effective alternative to conventional Pt counter electrodes used in dye-sensitized solar cell (DSSC) applications. CB-TiO2 composite counter electrodes with different weight percentages of CB were prepared using the solid state method and coated onto fluorine-doped tin oxide (FTO) glass using doctor blade method while Eleiodoxa conferta (E. conferta) and Nb-doped TiO2 were used as sensitizer and photoanode, respectively, with electrolyte containing I-/I-3 redox couple. The experimental results revealed that the CB-TiO2 composite influenced the photovoltaic performance by enhancing the electrocatalytic activity. As the amount of CB increased, the catalytic activity improved due to the increase in surface area which then led to low charge-transfer resistance (RCT) at the electrolyte/CB electrode interface. Due to the use of the modified photoanode together with natural dye sensitizers, the counter electrode based on 15 wt% CB-TiO2 composite was able to produce the highest energy conversion efficiency (2.5%) making it a viable alternative counter electrode.

  2. Functional-diversity indices can be driven by methodological choices and species richness.

    PubMed

    Poos, Mark S; Walker, Steven C; Jackson, Donald A

    2009-02-01

    Functional diversity is an important concept in community ecology because it captures information on functional traits absent in measures of species diversity. One popular method of measuring functional diversity is the dendrogram-based method, FD. To calculate FD, a variety of methodological choices are required, and it has been debated about whether biological conclusions are sensitive to such choices. We studied the probability that conclusions regarding FD were sensitive, and that patterns in sensitivity were related to alpha and beta components of species richness. We developed a randomization procedure that iteratively calculated FD by assigning species into two assemblages and calculating the probability that the community with higher FD varied across methods. We found evidence of sensitivity in all five communities we examined, ranging from a probability of sensitivity of 0 (no sensitivity) to 0.976 (almost completely sensitive). Variations in these probabilities were driven by differences in alpha diversity between assemblages and not by beta diversity. Importantly, FD was most sensitive when it was most useful (i.e., when differences in alpha diversity were low). We demonstrate that trends in functional-diversity analyses can be largely driven by methodological choices or species richness, rather than functional trait information alone.

  3. Mass Spectrometry for Paper-Based Immunoassays: Toward On-Demand Diagnosis.

    PubMed

    Chen, Suming; Wan, Qiongqiong; Badu-Tawiah, Abraham K

    2016-05-25

    Current analytical methods, either point-of-care or centralized detection, are not able to meet recent demands of patient-friendly testing and increased reliability of results. Here, we describe a two-point separation on-demand diagnostic strategy based on a paper-based mass spectrometry immunoassay platform that adopts stable and cleavable ionic probes as mass reporter; these probes make possible sensitive, interruptible, storable, and restorable on-demand detection. In addition, a new touch paper spray method was developed for on-chip, sensitive, and cost-effective analyte detection. This concept is successfully demonstrated via (i) the detection of Plasmodium falciparum histidine-rich protein 2 antigen and (ii) multiplexed and simultaneous detection of cancer antigen 125 and carcinoembryonic antigen.

  4. Formaldehyde: a comparative evaluation of four monitoring methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyne, L.B.; Cook, R.E.; Mann, J.R.

    1985-10-01

    The performances of four formaldehyde monitoring devices were compared in a series of laboratory and field experiments. The devices evaluated included the DuPont C-60 formaldehyde badge, the SKC impregnated charcoal tube, an impinger/polarographic method and the MDA Lion formaldemeter. The major evaluation parameters included: concentration range, effects of humidity, sample storage, air velocity, accuracy, precision, interferences from methanol, styrene, 1,3-butadiene, sulfur dioxide and dimethylamine. Based on favorable performances in the laboratory and field, each device was useful for monitoring formaldehyde in the industrial work environment; however, these devices were not evaluated for residential exposure assessment. The impinger/polarographic method had amore » sensitivity of 0.06 ppm, based on a 20-liter air sample volume, and accurately determined the short-term excursion limit (STEL). It was useful for area monitoring but was not very practical for time-weighted average (TWA) personal monitoring measurements. The DuPont badge had a sensitivity of 2.8 ppm-hr and accurately and simply determined TWA exposures. It was not sensitive enough to measure STEL exposures, however, and positive interferences resulted if 1,3-butadiene was present. The SKC impregnated charcoal tube measured both TWA and STEL concentrations and had a sensitivity of 0.06 ppm based on a 25-liter air sample volume. Lightweight and simple to use, the MDA Lion formaldemeter had a sensitivity of 0.2 ppm. It had the advantage of giving an instantaneous reading in the field; however, it must be used with caution because it responded to many interferences. The method of choice depended on the type of sampling required, field conditions encountered during sampling and an understanding of the limitations of each monitoring device.« less

  5. Singularity-sensitive gauge-based radar rainfall adjustment methods for urban hydrological applications

    NASA Astrophysics Data System (ADS)

    Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.

    2015-09-01

    Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system's dynamics, particularly of peak runoff flows.

  6. Thermodynamic heuristics with case-based reasoning: combined insights for RNA pseudoknot secondary structure.

    PubMed

    Al-Khatib, Ra'ed M; Rashid, Nur'Aini Abdul; Abdullah, Rosni

    2011-08-01

    The secondary structure of RNA pseudoknots has been extensively inferred and scrutinized by computational approaches. Experimental methods for determining RNA structure are time consuming and tedious; therefore, predictive computational approaches are required. Predicting the most accurate and energy-stable pseudoknot RNA secondary structure has been proven to be an NP-hard problem. In this paper, a new RNA folding approach, termed MSeeker, is presented; it includes KnotSeeker (a heuristic method) and Mfold (a thermodynamic algorithm). The global optimization of this thermodynamic heuristic approach was further enhanced by using a case-based reasoning technique as a local optimization method. MSeeker is a proposed algorithm for predicting RNA pseudoknot structure from individual sequences, especially long ones. This research demonstrates that MSeeker improves the sensitivity and specificity of existing RNA pseudoknot structure predictions. The performance and structural results from this proposed method were evaluated against seven other state-of-the-art pseudoknot prediction methods. The MSeeker method had better sensitivity than the DotKnot, FlexStem, HotKnots, pknotsRG, ILM, NUPACK and pknotsRE methods, with 79% of the predicted pseudoknot base-pairs being correct.

  7. Aptamer-Based Biosensors for Antibiotic Detection: A Review.

    PubMed

    Mehlhorn, Asol; Rahimi, Parvaneh; Joseph, Yvonne

    2018-06-11

    Antibiotic resistance and, accordingly, their pollution because of uncontrolled usage has emerged as a serious problem in recent years. Hence, there is an increased demand to develop robust, easy, and sensitive methods for rapid evaluation of antibiotics and their residues. Among different analytical methods, the aptamer-based biosensors (aptasensors) have attracted considerable attention because of good selectivity, specificity, and sensitivity. This review gives an overview about recently-developed aptasensors for antibiotic detection. The use of various aptamer assays to determine different groups of antibiotics, like β-lactams, aminoglycosides, anthracyclines, chloramphenicol, (fluoro)quinolones, lincosamide, tetracyclines, and sulfonamides are presented in this paper.

  8. Small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry.

    PubMed

    Wang, Shinn-Fwu; Chiu, Ming-Hung; Chen, Wei-Wu; Kao, Fu-Hsi; Chang, Rong-Seng

    2009-05-01

    A small-displacement sensing system based on multiple total internal reflections in heterodyne interferometry is proposed. In this paper, a small displacement can be obtained only by measuring the variation in phase difference between s- and p-polarization states for the total internal reflection effect. In order to improve the sensitivity, we increase the number of total internal reflections by using a parallelogram prism. The theoretical resolution of the method is better than 0.417 nm. The method has some merits, e.g., high resolution, high sensitivity, and real-time measurement. Also, its feasibility is demonstrated.

  9. Sensitivity Analysis of Multicriteria Choice to Changes in Intervals of Value Tradeoffs

    NASA Astrophysics Data System (ADS)

    Podinovski, V. V.

    2018-03-01

    An approach to sensitivity (stability) analysis of nondominated alternatives to changes in the bounds of intervals of value tradeoffs, where the alternatives are selected based on interval data of criteria tradeoffs is proposed. Methods of computations for the analysis of sensitivity of individual nondominated alternatives and the set of such alternatives as a whole are developed.

  10. Phenotypic detection of broad-spectrum beta-lactamases in microbiological practice.

    PubMed

    Htoutou Sedlakova, Miroslava; Hanulik, Vojtech; Chroma, Magdalena; Hricova, Kristyna; Kolar, Milan; Latal, Tomas; Schaumann, Reiner; Rodloff, Arne C

    2011-05-01

    Enterobacteriaceae producing ESBL and AmpC enzymes can be associated with failure of antibiotic therapy and related morbidity and mortality. Their routine detection in microbiology laboratories is still a problem. The aim of this study was to compare the sensitivity of selected phenotypic methods. A total of 106 strains of the Enterobacteriaceae family were tested, in which molecular biology methods confirmed the presence of genes encoding ESBL or AmpC. In ESBL-positive strains, the sensitivity of the ESBL Etest (AB Biodisk) and a modified double-disk synergy test (DDST) were evaluated. AmpC strains were tested by a modified AmpC disk method using 3-aminophenylboronic acid. For simultaneous detection of ESBL and AmpC, the microdilution method with a modified set of antimicrobial agents was used. The sensitivity of the ESBL Etest was 95%; the modified DDST yielded 100% sensitivity for ESBL producers and the AmpC test correctly detected 95% of AmpC-positive strains. The sensitivity of the modified microdilution method was 87% and 95% for ESBL and AmpC beta lactamases, respectively. The detection of ESBL and AmpC beta lactamases should be based on specific phenotypic methods such as the modified DDST, ESBL Etest, AmpC disk test and the modified microdilution method.

  11. Highly Sensitive GMO Detection Using Real-Time PCR with a Large Amount of DNA Template: Single-Laboratory Validation.

    PubMed

    Mano, Junichi; Hatano, Shuko; Nagatomi, Yasuaki; Futo, Satoshi; Takabatake, Reona; Kitta, Kazumi

    2018-03-01

    Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.

  12. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows themore » dye molecules to remain electrochemically addressable.« less

  13. The Volatility of Data Space: Topology Oriented Sensitivity Analysis

    PubMed Central

    Du, Jing; Ligmann-Zielinska, Arika

    2015-01-01

    Despite the difference among specific methods, existing Sensitivity Analysis (SA) technologies are all value-based, that is, the uncertainties in the model input and output are quantified as changes of values. This paradigm provides only limited insight into the nature of models and the modeled systems. In addition to the value of data, a potentially richer information about the model lies in the topological difference between pre-model data space and post-model data space. This paper introduces an innovative SA method called Topology Oriented Sensitivity Analysis, which defines sensitivity as the volatility of data space. It extends SA into a deeper level that lies in the topology of data. PMID:26368929

  14. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics.

    PubMed

    Lee, Jaehong; Kwon, Hyukho; Seo, Jungmok; Shin, Sera; Koo, Ja Hoon; Pang, Changhyun; Son, Seungbae; Kim, Jae Hyung; Jang, Yong Hoon; Kim, Dae Eun; Lee, Taeyoon

    2015-04-17

    A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials. The pressure sensor exhibits superior sensitivity, very fast response time, and high stability, compared with previous textile-based pressure sensors. By using a weaving method, the pressure sensor can be applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comparisons of Robustness and Sensitivity between Cancer and Normal Cells by Microarray Data

    PubMed Central

    Chu, Liang-Hui; Chen, Bor-Sen

    2008-01-01

    Robustness is defined as the ability to uphold performance in face of perturbations and uncertainties, and sensitivity is a measure of the system deviations generated by perturbations to the system. While cancer appears as a robust but fragile system, few computational and quantitative evidences demonstrate robustness tradeoffs in cancer. Microarrays have been widely applied to decipher gene expression signatures in human cancer research, and quantification of global gene expression profiles facilitates precise prediction and modeling of cancer in systems biology. We provide several efficient computational methods based on system and control theory to compare robustness and sensitivity between cancer and normal cells by microarray data. Measurement of robustness and sensitivity by linear stochastic model is introduced in this study, which shows oscillations in feedback loops of p53 and demonstrates robustness tradeoffs that cancer is a robust system with some extreme fragilities. In addition, we measure sensitivity of gene expression to perturbations in other gene expression and kinetic parameters, discuss nonlinear effects in feedback loops of p53 and extend our method to robustness-based cancer drug design. PMID:19259409

  16. System parameter identification from projection of inverse analysis

    NASA Astrophysics Data System (ADS)

    Liu, K.; Law, S. S.; Zhu, X. Q.

    2017-05-01

    The output of a system due to a change of its parameters is often approximated with the sensitivity matrix from the first order Taylor series. The system output can be measured in practice, but the perturbation in the system parameters is usually not available. Inverse sensitivity analysis can be adopted to estimate the unknown system parameter perturbation from the difference between the observation output data and corresponding analytical output data calculated from the original system model. The inverse sensitivity analysis is re-visited in this paper with improvements based on the Principal Component Analysis on the analytical data calculated from the known system model. The identification equation is projected into a subspace of principal components of the system output, and the sensitivity of the inverse analysis is improved with an iterative model updating procedure. The proposed method is numerical validated with a planar truss structure and dynamic experiments with a seven-storey planar steel frame. Results show that it is robust to measurement noise, and the location and extent of stiffness perturbation can be identified with better accuracy compared with the conventional response sensitivity-based method.

  17. Biomimetic self-templating optical structures fabricated by genetically engineered M13 bacteriophage.

    PubMed

    Kim, Won-Geun; Song, Hyerin; Kim, Chuntae; Moon, Jong-Sik; Kim, Kyujung; Lee, Seung-Wuk; Oh, Jin-Woo

    2016-11-15

    Here, we describe a highly sensitive and selective surface plasmon resonance sensor system by utilizing self-assembly of genetically engineered M13 bacteriophage. About 2700 copies of genetically expressed peptide copies give superior selectivity and sensitivity to M13 phage-based SPR sensor. Furthermore, the sensitivity of the M13 phage-based SPR sensor was enhanced due to the aligning of receptor matrix in specific direction. Incorporation of specific binding peptide (His Pro Gln: HPQ) gives M13 bacteriophage high selectivity for the streptavidin. Our M13 phage-based SPR sensor takes advantage of simplicity of self-assembly compared with relatively complex photolithography techniques or chemical conjugations. Additionally, designed structure which is composed of functionalized M13 bacteriophage can simultaneously improve the sensitivity and selectivity of SPR sensor evidently. By taking advantages of the genetic engineering and self-assembly, we propose the simple method for fabricating novel M13 phage-based SPR sensor system which has a high sensitivity and high selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  19. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags.

    PubMed

    Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.

  20. Sensitive enumeration of Listeria monocytogenes and other Listeria species in various naturally contaminated matrices using a membrane filtration method.

    PubMed

    Barre, Léna; Brasseur, Emilie; Doux, Camille; Lombard, Bertrand; Besse, Nathalie Gnanou

    2015-06-01

    For the enumeration of Listeria monocytogenes (L. monocytogenes) in food, a sensitive enumeration method has been recently developed. This method is based on a membrane filtration of the food suspension followed by transfer of the filter on a selective medium to enumerate L. monocytogenes. An evaluation of this method was performed with several categories of foods naturally contaminated with L. monocytogenes. The results obtained with this technique were compared with those obtained from the modified reference EN ISO 11290-2 method for the enumeration of L. monocytogenes in food, and are found to provide more precise results. In most cases, the filtration method enabled to examine a greater quantity of food thus greatly improving the sensitivity of the enumeration. However, it was hardly applicable to some food categories because of filtration problems and background microbiota interference. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food.

    PubMed

    von Bargen, Christoph; Brockmeyer, Jens; Humpf, Hans-Ulrich

    2014-10-01

    Fraudulent blending of food products with meat from undeclared species is a problem on a global scale, as exemplified by the European horse meat scandal in 2013. Routinely used methods such as ELISA and PCR can suffer from limited sensitivity or specificity when processed food samples are analyzed. In this study, we have developed an optimized method for the detection of horse and pork in different processed food matrices using MRM and MRM(3) detection of species-specific tryptic marker peptides. Identified marker peptides were sufficiently stable to resist thermal processing of different meat products and thus allow the sensitive and specific detection of pork or horse in processed food down to 0.24% in a beef matrix system. In addition, we were able to establish a rapid 2-min extraction protocol for the efficient protein extraction from processed food using high molar urea and thiourea buffers. Together, we present here the specific and sensitive detection of horse and pork meat in different processed food matrices using MRM-based detection of marker peptides. Notably, prefractionation of proteins using 2D-PAGE or off-gel fractionation is not necessary. The presented method is therefore easily applicable in analytical routine laboratories without dedicated proteomics background.

  2. Sensitive DNA detection and SNP discrimination using ultrabright SERS nanorattles and magnetic beads for malaria diagnostics.

    PubMed

    Ngo, Hoan T; Gandra, Naveen; Fales, Andrew M; Taylor, Steve M; Vo-Dinh, Tuan

    2016-07-15

    One of the major obstacles to implement nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is the lack of sensitive and practical DNA detection methods that can be seamlessly integrated into portable platforms. Herein we present a sensitive yet simple DNA detection method using a surface-enhanced Raman scattering (SERS) nanoplatform: the ultrabright SERS nanorattle. The method, referred to as the nanorattle-based method, involves sandwich hybridization of magnetic beads that are loaded with capture probes, target sequences, and ultrabright SERS nanorattles that are loaded with reporter probes. Upon hybridization, a magnet was applied to concentrate the hybridization sandwiches at a detection spot for SERS measurements. The ultrabright SERS nanorattles, composed of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for signal detection. Using this method, a specific DNA sequence of the malaria parasite Plasmodium falciparum could be detected with a detection limit of approximately 100 attomoles. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. These test models demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. Furthermore, the method's simplicity makes it a suitable candidate for integration into portable platforms for POC and in resource-limited settings applications. Copyright © 2016. Published by Elsevier B.V.

  3. Global Sensitivity Applied to Dynamic Combined Finite Discrete Element Methods for Fracture Simulation

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Rougier, E.; Osthus, D.; Srinivasan, G.

    2017-12-01

    Fracture propagation play a key role for a number of application of interest to the scientific community. From dynamic fracture processes like spall and fragmentation in metals and detection of gas flow in static fractures in rock and the subsurface, the dynamics of fracture propagation is important to various engineering and scientific disciplines. In this work we implement a global sensitivity analysis test to the Hybrid Optimization Software Suite (HOSS), a multi-physics software tool based on the combined finite-discrete element method, that is used to describe material deformation and failure (i.e., fracture and fragmentation) under a number of user-prescribed boundary conditions. We explore the sensitivity of HOSS for various model parameters that influence how fracture are propagated through a material of interest. The parameters control the softening curve that the model relies to determine fractures within each element in the mesh, as well a other internal parameters which influence fracture behavior. The sensitivity method we apply is the Fourier Amplitude Sensitivity Test (FAST), which is a global sensitivity method to explore how each parameter influence the model fracture and to determine the key model parameters that have the most impact on the model. We present several sensitivity experiments for different combination of model parameters and compare against experimental data for verification.

  4. Groundwater sensitivity mapping in Kentucky using GIS and digitally vectorized geologic quadrangles

    NASA Astrophysics Data System (ADS)

    Croskrey, Andrea; Groves, Chris

    2008-05-01

    Groundwater sensitivity (Ray and O’dell in Environ Geol 22:345 352, 1993a) refers to the inherent ease with which groundwater can be contaminated based on hydrogeologic characteristics. We have developed digital methods for identifying areas of varying groundwater sensitivity for a ten county area of south central Kentucky at a scale of 1:100,000. The study area includes extensive limestone karst sinkhole plains, with groundwater extremely sensitive to contamination. Digitally vectorized geologic quadrangles (DVGQs) were combined with elevation data to identify both hydrogeologic groundwater sensitivity regions and zones of “high risk runoff” where contaminants could be transported in runoff from less sensitive to higher sensitivity (particularly karst) areas. While future work will fine-tune these maps with additional layers of data (soils for example) as digital data have become available, using DVGQs allows a relatively rapid assessment of groundwater sensitivity for Kentucky at a more useful scale than previously available assessment methods, such as DRASTIC and DIVERSITY.

  5. Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B.

    PubMed

    Wu, Yunqing; Zeng, Lifeng; Xiong, Ying; Leng, Yuankui; Wang, Hui; Xiong, Yonghua

    2018-05-01

    Herein, we present a novel sandwich fluorescence enzyme linked immunosorbent assay (ELISA) for highly sensitive detection of Hepatitis B virus surface antigen (HBsAg) based on glucose oxidase (GOx)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (MPA-QDs). In this system, hydrogen peroxide (H 2 O 2 ) sensitive MPA-QDs was used as a signal output, and glucose oxidase (GOx) was used as label which can generate H 2 O 2 via catalytic oxidation of glucose. The proposed method showed dynamic linear detection of HBsAg both in the range of 47pgmL -1 ~ 380pgmL -1 and 0.75ngmL -1 ~ 12.12ngmL -1 . The detection limit of the proposed fluorescence ELISA was 1.16pgmL -1 , which was approximately 430-fold lower than that of horseradish peroxidase (HRP)-based conventional ELISA. The average recoveries for HBsAg-spiked serum samples ranged from 98.0% to 126.8% with the relative standard derivation below 10%, thus indicating acceptable precision and high reproducibility of the proposed fluorescence ELISA for HBsAg detection. Additionally, the developed method showed no false positive results analyzing 35 real HBsAg-negative serum samples, and exhibited excellent agreement (R 2 =0.9907) with a commercial time-resolved fluorescence immunoassay (TRFIA) kit for detecting 31 HBsAg-positive serum samples. In summary, the proposed method based on fluorescence quenching of H 2 O 2 sensitive QDs is considerably to be an excellent biodetection platform with ultrahigh sensitivity, good accuracy and excellent reliability. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  7. [Sensitivity analysis of AnnAGNPS model's hydrology and water quality parameters based on the perturbation analysis method].

    PubMed

    Xi, Qing; Li, Zhao-Fu; Luo, Chuan

    2014-05-01

    Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.

  8. Design and characterization of planar capacitive imaging probe based on the measurement sensitivity distribution

    NASA Astrophysics Data System (ADS)

    Yin, X.; Chen, G.; Li, W.; Huthchins, D. A.

    2013-01-01

    Previous work indicated that the capacitive imaging (CI) technique is a useful NDE tool which can be used on a wide range of materials, including metals, glass/carbon fibre composite materials and concrete. The imaging performance of the CI technique for a given application is determined by design parameters and characteristics of the CI probe. In this paper, a rapid method for calculating the whole probe sensitivity distribution based on the finite element model (FEM) is presented to provide a direct view of the imaging capabilities of the planar CI probe. Sensitivity distributions of CI probes with different geometries were obtained. Influencing factors on sensitivity distribution were studied. Comparisons between CI probes with point-to-point triangular electrode pair and back-to-back triangular electrode pair were made based on the analysis of the corresponding sensitivity distributions. The results indicated that the sensitivity distribution could be useful for optimising the probe design parameters and predicting the imaging performance.

  9. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    PubMed Central

    Kettinger, Ádám; Hill, Christopher; Vidnyánszky, Zoltán; Windischberger, Christian; Nagy, Zoltán

    2016-01-01

    Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned. PMID:28018165

  10. Glaucoma progression detection: agreement, sensitivity, and specificity of expert visual field evaluation, event analysis, and trend analysis.

    PubMed

    Antón, Alfonso; Pazos, Marta; Martín, Belén; Navero, José Manuel; Ayala, Miriam Eleonora; Castany, Marta; Martínez, Patricia; Bardavío, Javier

    2013-01-01

    To assess sensitivity, specificity, and agreement among automated event analysis, automated trend analysis, and expert evaluation to detect glaucoma progression. This was a prospective study that included 37 eyes with a follow-up of 36 months. All had glaucomatous disks and fields and performed reliable visual fields every 6 months. Each series of fields was assessed with 3 different methods: subjective assessment by 2 independent teams of glaucoma experts, glaucoma/guided progression analysis (GPA) event analysis, and GPA (visual field index-based) trend analysis. Kappa agreement coefficient between methods and sensitivity and specificity for each method using expert opinion as gold standard were calculated. The incidence of glaucoma progression was 16% to 18% in 3 years but only 3 cases showed progression with all 3 methods. Kappa agreement coefficient was high (k=0.82) between subjective expert assessment and GPA event analysis, and only moderate between these two and GPA trend analysis (k=0.57). Sensitivity and specificity for GPA event and GPA trend analysis were 71% and 96%, and 57% and 93%, respectively. The 3 methods detected similar numbers of progressing cases. The GPA event analysis and expert subjective assessment showed high agreement between them and moderate agreement with GPA trend analysis. In a period of 3 years, both methods of GPA analysis offered high specificity, event analysis showed 83% sensitivity, and trend analysis had a 66% sensitivity.

  11. Structural optimization: Status and promise

    NASA Astrophysics Data System (ADS)

    Kamat, Manohar P.

    Chapters contained in this book include fundamental concepts of optimum design, mathematical programming methods for constrained optimization, function approximations, approximate reanalysis methods, dual mathematical programming methods for constrained optimization, a generalized optimality criteria method, and a tutorial and survey of multicriteria optimization in engineering. Also included are chapters on the compromise decision support problem and the adaptive linear programming algorithm, sensitivity analyses of discrete and distributed systems, the design sensitivity analysis of nonlinear structures, optimization by decomposition, mixed elements in shape sensitivity analysis of structures based on local criteria, and optimization of stiffened cylindrical shells subjected to destabilizing loads. Other chapters are on applications to fixed-wing aircraft and spacecraft, integrated optimum structural and control design, modeling concurrency in the design of composite structures, and tools for structural optimization. (No individual items are abstracted in this volume)

  12. Time Series Analysis Based on Running Mann Whitney Z Statistics

    USDA-ARS?s Scientific Manuscript database

    A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...

  13. A FBG pulse wave demodulation method based on PCF modal interference filter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua

    2016-10-01

    Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.

  14. Topology optimization based design of unilateral NMR for generating a remote homogeneous field.

    PubMed

    Wang, Qi; Gao, Renjing; Liu, Shutian

    2017-06-01

    This paper presents a topology optimization based design method for the design of unilateral nuclear magnetic resonance (NMR), with which a remote homogeneous field can be obtained. The topology optimization is actualized by seeking out the optimal layout of ferromagnetic materials within a given design domain. The design objective is defined as generating a sensitive magnetic field with optimal homogeneity and maximal field strength within a required region of interest (ROI). The sensitivity of the objective function with respect to the design variables is derived and the method for solving the optimization problem is presented. A design example is provided to illustrate the utility of the design method, specifically the ability to improve the quality of the magnetic field over the required ROI by determining the optimal structural topology for the ferromagnetic poles. Both in simulations and experiments, the sensitive region of the magnetic field achieves about 2 times larger than that of the reference design, validating validates the feasibility of the design method. Copyright © 2017. Published by Elsevier Inc.

  15. Research on fiber Bragg grating heart sound sensing and wavelength demodulation method

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Miao, Chang-Yun; Gao, Hua; Gan, Jing-Meng; Li, Hong-Qiang

    2010-11-01

    Heart sound includes a lot of physiological and pathological information of heart and blood vessel. Heart sound detecting is an important method to gain the heart status, and has important significance to early diagnoses of cardiopathy. In order to improve sensitivity and reduce noise, a heart sound measurement method based on fiber Bragg grating was researched. By the vibration principle of plane round diaphragm, a heart sound sensor structure of fiber Bragg grating was designed and a heart sound sensing mathematical model was established. A formula of heart sound sensitivity was deduced and the theoretical sensitivity of the designed sensor is 957.11pm/KPa. Based on matched grating method, the experiment system was built, by which the excursion of reflected wavelength of the sensing grating was detected and the information of heart sound was obtained. Experiments show that the designed sensor can detect the heart sound and the reflected wavelength variety range is about 70pm. When the sampling frequency is 1 KHz, the extracted heart sound waveform by using the db4 wavelet has the same characteristics with a standard heart sound sensor.

  16. A light intensity monitoring method based on fiber Bragg grating sensing technology and BP neural network

    NASA Astrophysics Data System (ADS)

    Li, Lu-Ming; Zhu, Qian; Zhang, Zhi-Guo; Cai, Zhi-Min; Liao, Zhi-Jun; Hu, Zhen-Yan

    2017-04-01

    In this paper, a light intensity monitoring method based on FBG is proposed. The method establishes a light intensity monitoring model with cantilever beam structure and BP neural network algorithm, which is based on fiber grating sensing technology. The accuracy of the model can meet the requirements of engineering project and it can monitor light intensity in real time. The experimental results show that the method has good stability and high sensitivity.

  17. Evaluation of the GARD assay in a blind Cosmetics Europe study.

    PubMed

    Johansson, Henrik; Gradin, Robin; Forreryd, Andy; Agemark, Maria; Zeller, Kathrin; Johansson, Angelica; Larne, Olivia; van Vliet, Erwin; Borrebaeck, Carl; Lindstedt, Malin

    2017-01-01

    Chemical hypersensitivity is an immunological response towards foreign substances, commonly referred to as sensitizers, which gives rise primarily to the clinical symptoms known as allergic contact dermatitis. For the purpose of mitigating risks associated with consumer products, chemicals are screened for sensitizing effects. Historically, such predictive screenings have been performed using animal models. However, due to industrial and regulatory demand, animal models for the purpose of sensitization assessment are being replaced by non-animal testing methods, a global trend that is spreading across industries and market segments. To meet this demand, the Genomic Allergen Rapid Detection (GARD) assay was developed. GARD is a novel, cell-based assay that utilizes the innate recognition of xenobiotic substances by dendritic cells, as measured by a multivariate readout of genomic biomarkers. Following cellular stimulation, chemicals are classified as sensitizers or non-sensitizers based on induced transcriptional profiles. Recently, a number of non-animal methods were comparatively evaluated by Cosmetics Europe, using a coherent and blinded test panel of reference chemicals with human and local lymph node assay data, comprising a wide range of sensitizers and non-sensitizers. The outcome of the GARD assay is presented in this paper. It was demonstrated that GARD is a highly functional assay with a predictive performance of 83% in this Cosmetics Europe dataset. The average accumulated predictive accuracy of GARD across independent datasets was 86% for skin sensitization hazard.

  18. Rules of Thumb for Depth of Investigation, Pseudo-Position and Resolution of the Electrical Resistivity Method from Analysis of the Moments of the Sensitivity Function for a Homogeneous Half-Space

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2017-12-01

    The electrical resistivity method is now highly developed with 2D and even 3D surveys routinely performed and with available fast inversion software. However, rules of thumb, based on simple mathematical formulas, for important quantities like depth of investigation, horizontal position and resolution have not previously been available and would be useful for survey planning, preliminary interpretation and general education about the method. In this contribution, I will show that the sensitivity function for the resistivity method for a homogeneous half-space can be analyzed in terms of its first and second moments which yield simple mathematical formulas. The first moment gives the sensitivity-weighted center of an apparent resistivity measurement with the vertical center being an estimate of the depth of investigation. I will show that this depth of investigation estimate works at least as well as previous estimates based on the peak and median of the depth sensitivity function which must be calculated numerically for a general four electrode array. The vertical and horizontal first moments can also be used as pseudopositions when plotting 1, 2 and 3D pseudosections. The appropriate horizontal plotting point for a pseudosection was not previously obvious for nonsymmetric arrays. The second moments of the sensitivity function give estimates of the spatial extent of the region contributing to an apparent resistivity measurement and hence are measures of the resolution. These also have simple mathematical formulas.

  19. Comparison of ion chromatographic methods based on conductivity detection, post-column-reaction and on-line-coupling IC-ICP-MS for the determination of bromate.

    PubMed

    Schminke, G; Seubert, A

    2000-02-01

    An established method for the determination of the disinfection by-product bromate is ion chromatography (IC). This paper presents a comparison of three IC methods based on either conductivity detection (IC-CD), a post-column-reaction (IC-PCR-VIS) or the on-line-coupling with inductively coupled plasma mass spectrometry (IC-ICP-MS). Main characteristics of the methods such as method detection limits (MDL), time of analysis and sample pretreatment are compared and applicability for routine analysis is critically discussed. The most sensitive and rugged method is IC-ICP-MS, followed by IC-PCR-VIS. The photometric detection is subject to a minor interference in real world samples, presumably caused by carbonate. The lowest sensitivity is shown by the IC-CD method as slowest method compared, which, in addition, requires a sample pretreatment. The highest amount of information is delivered by IC-PCR-VIS, which allows the simultaneous determination of the seven standard anions and bromate.

  20. Development and testing of an electrochemical methane sensor

    DOE PAGES

    Sekhar, Praveen K.; Kysar, Jesse; Brosha, Eric Lanich; ...

