Sample records for sensitive mixture detection

  1. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    PubMed

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.

  2. Indel analysis by droplet digital PCR: a sensitive method for DNA mixture detection and chimerism analysis.

    PubMed

    Santurtún, Ana; Riancho, José A; Arozamena, Jana; López-Duarte, Mónica; Zarrabeitia, María T

    2017-01-01

    Several methods have been developed to determinate genetic profiles from a mixed samples and chimerism analysis in transplanted patients. The aim of this study was to explore the effectiveness of using the droplet digital PCR (ddPCR) for mixed chimerism detection (a mixture of genetic profiles resulting after allogeneic hematopoietic stem cell transplantation (HSCT)). We analyzed 25 DNA samples from patients who had undergone HSCT and compared the performance of ddPCR and two established methods for chimerism detection, based upon the Indel and STRs analysis, respectively. Additionally, eight artificial mixture DNA samples were created to evaluate the sensibility of ddPCR. Our results show that the chimerism percentages estimated by the analysis of a single Indel using ddPCR were very similar to those calculated by the amplification of 15 STRs (r 2  = 0.970) and with the results obtained by the amplification of 38 Indels (r 2  = 0.975). Moreover, the amplification of a single Indel by ddPCR was sensitive enough to detect a minor DNA contributor comprising down to 0.5 % of the sample. We conclude that ddPCR can be a powerful tool for the determination of a genetic profile of forensic mixtures and clinical chimerism analysis when traditional techniques are not sensitive enough.

  3. A set of 14 DIP-SNP markers to detect unbalanced DNA mixtures.

    PubMed

    Liu, Zhizhen; Liu, Jinding; Wang, Jiaqi; Chen, Deqing; Liu, Zidong; Shi, Jie; Li, Zeqin; Li, Wenyan; Zhang, Gengqian; Du, Bing

    2018-03-04

    Unbalanced DNA mixture is still a difficult problem for forensic practice. DIP-STRs are useful markers for detection of minor DNA but they are not widespread in the human genome and having long amplicons. In this study, we proposed a novel type of genetic marker, termed DIP-SNP. DIP-SNP refers to the combination of INDEL and SNP in less than 300bp length of human genome. The multiplex PCR and SNaPshot assay were established for 14 DIP-SNP markers in a Chinese Han population from Shanxi, China. This novel compound marker allows detection of the minor DNA contributor with sensitivity from 1:50 to 1:1000 in a DNA mixture of any gender with 1 ng-10 ng DNA template. Most of the DIP-SNP markers had a relatively high probability of informative alleles with an average I value of 0.33. In all, we proposed DIP-SNP as a novel kind of genetic marker for detection of minor contributor from unbalanced DNA mixture and established the detection method by associating the multiplex PCR and SNaPshot assay. DIP-SNP polymorphisms are promising markers for forensic or clinical mixture examination because they are shorter, widespread and higher sensitive. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Ultra-sensitive in-situ detection of near-infrared persistent luminescent tracer nanoagents in crude oil-water mixtures.

    PubMed

    Chuang, Yen-Jun; Liu, Feng; Wang, Wei; Kanj, Mazen Y; Poitzsch, Martin E; Pan, Zhengwei

    2016-06-15

    Current fluorescent nanoparticles-based tracer sensing techniques for oilfield applications suffer from insufficient sensitivity, with the tracer detection limit typically at the several hundred ppm level in untreated oil/water mixtures, which is mainly caused by the interference of the background fluorescence from the organic residues in crude oil under constant external excitation. Here we report the use of a persistent luminescence phenomenon, which enables an external excitation-free and thus background fluorescence-free measurement condition, for ultrahigh-sensitivity crude oil sensing. By using LiGa5O8:Cr(3+) near-infrared persistent luminescent nanoparticles as a tracer nanoagent, we achieved a tracer detection limit at the single-digit ppb level (down to 1 ppb concentration of nanoparticles) in high oil fraction (up to 65 wt.%) oil/water mixtures via a convenient, CCD camera-based imaging technique without any pretreatment or phase separation of the fluid samples. This detection limit is about four to five orders of magnitude lower than that obtained using conventional spectral methods. This study introduces a new type of tracer nanoagents and a new detection method for water tracer sensing in oil reservoir characterization and management.

  5. Rasch Mixture Models for DIF Detection

    PubMed Central

    Strobl, Carolin; Zeileis, Achim

    2014-01-01

    Rasch mixture models can be a useful tool when checking the assumption of measurement invariance for a single Rasch model. They provide advantages compared to manifest differential item functioning (DIF) tests when the DIF groups are only weakly correlated with the manifest covariates available. Unlike in single Rasch models, estimation of Rasch mixture models is sensitive to the specification of the ability distribution even when the conditional maximum likelihood approach is used. It is demonstrated in a simulation study how differences in ability can influence the latent classes of a Rasch mixture model. If the aim is only DIF detection, it is not of interest to uncover such ability differences as one is only interested in a latent group structure regarding the item difficulties. To avoid any confounding effect of ability differences (or impact), a new score distribution for the Rasch mixture model is introduced here. It ensures the estimation of the Rasch mixture model to be independent of the ability distribution and thus restricts the mixture to be sensitive to latent structure in the item difficulties only. Its usefulness is demonstrated in a simulation study, and its application is illustrated in a study of verbal aggression. PMID:29795819

  6. Challenging a bioinformatic tool's ability to detect microbial contaminants using in silico whole genome sequencing data.

    PubMed

    Olson, Nathan D; Zook, Justin M; Morrow, Jayne B; Lin, Nancy J

    2017-01-01

    High sensitivity methods such as next generation sequencing and polymerase chain reaction (PCR) are adversely impacted by organismal and DNA contaminants. Current methods for detecting contaminants in microbial materials (genomic DNA and cultures) are not sensitive enough and require either a known or culturable contaminant. Whole genome sequencing (WGS) is a promising approach for detecting contaminants due to its sensitivity and lack of need for a priori assumptions about the contaminant. Prior to applying WGS, we must first understand its limitations for detecting contaminants and potential for false positives. Herein we demonstrate and characterize a WGS-based approach to detect organismal contaminants using an existing metagenomic taxonomic classification algorithm. Simulated WGS datasets from ten genera as individuals and binary mixtures of eight organisms at varying ratios were analyzed to evaluate the role of contaminant concentration and taxonomy on detection. For the individual genomes the false positive contaminants reported depended on the genus, with Staphylococcus , Escherichia , and Shigella having the highest proportion of false positives. For nearly all binary mixtures the contaminant was detected in the in-silico datasets at the equivalent of 1 in 1,000 cells, though F. tularensis was not detected in any of the simulated contaminant mixtures and Y. pestis was only detected at the equivalent of one in 10 cells. Once a WGS method for detecting contaminants is characterized, it can be applied to evaluate microbial material purity, in efforts to ensure that contaminants are characterized in microbial materials used to validate pathogen detection assays, generate genome assemblies for database submission, and benchmark sequencing methods.

  7. Molecular recognition using receptor-free nanomechanical infrared spectroscopy based on a quantum cascade laser

    PubMed Central

    Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas

    2013-01-01

    Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy. PMID:23346368

  8. An evaluation of the Bayesian approach to fitting the N-mixture model for use with pseudo-replicated count data

    USGS Publications Warehouse

    Toribo, S.G.; Gray, B.R.; Liang, S.

    2011-01-01

    The N-mixture model proposed by Royle in 2004 may be used to approximate the abundance and detection probability of animal species in a given region. In 2006, Royle and Dorazio discussed the advantages of using a Bayesian approach in modelling animal abundance and occurrence using a hierarchical N-mixture model. N-mixture models assume replication on sampling sites, an assumption that may be violated when the site is not closed to changes in abundance during the survey period or when nominal replicates are defined spatially. In this paper, we studied the robustness of a Bayesian approach to fitting the N-mixture model for pseudo-replicated count data. Our simulation results showed that the Bayesian estimates for abundance and detection probability are slightly biased when the actual detection probability is small and are sensitive to the presence of extra variability within local sites.

  9. Challenging a bioinformatic tool’s ability to detect microbial contaminants using in silico whole genome sequencing data

    PubMed Central

    Zook, Justin M.; Morrow, Jayne B.; Lin, Nancy J.

    2017-01-01

    High sensitivity methods such as next generation sequencing and polymerase chain reaction (PCR) are adversely impacted by organismal and DNA contaminants. Current methods for detecting contaminants in microbial materials (genomic DNA and cultures) are not sensitive enough and require either a known or culturable contaminant. Whole genome sequencing (WGS) is a promising approach for detecting contaminants due to its sensitivity and lack of need for a priori assumptions about the contaminant. Prior to applying WGS, we must first understand its limitations for detecting contaminants and potential for false positives. Herein we demonstrate and characterize a WGS-based approach to detect organismal contaminants using an existing metagenomic taxonomic classification algorithm. Simulated WGS datasets from ten genera as individuals and binary mixtures of eight organisms at varying ratios were analyzed to evaluate the role of contaminant concentration and taxonomy on detection. For the individual genomes the false positive contaminants reported depended on the genus, with Staphylococcus, Escherichia, and Shigella having the highest proportion of false positives. For nearly all binary mixtures the contaminant was detected in the in-silico datasets at the equivalent of 1 in 1,000 cells, though F. tularensis was not detected in any of the simulated contaminant mixtures and Y. pestis was only detected at the equivalent of one in 10 cells. Once a WGS method for detecting contaminants is characterized, it can be applied to evaluate microbial material purity, in efforts to ensure that contaminants are characterized in microbial materials used to validate pathogen detection assays, generate genome assemblies for database submission, and benchmark sequencing methods. PMID:28924496

  10. Pattern Recognition Algorithm for High-Sensitivity Odorant Detection in Unknown Environments

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2012-01-01

    In a realistic odorant detection application environment, the collected sensory data is a mix of unknown chemicals with unknown concentrations and noise. The identification of the odorants among these mixtures is a challenge in data recognition. In addition, deriving their individual concentrations in the mix is also a challenge. A deterministic analytical model was developed to accurately identify odorants and calculate their concentrations in a mixture with noisy data.

  11. A Skew-Normal Mixture Regression Model

    ERIC Educational Resources Information Center

    Liu, Min; Lin, Tsung-I

    2014-01-01

    A challenge associated with traditional mixture regression models (MRMs), which rest on the assumption of normally distributed errors, is determining the number of unobserved groups. Specifically, even slight deviations from normality can lead to the detection of spurious classes. The current work aims to (a) examine how sensitive the commonly…

  12. Insect-gene-activity detection system for chemical and biological warfare agents and toxic industrial chemicals

    NASA Astrophysics Data System (ADS)

    Mackie, Ryan S.; Schilling, Amanda S.; Lopez, Arturo M.; Rayms-Keller, Alfredo

    2002-02-01

    Detection of multiple chemical and biological weapons (CBW) agents and/or complex mixtures of toxic industrial chemicals (TIC) is imperative for both the commercial and military sectors. In a military scenario, a multi-CBW attack would create confusion, thereby delaying decontamination and therapeutic efforts. In the commercial sector, polluted sites invariably contain a mixture of TIC. Novel detection systems capable of detecting CBW and TIC are sorely needed. While it may be impossible to build a detector capable of discriminating all the possible combinations of CBW, a detection system capable of statistically predicting the most likely composition of a given mixture is within the reach of current emerging technologies. Aquatic insect-gene activity may prove to be a sensitive, discriminating, and elegant paradigm for the detection of CBW and TIC. We propose to systematically establish the expression patterns of selected protein markers in insects exposed to specific mixtures of chemical and biological warfare agents to generate a library of biosignatures of exposure. The predicting capabilities of an operational library of biosignatures of exposures will allow the detection of emerging novel or genetically engineered agents, as well as complex mixtures of chemical and biological weapons agents. CBW and TIC are discussed in the context of war, terrorism, and pollution.

  13. Mixture models for estimating the size of a closed population when capture rates vary among individuals

    USGS Publications Warehouse

    Dorazio, R.M.; Royle, J. Andrew

    2003-01-01

    We develop a parameterization of the beta-binomial mixture that provides sensible inferences about the size of a closed population when probabilities of capture or detection vary among individuals. Three classes of mixture models (beta-binomial, logistic-normal, and latent-class) are fitted to recaptures of snowshoe hares for estimating abundance and to counts of bird species for estimating species richness. In both sets of data, rates of detection appear to vary more among individuals (animals or species) than among sampling occasions or locations. The estimates of population size and species richness are sensitive to model-specific assumptions about the latent distribution of individual rates of detection. We demonstrate using simulation experiments that conventional diagnostics for assessing model adequacy, such as deviance, cannot be relied on for selecting classes of mixture models that produce valid inferences about population size. Prior knowledge about sources of individual heterogeneity in detection rates, if available, should be used to help select among classes of mixture models that are to be used for inference.

  14. Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lim, Andery; Kumara, N. T. R. N.; Tan, Ai Ling; Mirza, Aminul Huq; Chandrakanthi, R. L. N.; Petra, Mohammad Iskandar; Ming, Lim Chee; Senadeera, G. K. R.; Ekanayake, Piyasiri

    2015-03-01

    Possibility of use of dye extract from skin samples of a seasonal, indigenous fruit from Borneo, namely Canarium odontophyllum, in dye sensitized solar cells (DSSCs) are explored. Three main groups of flavonoid pigments are detected and these pigments exhibit different UV-vis absorption properties, and hence showing different light harvesting capabilities. When applied in DSSCs. The detected pigment constituents of the extract consist of aurone (maritimein), anthocyanidin (pelargonidin) and anthocyanidin (cyanidin derivatives). When tested in DSSC, the highest conversion efficiency of 1.43% is exhibited by cyanidin derivatives, and this is followed by conversion efficiencies of 0.51% and 0.79% for aurone and pelargonidin, respectively. It is shown that individual pigments, like cyanidin derivatives and pelargonidin, exhibit higher power conversion efficiency when compared to that of C.odontophyllum skin pigment mixture (with a conversion efficiency of only 0.68%). The results indicate a possibility of masking effects of the pigments when used as a mixture. The acidification of C.odontophyllum skin pigments with concentrated hydrochloric acid improves the conversion efficiency of the mixture from 0.68% to 0.99%. The discussion in this paper will draw data and observations from the variation in absorption and adsorption properties, the HOMO-LUMO levels, the energy band gaps and the functional group compositions of the detected flavonoids.

  15. Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions

    PubMed Central

    Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz

    2014-01-01

    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217

  16. Sensitive, Selective Test For Hydrazines

    NASA Technical Reports Server (NTRS)

    Roundbehler, David; Macdonald, Stephen

    1993-01-01

    Derivatives of hydrazines formed, then subjected to gas chromatography and detected via chemiluminescence. In method of detecting and quantifying hydrazine vapors, vapors reacted with dinitro compound to enhance sensitivity and selectivity. Hydrazine (HZ), monomethyl hydrazine, (MMH), and unsymmetrical dimethylhydrazine (UDMH) analyzed quantitatively and qualitatively, either alone or in mixtures. Vapors collected and reacted with 2,4-dinitrobenzaldehyde, (DNB), making it possible to concentrate hydrazine in derivative form, thereby increasing sensitivity to low initial concentrations. Increases selectivity because only those constituents of sample reacting with DNB concentrated for analysis.

  17. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures.

    PubMed

    Si, Pengchao; Mortensen, John; Komolov, Alexei; Denborg, Jens; Møller, Preben Juul

    2007-08-06

    By coating different conducting polymers of thiophene and its derivatives on quartz crystal microbalance (QCM) sensor surfaces, new novel QCM gas sensors have been produced in two simple ways, which could classify testing gas samples of volatile organic compounds (VOCs) gases. Principle components analysis (PCA) has been performed based on the QCM measurement results, which shows that our QCM sensors array has very good utilizing potential on sensing both polar and low-polar/nonpolar VOC gases. The sensitivity, selectivity, reproducibility and detection limit of QCM sensors have also been discussed. Quantitative variation of sensitivity response with the increasing concentration has been studied. (PLS) analysis and prediction of concentrations of single gas in mixtures have been carried out.

  18. ASSESSMENT OF DE-71, A COMMERCIAL POLYBROMINATED DIPHENYL ETHER (PBDE) MIXTURE, IN THE EDSP MALE AND FEMALE PUBERTAL PROTOCOLS

    EPA Science Inventory

    DE-71, a commercial mixture, was used to test the sensitivity of the female and male pubertal protocol to detect thyroid active chemicals. These protocols are being evaluated for the U.S. EPA's Endocrine Disruptor Screening Program as part of a Tier I Screening Battery. To exa...

  19. A randomized and blinded comparison of qPCR and NGS-based detection of aneuploidy in a cell line mixture model of blastocyst biopsy mosaicism.

    PubMed

    Goodrich, David; Tao, Xin; Bohrer, Chelsea; Lonczak, Agnieszka; Xing, Tongji; Zimmerman, Rebekah; Zhan, Yiping; Scott, Richard T; Treff, Nathan R

    2016-11-01

    A subset of preimplantation stage embryos may possess mosaicism of chromosomal constitution, representing a possible limitation to the clinical predictive value of comprehensive chromosome screening (CCS) from a single biopsy. However, contemporary methods of CCS may be capable of predicting mosaicism in the blastocyst by detecting intermediate levels of aneuploidy within a trophectoderm biopsy. This study evaluates the sensitivity and specificity of aneuploidy detection by two CCS platforms using a cell line mixture model of a mosaic trophectoderm biopsy. Four cell lines with known karyotypes were obtained and mixed together at specific ratios of six total cells (0:6, 1:5, 2:4, 3:3, 4:2, 5:1, and 6:0). A female euploid and a male trisomy 18 cell line were used for one set, and a male trisomy 13 and a male trisomy 15 cell line were used for another. Replicates of each mixture were prepared, randomized, and blinded for analysis by one of two CCS platforms (quantitative polymerase chain reaction (qPCR) or VeriSeq next-generation sequencing (NGS)). Sensitivity and specificity of aneuploidy detection at each level of mosaicism was determined and compared between platforms. With the default settings for each platform, the sensitivity of qPCR and NGS were not statistically different, and 100 % specificity was observed (no false positives) at all levels of mosaicism. However, the use of previously published custom criteria for NGS increased sensitivity but also significantly decreased specificity (33 % false-positive prediction of aneuploidy). By demonstrating increased false-positive diagnoses when reducing the stringency of predicting an abnormality, these data illustrate the importance of preclinical evaluation of new testing paradigms before clinical implementation.

  20. The utility of six over-the-counter (home) pregnancy tests.

    PubMed

    Cole, Laurence A

    2011-08-01

    The home pregnancy market is rapidly evolving. It has moved from detection of pregnancy on the day of missed menstrual bleeding, to detection claims 4 days prior. It is moving from all manual tests to digital tests, with a monitor reading the bands and informing women they are pregnant. A thorough study is needed to investigate the validity of claims and evolving usefulness of devices. Studies were proposed to examine the sensitivity and specificity of home tests and their abilities to detect pregnancy. Methods examined the abilities of tests to detect human chorionic gonadotropin (hCG), hyperglycosylated hCG, free β-subunit, a mixture of these antigens in 40 individual early pregnancy urines. Using a mixture of hCG, hyperglycosylated hCG and free β-subunit typical for early pregnancy, the sensitivity of the First Response manual and digital tests was 5.5 mIU/mL, while the sensitivities of the EPT and ClearBlue brand manual and digital tests was 22 mIU/mL. On further evaluation, the First Response manual and digital tests both detected 97% of 120 pregnancies on the day of missed menstrual bleeding. The EPT manual and digital devices detected 54% and 67% of pregnancies, respectively, and the ClearBlue manual and digital devices detected 64% and 54% of pregnancies, respectively. First Response manual and digital claim >99% detection on the day of missed menses. The results here suggest similar sensitivity for these two tests. The EPT and ClearBlue manual and digital test make similar >99% claims, the data presented here disputes their elevated claim.

  1. Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells.

    PubMed

    Lim, Andery; Kumara, N T R N; Tan, Ai Ling; Mirza, Aminul Huq; Chandrakanthi, R L N; Petra, Mohammad Iskandar; Ming, Lim Chee; Senadeera, G K R; Ekanayake, Piyasiri

    2015-03-05

    Possibility of use of dye extract from skin samples of a seasonal, indigenous fruit from Borneo, namely Canarium odontophyllum, in dye sensitized solar cells (DSSCs) are explored. Three main groups of flavonoid pigments are detected and these pigments exhibit different UV-vis absorption properties, and hence showing different light harvesting capabilities. When applied in DSSCs. The detected pigment constituents of the extract consist of aurone (maritimein), anthocyanidin (pelargonidin) and anthocyanidin (cyanidin derivatives). When tested in DSSC, the highest conversion efficiency of 1.43% is exhibited by cyanidin derivatives, and this is followed by conversion efficiencies of 0.51% and 0.79% for aurone and pelargonidin, respectively. It is shown that individual pigments, like cyanidin derivatives and pelargonidin, exhibit higher power conversion efficiency when compared to that of C.odontophyllum skin pigment mixture (with a conversion efficiency of only 0.68%). The results indicate a possibility of masking effects of the pigments when used as a mixture. The acidification of C.odontophyllum skin pigments with concentrated hydrochloric acid improves the conversion efficiency of the mixture from 0.68% to 0.99%. The discussion in this paper will draw data and observations from the variation in absorption and adsorption properties, the HOMO-LUMO levels, the energy band gaps and the functional group compositions of the detected flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields.