    2016-01-12

    In this article, the development of an electrochemical methane sensor is presented. The mixed potential based sensor is based on tin doped indium oxide (ITO) and platinum electrodes and yttria-stabilized zirconia (YSZ) electrolyte. The sensor was fabricated using the inexpensive tape-cast method. The sensor responded to methane with a response time of 15 s. The staircase response to methane indicated a 44 mV sensor response to 100 ppm of methane. The sensor response indicated a log-linear relationship with the methane concentration. Upon 500 h of sensor testing, a 5% reduction in methane sensitivity was observed. The cross-sensitivity study on themore » sensor indicated minimal interference to NO, NO 2, and CO 2. To improve the sensitivity to methane, a signal conditioning method referred to as the pulsed discharge technique (PDT) was applied. Finally, a fourfold increase in methane sensitivity was observed when the sensor was subjected to PDT. Future studies include the miniaturization of the sensor with integrated heater design.« less

  1. Development and testing of an electrochemical methane sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekhar, Praveen K.; Kysar, Jesse; Brosha, Eric Lanich

    In this article, the development of an electrochemical methane sensor is presented. The mixed potential based sensor is based on tin doped indium oxide (ITO) and platinum electrodes and yttria-stabilized zirconia (YSZ) electrolyte. The sensor was fabricated using the inexpensive tape-cast method. The sensor responded to methane with a response time of 15 s. The staircase response to methane indicated a 44 mV sensor response to 100 ppm of methane. The sensor response indicated a log-linear relationship with the methane concentration. Upon 500 h of sensor testing, a 5% reduction in methane sensitivity was observed. The cross-sensitivity study on themore » sensor indicated minimal interference to NO, NO 2, and CO 2. To improve the sensitivity to methane, a signal conditioning method referred to as the pulsed discharge technique (PDT) was applied. Finally, a fourfold increase in methane sensitivity was observed when the sensor was subjected to PDT. Future studies include the miniaturization of the sensor with integrated heater design.« less

  2. Data-driven sensitivity inference for Thomson scattering electron density measurement systems.

    PubMed

    Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro

    2017-01-01

    We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.

  3. The effect of uncertainties in distance-based ranking methods for multi-criteria decision making

    NASA Astrophysics Data System (ADS)

    Jaini, Nor I.; Utyuzhnikov, Sergei V.

    2017-08-01

    Data in the multi-criteria decision making are often imprecise and changeable. Therefore, it is important to carry out sensitivity analysis test for the multi-criteria decision making problem. The paper aims to present a sensitivity analysis for some ranking techniques based on the distance measures in multi-criteria decision making. Two types of uncertainties are considered for the sensitivity analysis test. The first uncertainty is related to the input data, while the second uncertainty is towards the Decision Maker preferences (weights). The ranking techniques considered in this study are TOPSIS, the relative distance and trade-off ranking methods. TOPSIS and the relative distance method measure a distance from an alternative to the ideal and antiideal solutions. In turn, the trade-off ranking calculates a distance of an alternative to the extreme solutions and other alternatives. Several test cases are considered to study the performance of each ranking technique in both types of uncertainties.

  4. A comprehensive evaluation of three microfluidic chemiluminescence methods for the determination of the total phenolic contents in fruit juices.

    PubMed

    Al Haddabi, Buthaina; Al Lawati, Haider A J; Suliman, FakhrEldin O

    2017-01-01

    Three recently reported microfluidic chemiluminescence (MF-CL) methods (based on reactions with acidic permanganate enhanced by formaldehyde (KMnO4-COH), acidic cerium (IV) and rhodamine B (Ce-RB), and acidic cerium (IV) and rhodamine 6G (Ce-R6G) enhanced by SDS) for the determination of the total phenolic content (TPC) in juices were critically evaluated in terms of their selectivity. The evaluation was carried out using 86 analytes, including 22 phenolic compounds (phenolic acids and polyphenols), 6 known non-phenolic antioxidants, 9 amino acids and a number of proteins, carbohydrates, nucleotide bases, inorganic salts and other compounds. Each method was sensitive toward phenolic compounds (PCs). However, the KMnO4-COH CL system showed a higher sensitivity toward phenolic acids and also responded to non-phenolic antioxidants. The other two systems showed higher sensitivity toward polyphenolic compounds than to phenolic acids and did not responded to all other compounds including non-phenolic antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Prediction of skin sensitizers using alternative methods to animal experimentation.

    PubMed

    Johansson, Henrik; Lindstedt, Malin

    2014-07-01

    Regulatory frameworks within the European Union demand that chemical substances are investigated for their ability to induce sensitization, an adverse health effect caused by the human immune system in response to chemical exposure. A recent ban on the use of animal tests within the cosmetics industry has led to an urgent need for alternative animal-free test methods that can be used for assessment of chemical sensitizers. To date, no such alternative assay has yet completed formal validation. However, a number of assays are in development and the understanding of the biological mechanisms of chemical sensitization has greatly increased during the last decade. In this MiniReview, we aim to summarize and give our view on the recent progress of method development for alternative assessment of chemical sensitizers. We propose that integrated testing strategies should comprise complementary assays, providing measurements of a wide range of mechanistic events, to perform well-educated risk assessments based on weight of evidence. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  6. Wideband optical sensing using pulse interferometry.

    PubMed

    Rosenthal, Amir; Razansky, Daniel; Ntziachristos, Vasilis

    2012-08-13

    Advances in fabrication of high-finesse optical resonators hold promise for the development of miniaturized, ultra-sensitive, wide-band optical sensors, based on resonance-shift detection. Many potential applications are foreseen for such sensors, among them highly sensitive detection in ultrasound and optoacoustic imaging. Traditionally, sensor interrogation is performed by tuning a narrow linewidth laser to the resonance wavelength. Despite the ubiquity of this method, its use has been mostly limited to lab conditions due to its vulnerability to environmental factors and the difficulty of multiplexing - a key factor in imaging applications. In this paper, we develop a new optical-resonator interrogation scheme based on wideband pulse interferometry, potentially capable of achieving high stability against environmental conditions without compromising sensitivity. Additionally, the method can enable multiplexing several sensors. The unique properties of the pulse-interferometry interrogation approach are studied theoretically and experimentally. Methods for noise reduction in the proposed scheme are presented and experimentally demonstrated, while the overall performance is validated for broadband optical detection of ultrasonic fields. The achieved sensitivity is equivalent to the theoretical limit of a 6 MHz narrow-line width laser, which is 40 times higher than what can be usually achieved by incoherent interferometry for the same optical resonator.

  7. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer

    PubMed Central

    Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L.; Huang, Stephen; Lira, Maruja E.; Emmanuel, Yvette; Perez, Omar D.; Irwin, Darryl; Fellowes, Andrew P.; Wong, Stephen Q.; Fox, Stephen B.

    2017-01-01

    ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86–96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof–of–principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting. PMID:28181564

  8. Mesh-free based variational level set evolution for breast region segmentation and abnormality detection using mammograms.

    PubMed

    Kashyap, Kanchan L; Bajpai, Manish K; Khanna, Pritee; Giakos, George

    2018-01-01

    Automatic segmentation of abnormal region is a crucial task in computer-aided detection system using mammograms. In this work, an automatic abnormality detection algorithm using mammographic images is proposed. In the preprocessing step, partial differential equation-based variational level set method is used for breast region extraction. The evolution of the level set method is done by applying mesh-free-based radial basis function (RBF). The limitation of mesh-based approach is removed by using mesh-free-based RBF method. The evolution of variational level set function is also done by mesh-based finite difference method for comparison purpose. Unsharp masking and median filtering is used for mammogram enhancement. Suspicious abnormal regions are segmented by applying fuzzy c-means clustering. Texture features are extracted from the segmented suspicious regions by computing local binary pattern and dominated rotated local binary pattern (DRLBP). Finally, suspicious regions are classified as normal or abnormal regions by means of support vector machine with linear, multilayer perceptron, radial basis, and polynomial kernel function. The algorithm is validated on 322 sample mammograms of mammographic image analysis society (MIAS) and 500 mammograms from digital database for screening mammography (DDSM) datasets. Proficiency of the algorithm is quantified by using sensitivity, specificity, and accuracy. The highest sensitivity, specificity, and accuracy of 93.96%, 95.01%, and 94.48%, respectively, are obtained on MIAS dataset using DRLBP feature with RBF kernel function. Whereas, the highest 92.31% sensitivity, 98.45% specificity, and 96.21% accuracy are achieved on DDSM dataset using DRLBP feature with RBF kernel function. Copyright © 2017 John Wiley & Sons, Ltd.

  9. A new frequency matching technique for FRF-based model updating

    NASA Astrophysics Data System (ADS)

    Yang, Xiuming; Guo, Xinglin; Ouyang, Huajiang; Li, Dongsheng

    2017-05-01

    Frequency Response Function (FRF) residues have been widely used to update Finite Element models. They are a kind of original measurement information and have the advantages of rich data and no extraction errors, etc. However, like other sensitivity-based methods, an FRF-based identification method also needs to face the ill-conditioning problem which is even more serious since the sensitivity of the FRF in the vicinity of a resonance is much greater than elsewhere. Furthermore, for a given frequency measurement, directly using a theoretical FRF at a frequency may lead to a huge difference between the theoretical FRF and the corresponding experimental FRF which finally results in larger effects of measurement errors and damping. Hence in the solution process, correct selection of the appropriate frequency to get the theoretical FRF in every iteration in the sensitivity-based approach is an effective way to improve the robustness of an FRF-based algorithm. A primary tool for right frequency selection based on the correlation of FRFs is the Frequency Domain Assurance Criterion. This paper presents a new frequency selection method which directly finds the frequency that minimizes the difference of the order of magnitude between the theoretical and experimental FRFs. A simulated truss structure is used to compare the performance of different frequency selection methods. For the sake of reality, it is assumed that not all the degrees of freedom (DoFs) are available for measurement. The minimum number of DoFs required in each approach to correctly update the analytical model is regarded as the right identification standard.

  10. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection.

    PubMed

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2018-01-15

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A highly sensitive detection of chloramphenicol based on chemiluminescence immunoassays with the cheap functionalized Fe3 O4 @SiO2 magnetic nanoparticles.

    PubMed

    Linyu, Wang; Manwen, Yao; Chengzhi, Fang; Xi, Yao

    2017-09-01

    A strategy has been applied to chloramphenicol (CAP) detection with chemiluminescence immunoassays (CLIA) based on cheap functionalized Fe 3 O 4 @SiO 2 magnetic nanoparticles (Fe-MNPs). The strategy that bovine serum albumin (BSA) was immobilized on cheap functionalized Fe-MNPs and that the CAP molecules were then immobilized on BSA, avoided the long process of dialysis for preparation of the BSA-CAP conjugates. The samples were detected for both methods that utilized two different kinds of functionalized Fe-MNPs (amine-functionalized Fe 3 O 4 @SiO 2 and carboxylic acid-functionalized Fe 3 O 4 @SiO 2 ). The sensitivities and limits of detection (LODs) of the two methods were obtained and compared based on inhibition curves. The 50% inhibition concentrations (IC 50 ) values of the two methods were about 0.024 ng ml -1 and 0.046 ng ml -1 respectively and LODs were approximately 0.0002 ng ml -1 and 0.001 ng ml -1 respectively. These methods were much more sensitive than that of any traditional enzyme-linked immunosorbent assay (ELISA) previously reported. Therefore, such chemiluminescence methods could be easily adapted for small molecule detection in a variety of foods using Fe-MNPs. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Sensitive SERS detection of lead ions via DNAzyme based quadratic signal amplification.

    PubMed

    Tian, Aihua; Liu, Yu; Gao, Jian

    2017-08-15

    Highly sensitive detection of Pb 2+ is very necessary for water quality control, clinical toxicology, and industrial monitoring. In this work, a simple and novel DNAzyme-based SERS quadratic amplification method is developed for the detection of Pb 2+ . This strategy possesses some remarkable features compared to the conventional DNAzyme-based SERS methods, which are as follows: (i) Coupled DNAzyme-activated hybridization chain reaction (HCR) with bio barcodes; a quadratic amplification method is designed using the unique catalytic selectivity of DNAzyme. The SERS signal is significantly amplified. This method is rapid with a detection time of 2h. (ii) The problem of high background induced by excess bio barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal-output products, and this sensing system is simple in design and can easily be carried out by simple mixing and incubation. Given the unique and attractive characteristics, a simple and universal strategy is designed to accomplish sensitive detection of Pb 2+ . The detection limit of Pb 2+ via SERS detection is 70 fM, with the linear range from 1.0×10 -13 M to 1.0×10 -7 M. The method can be further extended to the quantitative detection of a variety of targets by replacing the lead-responsive DNAzyme with other functional DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaluation of a polymerase chain reaction-based system for detection of Salmonella enteritidis, Escherichia coli O157:H7, Listeria spp., and Listeria monocytogenes on fresh fruits and vegetables.

    PubMed

    Shearer, A E; Strapp, C M; Joerger, R D

    2001-06-01

    A polymerase chain reaction (PCR)-based detection system, BAX, was evaluated for its sensitivity in detecting Salmonella Enteritidis, Escherichia coli O157:H7, Listeria sp., and Listeria monocytogenes on fresh produce. Fifteen different types of produce (alfalfa sprouts, green peppers, parsley, white cabbage, radishes, onions, carrots, mushrooms, leaf lettuce, tomatoes, strawberries, cantaloupe, mango, apples, and oranges) were inoculated, in separate studies, with Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes down to the predicted level of 1 CFU per 25-g sample. Detection by BAX was compared to recovery of the inoculated bacteria by culture methods according to the Food and Drug Administration's (FDA) Bacteriological Analytical Manual (BAM). BAX was essentially as sensitive as the culture-based method in detecting Salmonella Enteritidis and L. monocytogenes and more sensitive than the culture-based method for the detection of E. coli O157:H7 on green pepper, carrot, radish, and sprout samples. Detection of the pathogenic bacteria in samples spiked with a predicted number of less than 10 CFU was possible for most produce samples, but both methods failed to detect L. monocytogenes on carrot samples and one of two mushroom and onion samples spiked with less than 100 CFU. Both BAX and the culture method were also unable to consistently recover low numbers of E. coli O157:H7 from alfalfa sprouts. The PCR method allowed detection of Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes at least 2 days earlier than the conventional culture methods.

  14. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    NASA Astrophysics Data System (ADS)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  15. Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip.

    PubMed

    Liu, Vincent; Song, Yong-Ak; Han, Jongyoon

    2010-06-07

    In this paper, we report a novel method for fabricating ion-selective membranes in poly(dimethylsiloxane) (PDMS)/glass-based microfluidic preconcentrators. Based on the concept of capillary valves, this fabrication method involves filling a lithographically patterned junction between two microchannels with an ion-selective material such as Nafion resin; subsequent curing results in a high aspect-ratio membrane for use in electrokinetic sample preconcentration. To demonstrate the concentration performance of this high-aspect-ratio, ion-selective membrane, we integrated the preconcentrator with a surface-based immunoassay for R-Phycoerythrin (RPE). Using a 1x PBS buffer system, the preconcentrator-enhanced immunoassay showed an approximately 100x improvement in sensitivity within 30 min. This is the first time that an electrokinetic microfluidic preconcentrator based on ion concentration polarization (ICP) has been used in high ionic strength buffer solutions to enhance the sensitivity of a surface-based immunoassay.

  16. Measurement of Crystalline Silica Aerosol Using Quantum Cascade Laser-Based Infrared Spectroscopy.

    PubMed

    Wei, Shijun; Kulkarni, Pramod; Ashley, Kevin; Zheng, Lina

    2017-10-24

    Inhalation exposure to airborne respirable crystalline silica (RCS) poses major health risks in many industrial environments. There is a need for new sensitive instruments and methods for in-field or near real-time measurement of crystalline silica aerosol. The objective of this study was to develop an approach, using quantum cascade laser (QCL)-based infrared spectroscopy (IR), to quantify airborne concentrations of RCS. Three sampling methods were investigated for their potential for effective coupling with QCL-based transmittance measurements: (i) conventional aerosol filter collection, (ii) focused spot sample collection directly from the aerosol phase, and (iii) dried spot obtained from deposition of liquid suspensions. Spectral analysis methods were developed to obtain IR spectra from the collected particulate samples in the range 750-1030 cm -1 . The new instrument was calibrated and the results were compared with standardized methods based on Fourier transform infrared (FTIR) spectrometry. Results show that significantly lower detection limits for RCS (≈330 ng), compared to conventional infrared methods, could be achieved with effective microconcentration and careful coupling of the particulate sample with the QCL beam. These results offer promise for further development of sensitive filter-based laboratory methods and portable sensors for near real-time measurement of crystalline silica aerosol.

  17. Label-free and pH-sensitive colorimetric materials for the sensing of urea

    NASA Astrophysics Data System (ADS)

    Li, Lu; Long, Yue; Gao, Jin-Ming; Song, Kai; Yang, Guoqiang

    2016-02-01

    This communication demonstrates a facile method for naked-eye detection of urea based on the structure color change of pH-sensitive photonic crystals. The insertion of urease provides excellent selectivity over other molecules. The detection of urea in different concentration ranges could be realized by changing the molar ratio between the functional monomer and cross-linker.This communication demonstrates a facile method for naked-eye detection of urea based on the structure color change of pH-sensitive photonic crystals. The insertion of urease provides excellent selectivity over other molecules. The detection of urea in different concentration ranges could be realized by changing the molar ratio between the functional monomer and cross-linker. Electronic supplementary information (ESI) available: Materials and chemicals, characterization, experimental details, and SEM images. See DOI: 10.1039/c5nr07690k

  18. Spectrophotometric total reducing sugars assay based on cupric reduction.

    PubMed

    Başkan, Kevser Sözgen; Tütem, Esma; Akyüz, Esin; Özen, Seda; Apak, Reşat

    2016-01-15

    As the concentration of reducing sugars (RS) is controlled by European legislation for certain specific food and beverages, a simple and sensitive spectrophotometric method for the determination of RS in various food products is proposed. The method is based on the reduction of Cu(II) to Cu(I) with reducing sugars in alkaline medium in the presence of 2,9-dimethyl-1,10-phenanthroline (neocuproine: Nc), followed by the formation of a colored Cu(I)-Nc charge-transfer complex. All simple sugars tested had the linear regression equations with almost equal slope values. The proposed method was successfully applied to fresh apple juice, commercial fruit juices, milk, honey and onion juice. Interference effect of phenolic compounds in plant samples was eliminated by a solid phase extraction (SPE) clean-up process. The method was proven to have higher sensitivity and precision than the widely used dinitrosalicylic acid (DNS) colorimetric method. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Rapid method to detect duplex formation in sequencing by hybridization methods, a method for constructing containment structures for reagent interaction

    DOEpatents

    Mirzabekov, Andrei Darievich; Yershov, Gennadiy Moiseyevich; Guschin, Dmitry Yuryevich; Gemmell, Margaret Anne; Shick, Valentine V.; Proudnikov, Dmitri Y.; Timofeev, Edward N.

    2002-01-01

    A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided whereby a plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex so as to facilitate intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface, exposing said light-sensitive fluid to a light pattern so as to cause the fluid exposed to the light to polymerize into discrete units and adhere to the surface; and contacting each of the units with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units.

  20. A highly sensitive monoclonal antibody based biosensor for quantifying 3-5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples

    PubMed Central

    Li, Xin; Kaattari, Stephen L.; Vogelbein, Mary A.; Vadas, George G.; Unger, Michael A.

    2016-01-01

    Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC50 values between 1.68–31 μg/L (ppb). 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3-5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC-MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples. PMID:26925369

  1. Sensitivity analysis of discrete structural systems: A survey

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.

    1984-01-01

    Methods for calculating sensitivity derivatives for discrete structural systems are surveyed, primarily covering literature published during the past two decades. Methods are described for calculating derivatives of static displacements and stresses, eigenvalues and eigenvectors, transient structural response, and derivatives of optimum structural designs with respect to problem parameters. The survey is focused on publications addressed to structural analysis, but also includes a number of methods developed in nonstructural fields such as electronics, controls, and physical chemistry which are directly applicable to structural problems. Most notable among the nonstructural-based methods are the adjoint variable technique from control theory, and the Green's function and FAST methods from physical chemistry.

  2. Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells

    NASA Astrophysics Data System (ADS)

    Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie

    2017-03-01

    Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.

  3. Diagnostic Accuracy and Cost-Effectiveness of Alternative Methods for Detection of Soil-Transmitted Helminths in a Post-Treatment Setting in Western Kenya

    PubMed Central

    Kepha, Stella; Kihara, Jimmy H.; Njenga, Sammy M.; Pullan, Rachel L.; Brooker, Simon J.

    2014-01-01

    Objectives This study evaluates the diagnostic accuracy and cost-effectiveness of the Kato-Katz and Mini-FLOTAC methods for detection of soil-transmitted helminths (STH) in a post-treatment setting in western Kenya. A cost analysis also explores the cost implications of collecting samples during school surveys when compared to household surveys. Methods Stool samples were collected from children (n = 652) attending 18 schools in Bungoma County and diagnosed by the Kato-Katz and Mini-FLOTAC coprological methods. Sensitivity and additional diagnostic performance measures were analyzed using Bayesian latent class modeling. Financial and economic costs were calculated for all survey and diagnostic activities, and cost per child tested, cost per case detected and cost per STH infection correctly classified were estimated. A sensitivity analysis was conducted to assess the impact of various survey parameters on cost estimates. Results Both diagnostic methods exhibited comparable sensitivity for detection of any STH species over single and consecutive day sampling: 52.0% for single day Kato-Katz; 49.1% for single-day Mini-FLOTAC; 76.9% for consecutive day Kato-Katz; and 74.1% for consecutive day Mini-FLOTAC. Diagnostic performance did not differ significantly between methods for the different STH species. Use of Kato-Katz with school-based sampling was the lowest cost scenario for cost per child tested ($10.14) and cost per case correctly classified ($12.84). Cost per case detected was lowest for Kato-Katz used in community-based sampling ($128.24). Sensitivity analysis revealed the cost of case detection for any STH decreased non-linearly as prevalence rates increased and was influenced by the number of samples collected. Conclusions The Kato-Katz method was comparable in diagnostic sensitivity to the Mini-FLOTAC method, but afforded greater cost-effectiveness. Future work is required to evaluate the cost-effectiveness of STH surveillance in different settings. PMID:24810593

  4. Development of a paper-based carbon nanotube sensing microfluidic device for biological detection.

    PubMed

    Yang, Shih-I; Lei, Kin Fong; Tsai, Shiao-Wen; Hsu, Hsiao-Ting

    2013-01-01

    Carbon nanotube (CNT) has been utilized for the biological detection due to its extremely sensitive to biological molecules. A paper-based CNT sensing microfluidic device has been developed for the detection of protein, i.e., biotin-avidin, binding. We have developed a fabrication method that allows controlled deposition of bundled CNTs with well-defined dimensions to form sensors on paper. Then, polydimethyl siloxane (PDMS) was used to pattern the hydrophobic boundary on paper to form the reaction sites. The proposed fabrication method is based on vacuum filtration process with a metal mask covering on a filter paper for the definition of the dimension of sensor. The length, width, and thickness of the CNT-based sensors are readily controlled by the metal mask and the weight of the CNT powder used during the filtration process, respectively. Homogeneous deposition of CNTs with well-defined dimensions can be achieved. The CNT-based sensor on paper has been demonstrated on the detection of the protein binding. Biotin was first immobilized on the CNT's sidewall and avidin suspended solution was applied to the site. The result of the biotin-avidin binding was measured by the resistance change of the sensor, which is a label-free detection method. It showed the CNT is sensitive to the biological molecules and the proposed paper-based CNT sensing device is a possible candidate for point-of-care biosensors. Thus, electrical bio-assays on paper-based microfluidics can be realized to develop low cost, sensitive, and specific diagnostic devices.

  5. Detection of telomerase on upconversion nanoparticle modified cellulose paper.

    PubMed

    Wang, Faming; Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2015-07-25

    Herein we report a convenient and sensitive method for the detection of telomerase activity based on upconversion nanoparticle (UCNP) modified cellulose paper. Compared with many solution-phase systems, this paper chip is more stable and easily stores the test results. What's more, the low background fluorescence of the UCNPs increases the sensitivity of this method, and the low telomerase levels in different cell lines can clearly be discriminated by the naked eye.

  6. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    NASA Astrophysics Data System (ADS)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  7. An investigation of using an RQP based method to calculate parameter sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    Estimation of the sensitivity of problem functions with respect to problem variables forms the basis for many of our modern day algorithms for engineering optimization. The most common application of problem sensitivities has been in the calculation of objective function and constraint partial derivatives for determining search directions and optimality conditions. A second form of sensitivity analysis, parameter sensitivity, has also become an important topic in recent years. By parameter sensitivity, researchers refer to the estimation of changes in the modeling functions and current design point due to small changes in the fixed parameters of the formulation. Methods for calculating these derivatives have been proposed by several authors (Armacost and Fiacco 1974, Sobieski et al 1981, Schmit and Chang 1984, and Vanderplaats and Yoshida 1985). Two drawbacks to estimating parameter sensitivities by current methods have been: (1) the need for second order information about the Lagrangian at the current point, and (2) the estimates assume no change in the active set of constraints. The first of these two problems is addressed here and a new algorithm is proposed that does not require explicit calculation of second order information.

  8. Evaluation of microplate immunocapture method for detection of Vibrio cholerae, Salmonella Typhi and Shigella flexneri from food.

    PubMed

    Fakruddin, Md; Hossain, Md Nur; Ahmed, Monzur Morshed

    2017-08-29

    Improved methods with better separation and concentration ability for detection of foodborne pathogens are in constant need. The aim of this study was to evaluate microplate immunocapture (IC) method for detection of Salmonella Typhi, Shigella flexneri and Vibrio cholerae from food samples to provide a better alternative to conventional culture based methods. The IC method was optimized for incubation time, bacterial concentration, and capture efficiency. 6 h incubation and log 6 CFU/ml cell concentration provided optimal results. The method was shown to be highly specific for the pathogens concerned. Capture efficiency (CE) was around 100% of the target pathogens, whereas CE was either zero or very low for non-target pathogens. The IC method also showed better pathogen detection ability at different concentrations of cells from artificially contaminated food samples in comparison with culture based methods. Performance parameter of the method was also comparable (Detection limit- 25 CFU/25 g; sensitivity 100%; specificity-96.8%; Accuracy-96.7%), even better than culture based methods (Detection limit- 125 CFU/25 g; sensitivity 95.9%; specificity-97%; Accuracy-96.2%). The IC method poses to be the potential to be used as a method of choice for detection of foodborne pathogens in routine laboratory practice after proper validation.

  9. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE PAGES

    Lu, Zhiming

    2018-01-30

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  10. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhiming

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  11. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes

    NASA Astrophysics Data System (ADS)

    Luo, Qingying; Liu, Lin; Yang, Cai; Yuan, Jing; Feng, Hongtao; Chen, Yan; Zhao, Peng; Yu, Zhiqiang; Jin, Zongwen

    2018-03-01

    MicroRNAs (miRNAs) are single stranded endogenous molecules composed of only 18-24 nucleotides which are critical for gene expression regulating the translation of messenger RNAs. Conventional methods based on enzyme-assisted nucleic acid amplification techniques have many problems, such as easy contamination, high cost, susceptibility to false amplification, and tendency to have sequence mismatches. Here we report a rapid, ratiometric, enzyme-free, sensitive, and highly selective single-step miRNA detection using three-way junction assembled (or self-assembled) FRET probes. The developed strategy can be operated within the linear range from subnanomolar to hundred nanomolar concentrations of miRNAs. In comparison with the traditional approaches, our method showed high sensitivity for the miRNA detection and extreme selectivity for the efficient discrimination of single-base mismatches. The results reveal that the strategy paved a new avenue for the design of novel highly specific probes applicable in diagnostics and potentially in microscopic imaging of miRNAs in real biological environments.

  12. Influence of the quality of intraoperative fluoroscopic images on the spatial positioning accuracy of a CAOS system.

    PubMed

    Wang, Junqiang; Wang, Yu; Zhu, Gang; Chen, Xiangqian; Zhao, Xiangrui; Qiao, Huiting; Fan, Yubo

    2018-06-01

    Spatial positioning accuracy is a key issue in a computer-assisted orthopaedic surgery (CAOS) system. Since intraoperative fluoroscopic images are one of the most important input data to the CAOS system, the quality of these images should have a significant influence on the accuracy of the CAOS system. But the regularities and mechanism of the influence of the quality of intraoperative images on the accuracy of a CAOS system have yet to be studied. Two typical spatial positioning methods - a C-arm calibration-based method and a bi-planar positioning method - are used to study the influence of different image quality parameters, such as resolution, distortion, contrast and signal-to-noise ratio, on positioning accuracy. The error propagation rules of image error in different spatial positioning methods are analyzed by the Monte Carlo method. Correlation analysis showed that resolution and distortion had a significant influence on spatial positioning accuracy. In addition the C-arm calibration-based method was more sensitive to image distortion, while the bi-planar positioning method was more susceptible to image resolution. The image contrast and signal-to-noise ratio have no significant influence on the spatial positioning accuracy. The result of Monte Carlo analysis proved that generally the bi-planar positioning method was more sensitive to image quality than the C-arm calibration-based method. The quality of intraoperative fluoroscopic images is a key issue in the spatial positioning accuracy of a CAOS system. Although the 2 typical positioning methods have very similar mathematical principles, they showed different sensitivities to different image quality parameters. The result of this research may help to create a realistic standard for intraoperative fluoroscopic images for CAOS systems. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Moving Healthcare Quality Forward With Nursing-Sensitive Value-Based Purchasing

    PubMed Central

    Kavanagh, Kevin T; Cimiotti, Jeannie P; Abusalem, Said; Coty, Mary-Beth

    2012-01-01

    Purpose: To underscore the need for health system reform and emphasize nursing measures as a key component in our healthcare reimbursement system. Design and Methods: Nursing-sensitive value-based purchasing (NSVBP) has been proposed as an initiative that would help to promote optimal staffing and practice environment through financial rewards and transparency of structure, process, and patient outcome measures. This article reviews the medical, governmental, institutional, and lay literature regarding the necessity for, method of implementation of, and potential impact of NSVBP. Findings: Research has shown that adverse events and mortality are highly dependent on nurse staffing levels and skill mix. The National Database of Nursing Quality Indicators (NDNQI), along with other well-developed indicators, can be used as nursing-sensitive measurements for value-based purchasing initiatives. Nursing-sensitive measures are an important component of value-based purchasing. Conclusions: Value-based purchasing is in its infancy. Devising an effective system that recognizes and incorporates nursing measures will facilitate the success of this initiative. NSVBP needs to be designed and incentivized to decrease adverse events, hospital stays, and readmission rates, thereby decreasing societal healthcare costs. Clinical Relevance: NSVBP has the potential for improving the quality of nursing care by financially motivating hospitals to have an optimal nurse practice environment capable of producing optimal patient outcomes by aligning cost effectiveness for hospitals to that of the patient and society. PMID:23066956

  14. Development of an Electrochemical DNA Biosensor to Detect a Foodborne Pathogen.

    PubMed

    Nordin, Noordiana; Yusof, Nor Azah; Radu, Son; Hushiarian, Roozbeh

    2018-06-03

    Vibrio parahaemolyticus (V. parahaemolyticus) is a common foodborne pathogen that contributes to a large proportion of public health problems globally, significantly affecting the rate of human mortality and morbidity. Conventional methods for the detection of V. parahaemolyticus such as culture-based methods, immunological assays, and molecular-based methods require complicated sample handling and are time-consuming, tedious, and costly. Recently, biosensors have proven to be a promising and comprehensive detection method with the advantages of fast detection, cost-effectiveness, and practicality. This research focuses on developing a rapid method of detecting V. parahaemolyticus with high selectivity and sensitivity using the principles of DNA hybridization. In the work, characterization of synthesized polylactic acid-stabilized gold nanoparticles (PLA-AuNPs) was achieved using X-ray Diffraction (XRD), Ultraviolet-visible Spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Field-emission Scanning Electron Microscopy (FESEM), and Cyclic Voltammetry (CV). We also carried out further testing of stability, sensitivity, and reproducibility of the PLA-AuNPs. We found that the PLA-AuNPs formed a sound structure of stabilized nanoparticles in aqueous solution. We also observed that the sensitivity improved as a result of the smaller charge transfer resistance (Rct) value and an increase of active surface area (0.41 cm 2 ). The development of our DNA biosensor was based on modification of a screen-printed carbon electrode (SPCE) with PLA-AuNPs and using methylene blue (MB) as the redox indicator. We assessed the immobilization and hybridization events by differential pulse voltammetry (DPV). We found that complementary, non-complementary, and mismatched oligonucleotides were specifically distinguished by the fabricated biosensor. It also showed reliably sensitive detection in cross-reactivity studies against various food-borne pathogens and in the identification of V. parahaemolyticus in fresh cockles.

  15. Affinity Biosensors for Detection of Mycotoxins in Food.

    PubMed

    Evtugyn, Gennady; Subjakova, Veronika; Melikishvili, Sopio; Hianik, Tibor

    2018-01-01

    This chapter reviews recent achievements in methods of detection of mycotoxins in food. Special focus is on the biosensor technology that utilizes antibodies and nucleic acid aptamers as receptors. Development of biosensors is based on the immobilization of antibodies or aptamers onto various conventional supports like gold layer, but also on nanomaterials such as graphene oxide, carbon nanotubes, and quantum dots that provide an effective platform for achieving high sensitivity of detection using various physical methods, including electrochemical, mass sensitive, and optical. The biosensors developed so far demonstrate high sensitivity typically in subnanomolar limit of detection. Several biosensors have been validated in real samples. The sensitivity of biosensors is similar and, in some cases, even better than traditional analytical methods such as ELISA or chromatography. We believe that future trends will be focused on improving biosensor properties toward practical application in food industry. © 2018 Elsevier Inc. All rights reserved.

  16. Rapid method to detect duplex formation in sequencing by hybridization methods

    DOEpatents

    Mirzabekov, A.D.; Timofeev, E.N.; Florentiev, V.L.; Kirillov, E.V.

    1999-01-19

    A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided. A plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex. Each duplex facilitates intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface and exposing the light-sensitive fluid to a light pattern. This causes the fluid exposed to the light to coalesce into discrete units and adhere to the surface. This places each of the units in contact with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units. 13 figs.

  17. Rapid method to detect duplex formation in sequencing by hybridization methods

    DOEpatents

    Mirzabekov, Andrei Darievich; Timofeev, Edward Nikolaevich; Florentiev, Vladimer Leonidovich; Kirillov, Eugene Vladislavovich

    1999-01-01

    A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided whereby a plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex so as to facilitate intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface, exposing said light-sensitive fluid to a light pattern so as to cause the fluid exposed to the light to coalesce into discrete units and adhere to the surface; and contacting each of the units with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units.

  18. Towards semantically sensitive text clustering: a feature space modeling technology based on dimension extension.

    PubMed

    Liu, Yuanchao; Liu, Ming; Wang, Xin

    2015-01-01

    The objective of text clustering is to divide document collections into clusters based on the similarity between documents. In this paper, an extension-based feature modeling approach towards semantically sensitive text clustering is proposed along with the corresponding feature space construction and similarity computation method. By combining the similarity in traditional feature space and that in extension space, the adverse effects of the complexity and diversity of natural language can be addressed and clustering semantic sensitivity can be improved correspondingly. The generated clusters can be organized using different granularities. The experimental evaluations on well-known clustering algorithms and datasets have verified the effectiveness of our approach.

  19. Towards Semantically Sensitive Text Clustering: A Feature Space Modeling Technology Based on Dimension Extension

    PubMed Central

    Liu, Yuanchao; Liu, Ming; Wang, Xin

    2015-01-01

    The objective of text clustering is to divide document collections into clusters based on the similarity between documents. In this paper, an extension-based feature modeling approach towards semantically sensitive text clustering is proposed along with the corresponding feature space construction and similarity computation method. By combining the similarity in traditional feature space and that in extension space, the adverse effects of the complexity and diversity of natural language can be addressed and clustering semantic sensitivity can be improved correspondingly. The generated clusters can be organized using different granularities. The experimental evaluations on well-known clustering algorithms and datasets have verified the effectiveness of our approach. PMID:25794172

  20. Signal Processing Studies of a Simulated Laser Doppler Velocimetry-Based Acoustic Sensor

    DTIC Science & Technology

    1990-10-17

    investigated using spectral correlation methods. Results indicate that it may be possible to extend demonstrated LDV-based acoustic sensor sensitivities using higher order processing techniques. (Author)

  1. Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.

    PubMed

    Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V

    2008-12-22

    A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.

  2. Diagnostic sensitivity and specificity of a participatory disease surveillance method for highly pathogenic avian influenza in household chicken flocks in Indonesia.

    PubMed

    Robyn, M; Priyono, W B; Kim, L M; Brum, E

    2012-06-01

    A study was conducted to assess the diagnostic sensitivity and specificity of a disease surveillance method for diagnosis of highly pathogenic avian influenza (HPAI) outbreaks in household chicken flocks used by participatory disease surveillance (PDS) teams in Yogyakarta Province, Indonesia. The Government of Indonesia, in partnership with the Food and Agriculture Organization of the United Nations, has implemented a PDS method for the detection of HPAI outbreaks in poultry since 2006. The PDS method in Indonesia utilizes both a clinical case definition (CD) and the result of a commercial rapid antigen test kit Yogyakarta 55611, to diagnose HPAI outbreaks, primarily in backyard chicken flocks. The following diagnostic sensitivities and specificities were obtained relative to real-time reverse transcription-PCR as the gold standard diagnostic test: 1) 89% sensitivity (CI95: 75%-97%) and 96% specificity (CI95: 89%-99%) for the PDS CD alone; 2) 86% sensitivity (CI95: 71%-95%) and 99% specificity (CI95: 94%-100%) for the rapid antigen test alone; and 3) 84% sensitivity (CI95: 68%-94%) and 100% specificity (CI95: 96%-100%) for the PDS CD result combined with the rapid antigen test result. Based on these results, HPAI outbreaks in extensively raised household chickens can be diagnosed with sufficient sensitivity and specificity using the PDS method as implemented in Indonesia. Subject to further field evaluation, data from this study suggest that the diagnostic sensitivity of the PDS method may be improved by expanding the PDS CD to include more possible clinical presentations of HPAI and by increasing the number of rapid antigen tests to three different birds with HPAI-compatible signs of same flock.

  3. OECD/NEA expert group on uncertainty analysis for criticality safety assessment: Results of benchmark on sensitivity calculation (phase III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, T.; Laville, C.; Dyrda, J.

    2012-07-01

    The sensitivities of the k{sub eff} eigenvalue to neutron cross sections have become commonly used in similarity studies and as part of the validation algorithm for criticality safety assessments. To test calculations of the sensitivity coefficients, a benchmark study (Phase III) has been established by the OECD-NEA/WPNCS/EG UACSA (Expert Group on Uncertainty Analysis for Criticality Safety Assessment). This paper presents some sensitivity results generated by the benchmark participants using various computational tools based upon different computational methods: SCALE/TSUNAMI-3D and -1D, MONK, APOLLO2-MORET 5, DRAGON-SUSD3D and MMKKENO. The study demonstrates the performance of the tools. It also illustrates how model simplificationsmore » impact the sensitivity results and demonstrates the importance of 'implicit' (self-shielding) sensitivities. This work has been a useful step towards verification of the existing and developed sensitivity analysis methods. (authors)« less

  4. Wavelet method for CT colonography computer-aided polyp detection.

    PubMed

    Li, Jiang; Van Uitert, Robert; Yao, Jianhua; Petrick, Nicholas; Franaszek, Marek; Huang, Adam; Summers, Ronald M

    2008-08-01

    Computed tomographic colonography (CTC) computer aided detection (CAD) is a new method to detect colon polyps. Colonic polyps are abnormal growths that may become cancerous. Detection and removal of colonic polyps, particularly larger ones, has been shown to reduce the incidence of colorectal cancer. While high sensitivities and low false positive rates are consistently achieved for the detection of polyps sized 1 cm or larger, lower sensitivities and higher false positive rates occur when the goal of CAD is to identify "medium"-sized polyps, 6-9 mm in diameter. Such medium-sized polyps may be important for clinical patient management. We have developed a wavelet-based postprocessor to reduce false positives for this polyp size range. We applied the wavelet-based postprocessor to CTC CAD findings from 44 patients in whom 45 polyps with sizes of 6-9 mm were found at segmentally unblinded optical colonoscopy and visible on retrospective review of the CT colonography images. Prior to the application of the wavelet-based postprocessor, the CTC CAD system detected 33 of the polyps (sensitivity 73.33%) with 12.4 false positives per patient, a sensitivity comparable to that of expert radiologists. Fourfold cross validation with 5000 bootstraps showed that the wavelet-based postprocessor could reduce the false positives by 56.61% (p <0.001), to 5.38 per patient (95% confidence interval [4.41, 6.34]), without significant sensitivity degradation (32/45, 71.11%, 95% confidence interval [66.39%, 75.74%], p=0.1713). We conclude that this wavelet-based postprocessor can substantially reduce the false positive rate of our CTC CAD for this important polyp size range.

  5. Technical advances in flow cytometry-based diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria

    PubMed Central

    Correia, Rodolfo Patussi; Bento, Laiz Cameirão; Bortolucci, Ana Carolina Apelle; Alexandre, Anderson Marega; Vaz, Andressa da Costa; Schimidell, Daniela; Pedro, Eduardo de Carvalho; Perin, Fabricio Simões; Nozawa, Sonia Tsukasa; Mendes, Cláudio Ernesto Albers; Barroso, Rodrigo de Souza; Bacal, Nydia Strachman

    2016-01-01

    ABSTRACT Objective: To discuss the implementation of technical advances in laboratory diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria for validation of high-sensitivity flow cytometry protocols. Methods: A retrospective study based on analysis of laboratory data from 745 patient samples submitted to flow cytometry for diagnosis and/or monitoring of paroxysmal nocturnal hemoglobinuria. Results: Implementation of technical advances reduced test costs and improved flow cytometry resolution for paroxysmal nocturnal hemoglobinuria clone detection. Conclusion: High-sensitivity flow cytometry allowed more sensitive determination of paroxysmal nocturnal hemoglobinuria clone type and size, particularly in samples with small clones. PMID:27759825

  6. Determination of noise equivalent reflectance for a multispectral scanner: A scanner sensitivity study

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Richard, R. R.

    1979-01-01

    The methods used to calculate the sensitivity parameter noise equivalent reflectance of a remote-sensing scanner are explored, and the results are compared with values measured over calibrated test sites. Data were acquired on four occasions covering a span of 4 years and providing various atmospheric conditions. One of the calculated values was based on assumed atmospheric conditions, whereas two others were based on atmospheric models. Results indicate that the assumed atmospheric conditions provide useful answers adequate for many purposes. A nomograph was developed to indicate sensitivity variations due to geographic location, time of day, and season.

  7. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Chen, Xingyuan; Ye, Ming

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level ofmore » the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.« less

  8. Developing a methodology for the inverse estimation of root architectural parameters from field based sampling schemes

    NASA Astrophysics Data System (ADS)

    Morandage, Shehan; Schnepf, Andrea; Vanderborght, Jan; Javaux, Mathieu; Leitner, Daniel; Laloy, Eric; Vereecken, Harry

    2017-04-01

    Root traits are increasingly important in breading of new crop varieties. E.g., longer and fewer lateral roots are suggested to improve drought resistance of wheat. Thus, detailed root architectural parameters are important. However, classical field sampling of roots only provides more aggregated information such as root length density (coring), root counts per area (trenches) or root arrival curves at certain depths (rhizotubes). We investigate the possibility of obtaining the information about root system architecture of plants using field based classical root sampling schemes, based on sensitivity analysis and inverse parameter estimation. This methodology was developed based on a virtual experiment where a root architectural model was used to simulate root system development in a field, parameterized for winter wheat. This information provided the ground truth which is normally unknown in a real field experiment. The three sampling schemes coring, trenching, and rhizotubes where virtually applied to and aggregated information computed. Morris OAT global sensitivity analysis method was then performed to determine the most sensitive parameters of root architecture model for the three different sampling methods. The estimated means and the standard deviation of elementary effects of a total number of 37 parameters were evaluated. Upper and lower bounds of the parameters were obtained based on literature and published data of winter wheat root architectural parameters. Root length density profiles of coring, arrival curve characteristics observed in rhizotubes, and root counts in grids of trench profile method were evaluated statistically to investigate the influence of each parameter using five different error functions. Number of branches, insertion angle inter-nodal distance, and elongation rates are the most sensitive parameters and the parameter sensitivity varies slightly with the depth. Most parameters and their interaction with the other parameters show highly nonlinear effect to the model output. The most sensitive parameters will be subject to inverse estimation from the virtual field sampling data using DREAMzs algorithm. The estimated parameters can then be compared with the ground truth in order to determine the suitability of the sampling schemes to identify specific traits or parameters of the root growth model.

  9. Evaluation and comparison of statistical methods for early temporal detection of outbreaks: A simulation-based study

    PubMed Central

    Le Strat, Yann

    2017-01-01

    The objective of this paper is to evaluate a panel of statistical algorithms for temporal outbreak detection. Based on a large dataset of simulated weekly surveillance time series, we performed a systematic assessment of 21 statistical algorithms, 19 implemented in the R package surveillance and two other methods. We estimated false positive rate (FPR), probability of detection (POD), probability of detection during the first week, sensitivity, specificity, negative and positive predictive values and F1-measure for each detection method. Then, to identify the factors associated with these performance measures, we ran multivariate Poisson regression models adjusted for the characteristics of the simulated time series (trend, seasonality, dispersion, outbreak sizes, etc.). The FPR ranged from 0.7% to 59.9% and the POD from 43.3% to 88.7%. Some methods had a very high specificity, up to 99.4%, but a low sensitivity. Methods with a high sensitivity (up to 79.5%) had a low specificity. All methods had a high negative predictive value, over 94%, while positive predictive values ranged from 6.5% to 68.4%. Multivariate Poisson regression models showed that performance measures were strongly influenced by the characteristics of time series. Past or current outbreak size and duration strongly influenced detection performances. PMID:28715489

  10. Development of a multiplex probe combination-based one-step real-time reverse transcription-PCR for NA subtype typing of avian influenza virus.

    PubMed

    Sun, Zhihao; Qin, Tao; Meng, Feifei; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2017-10-18

    Nine influenza virus neuraminidase (NA) subtypes have been identified in poultry and wild birds. Few methods are available for rapid and simple NA subtyping. Here we developed a multiplex probe combination-based one-step real-time reverse transcriptase PCR (rRT-PCR) to detect nine avian influenza virus NA subtypes. Nine primer-probe pairs were assigned to three groups based on the different fluorescent dyes of the probes (FAM, HEX, or Texas Red). Each probe detected only one NA subtype, without cross reactivity. The detection limit was less than 100 EID 50 or 100 copies of cDNA per reaction. Data obtained using this method with allantoic fluid samples isolated from live bird markets and H9N2-infected chickens correlated well with data obtained using virus isolation and sequencing, but was more sensitive. This new method provides a specific and sensitive alternative to conventional NA-subtyping methods.

  11. POCS-enhanced correction of motion artifacts in parallel MRI.

    PubMed

    Samsonov, Alexey A; Velikina, Julia; Jung, Youngkyoo; Kholmovski, Eugene G; Johnson, Chris R; Block, Walter F

    2010-04-01

    A new method for correction of MRI motion artifacts induced by corrupted k-space data, acquired by multiple receiver coils such as phased arrays, is presented. In our approach, a projections onto convex sets (POCS)-based method for reconstruction of sensitivity encoded MRI data (POCSENSE) is employed to identify corrupted k-space samples. After the erroneous data are discarded from the dataset, the artifact-free images are restored from the remaining data using coil sensitivity profiles. The error detection and data restoration are based on informational redundancy of phased-array data and may be applied to full and reduced datasets. An important advantage of the new POCS-based method is that, in addition to multicoil data redundancy, it can use a priori known properties about the imaged object for improved MR image artifact correction. The use of such information was shown to improve significantly k-space error detection and image artifact correction. The method was validated on data corrupted by simulated and real motion such as head motion and pulsatile flow.

  12. Fluorescence Visual Detection of Herbal Product Substitutions at Terminal Herbal Markets by CCP-based FRET technique.

    PubMed

    Jiang, Chao; Yuan, Yuan; Yang, Guang; Jin, Yan; Liu, Libing; Zhao, Yuyang; Huang, Luqi

    2016-10-21

    Inaccurate labeling of materials used in herbal products may compromise the therapeutic efficacy and may pose a threat to medicinal safety. In this paper, a rapid (within 3 h), sensitive and visual colorimetric method for identifying substitutions in terminal market products was developed using cationic conjugated polymer-based fluorescence resonance energy transfer (CCP-based FRET). Chinese medicinal materials with similar morphology and chemical composition were clearly distinguished by the single-nucleotide polymorphism (SNP) genotyping method. Assays using CCP-based FRET technology showed a high frequency of adulterants in Lu-Rong (52.83%) and Chuan-Bei-Mu (67.8%) decoction pieces, and patented Chinese drugs (71.4%, 5/7) containing Chuan-Bei-Mu ingredients were detected in the terminal herbal market. In comparison with DNA sequencing, this protocol simplifies procedures by eliminating the cumbersome workups and sophisticated instruments, and only a trace amount of DNA is required. The CCP-based method is particularly attractive because it can detect adulterants in admixture samples with high sensitivity. Therefore, the CCP-based detection system shows great potential for routine terminal market checks and drug safety controls.

  13. Optical power-based interrogation of plasmonic tilted fiber Bragg grating biosensors

    NASA Astrophysics Data System (ADS)

    González-Vila, Á.; Lopez-Aldaba, A.; Kinet, D.; Mégret, P.; Lopez-Amo, M.; Caucheteur, C.

    2017-04-01

    Two interrogation techniques for plasmonic tilted fiber Bragg grating sensors are reported and experimentally tested. Typical interrogation methods are usually based on tracking the wavelength shift of the most sensitive cladding mode, but for biosensing applications, spectrometer-based methods can be replaced by more efficient solutions. The proposed techniques thus rely on the measurement of the induced changes in optical power. The first one consists of a properly polarized tunable laser source set to emit at the wavelength of the sensor most sensitive mode and an optical power meter to measure the transmitted response. For the second method, a uniform fiber Bragg grating is photo-inscribed beyond the sensor in such a way that its central wavelength matches the sensor most sensitive mode, acting as an optical filter. Using a LED source, light reflected backwards by this grating is partially attenuated when passing through the sensor due to plasmon wave excitation and the power changes are quantified once again with an optical power meter. A performance analysis of the techniques is carried out and they both result competitive interrogation solutions. The work thus focuses on the development of cost-effective alternatives for monitoring this kind of biosensors in practical situations.

  14. Rectal swab sampling followed by an enrichment culture-based real-time PCR assay to detect Salmonella enterocolitis in children.

    PubMed

    Lin, L-H; Tsai, C-Y; Hung, M-H; Fang, Y-T; Ling, Q-D

    2011-09-01

    Although routine bacterial culture is the traditional reference standard method for the detection of Salmonella infection in children with diarrhoea, it is a time-consuming procedure that usually only gives results after 3-4 days. Some molecular detection methods can improve the turn-around time to within 24 h, but these methods are not applied directly from stool or rectal swab specimens as routine diagnostic methods for the detection of gastrointestinal pathogens. In this study, we tested the feasibility of a bacterial enrichment culture-based real-time PCR assay method for detecting and screening for diarrhoea in children caused by Salmonella. Our results showed that the minimum real-time PCR assay time required to detect enriched bacterial culture from a swab was 3 h. In all children with suspected Salmonella diarrhoea, the enrichment culture-based real-time PCR achieved 85.4% sensitivity and 98.1% specificity, as compared with the 53.7% sensitivity and 100% specificity of detection with the routine bacterial culture method. We suggest that rectal swab sampling followed by enrichment culture-based real-time PCR is suitable as a rapid method for detecting and screening for Salmonella in paediatric patients. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  15. Variational Methods in Sensitivity Analysis and Optimization for Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Ibrahim, A. H.; Hou, G. J.-W.; Tiwari, S. N. (Principal Investigator)

    1996-01-01

    Variational methods (VM) sensitivity analysis, which is the continuous alternative to the discrete sensitivity analysis, is employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The determination of the sensitivity derivatives of the performance index or functional entails the coupled solutions of the state and costate equations. As the stable and converged numerical solution of the costate equations with their boundary conditions are a priori unknown, numerical stability analysis is performed on both the state and costate equations. Thereafter, based on the amplification factors obtained by solving the generalized eigenvalue equations, the stability behavior of the costate equations is discussed and compared with the state (Euler) equations. The stability analysis of the costate equations suggests that the converged and stable solution of the costate equation is possible only if the computational domain of the costate equations is transformed to take into account the reverse flow nature of the costate equations. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite difference sensitivity analysis.

  16. A PDE Sensitivity Equation Method for Optimal Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    Borggaard, Jeff; Burns, John

    1996-01-01

    The use of gradient based optimization algorithms in inverse design is well established as a practical approach to aerodynamic design. A typical procedure uses a simulation scheme to evaluate the objective function (from the approximate states) and its gradient, then passes this information to an optimization algorithm. Once the simulation scheme (CFD flow solver) has been selected and used to provide approximate function evaluations, there are several possible approaches to the problem of computing gradients. One popular method is to differentiate the simulation scheme and compute design sensitivities that are then used to obtain gradients. Although this black-box approach has many advantages in shape optimization problems, one must compute mesh sensitivities in order to compute the design sensitivity. In this paper, we present an alternative approach using the PDE sensitivity equation to develop algorithms for computing gradients. This approach has the advantage that mesh sensitivities need not be computed. Moreover, when it is possible to use the CFD scheme for both the forward problem and the sensitivity equation, then there are computational advantages. An apparent disadvantage of this approach is that it does not always produce consistent derivatives. However, for a proper combination of discretization schemes, one can show asymptotic consistency under mesh refinement, which is often sufficient to guarantee convergence of the optimal design algorithm. In particular, we show that when asymptotically consistent schemes are combined with a trust-region optimization algorithm, the resulting optimal design method converges. We denote this approach as the sensitivity equation method. The sensitivity equation method is presented, convergence results are given and the approach is illustrated on two optimal design problems involving shocks.

  17. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averagingmore » methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  18. Determination of allergenic egg proteins in food by protein-, mass spectrometry-, and DNA-based methods.

    PubMed

    Lee, Ji-Yun; Kim, Chang Jong

    2010-01-01

    Egg allergy is one of the most common food allergies in both adults and children, and foods including eggs and their byproducts should be declared under food allergen labeling policies in industrial countries. Therefore, to develop and validate a sensitive and specific method to detect hidden egg allergens in foods, we compared immunochemical, DNA-based, and proteomic methods for detecting egg allergens in foods using egg allergen standards such as egg whole protein, egg white protein, egg yolk protein, ovomucoid, ovalbumin, ovotransferrin, lysozyme, and alpha-livetin. Protein-based immunochemical methods, including ELISA as an initial screening quantitative analysis and immunoblotting as a final confirmatory qualitative analysis, were very sensitive and specific in detecting potentially allergenic egg residues in processed foods in trace amounts. In contrast, the proteomics-based, matrix-assisted laser desorption/ionization time-of-flight MS and LC-tandem quadrupole time-of-flight MS methods were not able to detect some egg allergens, such as ovomucoid, because of its nondenaturing property under urea and trypsin. The DNA-based PCR method could not distinguish between egg and chicken meat because it is tissue-nonspecific. In further studies for the feasibility of these immunochemical methods on 100 real raw dietary samples, four food samples without listed egg ingredients produced a positive response by ELISA, but exhibited negative results by immunoblotting.

  19. Sensitivity improvements of a resonance-based tactile sensor.

    PubMed

    Murayama, Yoshinobu; Lindahl, Olof A

    2017-02-01

    Resonance-based contact-impedance measurement refers to the application of resonance sensors based on the measurement of the changes in the resonance curve of an ultrasonic resonator in contact with a surface. The advantage of the resonance sensor is that it is very sensitive to small changes in the contact impedance. A sensitive micro tactile sensor (MTS) was developed, which measured the elasticity of soft living tissues at the single-cell level. In the present paper, we studied the method of improving the touch and stiffness sensitivity of the MTS. First, the dependence of touch sensitivity in relation to the resonator length was studied by calculating the sensitivity coefficient at each length ranging from 9 to 40 mm. The highest touch sensitivity was obtained with a 30-mm-long glass needle driven at a resonance frequency of 100 kHz. Next, the numerical calculation of contact impedance showed that the highest stiffness sensitivity was achieved when the driving frequency was 100 kHz and the contact-tip diameter of the MTS was 10 μm. The theoretical model was then confirmed experimentally using a phase-locked-loop-based digital feedback oscillation circuit. It was found that the developed MTS, whose resonant frequency was 97.030 kHz, performed with the highest sensitivity of 53.2 × 10 6  Hz/N at the driving frequency of 97.986 kHz, i.e. the highest sensitivity was achieved at 956 Hz above the resonant frequency.

  20. Quantifying uncertainty and sensitivity in sea ice models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego Blanco, Jorge Rolando; Hunke, Elizabeth Clare; Urban, Nathan Mark

    The Los Alamos Sea Ice model has a number of input parameters for which accurate values are not always well established. We conduct a variance-based sensitivity analysis of hemispheric sea ice properties to 39 input parameters. The method accounts for non-linear and non-additive effects in the model.

  1. RAPID PCR-BASED MONITORING OF INFECTIOUS ENTEROVIRUSES IN DRINKING WATER. (R824756)

    EPA Science Inventory

    Abstract

    Currently, the standard method for the detection of enteroviruses and hepatitis A virus in water involves cell culture assay which is expensive and time consuming. Direct RT-PCR offers a rapid and sensitive alternative to virus detection but sensitivity is oft...

  2. Using Real-time Event Tracking Sensitivity Analysis to Overcome Sensor Measurement Uncertainties of Geo-Information Management in Drilling Disasters

    NASA Astrophysics Data System (ADS)

    Tavakoli, S.; Poslad, S.; Fruhwirth, R.; Winter, M.

    2012-04-01

    This paper introduces an application of a novel EventTracker platform for instantaneous Sensitivity Analysis (SA) of large scale real-time geo-information. Earth disaster management systems demand high quality information to aid a quick and timely response to their evolving environments. The idea behind the proposed EventTracker platform is the assumption that modern information management systems are able to capture data in real-time and have the technological flexibility to adjust their services to work with specific sources of data/information. However, to assure this adaptation in real time, the online data should be collected, interpreted, and translated into corrective actions in a concise and timely manner. This can hardly be handled by existing sensitivity analysis methods because they rely on historical data and lazy processing algorithms. In event-driven systems, the effect of system inputs on its state is of value, as events could cause this state to change. This 'event triggering' situation underpins the logic of the proposed approach. Event tracking sensitivity analysis method describes the system variables and states as a collection of events. The higher the occurrence of an input variable during the trigger of event, the greater its potential impact will be on the final analysis of the system state. Experiments were designed to compare the proposed event tracking sensitivity analysis with existing Entropy-based sensitivity analysis methods. The results have shown a 10% improvement in a computational efficiency with no compromise for accuracy. It has also shown that the computational time to perform the sensitivity analysis is 0.5% of the time required compared to using the Entropy-based method. The proposed method has been applied to real world data in the context of preventing emerging crises at drilling rigs. One of the major purposes of such rigs is to drill boreholes to explore oil or gas reservoirs with the final scope of recovering the content of such reservoirs; both in onshore regions as well as in offshore regions. Drilling a well is always guided by technical, economic and security constraints to prevent crew, equipment and environment from injury, damage and pollution. Although risk assessment and local practice provides a high degree of security, uncertainty is given by the behaviour of the formation which may cause crucial situations at the rig. To overcome such uncertainties real-time sensor measurements form a base to predict and thus prevent such crises, the proposed method supports the identification of the data necessary for that.

  3. In vivo serial MRI-based models and statistical methods to quantify sensitivity and specificity of mechanical predictors for carotid plaque rupture: location and beyond.

    PubMed

    Wu, Zheyang; Yang, Chun; Tang, Dalin

    2011-06-01

    It has been hypothesized that mechanical risk factors may be used to predict future atherosclerotic plaque rupture. Truly predictive methods for plaque rupture and methods to identify the best predictor(s) from all the candidates are lacking in the literature. A novel combination of computational and statistical models based on serial magnetic resonance imaging (MRI) was introduced to quantify sensitivity and specificity of mechanical predictors to identify the best candidate for plaque rupture site prediction. Serial in vivo MRI data of carotid plaque from one patient was acquired with follow-up scan showing ulceration. 3D computational fluid-structure interaction (FSI) models using both baseline and follow-up data were constructed and plaque wall stress (PWS) and strain (PWSn) and flow maximum shear stress (FSS) were extracted from all 600 matched nodal points (100 points per matched slice, baseline matching follow-up) on the lumen surface for analysis. Each of the 600 points was marked "ulcer" or "nonulcer" using follow-up scan. Predictive statistical models for each of the seven combinations of PWS, PWSn, and FSS were trained using the follow-up data and applied to the baseline data to assess their sensitivity and specificity using the 600 data points for ulcer predictions. Sensitivity of prediction is defined as the proportion of the true positive outcomes that are predicted to be positive. Specificity of prediction is defined as the proportion of the true negative outcomes that are correctly predicted to be negative. Using probability 0.3 as a threshold to infer ulcer occurrence at the prediction stage, the combination of PWS and PWSn provided the best predictive accuracy with (sensitivity, specificity) = (0.97, 0.958). Sensitivity and specificity given by PWS, PWSn, and FSS individually were (0.788, 0.968), (0.515, 0.968), and (0.758, 0.928), respectively. The proposed computational-statistical process provides a novel method and a framework to assess the sensitivity and specificity of various risk indicators and offers the potential to identify the optimized predictor for plaque rupture using serial MRI with follow-up scan showing ulceration as the gold standard for method validation. While serial MRI data with actual rupture are hard to acquire, this single-case study suggests that combination of multiple predictors may provide potential improvement to existing plaque assessment schemes. With large-scale patient studies, this predictive modeling process may provide more solid ground for rupture predictor selection strategies and methods for image-based plaque vulnerability assessment.

  4. A model to estimate insulin sensitivity in dairy cows.

    PubMed

    Holtenius, Paul; Holtenius, Kjell

    2007-10-11

    Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI) is based on plasma concentrations of glucose, insulin and free fatty acids (FFA) and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.

  5. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE PAGES

    Dai, Heng; Ye, Ming; Walker, Anthony P.; ...

    2017-03-28

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  6. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  7. Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.)

    PubMed Central

    Turner, Cameron R.; Miller, Derryl J.; Coyne, Kathryn J.; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species. PMID:25474207

  8. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.).

    PubMed

    Turner, Cameron R; Miller, Derryl J; Coyne, Kathryn J; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.

  9. Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Baysal, Oktay

    1997-01-01

    A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.

  10. Adjoint-Based Sensitivity Kernels for Glacial Isostatic Adjustment in a Laterally Varying Earth

    NASA Astrophysics Data System (ADS)

    Crawford, O.; Al-Attar, D.; Tromp, J.; Mitrovica, J. X.; Austermann, J.; Lau, H. C. P.

    2017-12-01

    We consider a new approach to both the forward and inverse problems in glacial isostatic adjustment. We present a method for forward modelling GIA in compressible and laterally heterogeneous earth models with a variety of linear and non-linear rheologies. Instead of using the so-called sea level equation, which must be solved iteratively, the forward theory we present consists of a number of coupled evolution equations that can be straightforwardly numerically integrated. We also apply the adjoint method to the inverse problem in order to calculate the derivatives of measurements of GIA with respect to the viscosity structure of the Earth. Such derivatives quantify the sensitivity of the measurements to the model. The adjoint method enables efficient calculation of continuous and laterally varying derivatives, allowing us to calculate the sensitivity of measurements of glacial isostatic adjustment to the Earth's three-dimensional viscosity structure. The derivatives have a number of applications within the inverse method. Firstly, they can be used within a gradient-based optimisation method to find a model which minimises some data misfit function. The derivatives can also be used to quantify the uncertainty in such a model and hence to provide understanding of which parts of the model are well constrained. Finally, they enable construction of measurements which provide sensitivity to a particular part of the model space. We illustrate both the forward and inverse aspects with numerical examples in a spherically symmetric earth model.

  11. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.

    PubMed

    Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2017-10-15

    Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  13. An ultrasensitive chemiluminescence immunoassay of chloramphenicol based on gold nanoparticles and magnetic beads.

    PubMed

    Tao, Xiaoqi; Jiang, Haiyang; Yu, Xuezhi; Zhu, Jinghui; Wang, Xia; Wang, Zhanhui; Niu, Lanlan; Wu, Xiaoping; Shen, Jianzhong

    2013-05-01

    A competitive, direct, chemiluminescent immunoassay based on a magnetic beads (MBs) separation and gold nanoparticles (AuNPs) labelling technique to detect chloramphenicol (CAP) has been developed. Horseradish peroxidase (HRP)-labelled anti-CAP monoclonal antibody conjugated with AuNPs and antigen-immobilized MBs were prepared. After optimization parameters of immunocomplex MBs, the IC50 values of chemiluminescence magnetic nanoparticles immunoassay (CL-MBs-nano-immunoassay) were 0.017 µg L(-1) for extract method I and 0.17 µg L(-1) for extract method II. The immunoassay with two extract methods was applied to detect CAP in milk. Comparison of these two extract methods showed that extract method I was advantageous in better sensitivity, in which the sensitivity was 10 times compared to that of extract method II, while extract method II was superior in simple operation, suitable for high throughout screen. The recoveries were 86.7-98.0% (extract method I) and 80.0-103.0% (extract method II), and the coefficients of variation (CVs) were all <15%. The satisfactory recovery with both extract methods and high correlation with traditional ELISA kit in milk system confirmed that the immunomagnetic assay based on AuNPs exhibited promising potential in rapid field screening for trace CAP analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  14. A novel class sensitive hashing technique for large-scale content-based remote sensing image retrieval

    NASA Astrophysics Data System (ADS)

    Reato, Thomas; Demir, Begüm; Bruzzone, Lorenzo

    2017-10-01

    This paper presents a novel class sensitive hashing technique in the framework of large-scale content-based remote sensing (RS) image retrieval. The proposed technique aims at representing each image with multi-hash codes, each of which corresponds to a primitive (i.e., land cover class) present in the image. To this end, the proposed method consists of a three-steps algorithm. The first step is devoted to characterize each image by primitive class descriptors. These descriptors are obtained through a supervised approach, which initially extracts the image regions and their descriptors that are then associated with primitives present in the images. This step requires a set of annotated training regions to define primitive classes. A correspondence between the regions of an image and the primitive classes is built based on the probability of each primitive class to be present at each region. All the regions belonging to the specific primitive class with a probability higher than a given threshold are highly representative of that class. Thus, the average value of the descriptors of these regions is used to characterize that primitive. In the second step, the descriptors of primitive classes are transformed into multi-hash codes to represent each image. This is achieved by adapting the kernel-based supervised locality sensitive hashing method to multi-code hashing problems. The first two steps of the proposed technique, unlike the standard hashing methods, allow one to represent each image by a set of primitive class sensitive descriptors and their hash codes. Then, in the last step, the images in the archive that are very similar to a query image are retrieved based on a multi-hash-code-matching scheme. Experimental results obtained on an archive of aerial images confirm the effectiveness of the proposed technique in terms of retrieval accuracy when compared to the standard hashing methods.