    PubMed

    Yousefi, Siamak; Balasubramanian, Madhusudhanan; Goldbaum, Michael H; Medeiros, Felipe A; Zangwill, Linda M; Weinreb, Robert N; Liebmann, Jeffrey M; Girkin, Christopher A; Bowd, Christopher

    2016-05-01

    To validate Gaussian mixture-model with expectation maximization (GEM) and variational Bayesian independent component analysis mixture-models (VIM) for detecting glaucomatous progression along visual field (VF) defect patterns (GEM-progression of patterns (POP) and VIM-POP). To compare GEM-POP and VIM-POP with other methods. GEM and VIM models separated cross-sectional abnormal VFs from 859 eyes and normal VFs from 1117 eyes into abnormal and normal clusters. Clusters were decomposed into independent axes. The confidence limit (CL) of stability was established for each axis with a set of 84 stable eyes. Sensitivity for detecting progression was assessed in a sample of 83 eyes with known progressive glaucomatous optic neuropathy (PGON). Eyes were classified as progressed if any defect pattern progressed beyond the CL of stability. Performance of GEM-POP and VIM-POP was compared to point-wise linear regression (PLR), permutation analysis of PLR (PoPLR), and linear regression (LR) of mean deviation (MD), and visual field index (VFI). Sensitivity and specificity for detecting glaucomatous VFs were 89.9% and 93.8%, respectively, for GEM and 93.0% and 97.0%, respectively, for VIM. Receiver operating characteristic (ROC) curve areas for classifying progressed eyes were 0.82 for VIM-POP, 0.86 for GEM-POP, 0.81 for PoPLR, 0.69 for LR of MD, and 0.76 for LR of VFI. GEM-POP was significantly more sensitive to PGON than PoPLR and linear regression of MD and VFI in our sample, while providing localized progression information. Detection of glaucomatous progression can be improved by assessing longitudinal changes in localized patterns of glaucomatous defect identified by unsupervised machine learning.

  3. Inflammable Gas Mixture Detection with a Single Catalytic Sensor Based on the Electric Field Effect

    PubMed Central

    Tong, Ziyuan; Tong, Min-Ming; Meng, Wen; Li, Meng

    2014-01-01

    This paper introduces a new way to analyze mixtures of inflammable gases with a single catalytic sensor. The analysis technology was based on a new finding that an electric field on the catalytic sensor can change the output sensitivity of the sensor. The analysis of mixed inflammable gases results from processing the output signals obtained by adjusting the electric field parameter of the catalytic sensor. For the signal process, we designed a group of equations based on the heat balance of catalytic sensor expressing the relationship between the output signals and the concentration of gases. With these equations and the outputs of different electric fields, the gas concentration in a mixture could be calculated. In experiments, a mixture of methane, butane and ethane was analyzed by this new method, and the results showed that the concentration of each gas in the mixture could be detected with a single catalytic sensor, and the maximum relative error was less than 5%. PMID:24717635

  4. Sensitivity of chloride efflux vs. transepithelial measurements in mixed CF and normal airway epithelial cell populations.

    PubMed

    Illek, Beate; Lei, Dachuan; Fischer, Horst; Gruenert, Dieter C

    2010-01-01

    While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells. Copyright © 2010 S. Karger AG, Basel.

  5. HPLC and chemometrics-assisted UV-spectroscopy methods for the simultaneous determination of ambroxol and doxycycline in capsule

    NASA Astrophysics Data System (ADS)

    Hadad, Ghada M.; El-Gindy, Alaa; Mahmoud, Waleed M. M.

    2008-08-01

    High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C 18 analytical column with a mobile phase consisting of a mixture of 20 mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ( 1DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.

  6. HPLC and chemometrics-assisted UV-spectroscopy methods for the simultaneous determination of ambroxol and doxycycline in capsule.

    PubMed

    Hadad, Ghada M; El-Gindy, Alaa; Mahmoud, Waleed M M

    2008-08-01

    High-performance liquid chromatography (HPLC) and multivariate spectrophotometric methods are described for the simultaneous determination of ambroxol hydrochloride (AM) and doxycycline (DX) in combined pharmaceutical capsules. The chromatographic separation was achieved on reversed-phase C(18) analytical column with a mobile phase consisting of a mixture of 20mM potassium dihydrogen phosphate, pH 6-acetonitrile in ratio of (1:1, v/v) and UV detection at 245 nm. Also, the resolution has been accomplished by using numerical spectrophotometric methods as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS-1) applied to the UV spectra of the mixture and graphical spectrophotometric method as first derivative of the ratio spectra ((1)DD) method. Analytical figures of merit (FOM), such as sensitivity, selectivity, analytical sensitivity, limit of quantitation and limit of detection were determined for CLS, PLS-1 and PCR methods. The proposed methods were validated and successfully applied for the analysis of pharmaceutical formulation and laboratory-prepared mixtures containing the two component combination.

  7. Sensor arrays for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Freund, Michael S. (Inventor); Lewis, Nathan S. (Inventor)

    2000-01-01

    A sensor array for detecting an analyte in a fluid, comprising at least first and second chemically sensitive resistors electrically connected to an electrical measuring apparatus, wherein each of the chemically sensitive resistors comprises a mixture of nonconductive material and a conductive material. Each resistor provides an electrical path through the mixture of nonconductive material and the conductive material. The resistors also provide a difference in resistance between the conductive elements when contacted with a fluid comprising an analyte at a first concentration, than when contacted with an analyte at a second different concentration. A broad range of analytes can be detected using the sensors of the present invention. Examples of such analytes include, but are not limited to, alkanes, alkenes, alkynes, dienes, alicyclic hydrocarbons, arenes, alcohols, ethers, ketones, aldehydes, carbonyls, carbanions, polynuclear aromatics, organic derivatives, biomolecules, sugars, isoprenes, isoprenoids and fatty acids. Moreover, applications for the sensors of the present invention include, but are not limited to, environmental toxicology, remediation, biomedicine, material quality control, food monitoring and agricultural monitoring.

  8. Right-to-left shunt detection sensitivity with air-saline and air-succinil gelatin transcranial Doppler.

    PubMed

    Puledda, Francesca; Toscano, Massimiliano; Pieroni, Alessio; Veneroso, Gabriele; Di Piero, Vittorio; Vicenzini, Edoardo

    2016-02-01

    Air-saline transcranial Doppler is nowadays the first-choice examination to identify right-to-left shunt. To increase right-to-left shunt detection in echocardiography, cardiologists also use air-gelatin mixtures, which are more stable, more echogenic, and easier to be prepared. We assessed the sensitivity of air-gelatin compared with air-saline for transcranial Doppler right-to-left shunt detection. Air-saline transcranial Doppler, during unilateral middle cerebral artery monitoring at rest and after Valsalva maneuver, was performed in patients referred to our neurosonology laboratory for right-to-left shunt detection. The same transcranial Doppler protocol was repeated with air-gelatin. To consider transcranial Doppler positive for cardiac right-to-left shunt, at least one embolic signal had to be detected within 20″ from contrast injection. Later signals were interpreted of pulmonary origin. Trans-thoracic echocardiography was repeated with both air-saline and air-gelatin. A total of 97 patients were enrolled; 46 had negative transcranial Doppler for cardiac right-to-left shunt with both air-saline and air-gelatin; out of these, four patients with air-saline plus two more patients with air-gelatin presented late, isolated microemboli, slightly more numerous with air-gelatin: these were interpreted as pulmonary shunts and confirmed with trans-thoracic echocardiography. In 28 patients with already early positive air-saline transcranial Doppler at rest, air-gelatin induced a marked right-to-left shunt increase, facilitating its visualization at trans-thoracic echocardiography. In 23 patients in whom air-saline transcranial Doppler was negative at rest and positive for cardiac right-to-left shunt only after Valsalva maneuver, air-gelatin was able to reveal shunt also at rest. Air-gelatin increases right-to-left shunt detection sensitivity with transcranial Doppler in particular at rest, even in patients in whom air-saline mixture fails to identify the shunt. The choice of air-gelatin mixture should be considered for multicentric, clinical, and research trials. © 2016 World Stroke Organization.

  9. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.

    In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less

  10. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes

    DOE PAGES

    Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.; ...

    2017-08-15

    In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less

  11. Multimode-singlemode-multimode optical fiber sensor coated with novolac resin for detecting liquid phase alcohol

    NASA Astrophysics Data System (ADS)

    Marfu'ah, Amalia, Niza Rosyda; Hatta, Agus Muhamad; Pratama, Detak Yan

    2018-04-01

    Alcohol sensor based on multimode-singlemode-multimode (MSM) optical fiber with novolac resin as the external medium is proposed and demonstrated experimentally. Novolac resin swells when it is exposed by the alcohol. This effect causes a change in the polymer density leading to the refractive index's variation. The transmission light of the sensor depends on the refractive index of external medium. Based on the results, alcohol sensor based on MSM optical fiber structure using novolac resin has a higher sensitivity compared to the sensor without using novolac resin in the mixture of alcohol and distilled water. Alcohol sensor based on MSM optical fiber structure using novolac resin in the mixture of alcohol and distilled water with a singlemode fiber length of 5 mm has a sensitivity of 0.028972 dBm per % V/V, and in the mixture of alcohol and sugar solution of 10% w/w has a sensitivity of 0.005005 dBm per % V/V.

  12. Hydrogen-Detection Apparatus

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard; Bourgeois, Chris M.

    1995-01-01

    Apparatus continuously monitors concentration of hydrogen, at level ranging from few parts per million to several percent, in mixture of gases. Simple and fast, providing high sensitivity and linear response. Used to alert technicians to potentially explosive concentrations of residual hydrogen.

  13. Novel multiplex qualitative detection using universal primer-multiplex-PCR combined with pyrosequencing.

    PubMed

    Shang, Ying; Xu, Wentao; Wang, Yong; Xu, Yuancong; Huang, Kunlun

    2017-12-15

    This study described a novel multiplex qualitative detection method using pyrosequencing. Based on the principle of the universal primer-multiplex-PCR, only one sequencing primer was employed to realize the detection of the multiple targets. Samples containing three genetically modified (GM) crops in different proportions were used to validate the method. The dNTP dispensing order was designed based on the product sequences. Only 12 rounds (ATCTGATCGACT) of dNTPs addition and, often, as few as three rounds (CAT) under ideal conditions, were required to detect the GM events qualitatively, and sensitivity was as low as 1% of a mixture. However, when considering a mixture, calculating signal values allowed the proportion of each GM to be estimated. Based on these results, we concluded that our novel method not only realized detection but also allowed semi-quantitative detection of individual events. Copyright © 2017. Published by Elsevier Ltd.

  14. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thissen, James B.; McLoughlin, Kevin; Gardner, Shea

    Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. A multiplexed version of the Lawrence Livermore Microbial Detection Array (LLMDA) was developed and evaluated with minimum detectable concentrations for pure unamplified DNA viruses, along with mixtures of viral and bacterial DNA subjected to different whole genome amplification protocols. In addition the performance of the array was tested when hybridization time was reduced from 17 h to 1 h. The LLMDA wasmore » able to detect unamplified vaccinia virus DNA at a concentration of 14 fM, or 100,000 genome copies in 12 μL of sample. With amplification, positive identification was made with only 100 genome copies of input material. When tested against human stool samples from patients with acute gastroenteritis, the microarray detected common gastroenteritis viral and bacterial infections such as rotavirus and E. coli. Accurate detection was found but with a 4-fold drop in sensitivity for a 1 h compared to a 17 h hybridization. The array detected 2 ng (equivalent concentration of 15.6 fM) of labeled DNA from a virus with 1 h hybridization without any amplification, and was able to identify the components of a mixture of viruses and bacteria at species and in some cases strain level resolution. Sensitivity improved by three orders of magnitude with random whole genome amplification prior to hybridization; for instance, the array detected a DNA virus with only 20 fg or 100 genome copies as input. This multiplexed microarray is an efficient tool to analyze clinical and environmental samples for the presence of multiple viral and bacterial pathogens rapidly.« less

  15. Analysis of sensitivity and rapid hybridization of a multiplexed Microbial Detection Microarray

    DOE PAGES

    Thissen, James B.; McLoughlin, Kevin; Gardner, Shea; ...

    2014-06-01

    Microarrays have proven to be useful in rapid detection of many viruses and bacteria. Pathogen detection microarrays have been used to diagnose viral and bacterial infections in clinical samples and to evaluate the safety of biological drug materials. A multiplexed version of the Lawrence Livermore Microbial Detection Array (LLMDA) was developed and evaluated with minimum detectable concentrations for pure unamplified DNA viruses, along with mixtures of viral and bacterial DNA subjected to different whole genome amplification protocols. In addition the performance of the array was tested when hybridization time was reduced from 17 h to 1 h. The LLMDA wasmore » able to detect unamplified vaccinia virus DNA at a concentration of 14 fM, or 100,000 genome copies in 12 μL of sample. With amplification, positive identification was made with only 100 genome copies of input material. When tested against human stool samples from patients with acute gastroenteritis, the microarray detected common gastroenteritis viral and bacterial infections such as rotavirus and E. coli. Accurate detection was found but with a 4-fold drop in sensitivity for a 1 h compared to a 17 h hybridization. The array detected 2 ng (equivalent concentration of 15.6 fM) of labeled DNA from a virus with 1 h hybridization without any amplification, and was able to identify the components of a mixture of viruses and bacteria at species and in some cases strain level resolution. Sensitivity improved by three orders of magnitude with random whole genome amplification prior to hybridization; for instance, the array detected a DNA virus with only 20 fg or 100 genome copies as input. This multiplexed microarray is an efficient tool to analyze clinical and environmental samples for the presence of multiple viral and bacterial pathogens rapidly.« less

  16. Dramatic Increase in the Signal and Sensitivity of Detection via Self-Assembly of Branched DNA

    PubMed Central

    Kim, Kyung-Tae; Chae, Chi-Bom

    2011-01-01

    In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA. PMID:21870112

  17. Polymers imprinted with PAH mixtures--comparing fluorescence and QCM sensors.

    PubMed

    Lieberzeit, Peter A; Halikias, Konstantin; Afzal, Adeel; Dickert, Franz L

    2008-12-01

    Molecular imprinting with binary mixtures of different polycyclic aromatic hydrocarbons (PAH) is a tool for design of chemically highly sensitive layers for detection of these analytes. Sensor responses increase by one order of magnitude compared with layers imprinted with one type of template. Detection limits, e.g. for pyrene, reach down to 30 ng L(-1) in water, as could be observed with a naphthalene and pyrene-imprinted polyurethane. Comparing sensor characteristics obtained by QCM and fluorescence reveals different saturation behaviours indicating that, first, single PAH molecules occupy the interaction centres followed by gradual excimer incorporation at higher concentrations finally leading to substantial quenching, when all accessible cavities are occupied. The plateau in the mass-sensitive measurements suggests that up to 80% of the cavities generated in the MIP are re-occupied. Displacement measurements between chrysene and pyrene revealed that for imprinted layers with very high pyrene sensitivities the signals of both PAH are additive, whereas in materials with lower pyrene uptake the two analytes replace each other in the interaction sites of the polymer.

  18. N-mixture models for estimating population size from spatially replicated counts

    USGS Publications Warehouse

    Royle, J. Andrew

    2004-01-01

    Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, i describe a class of models (n-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, n, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for n. Carroll and lombard (1985, journal of american statistical association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on n that is exploited by the n-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the n-mixture estimator compared to the caroll and lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.

  19. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-08-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.

  20. Determination of Chlorinated Hydrocarbons in Water Using Highly Sensitive Mid-Infrared Sensor Technology

    PubMed Central

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-01-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring. PMID:23982222

  1. Determination of chlorinated hydrocarbons in water using highly sensitive mid-infrared sensor technology.

    PubMed

    Lu, Rui; Mizaikoff, Boris; Li, Wen-Wei; Qian, Chen; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2013-01-01

    Chlorinated aliphatic hydrocarbons and chlorinated aromatic hydrocarbons (CHCs) are toxic and carcinogenic contaminants commonly found in environmental samples, and efficient online detection of these contaminants is still challenging at the present stage. Here, we report an advanced Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) sensor for in-situ and simultaneous detection of multiple CHCs, including monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, trichloroethylene, perchloroethylene, and chloroform. The polycrystalline silver halide sensor fiber had a unique integrated planar-cylindric geometry, and was coated with an ethylene/propylene copolymer membrane to act as a solid phase extractor, which greatly amplified the analytical signal and contributed to a higher detection sensitivity compared to the previously reported sensors. This system exhibited a high detection sensitivity towards the CHCs mixture at a wide concentration range of 5~700 ppb. The FTIR-ATR sensor described in this study has a high potential to be utilized as a trace-sensitive on-line device for water contamination monitoring.

  2. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  3. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  4. Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures.

    PubMed

    De Luca, Anna Chiara; Reader-Harris, Peter; Mazilu, Michael; Mariggiò, Stefania; Corda, Daniela; Di Falco, Andrea

    2014-03-25

    Direct and quantitative detection of unlabeled glycerophosphoinositol (GroPIns), an abundant cytosolic phosphoinositide derivative, would allow rapid evaluation of several malignant cell transformations. Here we report label-free analysis of GroPIns via surface-enhanced Raman spectroscopy (SERS) with a sensitivity of 200 nM, well below its apparent concentration in cells. Crucially, our SERS substrates, based on lithographically defined gold nanofeatures, can be used to predict accurately the GroPIns concentration even in multicomponent mixtures, avoiding the preliminary separation of individual compounds. Our results represent a critical step toward the creation of SERS-based biosensor for rapid, label-free, and reproducible detection of specific molecules, overcoming limits of current experimental methods.

  5. Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Mandrake, Lukas; Green, Robert O.

    2013-01-01

    Mapping localized spectral features in large images demands sensitive and robust detection algorithms. Two aspects of large images that can harm matched-filter detection performance are addressed simultaneously. First, multimodal backgrounds may thwart the typical Gaussian model. Second, outlier features can trigger false detections from large projections onto the target vector. Two state-of-the-art approaches are combined that independently address outlier false positives and multimodal backgrounds. The background clustering models multimodal backgrounds, and the mixture tuned matched filter (MT-MF) addresses outliers. Combining the two methods captures significant additional performance benefits. The resulting mixture tuned clutter matched filter (MT-CMF) shows effective performance on simulated and airborne datasets. The classical MNF transform was applied, followed by k-means clustering. Then, each cluster s mean, covariance, and the corresponding eigenvalues were estimated. This yields a cluster-specific matched filter estimate as well as a cluster- specific feasibility score to flag outlier false positives. The technology described is a proof of concept that may be employed in future target detection and mapping applications for remote imaging spectrometers. It is of most direct relevance to JPL proposals for airborne and orbital hyperspectral instruments. Applications include subpixel target detection in hyperspectral scenes for military surveillance. Earth science applications include mineralogical mapping, species discrimination for ecosystem health monitoring, and land use classification.

  6. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    PubMed Central

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  7. Micro-heterogeneity versus clustering in binary mixtures of ethanol with water or alkanes.

    PubMed

    Požar, Martina; Lovrinčević, Bernarda; Zoranić, Larisa; Primorać, Tomislav; Sokolić, Franjo; Perera, Aurélien

    2016-08-24

    Ethanol is a hydrogen bonding liquid. When mixed in small concentrations with water or alkanes, it forms aggregate structures reminiscent of, respectively, the direct and inverse micellar aggregates found in emulsions, albeit at much smaller sizes. At higher concentrations, micro-heterogeneous mixing with segregated domains is found. We examine how different statistical methods, namely correlation function analysis, structure factor analysis and cluster distribution analysis, can describe efficiently these morphological changes in these mixtures. In particular, we explain how the neat alcohol pre-peak of the structure factor evolves into the domain pre-peak under mixing conditions, and how this evolution differs whether the co-solvent is water or alkane. This study clearly establishes the heuristic superiority of the correlation function/structure factor analysis to study the micro-heterogeneity, since cluster distribution analysis is insensitive to domain segregation. Correlation functions detect the domains, with a clear structure factor pre-peak signature, while the cluster techniques detect the cluster hierarchy within domains. The main conclusion is that, in micro-segregated mixtures, the domain structure is a more fundamental statistical entity than the underlying cluster structures. These findings could help better understand comparatively the radiation scattering experiments, which are sensitive to domains, versus the spectroscopy-NMR experiments, which are sensitive to clusters.

  8. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    PubMed

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals. The problem of overlapping signals typically observed in conventional 1H spectroscopy was essentially eliminated, while 1H and 13C chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples.

  9. Devices, systems, and methods for conducting assays with improved sensitivity using sedimentation

    DOEpatents

    Schaff, Ulrich Y.; Koh, Chung-Yan; Sommer, Gregory J.

    2016-04-05

    Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.

  10. Devices, systems, and methods for conducting assays with improved sensitivity using sedimentation

    DOEpatents

    Schaff, Ulrich Y; Koh, Chung-Yan; Sommer, Gregory J

    2015-02-24

    Embodiments of the present invention are directed toward devices, systems, and method for conducting assays using sedimentation. In one example, a method includes layering a mixture on a density medium, subjecting sedimentation particles in the mixture to sedimentation forces to cause the sedimentation particles to move to a detection area through a density medium, and detecting a target analyte in a detection region of the sedimentation channel. In some examples, the sedimentation particles and labeling agent may have like charges to reduce non-specific binding of labeling agent and sedimentation particles. In some examples, the density medium is provided with a separation layer for stabilizing the assay during storage and operation. In some examples, the sedimentation channel may be provided with a generally flat sedimentation chamber for dispersing the particle pellet over a larger surface area.

  11. Characterization of the General Electric CID-17 as a Detector for Plasma Emission Spectrometry.

    DTIC Science & Technology

    1985-11-25

    multiwavelength disreteetectors. All tnToes oF detectors ’or plasma emission snectroscopv must mntil there o eapresetutisemhas. been, byes ereounu ai!- numer...photomultiplier tubes. With almost 100,000 channels, true multiwavelength detection is obtained making a new wealth of information available to the analytical...of complex mixtures by optical emission spectrometry requires sensitive simultaneous multiwavelength detection. Until the present, this has been

  12. Sensitive method to monitor trace quantities of benzanthrone in workers of dyestuff industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, A.; Khanna, S.K.; Singh, G.B.