  15. Kernelized Locality-Sensitive Hashing for Fast Image Landmark Association

    DTIC Science & Technology

    2011-03-24

    based Simultaneous Localization and Mapping ( SLAM ). The problem, however, is that vision-based navigation techniques can re- quire excessive amounts of...up and optimizing the data association process in vision-based SLAM . Specifically, this work studies the current methods that algorithms use to...required for location identification than that of other methods. This work can then be extended into a vision- SLAM implementation to subsequently

  16. Cloning of the koi herpesvirus (KHV) gene encoding thymidine kinase and its use for a highly sensitive PCR based diagnosis

    PubMed Central

    Bercovier, Herve; Fishman, Yolanta; Nahary, Ronen; Sinai, Sharon; Zlotkin, Amir; Eyngor, Marina; Gilad, Oren; Eldar, Avi; Hedrick, Ronald P

    2005-01-01

    Background Outbreaks with mass mortality among common carp Cyprinus carpio carpio and koi Cyprinus carpio koi have occurred worldwide since 1998. The herpes-like virus isolated from diseased fish is different from Herpesvirus cyprini and channel catfish virus and was accordingly designated koi herpesvirus (KHV). Diagnosis of KHV infection based on viral isolation and current PCR assays has a limited sensitivity and therefore new tools for the diagnosis of KHV infections are necessary. Results A robust and sensitive PCR assay based on a defined gene sequence of KHV was developed to improve the diagnosis of KHV infection. From a KHV genomic library, a hypothetical thymidine kinase gene (TK) was identified, subcloned and expressed as a recombinant protein. Preliminary characterization of the recombinant TK showed that it has a kinase activity using dTTP but not dCTP as a substrate. A PCR assay based on primers selected from the defined DNA sequence of the TK gene was developed and resulted in a 409 bp amplified fragment. The TK based PCR assay did not amplify the DNAs of other fish herpesviruses such as Herpesvirus cyprini (CHV) and the channel catfish virus (CCV). The TK based PCR assay was specific for the detection of KHV and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions. The TK based PCR was compared to previously described PCR assays and to viral culture in diseased fish and was shown to be the most sensitive method of diagnosis of KHV infection. Conclusion The TK based PCR assay developed in this work was shown to be specific for the detection of KHV. The TK based PCR assay was more sensitive for the detection of KHV than previously described PCR assays; it was as sensitive as virus isolation which is the golden standard method for KHV diagnosis and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions. PMID:15774009

  17. Technical evaluation of methods for identifying chemotherapy-induced febrile neutropenia in healthcare claims databases

    PubMed Central

    2013-01-01

    Background Healthcare claims databases have been used in several studies to characterize the risk and burden of chemotherapy-induced febrile neutropenia (FN) and effectiveness of colony-stimulating factors against FN. The accuracy of methods previously used to identify FN in such databases has not been formally evaluated. Methods Data comprised linked electronic medical records from Geisinger Health System and healthcare claims data from Geisinger Health Plan. Subjects were classified into subgroups based on whether or not they were hospitalized for FN per the presumptive “gold standard” (ANC <1.0×109/L, and body temperature ≥38.3°C or receipt of antibiotics) and claims-based definition (diagnosis codes for neutropenia, fever, and/or infection). Accuracy was evaluated principally based on positive predictive value (PPV) and sensitivity. Results Among 357 study subjects, 82 (23%) met the gold standard for hospitalized FN. For the claims-based definition including diagnosis codes for neutropenia plus fever in any position (n=28), PPV was 100% and sensitivity was 34% (95% CI: 24–45). For the definition including neutropenia in the primary position (n=54), PPV was 87% (78–95) and sensitivity was 57% (46–68). For the definition including neutropenia in any position (n=71), PPV was 77% (68–87) and sensitivity was 67% (56–77). Conclusions Patients hospitalized for chemotherapy-induced FN can be identified in healthcare claims databases--with an acceptable level of mis-classification--using diagnosis codes for neutropenia, or neutropenia plus fever. PMID:23406481

  18. [Epidemiologic diagnostic of nosocomial suppurative-septic infections of Pseudomonas etiology based on intraspecies typing of causative agent].

    PubMed

    Fel'dblium, I V; Zakharova, Iu A; Nikolaeva, A M; Fedotova, O S

    2013-01-01

    Scientific justification of optimization of epidemiologic diagnostic of suppurative-septic infection (SSI) caused by Pseudomonas aeruginosa based on comparability of antibiotic sensitivity and beta-lactamase production. Intraspecies typing of 37 P. aeruginosa strains isolated during microbiological monitoring of 106 patients and 131 objects of clinical environment of surgical and obstetrician hospitals by using a complex ofphenotypic and molecular-biological methods including determination of sensitivity to antibiotics by serial dilutions method and PCR-diagnostics with determination of TEM, SHV, CTX, OXA, MBL, VIM genes was performed. P. aeruginosa strains combined into groups by isolation location during studies turned out to be heterogeneous by sensitivity to antibiotics and beta-lactamase production that allowed to form subgroups of strains by focality attribute. Isolates recovered from different SSI foci had significant differences in minimal inhibitory concentration (MIC) reaching 1024 times. MIC parameter within subgroups did not exceed 8 - 16 consequent dilutions. Use of a complex of phenotypic and molecular-biologic methods of causative agent typing including determination of sensitivity to antibiotics by serial dilutions method and evaluation of beta-lactamase production allowed to establish a mechanism of development of SSI epidemic process caused by P. aeruginosa, detect origins and reservoirs of infection in hospital, modes and factors of transmission and reach maximum justification of epidemiologic control and prophylaxis measures of localization of foci of nosocomial infections of pseudomonas etiology.

  19. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction.

    PubMed

    Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming

    2013-07-17

    A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Diagnostic accuracy and cost-effectiveness of alternative methods for detection of soil-transmitted helminths in a post-treatment setting in western Kenya.

    PubMed

    Assefa, Liya M; Crellen, Thomas; Kepha, Stella; Kihara, Jimmy H; Njenga, Sammy M; Pullan, Rachel L; Brooker, Simon J

    2014-05-01

    This study evaluates the diagnostic accuracy and cost-effectiveness of the Kato-Katz and Mini-FLOTAC methods for detection of soil-transmitted helminths (STH) in a post-treatment setting in western Kenya. A cost analysis also explores the cost implications of collecting samples during school surveys when compared to household surveys. Stool samples were collected from children (n = 652) attending 18 schools in Bungoma County and diagnosed by the Kato-Katz and Mini-FLOTAC coprological methods. Sensitivity and additional diagnostic performance measures were analyzed using Bayesian latent class modeling. Financial and economic costs were calculated for all survey and diagnostic activities, and cost per child tested, cost per case detected and cost per STH infection correctly classified were estimated. A sensitivity analysis was conducted to assess the impact of various survey parameters on cost estimates. Both diagnostic methods exhibited comparable sensitivity for detection of any STH species over single and consecutive day sampling: 52.0% for single day Kato-Katz; 49.1% for single-day Mini-FLOTAC; 76.9% for consecutive day Kato-Katz; and 74.1% for consecutive day Mini-FLOTAC. Diagnostic performance did not differ significantly between methods for the different STH species. Use of Kato-Katz with school-based sampling was the lowest cost scenario for cost per child tested ($10.14) and cost per case correctly classified ($12.84). Cost per case detected was lowest for Kato-Katz used in community-based sampling ($128.24). Sensitivity analysis revealed the cost of case detection for any STH decreased non-linearly as prevalence rates increased and was influenced by the number of samples collected. The Kato-Katz method was comparable in diagnostic sensitivity to the Mini-FLOTAC method, but afforded greater cost-effectiveness. Future work is required to evaluate the cost-effectiveness of STH surveillance in different settings.

  1. Single input state, single–mode fiber–based polarization sensitive optical frequency domain imaging by eigenpolarization referencing

    PubMed Central

    Lippok, Norman; Villiger, Martin; Jun, Chang–Su; Bouma, Brett E.

    2015-01-01

    Fiber–based polarization sensitive OFDI is more challenging than free–space implementations. Using multiple input states, fiber–based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber–based configurations can approach the conceptual simplicity of traditional free–space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization sensitive imaging of biological samples. PMID:25927775

  2. Lamb Wave Damage Quantification Using GA-Based LS-SVM.

    PubMed

    Sun, Fuqiang; Wang, Ning; He, Jingjing; Guan, Xuefei; Yang, Jinsong

    2017-06-12

    Lamb waves have been reported to be an efficient tool for non-destructive evaluations (NDE) for various application scenarios. However, accurate and reliable damage quantification using the Lamb wave method is still a practical challenge, due to the complex underlying mechanism of Lamb wave propagation and damage detection. This paper presents a Lamb wave damage quantification method using a least square support vector machine (LS-SVM) and a genetic algorithm (GA). Three damage sensitive features, namely, normalized amplitude, phase change, and correlation coefficient, were proposed to describe changes of Lamb wave characteristics caused by damage. In view of commonly used data-driven methods, the GA-based LS-SVM model using the proposed three damage sensitive features was implemented to evaluate the crack size. The GA method was adopted to optimize the model parameters. The results of GA-based LS-SVM were validated using coupon test data and lap joint component test data with naturally developed fatigue cracks. Cases of different loading and manufacturer were also included to further verify the robustness of the proposed method for crack quantification.

  3. Lamb Wave Damage Quantification Using GA-Based LS-SVM

    PubMed Central

    Sun, Fuqiang; Wang, Ning; He, Jingjing; Guan, Xuefei; Yang, Jinsong

    2017-01-01

    Lamb waves have been reported to be an efficient tool for non-destructive evaluations (NDE) for various application scenarios. However, accurate and reliable damage quantification using the Lamb wave method is still a practical challenge, due to the complex underlying mechanism of Lamb wave propagation and damage detection. This paper presents a Lamb wave damage quantification method using a least square support vector machine (LS-SVM) and a genetic algorithm (GA). Three damage sensitive features, namely, normalized amplitude, phase change, and correlation coefficient, were proposed to describe changes of Lamb wave characteristics caused by damage. In view of commonly used data-driven methods, the GA-based LS-SVM model using the proposed three damage sensitive features was implemented to evaluate the crack size. The GA method was adopted to optimize the model parameters. The results of GA-based LS-SVM were validated using coupon test data and lap joint component test data with naturally developed fatigue cracks. Cases of different loading and manufacturer were also included to further verify the robustness of the proposed method for crack quantification. PMID:28773003

  4. A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2014-01-01

    In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592

  5. Methylation-Sensitive High Resolution Melting (MS-HRM).

    PubMed

    Hussmann, Dianna; Hansen, Lise Lotte

    2018-01-01

    Methylation-Sensitive High Resolution Melting (MS-HRM) is an in-tube, PCR-based method to detect methylation levels at specific loci of interest. A unique primer design facilitates a high sensitivity of the assays enabling detection of down to 0.1-1% methylated alleles in an unmethylated background.Primers for MS-HRM assays are designed to be complementary to the methylated allele, and a specific annealing temperature enables these primers to anneal both to the methylated and the unmethylated alleles thereby increasing the sensitivity of the assays. Bisulfite treatment of the DNA prior to performing MS-HRM ensures a different base composition between methylated and unmethylated DNA, which is used to separate the resulting amplicons by high resolution melting.The high sensitivity of MS-HRM has proven useful for detecting cancer biomarkers in a noninvasive manner in urine from bladder cancer patients, in stool from colorectal cancer patients, and in buccal mucosa from breast cancer patients. MS-HRM is a fast method to diagnose imprinted diseases and to clinically validate results from whole-epigenome studies. The ability to detect few copies of methylated DNA makes MS-HRM a key player in the quest for establishing links between environmental exposure, epigenetic changes, and disease.

  6. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kewei, E-mail: drzkw@126.com; Chai, Yuesheng; Fu, Jiahui

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonancemore » modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.« less

  7. Decorrelation-based viscosity measurement using phase-sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Blackburn, Brecken J.; Gu, Shi; Jenkins, Michael W.; Rollins, Andrew M.

    2017-02-01

    A robust method to measure viscosity of microquantities of biological samples, such as blood and mucus, could lead to a better understanding and diagnosis of diseases. Microsamples have presented persistent challenges to conventional rheology, which requires bulk quantities of a sample. Alternatively, fluid viscosity can be probed by monitoring microscale motion of particles. Here, we present a decorrelation-based method using M-mode phase-sensitive optical coherence tomography (OCT) to measure particle Brownian motion. This is similar to previous methods using laser speckle decorrelation but with sensitivity to nanometer-scale displacement. This allows for the measurement of decorrelation in less than 1 millisecond and significantly decreases sensitivity to bulk motion, thereby potentially enabling in vivo and in situ applications. From first principles, an analytical method is established using M-mode images obtained from a 47 kHz spectral-domain OCT system. A g(1) first-order autocorrelation is calculated from windows containing several pixels over a time frame of 200-1000 microseconds. Total imaging time is 500 milliseconds for averaging purposes. The autocorrelation coefficient over this short time frame decreases linearly and at a rate proportional to the diffusion constant of the particles, allowing viscosity to be calculated. In verification experiments using phantoms of microbeads in 200 µL glycerol-water mixtures, this method showed insensitivity to 2 mm/s lateral bulk motion and accurate viscosity measurements over a depth of 400 µm. In addition, the method measured a significant decrease of the apparent diffusion constant of soft tissue after formalin fixation, suggesting potential applications in mapping tissue stiffness.

  8. Non-animal sensitization testing: state-of-the-art.

    PubMed

    Vandebriel, Rob J; van Loveren, Henk

    2010-05-01

    Predictive tests to identify the sensitizing properties of chemicals are carried out using animals. In the European Union timelines for phasing out many standard animal tests were established for cosmetics. Following this policy, the new European Chemicals Legislation (REACH) favors alternative methods, if validated and appropriate. In this review the authors aim to provide a state-of-the art overview of alternative methods (in silico, in chemico, and in vitro) to identify contact and respiratory sensitizing capacity and in some occasions give a measure of potency. The past few years have seen major advances in QSAR (quantitative structure-activity relationship) models where especially mechanism-based models have great potential, peptide reactivity assays where multiple parameters can be measured simultaneously, providing a more complete reactivity profile, and cell-based assays. Several cell-based assays are in development, not only using different cell types, but also several specifically developed assays such as three-dimenionally (3D)-reconstituted skin models, an antioxidant response reporter assay, determination of signaling pathways, and gene profiling. Some of these assays show relatively high sensitivity and specificity for a large number of sensitizers and should enter validation (or are indeed entering this process). Integrating multiple assays in a decision tree or integrated testing system is a next step, but has yet to be developed. Adequate risk assessment, however, is likely to require significantly more time and efforts.

  9. A method to estimate weight and dimensions of large and small gas turbine engines

    NASA Technical Reports Server (NTRS)

    Onat, E.; Klees, G. W.

    1979-01-01

    A computerized method was developed to estimate weight and envelope dimensions of large and small gas turbine engines within + or - 5% to 10%. The method is based on correlations of component weight and design features of 29 data base engines. Rotating components were estimated by a preliminary design procedure which is sensitive to blade geometry, operating conditions, material properties, shaft speed, hub tip ratio, etc. The development and justification of the method selected, and the various methods of analysis are discussed.

  10. Neural-Net Based Optical NDE Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  11. A study on the sensitivity of self-powered neutron detectors (SPNDs)

    NASA Astrophysics Data System (ADS)

    Lee, Wanno; Cho, Gyuseong; Kim, Kwanghyun; Kim, Hee Joon; choi, Yuseon; Park, Moon Chu; Kim, Soongpyung

    2001-08-01

    Self-powered neutron detectors (SPNDs) are widely used in reactors to monitor neutron flux, while they have several advantages such as small size, and relatively simple electronics required in conjunction with those usages, they have some intrinsic problems of the low level of output current-a slow response time and the rapid change of sensitivity-that make it difficult to use for a long term. Monte Carlo simulation was used to calculate the escape probability as a function of the birth position of emitted beta particle for geometry of rhodium-based SPNDs. A simple numerical method calculated the initial generation rate of beta particles and the change of generation rate due to rhodium burnup. Using results of the simulation and the simple numerical method, the burnup profile of rhodium number density and the neutron sensitivity were calculated as a function of burnup time in reactors. This method was verified by the comparison of this and other papers, and data of YGN3.4 (Young Gwang Nuclear plant 3, 4) about the initial sensitivity. In addition, for improvement of some properties of rhodium-based SPNDs, which are currently used, a modified geometry is proposed. The proposed geometry, which is tube-type, is able to increase the initial sensitivity due to increase of the escape probability. The escape probability was calculated by changing the thickness of the insulator and compared solid-type with tube-type about each insulator thickness. The method used here can be applied to the analysis and design of other types of SPNDs.

  12. Adaptation of red blood cell lysis represents a fundamental breakthrough that improves the sensitivity of Salmonella detection in blood

    PubMed Central

    Boyd, MA; Tennant, SM; Melendez, JH; Toema, D; Galen, JE; Geddes, CD; Levine, MM

    2015-01-01

    Aims Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocytes. The objective of this study was to evaluate various blood treatment methods that could be used prior to PCR, real-time PCR or MAMEF to increase sensitivity of detection of Salmonella. Methods and Results We tested ammonium chloride and erythrocyte lysis buffer, water, Lymphocyte Separation Medium, BD Vacutainer® CPT™ Tubes and dextran. Erythrocyte lysis buffer was the best isolation method as it is fast, inexpensive and works with either fresh or stored blood. The sensitivity of PCR- and real-time PCR detection of Salmonella in spiked blood was improved when whole blood was first lysed using erythrocyte lysis buffer prior to DNA extraction. Removal of erythrocytes and clotting factors also enabled reproducible lysis of Salmonella and fragmentation of DNA, which are necessary for MAMEF sensing. Conclusions Use of the erythrocyte lysis procedure prior to DNA extraction has enabled improved sensitivity of Salmonella detection by PCR and real-time PCR and has allowed lysis and fragmentation of Salmonella using microwave radiation (for future detection by MAMEF). Significance and Impact of the Study Adaptation of the blood lysis method represents a fundamental breakthrough that improves the sensitivity of DNA-based detection of Salmonella in blood. PMID:25630831

  13. Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems.

    PubMed

    Johnson, Mitchell E; Landers, James P

    2004-11-01

    Laser-induced fluorescence is an extremely sensitive method for detection in chemical separations. In addition, it is well-suited to detection in small volumes, and as such is widely used for capillary electrophoresis and microchip-based separations. This review explores the detailed instrumental conditions required for sub-zeptomole, sub-picomolar detection limits. The key to achieving the best sensitivity is to use an excitation and emission volume that is matched to the separation system and that, simultaneously, will keep scattering and luminescence background to a minimum. We discuss how this is accomplished with confocal detection, 90 degrees on-capillary detection, and sheath-flow detection. It is shown that each of these methods have their advantages and disadvantages, but that all can be used to produce extremely sensitive detectors for capillary- or microchip-based separations. Analysis of these capabilities allows prediction of the optimal means of achieving ultrasensitive detection on microchips.

  14. Multivariate Models for Prediction of Human Skin Sensitization Hazard

    PubMed Central

    Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M.; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole

    2016-01-01

    One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression (LR) and support vector machine (SVM), to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy (92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries combining data from the individual methods (accuracy = 75%). These results suggest that computational methods are promising tools to effectively identify potential human skin sensitizers without animal testing. PMID:27480324

  15. Design sensitivity analysis of rotorcraft airframe structures for vibration reduction

    NASA Technical Reports Server (NTRS)

    Murthy, T. Sreekanta

    1987-01-01

    Optimization of rotorcraft structures for vibration reduction was studied. The objective of this study is to develop practical computational procedures for structural optimization of airframes subject to steady-state vibration response constraints. One of the key elements of any such computational procedure is design sensitivity analysis. A method for design sensitivity analysis of airframes under vibration response constraints is presented. The mathematical formulation of the method and its implementation as a new solution sequence in MSC/NASTRAN are described. The results of the application of the method to a simple finite element stick model of the AH-1G helicopter airframe are presented and discussed. Selection of design variables that are most likely to bring about changes in the response at specified locations in the airframe is based on consideration of forced response strain energy. Sensitivity coefficients are determined for the selected design variable set. Constraints on the natural frequencies are also included in addition to the constraints on the steady-state response. Sensitivity coefficients for these constraints are determined. Results of the analysis and insights gained in applying the method to the airframe model are discussed. The general nature of future work to be conducted is described.

  16. Quantitative magnetic resonance spectroscopy at 3T based on the principle of reciprocity.

    PubMed

    Zoelch, Niklaus; Hock, Andreas; Henning, Anke

    2018-05-01

    Quantification of magnetic resonance spectroscopy signals using the phantom replacement method requires an adequate correction of differences between the acquisition of the reference signal in the phantom and the measurement in vivo. Applying the principle of reciprocity, sensitivity differences can be corrected at low field strength by measuring the RF transmitter gain needed to obtain a certain flip angle in the measured volume. However, at higher field strength the transmit sensitivity may vary from the reception sensitivity, which leads to wrongly estimated concentrations. To address this issue, a quantification approach based on the principle of reciprocity for use at 3T is proposed and validated thoroughly. In this approach, the RF transmitter gain is determined automatically using a volume-selective power optimization and complemented with information from relative reception sensitivity maps derived from contrast-minimized images to correct differences in transmission and reception sensitivity. In this way, a reliable measure of the local sensitivity was obtained. The proposed method is used to derive in vivo concentrations of brain metabolites and tissue water in two studies with different coil sets in a total of 40 healthy volunteers. Resulting molar concentrations are compared with results using internal water referencing (IWR) and Electric REference To access In vivo Concentrations (ERETIC). With the proposed method, changes in coil loading and regional sensitivity due to B 1 inhomogeneities are successfully corrected, as demonstrated in phantom and in vivo measurements. For the tissue water content, coefficients of variation between 2% and 3.5% were obtained (0.6-1.4% in a single subject). The coefficients of variation of the three major metabolites ranged from 3.4-14.5%. In general, the derived concentrations agree well with values estimated with IWR. Hence, the presented method is a valuable alternative for IWR, without the need for additional hardware such as ERETIC and with potential advantages in diseased tissue. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.

    PubMed

    Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang

    2018-02-24

    This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.

  18. A validated stability indicating RP-HPLC method for estimation of Armodafinil in pharmaceutical dosage forms and characterization of its base hydrolytic product.

    PubMed

    Venkateswarlu, Kambham; Rangareddy, Ardhgeri; Narasimhaiah, Kanaka; Sharma, Hemraj; Bandi, Naga Mallikarjuna Raja

    2017-01-01

    The main objective of present study was to develop a RP-HPLC method for estimation of Armodafinil in pharmaceutical dosage forms and characterization of its base hydrolytic product. The method was developed for Armodafinil estimation and base hydrolytic products were characterized. The separation was carried out on C18 column by using mobile phase as mixture of water and methanol (45:55%v/v). Eluents were detected at 220nm at 1ml/min. Stress studies were performed with milder conditions followed by stronger conditions so as to get sufficient degradation around 20%. A total of five degradation products were detected and separated from analyte. The linearity of the proposed method was investigated in the range of 20-120µg/ml for Armodafinil. The detection limit and quantification limit was found to be 0.01183μg/ml and 0.035µg/ml respectively. The precision % RSD was found to be less than 2% and the recovery was between 98-102%. Armodafinil was found to be more sensitive to the base hydrolysis and yielded its carboxylic acid as degradant. The developed method was stability indicating assay, suitable to quantify Armodafinil in presence of possible degradants. The drug was sensitive to acid, base &photolytic stress and resistant to thermal &oxidation.

  19. Empirical likelihood-based confidence intervals for the sensitivity of a continuous-scale diagnostic test at a fixed level of specificity.

    PubMed

    Gengsheng Qin; Davis, Angela E; Jing, Bing-Yi

    2011-06-01

    For a continuous-scale diagnostic test, it is often of interest to find the range of the sensitivity of the test at the cut-off that yields a desired specificity. In this article, we first define a profile empirical likelihood ratio for the sensitivity of a continuous-scale diagnostic test and show that its limiting distribution is a scaled chi-square distribution. We then propose two new empirical likelihood-based confidence intervals for the sensitivity of the test at a fixed level of specificity by using the scaled chi-square distribution. Simulation studies are conducted to compare the finite sample performance of the newly proposed intervals with the existing intervals for the sensitivity in terms of coverage probability. A real example is used to illustrate the application of the recommended methods.

  20. A novel signal amplification technology for ELISA based on catalyzed reporter deposition. Demonstration of its applicability for measuring aflatoxin B(1).

    PubMed

    Bhattacharya, D; Bhattacharya, R; Dhar, T K

    1999-11-19

    In an earlier communication we have described a novel signal amplification technology termed Super-CARD, which is able to significantly improve antigen detection sensitivity in conventional Dot-ELISA by approximately 10(5)-fold. The method utilizes hitherto unreported synthesized electron rich proteins containing multiple phenolic groups which, when immobilized over a solid phase as blocking agent, markedly increases the signal amplification capability of the existing CARD method (Bhattacharya, R., Bhattacharya, D., Dhar, T.K., 1999. A novel signal amplification technology based on catalyzed reporter deposition and its application in a Dot-ELISA with ultra high sensitivity. J. Immunol. Methods 227, 31.). In this paper we describe the utilization of this Super-CARD amplification technique in ELISA and its applicability for the rapid determination of aflatoxin B(1) (AFB(1)) in infected seeds. Using this method under identical conditions, the increase in absorbance over the CARD method was approximately 400%. The limit of detection of AFB(1) by this method was 0.1 pg/well, the sensitivity enhancement being 5-fold over the optimized CARD ELISA. Furthermore, the total incubation time was reduced to 16 min compared to 50 min for the CARD method. Assay specificity was not adversely affected and the amount of AFB(1) measured in seed extracts correlated well with the values obtained by conventional ELISA.

  1. Double-Sided Transparent TiO2 Nanotube/ITO Electrodes for Efficient CdS/CuInS2 Quantum Dot-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Ling, Lanyu; Li, Fumin

    2017-01-01

    In this paper, to improve the power conversion efficiencies (PCEs) of quantum dot-sensitized solar cells (QDSSCs) based on CdS-sensitized TiO2 nanotube (TNT) electrodes, two methods are employed on the basis of our previous work. First, by replacing the traditional single-sided working electrodes, double-sided transparent TNT/ITO (DTTO) electrodes are prepared to increase the loading amount of quantum dots (QDs) on the working electrodes. Second, to increase the light absorption of the CdS-sensitized DTTO electrodes and improve the efficiency of charge separation in CdS-sensitized QDSSCs, copper indium disulfide (CuInS2) is selected to cosensitize the DTTO electrodes with CdS, which has a complementary property of light absorption with CdS. The PCEs of QDSSCs based on these prepared QD-sensitized DTTO electrodes are measured. Our experimental results show that compared to those based on the CdS/DTTO electrodes without CuInS2, the PCEs of the QDSSCs based on CdS/CuInS2-sensitized DTTO electrode are significantly improved, which is mainly attributed to the increased light absorption and reduced charge recombination. Under simulated one-sun illumination, the best PCE of 1.42% is achieved for the QDSSCs based on CdS(10)/CuInS2/DTTO electrode, which is much higher than that (0.56%) of the QDSSCs based on CdS(10)/DTTO electrode.

  2. Quantitative determination of some pharmaceutical piperazine derivatives through complexation with iron(III) chloride.

    PubMed

    Abou-Attia, F M; Issa, Y M; Abdel-Gawad, F M; Abdel-Hamid, S M

    2003-08-01

    A simple, accurate and sensitive spectrophotometric method has been developed for the determination of three pharmaceutical piperazine derivatives, namely ketoconazole (KC), trimetazidine hydrochloride (TMH) and piribedil (PD). This method is based on the formation of yellow orange complexes between iron(III) chloride and the investigated drugs. The optimum reaction conditions, spectral characteristics, conditional stability constants and composition of the water soluble complexes have been established. The method permits the determination of KC, TMH and PD over a concentration range 1-15, 1-12 and 1-12 microg ml(-1), respectively. Sandell sensitivity is found to be 0.016, 0.013 and 0.013 microg cm(-2) for KC, TMH and PD, respectively. The method was sensitive, simple, reproducible and accurate within +/-1.5%. The method is applicable to the assay of the three drugs under investigation in different dosage forms and the results are in good agreement with those obtained by the official methods (USP and JP).

  3. Modified GMDH-NN algorithm and its application for global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Song, Shufang; Wang, Lu

    2017-11-01

    Global sensitivity analysis (GSA) is a very useful tool to evaluate the influence of input variables in the whole distribution range. Sobol' method is the most commonly used among variance-based methods, which are efficient and popular GSA techniques. High dimensional model representation (HDMR) is a popular way to compute Sobol' indices, however, its drawbacks cannot be ignored. We show that modified GMDH-NN algorithm can calculate coefficients of metamodel efficiently, so this paper aims at combining it with HDMR and proposes GMDH-HDMR method. The new method shows higher precision and faster convergent rate. Several numerical and engineering examples are used to confirm its advantages.

  4. MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Huang, Qingming; Wang, Hao; Gao, Wen

    2010-12-01

    Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC) is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matching image pairs with scale changes up to a factor of 7. Moreover, MOCC is much faster in comparison with the state-of-the-art matching methods. Experimental results on real images show the robustness and effectiveness of the proposed method.

  5. Ultrasensitive Hybridization-Based ELISA Method for the Determination of Phosphorodiamidate Morpholino Oligonucleotides in Biological samples.

    PubMed

    Burki, Umar; Straub, Volker

    2017-01-01

    Determining the concentration of oligonucleotide in biological samples such as tissue lysate and serum is essential for determining the biodistribution and pharmacokinetic profile, respectively. ELISA-based assays have shown far greater sensitivities compared to other methods such as HPLC and LC/MS. Here, we describe a novel ultrasensitive hybridization-based ELISA method for quantitating morpholino oligonucleotides in mouse tissue lysate and serum samples. The assay has a linear detection range of 5-250 pM (R2 > 0.99).

  6. New Methods of Low-Field Magnetic Resonance Imaging for Application to Traumatic Brain Injury

    DTIC Science & Technology

    2013-02-01

    magnet based ), the development of novel high-speed parallel imaging detection systems, and work on advanced adaptive reconstruction methods ...signal many times within the acquisition time . We present here a new method for 3D OMRI based on b-SSFP at a constant field of 6.5 mT that provides up...developing injury-sensitive MRI based on the detection of free radicals associat- ed with injury using the Overhauser effect and subsequently imaging that

  7. Detection of influenza A virus subtypes using a solid-phase PCR microplate chip assay.

    PubMed

    Sun, Xin-Cheng; Wang, YunLong; Yang, Liping; Zhang, HuiRu

    2015-01-01

    A rapid and sensitive microplate chip based on solid PCR was developed to identify influenza A subtypes. A simple ultraviolet cross-linking method was used to immobilize DNA probes on pretreated microplates. Solid-phase PCR was proven to be a convenient method for influenza A screening. The sensitivity of the microplate chip was 10(-3) μg/mL for the enzymatic colorimetric method and 10(-4) μg/mL for the fluorescence method. The 10 sets of primers and probes for the microplate chip were highly specific and did not interfere with each other. These results suggest that the microplate chip based on solid PCR can be used to rapidly detect universal influenza A and its subtypes. This platform can also be used to detect other pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure.

    PubMed

    Tian, Jiajun; Zhang, Qi; Fink, Thomas; Li, Hong; Peng, Wei; Han, Ming

    2012-11-15

    Intensity-based demodulation of extrinsic Fabry-Perot interferometric (EFPI) fiber-optic sensors requires the light wavelength to be on the quadrature point of the interferometric fringes for maximum sensitivity. In this Letter, we propose a novel and remote operating-point tuning method for EFPI fiber-optic sensors using microstructured fibers (MFs) and gas pressure. We demonstrated the method using a diaphragm-based EFPI sensor with a microstructured lead-in fiber. The holes in the MF were used as gas channels to remotely control the gas pressure inside the Fabry-Perot cavity. Because of the deformation of the diaphragm with gas pressure, the cavity length and consequently the operating point can be remotely tuned for maximum sensitivity. The proposed operating-point tuning method has the advantage of reduced complexity and cost compared to previously reported methods.

  9. Preliminary Structural Sensitivity Study of Hypersonic Inflatable Aerodynamic Decelerator Using Probabilistic Methods

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2014-01-01

    Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.

  10. A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation.

    PubMed

    Fu, Wei; Wang, Huiyu; Wang, Chenguang; Mei, Lin; Lin, Xiangmei; Han, Xueqing; Zhu, Shuifang

    2016-03-15

    The number of species and planting areas of genetically modified organisms (GMOs) has been rapidly developed during the past ten years. For the purpose of GMO inspection, quarantine and manipulation, we have now devised a high-throughput Bt-based GMOs screening method based on the liquid bead array. This novel method is based on the direct competitive recognition between biotinylated antibodies and beads-coupled antigens, searching for Bt presence in samples if it contains Bt Cry1 Aa, Bt Cry1 Ab, Bt Cry1 Ac, Bt Cry1 Ah, Bt Cry1 B, Bt Cry1 C, Bt Cry1 F, Bt Cry2 A, Bt Cry3 or Bt Cry9 C. Our method has a wide GMO species coverage so that more than 90% of the whole commercialized GMO species can be identified throughout the world. Under our optimization, specificity, sensitivity, repeatability and availability validation, the method shows a high specificity and 10-50 ng/mL sensitivity of quantification. We then assessed more than 1800 samples in the field and food market to prove capacity of our method in performing a high throughput screening work for GMO manipulation. Our method offers an applicant platform for further inspection and research on GMO plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Lab on a chip sensor for rapid detection and antibiotic resistance determination of Staphylococcus aureus.

    PubMed

    Abeyrathne, Chathurika D; Huynh, Duc H; Mcintire, Thomas W; Nguyen, Thanh C; Nasr, Babak; Zantomio, Daniela; Chana, Gursharan; Abbott, Iain; Choong, Peter; Catton, Mike; Skafidas, Efstratios

    2016-03-21

    The Gram-positive bacterium, Staphylococcus aureus (S. aureus), is a major pathogen responsible for a variety of infectious diseases ranging from cellulitis to more serious conditions such as septic arthritis and septicaemia. Timely treatment with appropriate antibiotic therapy is essential to ensure clinical defervescence and to prevent further complications such as infective endocarditis or organ impairment due to septic shock. To date, initial antibiotic choice is empirical, using a "best guess" of likely organism and sensitivity- an approach adopted due to the lack of rapid identification methods for bacteria. Current culture based methods take up to 5 days to identify the causative bacterial pathogen and its antibiotic sensitivity. This paper provides proof of concept for a biosensor, based on interdigitated electrodes, to detect the presence of S. aureus and ascertain its sensitivity to flucloxacillin rapidly (within 2 hours) in a cost effective manner. The proposed method is label-free and uses non-faradic measurements. This is the first study to successfully employ interdigitated electrodes for the rapid detection of antibiotic resistance. The method described has important potential outcomes of faster definitive antibiotic treatment and more rapid clinical response to treatment.

  12. Development of a polymerase chain reaction applicable to rapid and sensitive detection of Clonorchis sinensis eggs in human stool samples

    PubMed Central

    Cho, Pyo Yun; Na, Byoung-Kuk; Mi Choi, Kyung; Kim, Jin Su; Cho, Shin-Hyeong; Lee, Won-Ja; Lim, Sung-Bin; Cha, Seok Ho; Park, Yun-Kyu; Pak, Jhang Ho; Lee, Hyeong-Woo; Hong, Sung-Jong; Kim, Tong-Soo

    2013-01-01

    Microscopic examination of eggs of parasitic helminths in stool samples has been the most widely used classical diagnostic method for infections, but tiny and low numbers of eggs in stool samples often hamper diagnosis of helminthic infections with classical microscopic examination. Moreover, it is also difficult to differentiate parasite eggs by the classical method, if they have similar morphological characteristics. In this study, we developed a rapid and sensitive polymerase chain reaction (PCR)-based molecular diagnostic method for detection of Clonorchis sinensis eggs in stool samples. Nine primers were designed based on the long-terminal repeat (LTR) of C. sinensis retrotransposon1 (CsRn1) gene, and seven PCR primer sets were paired. Polymerase chain reaction with each primer pair produced specific amplicons for C. sinensis, but not for other trematodes including Metagonimus yokogawai and Paragonimus westermani. Particularly, three primer sets were able to detect 10 C. sinensis eggs and were applicable to amplify specific amplicons from DNA samples purified from stool of C. sinensis-infected patients. This PCR method could be useful for diagnosis of C. sinensis infections in human stool samples with a high level of specificity and sensitivity. PMID:23916334

  13. Improved spatial regression analysis of diffusion tensor imaging for lesion detection during longitudinal progression of multiple sclerosis in individual subjects

    NASA Astrophysics Data System (ADS)

    Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui

    2016-03-01

    Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.

  14. Performance Comparison of Bench-Top Next Generation Sequencers Using Microdroplet PCR-Based Enrichment for Targeted Sequencing in Patients with Autism Spectrum Disorder

    PubMed Central

    Okamoto, Nobuhiko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2013-01-01

    Next-generation sequencing (NGS) combined with enrichment of target genes enables highly efficient and low-cost sequencing of multiple genes for genetic diseases. The aim of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection in autism spectrum disorder (ASD). We assessed the performance of the bench-top Ion Torrent PGM and Illumina MiSeq platforms as optimized solutions for mutation detection, using microdroplet PCR-based enrichment of 62 ASD associated genes. Ten patients with known mutations were sequenced using NGS to validate the sensitivity of our method. The overall read quality was better with MiSeq, largely because of the increased indel-related error associated with PGM. The sensitivity of SNV detection was similar between the two platforms, suggesting they are both suitable for SNV detection in the human genome. Next, we used these methods to analyze 28 patients with ASD, and identified 22 novel variants in genes associated with ASD, with one mutation detected by MiSeq only. Thus, our results support the combination of target gene enrichment and NGS as a valuable molecular method for investigating rare variants in ASD. PMID:24066114

  15. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.

    PubMed

    Pujol-Vila, F; Vigués, N; Díaz-González, M; Muñoz-Berbel, X; Mas, J

    2015-05-15

    Global urban and industrial growth, with the associated environmental contamination, is promoting the development of rapid and inexpensive general toxicity methods. Current microbial methodologies for general toxicity determination rely on either bioluminescent bacteria and specific medium solution (i.e. Microtox(®)) or low sensitivity and diffusion limited protocols (i.e. amperometric microbial respirometry). In this work, fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics is presented, using Escherichia coli as a bacterial model. Ferricyanide reduction kinetic analysis (variation of ferricyanide absorption with time), much more sensitive than single absorbance measurements, allowed for direct and fast toxicity determination without pre-incubation steps (assay time=10 min) and minimizing biomass interference. Dual wavelength analysis at 405 (ferricyanide and biomass) and 550 nm (biomass), allowed for ferricyanide monitoring without interference of biomass scattering. On the other hand, refractive index (RI) matching with saccharose reduced bacterial light scattering around 50%, expanding the analytical linear range in the determination of absorbent molecules. With this method, different toxicants such as metals and organic compounds were analyzed with good sensitivities. Half maximal effective concentrations (EC50) obtained after 10 min bioassay, 2.9, 1.0, 0.7 and 18.3 mg L(-1) for copper, zinc, acetic acid and 2-phenylethanol respectively, were in agreement with previously reported values for longer bioassays (around 60 min). This method represents a promising alternative for fast and sensitive water toxicity monitoring, opening the possibility of quick in situ analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method.

    PubMed

    Klöppel, Stefan; Stonnington, Cynthia M; Barnes, Josephine; Chen, Frederick; Chu, Carlton; Good, Catriona D; Mader, Irina; Mitchell, L Anne; Patel, Ameet C; Roberts, Catherine C; Fox, Nick C; Jack, Clifford R; Ashburner, John; Frackowiak, Richard S J

    2008-11-01

    There has been recent interest in the application of machine learning techniques to neuroimaging-based diagnosis. These methods promise fully automated, standard PC-based clinical decisions, unbiased by variable radiological expertise. We recently used support vector machines (SVMs) to separate sporadic Alzheimer's disease from normal ageing and from fronto-temporal lobar degeneration (FTLD). In this study, we compare the results to those obtained by radiologists. A binary diagnostic classification was made by six radiologists with different levels of experience on the same scans and information that had been previously analysed with SVM. SVMs correctly classified 95% (sensitivity/specificity: 95/95) of sporadic Alzheimer's disease and controls into their respective groups. Radiologists correctly classified 65-95% (median 89%; sensitivity/specificity: 88/90) of scans. SVM correctly classified another set of sporadic Alzheimer's disease in 93% (sensitivity/specificity: 100/86) of cases, whereas radiologists ranged between 80% and 90% (median 83%; sensitivity/specificity: 80/85). SVMs were better at separating patients with sporadic Alzheimer's disease from those with FTLD (SVM 89%; sensitivity/specificity: 83/95; compared to radiological range from 63% to 83%; median 71%; sensitivity/specificity: 64/76). Radiologists were always accurate when they reported a high degree of diagnostic confidence. The results show that well-trained neuroradiologists classify typical Alzheimer's disease-associated scans comparable to SVMs. However, SVMs require no expert knowledge and trained SVMs can readily be exchanged between centres for use in diagnostic classification. These results are encouraging and indicate a role for computerized diagnostic methods in clinical practice.

  17. Accuracy of dementia diagnosis—a direct comparison between radiologists and a computerized method

    PubMed Central

    Stonnington, Cynthia M.; Barnes, Josephine; Chen, Frederick; Chu, Carlton; Good, Catriona D.; Mader, Irina; Mitchell, L. Anne; Patel, Ameet C.; Roberts, Catherine C.; Fox, Nick C.; Jack, Clifford R.; Ashburner, John; Frackowiak, Richard S. J.

    2008-01-01

    There has been recent interest in the application of machine learning techniques to neuroimaging-based diagnosis. These methods promise fully automated, standard PC-based clinical decisions, unbiased by variable radiological expertise. We recently used support vector machines (SVMs) to separate sporadic Alzheimer's disease from normal ageing and from fronto-temporal lobar degeneration (FTLD). In this study, we compare the results to those obtained by radiologists. A binary diagnostic classification was made by six radiologists with different levels of experience on the same scans and information that had been previously analysed with SVM. SVMs correctly classified 95% (sensitivity/specificity: 95/95) of sporadic Alzheimer's disease and controls into their respective groups. Radiologists correctly classified 65–95% (median 89%; sensitivity/specificity: 88/90) of scans. SVM correctly classified another set of sporadic Alzheimer's disease in 93% (sensitivity/specificity: 100/86) of cases, whereas radiologists ranged between 80% and 90% (median 83%; sensitivity/specificity: 80/85). SVMs were better at separating patients with sporadic Alzheimer's disease from those with FTLD (SVM 89%; sensitivity/specificity: 83/95; compared to radiological range from 63% to 83%; median 71%; sensitivity/specificity: 64/76). Radiologists were always accurate when they reported a high degree of diagnostic confidence. The results show that well-trained neuroradiologists classify typical Alzheimer's disease-associated scans comparable to SVMs. However, SVMs require no expert knowledge and trained SVMs can readily be exchanged between centres for use in diagnostic classification. These results are encouraging and indicate a role for computerized diagnostic methods in clinical practice. PMID:18835868

  18. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-01

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)—a chelating agent of copper II ions—was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  19. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance.

    PubMed

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-25

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)-a chelating agent of copper II ions-was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  20. Comparison of MI, Chromocult® coliform, and Compass CC chromogenic culture-based methods to detect Escherichia coli and total coliforms in water using 16S rRNA sequencing for colony identification.

    PubMed

    Maheux, Andrée F; Bouchard, Sébastien; Bérubé, Ève; Bergeron, Michel G

    2017-06-01

    The MI, Chromocult ® coliform, and Compass CC chromogenic culture-based methods used to assess water quality by the detection of Escherichia coli and total coliforms were compared in terms of their specificity and sensitivity, using 16S rRNA sequencing for colony identification. A sewage water sample was divided in 2-μL subsamples for testing by all three culture-based methods. All growing colonies were harvested and subjected to 16S rRNA sequencing. Test results showed that all E. coli colonies were correctly identified by all three methods, for a specificity and a sensitivity of 100%. However, for the total coliform detection, the MI agar, Chromocult ® coliform agar, and Compass CC agar were specific for only 69.2% (9/13), 47.2% (25/53), and 40.5% (17/42), whereas sensitive for 97.8% (45/46), 97.5% (39/40), and 85.7% (24/28), respectively. Thus, given the low level of specificity of these methods for the detection of total coliforms, confirming the identity of total coliform colonies could help to take public health decisions, in particular for cities connected to a public drinking water distribution system since the growth of few putative total coliform colonies on chromogenic agar is problematic and can lead to unnecessary and costly boiling notices from public health authorities.

  1. Stool antigen immunodetection for diagnosis of Giardia duodenalis infection in human subjects with HIV and cancer.

    PubMed

    Nooshadokht, Maryam; Kalantari-Khandani, Behjat; Sharifi, Iraj; Kamyabi, Hossein; Liyanage, Namal P M; Lagenaur, Laurel A; Kagnoff, Martin F; Singer, Steven M; Babaei, Zahra; Solaymani-Mohammadi, Shahram

    2017-10-01

    Human infection with the protozoan parasite Giardia duodenalis is one the most common parasitic diseases worldwide. Higher incidence rates of giardiasis have been reported from human subjects with multiple debilitating chronic conditions, including hypogammaglobulinemia and common variable immunodeficiency (CVID). In the current study, stool specimens were collected from 199 individuals diagnosed with HIV or cancer and immunocompetent subjects. The sensitivity of microscopy-based detection on fresh stool preparations, trichrome staining and stool antigen immunodetection for the diagnosis of G. duodenalis were 36%, 45.5% and 100%, respectively when compared with a highly sensitive stool-based PCR method as the gold standard. Further multilocus molecular analyses using glutamate dehydrogenase (gdh) and triose phosphate isomerase (tpi) loci demonstrated that the AI genotype of G. duodenalis was the most prevalent, followed by the AII genotype and mixed (AI+B) infections. We concluded that stool antigen immunodetection-based immunoassays and stool-based PCR amplification had comparable sensitivity and specificity for the diagnosis of G. duodenalis infections in these populations. Stool antigen detection-based diagnostic modalities are rapid and accurate and may offer alternatives to conventional microscopy and PCR-based diagnostic methods for the diagnosis of G. duodenalis in human subjects living with HIV or cancer. Copyright © 2017. Published by Elsevier B.V.

  2. Context-sensitive trace inlining for Java.

    PubMed

    Häubl, Christian; Wimmer, Christian; Mössenböck, Hanspeter

    2013-12-01

    Method inlining is one of the most important optimizations in method-based just-in-time (JIT) compilers. It widens the compilation scope and therefore allows optimizing multiple methods as a whole, which increases the performance. However, if method inlining is used too frequently, the compilation time increases and too much machine code is generated. This has negative effects on the performance. Trace-based JIT compilers only compile frequently executed paths, so-called traces, instead of whole methods. This may result in faster compilation, less generated machine code, and better optimized machine code. In the previous work, we implemented a trace recording infrastructure and a trace-based compiler for [Formula: see text], by modifying the Java HotSpot VM. Based on this work, we evaluate the effect of trace inlining on the performance and the amount of generated machine code. Trace inlining has several major advantages when compared to method inlining. First, trace inlining is more selective than method inlining, because only frequently executed paths are inlined. Second, the recorded traces may capture information about virtual calls, which simplify inlining. A third advantage is that trace information is context sensitive so that different method parts can be inlined depending on the specific call site. These advantages allow more aggressive inlining while the amount of generated machine code is still reasonable. We evaluate several inlining heuristics on the benchmark suites DaCapo 9.12 Bach, SPECjbb2005, and SPECjvm2008 and show that our trace-based compiler achieves an up to 51% higher peak performance than the method-based Java HotSpot client compiler. Furthermore, we show that the large compilation scope of our trace-based compiler has a positive effect on other compiler optimizations such as constant folding or null check elimination.

  3. Design of nuclease-based target recycling signal amplification in aptasensors.

    PubMed

    Yan, Mengmeng; Bai, Wenhui; Zhu, Chao; Huang, Yafei; Yan, Jiao; Chen, Ailiang

    2016-03-15

    Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. An efficient diagnosis system for Parkinson's disease using kernel-based extreme learning machine with subtractive clustering features weighting approach.

    PubMed

    Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Zhao, Xue-Hua

    2014-01-01

    A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims at decreasing the variance in features of the PD dataset, in order to further improve the diagnostic accuracy of the KELM classifier. The impact of the type of kernel functions on the performance of KELM has been investigated in detail. The efficiency and effectiveness of the proposed method have been rigorously evaluated against the PD dataset in terms of classification accuracy, sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), f-measure, and kappa statistics value. Experimental results have demonstrated that the proposed SCFW-KELM significantly outperforms SVM-based, KNN-based, and ELM-based approaches and other methods in the literature and achieved highest classification results reported so far via 10-fold cross validation scheme, with the classification accuracy of 99.49%, the sensitivity of 100%, the specificity of 99.39%, AUC of 99.69%, the f-measure value of 0.9964, and kappa value of 0.9867. Promisingly, the proposed method might serve as a new candidate of powerful methods for the diagnosis of PD with excellent performance.

  5. An Efficient Diagnosis System for Parkinson's Disease Using Kernel-Based Extreme Learning Machine with Subtractive Clustering Features Weighting Approach

    PubMed Central

    Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Zhao, Xue-Hua

    2014-01-01

    A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims at decreasing the variance in features of the PD dataset, in order to further improve the diagnostic accuracy of the KELM classifier. The impact of the type of kernel functions on the performance of KELM has been investigated in detail. The efficiency and effectiveness of the proposed method have been rigorously evaluated against the PD dataset in terms of classification accuracy, sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), f-measure, and kappa statistics value. Experimental results have demonstrated that the proposed SCFW-KELM significantly outperforms SVM-based, KNN-based, and ELM-based approaches and other methods in the literature and achieved highest classification results reported so far via 10-fold cross validation scheme, with the classification accuracy of 99.49%, the sensitivity of 100%, the specificity of 99.39%, AUC of 99.69%, the f-measure value of 0.9964, and kappa value of 0.9867. Promisingly, the proposed method might serve as a new candidate of powerful methods for the diagnosis of PD with excellent performance. PMID:25484912

  6. Fully automated screening of immunocytochemically stained specimens for early cancer detection

    NASA Astrophysics Data System (ADS)

    Bell, André A.; Schneider, Timna E.; Müller-Frank, Dirk A. C.; Meyer-Ebrecht, Dietrich; Böcking, Alfred; Aach, Til

    2007-03-01

    Cytopathological cancer diagnoses can be obtained less invasive than histopathological investigations. Cells containing specimens can be obtained without pain or discomfort, bloody biopsies are avoided, and the diagnosis can, in some cases, even be made earlier. Since no tissue biopsies are necessary these methods can also be used in screening applications, e.g., for cervical cancer. Among the cytopathological methods a diagnosis based on the analysis of the amount of DNA in individual cells achieves high sensitivity and specificity. Yet this analysis is time consuming, which is prohibitive for a screening application. Hence, it will be advantageous to retain, by a preceding selection step, only a subset of suspicious specimens. This can be achieved using highly sensitive immunocytochemical markers like p16 ink4a for preselection of suspicious cells and specimens. We present a method to fully automatically acquire images at distinct positions at cytological specimens using a conventional computer controlled microscope and an autofocus algorithm. Based on the thus obtained images we automatically detect p16 ink4a-positive objects. This detection in turn is based on an analysis of the color distribution of the p16 ink4a marker in the Lab-colorspace. A Gaussian-mixture-model is used to describe this distribution and the method described in this paper so far achieves a sensitivity of up to 90%.

  7. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules.

    PubMed

    Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; Khairil Mokhtar, Nur Fadhilah; El Sheikha, Aly Farag

    2018-03-05

    The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared. A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA. The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  8. The Effect of Storage and Extraction Methods on Amplification of Plasmodium falciparum DNA from Dried Blood Spots.

    PubMed

    Schwartz, Alanna; Baidjoe, Amrish; Rosenthal, Philip J; Dorsey, Grant; Bousema, Teun; Greenhouse, Bryan

    2015-05-01

    Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We investigated the effects of storage conditions, length of storage, and DNA extraction methods on amplification via three PCR-based assays using field samples and laboratory controls. Samples stored as DBS for 2 or more years at ambient temperature showed a significant loss of sensitivity that increased with time; after 10 years only 10% samples with parasite densities > 1,000 parasites/μL were detectable by nested polymerase chain reaction (PCR). Conversely, DBS and extracted DNA stored at -20°C showed no loss of sensitivity with time. Samples with low parasite densities amplified more successfully with saponin/Chelex compared with spin-column-based extraction, though the latter method performed better on samples with higher parasite densities stored for 2 years at ambient temperature. DNA extracted via both methods was stable after 20 freeze-thaw cycles. Our results suggest that DBS should be stored at -20°C or extracted immediately, especially if anticipating 2 or more years of storage. © The American Society of Tropical Medicine and Hygiene.

  9. The Effect of Storage and Extraction Methods on Amplification of Plasmodium falciparum DNA from Dried Blood Spots

    PubMed Central

    Schwartz, Alanna; Baidjoe, Amrish; Rosenthal, Philip J.; Dorsey, Grant; Bousema, Teun; Greenhouse, Bryan

    2015-01-01

    Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We investigated the effects of storage conditions, length of storage, and DNA extraction methods on amplification via three PCR-based assays using field samples and laboratory controls. Samples stored as DBS for 2 or more years at ambient temperature showed a significant loss of sensitivity that increased with time; after 10 years only 10% samples with parasite densities > 1,000 parasites/μL were detectable by nested polymerase chain reaction (PCR). Conversely, DBS and extracted DNA stored at −20°C showed no loss of sensitivity with time. Samples with low parasite densities amplified more successfully with saponin/Chelex compared with spin-column-based extraction, though the latter method performed better on samples with higher parasite densities stored for 2 years at ambient temperature. DNA extracted via both methods was stable after 20 freeze-thaw cycles. Our results suggest that DBS should be stored at −20°C or extracted immediately, especially if anticipating 2 or more years of storage. PMID:25758652

  10. Prediction of cancer cell sensitivity to natural products based on genomic and chemical properties.

    PubMed

    Yue, Zhenyu; Zhang, Wenna; Lu, Yongming; Yang, Qiaoyue; Ding, Qiuying; Xia, Junfeng; Chen, Yan

    2015-01-01

    Natural products play a significant role in cancer chemotherapy. They are likely to provide many lead structures, which can be used as templates for the construction of novel drugs with enhanced antitumor activity. Traditional research approaches studied structure-activity relationship of natural products and obtained key structural properties, such as chemical bond or group, with the purpose of ascertaining their effect on a single cell line or a single tissue type. Here, for the first time, we develop a machine learning method to comprehensively predict natural products responses against a panel of cancer cell lines based on both the gene expression and the chemical properties of natural products. The results on two datasets, training set and independent test set, show that this proposed method yields significantly better prediction accuracy. In addition, we also demonstrate the predictive power of our proposed method by modeling the cancer cell sensitivity to two natural products, Curcumin and Resveratrol, which indicate that our method can effectively predict the response of cancer cell lines to these two natural products. Taken together, the method will facilitate the identification of natural products as cancer therapies and the development of precision medicine by linking the features of patient genomes to natural product sensitivity.

  11. A multivariate relationship for the impact sensitivities of energetic N-nitrocompounds based on bond dissociation energy.

    PubMed

    Li, Jinshan

    2010-02-15

    The ZPE-corrected N-NO(2) bond dissociation energies (BDEs(ZPE)) of a series of model N-nitrocompounds and typical energetic N-nitrocompounds have been calculated using density functional theory methods. Computed results show that using the 6-31G** basis set the UB3LYP calculated BDE(ZPE) is similar to the B3PW91 but is less than the UB3P86 and that for both UB3P86 and UB3PW91 methods the 6-31G(**) calculated BDE(ZPE) is close to the 6-31++G(**). For the series of model N-nitrocompounds it is drawn from the NBO analysis that at the UB3LYP/6-31G(**) level the order of BDE(ZPE) is not only in line with that of bond order but also with that of the energy gap between N-NO(2) bond and antibond orbitals. For the typical energetic N-nitrocompounds the impact sensitivity is strongly related to the BDE(ZPE) indeed, and based on the BDEs(ZPE) calculated at different density functional theory levels this work has established a good multivariate correlation of impact sensitivity with molecular parameters, which provides a method to address the sensitivity problem.

  12. Sulcal depth-based cortical shape analysis in normal healthy control and schizophrenia groups

    NASA Astrophysics Data System (ADS)

    Lyu, Ilwoo; Kang, Hakmook; Woodward, Neil D.; Landman, Bennett A.

    2018-03-01

    Sulcal depth is an important marker of brain anatomy in neuroscience/neurological function. Previously, sulcal depth has been explored at the region-of-interest (ROI) level to increase statistical sensitivity to group differences. In this paper, we present a fully automated method that enables inferences of ROI properties from a sulcal region- focused perspective consisting of two main components: 1) sulcal depth computation and 2) sulcal curve-based refined ROIs. In conventional statistical analysis, the average sulcal depth measurements are employed in several ROIs of the cortical surface. However, taking the average sulcal depth over the full ROI blurs overall sulcal depth measurements which may result in reduced sensitivity to detect sulcal depth changes in neurological and psychiatric disorders. To overcome such a blurring effect, we focus on sulcal fundic regions in each ROI by filtering out other gyral regions. Consequently, the proposed method results in more sensitive to group differences than a traditional ROI approach. In the experiment, we focused on a cortical morphological analysis to sulcal depth reduction in schizophrenia with a comparison to the normal healthy control group. We show that the proposed method is more sensitivity to abnormalities of sulcal depth in schizophrenia; sulcal depth is significantly smaller in most cortical lobes in schizophrenia compared to healthy controls (p < 0.05).

  13. HPV Genotyping of Modified General Primer-Amplicons Is More Analytically Sensitive and Specific by Sequencing than by Hybridization

    PubMed Central

    Meisal, Roger; Rounge, Trine Ballestad; Christiansen, Irene Kraus; Eieland, Alexander Kirkeby; Worren, Merete Molton; Molden, Tor Faksvaag; Kommedal, Øyvind; Hovig, Eivind; Leegaard, Truls Michael

    2017-01-01

    Sensitive and specific genotyping of human papillomaviruses (HPVs) is important for population-based surveillance of carcinogenic HPV types and for monitoring vaccine effectiveness. Here we compare HPV genotyping by Next Generation Sequencing (NGS) to an established DNA hybridization method. In DNA isolated from urine, the overall analytical sensitivity of NGS was found to be 22% higher than that of hybridization. NGS was also found to be the most specific method and expanded the detection repertoire beyond the 37 types of the DNA hybridization assay. Furthermore, NGS provided an increased resolution by identifying genetic variants of individual HPV types. The same Modified General Primers (MGP)-amplicon was used in both methods. The NGS method is described in detail to facilitate implementation in the clinical microbiology laboratory and includes suggestions for new standards for detection and calling of types and variants with improved resolution. PMID:28045981

  14. HPV Genotyping of Modified General Primer-Amplicons Is More Analytically Sensitive and Specific by Sequencing than by Hybridization.

    PubMed

    Meisal, Roger; Rounge, Trine Ballestad; Christiansen, Irene Kraus; Eieland, Alexander Kirkeby; Worren, Merete Molton; Molden, Tor Faksvaag; Kommedal, Øyvind; Hovig, Eivind; Leegaard, Truls Michael; Ambur, Ole Herman

    2017-01-01

    Sensitive and specific genotyping of human papillomaviruses (HPVs) is important for population-based surveillance of carcinogenic HPV types and for monitoring vaccine effectiveness. Here we compare HPV genotyping by Next Generation Sequencing (NGS) to an established DNA hybridization method. In DNA isolated from urine, the overall analytical sensitivity of NGS was found to be 22% higher than that of hybridization. NGS was also found to be the most specific method and expanded the detection repertoire beyond the 37 types of the DNA hybridization assay. Furthermore, NGS provided an increased resolution by identifying genetic variants of individual HPV types. The same Modified General Primers (MGP)-amplicon was used in both methods. The NGS method is described in detail to facilitate implementation in the clinical microbiology laboratory and includes suggestions for new standards for detection and calling of types and variants with improved resolution.

  15. Strong fiber Bragg grating based asymmetric Fabry-Perot sensor system with multiple reflections for high sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Hu, Zhengliang; Ma, Mingxiang; Lin, Huizu; Hu, Yongming

    2014-03-01

    A fiber Bragg grating based (FBG-based) Fabry-Perot (FP) sensor system utilizing multiple reflections between two strong FBGs with different reflectiveties to enhance the sensitivity is proposed. The different interference signals are obtained by using different multiple-path-matched Michelson interferometers (MIs). The system is lighted by the ultra-narrow line width erbium-doped fiber ring laser and the signal is demodulated by phase-generated carrier (PGC) scheme. The method to choose the optimal parameters of the FBG-based asymmetric FP sensor and the different matching MIs is analyzed. The experimental results show that each matching MI can steadily enhance the sensitivity of the demodulated signal in the bandwidth of 80-8000 Hz. The sensitivity of the system can be enhanced about 19.1 dB when the light reflects nine times between the two FBGs. Further more, this system can be used to extend the dynamic range and the effective working bandwidth and so on.

  16. Comment on "Optical-fiber-based Mueller optical coherence tomography".

    PubMed

    Park, B Hyle; Pierce, Mark C; de Boer, Johannes F

    2004-12-15

    We comment on the recent Letter by Jiao et al. [Opt. Lett. 28, 1206 (2003)] in which a polarization-sensitive optical coherence tomography system was presented. Interrogating a sample with two orthogonal incident polarization states cannot always recover birefringence correctly. A previously presented fiber-based polarization-sensitive system was inaccurately characterized, and its method of eliminating the polarization distortion caused by single-mode optical fiber was presented earlier by Saxer et al. [Opt. Lett. 25, 1355 (2000)].

  17. Global sensitivity analysis in stochastic simulators of uncertain reaction networks.

    PubMed

    Navarro Jimenez, M; Le Maître, O P; Knio, O M

    2016-12-28

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  18. Global sensitivity analysis in stochastic simulators of uncertain reaction networks

    DOE PAGES

    Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.

    2016-12-23

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes thatmore » the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. Here, a sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.« less

  19. Global sensitivity analysis in stochastic simulators of uncertain reaction networks

    NASA Astrophysics Data System (ADS)

    Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.

    2016-12-01

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  20. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    PubMed

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Evaluating Active Parental Consent Procedures for School Programming: Addressing the Sensitive Topic of Suicide Prevention

    ERIC Educational Resources Information Center

    Totura, Christine M. Wienke; Kutash, Krista; Labouliere, Christa D.; Karver, Marc S.

    2017-01-01

    Background: Suicide is the second leading cause of death for adolescents. Whereas school-based prevention programs are effective, obtaining active consent for youth participation in public health programming concerning sensitive topics is challenging. We explored several active consent procedures for improving participation rates. Methods: Five…

  2. Method and means for radiation dosimetry

    DOEpatents

    Shulte, J. W.; Suttle, J. F.

    1960-10-18

    A precise dosimeter for and x radiations is designed in which a reproducible response to radiation is achieved by controlling the amount of sensitizer. The sensitizer is present in a halogenated hydrocarbon system and is a leuco base of certain dyestuffs. This patent is related to U. S. Patent No. 2,824,234. (D.L.C.)

  3. METHOD AND MEANS FOR RADIATION DOSIMETRY

    DOEpatents

    Schulte, J.W.; Suttle, J.F.

    1960-10-11

    A precise dosimeter for and x radiations is designed in which a reproducible response to radiation is achieved by controlling the amount of sensitizer. The sensitizer is present in a halogenated hydrocarbon system and is a leuco base of certain dyestuffs. This patent is related to U. S. Patent No. 2,824,234. (D.L.C.)

  4. Development and evaluation of a polydiacetylene based biosensor for the detection of H5 influenza virus.

    PubMed

    Jiang, Lixiang; Luo, Jing; Dong, Wenjie; Wang, Chengmin; Jin, Wen; Xia, Yuetong; Wang, Haijing; Ding, Hua; Jiang, Long; He, Hongxuan

    2015-07-01

    H5N1 avian influenza has caused serious economic losses as well as posed significant threats to public health, agriculture and wildlife. It is important to develop a rapid, sensitive and specific detection platform suitable for disease surveillance and control. In this study, a highly sensitive, specific and rapid biosensor based on polydiacetylene was developed for detecting H5 influenza virus. The polydiacetylene based biosensor was produced from an optimized ratio of 10,12-pentacosadiynoic acid and 1,2-dimyristoyl-sn-glycero-3-phosphocholine, with the anti-H5 influenza antibody embedded onto the vesicle surface. The optimized polydiacetylene vesicle could detect H5 influenza virus sensitively with a detection limit of 0.53 copies/μL, showing a dramatic blue-to-red color change that can be observed directly by the naked eye and recorded by a UV-vis spectrometer. The sensitivity, specificity and accuracy of the biosensor were also evaluated. The sensor could specifically differentiate H5 influenza virus from H3 influenza virus, Newcastle disease virus and porcine reproductive and respiratory syndrome virus. Detection using tracheal swabs was in accord with virus isolation results, and comparable to the RT-PCR method. These results offer the possibility and potential of simple polydiacetylene based bio-analytical method for influenza surveillance. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Sensitive and selective determination of fluvoxamine maleate using a sensitive chemiluminescence system based on the alkaline permanganate-Rhodamine B-gold nanoparticles reaction.

    PubMed

    Hassanzadeh, Javad; Amjadi, Mohammad

    2015-06-01

    A high-yield chemiluminescence (CL) system based on the alkaline permanganate-Rhodamine B reaction was developed for the sensitive determination of fluvoxamine maleate (Flu). Rhodamine B is oxidized by alkaline KMnO4 and a weak CL emission is produced. It was demonstrated that gold nanoparticles greatly enhance this CL emission due to their interaction with Rhodamine B molecules. It is also observed that sodium dodecyl sulfate, an anionic surfactant, can strongly increase this enhancement. In addition, it was demonstrated that a notable decrease in the CL intensity is observed in the presence of Flu. This may be related to Flu oxidation with KMnO4 . There is a linear relationship between the decrease in CL intensity and the Flu concentration over a range of 2-300 µg/L. A new simple, rapid and sensitive CL method was developed for the determination of Flu with a detection limit (3s) of 1.35 µg/L. The proposed method was used for the determination of Flu in pharmaceutical and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Chemical derivatization for enhancing sensitivity during LC/ESI-MS/MS quantification of steroids in biological samples: a review.