    1986-03-01

    Dyestuff workers coming in contact with benzanthrone (an intermediate used for the synthesis of a variety of dyes) develop skin lesions, gastritis, liver malfunctions, and sexual disturbances. A highly sensitive fluorometric method to monitor trace quantities of benzanthrone in urine, serum, and biological tissues for experimental studies, has been developed. Coupled with simple extraction and resolution, optimum fluorescence is obtained in an equal mixture of chloroform:methanol, detecting as low as 2 ng benzanthrone. This method is approximately 250 times more sensitive than currently available colorimetric assay.

  13. Extraction and identification of mixed pesticides’ Raman signal and establishment of their prediction models

    USDA-ARS?s Scientific Manuscript database

    A nondestructive and sensitive method was developed to detect the presence of mixed pesticides of acetamiprid, chlorpyrifos and carbendazim on apples by surface-enhanced Raman spectroscopy (SERS). Self-modeling mixture analysis (SMA) was used to extract and identify the Raman spectra of individual p...

  14. Comparison of ultraviolet detection and charged aerosol detection methods for liquid-chromatographic determination of protoescigenin.

    PubMed

    Filip, Katarzyna; Grynkiewicz, Grzegorz; Gruza, Mariusz; Jatczak, Kamil; Zagrodzki, Bogdan

    2014-01-01

    Escin, a complex mixture of pentacyclic triterpene saponins obtained from horse chestnut seeds extract (HCSE; Aesculus hippocastanum L.), constitutes a traditional herbal active substance of preparations (drugs) used for a treatment of chronic venous insufficiency and capillary blood vessel leakage. A new approach to exploitation of pharmacological potential of this saponin complex has been recently proposed, in which the β-escin mixture is perceived as a source of a hitherto unavailable raw material, pentacyclic triterpene aglycone-protoescigenin. Although many liquid chromatography methods are described in the literature for saponins determination, analysis of protoescigenin is barely mentioned. In this work, a new ultra-high performance liquid chromatography (UHPLC) method developed for protoescigenin quantification has been described. CAD (charged aerosol detection), as a relatively new detection method based on aerosol charging, has been applied in this method as an alternative to ultraviolet (UV) detection. The influence of individual parameters on CAD response and sensitivity was studied. The detection was performed using CAD and UV (200 nm) simultaneously and the results were compared with reference to linearity, accuracy, precision and limit of detection.

  15. Fabrication of few-layer graphene film based field effect transistor and its application for trace-detection of herbicide atrazine

    NASA Astrophysics Data System (ADS)

    Thanh Cao, Thi; Chuc Nguyen, Van; Binh Nguyen, Hai; Thang Bui, Hung; Thu Vu, Thi; Phan, Ngoc Hong; Thang Phan, Bach; Hoang, Le; Bayle, Maxime; Paillet, Matthieu; Sauvajol, Jean Louis; Phan, Ngoc Minh; Tran, Dai Lam

    2016-09-01

    We describe the fabrication of highly sensitive graphene-based field effect transistor (FET) enzymatic biosensor for trace-detection of atrazine. The few-layers graphene films were prepared on polycrystalline copper foils by atmospheric pressure chemical vapor deposition method using an argon/hydrogen/methane mixture. The characteristics of graphene films were investigated by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The results indicated low uniformity of graphene layers, which is probably induced by heterogeneous distribution of graphene nucleation sites on the Cu surface. The pesticide detection is accomplished through the measurement of the drain-source current variations of the FET sensor upon the urea enzymatic hydrolysis reaction. The obtained biosensor is able to detect atrazine with a sensitivity of 56 μA/logCATZ in range between 2 × 10-4 and 20 ppb and has a limit of detection as low as 0.05 ppt. The elaboration of such highly sensitive biosensors will provide better biosensing performances for the detection of biochemical targets.

  16. Silicon photonic dual-gas sensor for H2 and CO2 detection.

    PubMed

    Mi, Guangcan; Horvath, Cameron; Van, Vien

    2017-07-10

    We report a silicon photonic dual-gas sensor based on a wavelength-multiplexed microring resonator array for simultaneous detection of H 2 and CO 2 gases. The sensor uses Pd as the sensing layer for H 2 gas and a novel functional material based on the Polyhexamethylene Biguanide (PHMB) polymer for CO 2 gas sensing. Gas sensing experiments showed that the PHMB-functionalized microring exhibited high sensitivity to CO 2 gas and excellent selectivity against H 2 . However, the Pd-functionalized microring was found to exhibit sensitivity to both H 2 and CO 2 gases, rendering it ineffective for detecting H 2 in a gas mixture containing CO 2 . We show that the dual-gas sensing scheme can allow for accurate measurement of H 2 concentration in the presence of CO 2 by accounting for the cross-sensitivity of Pd to the latter.

  17. Development of a new 26plex Y-STRs typing system for forensic application.

    PubMed

    Zhang, Suhua; Tian, Huaizhou; Wang, Zheng; Zhao, Shumin; Hu, Zhen; Li, Chengtao; Ji, Chaoneng

    2014-11-01

    In this study, 26plex Y-STRs typing system, including 17 Y-STRs (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635 and GATA H4) recommended as YHRD standard loci and nine new highly discriminating Y-STRs (DYS549, DYS643, DYS388, DYS570, DYS533, DYS576, DYS460, DYS481 and DYS449), was established with 5-dye fluorescences labelling. Developmental validation indicated that the 26plex Y-STRs typing system was reproducible, accurate, sensitive and robust. The sensitivity of the system was such that a full profile was obtainable even with 125pg of male DNA. Specificity testing was demonstrated by the lack of cross-reactivity with a variety of commonly encountered animal species and bacteria. Also, the multiplex is suitable for mixture study. An average of above 97% of the minor alleles detected with the male/male mixture with 1:3 and 3:1 ratios, while an average of above 70% of the minor alleles detected with the male/male mixture with 1:19 and 19:1 ratios. Full profiles are consistently detected with 125pg of male DNA, even in the presence of excessive amounts of female DNA. In addition, the whole PCR amplification of the 26 Y-STRs can finish in 1h, making the multiplex system suitable for fast-detection. For the forensic evaluation of the multiplex system, 516 haplotypes were found among 517 unrelated males. HD of the multiplex system was 0.9999925 while DC was 0.9980658, which is suitable for forensic application. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Lowering the Spectral Detection Threshold for Molecular Impurities in Gas Mixtures by Interference Multiplexing

    NASA Astrophysics Data System (ADS)

    Ivanov, M. P.; Tolmachev, Yu. A.

    2018-05-01

    We consider the most feasible ways to significantly improve the sensitivity of spectroscopic methods for detection and measurement of trace concentrations of greenhouse gas molecules in the atmosphere. The proposed methods are based on combining light fluxes from a number of spectral components of the specified molecule on the same photodetector, taking into account the characteristic features of the transmission spectrum of devices utilizing multipath interference effects.

  19. Pesticide mixtures in the Swedish streams: Environmental risks, contributions of individual compounds and consequences of single-substance oriented risk mitigation.

    PubMed

    Gustavsson, Mikael; Kreuger, Jenny; Bundschuh, Mirco; Backhaus, Thomas

    2017-11-15

    This paper presents the ecotoxicological assessment and environmental risk evaluation of complex pesticide mixtures occurring in freshwater ecosystems in southern Sweden. The evaluation is based on exposure data collected between 2002 and 2013 by the Swedish pesticide monitoring program and includes 1308 individual samples, detecting mixtures of up to 53 pesticides (modal=8). Pesticide mixture risks were evaluated using three different scenarios for non-detects (best-case, worst-case and using the Kaplan-Meier method). The risk of each scenario was analyzed using Swedish Water Quality Objectives (WQO) and trophic-level specific environmental thresholds. Using the Kaplan-Meier method the environmental risk of 73% of the samples exceeded acceptable levels, based on an assessment using Concentration-Addition and WQOs for the individual pesticides. Algae were the most sensitive organism group. However, analytical detection limits, especially for insecticides, were insufficient to analyze concentrations at or near their WQO's. Thus, the risk of the analyzed pesticide mixtures to crustaceans and fish is systematically underestimated. Treating non-detects as being present at their individual limit of detection increased the estimated risk by a factor 100 or more, compared to the best-case or the Kaplan-Meier scenario. Pesticide mixture risks are often driven by only 1-3 compounds. However, the risk-drivers (i.e., individual pesticides explaining the largest share of potential effects) differ substantially between sites and samples, and 83 of the 141 monitored pesticides need to be included in the assessment to account for 95% of the risk at all sites and years. Single-substance oriented risk mitigation measures that would ensure that each individual pesticide is present at a maximum of 95% of its individual WQO, would also reduce the mixture risk, but only from a median risk quotient of 2.1 to a median risk quotient of 1.8. Also, acceptable total risk levels would still be exceeded in more than 70% of the samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell.

    PubMed

    Wu, Chunsheng; Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping

    2012-12-01

    Adenosine triphosphate (ATP) is considered as the key neurotransmitter in taste buds for taste signal transmission and processing. Measurements of ATP secreted from single taste receptor cell (TRC) with high sensitivity and specificity are essential for investigating mechanisms underlying taste cell-to-cell communications. In this study, we presented an aptamer-based biosensor for the detection of ATP locally secreted from single TRC. ATP sensitive DNA aptamer was used as recognition element and its DNA competitor was served as signal transduction element that was covalently immobilized on the surface of light addressable potentiometric sensor (LAPS). Due to the light addressable capability of LAPS, local ATP secretion from single TRC can be detected by monitoring the working potential shifts of LAPS. The results show this biosensor can detect ATP with high sensitivity and specificity. It is demonstrated this biosensor can effectively detect the local ATP secretion from single TRC responding to tastant mixture. This biosensor could provide a promising new tool for the research of taste cell-to-cell communications as well as for the detection of local ATP secretion from other types of ATP secreting individual cells.

  1. Detection of Avian Influenza Virus from Cloacal Swabs Using a Disposable Well Gate FET Sensor.

    PubMed

    Park, Sungwook; Choi, Jaebin; Jeun, Minhong; Kim, Yongdeok; Yuk, Seong-Su; Kim, Sang Kyung; Song, Chang-Seon; Lee, Seok; Lee, Kwan Hyi

    2017-07-01

    Current methods to detect avian influenza viruses (AIV) are time consuming and lo inw sensitivity, necessitating a faster and more sensitive sensor for on-site epidemic detection in poultry farms and urban population centers. This study reports a field effect transistor (FET) based AIV sensor that detects nucleoproteins (NP) within 30 minutes, down to an LOD of 10 3 EID 50 mL -1 from a live animal cloacal swab. Previously reported FET sensors for AIV detection have not targeted NPs, an internal protein shared across multiple strains, due to the difficulty of field-effect sensing in a highly ionic lysis buffer. The AIV sensor overcomes the sensitivity limit with an FET-based platform enhanced with a disposable well gate (DWG) that is readily replaceable after each measurement. In a single procedure, the virus-containing sample is immersed in a lysis buffer mixture to expose NPs to the DWG surface. In comparison with commercial AIV rapid kits, the AIV sensor is proved to be highly sensitive, fast, and compact, proving its potential effectiveness as a portable biosensor. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were ablemore » to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic resolution, high column stability, and high sensitivity. In addition, this method showed potential usefulness for the sensitive and quick analysis of hydrolysis products of polysaccharides, and for trace level analysis of individual oligosaccharides or oligosaccharide isomers from biological systems.« less

  3. Spatially explicit dynamic N-mixture models

    USGS Publications Warehouse

    Zhao, Qing; Royle, Andy; Boomer, G. Scott

    2017-01-01

    Knowledge of demographic parameters such as survival, reproduction, emigration, and immigration is essential to understand metapopulation dynamics. Traditionally the estimation of these demographic parameters requires intensive data from marked animals. The development of dynamic N-mixture models makes it possible to estimate demographic parameters from count data of unmarked animals, but the original dynamic N-mixture model does not distinguish emigration and immigration from survival and reproduction, limiting its ability to explain important metapopulation processes such as movement among local populations. In this study we developed a spatially explicit dynamic N-mixture model that estimates survival, reproduction, emigration, local population size, and detection probability from count data under the assumption that movement only occurs among adjacent habitat patches. Simulation studies showed that the inference of our model depends on detection probability, local population size, and the implementation of robust sampling design. Our model provides reliable estimates of survival, reproduction, and emigration when detection probability is high, regardless of local population size or the type of sampling design. When detection probability is low, however, our model only provides reliable estimates of survival, reproduction, and emigration when local population size is moderate to high and robust sampling design is used. A sensitivity analysis showed that our model is robust against the violation of the assumption that movement only occurs among adjacent habitat patches, suggesting wide applications of this model. Our model can be used to improve our understanding of metapopulation dynamics based on count data that are relatively easy to collect in many systems.

  4. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  5. Sensitivity and Bias in Searches of Cockpit Display of Traffic Information Utilizing Highlighting/Lowlighting

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Jordan, Kevin; Liao, Min-Ju; Granada, Stacy

    2003-01-01

    A previous investigation showed that when bright and dim traffic symbols were mixed together on a cockpit display of traffic information, dim targets required longer search times than bright targets. The current experiment utilized Signal Detection methodology to determine the cause of this effect. Two factors were manipulated, Intensity and Mixture. The Intensity manipulation varied whether targets were bright or dim. The Mixture manipulation varied whether the brightness of all aircraft symbols was the same, or if half were bright and half dim. Participants were given 1.25 s to search a display of eight aircraft and determine whether a target was present or absent (50% of the time a target was present) and then rated their confidence in the accuracy of their decision. A Mixture by Intensity repeated-measures ANOVA on the signal detectability measure, A (a non- parametric variant of d ), revealed that targets presented at the dim intensity in the mixed condition yielded significantly lower sensitivity than either of the pure (homogenous) conditions or the bright targets in the mixed condition. There was not a significant difference in False Alarm rates between any conditions, indicating no change in decision criterion. Findings are discussed in terms of possible masking effects evoked by bright aircraft over the dim aircraft. Funding for this work was provided by the Advanced Air Transportation Technologies Project of NASA s Airspace Operation Systems Program.

  6. A multiplex real-time PCR assay for identification of Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii in samples from AIDS patients with opportunistic pneumonia.

    PubMed

    Gago, Sara; Esteban, Cristina; Valero, Clara; Zaragoza, Oscar; Puig de la Bellacasa, Jorge; Buitrago, María José

    2014-04-01

    A molecular diagnostic technique based on real-time PCR was developed for the simultaneous detection of three of the most frequent causative agents of fungal opportunistic pneumonia in AIDS patients: Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii. This technique was tested in cultured strains and in clinical samples from HIV-positive patients. The methodology used involved species-specific molecular beacon probes targeted to the internal transcribed spacer regions of the rDNA. An internal control was also included in each assay. The multiplex real-time PCR assay was tested in 24 clinical strains and 43 clinical samples from AIDS patients with proven fungal infection. The technique developed showed high reproducibility (r(2) of >0.98) and specificity (100%). For H. capsulatum and Cryptococcus spp., the detection limits of the method were 20 and 2 fg of genomic DNA/20 μl reaction mixture, respectively, while for P. jirovecii the detection limit was 2.92 log10 copies/20 μl reaction mixture. The sensitivity in vitro was 100% for clinical strains and 90.7% for clinical samples. The assay was positive for 92.5% of the patients. For one of the patients with proven histoplasmosis, P. jirovecii was also detected in a bronchoalveolar lavage sample. No PCR inhibition was detected. This multiplex real-time PCR technique is fast, sensitive, and specific and may have clinical applications.

  7. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials.

    PubMed

    Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan

    2017-06-26

    Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.

  8. Isolating cells from female/male blood mixtures using florescence in situ hybridization combined with low volume PCR and its application in forensic science.

    PubMed

    Feng, Lei; Li, Cai-Xia; Han, Jun-Ping; Xu, Cheng; Hu, Lan

    2015-11-01

    To obtain single-source short tandem repeat (STR) profiles in trace female/male blood mixture samples, we combined florescence in situ hybridization (FISH), laser microdissection, and low volume PCR (LV-PCR) to isolate male/female cells and improve sensitivity. The results showed that isolation of as few as 10 leukocytes was sufficient to yield full STR profiles in fresh female or male blood samples for 32 independent tests with a low additional alleles rate (3.91%) and drop-out alleles rate (5.01%). Moreover, this procedure was tested in two fresh blood mixture series at three ratios (1:5, 1:10, and 1:20), two mock female/male blood mixture casework samples, and one practical casework sample. Male and female STR profiles were successfully detected in all of these samples, showing that this procedure could be used in forensic casework in the future.

  9. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.

    PubMed

    Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M

    2007-01-01

    The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.

  10. Enhanced sensitization and elicitation responses caused by mixtures of common fragrance allergens.

    PubMed

    Bonefeld, Charlotte Menné; Nielsen, Morten Milek; Rubin, Ingrid Maria Cecilia; Vennegaard, Marie Torp; Dabelsteen, Sally; Gimenéz-Arnau, Elena; Lepoittevin, Jean-Pierre; Geisler, Carsten; Johansen, Jeanne Duus

    2011-12-01

    Perfumes are complex mixtures composed of many fragrance ingredients, many of which are known to be only weak allergens when tested individually. It is therefore surprising that fragrance contact allergy is one of the most common forms of contact allergy. To investigate whether mixing different fragrance allergens leads to increased sensitization potency, and to examine the difference in the challenge response to one chemical in mice sensitized either with the mixture of allergens or with only the relevant allergen. CBA mice were sensitized with three different concentrations of three fragrance allergens alone or as a mixture. The sensitization and elicitation responses were measured by ear thickness plus infiltration of B and T cells and T cell proliferation in the draining lymph nodes. We found a dose-dependent sensitization response for each of the allergens. An increased response was seen when the allergens were mixed. A stronger challenge response to cinnamal was seen in mice sensitized with the allergen mixture than in mice sensitized with cinnamal alone. Our findings suggest that mixtures of allergens increase the primary response that potentiates the generation of memory T cells in response to the specific allergen. Thus, allergen mixtures enhance both induction and elicitation of contact allergy. © 2011 John Wiley & Sons A/S.

  11. Dew point fast measurement in organic vapor mixtures using quartz resonant sensor

    NASA Astrophysics Data System (ADS)

    Nie, Jing; Liu, Jia; Meng, Xiaofeng

    2017-01-01

    A fast dew point sensor has been developed for organic vapor mixtures by using the quartz crystal with sensitive circuits. The sensor consists of the quartz crystal and a cooler device. Proactive approach is taken to produce condensation on the surface of the quartz crystal, and it will lead to a change in electrical features of the quartz crystal. The cessation of oscillation was measured because this phenomenon is caused by dew condensation. Such a phenomenon can be used to detect the dew point. This method exploits the high sensitivity of the quartz crystal but without frequency measurement and also retains the stability of the resonant circuit. It is strongly anti-interfered. Its performance was evaluated with acetone-methanol mixtures under different pressures. The results were compared with the dew points predicted from the universal quasi-chemical equation to evaluate the performance of the proposed sensor. Though the maximum deviations of the sensor are less than 1.1 °C, it still has a fast response time with a recovery time of less than 10 s, providing an excellent dehumidifying performance.

  12. Dew point fast measurement in organic vapor mixtures using quartz resonant sensor.

    PubMed

    Nie, Jing; Liu, Jia; Meng, Xiaofeng

    2017-01-01

    A fast dew point sensor has been developed for organic vapor mixtures by using the quartz crystal with sensitive circuits. The sensor consists of the quartz crystal and a cooler device. Proactive approach is taken to produce condensation on the surface of the quartz crystal, and it will lead to a change in electrical features of the quartz crystal. The cessation of oscillation was measured because this phenomenon is caused by dew condensation. Such a phenomenon can be used to detect the dew point. This method exploits the high sensitivity of the quartz crystal but without frequency measurement and also retains the stability of the resonant circuit. It is strongly anti-interfered. Its performance was evaluated with acetone-methanol mixtures under different pressures. The results were compared with the dew points predicted from the universal quasi-chemical equation to evaluate the performance of the proposed sensor. Though the maximum deviations of the sensor are less than 1.1 °C, it still has a fast response time with a recovery time of less than 10 s, providing an excellent dehumidifying performance.

  13. Exploring 0.1-10 eV axions with a new helioscope concept

    NASA Astrophysics Data System (ADS)

    Galán, J.; Dafni, T.; Ferrer-Ribas, E.; Giomataris, I.; Iguaz, F. J.; Irastorza, I. G.; García, J. A.; Garza, J. G.; Luzon, G.; Papaevangelou, T.; Redondo, J.; Tomás, A.

    2015-12-01

    We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbar to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10-11 GeV-1 for a 5 T, m3 scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0gtrsim 10 meV.

  14. Highly sensitive and stable Ag@SiO2 nanocubes for label-free SERS-photoluminescence detection of biomolecules

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Kha; Su, Wei-Nien; Chen, Ching-Hsiang; Rick, John; Hwang, Bing-Joe

    2017-03-01

    Surface-enhanced Raman scattering (SERS) and fluorescence microscopy are a widely used biological and chemical characterization techniques. However, the peak overlapping in multiplexed experiments and rapid photobleaching of fluorescent organic dyes is still the limitations. When compared to Ag nanocubes (NCs), higher SERS sensitivities can be obtained with thin shelled silica Ag@SiO2 NCs, in contrast metal-enhanced photoluminescence (MEPL) is only found with NCs that have thicker silica shells. A 'dual functionality' represented by the simultaneous strengthening of SERS and MEPL signals can be achieved by mixing Ag@SiO2 NCs, with a silica shell thickness of 1.5 nm and 4.4 nm. This approach allows both the Ag@SiO2 NCs SERS and MEPL sensitivities to be maintained at 90% after 12 weeks of storage. Based on the distinguished detection of creatinine and flavin adenine dinucleotide in the mixture, the integration of SERS and MEPL together on a stable single plasmonic nanoparticle platform offers an opportunity to enhance both biomarker detection sensitivity and specificity.

  15. Determination of 54 pesticides in waters of the Iberian Douro River estuary and risk assessment of environmentally relevant mixtures using theoretical approaches and Artemia salina and Daphnia magna bioassays.

    PubMed

    Cruzeiro, Catarina; Amaral, Sofia; Rocha, Eduardo; Rocha, Maria João

    2017-11-01

    As a case study, the estuary of the international Douro River (Iberian Peninsula) was sampled over a year (2010) at six sampling sites to determine the presence of 56 pesticides of different categories (insecticides, herbicides, and fungicides). 96% of measured pesticides were detected in 79% of the quantified samples. Individual average pesticide concentrations ranged from 39 to 1 265ng/L, indicating a ubiquitous presence of the selected compounds; moreover, twelve pesticides were above the 2013/39/EU Directive limits. Due to its highly impacted profile, a theoretical hazard assessment was done considering the average and maximum environmental mixtures of all measured pesticides to identify the most sensitive trophic level. For both environmental mixtures, the theoretical approach suggested that invertebrates were the most sensitive group. Therefore, short-time exposure assays using both invertebrates Artemia salina and Daphnia magna, were done using the referred mixtures. Data demonstrated significant toxic effects ─ high mortality rate and abnormal swimming behaviour ─ of the exposed animals. Both approaches (theoretical and experimental) support the analytical results, alerting for an intervention on this estuarine environment and of other comparable. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Immunoblotting assays for keratan sulfate.

    PubMed

    Yoon, Jung Hae; Brooks, Randolph; Halper, Jaroslava

    2002-07-15

    The detection of microquantities of glycosaminoglycans (GAGs) in biological samples has been hampered by the lack of sensitive methods. In this paper we describe the modification and development of three sensitive assays capable of detecting nanogram quantities of GAGs in biological samples. The first assay detects total GAGs. It is a modified Alcian blue dye precipitation assay in which the dye binds to the negatively charged GAGs in CsCl-fractionated extracts from chicken tendons. This assay compares favorably with the widely used uronic acid assay in terms of its sensitivity and ability to detect all classes of GAGs, including keratan sulfate (KS). Two other assays, dot-blotting and immunoblotting, detect KS in complex mixtures and can be easily adapted for the detection of other GAGs. Both take advantage of binding of carboxyl and sulfate groups of GAGs to trivalent neodymium. In dot-blotting, samples were directly blotted onto nitrocellulose membrane soaked in Nd(2)(SO(4))(3) buffer, and KS was detected with the monoclonal anti-KS 5-D-4 antibody and an avidin-biotin complex detection system. In immunoblotting, the samples were first separated in 28% polyacrylamide gels, transferred onto a Nd(2)(SO(4))(3)-soaked nitrocellulose membrane using a phosphate buffer system, and stained and developed using the same protocol as in dot-blotting. Whereas dot-blotting allows the use of very low quantities of samples because of its high sensitivity (lower detection limit was 5 ng), immunoblotting provides more specificity.

  17. COLD-PCR: improving the sensitivity of molecular diagnostics assays

    PubMed Central

    Milbury, Coren A; Li, Jin; Liu, Pingfang; Makrigiorgos, G Mike

    2011-01-01

    The detection of low-abundance DNA variants or mutations is of particular interest to medical diagnostics, individualized patient treatment and cancer prognosis; however, detection sensitivity for low-abundance variants is a pronounced limitation of most currently available molecular assays. We have recently developed coamplification at lower denaturation temperature-PCR (COLD-PCR) to resolve this limitation. This novel form of PCR selectively amplifies low-abundance DNA variants from mixtures of wild-type and mutant-containing (or variant-containing) sequences, irrespective of the mutation type or position on the amplicon, by using a critical denaturation temperature. The use of a lower denaturation temperature in COLD-PCR results in selective denaturation of amplicons with mutation-containing molecules within wild-type mutant heteroduplexes or with a lower melting temperature. COLD-PCR can be used in lieu of conventional PCR in several molecular applications, thus enriching the mutant fraction and improving the sensitivity of downstream mutation detection by up to 100-fold. PMID:21405967

  18. Development of a stable and sensitive semiconductor detector by using a mixture of lead(II) iodide and lead monoxide for NDT radiation dose detection

    NASA Astrophysics Data System (ADS)

    Heo, Y. J.; Kim, K. T.; Han, M. J.; Moon, C. W.; Kim, J. E.; Park, J. K.; Park, S. K.

    2018-03-01

    Recently, high-energy radiation has been widely used in various industrial fields, including the medical industry, and increasing research efforts have been devoted to the development of radiation detectors to be used with high-energy radiation. In particular, nondestructive industrial applications use high-energy radiation for ships and multilayered objects for accurate inspection. Therefore, it is crucial to verify the accuracy of radiation dose measurements and evaluate the precision and reproducibility of the radiation output dose. Representative detectors currently used for detecting the dose in high-energy regions include Si diodes, diamond diodes, and ionization chambers. However, the process of preparing these detectors is complex in addition to the processes of conducting dosimetric measurements, analysis, and evaluation. Furthermore, the minimum size that can be prepared for a detector is limited. In the present study, the disadvantages of original detectors are compensated by the development of a detector made of a mixture of polycrystalline PbI2 and PbO powder, which are both excellent semiconducting materials suitable for detecting high-energy gamma rays and X-rays. The proposed detector shows characteristics of excellent reproducibility and stable signal detection in response to the changes in energy, and was analyzed for its applicability. Moreover, the detector was prepared through a simple process of particle-in-binder to gain control over the thickness and meet the specific value designated by the user. A mixture mass ratio with the highest reproducibility was determined through reproducibility testing with respect to changes in the photon energy. The proposed detector was evaluated for its detection response characteristics with respect to high-energy photon beam, in terms of dose-rate dependence, sensitivity, and linearity evaluation. In the reproducibility assessment, the detector made with 15 wt% PbO powder showed the best characteristics of 0.59% and 0.25% at 6 and 15 MV, respectively. Based on its selection in the reproducibility assessment, the 15 wt% PbO detector showed no dependence on the dose-rate changes, with R-SD < 1%. Finally, a coefficient of determination of 1 in the linearity assessment demonstrated very good linearity with regards to changes in dose. These results demonstrate the applicability and usefulness of the proposed detector made from a mixture of PbI2 and PbO semiconductors.

  19. Modified Proofreading PCR for Detection of Point Mutations, Insertions and Deletions Using a ddNTP-Blocked Primer

    PubMed Central

    Chen, Qianqian; Chen, Xiaoxiang; Zhang, Sichao; Lan, Ke; Lu, Jian; Zhang, Chiyu

    2015-01-01

    The development of simple, accurate, rapid and cost-effective technologies for mutation detection is crucial to the early diagnosis and prevention of numerous genetic diseases, pharmacogenetics, and drug resistance. Proofreading PCR (PR-PCR) was developed for mutation detection in 1998 but is rarely applied due to its low efficiency in allele discrimination. Here we developed a modified PR-PCR method using a ddNTP-blocked primer and a mixture of DNA polymerases with and without the 3'-5' proofreading function. The ddNTP-blocked primer exhibited the best blocking efficiency to avoid nonspecific primer extension while the mixture of a tiny amount of high-fidelity DNA polymerase with a routine amount of Taq DNA polymerase provided the best discrimination and amplification effects. The modified PR-PCR method is quite capable of detecting various mutation types, including point mutations and insertions/deletions (indels), and allows discrimination amplification when the mismatch is located within the last eight nucleotides from the 3'-end of the ddNTP-blocked primer. The modified PR-PCR has a sensitivity of 1-5 × 102 copies and a selectivity of 5 × 10-5 mutant among 107 copies of wild-type DNA. It showed a 100% accuracy rate in the detection of P72R germ-line mutation in the TP53 gene among 60 clinical blood samples, and a high potential to detect rifampin-resistant mutations at low frequency in Mycobacterium tuberculosis using an adaptor and a fusion-blocked primer. These results suggest that the modified PR-PCR technique is effective in detection of various mutations or polymorphisms as a simple, sensitive and promising approach. PMID:25915410

  20. Using gas chromatography with ion mobility spectrometry to resolve explosive compounds in the presence of interferents.

    PubMed

    Cook, Greg W; LaPuma, Peter T; Hook, Gary L; Eckenrode, Brian A

    2010-11-01

    Ion mobility spectrometry (IMS) is a valued field detection technology because of its speed and high sensitivity, but IMS cannot easily resolve analytes of interest within mixtures. Coupling gas chromatography (GC) to IMS adds a separation capability to resolve complex matrices. A GC-IONSCAN® operated in IMS and GC⁄ IMS modes was evaluated with combinations of five explosives and four interferents. In 100 explosive/interferent combinations, IMS yielded 21 false positives while GC⁄ IMS substantially reduced the occurrence of false positives to one. In addition, the results indicate that through redesign or modification of the preconcentrator there would be significant advantages to using GC⁄ IMS, such as enhancement of the linear dynamic range (LDR) in some situations. By balancing sensitivity with LDR, GC⁄ IMS could prove to be a very advantageous tool when addressing real world complex mixture situations.

  1. Sensitivity test of derivative matrix isopotential synchronous fluorimetry and least squares fitting methods.

    PubMed

    Makkai, Géza; Buzády, Andrea; Erostyák, János

    2010-01-01

    Determination of concentrations of spectrally overlapping compounds has special difficulties. Several methods are available to calculate the constituents' concentrations in moderately complex mixtures. A method which can provide information about spectrally hidden components in mixtures is very useful. Two methods powerful in resolving spectral components are compared in this paper. The first method tested is the Derivative Matrix Isopotential Synchronous Fluorimetry (DMISF). It is based on derivative analysis of MISF spectra, which are constructed using isopotential trajectories in the Excitation-Emission Matrix (EEM) of background solution. For DMISF method, a mathematical routine fitting the 3D data of EEMs was developed. The other method tested uses classical Least Squares Fitting (LSF) algorithm, wherein Rayleigh- and Raman-scattering bands may lead to complications. Both methods give excellent sensitivity and have advantages against each other. Detection limits of DMISF and LSF have been determined at very different concentration and noise levels.

  2. Development of a targeted adductomic method for the determination of polycyclic aromatic hydrocarbon DNA adducts using online column-switching liquid chromatography/tandem mass spectrometry.

    PubMed

    Singh, Rajinder; Teichert, Friederike; Seidel, Albrecht; Roach, Jonathan; Cordell, Rebecca; Cheng, Mai-Kim; Frank, Heinrich; Steward, William P; Manson, Margaret M; Farmer, Peter B

    2010-08-30

    Human exposure to polycyclic aromatic hydrocarbons (PAHs) from sources such as industrial or urban air pollution, tobacco smoke and cooked food is not confined to a single compound, but instead to mixtures of different PAHs. The interaction of different PAHs may lead to additive, synergistic or antagonistic effects in terms of DNA adduct formation and carcinogenic activity resulting from changes in metabolic activation to reactive intermediates and DNA repair. The development of a targeted DNA adductomic approach using liquid chromatography/tandem mass spectrometry (LC/MS/MS) incorporating software-based peak picking and integration for the assessment of exposure to mixtures of PAHs is described. For method development PAH-modified DNA samples were obtained by reaction of the anti-dihydrodiol epoxide metabolites of benzo[a]pyrene, benzo[b]fluoranthene, dibenzo[a,l]pyrene (DB[a,l]P) and dibenz[a,h]anthracene with calf thymus DNA in vitro and enzymatically hydrolysed to 2'-deoxynucleosides. Positive LC/electrospray ionisation (ESI)-MS/MS collision-induced dissociation product ion spectra data showed that the majority of adducts displayed a common fragmentation for the neutral loss of 116 u (2'-deoxyribose) resulting in a major product ion derived from the adducted base. The exception was the DB[a,l]P dihydrodiol epoxide adduct of 2'-deoxyadenosine which resulted in major product ions derived from the PAH moiety being detected. Specific detection of mixtures of PAH-adducted 2'-deoxynucleosides was achieved using online column-switching LC/MS/MS in conjunction with selected reaction monitoring (SRM) of the [M+H](+) to [M+H-116](+) transition plus product ions derived from the PAH moiety for improved sensitivity of detection and a comparison was made to detection by constant neutral loss scanning. In conclusion, different PAH DNA adducts were detected by employing SRM [M+H-116](+) transitions or constant neutral loss scanning. However, for improved sensitivity of detection optimised SRM transitions relating to the PAH moiety product ions are required for certain PAH DNA adducts for the development of targeted DNA adductomic methods. 2010 John Wiley & Sons, Ltd.

  3. Theory and methodology for utilizing genes as biomarkers to determine potential biological mixtures.

    PubMed

    Shrestha, Sadeep; Smith, Michael W; Beaty, Terri H; Strathdee, Steffanie A

    2005-01-01

    Genetically determined mixture information can be used as a surrogate for physical or behavioral characteristics in epidemiological studies examining research questions related to socially stigmatized behaviors and horizontally transmitted infections. A new measure, the probability of mixture discrimination (PMD), was developed to aid mixture analysis that estimates the ability to differentiate single from multiple genomes in biological mixtures. Four autosomal short tandem repeats (STRs) were identified, genotyped and evaluated in African American, European American, Hispanic, and Chinese individuals to estimate PMD. Theoretical PMD frameworks were also developed for autosomal and sex-linked (X and Y) STR markers in potential male/male, male/female and female/female mixtures. Autosomal STRs genetically determine the presence of multiple genomes in mixture samples of unknown genders with more power than the apparently simpler X and Y chromosome STRs. Evaluation of four autosomal STR loci enables the detection of mixtures of DNA from multiple sources with above 99% probability in all four racial/ethnic populations. The genetic-based approach has applications in epidemiology that provide viable alternatives to survey-based study designs. The analysis of genes as biomarkers can be used as a gold standard for validating measurements from self-reported behaviors that tend to be sensitive or socially stigmatizing, such as those involving sex and drugs.

  4. Novel concept for neutron detection: proportional counter filled with 10B nanoparticle aerosol

    NASA Astrophysics Data System (ADS)

    Amaro, F. D.; Monteiro, C. M. B.; Dos Santos, J. M. F.; Antognini, A.

    2017-02-01

    The high neutron detection efficiency, good gamma-ray discrimination and non-toxicity of 3He made of proportional counters filled with this gas the obvious choice for neutron detection, particularly in radiation portal monitors (RPM), used to control the illicit transport of nuclear material, of which neutron detectors are key components. 3He is very rare and during the last decade this gas has become increasingly difficult to acquire. With the exception of BF3, which is toxic, no other gas can be used for neutron detection in proportional counters. We present an alternative where the 3He atoms are replaced by nanoparticles made of another neutron sensitive material, 10B. The particles are dispersed in a gaseous volume, forming an aerosol with neutron sensitive properties. A proportional counter filled with such aerosol was exposed to a thermal neutron beam and the recorded response indicates that the neutrons have interacted with the particles in the aerosol. This original technique, which transforms a standard proportional gas mixture into a neutron sensitive aerosol, is a breakthrough in the field of radiation detection and has the potential to become an alternative to the use of 3He in proportional counters.

  5. ToF-SIMS and Laser-SNMS Imaging of Heterogeneous Topographically Complex Polymer Systems.

    PubMed

    Pelster, Andreas; Körsgen, Martin; Kurosawa, Takako; Morita, Hiromi; Arlinghaus, Heinrich F

    2016-10-04

    Heterogeneous polymer coatings, such as those used in organic electronics and medical devices, are of increasing industrial importance. In order to advance the development of these types of systems, analytical techniques are required which are able to determine the elemental and molecular spatial distributions, on a nanometer scale, with very high detection efficiency and sensitivity. The goal of this study was to investigate the suitability of laser postionization secondary neutral mass spectrometry (Laser-SNMS) with a 157 nm postionization laser beam to image structured polymer mixtures and compare the results with time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements using Bi 3 + primary ions. The results showed that Laser-SNMS is better suited than ToF-SIMS for unambiguous detection and submicrometer imaging of the wide range of polymers investigated. The data also showed that Laser-SNMS has the advantage of being much more sensitive (in general higher by more than an order of magnitude and peaking at up to 3 orders of magnitude) than ToF-SIMS while also showing superior performance on topographically complex structured insulating surfaces, due to significantly reduced field effects and a higher dynamic range as compared to ToF-SIMS. It is concluded that Laser-SNMS is a powerful complementary technique to ToF-SIMS for the analysis of heterogeneous polymers and other complex structured organic mixtures, providing submicrometer resolution and high sensitivity.

  6. Sensitive liquid refractive index sensors using tapered optical fiber tips.

    PubMed

    Tai, Yi-Hsin; Wei, Pei-Kuen

    2010-04-01

    An optical fiber sensor based on the change of optical confinement in a subwavelength tip is presented. The optical spot is substantially increased when the environmental refractive index (RI) increases from 1.3 to 1.4. By measuring the intensity of low angular spectral components, an intensity sensitivity up to 8000% per RI unit is achieved. The fiber tip sensors take advantage of the small detection volume and real-time responses. We demonstrate the application of the nanofiber sensors for measuring concentrations of acids and evaporation rates of aqueous mixtures.

  7. Applicability of grid-net detection system for landfill leachate and diesel fuel release in the subsurface.

    PubMed

    Oh, Myounghak; Seo, Min Woo; Lee, Seunghak; Park, Junboum

    2008-02-19

    The grid-net system estimating the electrical conductivity changes was evaluated as a potential detection system for the leakage of diesel fuel and landfill leachate. Aspects of electrical conductivity changes were varied upon the type of contaminant. The electrical conductivity in the homogeneous mixtures of soil and landfill leachate linearly increased with the ionic concentration of pore fluid, which became more significant at higher volumetric water contents. However, the electrical conductivity in soil/diesel fuel mixture decreased with diesel fuel content and it was more significant at lower water contents. The electrode spacing should be determined by considering the type of contaminant to enhance the electrode sensitivity especially when two-electrode sensors are to be used. The electrode sensitivity for landfill leachate was constantly maintained regardless of the electrode spacings while that for the diesel fuel significantly increased at smaller electrode spacings. This is possibly due to the fact that the insulating barrier effect of the diesel fuel in non-aqueous phase was less predominant at large electrode spacing because electrical current can form the round-about paths over the volume with relatively small diesel fuel content. The model test results showed that the grid-net detection system can be used to monitor the leakage from waste landfill and underground storage tank sites. However, for a successful application of the detection system in the field, data under various field conditions should be accumulated.

  8. Ultramicroelectrode Sensors and Detectors. Considerations of the Stability, Sensitivity, Reproducibility, and Mechanism of Ion Transport in Gas Phase Chromatography and in High Performance Liquid Phase Chromatography

    DTIC Science & Technology

    1988-07-15

    solvents were used. For high performance liquid chromatographic studies, the DNA bases thymine, adenine, cytocine, uracil, and guanine (Aldrich...this experiment. The DNA bases guanine, adenine, cytocine, uracil, and thymine were detected for a gradient elution of a mixture of the bases in a

  9. A lab-on-chip for biothreat detection using single-molecule DNA mapping.

    PubMed

    Meltzer, Robert H; Krogmeier, Jeffrey R; Kwok, Lisa W; Allen, Richard; Crane, Bryan; Griffis, Joshua W; Knaian, Linda; Kojanian, Nanor; Malkin, Gene; Nahas, Michelle K; Papkov, Vyacheslav; Shaikh, Saad; Vyavahare, Kedar; Zhong, Qun; Zhou, Yi; Larson, Jonathan W; Gilmanshin, Rudolf

    2011-03-07

    Rapid, specific, and sensitive detection of airborne bacteria, viruses, and toxins is critical for biodefense, yet the diverse nature of the threats poses a challenge for integrated surveillance, as each class of pathogens typically requires different detection strategies. Here, we present a laboratory-on-a-chip microfluidic device (LOC-DLA) that integrates two unique assays for the detection of airborne pathogens: direct linear analysis (DLA) with unsurpassed specificity for bacterial threats and Digital DNA for toxins and viruses. The LOC-DLA device also prepares samples for analysis, incorporating upstream functions for concentrating and fractionating DNA. Both DLA and Digital DNA assays are single molecule detection technologies, therefore the assay sensitivities depend on the throughput of individual molecules. The microfluidic device and its accompanying operation protocols have been heavily optimized to maximize throughput and minimize the loss of analyzable DNA. We present here the design and operation of the LOC-DLA device, demonstrate multiplex detection of rare bacterial targets in the presence of 100-fold excess complex bacterial mixture, and demonstrate detection of picogram quantities of botulinum toxoid.

  10. Normalization of test and evaluation of biothreat detection systems: overcoming microbial air content fluctuations by using a standardized reagent bacterial mixture.

    PubMed

    Berchebru, Laurent; Rameil, Pascal; Gaudin, Jean-Christophe; Gausson, Sabrina; Larigauderie, Guilhem; Pujol, Céline; Morel, Yannick; Ramisse, Vincent

    2014-10-01

    Test and evaluation of engineered biothreat agent detection systems ("biodetectors") are a challenging task for government agencies and industries involved in biosecurity and biodefense programs. In addition to user friendly features, biodetectors need to perform both highly sensitive and specific detection, and must not produce excessive false alerts. In fact, the atmosphere displays a number of variables such as airborne bacterial content that can interfere with the detection process, thus impeding comparative tests when carried out at different times or places. To overcome these bacterial air content fluctuations, a standardized reagent bacterial mixture (SRBM), consisting in a collection of selected cultivable environmental species that are prevalent in temperate climate bioaerosols, was designed to generate a stable, reproducible, and easy to use surrogate of bioaerosol sample. The rationale, design, and production process are reported. The results showed that 8.59; CI 95%: 8.46-8.72 log cfu distributed into vials underwent a 0.95; CI 95%: 0.65-1.26 log viability decay after dehydration and subsequent reconstitution, thus advantageously mimicking a natural bioaerosol sample which is typically composed of cultivable and uncultivable particles. Dehydrated SRBM was stable for more than 12months at 4°C and allowed the reconstitution of a dead/live cells aqueous suspension that is stable for 96h at +4°C, according to plate counts. Specific detection of a simulating biothreat agent (e.g. Bacillus atrophaeus) by immuno-magnetic or PCR assays did not display any significant loss of sensitivity, false negative or positive results in the presence of SRBM. This work provides guidance on testing and evaluating detection devices, and may contribute to the establishment of suitable standards and normalized procedures. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Solid-phase microextraction low temperature plasma mass spectrometry for the direct and rapid analysis of chemical warfare simulants in complex mixtures.