    PubMed

    Higashi, Tatsuya; Ogawa, Shoujiro

    2016-09-01

    Sensitive and specific methods for the detection, characterization and quantification of endogenous steroids in body fluids or tissues are necessary for the diagnosis, pathological analysis and treatment of many diseases. Recently, liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) has been widely used for these purposes due to its specificity and versatility. However, the ESI efficiency and fragmentation behavior of some steroids are poor, which lead to a low sensitivity. Chemical derivatization is one of the most effective methods to improve the detection characteristics of steroids in ESI-MS/MS. Based on this background, this article reviews the recent advances in chemical derivatization for the trace quantification of steroids in biological samples by LC/ESI-MS/MS. The derivatization in ESI-MS/MS is based on tagging a proton-affinitive or permanently charged moiety on the target steroid. Introduction/formation of a fragmentable moiety suitable for the selected reaction monitoring by the derivatization also enhances the sensitivity. The stable isotope-coded derivatization procedures for the steroid analysis are also described. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Usefulness of component resolved analysis of cat allergy in routine clinical practice.

    PubMed

    Eder, Katharina; Becker, Sven; San Nicoló, Marion; Berghaus, Alexander; Gröger, Moritz

    2016-01-01

    Cat allergy is of great importance, and its prevalence is increasing worldwide. Cat allergens and house dust mite allergens represent the major indoor allergens; however, they are ubiquitous. Cat sensitization and allergy are known risk factors for rhinitis, bronchial hyperreactivity and asthma. Thus, the diagnosis of sensitization to cats is important for any allergist. 70 patients with positive skin prick tests for cats were retrospectively compared regarding their skin prick test results, as well as their specific immunoglobulin E antibody profiles with regard to their responses to the native cat extract, rFel d 1, nFel d 2 and rFel d 4. 35 patients were allergic to cats, as determined by positive anamnesis and/or nasal provocation with cat allergens, and 35 patients exhibited clinically non-relevant sensitization, as indicated by negative anamnesis and/or a negative nasal allergen challenge. Native cat extract serology testing detected 100% of patients who were allergic to cats but missed eight patients who showed sensitization in the skin prick test and did not have allergic symptoms. The median values of the skin prick test, as well as those of the specific immunoglobulin E antibodies against the native cat extract, were significantly higher for allergic patients than for patients with clinically non-relevant sensitization. Component based diagnostic testing to rFel d 1 was not as reliable. Sensitization to nFel d 2 and rFel d 4 was seen only in individual patients. Extract based diagnostic methods for identifying cat allergy and sensitization, such as the skin prick test and native cat extract serology, remain crucial in routine clinical practice. In our study, component based diagnostic testing could not replace these methods with regard to the detection of sensitization to cats and differentiation between allergy and sensitization without clinical relevance. However, component resolved allergy diagnostic tools have individual implications, and future studies may facilitate a better understanding of its use and subsequently may improve the clinical management of allergic patients.

  8. Diagnostic accuracy of automatic normalization of CBV in glioma grading using T1- weighted DCE-MRI.

    PubMed

    Sahoo, Prativa; Gupta, Rakesh K; Gupta, Pradeep K; Awasthi, Ashish; Pandey, Chandra M; Gupta, Mudit; Patir, Rana; Vaishya, Sandeep; Ahlawat, Sunita; Saha, Indrajit

    2017-12-01

    Aim of this retrospective study was to compare diagnostic accuracy of proposed automatic normalization method to quantify the relative cerebral blood volume (rCBV) with existing contra-lateral region of interest (ROI) based CBV normalization method for glioma grading using T1-weighted dynamic contrast enhanced MRI (DCE-MRI). Sixty patients with histologically confirmed gliomas were included in this study retrospectively. CBV maps were generated using T1-weighted DCE-MRI and are normalized by contralateral ROI based method (rCBV_contra), unaffected white matter (rCBV_WM) and unaffected gray matter (rCBV_GM), the latter two of these were generated automatically. An expert radiologist with >10years of experience in DCE-MRI and a non-expert with one year experience were used independently to measure rCBVs. Cutoff values for glioma grading were decided from ROC analysis. Agreement of histology with rCBV_WM, rCBV_GM and rCBV_contra respectively was studied using Kappa statistics and intra-class correlation coefficient (ICC). The diagnostic accuracy of glioma grading using the measured rCBV_contra by expert radiologist was found to be high (sensitivity=1.00, specificity=0.96, p<0.001) compared to the non-expert user (sensitivity=0.65, specificity=0.78, p<0.001). On the other hand, both the expert and non-expert user showed similar diagnostic accuracy for automatic rCBV_WM (sensitivity=0.89, specificity=0.87, p=0.001) and rCBV_GM (sensitivity=0.81, specificity=0.78, p=0.001) measures. Further, it was also observed that, contralateral based method by expert user showed highest agreement with histological grading of tumor (kappa=0.96, agreement 98.33%, p<0.001), however; automatic normalization method showed same percentage of agreement for both expert and non-expert user. rCBV_WM showed an agreement of 88.33% (kappa=0.76,p<0.001) with histopathological grading. It was inferred from this study that, in the absence of expert user, automated normalization of CBV using the proposed method could provide better diagnostic accuracy compared to the manual contralateral based approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dual channel sensitive detection of hsa-miR-21 based on rolling circle amplification and quantum dots tagging.

    PubMed

    Wangt, Dan-Chen; Hu, Li-Hui; Zhou, Yu-Hui; Huang, Yu-Ting; Li, Xinhua; Zhu, Jun-Jie

    2014-04-01

    An isothermal, highly sensitive and specific assay for the detection of hsa-miR-21 with the integration of QDs tagging and rolling circle amplification was offered. In addition, a dual channel strategy for miRNA detection was proposed: anodic stripping voltammetry (ASV) and fluorescent method were both performed for the final Cd2+ signal readout. The designed strategy exhibited good specificity to hsa-miR-21 and presented comparable detection results by detection methods.

  10. Optics-Only Calibration of a Neural-Net Based Optical NDE Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A calibration process is presented that uses optical measurements alone to calibrate a neural-net based NDE method. The method itself detects small changes in the vibration mode shapes of structures. The optics-only calibration process confirms previous work that the sensitivity to vibration-amplitude changes can be as small as 10 nanometers. A more practical value in an NDE service laboratory is shown to be 50 nanometers. Both model-generated and experimental calibrations are demonstrated using two implementations of the calibration technique. The implementations are based on previously published demonstrations of the NDE method and an alternative calibration procedure that depends on comparing neural-net and point sensor measurements. The optics-only calibration method, unlike the alternative method, does not require modifications of the structure being tested or the creation of calibration objects. The calibration process can be used to test improvements in the NDE process and to develop a vibration-mode-independence of damagedetection sensitivity. The calibration effort was intended to support NASA s objective to promote safety in the operations of ground test facilities or aviation safety, in general, by allowing the detection of the gradual onset of structural changes and damage.

  11. Ensemble stacking mitigates biases in inference of synaptic connectivity.

    PubMed

    Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N

    2018-01-01

    A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.

  12. Technical Note: Synchrotron-based high-energy x-ray phase sensitive microtomography for biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huiqiang; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn; Xiao, Tiqiao, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn

    Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed bymore » phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.« less

  13. Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods

    NASA Astrophysics Data System (ADS)

    Vanrolleghem, Peter A.; Mannina, Giorgio; Cosenza, Alida; Neumann, Marc B.

    2015-03-01

    Sensitivity analysis represents an important step in improving the understanding and use of environmental models. Indeed, by means of global sensitivity analysis (GSA), modellers may identify both important (factor prioritisation) and non-influential (factor fixing) model factors. No general rule has yet been defined for verifying the convergence of the GSA methods. In order to fill this gap this paper presents a convergence analysis of three widely used GSA methods (SRC, Extended FAST and Morris screening) for an urban drainage stormwater quality-quantity model. After the convergence was achieved the results of each method were compared. In particular, a discussion on peculiarities, applicability, and reliability of the three methods is presented. Moreover, a graphical Venn diagram based classification scheme and a precise terminology for better identifying important, interacting and non-influential factors for each method is proposed. In terms of convergence, it was shown that sensitivity indices related to factors of the quantity model achieve convergence faster. Results for the Morris screening method deviated considerably from the other methods. Factors related to the quality model require a much higher number of simulations than the number suggested in literature for achieving convergence with this method. In fact, the results have shown that the term "screening" is improperly used as the method may exclude important factors from further analysis. Moreover, for the presented application the convergence analysis shows more stable sensitivity coefficients for the Extended-FAST method compared to SRC and Morris screening. Substantial agreement in terms of factor fixing was found between the Morris screening and Extended FAST methods. In general, the water quality related factors exhibited more important interactions than factors related to water quantity. Furthermore, in contrast to water quantity model outputs, water quality model outputs were found to be characterised by high non-linearity.

  14. Screening for Human Immunodeficiency Virus, Hepatitis B Virus, Hepatitis C Virus, and Treponema pallidum by Blood Testing Using a Bio-Flash Technology-Based Algorithm before Gastrointestinal Endoscopy

    PubMed Central

    Zhen, Chen; QuiuLi, Zhang; YuanQi, An; Casado, Verónica Vocero; Fan, Yuan

    2016-01-01

    Currently, conventional enzyme immunoassays which use manual gold immunoassays and colloidal tests (GICTs) are used as screening tools to detect Treponema pallidum (syphilis), hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus type 1 (HIV-1), and HIV-2 in patients undergoing surgery. The present observational, cross-sectional study compared the sensitivity, specificity, and work flow characteristics of the conventional algorithm with manual GICTs with those of a newly proposed algorithm that uses the automated Bio-Flash technology as a screening tool in patients undergoing gastrointestinal (GI) endoscopy. A total of 956 patients were examined for the presence of serological markers of infection with HIV-1/2, HCV, HBV, and T. pallidum. The proposed algorithm with the Bio-Flash technology was superior for the detection of all markers (100.0% sensitivity and specificity for detection of anti-HIV and anti-HCV antibodies, HBV surface antigen [HBsAg], and T. pallidum) compared with the conventional algorithm based on the manual method (80.0% sensitivity and 98.6% specificity for the detection of anti-HIV, 75.0% sensitivity for the detection of anti-HCV, 94.7% sensitivity for the detection of HBsAg, and 100% specificity for the detection of anti-HCV and HBsAg) in these patients. The automated Bio-Flash technology-based screening algorithm also reduced the operation time by 85.0% (205 min) per day, saving up to 24 h/week. In conclusion, the use of the newly proposed screening algorithm based on the automated Bio-Flash technology can provide an advantage over the use of conventional algorithms based on manual methods for screening for HIV, HBV, HCV, and syphilis before GI endoscopy. PMID:27707942

  15. Screening for Human Immunodeficiency Virus, Hepatitis B Virus, Hepatitis C Virus, and Treponema pallidum by Blood Testing Using a Bio-Flash Technology-Based Algorithm before Gastrointestinal Endoscopy.

    PubMed

    Jun, Zhou; Zhen, Chen; QuiuLi, Zhang; YuanQi, An; Casado, Verónica Vocero; Fan, Yuan

    2016-12-01

    Currently, conventional enzyme immunoassays which use manual gold immunoassays and colloidal tests (GICTs) are used as screening tools to detect Treponema pallidum (syphilis), hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus type 1 (HIV-1), and HIV-2 in patients undergoing surgery. The present observational, cross-sectional study compared the sensitivity, specificity, and work flow characteristics of the conventional algorithm with manual GICTs with those of a newly proposed algorithm that uses the automated Bio-Flash technology as a screening tool in patients undergoing gastrointestinal (GI) endoscopy. A total of 956 patients were examined for the presence of serological markers of infection with HIV-1/2, HCV, HBV, and T. pallidum The proposed algorithm with the Bio-Flash technology was superior for the detection of all markers (100.0% sensitivity and specificity for detection of anti-HIV and anti-HCV antibodies, HBV surface antigen [HBsAg], and T. pallidum) compared with the conventional algorithm based on the manual method (80.0% sensitivity and 98.6% specificity for the detection of anti-HIV, 75.0% sensitivity for the detection of anti-HCV, 94.7% sensitivity for the detection of HBsAg, and 100% specificity for the detection of anti-HCV and HBsAg) in these patients. The automated Bio-Flash technology-based screening algorithm also reduced the operation time by 85.0% (205 min) per day, saving up to 24 h/week. In conclusion, the use of the newly proposed screening algorithm based on the automated Bio-Flash technology can provide an advantage over the use of conventional algorithms based on manual methods for screening for HIV, HBV, HCV, and syphilis before GI endoscopy. Copyright © 2016 Jun et al.

  16. Determination of aerodynamic sensitivity coefficients based on the three-dimensional full potential equation

    NASA Technical Reports Server (NTRS)

    Elbanna, Hesham M.; Carlson, Leland A.

    1992-01-01

    The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.

  17. Protein detection system

    DOEpatents

    Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  18. Aptamer-based microspheres for highly sensitive protein detection using fluorescently-labeled DNA nanostructures.

    PubMed

    Han, Daehoon; Hong, Jinkee; Kim, Hyun Cheol; Sung, Jong Hwan; Lee, Jong Bum

    2013-11-01

    Many highly sensitive protein detection techniques have been developed and have played an important role in the analysis of proteins. Herein, we report a novel technique that can detect proteins sensitively and effectively using aptamer-based DNA nanostructures. Thrombin was used as a target protein and aptamer was used to capture fluorescent dye-labeled DNA nanobarcodes or thrombin on a microsphere. The captured DNA nanobarcodes were replaced by a thrombin and aptamer interaction. The detection ability of this approach was confirmed by flow cytometry with different concentrations of thrombin. Our detection method has great potential for rapid and simple protein detection with a variety of aptamers.

  19. Use of capture-based next-generation sequencing to detect ALK fusion in plasma cell-free DNA of patients with non-small-cell lung cancer.

    PubMed

    Cui, Shaohua; Zhang, Wei; Xiong, Liwen; Pan, Feng; Niu, Yanjie; Chu, Tianqing; Wang, Huimin; Zhao, Yizhuo; Jiang, Liyan

    2017-01-10

    Capture-based next-generation sequencing (NGS) is a potentially useful diagnostic method to measure tumor tissue DNA in blood as it can identify concordant mutations between cell-free DNA (cfDNA) and primary tumor DNA in lung cancer patients. In this study, the sensitivity, specificity and accuracy of capture-based NGS for detecting ALK fusion in plasma cfDNA was assessed. 24 patients with tissue ALK-positivity and 15 who did not harbor ALK fusion were enrolled. 13 ALK-positive samples were identified by capture-based NGS among the 24 samples with tissue ALK-positivity. In addition to EML4-ALK, 2 rare fusion types (FAM179A-ALK and COL25A1-ALK) were also identified. The overall sensitivity, specificity and accuracy for all cases were 54.2%, 100% and 71.8%, respectively. For patients without distant metastasis (M0-M1a) and patients with distant metastasis (M1b), the sensitivities were 28.6% and 64.7%, respectively. In the 15 patients who received crizotinib, the estimated median PFS was 9.93 months. Thus, captured-based NGS has acceptable sensitivity and excellent specificity for the detection of ALK fusion in plasma cfDNA, especially for patients with distant metastasis. This non-invasive method is clinically feasible for detecting ALK fusion in patients with advanced-stage NSCLC who cannot undergo traumatic examinations or have insufficient tissue samples for molecular tests.

  20. Nanotechnology: a promising method for oral cancer detection and diagnosis.

    PubMed

    Chen, Xiao-Jie; Zhang, Xue-Qiong; Liu, Qi; Zhang, Jing; Zhou, Gang

    2018-06-11

    Oral cancer is a common and aggressive cancer with high morbidity, mortality, and recurrence rate globally. Early detection is of utmost importance for cancer prevention and disease management. Currently, tissue biopsy remains the gold standard for oral cancer diagnosis, but it is invasive, which may cause patient discomfort. The application of traditional noninvasive methods-such as vital staining, exfoliative cytology, and molecular imaging-is limited by insufficient sensitivity and specificity. Thus, there is an urgent need for exploring noninvasive, highly sensitive, and specific diagnostic techniques. Nano detection systems are known as new emerging noninvasive strategies that bring the detection sensitivity of biomarkers to nano-scale. Moreover, compared to current imaging contrast agents, nanoparticles are more biocompatible, easier to synthesize, and able to target specific surface molecules. Nanoparticles generate localized surface plasmon resonances at near-infrared wavelengths, providing higher image contrast and resolution. Therefore, using nano-based techniques can help clinicians to detect and better monitor diseases during different phases of oral malignancy. Here, we review the progress of nanotechnology-based methods in oral cancer detection and diagnosis.

  1. A new method of content based medical image retrieval and its applications to CT imaging sign retrieval.

    PubMed

    Ma, Ling; Liu, Xiabi; Gao, Yan; Zhao, Yanfeng; Zhao, Xinming; Zhou, Chunwu

    2017-02-01

    This paper proposes a new method of content based medical image retrieval through considering fused, context-sensitive similarity. Firstly, we fuse the semantic and visual similarities between the query image and each image in the database as their pairwise similarities. Then, we construct a weighted graph whose nodes represent the images and edges measure their pairwise similarities. By using the shortest path algorithm over the weighted graph, we obtain a new similarity measure, context-sensitive similarity measure, between the query image and each database image to complete the retrieval process. Actually, we use the fused pairwise similarity to narrow down the semantic gap for obtaining a more accurate pairwise similarity measure, and spread it on the intrinsic data manifold to achieve the context-sensitive similarity for a better retrieval performance. The proposed method has been evaluated on the retrieval of the Common CT Imaging Signs of Lung Diseases (CISLs) and achieved not only better retrieval results but also the satisfactory computation efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Current and future molecular diagnostics for ocular infectious diseases.

    PubMed

    Doan, Thuy; Pinsky, Benjamin A

    2016-11-01

    Confirmation of ocular infections can pose great challenges to the clinician. A fundamental limitation is the small amounts of specimen that can be obtained from the eye. Molecular diagnostics can circumvent this limitation and have been shown to be more sensitive than conventional culture. The purpose of this review is to describe new molecular methods and to discuss the applications of next-generation sequencing-based approaches in the diagnosis of ocular infections. Efforts have focused on improving the sensitivity of pathogen detection using molecular methods. This review describes a new molecular target for Toxoplasma gondii-directed polymerase chain reaction assays. Molecular diagnostics for Chlamydia trachomatis and Acanthamoeba species are also discussed. Finally, we describe a hypothesis-free approach, metagenomic deep sequencing, which can detect DNA and RNA pathogens from a single specimen in one test. In some cases, this method can provide the geographic location and timing of the infection. Pathogen-directed PCRs have been powerful tools in the diagnosis of ocular infections for over 20 years. The use of next-generation sequencing-based approaches, when available, will further improve sensitivity of detection with the potential to improve patient care.

  3. Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications

    PubMed Central

    Schlangen, Sebastian; Bremer, Kort; Zheng, Yulong; Böhm, Sebastian; Steinke, Michael; Wellmann, Felix; Neumann, Jörg; Overmeyer, Ludger

    2018-01-01

    Long-period fiber gratings (LPGs) are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge)-doped fused silica fiber cores) are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application. PMID:29702600

  4. Polyacrylonitrile Nanofiber-Based Quartz Crystal Microbalance for Sensitive Detection of Safrole

    PubMed Central

    Julian, Trisna; Hidayat, Shidiq Nur; Suyono, Eko Agus

    2018-01-01

    Safrole is the main precursor for producing the amphetamine-type stimulant (ATS) drug, N-methyl-3,4-methylenedioxyamphetamine (MDMA), also known as ecstasy. We devise a polyacrylonitrile (PAN) nanofiber-based quartz crystal microbalance (QCM) for detecting safrole. The PAN nanofibers were fabricated by direct electrospinning to modify the QCM chips. The PAN nanofiber on the QCM chips has a diameter of 240 ± 10 nm. The sensing of safrole by QCM modified with PAN nanofiber shows good reversibility and an apparent sensitivity of 4.6 Hz·L/mg. The proposed method is simple, inexpensive, and convenient for detecting safrole, and can be an alternative to conventional instrumental analytical methods for general volatile compounds. PMID:29642565

  5. Analysis and amelioration about the cross-sensitivity of a high resolution MOEMS accelerometer based on diffraction grating

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan

    2016-10-01

    Cross-sensitivity is a crucial parameter since it detrimentally affect the performance of an accelerometer, especially for a high resolution accelerometer. In this paper, a suite of analytical and finite-elements-method (FEM) models for characterizing the mechanism and features of the cross-sensitivity of a single-axis MOEMS accelerometer composed of a diffraction grating and a micromachined mechanical sensing chip are presented, which have not been systematically investigated yet. The mechanism and phenomena of the cross-sensitivity of this type MOEMS accelerometer based on diffraction grating differ quite a lot from the traditional ones owing to the identical sensing principle. By analyzing the models, some ameliorations and the modified design are put forward to suppress the cross-sensitivity. The modified design, achieved by double sides etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer, is validated to have a far smaller cross-sensitivity compared with the design previously reported in the literature. Moreover, this design can suppress the cross-sensitivity dramatically without compromising the acceleration sensitivity and resolution.

  6. A novel method for extracting nucleic acids from dried blood spots for ultrasensitive detection of low-density Plasmodium falciparum and Plasmodium vivax infections.

    PubMed

    Zainabadi, Kayvan; Adams, Matthew; Han, Zay Yar; Lwin, Hnin Wai; Han, Kay Thwe; Ouattara, Amed; Thura, Si; Plowe, Christopher V; Nyunt, Myaing M

    2017-09-18

    Greater Mekong Subregion countries are committed to eliminating Plasmodium falciparum malaria by 2025. Current elimination interventions target infections at parasite densities that can be detected by standard microscopy or rapid diagnostic tests (RDTs). More sensitive detection methods have been developed to detect lower density "asymptomatic" infections that may represent an important transmission reservoir. These ultrasensitive polymerase chain reaction (usPCR) tests have been used to identify target populations for mass drug administration (MDA). To date, malaria usPCR tests have used either venous or capillary blood sampling, which entails complex sample collection, processing and shipping requirements. An ultrasensitive method performed on standard dried blood spots (DBS) would greatly facilitate the molecular surveillance studies needed for targeting elimination interventions. A highly sensitive method for detecting Plasmodium falciparum and P. vivax 18S ribosomal RNA from DBS was developed by empirically optimizing nucleic acid extraction conditions. The limit of detection (LoD) was determined using spiked DBS samples that were dried and stored under simulated field conditions. Further, to assess its utility for routine molecular surveillance, two cross-sectional surveys were performed in Myanmar during the wet and dry seasons. The lower LoD of the DBS-based ultrasensitive assay was 20 parasites/mL for DBS collected on Whatman 3MM filter paper and 23 parasites/mL for Whatman 903 Protein Saver cards-equivalent to 1 parasite per 50 µL DBS. This is about 5000-fold more sensitive than standard RDTs and similar to the LoD of ≤16-22 parasites/mL reported for other ultrasensitive methods based on whole blood. In two cross-sectional surveys in Myanmar, nearly identical prevalence estimates were obtained from contemporaneous DBS samples and capillary blood samples collected during the wet and dry season. The DBS-based ultrasensitive method described in this study shows equal sensitivity as previously described methods based on whole blood, both in its limit of detection and prevalence estimates in two field surveys. The reduced cost and complexity of this method will allow for the scale-up of surveillance studies to target MDA and other malaria elimination interventions, and help lead to a better understanding of the epidemiology of low-density malaria infections.

  7. An approach to the diagnosis of metabolic syndrome by the multi-electrode impedance method

    NASA Astrophysics Data System (ADS)

    Furuya, N.; Sakamoto, K.; Kanai, H.

    2010-04-01

    It is well known that metabolic syndrome can induce myocardial infarction and cerebral infarction. So, it is very important to measure the visceral fat volume. In the electric impedance method, information in the vicinity of the electrodes is strongly reflected. Therefore, we propose a new multi-electrode arrangement method based on the impedance sensitivity theorem to measure the visceral fat volume. This electrode arrangement is designed to enable high impedance sensitivity in the visceral and subcutaneous fat regions. Currents are simultaneously applied to several current electrodes on the body surface, and one voltage electrode pair is arranged on the body surface near the organ of interest to obtain the visceral fat information and another voltage electrode pair is arranged on the body surface near the current electrodes to obtain the subcutaneous fat information. A simulation study indicates that by weighting the impedance sensitivity distribution, as in our method, a high-sensitivity region in the visceral and the subcutaneous fat regions can be formed. In addition, it was confirmed that the visceral fat volume can be estimated by the measured impedance data.

  8. Comparison of Self-Reported Telephone Interviewing and Web-Based Survey Responses: Findings From the Second Australian Young and Well National Survey

    PubMed Central

    Davenport, Tracey A; Burns, Jane M; Hickie, Ian B

    2017-01-01

    Background Web-based self-report surveying has increased in popularity, as it can rapidly yield large samples at a low cost. Despite this increase in popularity, in the area of youth mental health, there is a distinct lack of research comparing the results of Web-based self-report surveys with the more traditional and widely accepted computer-assisted telephone interviewing (CATI). Objective The Second Australian Young and Well National Survey 2014 sought to compare differences in respondent response patterns using matched items on CATI versus a Web-based self-report survey. The aim of this study was to examine whether responses varied as a result of item sensitivity, that is, the item’s susceptibility to exaggeration on underreporting and to assess whether certain subgroups demonstrated this effect to a greater extent. Methods A subsample of young people aged 16 to 25 years (N=101), recruited through the Second Australian Young and Well National Survey 2014, completed the identical items on two occasions: via CATI and via Web-based self-report survey. Respondents also rated perceived item sensitivity. Results When comparing CATI with the Web-based self-report survey, a Wilcoxon signed-rank analysis showed that respondents answered 14 of the 42 matched items in a significantly different way. Significant variation in responses (CATI vs Web-based) was more frequent if the item was also rated by the respondents as highly sensitive in nature. Specifically, 63% (5/8) of the high sensitivity items, 43% (3/7) of the neutral sensitivity items, and 0% (0/4) of the low sensitivity items were answered in a significantly different manner by respondents when comparing their matched CATI and Web-based question responses. The items that were perceived as highly sensitive by respondents and demonstrated response variability included the following: sexting activities, body image concerns, experience of diagnosis, and suicidal ideation. For high sensitivity items, a regression analysis showed respondents who were male (beta=−.19, P=.048) or who were not in employment, education, or training (NEET; beta=−.32, P=.001) were significantly more likely to provide different responses on matched items when responding in the CATI as compared with the Web-based self-report survey. The Web-based self-report survey, however, demonstrated some evidence of avidity and attrition bias. Conclusions Compared with CATI, Web-based self-report surveys are highly cost-effective and had higher rates of self-disclosure on sensitive items, particularly for respondents who identify as male and NEET. A drawback to Web-based surveying methodologies, however, includes the limited control over avidity bias and the greater incidence of attrition bias. These findings have important implications for further development of survey methods in the area of health and well-being, especially when considering research topics (in this case diagnosis, suicidal ideation, sexting, and body image) and groups that are being recruited (young people, males, and NEET). PMID:28951382

  9. Using ROC Curves to Choose Minimally Important Change Thresholds when Sensitivity and Specificity Are Valued Equally: The Forgotten Lesson of Pythagoras. Theoretical Considerations and an Example Application of Change in Health Status

    PubMed Central

    Froud, Robert; Abel, Gary

    2014-01-01

    Background Receiver Operator Characteristic (ROC) curves are being used to identify Minimally Important Change (MIC) thresholds on scales that measure a change in health status. In quasi-continuous patient reported outcome measures, such as those that measure changes in chronic diseases with variable clinical trajectories, sensitivity and specificity are often valued equally. Notwithstanding methodologists agreeing that these should be valued equally, different approaches have been taken to estimating MIC thresholds using ROC curves. Aims and objectives We aimed to compare the different approaches used with a new approach, exploring the extent to which the methods choose different thresholds, and considering the effect of differences on conclusions in responder analyses. Methods Using graphical methods, hypothetical data, and data from a large randomised controlled trial of manual therapy for low back pain, we compared two existing approaches with a new approach that is based on the addition of the sums of squares of 1-sensitivity and 1-specificity. Results There can be divergence in the thresholds chosen by different estimators. The cut-point selected by different estimators is dependent on the relationship between the cut-points in ROC space and the different contours described by the estimators. In particular, asymmetry and the number of possible cut-points affects threshold selection. Conclusion Choice of MIC estimator is important. Different methods for choosing cut-points can lead to materially different MIC thresholds and thus affect results of responder analyses and trial conclusions. An estimator based on the smallest sum of squares of 1-sensitivity and 1-specificity is preferable when sensitivity and specificity are valued equally. Unlike other methods currently in use, the cut-point chosen by the sum of squares method always and efficiently chooses the cut-point closest to the top-left corner of ROC space, regardless of the shape of the ROC curve. PMID:25474472

  10. Researcher Biographies

    Science.gov Websites

    interest: mechanical system design sensitivity analysis and optimization of linear and nonlinear structural systems, reliability analysis and reliability-based design optimization, computational methods in committee member, ISSMO; Associate Editor, Mechanics Based Design of Structures and Machines; Associate

  11. Nanomaterial-based electrochemical sensors for arsenic - A review.

    PubMed

    Kempahanumakkagari, Sureshkumar; Deep, Akash; Kim, Ki-Hyun; Kumar Kailasa, Suresh; Yoon, Hye-On

    2017-09-15

    The existence of arsenic in the environment poses severe global health threats. Considering its toxicity, the sensing of arsenic is extremely important. Due to the complexity of environmental and biological samples, many of the available detection methods for arsenic have serious limitations on selectivity and sensitivity. To improve sensitivity and selectivity and to circumvent interferences, different electrode systems have been developed based on surface modification with nanomaterials including carbonaceous nanomaterials, metallic nanoparticles (MNPs), metal nanotubes (MNTs), and even enzymes. Despite the progress made in electrochemical sensing of arsenic, some issues still need to be addressed to realize cost effective, portable, and flow-injection type sensor systems. The present review provides an in-depth evaluation of the nanoparticle-modified electrode (NME) based methods for the electrochemical sensing of arsenic. NME based sensing systems are projected to become an important option for monitoring hazardous pollutants in both environmental and biological media. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of LC/MS/MS Methods for Implementation in US EPA’s Drinking Water Unregulated Contaminant Monitoring Regulations

    EPA Science Inventory

    Well-characterized and standardized methods are the foundation upon which monitoring of regulated and unregulated contaminants in drinking water are based. To obtain reliable, high quality data for trace analysis of contaminants, these methods must be rugged, selective and sensit...

  13. Development of a Simultaneous Extraction and Cleanup Method for Pyrethroid Pesticides from Indoor House Dust Samples

    EPA Science Inventory

    An efficient and reliable analytical method was developed for the sensitive and selective quantification of pyrethroid pesticides (PYRs) in house dust samples. The method is based on selective pressurized liquid extraction (SPLE) of the dust-bound PYRs into dichloromethane (DCM) wi...

  14. The difficulty of measuring the absorption of scattered sunlight by H2O and CO2 in volcanic plumes: A comment on Pering et al. “A novel and inexpensive method for measuring volcanic plume water fluxes at high temporal resolution,” Remote Sens. 2017, 9, 146

    USGS Publications Warehouse

    Kern, Christoph

    2017-01-01

    In their recent study, Pering et al. (2017) presented a novel method for measuring volcanic water vapor fluxes. Their method is based on imaging volcanic gas and aerosol plumes using a camera sensitive to the near-infrared (NIR) absorption of water vapor. The imaging data are empirically calibrated by comparison with in situ water measurements made within the plumes. Though the presented method may give reasonable results over short time scales, the authors fail to recognize the sensitivity of the technique to light scattering on aerosols within the plume. In fact, the signals measured by Pering et al. are not related to the absorption of NIR radiation by water vapor within the plume. Instead, the measured signals are most likely caused by a change in the effective light path of the detected radiation through the atmospheric background water vapor column. Therefore, their method is actually based on establishing an empirical relationship between in-plume scattering efficiency and plume water content. Since this relationship is sensitive to plume aerosol abundance and numerous environmental factors, the method will only yield accurate results if it is calibrated very frequently using other measurement techniques.

  15. Detecting the Presence of Bacterial DNA and RNA by Polymerase Chain Reaction to Diagnose Suspected Periprosthetic Joint Infection after Antibiotic Therapy.