    PubMed

    Dumlao, Morphy C; Jeffress, Laura E; Gooding, J Justin; Donald, William A

    2016-06-21

    Solid-phase microextraction (SPME) is directly integrated with low temperature plasma ionisation mass spectrometry to rapidly detect organophosphate chemical warfare agent simulants and their hydrolysis products in chemical mixtures, including urine. In this sampling and ionization method, the fibre serves: (i) to extract molecules from their native environment, and (ii) as the ionization electrode that is used to desorb and ionize molecules directly from the SPME surface. By use of a custom fabricated SPME fibre consisting of a stainless steel needle coated with a Linde Type A (LTA) zeolitic microporous material and low temperature plasma mass spectrometry, protonated dimethyl methylphosphonate (DMMP), diethyl ethylphosphonate (DEEP) and pinacolyl methylphosphonic acid (PinMPA) can be detected at less than 100 ppb directly in water and urine. Organophosphates were not readily detected by this approach using an uncoated needle in negative control experiments. The use of the LTA coating significantly outperformed the use of a high alumina Zeolite Socony Mobil-5 (ZSM-5) coating of comparable thickness that is significantly less polar than LTA. By conditioning the LTA probe by immersion in an aqueous CuSO4 solution, the ion abundance for protonated DMMP increased by more than 300% compared to that obtained without any conditioning. Sample recovery values were between 96 and 100% for each analyte. The detection of chemical warfare agent analogues and hydrolysis products required less than 2 min per sample. A key advantage of this sampling and ionization method is that analyte ions can be directly and rapidly sampled from chemical mixtures, such as urine and seawater, without sample preparation or chromatography for sensitive detection by mass spectrometry. This ion source should prove beneficial for portable mass spectrometry applications because relatively low detection limits can be obtained without the use of compressed gases, fluid pumps, and lasers. Moreover, the ion source is compact, can be powered with a 10 V battery, and is tolerant of complex mixtures.

  12. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae.

    PubMed

    Zhu, Wanyi; Schmehl, Daniel R; Mullin, Christopher A; Frazier, James L

    2014-01-01

    Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L.) health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax--fluvalinate, coumaphos, chlorothalonil, and chloropyrifos--tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common 'inert' ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated.

  13. Sensitivity of the ViroSeq HIV-1 Genotyping System for Detection of the K103N Resistance Mutation in HIV-1 Subtypes A, C, and D

    PubMed Central

    Church, Jessica D.; Jones, Dana; Flys, Tamara; Hoover, Donald; Marlowe, Natalia; Chen, Shu; Shi, Chanjuan; Eshleman, James R.; Guay, Laura A.; Jackson, J. Brooks; Kumwenda, Newton; Taha, Taha E.; Eshleman, Susan H.

    2006-01-01

    The US Food and Drug Administration-cleared ViroSeq HIV-1 Genotyping System (ViroSeq) and other population sequencing-based human immunodeficiency virus type 1 (HIV-1) genotyping methods detect antiretroviral drug resistance mutations present in the major viral population of a test sample. These assays also detect some mutations in viral variants that are present as mixtures. We compared detection of the K103N nevirapine resistance mutation using ViroSeq and a sensitive, quantitative point mutation assay, LigAmp. The LigAmp assay measured the percentage of K103N-containing variants in the viral population (percentage of K103N). We analyzed 305 samples with HIV-1 subtypes A, C, and D collected from African women after nevirapine administration. ViroSeq detected K103N in 100% of samples with >20% K103N, 77.8% of samples with 10 to 20% K103N, 71.4% of samples with 5 to 10% K103N, and 16.9% of samples with 1 to 5% K103N. The sensitivity of ViroSeq for detection of K103N was similar for subtypes A, C, and D. These data indicate that the ViroSeq system reliably detects the K103N mutation at levels above 20% and frequently detects the mutation at lower levels. Further studies are needed to compare the sensitivity of different assays for detection of HIV-1 drug resistance mutations and to determine the clinical relevance of HIV-1 minority variants. PMID:16931582

  14. ERASE-Seq: Leveraging replicate measurements to enhance ultralow frequency variant detection in NGS data

    PubMed Central

    Kamps-Hughes, Nick; McUsic, Andrew; Kurihara, Laurie; Harkins, Timothy T.; Pal, Prithwish; Ray, Claire

    2018-01-01

    The accurate detection of ultralow allele frequency variants in DNA samples is of interest in both research and medical settings, particularly in liquid biopsies where cancer mutational status is monitored from circulating DNA. Next-generation sequencing (NGS) technologies employing molecular barcoding have shown promise but significant sensitivity and specificity improvements are still needed to detect mutations in a majority of patients before the metastatic stage. To address this we present analytical validation data for ERASE-Seq (Elimination of Recurrent Artifacts and Stochastic Errors), a method for accurate and sensitive detection of ultralow frequency DNA variants in NGS data. ERASE-Seq differs from previous methods by creating a robust statistical framework to utilize technical replicates in conjunction with background error modeling, providing a 10 to 100-fold reduction in false positive rates compared to published molecular barcoding methods. ERASE-Seq was tested using spiked human DNA mixtures with clinically realistic DNA input quantities to detect SNVs and indels between 0.05% and 1% allele frequency, the range commonly found in liquid biopsy samples. Variants were detected with greater than 90% sensitivity and a false positive rate below 0.1 calls per 10,000 possible variants. The approach represents a significant performance improvement compared to molecular barcoding methods and does not require changing molecular reagents. PMID:29630678

  15. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    NASA Astrophysics Data System (ADS)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  16. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application.

    PubMed

    Zhou, Hong; Liu, Jing; Xu, Jing-Juan; Zhang, Shu-Sheng; Chen, Hong-Yuan

    2018-03-21

    Modern optical detection technology plays a critical role in current clinical detection due to its high sensitivity and accuracy. However, higher requirements such as extremely high detection sensitivity have been put forward due to the clinical needs for the early finding and diagnosing of malignant tumors which are significant for tumor therapy. The technology of isothermal amplification with nucleic acids opens up avenues for meeting this requirement. Recent reports have shown that a nucleic acid amplification-assisted modern optical sensing interface has achieved satisfactory sensitivity and accuracy, high speed and specificity. Compared with isothermal amplification technology designed to work completely in a solution system, solid biosensing interfaces demonstrated better performances in stability and sensitivity due to their ease of separation from the reaction mixture and the better signal transduction on these optical nano-biosensing interfaces. Also the flexibility and designability during the construction of these nano-biosensing interfaces provided a promising research topic for the ultrasensitive detection of cancer diseases. In this review, we describe the construction of the burgeoning number of optical nano-biosensing interfaces assisted by a nucleic acid amplification strategy, and provide insightful views on: (1) approaches to the smart fabrication of an optical nano-biosensing interface, (2) biosensing mechanisms via the nucleic acid amplification method, (3) the newest strategies and future perspectives.

  17. Peptide–Nanowire Hybrid Materials for Selective Sensing of Small Molecules

    PubMed Central

    McAlpine, Michael C.; Agnew, Heather D.; Rohde, Rosemary D.; Blanco, Mario; Ahmad, Habib; Stuparu, Andreea D.; Goddard, William A.

    2013-01-01

    The development of a miniaturized sensing platform for the selective detection of chemical odorants could stimulate exciting scientific and technological opportunities. Oligopeptides are robust substrates for the selective recognition of a variety of chemical and biological species. Likewise, semiconducting nanowires are extremely sensitive gas sensors. Here we explore the possibilities and chemistries of linking peptides to silicon nanowire sensors for the selective detection of small molecules. The silica surface of the nanowires is passivated with peptides using amide coupling chemistry. The peptide/nanowire sensors can be designed, through the peptide sequence, to exhibit orthogonal responses to acetic acid and ammonia vapors, and can detect traces of these gases from “chemically camouflaged” mixtures. Through both theory and experiment, we find that this sensing selectivity arises from both acid/base reactivity and from molecular structure. These results provide a model platform for what can be achieved in terms of selective and sensitive “electronic noses.” PMID:18576642

  18. A simple, sensitive determination of ganciclovir in infant plasma by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Yoshida, Terumitsu; Takahashi, Ryohei; Imai, Koichi; Uchida, Hiroshi; Arai, Yasutoshi; Oh-ishi, Tsutomu

    2010-03-01

    This study developed a simple and sensitive method using reversed-phase high-performance liquid chromatography (HPLC) for ganciclovir (GCV) plasma concentrations in cytomegalovirus infectious infants with hearing loss. The method involves a simple protein precipitation procedure that uses no solid-phase or liquid-liquid extraction. The HPLC separation was carried out on a Cadenza CD-C(18) column (3 microm, 4.6 mm x 150 mm) with phosphate buffer (pH 2.5, 25 mM) containing 1% methanol-acetonitrile mixture (4:3, v/v) as a mobile phase at a 0.7 mL/min flow rate. GCV was detected using a fluorescence detection (lambdaex/em: 265/380 nm). The quantification limit was 0.025 microg/mL for 100 microL of plasma sample at which good intra- and inter-assay coefficient of variation values (< 4.96%) and recoveries (94.9-96.5%) were established.

  19. Alkylphenol metabolites in fish bile as biomarkers of exposure to offshore oil industry produced water in feral fish.

    PubMed

    Beyer, Jonny; Sundt, Rolf C; Sanni, Steinar; Sydnes, Magne O; Jonsson, Grete

    2011-01-01

    The measurement of low-concentration alkylphenol (AP) exposure in fish is relevant in connection with monitoring and risk assessment of offshore oil industry produced water (PW) discharges. Detection of AP markers in fish bile offers significantly greater sensitivity than detection of AP in tissues such as liver. Recent studies revealed that gas chromatography-mass spectrometry in electron ionization mode (GC-EI-MS) enabled a selective and sensitive analytical detection of PW AP in mixtures with unknown composition. A procedure consisting of enzymatic deconjugation of metabolites in fish bile followed by derivatization with bis(trimethylsilyl)trifluoroacetamide and then separation and quantification of derivatized AP using GC-EI-MS is presented. The use of this procedure as a possible recommended approach for assessment and biomonitoring of AP contamination in fish populations living down-current from offshore oil production fields is presented.

  20. QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles.

    PubMed

    Van der Borght, Koen; Thys, Kim; Wetzels, Yves; Clement, Lieven; Verbist, Bie; Reumers, Joke; van Vlijmen, Herman; Aerssens, Jeroen

    2015-11-10

    Next generation sequencing enables studying heterogeneous populations of viral infections. When the sequencing is done at high coverage depth ("deep sequencing"), low frequency variants can be detected. Here we present QQ-SNV (http://sourceforge.net/projects/qqsnv), a logistic regression classifier model developed for the Illumina sequencing platforms that uses the quantiles of the quality scores, to distinguish true single nucleotide variants from sequencing errors based on the estimated SNV probability. To train the model, we created a dataset of an in silico mixture of five HIV-1 plasmids. Testing of our method in comparison to the existing methods LoFreq, ShoRAH, and V-Phaser 2 was performed on two HIV and four HCV plasmid mixture datasets and one influenza H1N1 clinical dataset. For default application of QQ-SNV, variants were called using a SNV probability cutoff of 0.5 (QQ-SNV(D)). To improve the sensitivity we used a SNV probability cutoff of 0.0001 (QQ-SNV(HS)). To also increase specificity, SNVs called were overruled when their frequency was below the 80(th) percentile calculated on the distribution of error frequencies (QQ-SNV(HS-P80)). When comparing QQ-SNV versus the other methods on the plasmid mixture test sets, QQ-SNV(D) performed similarly to the existing approaches. QQ-SNV(HS) was more sensitive on all test sets but with more false positives. QQ-SNV(HS-P80) was found to be the most accurate method over all test sets by balancing sensitivity and specificity. When applied to a paired-end HCV sequencing study, with lowest spiked-in true frequency of 0.5%, QQ-SNV(HS-P80) revealed a sensitivity of 100% (vs. 40-60% for the existing methods) and a specificity of 100% (vs. 98.0-99.7% for the existing methods). In addition, QQ-SNV required the least overall computation time to process the test sets. Finally, when testing on a clinical sample, four putative true variants with frequency below 0.5% were consistently detected by QQ-SNV(HS-P80) from different generations of Illumina sequencers. We developed and successfully evaluated a novel method, called QQ-SNV, for highly efficient single nucleotide variant calling on Illumina deep sequencing virology data.

  1. Integrated Data Collection Analysis (IDCA) Program - NaClO 3/Icing Sugar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of NaClO 3 and icing sugar—NaClO 3/icing sugar mixture. The mixture was found to: be more sensitive than RDX but less sensitive than PETN in impact testing (180-grit sandpaper); be more sensitive than RDX and about the same sensitivity as PETN in BAM fiction testing; be less sensitive than RDX and PETN except for one participant found themore » mixture more sensitive than PETN in ABL ESD testing; and to have one to three exothermic features with the lowest temperature event occurring at ~ 160°C always observed in thermal testing. Variations in testing parameters also affected the sensitivity.« less

  2. Multifunctional paper strip based on GO-veiled Ag nanoparticles with highly SERS sensitive and deliverable properties for high-performance molecular detection.

    PubMed

    Yang, Cheng; Xu, Yuanyuan; Wang, Minghong; Li, Tianming; Huo, Yanyan; Yang, Chuanxi; Man, Baoyuan

    2018-04-16

    The development of paper-based SERS substrates that can allow multi-component detection in real-word scenarios is of great value for applications in molecule detection under complex conditions. Here, a multifunctional SERS-based paper sensing substrate has been developed through the uniform patterning of high-density arrays of GO-isolated Ag nanoparticles on the hydrophilic porous cellulose paper strip (GO@AgNP@paper). Wet-chemical synthesis was used to provide the cover of SERS hot spots on any part of the paper, not just limited surface deposition. In virtue of the inherent ability of paper to deliver analytes by the capillary force, the detection ability of the GO@AgNP@paper substrate was greatly promoted, allowing as low as 10 -19 M R6G detection from microliter-volume (50 μL) samples. For the components with different polarity, the paper substrate can be used as an all-in-one machine to achieve the integration of separation and high-sensitive detection for ultralow mixture components, which improves the practical application value of SERS-based paper devices.

  3. The use of zeta potential as a tool to study phase transitions in binary phosphatidylcholines mixtures.

    PubMed

    Sierra, M B; Pedroni, V I; Buffo, F E; Disalvo, E A; Morini, M A

    2016-06-01

    Temperature dependence of the zeta potential (ZP) is proposed as a tool to analyze the thermotropic behavior of unilamellar liposomes prepared from binary mixtures of phosphatidylcholines in the absence or presence of ions in aqueous suspensions. Since the lipid phase transition influences the surface potential of the liposome reflecting a sharp change in the ZP during the transition, it is proposed as a screening method for transition temperatures in complex systems, given its high sensitivity and small amount of sample required, that is, 70% less than that required in the use of conventional calorimeters. The sensitivity is also reflected in the pre-transition detection in the presence of ions. Plots of phase boundaries for these mixed-lipid vesicles were constructed by plotting the delimiting temperatures of both main phase transition and pre-transition vs. the lipid composition of the vesicle. Differential scanning calorimetry (DSC) studies, although subject to uncertainties in interpretation due to broad bands in lipid mixtures, allowed the validation of the temperature dependence of the ZP method for determining the phase transition and pre-transition temperatures. The system chosen was dipalmitoylphosphatidylcholine/dimyristoyl phosphatidylcholine (DMPC/DPPC), the most common combination in biological membranes. This work may be considered as a starting point for further research into more complex lipid mixtures with functional biological importance. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Exploring 0.1–10 eV axions with a new helioscope concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galán, J.; Dafni, T.; Iguaz, F.J., E-mail: javier.galan.lacarra@cern.ch, E-mail: Theopisti.Dafni@cern.ch, E-mail: iguaz@unizar.es

    2015-12-01

    We explore the possibility to develop a new axion helioscope type, sensitive to the higher axion mass region favored by axion models. We propose to use a low background large volume TPC immersed in an intense magnetic field. Contrary to traditional tracking helioscopes, this detection technique takes advantage of the capability to directly detect the photons converted on the buffer gas which defines the axion mass sensitivity region, and does not require pointing the magnet to the Sun. The operation flexibility of a TPC to be used with different gas mixtures (He, Ne, Xe, etc.) and pressures (from 10 mbarmore » to 10 bar) will allow to enhance sensitivity for axion masses from few meV to several eV. We present different helioscope data taking scenarios, considering detection efficiency and axion absorption probability, and show the sensitivities reachable with this technique to be few × 10{sup −11} GeV{sup −1} for a 5 T, m{sup 3} scale TPC. We show that a few years program taking data with such setup would allow to probe the KSVZ axion model for axion masses above 0∼> 10 meV.« less

  5. Comparison of methylene blue/gentian violet stain to Gram's stain for the rapid diagnosis of gonococcal urethritis in men.

    PubMed

    Taylor, Stephanie N; DiCarlo, Richard P; Martin, David H

    2011-11-01

    We compared a simple, one-step staining procedure using a mixture of methylene blue and gentian violet to Gram stain for the detection of gonococcal urethritis. The sensitivity and specificity of both Gram stain and methylene blue/gentian violet stain were 97.3% and 99.6%, respectively. There was a 100% correlation between the 2 methods.

  6. Rapid and accurate detection of KRAS mutations in colorectal cancers using the isothermal-based optical sensor for companion diagnostics

    PubMed Central

    Koo, Bonhan; Lee, Tae Yoon; Lee, Jeong Hoon; Shin, Yong; Lim, Seok-Byung

    2017-01-01

    Although KRAS mutational status testing is becoming a companion diagnostic tool for managing patients with colorectal cancer (CRC), there are still several difficulties when analyzing KRAS mutations using the existing assays, particularly with regard to low sensitivity, its time-consuming, and the need for large instruments. We developed a rapid, sensitive, and specific mutation detection assay based on the bio-photonic sensor termed ISAD (isothermal solid-phase amplification/detection), and used it to analyze KRAS gene mutations in human clinical samples. To validate the ISAD-KRAS assay for use in clinical diagnostics, we examined for hotspot KRAS mutations (codon 12 and codon 13) in 70 CRC specimens using PCR and direct sequencing methods. In a serial dilution study, ISAD-KRAS could detect mutations in a sample containing only 1% of the mutant allele in a mixture of wild-type DNA, whereas both PCR and direct sequencing methods could detect mutations in a sample containing approximately 30% of mutant cells. The results of the ISAD-KRAS assay from 70 clinical samples matched those from PCR and direct sequencing, except in 5 cases, wherein ISAD-KRAS could detect mutations that were not detected by PCR and direct sequencing. We also found that the sensitivity and specificity of ISAD-KRAS were 100% within 30 min. The ISAD-KRAS assay provides a rapid, highly sensitive, and label-free method for KRAS mutation testing, and can serve as a robust and near patient testing approach for the rapid detection of patients most likely to respond to anti-EGFR drugs. PMID:29137388

  7. Detection of pulmonary nodules in CT images based on fuzzy integrated active contour model and hybrid parametric mixture model.

    PubMed

    Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing

    2013-01-01

    The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.

  8. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection.

    PubMed

    Cui, Jiewu; Adeloju, Samuel B; Wu, Yucheng

    2014-01-27

    A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO(x)) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA-BSA-GLA-GO(x) nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm(-2) mM(-1) for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5-6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. An introductory study using impedance spectroscopy technique with polarizable microelectrode for amino acids characterization

    NASA Astrophysics Data System (ADS)

    Chin, K. B.; Chi, I.; Pasalic, J.; Huang, C.-K.; Barge, Laura M.

    2018-04-01

    Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations <1 mM, however, the polar amino acid solution conductivity remained constant, suggesting poor chemical activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.

  10. An introductory study using impedance spectroscopy technique with polarizable microelectrode for amino acids characterization.

    PubMed

    Chin, K B; Chi, I; Pasalic, J; Huang, C-K; Barge, Laura M

    2018-04-01

    Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations <1 mM, however, the polar amino acid solution conductivity remained constant, suggesting poor chemical activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.

  11. Demonstration of a rapidly-swept external cavity quantum cascade laser for rapid and sensitive quantification of chemical mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.

    2016-02-13

    A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.

  12. N,N-(2,4-dinitrophenyl)octylamine derivatives for the isolation, purification, and mass spectrometric characterization of oligosaccharides.

    PubMed

    Zhang, Y; Cedergren, R A; Nieuwenhuis, T J; Hollingsworth, R I

    1993-02-01

    A simple, sensitive method for the structural characterization of oligosaccharides by fast atom bombardment-mass spectrometry (FAB-MS) has been designed. Oligosaccharides are labeled with a uv chromophore (which also serves as a charge stabilizing group) and with a hydrophobic alkyl tail. The chromophore, a 2,4-dinitrophenyl group, aids uv detection during HPLC and stabilizes negative ion species formed during analysis by FAB-MS. The hydrophobic tail, provided by an octyl group, enhances the surface activity of the analytes and makes them amenable to separation by reverse-phase chromatography using a C18 bonded phase. This method was applied to the structural analysis of the components of a mixture of starch maltodextrins with a degree of polymerization 1-16, to the analysis of the structure of pure maltohexaose, and to a previously characterized oligosaccharide from a Rhizobium capsular polysaccharide. The method gave a good yield of [M-H]- anions for the derivatized compounds, which in most cases were detectable at a level of about 1 pmol. In the case of maltohexaose, four series of sequence anions corresponding to sequential loss of glycosyl residues from the reducing and nonreducing end by different mechanisms were observed. The mixture of derivatized malto-oligosaccharides could easily be separated by HPLC. Based on the relative proportions of the individual oligomers in the mixture calculated from HPLC analysis, even though the higher oligomers were present in amounts of about 0.1%, they could still be easily detected in mass spectra of the entire mixture.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Determination of iridium in mafic rocks by atomic absorption

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1970-01-01

    Iridium is determined in mineralized mafic rocks by atomic absorption after fire-assay concentration into a gold bead. Interelement interferences in the atomic-absorption determination are removed and Ir sensitivity is increased by buffering the solutions with a mixture of copper and sodium sulphates. Substantial amounts of Ag, Al, Au, Bi, Ca, Cd, Co, Cr, Fe, Ho, Hg, K, La, Mg, Mn, Mo, Ni, Pb, Te, Ti, V, Y, Zn and platinum metals can be tolerated in the atomic-absorption determination. The sensitivity and detection limits are 3.2 and 0.25 ppm of Ir, respectively. ?? 1970.

  14. Optimized Pan-species and Speciation Duplex Real-time PCR Assays for Plasmodium Parasites Detection in Malaria Vectors

    PubMed Central

    Sandeu, Maurice Marcel; Moussiliou, Azizath; Moiroux, Nicolas; Padonou, Gilles G.; Massougbodji, Achille; Corbel, Vincent; Tuikue Ndam, Nicaise

    2012-01-01

    Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations. PMID:23285168

  15. Headspace Analysis of Volatile Compounds Using Segemented Chirped-Pulse Fourier Transform Mm-Wave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Steber, Amanda; Pate, Brooks

    2014-06-01

    A chirped-pulse Fourier transform mm-wave spectrometer has been tested in analytical chemistry applications of headspace analysis of volatile species. A solid-state mm-wave light source (260-290 GHz) provides 30-50 mW of power. This power is sufficient to achieve optimal excitation of individual transitions of molecules with dipole moments larger than about 0.1 D. The chirped-pulse spectrometer has near 100% measurement duty cycle using a high-speed digitizer (4 GS/s) with signal accumulation in an FPGA. The combination of the ability to perform optimal pulse excitation and near 100% measurement duty cycle gives a spectrometer that is fully optimized for trace detection. The performance of the instrument is tested using an EPA sample (EPA VOC Mix 6 - Supelco) that contains a set of molecules that are fast eluting on gas chromatographs and, as a result, present analysis challenges to mass spectrometry. The ability to directly analyze the VOC mixture is tested by acquiring the full bandwidth (260-290 GHz) spectrum in a "high dynamic range" measurement mode that minimizes spurious spectrometer responses. The high-resolution of molecular rotational spectroscopy makes it easy to analyze this mixture without the need for chemical separation. The sensitivity of the instrument for individual molecule detection, where a single transition is polarized by the excitation pulse, is also tested. Detection limits in water will be reported. In the case of chloromethane, the detection limit (0.1 microgram/L), matches the sensitivity reported in the EPA measurement protocol (EPA Method 524) for GC/MS.

  16. Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?

    PubMed

    Woutersen, Marjolijn; Belkin, Shimshon; Brouwer, Bram; van Wezel, Annemarie P; Heringa, Minne B

    2011-05-01

    Biosensors based on luminescent bacteria may be valuable tools to monitor the chemical quality and safety of surface and drinking water. In this review, an overview is presented of the recombinant strains available that harbour the bacterial luciferase genes luxCDABE, and which may be used in an online biosensor for water quality monitoring. Many bacterial strains have been described for the detection of a broad range of toxicity parameters, including DNA damage, protein damage, membrane damage, oxidative stress, organic pollutants, and heavy metals. Most lux strains have sensitivities with detection limits ranging from milligrams per litre to micrograms per litre, usually with higher sensitivities in compound-specific strains. Although the sensitivity of lux strains can be enhanced by various molecular manipulations, most reported detection thresholds are still too high to detect levels of individual contaminants as they occur nowadays in European drinking waters. However, lux strains sensing specific toxic effects have the advantage of being able to respond to mixtures of contaminants inducing the same effect, and thus could be used as a sensor for the sum effect, including the effect of compounds that are as yet not identified by chemical analysis. An evaluation of the suitability of lux strains for monitoring surface and drinking water is therefore provided.

  17. Effects of Kapton Sample Cell Windows on the Detection Limit of Smectite: Implications for CheMin on the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Ming, Douglas W.; Morris, R. V.; Blake, D. F.

    2012-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CheMin has two different window materials used for sample cells -- Mylar and Kapton. Instrument details are provided elsewhere. Fe/Mg-smectite (e.g., nontronite) has been identified in Gale Crater, the MSL future landing site, by CRISM spectra. While large quantities of phyllosilicate minerals will be easily detected by CheMin, it is important to establish detection limits of such phases to understand capabilities and limitations of the instrument. A previous study indicated that the (001) peak of smectite at 15 Ang was detectable in a mixture of 1 wt.% smectite with olivine when Mylar is the window material for the sample cell. Complications arise when Kapton is the window material because Kapton itself also has a diffraction peak near 15 Ang (6.8 deg 2 Theta). This study presents results of mineral mixtures of smectite and olivine to determine smectite detection limits for Kapton sample cells. Because the intensity and position of the smectite (001) peak depends on the hydration state, we also analyzed mixtures with "hydrated" and "dehydrated"h smectite to examine the effects of hydration state on detection limits.

  18. A long-term assessment of pesticide mixture effects on aquatic invertebrate communities.

    PubMed

    Hasenbein, Simone; Lawler, Sharon P; Geist, Juergen; Connon, Richard E

    2016-01-01

    To understand the potential effects of pesticide mixtures on aquatic ecosystems, studies that incorporate increased ecological relevance are crucial. Using outdoor mesocosms, the authors examined long-term effects on aquatic invertebrate communities of tertiary mixtures of commonly used pesticides: 2 pyrethroids (permethrin, λ-cyhalothrin) and an organophosphate (chlorpyrifos). Application scenarios were based on environmentally relevant concentrations and stepwise increases of lethal concentrations from 10% (LC10) to 50% (LC50) based on laboratory tests on Hyalella azteca and Chironomus dilutus; repeated applications were meant to generally reflect runoff events in a multiple-grower or homeowner watershed. Pyrethroids rapidly dissipated from the water column, whereas chlorpyrifos was detectable even 6 wk after application. Twelve of 15 macroinvertebrate and 10 of 16 zooplankton taxa responded to contaminant exposures. The most sensitive taxa were the snail Radix sp., the amphipod H. azteca, the water flea Daphnia magna, and copepods. Environmentally relevant concentrations had acute effects on D. magna and H. azteca (occurring 24 h after application), whereas lag times were more pronounced in Radix sp. snails and copepods, indicating chronic sublethal responses. Greatest effects on zooplankton communities were observed in environmentally relevant concentration treatments. The results indicate that insecticide mixtures continue to impact natural systems over multiple weeks, even when no longer detectable in water and bound to particles. Combinations of indirect and direct effects caused consequences across multiple trophic levels. © 2015 SETAC.

  19. Protein Stains to Detect Antigen on Membranes.

    PubMed

    Dsouza, Anil; Scofield, R Hal

    2015-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after western blotting. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. "Detection" is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical.

  20. Optical detection of polychlorinated biphenyls

    NASA Astrophysics Data System (ADS)

    Kuncova, Gabriela; Berkova, Daniela; Burkhard, Jiri; Demnerova, Katerina; Pazlarova, Jarmila; Triska, Jan; Vrchotova, Nadezda

    1999-12-01

    In this paper we describe the detection of polychlorinated biphenyls (PCBs) which is based on the measurement of changes of optical absorption at 400 nm of the medium in an aerobic bioreactor with immobilized cells Pseudomonas species 2. The rate of production, composition and the concentration of yellow intermediates are influenced by concentration and composition of PCB mixtures, concentration of cells and by the methods of immobilization. The method was applied in the detection of commercial mixture D103. It was found that the advantageous carriers were inorganic or organic-inorganic matrices, which sorbed PCBs and a cell outgrowth from their surface was low. In water contaminated with transformer oil and chlorinated hydrocarbons the detection limit is 10-2 gD103/kg. In transformer oil the upper limit for degradation of D103 by sodium dehalogenation (1.5 gD103 /kgoil) was determined also in the presence of the same concentration of trichloroethylene. The employment to of a liquid core waveguide spectrophotometer instead of a diode array spectrophotometer increased the sensitivity of the measurement of yellow intermediates by a factor of 100. An extrinsic fiber-optic sensor was used for in-situ measurement during biodegradation of PCBs in bioreactors.

  1. Protein stains to detect antigen on membranes.

    PubMed

    D'souza, Anil; Scofield, R Hal

    2009-01-01

    Western blotting (protein blotting/electroblotting) is the gold standard in the analysis of complex protein mixtures. Electroblotting drives protein molecules from a polyacrylamide (or less commonly, of an agarose) gel to the surface of a binding membrane, thereby facilitating an increased availability of the sites with affinity for both general and specific protein reagents. The analysis of these complex protein mixtures is achieved by the detection of specific protein bands on a membrane, which in turn is made possible by the visualization of protein bands either by chemical staining or by reaction with an antibody of a conjugated ligand. Chemical methods employ staining with organic dyes, metal chelates, autoradiography, fluorescent dyes, complexing with silver, or prelabeling with fluorophores. All of these methods have differing sensitivities and quantitative determinations vary significantly. This review will describe the various protein staining methods applied to membranes after electrophoresis. "Detection" precedes and is a prerequisite to obtaining qualitative and quantitative data on the proteins in a sample, as much as to comparing the protein composition of different samples. Detection is often synonymous to staining, i.e., the reversible or irreversible binding by the proteins of a colored organic or inorganic chemical.

  2. Four Common Pesticides, Their Mixtures and a Formulation Solvent in the Hive Environment Have High Oral Toxicity to Honey Bee Larvae

    PubMed Central

    Zhu, Wanyi; Schmehl, Daniel R.; Mullin, Christopher A.; Frazier, James L.

    2014-01-01

    Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L.) health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax - fluvalinate, coumaphos, chlorothalonil, and chloropyrifos - tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common ‘inert’ ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated. PMID:24416121

  3. Detecting ship targets in spaceborne infrared image based on modeling radiation anomalies

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Zou, Zhengxia; Shi, Zhenwei; Li, Bo

    2017-09-01

    Using infrared imaging sensors to detect ship target in the ocean environment has many advantages compared to other sensor modalities, such as better thermal sensitivity and all-weather detection capability. We propose a new ship detection method by modeling radiation anomalies for spaceborne infrared image. The proposed method can be decomposed into two stages, where in the first stage, a test infrared image is densely divided into a set of image patches and the radiation anomaly of each patch is estimated by a Gaussian Mixture Model (GMM), and thereby target candidates are obtained from anomaly image patches. In the second stage, target candidates are further checked by a more discriminative criterion to obtain the final detection result. The main innovation of the proposed method is inspired by the biological mechanism that human eyes are sensitive to the unusual and anomalous patches among complex background. The experimental result on short wavelength infrared band (1.560 - 2.300 μm) and long wavelength infrared band (10.30 - 12.50 μm) of Landsat-8 satellite shows the proposed method achieves a desired ship detection accuracy with higher recall than other classical ship detection methods.

  4. Breath alcohol, multisensor arrays, and electronic noses

    NASA Astrophysics Data System (ADS)

    Paulsson, Nils; Winquist, Fredrik

    1997-01-01

    The concept behind a volatile compound mapper, or electronic nose, is to use the combination of multiple gas sensors and pattern recognition techniques to detect and quantify substances in gas mixtures. There are several different kinds of sensors which have been developed during recent years of which the base techniques are conducting polymers, piezo electrical crystals and solid state devices. In this work we have used a combination of gas sensitive field effect devices and semiconducting metal oxides. The most useful pattern recognition routine was found to be ANNs, which is a mathematical approximation of the human neural network. The aim of this work is to evaluate the possibility of using electronic noses in field instruments to detect drugs, arson residues, explosives etc. As a test application we have chosen breath alcohol measurements. There are several reasons for this. Breath samples are a quite complex mixture contains between 200 and 300 substances at trace levels. The alcohol level is low but still possible to handle. There are needs for replacing large and heavy mobile instruments with smaller devices. Current instrumentation is rather sensitive to interfering substances. The work so far has dealt with sampling, how to introduce ethanol and other substances in the breath, correlation measurements between the electronic nose and headspace GC, and how to evaluate the sensor signals.

  5. Forensic genetic study of 29 Y-STRs in Korean population.

    PubMed

    Jung, Ju Yeon; Park, Ji-Hye; Oh, Yu-Li; Kwon, Han-Sol; Park, Hyun-Chul; Park, Kyung-Hwa; Kim, Eun Hye; Lee, Dong-Sub; Lim, Si-Keun

    2016-11-01

    In this study, we compared two recently released commercial Y-chromosomal short tandem repeat (Y-STR) kits: the PowerPlex Y23 System (PPY23) and Yfiler® Plus PCR amplification kit (YPlus). We performed validation studies, including sensitivity, tolerance to PCR inhibitors, and mixture analysis, and a population genetics study using 306 unrelated South Korean males. PPY23 and YPlus showed similar sensitivity, but PPY23 showed higher tolerance to humic acid than YPlus. Furthermore, the detection rate of unique minor alleles called from male/male mixtures was higher for PPY23 than for YPlus. Comparing the newly added loci, the mean values of gene diversity for PPY23 and YPlus were 0.6715 and 0.8158, respectively. The discrimination capacity in the 306 unrelated South Korean males for PPY23 was 0.9837, and that for YPlus was 0.9935. These results will inform the selection of suitable Y-STR kits based on the purpose of forensic DNA analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Sensitive detection of n-alkanes using a mixed ionization mode proton-transfer-reaction mass spectrometer

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, Omar; Misztal, Pawel K.; Weber, Robin; Worton, David R.; Zhang, Haofei; Drozd, Greg; Goldstein, Allen H.

    2016-11-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) is a technique that is widely used to detect volatile organic compounds (VOCs) with proton affinities higher than water. However, n-alkanes generally have a lower proton affinity than water and therefore proton transfer (PT) by reaction with H3O+ is not an effective mechanism for their detection. In this study, we developed a method using a conventional PTR-MS to detect n-alkanes by optimizing ion source and drift tube conditions to vary the relative amounts of different primary ions (H3O+, O2+, NO+) in the reaction chamber (drift tube). There are very few studies on O2+ detection of alkanes and the mixed mode has never been proposed before. We determined the optimum conditions and the resulting reaction mechanisms, allowing detection of n-alkanes from n-pentane to n-tridecane. These compounds are mostly emitted by evaporative/combustion process from fossil fuel use. The charge transfer (CT) mechanism observed with O2+ was the main reaction channel for n-heptane and longer n-alkanes, while for n-pentane and n-hexane the main reaction channel was hydride abstraction (HA). Maximum sensitivities were obtained at low E / N ratios (83 Td), low water flow (2 sccm) and high O2+ / NO+ ratios (Uso = 180 V). Isotopic 13C contribution was taken into account by subtracting fractions of the preceding 12C ion signal based on the number of carbon atoms and the natural abundance of 13C (i.e., 5.6 % for n-pentane and 14.5 % for n-tridecane). After accounting for isotopic distributions, we found that PT cannot be observed for n-alkanes smaller than n-decane. Instead, protonated water clusters of n-alkanes (M ṡ H3O+) species were observed with higher abundance using lower O2+ and higher water cluster fractions. M ṡ H3O+ species are probably the source for the M + H+ species observed from n-decane to n-tridecane. Normalized sensitivities to O2+ or to the sum of O2++ NO+ were determined to be a good metric with which to compare sensitivities for n-alkane detection between experiments. Double hydride abstraction was observed from the reaction with O2+. Sensitivity to CT increased with carbon chain length from n-pentane to n-dodecane, sensitivity to HA increased from n-heptane to n-dodecane and sensitivity to PT increased from n-decane to n-tridecane. Sensitivity to CT exponentially decreased with molecular ionization energy, which is inversely related to the carbon chain length. We introduce a calibrated fragmentation algorithm as a method to determine the concentrations of n-alkanes and demonstrate its effectiveness using a custom n-alkane mixture and a much more complex oil example representing perhaps the most difficult mixture available for application of the method. We define optimum conditions for using the mixed ionization mode to measure n-alkanes in conventional PTR-MS instruments regardless of whether they are equipped with switchable reagent ion (SRI) capabilities.

  7. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    NASA Astrophysics Data System (ADS)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  8. Polyethylenimine-coated Fe3O4 nanoparticles effectively quench fluorescent DNA, which can be developed as a novel platform for protein detection.

    PubMed

    Ma, Long; Sun, Nana; Zhang, Jinyan; Tu, Chunhao; Cao, Xiuqi; Duan, Demin; Diao, Aipo; Man, Shuli

    2017-11-23

    We report a novel assembly of polyethyleneimine (PEI)-coated Fe 3 O 4 nanoparticles (NPs) with single-stranded DNA (ssDNA), and the fluorescence of the dye labeled in the DNA is remarkably quenched. In the presence of a target protein, the protein-DNA aptamer mutual interaction releases the ssDNA from this assembly and hence restores the fluorescence. This feature could be adopted to develop an aptasensor for protein detection. As a proof-of-concept, for the first time, we have used this proposed sensing strategy to detect thrombin selectively and sensitively. Furthermore, simultaneous multiple detection of thrombin and lysozyme in a complex protein mixture has been proven to be possible.

  9. Comparison between evaporative light scattering detection and charged aerosol detection for the analysis of saikosaponins.

    PubMed

    Eom, Han Young; Park, So-Young; Kim, Min Kyung; Suh, Joon Hyuk; Yeom, Hyesun; Min, Jung Won; Kim, Unyong; Lee, Jeongmi; Youm, Jeong-Rok; Han, Sang Beom

    2010-06-25

    Saikosaponins are triterpene saponins derived from the roots of Bupleurum falcatum L. (Umbelliferae), which has been traditionally used to treat fever, inflammation, liver diseases, and nephritis. It is difficult to analyze saikosaponins using HPLC-UV due to the lack of chromophores. Therefore, evaporative light scattering detection (ELSD) is used as a valuable alternative to UV detection. More recently, a charged aerosol detection (CAD) method has been developed to improve the sensitivity and reproducibility of ELSD. In this study, we compared CAD and ELSD methods in the simultaneous analysis of 10 saikosaponins, including saikosaponins-A, -B(1), -B(2), -B(3), -B(4), -C, -D, -G, -H and -I. A mixture of the 10 saikosaponins was injected into the Ascentis Express C18 column (100 mm x 4.6 mm, 2.7 microm) with gradient elution and detection with CAD and ELSD by splitting. We examined various factors that could affect the sensitivity of the detectors including various concentrations of additives, pH and flow rate of the mobile phase, purity of nitrogen gas and the CAD range. The sensitivity was determined based on the signal-to-noise ratio. The best sensitivity for CAD was achieved with 0.1 mM ammonium acetate at pH 4.0 in the mobile phase with a flow rate of 1.0 mL/min, and the CAD range at 100 pA, whereas that for ELSD was achieved with 0.01% acetic acid in the mobile phase with a flow rate at 0.8 mL/min. The purity of the nitrogen gas had only minor effects on the sensitivities of both detectors. Finally, the sensitivity for CAD was two to six times better than that of ELSD. Taken together, these results suggest that CAD provides a more sensitive analysis of the 10 saikosaponins than does ELSD. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Use of Standing Gold Nanorods for Detection of Malachite Green and Crystal Violet in Fish by SERS.

    PubMed

    Chen, Xiaowei; Nguyen, Trang H D; Gu, Liqun; Lin, Mengshi

    2017-07-01

    With growing consumption of aquaculture products, there is increasing demand on rapid and sensitive techniques that can detect prohibited substances in the seafood products. This study aimed to develop a novel surface-enhanced Raman spectroscopy (SERS) method coupled with simplified extraction protocol and novel gold nanorod (AuNR) substrates to detect banned aquaculture substances (malachite green [MG] and crystal violet [CV]) and their mixture (1:1) in aqueous solution and fish samples. Multivariate statistical tools such as principal component analysis (PCA) and partial least squares regression (PLSR) were used in data analysis. PCA results demonstrate that SERS can distinguish MG, CV and their mixture (1:1) in aqueous solution and in fish samples. The detection limit of SERS coupled with standing AuNR substrates is 1 ppb for both MG and CV in fish samples. A good linear relationship between the actual concentration and predicted concentration of analytes based on PLSR models with R 2 values from 0.87 to 0.99 were obtained, indicating satisfactory quantification results of this method. These results demonstrate that the SERS method coupled with AuNR substrates can be used for rapid and accurate detection of MG and CV in fish samples. © 2017 Institute of Food Technologists®.

  11. The Detection And Analysis Of Blasting Problems Encountered In A Colliery Using High Speed Photography

    NASA Astrophysics Data System (ADS)

    Rorke, A. J.; Kohler, E. W.