    PubMed

    Fang, Xin-Yu; Li, Wen-Bo; Zhang, Chao-Fan; Huang, Zi-da; Zeng, Hui-Yi; Dong, Zheng; Zhang, Wen-Ming

    2018-02-01

    To explore the diagnostic efficiency of DNA-based and RNA-based quantitative polymerase chain reaction (qPCR) analyses for periprosthetic joint infection (PJI). To determine the detection limit of DNA-based and RNA-based qPCR in vitro, Staphylococcus aureus and Escherichia coli strains were added to sterile synovial fluid obtained from a patient with knee osteoarthritis. Serial dilutions of samples were analyzed by DNA-based and RNA-based qPCR. Clinically, patients who were suspected of having PJI and eventually underwent revision arthroplasty in our hospital from July 2014 to December 2016 were screened. Preoperative puncture or intraoperative collection was performed on patients who met the inclusion and exclusion criteria to obtain synovial fluid. DNA-based and RNA-based PCR analyses and culture were performed on each synovial fluid sample. The patients' demographic characteristics, medical history, and laboratory test results were recorded. The diagnostic efficiency of both PCR assays was compared with culture methods. The in vitro analysis demonstrated that DNA-based qPCR assay was highly sensitive, with the detection limit being 1200 colony forming units (CFU)/mL of S. aureus and 3200 CFU/mL of E. coli. Meanwhile, The RNA-based qPCR assay could detect 2300 CFU/mL of S. aureus and 11 000 CFU/mL of E. coli. Clinically, the sensitivity, specificity, and accuracy were 65.7%, 100%, and 81.6%, respectively, for the culture method; 81.5%, 84.8%, and 83.1%, respectively, for DNA-based qPCR; and 73.6%, 100%, and 85.9%, respectively, for RNA-based qPCR. DNA-based qPCR could detect suspected PJI with high sensitivity after antibiotic therapy. RNA-based qPCR could reduce the false positive rates of DNA-based assays. qPCR-based methods could improve the efficiency of PJI diagnosis. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  16. Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV.

    PubMed

    Mohammadi-Yeganeh, S; Paryan, M; Mirab Samiee, S; Kia, V; Rezvan, H

    2012-06-01

    Developed in 1991, nucleic acid sequence-based amplification (NASBA) has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples. A well-conserved region in the HIV-1 pol gene and 5'-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated. The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was <1000 copies/ml for HIV-1 and <500 copies/ml for HCV with 95% confidence interval. Multiplex NASBA assay showed a 98% sensitivity and 100% specificity. The analytical specificity study with BLAST software demonstrated that the primers do not attach to any other sequences except for that of HIV-1 or HCV. The primers and molecular beacon probes detected all HCV genotypes and all major variants of HIV-1. This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.

  17. Sensitivity Analysis in Sequential Decision Models.

    PubMed

    Chen, Qiushi; Ayer, Turgay; Chhatwal, Jagpreet

    2017-02-01

    Sequential decision problems are frequently encountered in medical decision making, which are commonly solved using Markov decision processes (MDPs). Modeling guidelines recommend conducting sensitivity analyses in decision-analytic models to assess the robustness of the model results against the uncertainty in model parameters. However, standard methods of conducting sensitivity analyses cannot be directly applied to sequential decision problems because this would require evaluating all possible decision sequences, typically in the order of trillions, which is not practically feasible. As a result, most MDP-based modeling studies do not examine confidence in their recommended policies. In this study, we provide an approach to estimate uncertainty and confidence in the results of sequential decision models. First, we provide a probabilistic univariate method to identify the most sensitive parameters in MDPs. Second, we present a probabilistic multivariate approach to estimate the overall confidence in the recommended optimal policy considering joint uncertainty in the model parameters. We provide a graphical representation, which we call a policy acceptability curve, to summarize the confidence in the optimal policy by incorporating stakeholders' willingness to accept the base case policy. For a cost-effectiveness analysis, we provide an approach to construct a cost-effectiveness acceptability frontier, which shows the most cost-effective policy as well as the confidence in that for a given willingness to pay threshold. We demonstrate our approach using a simple MDP case study. We developed a method to conduct sensitivity analysis in sequential decision models, which could increase the credibility of these models among stakeholders.

  18. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less

  19. Microfluidics-based digital quantitative PCR for single-cell small RNA quantification.

    PubMed

    Yu, Tian; Tang, Chong; Zhang, Ying; Zhang, Ruirui; Yan, Wei

    2017-09-01

    Quantitative analyses of small RNAs at the single-cell level have been challenging because of limited sensitivity and specificity of conventional real-time quantitative PCR methods. A digital quantitative PCR (dqPCR) method for miRNA quantification has been developed, but it requires the use of proprietary stem-loop primers and only applies to miRNA quantification. Here, we report a microfluidics-based dqPCR (mdqPCR) method, which takes advantage of the Fluidigm BioMark HD system for both template partition and the subsequent high-throughput dqPCR. Our mdqPCR method demonstrated excellent sensitivity and reproducibility suitable for quantitative analyses of not only miRNAs but also all other small RNA species at the single-cell level. Using this method, we discovered that each sperm has a unique miRNA profile. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Development of LLNA:DAE: a new local lymph node assay that includes the elicitation phase, discriminates borderline-positive chemicals, and is useful for cross-sensitization testing.

    PubMed

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Itagaki, Hiroshi

    2014-02-01

    We developed a new local lymph node assay (LLNA) that includes the elicitation phase termed LLNA:DAE for discrimination of borderline-positive chemicals as classified by the LLNA modified by Daicel based on ATP content (LLNA:DA) and for cross-sensitization testing. Although the LLNA:DA method could help identify skin sensitizers, some skin irritants classified as non-sensitizers by the LLNA were classified as borderline positive. In addition, the evaluation for the cross-sensitization potential between chemicals was impossible. In the LLNA:DAE procedure, test group of mice received four applications of chemicals on the dorsum of the right ear for induction and one application on the dorsum of the left ear for elicitation. Control group of mice received one chemical application on the dorsum of the left ear. We evaluated the sensitizing potential by comparing the weights of the lymph nodes from the left ears between the two groups. The results of using the LLNA:DAE method to examine 24 chemicals, which contained borderline-positive chemicals, were consistent with those from the LLNA method, except for nickel chloride (NiCl2). Two chemical pairs, 2,4-dinitrochlorobenzene (DNCB) with 2,4-dinitrofluorobenzene (DNFB) and hydroquinone (HQ) with p-benzoquinone (p-BQ), showed clear cross-sensitization with each other, while another chemical pair, DNFB with hexylcinnamic aldehyde (HCA) did not. Taken together, our results suggest that the LLNA:DAE method is useful for discriminating borderline-positive chemicals and for determining chemical cross-sensitization.

  1. A new kind of metal detector based on chaotic oscillator

    NASA Astrophysics Data System (ADS)

    Hu, Wenjing

    2017-12-01

    The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.

  2. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error‐based weighting and one objective function

    USGS Publications Warehouse

    Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.

  3. Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds.

    PubMed

    Dong, Ying; Gao, Wei; Zhou, Qin; Zheng, Yi; You, Zheng

    2010-06-25

    The gas sensors based on polymer-coated resonant microcantilevers for volatile organic compounds (VOCs) detection are investigated. A method to characterize the gas sensors through sensor calibration is proposed. The expressions for the estimation of the characteristic parameters are derived. The effect of the polymer coating location on the sensor's sensitivity is investigated and the formula to calculate the polymer-analyte partition coefficient without knowing the polymer coating features is presented for the first time. Three polymers: polyethyleneoxide (PEO), polyethylenevinylacetate (PEVA) and polyvinylalcohol (PVA) are used to perform the experiments. Six organic solvents: toluene, benzene, ethanol, acetone, hexane and octane are used as analytes. The response time, reversibility, hydrophilicity, sensitivity and selectivity of the polymer layers are discussed. According to the results, highly sensitive sensors for each of the analytes are proposed. Based on the characterization method, a convenient and flexible way to the construction of electric nose system by the polymer-coated resonant microcantilevers can be achieved. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Nested-PCR and a new ELISA-based NovaLisa test kit for malaria diagnosis in an endemic area of Thailand.

    PubMed

    Thongdee, Pimwan; Chaijaroenkul, Wanna; Kuesap, Jiraporn; Na-Bangchang, Kesara

    2014-08-01

    Microscopy is considered as the gold standard for malaria diagnosis although its wide application is limited by the requirement of highly experienced microscopists. PCR and serological tests provide efficient diagnostic performance and have been applied for malaria diagnosis and research. The aim of this study was to investigate the diagnostic performance of nested PCR and a recently developed an ELISA-based new rapid diagnosis test (RDT), NovaLisa test kit, for diagnosis of malaria infection, using microscopic method as the gold standard. The performance of nested-PCR as a malaria diagnostic tool is excellent with respect to its high accuracy, sensitivity, specificity, and ability to discriminate Plasmodium species. The sensitivity and specificity of nested-PCR compared with the microscopic method for detection of Plasmodium falciparum, Plasmodium vivax, and P. falciparum/P. vivax mixed infection were 71.4 vs 100%, 100 vs 98.7%, and 100 vs 95.0%, respectively. The sensitivity and specificity of the ELISA-based NovaLisa test kit compared with the microscopic method for detection of Plasmodium genus were 89.0 vs 91.6%, respectively. NovaLisa test kit provided comparable diagnostic performance. Its relatively low cost, simplicity, and rapidity enables large scale field application.

  5. Deep-Focusing Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Jensen, J. M.; Kosovichev, A. G.; Birch, A. C.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Much progress has been made by measuring the travel times of solar acoustic waves from a central surface location to points at equal arc distance away. Depth information is obtained from the range of arc distances examined, with the larger distances revealing the deeper layers. This method we will call surface-focusing, as the common point, or focus, is at the surface. To obtain a clearer picture of the subsurface region, it would, no doubt, be better to focus on points below the surface. Our first attempt to do this used the ray theory to pick surface location pairs that would focus on a particular subsurface point. This is not the ideal procedure, as Born approximation kernels suggest that this focus should have zero sensitivity to sound speed inhomogeneities. However, the sensitivity is concentrated below the surface in a much better way than the old surface-focusing method, and so we expect the deep-focusing method to be more sensitive. A large sunspot group was studied by both methods. Inversions based on both methods will be compared.

  6. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    NASA Astrophysics Data System (ADS)

    Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2018-03-01

    We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  7. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  8. Self-Assembled ZnO Nanosheet-Based Spherical Structure as Photoanode in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Ameri, Mohsen; Raoufi, Meysam; Zamani-Meymian, M.-R.; Samavat, Feridoun; Fathollahi, M.-R.; Mohajerani, Ezeddin

    2018-03-01

    High surface area and enhanced light scattering of ZnO nanosheet aggregates have made them a promising active layer candidate material for fabrication of nanostructure dye-sensitized solar cells. Here, we propose a facile preparation method of such ZnO nanosheet structures, and in order to verify their applicability as photoanode material for dye-sensitized solar cells, we employ morphological, optical, structural and electrical measurements. The results reveal the high surface area available for dye molecules for enhancing adsorption, high light scattering and competitive power conversion efficiencies compared to the works in literature. Finally, the device is optimized with respect to the photoanode thickness. The favorable features shown here can extend the application of the structure to other types of sensitization-based perovskite and quantum dot solar cells.

  9. High sensitivity rotation sensing based on tunable asymmetrical double-ring structure

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Liu, Xiaoqing

    2017-05-01

    A very high sensitivity rotation sensor comprising a tunable asymmetrical double-ring structure (TADRS) coupled by a 3 × 3 coupler is presented. The phase difference caused by the TADRS between the counter-propagating waves is derived and discussed. At the resonant frequency, the phase shift difference has the maximum value when the light power in one cavity is amplified about 1.85 times while attenuated 79% in another. The maximum sensitivity of the TADRS sensor is two times larger than that of a single-ring structure. An experimental system is designed to verify the theoretical results and introduce the method of demodulation. The rotation sensor based on TADRS can enhance the sensitivity of the detection of the angular velocity by more than three orders of magnitude.

  10. Highly sensitive protein detection by biospecific AFM-based fishing with pulsed electrical stimulation.

    PubMed

    Pleshakova, Tatyana O; Malsagova, Kristina A; Kaysheva, Anna L; Kopylov, Arthur T; Tatur, Vadim Yu; Ziborov, Vadim S; Kanashenko, Sergey L; Galiullin, Rafael A; Ivanov, Yuri D

    2017-08-01

    We report here the highly sensitive detection of protein in solution at concentrations from 10 -15 to 10 -18 m using the combination of atomic force microscopy (AFM) and mass spectrometry. Biospecific detection of biotinylated bovine serum albumin was carried out by fishing out the protein onto the surface of AFM chips with immobilized avidin, which determined the specificity of the analysis. Electrical stimulation was applied to enhance the fishing efficiency. A high sensitivity of detection was achieved by application of nanosecond electric pulses to highly oriented pyrolytic graphite placed under the AFM chip. A peristaltic pump-based flow system, which is widely used in routine bioanalytical assays, was employed throughout the analysis. These results hold promise for the development of highly sensitive protein detection methods using nanosensor devices.

  11. Highly sensitive electrochemical detection of human telomerase activity based on bio-barcode method.

    PubMed

    Li, Ying; Liu, Bangwei; Li, Xia; Wei, Qingli

    2010-07-15

    In the present study, an electrochemical method for highly sensitive detection of human telomerase activity was developed based on bio-barcode amplification assay. Telomerase was extracted from HeLa cells, then the extract was mixed with telomerase substrate (TS) primer to perform extension reaction. The extension product was hybridized with the capture DNA immobilized on the Au electrode and then reacted with the signal DNA on Au nanoparticles to form a sandwich hybridization mode. Electrochemical signals were generated by chronocoulometric interrogation of [Ru(NH(3))(6)](3+) that quantitatively binds to the DNA on Au nanoparticles via electrostatic interaction. This method can detect the telomerase activity from as little as 10 cultured cancer cells without the polymerase chain reaction (PCR) amplification of telomerase extension product. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Single particle electrochemical sensors and methods of utilization

    DOEpatents

    Schoeniger, Joseph [Oakland, CA; Flounders, Albert W [Berkeley, CA; Hughes, Robert C [Albuquerque, NM; Ricco, Antonio J [Los Gatos, CA; Wally, Karl [Lafayette, CA; Kravitz, Stanley H [Placitas, NM; Janek, Richard P [Oakland, CA

    2006-04-04

    The present invention discloses an electrochemical device for detecting single particles, and methods for using such a device to achieve high sensitivity for detecting particles such as bacteria, viruses, aggregates, immuno-complexes, molecules, or ionic species. The device provides for affinity-based electrochemical detection of particles with single-particle sensitivity. The disclosed device and methods are based on microelectrodes with surface-attached, affinity ligands (e.g., antibodies, combinatorial peptides, glycolipids) that bind selectively to some target particle species. The electrodes electrolyze chemical species present in the particle-containing solution, and particle interaction with a sensor element modulates its electrolytic activity. The devices may be used individually, employed as sensors, used in arrays for a single specific type of particle or for a range of particle types, or configured into arrays of sensors having both these attributes.

  13. Image Reconstruction for a Partially Collimated Whole Body PET Scanner

    PubMed Central

    Alessio, Adam M.; Schmitz, Ruth E.; MacDonald, Lawrence R.; Wollenweber, Scott D.; Stearns, Charles W.; Ross, Steven G.; Ganin, Alex; Lewellen, Thomas K.; Kinahan, Paul E.

    2008-01-01

    Partially collimated PET systems have less collimation than conventional 2-D systems and have been shown to offer count rate improvements over 2-D and 3-D systems. Despite this potential, previous efforts have not established image-based improvements with partial collimation and have not customized the reconstruction method for partially collimated data. This work presents an image reconstruction method tailored for partially collimated data. Simulated and measured sensitivity patterns are presented and provide a basis for modification of a fully 3-D reconstruction technique. The proposed method uses a measured normalization correction term to account for the unique sensitivity to true events. This work also proposes a modified scatter correction based on simulated data. Measured image quality data supports the use of the normalization correction term for true events, and suggests that the modified scatter correction is unnecessary. PMID:19096731

  14. Image Reconstruction for a Partially Collimated Whole Body PET Scanner.

    PubMed

    Alessio, Adam M; Schmitz, Ruth E; Macdonald, Lawrence R; Wollenweber, Scott D; Stearns, Charles W; Ross, Steven G; Ganin, Alex; Lewellen, Thomas K; Kinahan, Paul E

    2008-06-01

    Partially collimated PET systems have less collimation than conventional 2-D systems and have been shown to offer count rate improvements over 2-D and 3-D systems. Despite this potential, previous efforts have not established image-based improvements with partial collimation and have not customized the reconstruction method for partially collimated data. This work presents an image reconstruction method tailored for partially collimated data. Simulated and measured sensitivity patterns are presented and provide a basis for modification of a fully 3-D reconstruction technique. The proposed method uses a measured normalization correction term to account for the unique sensitivity to true events. This work also proposes a modified scatter correction based on simulated data. Measured image quality data supports the use of the normalization correction term for true events, and suggests that the modified scatter correction is unnecessary.

  15. Matching CCD images to a stellar catalog using locality-sensitive hashing

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Yu, Jia-Zong; Peng, Qing-Yu

    2018-02-01

    The usage of a subset of observed stars in a CCD image to find their corresponding matched stars in a stellar catalog is an important issue in astronomical research. Subgraph isomorphic-based algorithms are the most widely used methods in star catalog matching. When more subgraph features are provided, the CCD images are recognized better. However, when the navigation feature database is large, the method requires more time to match the observing model. To solve this problem, this study investigates further and improves subgraph isomorphic matching algorithms. We present an algorithm based on a locality-sensitive hashing technique, which allocates quadrilateral models in the navigation feature database into different hash buckets and reduces the search range to the bucket in which the observed quadrilateral model is located. Experimental results indicate the effectivity of our method.

  16. A novel Alu-based real-time PCR method for the quantitative detection of plasma circulating cell-free DNA: Sensitivity and specificity for the diagnosis of myocardial infarction

    PubMed Central

    LOU, XIAOLI; HOU, YANQIANG; LIANG, DONGYU; PENG, LIANG; CHEN, HONGWEI; MA, SHANYUAN; ZHANG, LURONG

    2015-01-01

    In the present study, we aimed to develop and validate a rapid and sensitive, Alu-based real-time PCR method for the detection of circulating cell-free DNA (cfDNA). This method targeted repetitive elements of the Alu reduplicative elements in the human genome, followed by signal amplification using fluorescence quantification. Standard Alu-puc57 vectors were constructed and 5 pairs of specific primers were designed. Valuation was conducted concerning linearity, variation and recovery. We found 5 linear responses (R1–5=0.998–0.999). The average intra- and inter-assay coefficients of variance were 12.98 and 10.75%, respectively. The recovery was 82.33–114.01%, with a mean recovery index of 101.26%. This Alu-based assay was reliable, accurate and sensitive for the quantitative detection of cfDNA. Plasma from normal controls and patients with myocardial infarction (MI) were analyzed, and the baseline levels of cfDNA were higher in the MI group. The area under the receiver operating characteristic (ROC) curve for Alu1, Alu2, Alu3, Alu4, Alu5 and Alu (Alu1 + Alu2 + Alu3 + Alu4 + Alu5) was 0.887, 0.758, 0.857, 0.940, 0.968 and 0.933, respectively. The optimal cut-off value for Alu1, Alu2, Alu3, Alu4, Alu5 and Alu to predict MI was 3.71, 1.93, 0.22, 3.73, 6.13 and 6.40 log copies/ml. We demonstrate that this new method is a reliable, accurate and sensitive method for the quantitative detection of cfDNA and that it is useful for studying the regulation of cfDNA in certain pathological conditions. Alu4, Alu5 and Alu showed better sensitivity and specificity for the diagnosis of MI compared with cardiac troponin I (cTnI), creatine kinase MB (CK-MB) isoenzyme and lactate dehydrogenase (LDH). Alu5 had the best prognostic ability. PMID:25374065

  17. Simple and sensitive method for the quantification of total bilirubin in human serum using 3-methyl-2-benzothiazolinone hydrazone hydrochloride as a chromogenic probe

    NASA Astrophysics Data System (ADS)

    Nagaraja, Padmarajaiah; Avinash, Krishnegowda; Shivakumar, Anantharaman; Dinesh, Rangappa; Shrestha, Ashwinee Kumar

    2010-11-01

    We here describe a new spectrophotometric method for measuring total bilirubin in serum. The method is based on the cleavage of bilirubin giving formaldehyde which further reacts with diazotized 3-methyl-2-benzothiazolinone hydrazone hydrochloride giving blue colored solution with maximum absorbance at 630 nm. Sensitivity of the developed method was compared with Jendrassik-Grof assay procedure and its applicability has been tested with human serum samples. Good correlation was attained between both methods giving slope of 0.994, intercept 0.015, and R2 = 0.997. Beers law obeyed in the range of 0.068-17.2 μM with good linearity, absorbance y = 0.044 Cbil + 0.003. Relative standard deviation was 0.006872, within day precision ranged 0.3-1.2% and day-to-day precision ranged 1-6%. Recovery of the method varied from 97 to 102%. The proposed method has higher sensitivity with less interference. The obtained product was extracted and was spectrally characterized for structural confirmation with FT-IR, 1H NMR.

  18. Rapid diagnosis of sensitivity to ultraviolet light in fibroblasts from dermatologic disorders, with particular reference to xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.

    1988-04-01

    A rapid and simple method for determining the sensitivity of human fibroblasts to ultraviolet light is described. As an alternative to the colony formation assay, this method can be used for the rapid diagnosis of ultraviolet light sensitivity in fibroblasts from photosensitive disorders. The method is based on growth of small numbers of cells in 1-cm wells of culture trays for 4 or more days after irradiation and determination of cell survival by the incorporation of (/sup 3/H)hypoxanthine. D37 values (the dose at which 37% of the control level of incorporation remains) obtained from this procedure showed the same relativemore » sensitivity of normal and xeroderma pigmentosum fibroblasts as was obtained by colony formation. Untransformed and SV40-transformed fibroblasts, which have different growth rates and different responses to high cell densities, gave different D37 values by this assay in culture trays as compared with colony formation. Comparison of relative sensitivities to irradiation should therefore be made only between cell types with similar growth characteristics. The similar sensitivity of normal and xeroderma pigmentosum cells to mitomycin C was also determined by this culture tray method. By increasing cell density at the beginning of the experiments, a greater capacity of group C compared with group D fibroblasts for recovery from potentially lethal damage was also detected.« less

  19. Sensitivity for Diagnosing Group A Streptococcal Pharyngitis from Manufacturers is 10% Higher than Reported in Peer-Reviewed Publications.

    PubMed

    Vachhani, Raj; Patel, Toral; Centor, Robert M; Estrada, Carlos A

    2017-01-01

    Meta-analyses based on peer-reviewed publications report a sensitivity of approximately 85% for rapid antigen streptococcus tests to diagnose group A streptococcal (GAS) pharyngitis. Because these meta-analyses excluded package inserts, we examined the test characteristics of rapid antigen streptococcal tests and molecular methods that manufacturers report in their package inserts. We included tests available in the US market (Food and Drug Administration, period searched 1993-2015) and used package insert data to calculate pooled sensitivity and specificity. To examine quality, we used the Quality Assessment of Diagnostic Accuracy Studies-2. We excluded 26 tests having different trade names but identical methods and data. The study design was prospective in 41.7% (10 of 24). The pooled sensitivity of the most commonly used method, lateral flow/immunochromatographic, was 95% (95% confidence interval [CI] 94-96) and the pooled specificity was 98% (96-98); 7108 patients. The pooled sensitivity of the polymerase chain reaction or molecular methods was 98% (95% CI 96-98) and the pooled specificity was 96% (95% CI 95-97); 5685 patients. Package inserts include sponsored studies that overestimate the sensitivity of rapid tests to diagnose GAS pharyngitis by approximately 10%. Physicians should understand that package inserts overestimate diagnostic test utility; a negative test cannot be used to exclude GAS pharyngitis.

  20. Quantitative Detection and Genotyping of Helicobacter pylori from Stool using Droplet Digital PCR Reveals Variation in Bacterial Loads that Correlates with cagA Virulence Gene Carriage.

    PubMed

    Talarico, Sarah; Safaeian, Mahboobeh; Gonzalez, Paula; Hildesheim, Allan; Herrero, Rolando; Porras, Carolina; Cortes, Bernal; Larson, Ann; Fang, Ferric C; Salama, Nina R

    2016-08-01

    Epidemiologic studies of the carcinogenic stomach bacterium Helicobacter pylori have been limited by the lack of noninvasive detection and genotyping methods. We developed a new stool-based method for detection, quantification, and partial genotyping of H. pylori using droplet digital PCR (ddPCR), which allows for increased sensitivity and absolute quantification by PCR partitioning. Stool-based ddPCR assays for H. pylori 16S gene detection and cagA virulence gene typing were tested using a collection of 50 matched stool and serum samples from Costa Rican volunteers and 29 H. pylori stool antigen-tested stool samples collected at a US hospital. The stool-based H. pylori 16S ddPCR assay had a sensitivity of 84% and 100% and a specificity of 100% and 71% compared to serology and stool antigen tests, respectively. The stool-based cagA genotyping assay detected cagA in 22 (88%) of 25 stools from CagA antibody-positive individuals and four (16%) of 25 stools from CagA antibody-negative individuals from Costa Rica. All 26 of these samples had a Western-type cagA allele. Presence of serum CagA antibodies was correlated with a significantly higher load of H. pylori in the stool. The stool-based ddPCR assays are a sensitive, noninvasive method for detection, quantification, and partial genotyping of H. pylori. The quantitative nature of ddPCR-based H. pylori detection revealed significant variation in bacterial load among individuals that correlates with presence of the cagA virulence gene. These stool-based ddPCR assays will facilitate future population-based epidemiologic studies of this important human pathogen. © 2015 John Wiley & Sons Ltd.

  1. Dynamic sensitivity analysis of biological systems

    PubMed Central

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2008-01-01

    Background A mathematical model to understand, predict, control, or even design a real biological system is a central theme in systems biology. A dynamic biological system is always modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems, the system admissible input (corresponding to independent variables of the system) can be time-dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take into account this case for the dynamic log gains. Results We present an algorithm with an adaptive step size control that can be used for computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously. Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities of an ODE system, the step size determined by model equations can be used on the computations of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity equations are more stiff than model equations. To show this algorithm can perform the dynamic sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from this new algorithm and from the direct method with Rosenbrock stiff integrator based on the indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to realistic models with time-dependent admissible input. Conclusion By combining the accuracy we show with the efficiency of being a decouple direct method, our algorithm is an excellent method for computing dynamic parameter sensitivities in stiff problems. We extend the scope of classical dynamic sensitivity analysis to the investigation of dynamic log gains of models with time-dependent admissible input. PMID:19091016

  2. The Principle of the Micro-Electronic Neural Bridge and a Prototype System Design.

    PubMed

    Huang, Zong-Hao; Wang, Zhi-Gong; Lu, Xiao-Ying; Li, Wen-Yuan; Zhou, Yu-Xuan; Shen, Xiao-Yan; Zhao, Xin-Tai

    2016-01-01

    The micro-electronic neural bridge (MENB) aims to rebuild lost motor function of paralyzed humans by routing movement-related signals from the brain, around the damage part in the spinal cord, to the external effectors. This study focused on the prototype system design of the MENB, including the principle of the MENB, the neural signal detecting circuit and the functional electrical stimulation (FES) circuit design, and the spike detecting and sorting algorithm. In this study, we developed a novel improved amplitude threshold spike detecting method based on variable forward difference threshold for both training and bridging phase. The discrete wavelet transform (DWT), a new level feature coefficient selection method based on Lilliefors test, and the k-means clustering method based on Mahalanobis distance were used for spike sorting. A real-time online spike detecting and sorting algorithm based on DWT and Euclidean distance was also implemented for the bridging phase. Tested by the data sets available at Caltech, in the training phase, the average sensitivity, specificity, and clustering accuracies are 99.43%, 97.83%, and 95.45%, respectively. Validated by the three-fold cross-validation method, the average sensitivity, specificity, and classification accuracy are 99.43%, 97.70%, and 96.46%, respectively.

  3. A new LC-MS based method to quantitate exogenous recombinant transferrin in cerebrospinal fluid: a potential approach for pharmacokinetic studies of transferrin-based therapeutics in the central nervous system

    PubMed Central

    Wang, Shunhai; Bobst, Cedric E.; Kaltashov, Igor A.

    2018-01-01

    Transferrin (Tf) is an 80 kDa iron-binding protein which is viewed as a promising drug carrier to target the central nervous system due to its ability to penetrate the blood-brain barrier (BBB). Among the many challenges during the development of Tf-based therapeutics, sensitive and accurate quantitation of the administered Tf in cerebrospinal fluid (CSF) remains particularly difficult due to the presence of abundant endogenous Tf. Herein, we describe the development of a new LC-MS based method for sensitive and accurate quantitation of exogenous recombinant human Tf in rat CSF. By taking advantage of a His-tag present in recombinant Tf and applying Ni affinity purification, the exogenous hTf can be greatly enriched from rat CSF, despite the presence of the abundant endogenous protein. Additionally, we applied a newly developed O18-labeling technique that can generate internal standards at the protein level, which greatly improved the accuracy and robustness of quantitation. The developed method was investigated for linearity, accuracy, precision and lower limit of quantitation, all of which met the commonly accepted criteria for bioanalytical method validation. PMID:26307718

  4. SU-F-J-06: Optimized Patient Inclusion for NaF PET Response-Based Biopsies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, A; Harmon, S; Perk, T

    Purpose: A method to guide mid-treatment biopsies using quantitative [F-18]NaF PET/CT response is being investigated in a clinical trial. This study aims to develop methodology to identify patients amenable to mid-treatment biopsy based on pre-treatment imaging characteristics. Methods: 35 metastatic prostate cancer patients had NaF PET/CT scans taken prior to the start of treatment and 9–12 weeks into treatment. For mid-treatment biopsy targeting, lesions must be at least 1.5 cm{sup 3} and located in a clinically feasible region (lumbar/sacral spine, pelvis, humerus, or femur). Three methods were developed based on number of lesions present prior to treatment: a feasibility-restricted method,more » a location-restricted method, and an unrestricted method. The feasibility restricted method only utilizes information from lesions meeting biopsy requirements in the pre-treatment scan. The unrestricted method accounts for all lesions present in the pre-treatment scan. For each method, optimized classification cutoffs for candidate patients were determined. Results: 13 of the 35 patients had enough lesions at the mid-treatment for biopsy candidacy. Of 1749 lesions identified in all 35 patients at mid-treatment, only 9.8% were amenable to biopsy. Optimizing the feasibility-restricted method required 4 lesions at pre-treatment meeting volume and region requirements for biopsy, resulting patient identification sensitivity of 0.8 and specificity of 0.7. Of 6 false positive patients, only one patient lacked lesions for biopsy. Restricting for location alone showed poor results (sensitivity 0.2 and specificity 0.3). The optimized unrestricted method required patients have at least 37 lesions in pretreatment scan, resulting in a sensitivity of 0.8 and specificity of 0.8. There were 5 false positives, only one lacked lesions for biopsy. Conclusion: Incorporating the overall pre-treatment number of NaF PET/CT identified lesions provided best prediction for identifying candidate patients for mid-treatment biopsy. This study provides validity for prediction-based inclusion criteria that can be extended to various clinical trial scenarios. Funded by Prostate Cancer Foundation.« less

  5. Highly sensitive fluorescence detection of metastatic lymph nodes of gastric cancer with photo-oxidation of protoporphyrin IX.

    PubMed

    Koizumi, N; Harada, Y; Beika, M; Minamikawa, T; Yamaoka, Y; Dai, P; Murayama, Y; Yanagisawa, A; Otsuji, E; Tanaka, H; Takamatsu, T

    2016-08-01

    The establishment of a precise and rapid method to detect metastatic lymph nodes (LNs) is essential to perform less invasive surgery with reduced gastrectomy along with reduced lymph node dissection. We herein describe a novel imaging strategy to detect 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence in excised LNs specifically with reduced effects of tissue autofluorescence based on photo-oxidation of PpIX. We applied the method in a clinical setting, and evaluated its feasibility. To reduce the unfavorable effect of autofluorescence, we focused on photo-oxidation of PpIX: Following light irradiation, PpIX changes into another substance, photo-protoporphyrin, via an oxidative process, which has a different spectral peak, at 675 nm, whereas PpIX has its spectral peak at 635 nm. Based on the unique spectral alteration, fluorescence spectral imaging before and after light irradiation and subsequent originally-developed image processing was performed. Following in vitro study, we applied this method to a total of 662 excised LNs obtained from 30 gastric cancer patients administered 5-ALA preoperatively. Specific visualization of PpIX was achieved in in vitro study. The method allowed highly sensitive detection of metastatic LNs, with sensitivity of 91.9% and specificity of 90.8% in the in vivo clinical trial. Receiver operating characteristic analysis indicated high diagnostic accuracy, with the area under the curve of 0.926. We established a highly sensitive and specific 5-ALA-induced fluorescence imaging method applicable in clinical settings. The novel method has a potential to become a useful tool for intraoperative rapid diagnosis of LN metastasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Diagnostic algorithm for detection of targetable driver mutations in lung adenocarcinomas: Comprehensive analyses of 205 cases with immunohistochemistry, real-time PCR and fluorescence in situ hybridization methods.

    PubMed

    Kao, Hua-Lin; Yeh, Yi-Chen; Lin, Chin-Hsuan; Hsu, Wei-Fang; Hsieh, Wen-Yu; Ho, Hsiang-Ling; Chou, Teh-Ying

    2016-11-01

    Analysis of the targetable driver mutations is now recommended in all patients with advanced lung adenocarcinoma. Molecular-based methods are usually adopted, however, along with the implementation of highly sensitive and/or mutation-specific antibodies, immunohistochemistry (IHC) has been considered an alternative method for identifying driver mutations in lung adenocarcinomas. A total of 205 lung adenocarcinomas were examined for EGFR mutations and ALK and ROS1 rearrangements using real-time PCR, fluorescence in situ hybridization (FISH) and IHC in parallel. The performance of different commercially available IHC antibody clones toward targetable driver mutations was evaluated. The association between these driver mutations and clinicopathological characteristics was also analyzed. In 205 cases we studied, 58.5% were found to harbor EGFR mutations, 6.3% ALK rearrangements and 1.0% ROS1 rearrangements. Compared to molecular-based methods, IHC of EGFR mutations showed an excellent specificity but the sensitivity is suboptimal, while IHC of ALK and ROS1 rearrangements demonstrated high sensitivity and specificity. No significant difference regarding the performance of different antibody clones toward these driver mutations was observed, except that clone SP125 showed a higher sensitivity than 43B2 in the detection of p.L858R of EGFR. In circumstances such as poor quality of nucleic acids or low content of tumor cells, IHC of EGFR mutation-specific antibodies could be used as an alternative method. Patients negative for EGFR mutations are subjected to further analysis on ALK and ROS1 rearrangements using IHC methods. Herein, we proposed a lung adenocarcinoma testing algorithm for the application of IHC in therapeutic diagnosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    NASA Astrophysics Data System (ADS)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  8. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    PubMed

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; ...

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  10. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  11. A new pyrene based highly sensitive fluorescence probe for copper(II) and fluoride with living cell application.

    PubMed

    Goswami, Shyamaprosad; Chakraborty, Shampa; Paul, Sima; Halder, Sandipan; Panja, Sukanya; Mukhopadhyay, Subhra Kanti

    2014-05-21

    A new pyrene based fluorescence probe has been synthesized for fluorogenic detection of Cu(2+) in acetonitrile-aqueous media (7 : 3 CH3CN-HEPES buffer, v/v, at pH 7.5) with bioimaging in both prokaryotic (Candida albicans cells) and eukaryotic (Tecoma stans pollen cells) living cells. The anion recognition properties of the sensor have also been studied in acetonitrile by fluorescence methods which show remarkable sensitivity toward fluoride over other anions examined.

  12. Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor.

    PubMed

    Shuai, Binbin; Xia, Li; Liu, Deming

    2012-11-05

    We present and numerically characterize a liquid-core photonic crystal fiber based plasmonic sensor. The coupling properties and sensing performance are investigated by the finite element method. It is found that not only the plasmonic mode dispersion relation but also the fundamental mode dispersion relation is rather sensitive to the analyte refractive index (RI). The positive and negative RI sensitivity coexist in the proposed design. It features a positive RI sensitivity when the increment of the SPP mode effective index is larger than that of the fundamental mode, but the sensor shows a negative RI sensitivity once the increment of the fundamental mode gets larger. A maximum negative RI sensitivity of -5500nm/RIU (Refractive Index Unit) is achieved in the sensing range of 1.50-1.53. The effects of the structural parameters on the plasmonic excitations are also studied, with a view of tuning and optimizing the resonant spectrum.

  13. Evaluation of Visual Field and Imaging Outcomes for Glaucoma Clinical Trials (An American Ophthalomological Society Thesis).

    PubMed

    Garway-Heath, David F; Quartilho, Ana; Prah, Philip; Crabb, David P; Cheng, Qian; Zhu, Haogang

    2017-08-01

    To evaluate the ability of various visual field (VF) analysis methods to discriminate treatment groups in glaucoma clinical trials and establish the value of time-domain optical coherence tomography (TD OCT) imaging as an additional outcome. VFs and retinal nerve fibre layer thickness (RNFLT) measurements (acquired by TD OCT) from 373 glaucoma patients in the UK Glaucoma Treatment Study (UKGTS) at up to 11 scheduled visits over a 2 year interval formed the cohort to assess the sensitivity of progression analysis methods. Specificity was assessed in 78 glaucoma patients with up to 11 repeated VF and OCT RNFLT measurements over a 3 month interval. Growth curve models assessed the difference in VF and RNFLT rate of change between treatment groups. Incident progression was identified by 3 VF-based methods: Guided Progression Analysis (GPA), 'ANSWERS' and 'PoPLR', and one based on VFs and RNFLT: 'sANSWERS'. Sensitivity, specificity and discrimination between treatment groups were evaluated. The rate of VF change was significantly faster in the placebo, compared to active treatment, group (-0.29 vs +0.03 dB/year, P <.001); the rate of RNFLT change was not different (-1.7 vs -1.1 dB/year, P =.14). After 18 months and at 95% specificity, the sensitivity of ANSWERS and PoPLR was similar (35%); sANSWERS achieved a sensitivity of 70%. GPA, ANSWERS and PoPLR discriminated treatment groups with similar statistical significance; sANSWERS did not discriminate treatment groups. Although the VF progression-detection method including VF and RNFLT measurements is more sensitive, it does not improve discrimination between treatment arms.

  14. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models

    USGS Publications Warehouse

    Rakovec, O.; Hill, Mary C.; Clark, M.P.; Weerts, A. H.; Teuling, A. J.; Uijlenhoet, R.

    2014-01-01

    This paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based “local” methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative “bucket-style” hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models.

  15. Prevention of bacterial foodborne disease using nanobiotechnology.

    PubMed

    Billington, Craig; Hudson, J Andrew; D'Sa, Elaine

    2014-01-01

    Foodborne disease is an important source of expense, morbidity, and mortality for society. Detection and control constitute significant components of the overall management of foodborne bacterial pathogens, and this review focuses on the use of nanosized biological entities and molecules to achieve these goals. There is an emphasis on the use of organisms called bacteriophages (phages: viruses that infect bacteria), which are increasingly being used in pathogen detection and biocontrol applications. Detection of pathogens in foods by conventional techniques is time-consuming and expensive, although it can also be sensitive and accurate. Nanobiotechnology is being used to decrease detection times and cost through the development of biosensors, exploiting specific cell-recognition properties of antibodies and phage proteins. Although sensitivity per test can be excellent (eg, the detection of one cell), the very small volumes tested mean that sensitivity per sample is less compelling. An ideal detection method needs to be inexpensive, sensitive, and accurate, but no approach yet achieves all three. For nanobiotechnology to displace existing methods (culture-based, antibody-based rapid methods, or those that detect amplified nucleic acid) it will need to focus on improving sensitivity. Although manufactured nonbiological nanoparticles have been used to kill bacterial cells, nanosized organisms called phages are increasingly finding favor in food safety applications. Phages are amenable to protein and nucleic acid labeling, and can be very specific, and the typical large "burst size" resulting from phage amplification can be harnessed to produce a rapid increase in signal to facilitate detection. There are now several commercially available phages for pathogen control, and many reports in the literature demonstrate efficacy against a number of foodborne pathogens on diverse foods. As a method for control of pathogens, nanobiotechnology is therefore flourishing.

  16. SU-C-207A-05: Feature Based Water Equivalent Path Length (WEPL) Determination for Proton Radiography by the Technique of Time Resolved Dose Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Jee, K; Sharp, G

    Purpose: Studies show that WEPL can be determined from modulated dose rate functions (DRF). However, the previous calibration method based on statistics of the DRF is sensitive to energy mixing of protons due to scattering through different materials (termed as range mixing here), causing inaccuracies in the determination of WEPL. This study intends to explore time-domain features of the DRF to reduce the effect of range mixing in proton radiography (pRG) by this technique. Methods: An amorphous silicon flat panel (PaxScan™ 4030CB, Varian Medical Systems, Inc., Palo Alto, CA) was placed behind phantoms to measure DRFs from a proton beammore » modulated by a specially designed modulator wheel. The performance of two methods, the previously used method based on the root mean square (RMS) and the new approach based on time-domain features of the DRF, are compared for retrieving WEPL and RSP from pRG of a Gammex phantom. Results: Calibration by T{sub 80} (the time point for 80% of the major peak) was more robust to range mixing and produced WEPL with improved accuracy. The error of RSP was reduced from 8.2% to 1.7% for lung equivalent material, with the mean error for all other materials reduced from 1.2% to 0.7%. The mean error of the full width at half maximum (FWHM) of retrieved inserts was decreased from 25.85% to 5.89% for the RMS and T{sub 80} method respectively. Monte Carlo simulations in simplified cases also demonstrated that the T{sub 80} method is less sensitive to range mixing than the RMS method. Conclusion: WEPL images have been retrieved based on single flat panel measured DRFs, with inaccuracies reduced by exploiting time-domain features as the calibration parameter. The T{sub 80} method is validated to be less sensitive to range mixing and can thus retrieve the WEPL values in proximity of interfaces with improved numerical and spatial accuracy for proton radiography.« less

  17. The limits of protein sequence comparison?

    PubMed Central

    Pearson, William R; Sierk, Michael L

    2010-01-01

    Modern sequence alignment algorithms are used routinely to identify homologous proteins, proteins that share a common ancestor. Homologous proteins always share similar structures and often have similar functions. Over the past 20 years, sequence comparison has become both more sensitive, largely because of profile-based methods, and more reliable, because of more accurate statistical estimates. As sequence and structure databases become larger, and comparison methods become more powerful, reliable statistical estimates will become even more important for distinguishing similarities that are due to homology from those that are due to analogy (convergence). The newest sequence alignment methods are more sensitive than older methods, but more accurate statistical estimates are needed for their full power to be realized. PMID:15919194

  18. GI-SVM: A sensitive method for predicting genomic islands based on unannotated sequence of a single genome.

    PubMed

    Lu, Bingxin; Leong, Hon Wai

    2016-02-01

    Genomic islands (GIs) are clusters of functionally related genes acquired by lateral genetic transfer (LGT), and they are present in many bacterial genomes. GIs are extremely important for bacterial research, because they not only promote genome evolution but also contain genes that enhance adaption and enable antibiotic resistance. Many methods have been proposed to predict GI. But most of them rely on either annotations or comparisons with other closely related genomes. Hence these methods cannot be easily applied to new genomes. As the number of newly sequenced bacterial genomes rapidly increases, there is a need for methods to detect GI based solely on sequences of a single genome. In this paper, we propose a novel method, GI-SVM, to predict GIs given only the unannotated genome sequence. GI-SVM is based on one-class support vector machine (SVM), utilizing composition bias in terms of k-mer content. From our evaluations on three real genomes, GI-SVM can achieve higher recall compared with current methods, without much loss of precision. Besides, GI-SVM allows flexible parameter tuning to get optimal results for each genome. In short, GI-SVM provides a more sensitive method for researchers interested in a first-pass detection of GI in newly sequenced genomes.

  19. New support vector machine-based method for microRNA target prediction.

    PubMed

    Li, L; Gao, Q; Mao, X; Cao, Y

    2014-06-09

    MicroRNA (miRNA) plays important roles in cell differentiation, proliferation, growth, mobility, and apoptosis. An accurate list of precise target genes is necessary in order to fully understand the importance of miRNAs in animal development and disease. Several computational methods have been proposed for miRNA target-gene identification. However, these methods still have limitations with respect to their sensitivity and accuracy. Thus, we developed a new miRNA target-prediction method based on the support vector machine (SVM) model. The model supplies information of two binding sites (primary and secondary) for a radial basis function kernel as a similarity measure for SVM features. The information is categorized based on structural, thermodynamic, and sequence conservation. Using high-confidence datasets selected from public miRNA target databases, we obtained a human miRNA target SVM classifier model with high performance and provided an efficient tool for human miRNA target gene identification. Experiments have shown that our method is a reliable tool for miRNA target-gene prediction, and a successful application of an SVM classifier. Compared with other methods, the method proposed here improves the sensitivity and accuracy of miRNA prediction. Its performance can be further improved by providing more training examples.

  20. Research on bathymetry estimation by Worldview-2 based with the semi-analytical model

    NASA Astrophysics Data System (ADS)

    Sheng, L.; Bai, J.; Zhou, G.-W.; Zhao, Y.; Li, Y.-C.

    2015-04-01

    South Sea Islands of China are far away from the mainland, the reefs takes more than 95% of south sea, and most reefs scatter over interested dispute sensitive area. Thus, the methods of obtaining the reefs bathymetry accurately are urgent to be developed. Common used method, including sonar, airborne laser and remote sensing estimation, are limited by the long distance, large area and sensitive location. Remote sensing data provides an effective way for bathymetry estimation without touching over large area, by the relationship between spectrum information and bathymetry. Aimed at the water quality of the south sea of China, our paper develops a bathymetry estimation method without measured water depth. Firstly the semi-analytical optimization model of the theoretical interpretation models has been studied based on the genetic algorithm to optimize the model. Meanwhile, OpenMP parallel computing algorithm has been introduced to greatly increase the speed of the semi-analytical optimization model. One island of south sea in China is selected as our study area, the measured water depth are used to evaluate the accuracy of bathymetry estimation from Worldview-2 multispectral images. The results show that: the semi-analytical optimization model based on genetic algorithm has good results in our study area;the accuracy of estimated bathymetry in the 0-20 meters shallow water area is accepted.Semi-analytical optimization model based on genetic algorithm solves the problem of the bathymetry estimation without water depth measurement. Generally, our paper provides a new bathymetry estimation method for the sensitive reefs far away from mainland.

  1. Sensitivity of diagnostic methods for Mansonella ozzardi microfilariae detection in the Brazilian Amazon Region

    PubMed Central

    Medeiros, Jansen Fernandes; Fontes, Gilberto; do Nascimento, Vilma Lopes; Rodrigues, Moreno; Cohen, Jacob; de Andrade, Edmar Vaz; Pessoa, Felipe Arley Costa; Martins, Marilaine

    2018-01-01

    BACKGROUND The human filarial worm Mansonella ozzardi is highly endemic in the large tributaries of the Amazon River. This infection is still highly neglected and can be falsely negative when microfilariae levels are low. OBJECTIVES This study investigated the frequency of individuals with M. ozzardi in riverine communities in Coari municipality, Brazilian Amazon. METHODS Different diagnostic methods including polymerase chain reaction (PCR), blood polycarbonate membrane filtration (PCMF), Knott's method (Knott), digital thick blood smears (DTBS) and venous thick blood smears (VTBS) were used to compare sensitivity and specificity among the methods. Data were analysed using PCMF and Bayesian latent class models (BLCM) as the gold standard. We used BLCM to calculate the prevalence of mansonelliasis based on the results of five diagnostic methods. FINDINGS The prevalence of mansonelliasis was 35.4% by PCMF and 30.1% by BLCM. PCR and Knott methods both possessed high sensitivity. Sensitivity relative to PCMF was 98.5% [95% confidence interval (CI): 92.0 - 99.7] for PCR and 83.5% (95% CI: 72.9 - 90.5) for Knott. Sensitivity derived by BLCM was 100% (95% CI 93.7 - 100) for PCMF, 100% (95% CI: 93.7 - 100) for PCR and 98.3% (95% CI: 90.6 - 99.9) for Knott. The odds ratio of being diagnosed as microfilaremic increased with age but did not differ between genders. Microfilariae loads were higher in subjects aged 30 - 45 and 45 - 60 years. MAIN CONCLUSIONS PCMF and PCR were the best methods to assess the prevalence of mansonelliasis in our samples. As such, using these methods could lead to higher prevalence of mansonelliasis in this region than the most commonly used method (i.e., thick blood smears). PMID:29412356

  2. [The diagnostic value of ultrasonic elastography and ultrasonography comprehensive score in cervical lesions].

    PubMed

    Lu, R; Xiao, Y

    2017-07-18

    Objective: To evaluate the clinical value of ultrasonic elastography and ultrasonography comprehensive scoring method in the diagnosis of cervical lesions. Methods: A total of 116 patients were selected from the Department of Gynecology of the first hospital affiliated with Central South University from March 2014 to September 2015.All of the lesions were preoperatively examined by Doppler Ultrasound and elastography.The elasticity score was determined by a 5-point scoring method. Calculation of the strain ratio was based on a comparison of the average strain measured in the lesion with the adjacent tissue of the same depth, size, and shape.All these ultrasonic parameters were quantified, added, and arrived at ultrasonography comprehensive scores.To use surgical pathology as the gold standard, the sensitivity, specificity, accuracy of Doppler Ultrasound, elasticity score and strain ratio methods and ultrasonography comprehensive scoring method were comparatively analyzed. Results: (1) The sensitivity, specificity, and accuracy of Doppler Ultrasound in diagnosing cervical lesions were 82.89% (63/76), 85.0% (34/40), and 83.62% (97/116), respectively.(2) The sensitivity, specificity, and accuracy of the elasticity score method were 77.63% (59/76), 82.5% (33/40), and 79.31% (92/116), respectively; the sensitivity, specificity, and accuracy of the strain ratio measure method were 84.21% (64/76), 87.5% (35/40), and 85.34% (99/116), respectively.(3) The sensitivity, specificity, and accuracy of ultrasonography comprehensive scoring method were 90.79% (69/76), 92.5% (37/40), and 91.38% (106/116), respectively. Conclusion: (1) It was obvious that ultrasonic elastography had certain diagnostic value in cervical lesions. Strain ratio measurement can be more objective than elasticity score method.(2) The combined application of ultrasonography comprehensive scoring method, ultrasonic elastography and conventional sonography was more accurate than single parameter.

  3. Micro-resonator-based electric field sensors with long durations of sensitivity

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.

    2017-05-01

    In this paper, we present a new fabrication method for the whispering gallery mode (WGM) micro-sphere based electric field sensor that which allows for longer time periods of sensitivity. Recently, a WGM-based photonic electric field sensor was proposed using a coupled dielectric microsphere-beam. The external electric field imposes an electrtrostriction force on the dielectric beam, deflecting it. The beam, in turn compresses the sphere causing a shift in its WGM. As part of the fabrication process, the PDMS micro-beams and the spheres are curied at high-temperature (100oC) and subsequently poled by exposing to strong external electric field ( 8 MV/m) for two hours. The poling process allows for the deposition of surface charges thereby increasing the electrostriction effect. This methodology is called curing-then-poling (CTP). Although the sensors do become sufficiently sensitive to electric field, they start de-poling after a short period (within 10 minutes) after poling, hence losing sensitivity. In an attempt to mitigate this problem and to lock the polarization for a longer period, we use an alternate methodology whereby the beam is poled and cured simultaneously (curing-while-poling or CWP). The new fabrication method allows for the retention of polarization (and hence, sensitivity to electric field) longer ( 1500 minutes). An analysis is carried out along with preliminary experiments. Results show that electric fields as small as 100 V/m can be detected with a 300 μm diameter sphere sensor a day after poling.

  4. Damage Detection Sensitivity of a Vehicle-based Bridge Health Monitoring System

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ayaho; Yabe, Akito; Lúcio, Válter J. G.

    2017-05-01

    As one solution to the problem for condition assessment of existing short and medium span (10-30m) reinforced/prestressed concrete bridges, a new monitoring method using a public bus as part of a public transit system (called “Bus monitoring system”) was proposed, along with safety indices, namely, “characteristic deflection”, which is relatively free from the influence of dynamic disturbances due to such factors as the roughness of the road surface, and a structural anomaly parameter. In this study, to evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. In here, although there are some useful monitoring methods for short and medium span bridges based on the qualitative or quantitative information, the sensitivity of damage detection was newly discussed for safety assessment based on long term health monitoring data. The verification results thus obtained are also described in this paper, and also evaluates the sensitivity of the “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. Furthermore, the sensitivity of “characteristic deflection” is verified by 3D FEM analysis.

  5. Quantitative method to determine the regional drinking water odorant regulation goals based on odor sensitivity distribution: illustrated using 2-MIB.

    PubMed

    Yu, Jianwei; An, Wei; Cao, Nan; Yang, Min; Gu, Junong; Zhang, Dong; Lu, Ning

    2014-07-01

    Taste and odor (T/O) in drinking water often cause consumer complaints and are thus regulated in many countries. However, people in different regions may exhibit different sensitivities toward T/O. This study proposed a method to determine the regional drinking water odorant regulation goals (ORGs) based on the odor sensitivity distribution of the local population. The distribution of odor sensitivity to 2-methylisoborneol (2-MIB) by the local population in Beijing, China was revealed by using a normal distribution function/model to describe the odor complaint response to a 2-MIB episode in 2005, and a 2-MIB concentration of 12.9 ng/L and FPA (flavor profile analysis) intensity of 2.5 was found to be the critical point to cause odor complaints. Thus the Beijing ORG for 2-MIB was determined to be 12.9 ng/L. Based on the assumption that the local FPA panel can represent the local population in terms of sensitivity to odor, and that the critical FPA intensity causing odor complaints was 2.5, this study tried to determine the ORGs for seven other cities of China by performing FPA tests using an FPA panel from the corresponding city. ORG values between 12.9 and 31.6 ng/L were determined, showing that a unified ORG may not be suitable for drinking water odor regulations. This study presents a novel approach for setting drinking water odor regulations. Copyright © 2014. Published by Elsevier B.V.

  6. The local lymph node assay and skin sensitization testing.

    PubMed

    Kimber, Ian; Dearman, Rebecca J

    2010-01-01

    The mouse local lymph node assay (LLNA) is a method for the identification and characterization of skin sensitization hazards. In this context the method can be used both to identify contact allergens, and also determine the relative skin sensitizing potency as a basis for derivation of effective risk assessments.The assay is based on measurement of proliferative responses by draining lymph node cells induced following topical exposure of mice to test chemicals. Such responses are known to be causally and quantitatively associated with the acquisition of skin sensitization and therefore provide a relevant marker for characterization of contact allergic potential.The LLNA has been the subject of exhaustive evaluation and validation exercises and has been assigned Organization for Economic Cooperation and Development (OECD) test guideline 429. Herein we describe the conduct and interpretation of the LLNA.

  7. Sensitivity and Calibration of Non-Destructive Evaluation Method That Uses Neural-Net Processing of Characteristic Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  8. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  9. De-optical-line-terminal hybrid access-aggregation optical network for time-sensitive services based on software-defined networking orchestration

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yang, Hui; Xiao, Hongyun; Yu, Ao; He, Linkuan; Zhang, Jie; Li, Zhen; Du, Yi

    2017-11-01

    With the increase in varieties of services in network, time-sensitive services (TSSs) appear and bring forward an impending need for delay performance. Ultralow-latency communication has become one of the important development goals for many scenarios in the coming 5G era (e.g., robotics and driverless cars). However, the conventional methods, which decrease delay by promoting the available resources and the network transmission speed, have limited effect; a new breakthrough for ultralow-latency communication is necessary. We propose a de-optical-line-terminal (De-OLT) hybrid access-aggregation optical network (DAON) for TSS based on software-defined networking (SDN) orchestration. In this network, low-latency all-optical communication based on optical burst switching can be achieved by removing OLT. For supporting this network and guaranteeing the quality of service for TSSs, we design SDN-driven control method and service provision method. Numerical results demonstrate the proposed DAON promotes network service efficiency and avoids traffic congestion.

  10. Detection of proteins using a colorimetric bio-barcode assay.

    PubMed

    Nam, Jwa-Min; Jang, Kyung-Jin; Groves, Jay T

    2007-01-01

    The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).

  11. Automated and unsupervised detection of malarial parasites in microscopic images.

    PubMed

    Purwar, Yashasvi; Shah, Sirish L; Clarke, Gwen; Almugairi, Areej; Muehlenbachs, Atis

    2011-12-13

    Malaria is a serious infectious disease. According to the World Health Organization, it is responsible for nearly one million deaths each year. There are various techniques to diagnose malaria of which manual microscopy is considered to be the gold standard. However due to the number of steps required in manual assessment, this diagnostic method is time consuming (leading to late diagnosis) and prone to human error (leading to erroneous diagnosis), even in experienced hands. The focus of this study is to develop a robust, unsupervised and sensitive malaria screening technique with low material cost and one that has an advantage over other techniques in that it minimizes human reliance and is, therefore, more consistent in applying diagnostic criteria. A method based on digital image processing of Giemsa-stained thin smear image is developed to facilitate the diagnostic process. The diagnosis procedure is divided into two parts; enumeration and identification. The image-based method presented here is designed to automate the process of enumeration and identification; with the main advantage being its ability to carry out the diagnosis in an unsupervised manner and yet have high sensitivity and thus reducing cases of false negatives. The image based method is tested over more than 500 images from two independent laboratories. The aim is to distinguish between positive and negative cases of malaria using thin smear blood slide images. Due to the unsupervised nature of method it requires minimal human intervention thus speeding up the whole process of diagnosis. Overall sensitivity to capture cases of malaria is 100% and specificity ranges from 50-88% for all species of malaria parasites. Image based screening method will speed up the whole process of diagnosis and is more advantageous over laboratory procedures that are prone to errors and where pathological expertise is minimal. Further this method provides a consistent and robust way of generating the parasite clearance curves.

  12. Modified Extraction-Free Ion-Pair Methods for the Determination of Flunarizine Dihydrochloride in Bulk Drug, Tablets, and Human Urine

    NASA Astrophysics Data System (ADS)

    Prashanth, K. N.; Basavaiah, K.

    2018-01-01

    Two simple and sensitive extraction-free spectrophotometric methods are described for the determination of flunarizine dihydrochloride. The methods are based on the ion-pair complex formation between the nitrogenous compound flunarizine (FNZ), converted from flunarizine dihydrochloride (FNH), and the acidic dye phenol red (PR), in which experimental variables were circumvented. The first method (method A) is based on the formation of a yellow-colored ion-pair complex (1:1 drug:dye) between FNZ and PR in chloroform, which is measured at 415 nm. In the second method (method B), the formed drug-dye ion-pair complex is treated with ethanolic potassium hydroxide in an ethanolic medium, and the resulting base form of the dye is measured at 580 nm. The stoichiometry of the formed ion-pair complex between the drug and dye (1:1) is determined by Job's continuous variations method, and the stability constant of the complex is also calculated. These methods quantify FNZ over the concentration ranges 5.0-70.0 in method A and 0.5-7.0 μg/mL in method B. The calculated molar absorptivities are 6.17 × 103 and 5.5 × 104 L/mol·cm-1 for method A and method B, respectively, with corresponding Sandell sensitivity values of 0.0655 and 0.0074 μg/cm2. The methods are applied to the determination of FNZ in pure drug and human urine.

  13. Development of an Assay for the Detection of PrPres in Blood and Urine Based on PMCA Assay and ELISA Methods

    DTIC Science & Technology

    2007-09-01

    practically have dropped the collaboration with Biotraces as the company was not able to provide us with an improved version of their instrument...Although the claimed sensitivity was reproduced in studies conducted at BioTraces with recombinant PrP. The question was whether the same sensitivity

  14. A highly sensitive method for analysis of 7-dehydrocholesterol for the study of Smith-Lemli-Opitz syndrome[S

    PubMed Central

    Liu, Wei; Xu, Libin; Lamberson, Connor; Haas, Dorothea; Korade, Zeljka; Porter, Ned A.

    2014-01-01

    We describe a highly sensitive method for the detection of 7-dehydrocholesterol (7-DHC), the biosynthetic precursor of cholesterol, based on its reactivity with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) in a Diels-Alder cycloaddition reaction. Samples of biological tissues and fluids with added deuterium-labeled internal standards were derivatized with PTAD and analyzed by LC-MS. This protocol permits fast processing of samples, short chromatography times, and high sensitivity. We applied this method to the analysis of cells, blood, and tissues from several sources, including human plasma. Another innovative aspect of this study is that it provides a reliable and highly reproducible measurement of 7-DHC in 7-dehydrocholesterol reductase (Dhcr7)-HET mouse (a model for Smith-Lemli-Opitz syndrome) samples, showing regional differences in the brain tissue. We found that the levels of 7-DHC are consistently higher in Dhcr7-HET mice than in controls, with the spinal cord and peripheral nerve showing the biggest differences. In addition to 7-DHC, sensitive analysis of desmosterol in tissues and blood was also accomplished with this PTAD method by assaying adducts formed from the PTAD “ene” reaction. The method reported here may provide a highly sensitive and high throughput way to identify at-risk populations having errors in cholesterol biosynthesis. PMID:24259532

  15. Analysis of radon and thoron progeny measurements based on air filtration.

    PubMed

    Stajic, J M; Nikezic, D

    2015-02-01

    Measuring of radon and thoron progeny concentrations in air, based on air filtration, was analysed in order to assess the reliability of the method. Changes of radon and thoron progeny activities on the filter during and after air sampling were investigated. Simulation experiments were performed involving realistic measuring parameters. The sensitivity of results (radon and thoron concentrations in air) to the variations of alpha counting in three and five intervals was studied. The concentration of (218)Po showed up to be the most sensitive to these changes, as was expected because of its short half-life. The well-known method for measuring of progeny concentrations based on air filtration is rather unreliable and obtaining unrealistic or incorrect results appears to be quite possible. A simple method for quick estimation of radon potential alpha energy concentration (PAEC), based on measurements of alpha activity in a saturation regime, was proposed. Thoron PAEC can be determined from the saturation activity on the filter, through beta or alpha measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    PubMed Central

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  17. Improving LC-MS sensitivity through increases in chromatographic performance: comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS.

    PubMed

    Churchwell, Mona I; Twaddle, Nathan C; Meeker, Larry R; Doerge, Daniel R

    2005-10-25

    Recent technological advances have made available reverse phase chromatographic media with a 1.7 microm particle size along with a liquid handling system that can operate such columns at much higher pressures. This technology, termed ultra performance liquid chromatography (UPLC), offers significant theoretical advantages in resolution, speed, and sensitivity for analytical determinations, particularly when coupled with mass spectrometers capable of high-speed acquisitions. This paper explores the differences in LC-MS performance by conducting a side-by-side comparison of UPLC for several methods previously optimized for HPLC-based separation and quantification of multiple analytes with maximum throughput. In general, UPLC produced significant improvements in method sensitivity, speed, and resolution. Sensitivity increases with UPLC, which were found to be analyte-dependent, were as large as 10-fold and improvements in method speed were as large as 5-fold under conditions of comparable peak separations. Improvements in chromatographic resolution with UPLC were apparent from generally narrower peak widths and from a separation of diastereomers not possible using HPLC. Overall, the improvements in LC-MS method sensitivity, speed, and resolution provided by UPLC show that further advances can be made in analytical methodology to add significant value to hypothesis-driven research.

  18. On the track for an efficient detection of Escherichia coli in water: A review on PCR-based methods.

    PubMed

    Mendes Silva, Diana; Domingues, Lucília

    2015-03-01

    Ensuring water safety is an ongoing challenge to public health providers. Assessing the presence of fecal contamination indicators in water is essential to protect public health from diseases caused by waterborne pathogens. For this purpose, the bacteria Escherichia coli has been used as the most reliable indicator of fecal contamination in water. The methods currently in use for monitoring the microbiological safety of water are based on culturing the microorganisms. However, these methods are not the desirable solution to prevent outbreaks as they provide the results with a considerable delay, lacking on specificity and sensitivity. Moreover, viable but non-culturable microorganisms, which may be present as a result of environmental stress or water treatment processes, are not detected by culture-based methods and, thus, may result in false-negative assessments of E. coli in water samples. These limitations may place public health at significant risk, leading to substantial monetary losses in health care and, additionally, in costs related with a reduced productivity in the area affected by the outbreak, and in costs supported by the water quality control departments involved. Molecular methods, particularly polymerase chain reaction-based methods, have been studied as an alternative technology to overcome the current limitations, as they offer the possibility to reduce the assay time, to improve the detection sensitivity and specificity, and to identify multiple targets and pathogens, including new or emerging strains. The variety of techniques and applications available for PCR-based methods has increased considerably and the costs involved have been substantially reduced, which together have contributed to the potential standardization of these techniques. However, they still require further refinement in order to be standardized and applied to the variety of environmental waters and their specific characteristics. The PCR-based methods under development for monitoring the presence of E. coli in water are here discussed. Special emphasis is given to methodologies that avoid pre-enrichment during the water sample preparation process so that the assay time is reduced and the required legislated sensitivity is achieved. The advantages and limitations of these methods are also reviewed, contributing to a more comprehensive overview toward a more conscious research in identifying E. coli in water. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Bioengineering bacteriophages to enhance the sensitivity of phage amplification-based paper fluidic detection of bacteria.

    PubMed

    Alcaine, S D; Law, K; Ho, S; Kinchla, A J; Sela, D A; Nugen, S R

    2016-08-15

    Bacteriophage (phage) amplification is an attractive method for the detection of bacteria due to a narrow phage-host specificity, short amplification times, and the phages' ability to differentiate between viable and non-viable bacterial cells. The next step in phage-based bacteria detection is leveraging bioengineered phages to create low-cost, rapid, and easy-to-use detection platforms such as lateral flow assays. Our work establishes the proof-of-concept for the use of bioengineered T7 phage strains to increase the sensitivity of phage amplification-based lateral flow assays. We have demonstrated a greater than 10-fold increase in sensitivity using a phage-based protein reporter, maltose-binding protein, over the detection of replicated T7 phage viron itself, and a greater then 100-fold increase in sensitivity using a phage-based enzymatic reporter, alkaline phosphatase. This increase in sensitivity enabled us to detect 10(3)CFU/mL of Escherichia coli in broth after 7h, and by adding a filter concentration step, the ability to detect a regulatory relevant E. coli concentration of 100CFU/100mL in inoculated river water after 9h, where the current standard requires days for results. The combination of the paper fluidic format with phage-based detection provides a platform for the development of novel diagnostics that are sensitive, rapid, and easy to use. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Multivariate models for prediction of human skin sensitization hazard.

    PubMed

    Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole

    2017-03-01

    One of the Interagency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens™ assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy 88%), any of the alternative methods alone (accuracy 63-79%) or test batteries combining data from the individual methods (accuracy 75%). These results suggest that computational methods are promising tools to identify effectively the potential human skin sensitizers without animal testing. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

Top