    1987-09-01

    Premature initiation of ANFO (an explosive mixture of Ammonium Nitrate and Fuel Oil) at a large colliery, near Witbank, was first detected from routine high speed films taken of large mid-burden, and overburden blasts. The analysis of these films shows that the rapid migration of very hot gasses through cracks ahead of the blast may have caused the explosive to initiate prematurely. The problem was not seen in the less competent overburden rocks. A less sensitive explosive has been successfully tried. The assessment of these blasts using high speed photography is discussed.

  12. Improved method increases sensitivity for circulating hepatocellular carcinoma cells

    PubMed Central

    Liu, Hui-Ying; Qian, Hai-Hua; Zhang, Xiao-Feng; Li, Jun; Yang, Xia; Sun, Bin; Ma, Jun-Yong; Chen, Lei; Yin, Zheng-Feng

    2015-01-01

    AIM: To improve an asialoglycoprotein receptor (ASGPR)-based enrichment method for detection of circulating tumor cells (CTCs) of hepatocellular carcinoma (HCC). METHODS: Peripheral blood samples were collected from healthy subjects, patients with HCC or various other cancers, and patients with hepatic lesions or hepatitis. CTCs were enriched from whole blood by extracting CD45-expressing leukocytes with monoclonal antibody coated-beads following density gradient centrifugation. The remaining cells were cytocentrifuged on polylysine-coated slides. Isolated cells were treated by triple immunofluorescence staining with CD45 antibody and a combination of antibodies against ASGPR and carbamoyl phosphate synthetase 1 (CPS1), used as liver-specific markers, and costained with DAPI. The cell slide was imaged and stained tumor cells that met preset criteria were counted. Recovery, sensitivity and specificity of the detection methods were determined and compared by spiking experiments with various types of cultured human tumor cell lines. Expression of ASGPR and CPS1 in cultured tumor cells and tumor tissue specimens was analyzed by flow cytometry and triple immunofluorescence staining, respectively. RESULTS: CD45 depletion of leukocytes resulted in a significantly greater recovery of multiple amounts of spiked HCC cells than the ASGPR+ selection (Ps < 0.05). The expression rates of either ASGPR or CPS1 were different in various liver cancer cell lines, ranging between 18% and 99% for ASGPR and between 9% and 98% for CPS1. In both human HCC tissues and liver cancer cell lines, there were a few HCC cells that did not stain positive for ASGPR or CPS1. The mixture of monoclonal antibodies against ASGPR and CPS1 identified more HCC cells than either antibody alone. However, these antibodies did not detect any tumor cells in blood samples spiked with the human breast cancer cell line MCF-7 and the human renal cancer cell line A498. ASGPR+ or/and CPS1+ CTCs were detected in 29/32 (91%) patients with HCC, but not in patients with any other kind of cancer or any of the other test subjects. Furthermore, the improved method detected a higher CTC count in all patients examined than did the previous method (P = 0.001), and consistently achieved 12%-21% higher sensitivity of CTC detection in all seven HCC patients with more than 40 CTCs. CONCLUSION: Negative depletion enrichment combined with identification using a mixture of antibodies against ASGPR and CPS1 improves sensitivity and specificity for detecting circulating HCC cells. PMID:25780289

  13. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs.

    PubMed

    Saunders, Christopher T; Wong, Wendy S W; Swamy, Sajani; Becq, Jennifer; Murray, Lisa J; Cheetham, R Keira

    2012-07-15

    Whole genome and exome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. The consequent increased demand for somatic variant analysis of paired samples requires methods specialized to model this problem so as to sensitively call variants at any practical level of tumor impurity. We describe Strelka, a method for somatic SNV and small indel detection from sequencing data of matched tumor-normal samples. The method uses a novel Bayesian approach which represents continuous allele frequencies for both tumor and normal samples, while leveraging the expected genotype structure of the normal. This is achieved by representing the normal sample as a mixture of germline variation with noise, and representing the tumor sample as a mixture of the normal sample with somatic variation. A natural consequence of the model structure is that sensitivity can be maintained at high tumor impurity without requiring purity estimates. We demonstrate that the method has superior accuracy and sensitivity on impure samples compared with approaches based on either diploid genotype likelihoods or general allele-frequency tests. The Strelka workflow source code is available at ftp://strelka@ftp.illumina.com/. csaunders@illumina.com

  14. Highly sensitive assay for tyrosine hydroxylase activity by high-performance liquid chromatography.

    PubMed

    Nagatsu, T; Oka, K; Kato, T

    1979-07-21

    A highly sensitive assay for tyrosine hydroxylase (TH) activity by high-performance liquid chromatography (HPLC) with amperometric detection was devised based on the rapid isolation of enzymatically formed DOPA by a double-column procedure, the columns fitted together sequentially (the top column of Amberlite CG-50 and the bottom column of aluminium oxide). DOPA was adsorbed on the second aluminium oxide column, then eluted with 0.5 M hydrochloric acid, and assayed by HPLC with amperometric detection. D-Tyrosine was used for the control. alpha-Methyldopa was added to the incubation mixture as an internal standard after incubation. This assay was more sensitive than radioassays and 5 pmol of DOPA formed enzymatically could be measured in the presence of saturating concentrations of tyrosine and 6-methyltetrahydropterin. The TH activity in 2 mg of human putamen could be easily measured, and this method was found to be particularly suitable for the assay of TH activity in a small number of nuclei from animal and human brain.

  15. Mechanisms underlying perceptual learning of contrast detection in adults with anisometropic amblyopia

    PubMed Central

    Huang, Chang-Bing; Lu, Zhong-Lin; Zhou, Yifeng

    2010-01-01

    What underlies contrast sensitivity improvements in adults with anisometropic amblyopia following perceptual learning in grating contrast detection? In this paper, we adopted the external noise approach (Z.-L. Lu & B. A. Dosher, 1998) to identify the mechanisms underlying perceptual learning in adults with anisometropic amblyopia. By measuring contrast thresholds in a range of external noise conditions at two performance levels (79.3% and 70.7%), we found that a mixture of internal additive noise reduction and external noise exclusion underlay training induced contrast sensitivity improvements in adults with anisometropic amblyopia. In comparison, normal adults exhibited only small amount of external noise exclusion under the same training conditions. The results suggest that neural plasticity may be more robust in amblyopia, lending further support of perceptual learning as a potential treatment for adult amblyopia. PMID:20053087

  16. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    PubMed Central

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  17. Sandia National Laboratories Small-Scale Sensitivity Testing (SSST) Report: Calcium Nitrate Mixtures with Various Fuels.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Jason Joe

    Based upon the presented sensitivity data for the examined calcium nitrate mixtures using sugar and sawdust, contact handling/mixing of these materials does not present hazards greater than those occurring during handling of dry PETN powder. The aluminized calcium nitrate mixtures present a known ESD fire hazard due to the fine aluminum powder fuel. These mixtures may yet present an ESD explosion hazard, though this has not been investigated at this time. The detonability of these mixtures will be investigated during Phase III testing.

  18. Bile acids: analysis in biological fluids and tissues

    PubMed Central

    Griffiths, William J.; Sjövall, Jan

    2010-01-01

    The formation of bile acids/bile alcohols is of major importance for the maintenance of cholesterol homeostasis. Besides their functions in lipid absorption, bile acids/bile alcohols are regulatory molecules for a number of metabolic processes. Their effects are structure-dependent, and numerous metabolic conversions result in a complex mixture of biologically active and inactive forms. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. A combination of such analyses with analyses of the proteome will be required for a better understanding of mechanisms of action and nature of endogenous ligands. Mass spectrometry is the basic detection technique for effluents from chromatographic columns. Capillary liquid chromatography-mass spectrometry with electrospray ionization provides the highest sensitivity in metabolome analysis. Classical gas chromatography-mass spectrometry is less sensitive but offers extensive structure-dependent fragmentation increasing the specificity in analyses of isobaric isomers of unconjugated bile acids. Depending on the nature of the bile acid/bile alcohol mixture and the range of concentration of individuals, different sample preparation sequences, from simple extractions to group separations and derivatizations, are applicable. We review the methods currently available for the analysis of bile acids in biological fluids and tissues, with emphasis on the combination of liquid and gas phase chromatography with mass spectrometry. PMID:20008121

  19. Most oxidative stress response in water samples comes from unknown chemicals: the need for effect-based water quality trigger values.

    PubMed

    Escher, Beate I; van Daele, Charlotte; Dutt, Mriga; Tang, Janet Y M; Altenburger, Rolf

    2013-07-02

    The induction of adaptive stress response pathways is an early and sensitive indicator of the presence of chemical and non-chemical stressors in cells. An important stress response is the Nrf-2 mediated oxidative stress response pathway where electrophilic chemicals or chemicals that cause the formation of reactive oxygen species initiate the production of antioxidants and metabolic detoxification enzymes. The AREc32 cell line is sensitive to chemicals inducing oxidative stress and has been previously applied for water quality monitoring of organic micropollutants and disinfection byproducts. Here we propose an algorithm for the derivation of effect-based water quality trigger values for this end point that is based on the combined effects of mixtures of regulated chemicals. Mixture experiments agreed with predictions by the mixture toxicity concept of concentration addition. The responses in the AREc32 and the concentrations of 269 individual chemicals were quantified in nine environmental samples, ranging from treated effluent, recycled water, stormwater to drinking water. The effects of the detected chemicals could explain less than 0.1% of the observed induction of the oxidative stress response in the sample, affirming the need to use effect-based trigger values that account for all chemicals present.

  20. Analytical Chemical Sensing in the Submillimeter/terahertz Spectral Range

    NASA Astrophysics Data System (ADS)

    Moran, Benjamin L.; Fosnight, Alyssa M.; Medvedev, Ivan R.; Neese, Christopher F.

    2012-06-01

    Highly sensitive and selective Terahertz sensor utilized to quantitatively analyze a complex mixture of Volatile Organic Compounds is reported. To best demonstrate analytical capabilities of THz chemical sensors we chose to perform analytical quantitative analysis of a certified gas mixture using a novel prototype chemical sensor that couples a commercial preconcentration system (Entech 7100A) to a high resolution THz spectrometer. We selected Method TO-14A certified mixture of 39 volatile organic compounds (VOCs) diluted to 1 part per million (ppm) in nitrogen. 26 of the 39 chemicals were identified by us as suitable for THz spectroscopic detection. Entech 7100A system is designed and marketed as an inlet system for Gas Chromatography-Mass Spectrometry (GC-MS) instruments with a specific focus on TO-14 and TO-15 EPA sampling methods. Its preconcentration efficiency is high for the 39 chemicals in the mixture used for this study and our preliminary results confirm this. Here we present the results of this study which serves as basis for our ongoing research in environmental sensing and analysis of exhaled human breath.

  1. Heparin/heparan sulfate analysis by covalently modified reverse polarity capillary zone electrophoresis-mass spectrometry.

    PubMed

    Sanderson, Patience; Stickney, Morgan; Leach, Franklin E; Xia, Qiangwei; Yu, Yanlei; Zhang, Fuming; Linhardt, Robert J; Amster, I Jonathan

    2018-04-13

    Reverse polarity capillary zone electrophoresis coupled to negative ion mode mass spectrometry (CZE-MS) is shown to be an effective and sensitive tool for the analysis of glycosaminoglycan mixtures. Covalent modification of the inner wall of the separation capillary with neutral or cationic reagents produces a stable and durable surface that provides reproducible separations. By combining CZE-MS with a cation-coated capillary and a sheath flow interface, a rapid and reliable method has been developed for the analysis of sulfated oligosaccharides from dp4 to dp12. Several different mixtures have been separated and detected by mass spectrometry. The mixtures were selected to test the capability of this approach to resolve subtle differences in structure, such as sulfation position and epimeric variation of the uronic acid. The system was applied to a complex mixture of heparin/heparan sulfate oligosaccharides varying in chain length from dp3 to dp12 and more than 80 molecular compositions were identified by accurate mass measurement. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Application of next generation sequencing toward sensitive detection of enteric viruses isolated from celery samples as an example of produce.

    PubMed

    Yang, Zhihui; Mammel, Mark; Papafragkou, Efstathia; Hida, Kaoru; Elkins, Christopher A; Kulka, Michael

    2017-11-16

    Next generation sequencing (NGS) holds promise as a single application for both detection and sequence identification of foodborne viruses; however, technical challenges remain due to anticipated low quantities of virus in contaminated food. In this study, with a focus on data analysis using several bioinformatics tools, we applied NGS toward amplification-independent detection and identification of norovirus at low copy (<10 3 copies) or within multiple strains from produce. Celery samples were inoculated with human norovirus (stool suspension) either as a single norovirus strain, a mixture of strains (GII.4 and GII.6), or a mixture of different species (hepatitis A virus and norovirus). Viral RNA isolation and recovery was confirmed by RT-qPCR, and optimized for library generation and sequencing without amplification using the Illumina MiSeq platform. Extracts containing either a single virus or a two-virus mixture were analyzed using two different analytic approaches to achieve virus detection and identification. First an overall assessment of viral genome coverage for samples varying in copy numbers (1.1×10 3 to 1.7×10 7 ) and genomic content (single or multiple strains in various ratios) was completed by reference-guided mapping. Not unexpectedly, this targeted approach to identification was successful in correctly mapping reads, thus identifying each virus contained in the inoculums even at low copy (estimated at 12 copies). For the second (metagenomic) approach, samples were treated as "unknowns" for data analyses using (i) a sequence-based alignment with a local database, (ii) an "in-house" k-mer tool, (iii) a commercially available metagenomics bioinformatic analysis platform cosmosID, and (iv) an open-source program Kraken. Of the four metagenomics tools applied in this study, only the local database alignment and in-house k-mer tool were successful in detecting norovirus (as well as HAV) at low copy (down to <10 3 copies) and within a mixture of virus strains or species. The results of this investigation provide support for continued investigation into the development and integration of these analytical tools for identification and detection of foodborne viruses. Published by Elsevier B.V.

  3. FTIR gas chromatographic analysis of perfumes

    NASA Astrophysics Data System (ADS)

    Diederich, H.; Stout, Phillip J.; Hill, Stephen L.; Krishnan, K.

    1992-03-01

    Perfumes, natural or synthetic, are complex mixtures consisting of numerous components. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques have been extensively utilized for the analysis of perfumes and essential oils. A limited number of perfume samples have also been analyzed by FT-IR gas chromatographic (GC-FTIR) techniques. Most of the latter studies have been performed using the conventional light pipe (LP) based GC-FTIR systems. In recent years, cold-trapping (in a matrix or neat) GC-FTIR systems have become available. The cold-trapping systems are capable of sub-nanogram sensitivities. In this paper, comparison data between the LP and the neat cold-trapping GC- FTIR systems is presented. The neat cold-trapping interface is known as Tracer. The results of GC-FTIR analysis of some commercial perfumes is also presented. For comparison of LP and Tracer GC-FTIR systems, a reference (synthetic) mixture containing 16 major and numerous minor constituents was used. The components of the mixture are the compounds commonly encountered in commercial perfumes. The GC-FTIR spectra of the reference mixture was obtained under identical chromatographic conditions from an LP and a Tracer system. A comparison of the two sets of data thus generated do indeed show the enhanced sensitivity level of the Tracer system. The comparison also shows that some of the major components detected by the Tracer system were absent from the LP data. Closer examination reveals that these compounds undergo thermal decomposition on contact with the hot gold surface that is part of the LP system. GC-FTIR data were obtained for three commercial perfume samples. The major components of these samples could easily be identified by spectra search against a digitized spectral library created using the Tracer data from the reference mixture.

  4. Patterning ecological risk of pesticide contamination at the river basin scale.

    PubMed

    Faggiano, Leslie; de Zwart, Dick; García-Berthou, Emili; Lek, Sovan; Gevrey, Muriel

    2010-05-01

    Ecological risk assessment was conducted to determine the risk posed by pesticide mixtures to the Adour-Garonne river basin (south-western France). The objectives of this study were to assess the general state of this basin with regard to pesticide contamination using a risk assessment procedure and to detect patterns in toxic mixture assemblages through a self-organizing map (SOM) methodology in order to identify the locations at risk. Exposure assessment, risk assessment with species sensitivity distribution, and mixture toxicity rules were used to compute six relative risk predictors for different toxic modes of action: the multi-substance potentially affected fraction of species depending on the toxic mode of action of compounds found in the mixture (msPAF CA(TMoA) values). Those predictors computed for the 131 sampling sites assessed in this study were then patterned through the SOM learning process. Four clusters of sampling sites exhibiting similar toxic assemblages were identified. In the first cluster, which comprised 83% of the sampling sites, the risk caused by pesticide mixture toward aquatic species was weak (mean msPAF value for those sites<0.0036%), while in another cluster the risk was significant (mean msPAF<1.09%). GIS mapping allowed an interesting spatial pattern of the distribution of sampling sites for each cluster to be highlighted with a significant and highly localized risk in the French department called "Lot et Garonne". The combined use of the SOM methodology, mixture toxicity modelling and a clear geo-referenced representation of results not only revealed the general state of the Adour-Garonne basin with regard to contamination by pesticides but also enabled to analyze the spatial pattern of toxic mixture assemblage in order to prioritize the locations at risk and to detect the group of compounds causing the greatest risk at the basin scale. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Detecting Levels of Polyquaternium-10 (PQ-10) via Potentiometric Titration with Dextran Sulphate and Monitoring the Equivalence Point with a Polymeric Membrane-Based Polyion Sensor.

    PubMed

    Ferguson, Stephen A; Wang, Xuewei; Meyerhoff, Mark E

    2016-08-07

    Polymeric quaternary ammonium salts (polyquaterniums) have found increasing use in industrial and cosmetic applications in recent years. More specifically, polyquaternium-10 (PQ-10) is routinely used in cosmetic applications as a conditioner in personal care product formulations. Herein, we demonstrate the use of potentiometric polyion-sensitive polymeric membrane-based electrodes to quantify PQ-10 levels. Mixtures containing both PQ-10 and sodium lauryl sulfate (SLS) are used as model samples to illustrate this new method. SLS is often present in cosmetic samples that contain PQ-10 (e.g., shampoos, etc.) and this surfactant species interferes with the polyion sensor detection chemistry. However, it is shown here that SLS can be readily separated from the PQ-10/SLS mixture by use of an anion-exchange resin and that the PQ-10 can then be titrated with dextran sulphate (DS). This titration is monitored by potentiometric polyanion sensors to provide equivalence points that are directly proportional to PQ-10 concentrations.

  6. Separation and screening of short-chain chlorinated paraffins in environmental samples using comprehensive two-dimensional gas chromatography with micro electron capture detection.

    PubMed

    Xia, Dan; Gao, Lirong; Zhu, Shuai; Zheng, Minghui

    2014-11-01

    Short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures with thousands of isomers and numerous homologs. They are classified as priority candidate persistent organic pollutants under the Stockholm Convention for their persistence, bioaccumulation, and toxicity. Analyzing SCCPs is challenging because of the complexity of the mixtures. Chromatograms of SCCPs acquired using one-dimensional (1D) gas chromatography (GC) contain a large characteristic "peak" with a broad and unresolved profile. Comprehensive two-dimensional GC (GC×GC) shows excellent potential for separating complex mixtures. In this study, GC×GC coupled with micro electron capture detection (μECD) was used to separate and screen SCCPs. The chromatographic parameters, including the GC column types, oven temperature program, and modulation period, were systematically optimized. The SCCP congeners were separated into groups using a DM-1 column connected to a BPX-50 column. The SCCP congeners in technical mixtures were separated according to the number of chlorine substituents for a given carbon chain length and according to the number of carbon atoms plus chlorine atoms for different carbon chain lengths. A fish tissue sample was analyzed to illustrate the feasibility of the GC×GC-μECD method in analyzing biological samples. Over 1,500 compounds were identified in the fish extract, significantly more than were identified using 1D GC. The detection limits for five selected SCCP congeners were between 1 and 5 pg/L using the GC×GC method, and these were significantly lower than those achieved using 1D GC. This method is a good choice for analysis of SCCPs in environmental samples, exhibiting good separation and good sensitivity.

  7. Plasmonic nanoparticles-decorated diatomite biosilica: extending the horizon of on-chip chromatography and label-free biosensing.

    PubMed

    Kong, Xianming; Li, Erwen; Squire, Kenny; Liu, Ye; Wu, Bo; Cheng, Li-Jing; Wang, Alan X

    2017-11-01

    Diatomite consists of fossilized remains of ancient diatoms and is a type of naturally abundant photonic crystal biosilica with multiple unique physical and chemical functionalities. In this paper, we explored the fluidic properties of diatomite as the matrix for on-chip chromatography and, simultaneously, the photonic crystal effects to enhance the plasmonic resonances of metallic nanoparticles for surface-enhanced Raman scattering (SERS) biosensing. The plasmonic nanoparticle-decorated diatomite biosilica provides a lab-on-a-chip capability to separate and detect small molecules from mixture samples with ultra-high detection sensitivity down to 1 ppm. We demonstrate the significant potential for biomedical applications by screening toxins in real biofluid, achieving simultaneous label-free biosensing of phenethylamine and miR21cDNA in human plasma with unprecedented sensitivity and specificity. To the best of our knowledge, this is the first time demonstration to detect target molecules from real biofluids by on-chip chromatography-SERS techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.

    PubMed

    Ma, Yingxin; Li, Hao; Peng, Shan; Wang, Leyu

    2012-10-02

    Rapid, sensitive, and selective detection of explosives such as 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), especially using a facile paper sensor, is in high demand for homeland security and public safety. Although many strategies have been successfully developed for the detection of TNT, it is not easy to differentiate the influence from TNP. Also, few methods were demonstrated for the selective detection of TNP. In this work, via a facile and versatile method, 8-hydroxyquinoline aluminum (Alq(3))-based bluish green fluorescent composite nanospheres were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These polymer-coated nanocomposites are not only water-stable but also highly luminescent. Based on the dramatic and selective fluorescence quenching of the nanocomposites via adding TNP into the aqueous solution, a sensitive and robust platform was developed for visual detection of TNP in the mixture of nitroaromatics including TNT, 2,4-dinitrotoluene (DNT), and nitrobenzene (NB). Meanwhile, the fluorescence intensity is proportional to the concentration of TNP in the range of 0.05-7.0 μg/mL with the 3σ limit of detection of 32.3 ng/mL. By handwriting or finger printing with TNP solution as ink on the filter paper soaked with the fluorescent nanocomposites, the bluish green fluorescence was instantly and dramatically quenched and the dark patterns were left on the paper. Therefore, a convenient and rapid paper sensor for TNP-selective detection was fabricated.

  9. A Highly Sensitive Fiber Optic Sensor Based on Two-Core Fiber for Refractive Index Measurement

    PubMed Central

    Guzmán-Sepúlveda, José Rafael; Guzmán-Cabrera, Rafael; Torres-Cisneros, Miguel; Sánchez-Mondragón, José Javier; May-Arrioja, Daniel Alberto

    2013-01-01

    A simple and compact fiber optic sensor based on a two-core fiber is demonstrated for high-performance measurements of refractive indices (RI) of liquids. In order to demonstrate the suitability of the proposed sensor to perform high-sensitivity sensing in a variety of applications, the sensor has been used to measure the RI of binary liquid mixtures. Such measurements can accurately determine the salinity of salt water solutions, and detect the water content of adulterated alcoholic beverages. The largest sensitivity of the RI sensor that has been experimentally demonstrated is 3,119 nm per Refractive Index Units (RIU) for the RI range from 1.3160 to 1.3943. On the other hand, our results suggest that the sensitivity can be enhanced up to 3485.67 nm/RIU approximately for the same RI range. PMID:24152878

  10. Use of hexyl isocyanate antigen to detect antibodies to hexamethylene diisocyanate (HDI) in sensitized guinea pigs and in a sensitized worker.

    PubMed

    Karol, M H; Hauth, B A

    1982-01-01

    Hypersensitivity to hexamethylene diisocyanate (HDI) has been reported following occupational exposure. Diagnosis of sensitivity is usually made from clinical evaluation of symptomatology. An in vitro serologic assay for HDI sensitivity was developed by immunizing guinea pigs with HDI and with hexyl isocyanate (HMI). Animals injected intradermally with HMI produced hapten-specific antibodies whereas guinea pigs injected with HDI produced antibodies specific for larger determinants which included the HDI hapten. The larger determinants were assumed to be composed of portions of "self" molecules which reacted in vivo with HDI. Serum albumin appeared to be one such molecule. No cross reactions were noted between antibodies to HDI and another widely used industrial isocyanate, toluene diisocyanate (TDI). Antigens effective in detecting antibodies to HDI or HMI were tested for ability to detect reaginic antibodies in a worker with clinical "HDI" asthma. Using a radioimmunoassay (RAST), antibodies reacted with conjugates containing either HDI or HMI as haptens. In addition, the prevalance of HDI polyisocyanates (Desmodur N) in spray paints prompted its use as a hapten. Antibodies reacted with Desmodur N antigen conjugates in RAST. RAST inhibition further indicated that Desmodur N antigen reacted more readily with the patient's antibodies than did HDI or HMI antigens. These results suggest that the patient may have been exposed to HDI polyisocyanates in spray paint application. Use of Rast inhibition for diagnosis of sensitivity may indicate the precise sensitizing agent within a mixture.

  11. Colorimetric determination of Al(III) based on the aggregation of gold nanoparticles functionalized with novel 4-benzoyl pyrazolone derivative

    NASA Astrophysics Data System (ADS)

    Abubaker, Mariam; Ngah, Che Wan Zanariah Che Wan; Ahmad, Musa; Kuswandi, Bambang

    2018-06-01

    A sensitive and selective colorimetric method has been developed for detection of Al3+ ion using 4-benzoyl pyrazolone-functionalized gold nanoparticles (BMPBP-AuNPs) as novel colorimetric probes. The BMPBP-AuNPs were characterized by UV-visible spectrometry and transmission electron microscopy (TEM). It was found that the addition of the Al3+ ions led to a rapid aggregation of the BMPBP-AuNPs, which changed the color of the mixture from red to blue. Furthermore, there was a shift in the characteristic surface plasmon resonance (SPR) peak from 524 to 650 nm of BMPBP-AuNPs, which confirmed that a good linear relation (R2 = 0.9935) was present between the absorption ratio of 524 and 650 nm. Also, the assay detected the Al3+ ion concentrations in the linear range 0-12 ppm with the detection limit is 0.05 ppm. Finally, the synthesized BMPBP-AuNPs were successfully used as a colorimetric sensor for the selective and sensitive detection of the Al3+ ions in water samples.

  12. Nonlinear optical imaging for sensitive detection of crystals in bulk amorphous powders.

    PubMed

    Kestur, Umesh S; Wanapun, Duangporn; Toth, Scott J; Wegiel, Lindsay A; Simpson, Garth J; Taylor, Lynne S

    2012-11-01

    The primary aim of this study was to evaluate the utility of second-order nonlinear imaging of chiral crystals (SONICC) to quantify crystallinity in drug-polymer blends, including solid dispersions. Second harmonic generation (SHG) can potentially exhibit scaling with crystallinity between linear and quadratic depending on the nature of the source, and thus, it is important to determine the response of pharmaceutical powders. Physical mixtures containing different proportions of crystalline naproxen and hydroxyl propyl methyl cellulose acetate succinate (HPMCAS) were prepared by blending and a dispersion was produced by solvent evaporation. A custom-built SONICC instrument was used to characterize the SHG intensity as a function of the crystalline drug fraction in the various samples. Powder X-ray diffraction (PXRD) and Raman spectroscopy were used as complementary methods known to exhibit linear scaling. SONICC was able to detect crystalline drug even in the presence of 99.9 wt % HPMCAS in the binary mixtures. The calibration curve revealed a linear dynamic range with a R(2) value of 0.99 spanning the range from 0.1 to 100 wt % naproxen with a root mean square error of prediction of 2.7%. Using the calibration curve, the errors in the validation samples were in the range of 5%-10%. Analysis of a 75 wt % HPMCAS-naproxen solid dispersion with SONICC revealed the presence of crystallites at an earlier time point than could be detected with PXRD and Raman spectroscopy. In addition, results from the crystallization kinetics experiment using SONICC were in good agreement with Raman spectroscopy and PXRD. In conclusion, SONICC has been found to be a sensitive technique for detecting low levels (0.1% or lower) of crystallinity, even in the presence of large quantities of a polymer. Copyright © 2012 Wiley-Liss, Inc.

  13. Upconversion luminescence nanosensor for TNT selective and label-free quantification in the mixture of nitroaromatic explosives.

    PubMed

    Ma, Yingxin; Wang, Leyu

    2014-03-01

    This paper reports a rapid, sensitive, and selective nanosensor for the detection of 2,4,6-trinitrotoluene (TNT) in the mixture aqueous solution of nitroaromatics independent of immunoassay or molecularly imprinted technology and complicated instruments. Despite many strategies including immunoassay and molecularly imprinted technologies been successfully developed for the detection of TNT, it is not easy to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their very similar chemical structures and properties. In this work, the amine functionalized NaYF4:Yb(3+)/Er(3+) upconversion luminescence nanoparticles (UCNPs) whose excitation (980 nm) and emission (543 nm) wavelength were far from the absorbance bands of other usual interference nitroaromatics including 2,4-dinitrotoluene (DNT), nitrobenzene (NB), and especially TNP, were utilized as the luminescent nanosensors for TNT luminescence detection. To make these UCNPs highly water stable and render the charge transfer from UCNPs to TNT easier, amino groups were introduced onto the surface of the UCNPs by coating a polymer layer of ethylene glycol dimethacrylate (EGDMA) hybridized with 3-aminopropyltriethoxysilane (APTS). After binding with TNT through amino groups on the UCNPs, the naked eye visible green upconversion luminescence of the UCNPs was dramatically quenched and thus a sensitive UC luminescence nanosensor was developed for TNT detection. However, other nitroaromatics including TNP, DNT, and NB have no influence on the green UC luminescence and thus no influence on the TNT detection. The luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-9.0 µg/mL with the 3σ limit of detection (LOD) of 9.7 ng/mL. The present studies provide a novel and facile strategy to fabricate the upconversion luminescence sensors with highly selective recognition ability in aqueous media and are desirable for label free analysis of TNT in mixed solution independent of immunoassay and molecularly imprinted technology and complicated instruments. © 2013 Published by Elsevier B.V.

  14. Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)

    NASA Astrophysics Data System (ADS)

    Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer

    2009-02-01

    Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.

  15. Extended PCR conditions to reduce drop-out frequencies in low template STR typing including unequal mixtures.

    PubMed

    Weiler, Natalie E C; Matai, Anuska S; Sijen, Titia

    2012-01-01

    Forensic laboratories employ various approaches to obtain short tandem repeat (STR) profiles from minimal traces (<100 pg DNA input). Most approaches aim to sensitize DNA profiling by increasing the amplification level by a higher cycle number or enlarging the amount of PCR products analyzed during capillary electrophoresis. These methods have limitations when unequal mixtures are genotyped, since the major component will be over-amplified or over-loaded. This study explores an alternative strategy for improved detection of the minor components in low template (LT) DNA typing that may be better suited for the detection of the minor component in mixtures. The strategy increases the PCR amplification efficiency by extending the primer annealing time several folds. When the AmpFℓSTR(®) Identifiler(®) amplification parameters are changed to an annealing time of 20 min during all 28 cycles, the drop-out frequency is reduced for both pristine DNA and single or multiple donor mock case work samples. In addition, increased peak heights and slightly more drop-ins are observed while the heterozygous peak balance remains similar as with the conventional Identifiler protocol. By this extended protocol, full DNA profiles were obtained from only 12 sperm heads (which corresponds to 36 pg of DNA) that were collected by laser micro dissection. Notwithstanding the improved detection, allele drop-outs do persist, albeit in lower frequencies. Thus a LT interpretation strategy such as deducing consensus profiles from multiple independent amplifications is appropriate. The use of extended PCR conditions represents a general approach to improve detection of unequal mixtures as shown using four commercially available kits (AmpFℓSTR(®) Identifiler, SEfiler Plus, NGM and Yfiler). The extended PCR protocol seems to amplify more of the molecules in LT samples during PCR, which results in a lower drop-out frequency. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. The stabilization of unstable detonation waves for the mixture of nitromethane/methanol

    NASA Astrophysics Data System (ADS)

    Utkin, A. V.; Koldunov, S. A.; Mochalova, V. M.; Torunov, S. I.; Lapin, S. M.

    2015-11-01

    Using a laser interferometer VISAR the measurements of the particle velocity profiles in detonation waves for nitromethane/methanol mixtures with additions of a sensitizer diethylenetriamine were conducted. It is shown that the detonation front in a mixture of nitromethane/methanol is unstable and sensitizer is an effective method for the flow stabilization. If the diluent concentration is less than 10%, the detonation front is stabilized by adding of 1% diethylenetriamine. At higher concentrations of methanol, the sensitizer does not reject instability, but the amplitude of oscillations decreases in several times. An increase of the limit concentration of methanol at the addition of diethylenetriamine to the mixture was found.

  17. High-Throughput Determination and Characterization of Short-, Medium-, and Long-Chain Chlorinated Paraffins in Human Blood.

    PubMed

    Li, Tong; Wan, Yi; Gao, Shixiong; Wang, Beili; Hu, Jianying

    2017-03-21

    The industrial chlorinated paraffins (CPs) are comprised of short-chain (SCCPs), medium chain (MCCPs), and long chain (LCCPs) CPs. Although SCCPs and MCCPs are environmentally ubiquitous, little is known about CPs in humans. This study established a method for simultaneous determination of 261 SCCP, MCCP, and LCCP congener groups in one injection by reversed ultrahigh-pressure liquid chromatography coupled with chlorine-enhanced electron spray ionization-quadrupole time-of-flight mass spectrometry. The method yielded good peak shapes, high sensitivities, and low coeluted interferences for all examined CPs. LCCPs with carbon numbers of 21 to 27 were detected in their standard technical mixtures, and MCCPs and LCCPs impurities were detected in the LCCP and MCCP standard technical mixtures, respectively, causing quantification deviations when these mixtures were used for calibration. After considering these impurities' contribution to the total concentrations, the quantification accuracies for ∑SCCPs, ∑MCCPs, and ∑LCCPs ranged from 95.1 ± 8.4% to 105.6 ± 9.2% in the eight CP technical mixtures. The method was successfully applied to determine CPs in about 6 g human blood samples from a general population, and estimated ∑SCCP, ∑MCCP, and ∑LCCP concentrations to be 370-35 000, 130-3200, and 22-530 ng/g lipid weight (n = 50), respectively. A comparison of blood and soil/air CP profiles from the same areas suggested a relatively higher potential for the accumulation of SCCPs, compared with MCCPs, in humans.

  18. Multiple-clone infections of Plasmodium vivax: definition of a panel of markers for molecular epidemiology.

    PubMed

    de Souza, Aracele M; de Araújo, Flávia C F; Fontes, Cor J F; Carvalho, Luzia H; de Brito, Cristiana F A; de Sousa, Taís N

    2015-08-25

    Plasmodium vivax infections commonly contain multiple genetically distinct parasite clones. The detection of multiple-clone infections depends on several factors, such as the accuracy of the genotyping method, and the type and number of the molecular markers analysed. Characterizing the multiplicity of infection has broad implications that range from population genetic studies of the parasite to malaria treatment and control. This study compared and evaluated the efficiency of neutral and non-neutral markers that are widely used in studies of molecular epidemiology to detect the multiplicity of P. vivax infection. The performance of six markers was evaluated using 11 mixtures of DNA with well-defined proportions of two different parasite genotypes for each marker. These mixtures were generated by mixing cloned PCR products or patient-derived genomic DNA. In addition, 51 samples of natural infections from the Brazil were genotyped for all markers. The PCR-capillary electrophoresis-based method was used to permit direct comparisons among the markers. The criteria for differentiating minor peaks from artifacts were also evaluated. The analysis of DNA mixtures showed that the tandem repeat MN21 and the polymorphic blocks 2 (msp1B2) and 10 (msp1B10) of merozoite surface protein-1 allowed for the estimation of the expected ratio of both alleles in the majority of preparations. Nevertheless, msp1B2 was not able to detect the majority of multiple-clone infections in field samples; it identified only 6 % of these infections. The merozoite surface protein-3 alpha and microsatellites (PvMS6 and PvMS7) did not accurately estimate the relative clonal proportions in artificial mixtures, but the microsatellites performed well in detecting natural multiple-clone infections. Notably, the use of a less stringent criterion to score rare alleles significantly increased the sensitivity of the detection of multi-clonal infections. Depending on the type of marker used, a considerable amplification bias was observed, which may have serious implications for the characterization of the complexity of a P. vivax infection. Based on the performance of markers in artificial mixtures of DNA and natural infections, a minimum panel of four genetic markers (PvMS6, PvMS7, MN21, and msp1B10) was defined, and these markers are highly informative regarding the genetic variability of P. vivax populations.

  19. Fourth-derivative synchronous spectrofluorimetry and HPLC with fluorescence detection as two analytical techniques for the simultaneous determination of itopride and domperidone.

    PubMed

    Ibrahim, Fawzia; Nasr, Jenny Jeehan

    2016-02-01

    Two simple, rapid and sensitive methods, namely, fourth-derivative synchronous spectrofluorimetry (method I) and HPLC with fluorescence detection (method II) were developed for the simultaneous analysis of a binary mixture of itopride HCl (ITP) and domperidone (DOM) without prior separation. The first method was based on measuring the fourth derivative of the synchronous fluorescence spectra of the two drugs at Δλ = 40 nm in methanol. The different experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully optimized. Chromatographic separation was performed in < 6.0 min using a RP C18 column (250 mm × 4.6 mm i.d., 5 µm particle size) with fluorescence detection at 344 nm after excitation at 285 nm. A mobile phase composed of a mixture of 0.02 M phosphate buffer with acetonitrile in a ratio of 55 : 45, pH 4.5, was used at a flow rate of 1 mL/min. Linearity ranges were found to be 0.1-2 µg/mL for ITP in both methods, whereas those for DOM were found to be 0.08-2 and 0.05-1.5 µg/mL in methods I and II, respectively. The proposed methods were successfully applied for the determination of the studied drugs in synthetic mixtures and laboratory-prepared tablets. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Enhanced Sensitive Immunoassay: Noncompetitive Phage Anti-Immune Complex Assay for the Determination of Malachite Green and Leucomalachite Green

    PubMed Central

    2015-01-01

    To develop a more sensitive immunoassay for malachite green (MG) and leucomalachite green (LMG), we identified the immunocomplex binding phage-borne peptides for use in the noncompetitive phage anti-immunocomplex assay (PHAIA). An anti-LMG monoclonal antibody (mAb) was used to select immunocomplex binding peptides from a circular random eight-amino-acid phage-displayed library. After three rounds of panning-elution, five peptides that bound the LMG–mAb immunocomplex were obtained. One of the phage-borne peptide clones that resulted in an assay with the highest sensitivity was chosen for further research. The concentration of LMG producing 50% of the saturated signal and the limit of detection of the assay were 7.02 and 0.55 ng/mL, respectively, with a linear range of 1.35 to 21.56 ng/mL. The PHAIA based on the same antibody was 16 times more sensitive compared to the competitive immunoassay. PHAIA was used to analyze LMG, MG, and two mixtures of spiked fish samples, with validation by high-performance liquid chromatography (HPLC) with fluorescence detector. Results showed a good correlation (R2LMG = 0.9841; R2MG = 0.993; R2Mixture = 0.9903) between the data of PHAIA and HPLC, thus the assay was an efficient method for monitoring food safety. PMID:25077381

  1. The Development of Lyophilized Loop-mediated Isothermal Amplification Reagents for the Detection of Coxiella burnetii.

    PubMed

    Chen, Hua-Wei; Ching, Wei-Mei

    2016-04-18

    Coxiella burnetii, the agent causing Q fever, is an obligate intracellular bacterium. PCR based diagnostic assays have been developed for detecting C. burnetii DNA in cell cultures and clinical samples. PCR requires specialized equipment and extensive end user training, and therefore, it is not suitable for routine work especially in a resource-constrained area. We have developed a loop-mediated isothermal amplification (LAMP) assay to detect the presence of C. burnetii in patient samples. This method is performed at a single temperature around 60 °C in a water bath or heating block. The sensitivity of this LAMP assay is very similar to PCR with a detection limit of about 25 copies per reaction. This report describes the preparation of the reaction using lyophilized reagents and visualization of results using hydroxynaphthol blue (HNB) or a UV lamp with fluorescent intercalating dye in the reaction. The LAMP reagents were lyophilized and stored at room temperature (RT) for one month without loss of detection sensitivity. This LAMP assay is particularly robust because the reaction mixture preparation does not involve complex steps. This method is ideal for use in resource-limited settings where Q fever is endemic.

  2. Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays.

    PubMed

    Qureshi, Anjum; Niazi, Javed H; Kallempudi, Saravan; Gurbuz, Yasar

    2010-06-15

    In this study, a highly sensitive and label-free multianalyte capacitive immunosensor was developed based on gold interdigitated electrodes (GID) capacitor arrays to detect a panel of disease biomarkers. C-reactive protein (CRP), TNFalpha, and IL6 have strong and consistent relationships between markers of inflammation and future cardiovascular risk (CVR) events. Early detection of a panel of biomarkers for a disease could enable accurate prediction of a disease risk. The detection of protein biomarkers was based on relative change in capacitive/dielectric properties. Two different lab-on-a-chip formats were employed for multiple biomarker detection on GID-capacitors. In format I, capacitor arrays were immobilized with pure forms of anti-CRP, -TNFalpha, and -IL6 antibodies in which each capacitor array contained a different immobilized antibody. Here, the CRP and IL6 were detected in the range 25 pg/ml to 25 ng/ml and 25 pg/ml to 1 ng/ml for TNFalpha in format I. Sensitive detection was achieved with chips co-immobilized (diluted) with equimolar mixtures of anti-CRP, -IL6, and -TNFalpha antibodies (format II) in which all capacitors in an array were identical and tested for biomarkers with sequential incubation. The resulting response to CRP, IL6, and TNFalpha in format II for all biomarkers was found to be within 25 pg/ml to 25 ng/ml range. The capacitive biosensor for panels of inflammation and CVR markers show significant clinical value and provide great potential for detection of biomarker panel in suspected subjects for early diagnosis. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Performance evaluation of the Abbott RealTime HCV Genotype II for hepatitis C virus genotyping.

    PubMed

    Sohn, Yong-Hak; Ko, Sun-Young; Kim, Myeong Hee; Oh, Heung-Bum

    2010-04-01

    The Abbott RealTime hepatitis C virus (HCV) Genotype II (Abbott Molecular Inc.) for HCV genotyping, which uses real-time PCR technology, has recently been developed. Accuracy and sensitivity of detection were assessed using the HCV RNA PHW202 performance panel (SeraCare Life Sciences). Consistency with restriction fragment mass polymorphism (RFMP) data, cross-reactivity with other viruses, and the ability to detect minor strains in mixtures of genotypes 1 and 2 were evaluated using clinical samples. All performance panel viruses were correctly genotyped at levels of >500 IU/mL. Results were 100% concordant with RFMP genotypic data (66/66). However, 5% (3/66) of the samples examined displayed probable genotypic cross reactivity. No cross reactivity with other viruses was evident. Minor strains in the mixtures were not effectively distinguished, even at quantities higher than the detection limit. The Abbott RealTime HCV Genotype II assay was very accurate and yielded results consistent with RFMP data. Although the assay has the advantages of automation and short turnaround time, we suggest that further improvements are necessary before it is used routinely in clinical practice. Efforts are needed to decrease cross reactivity among genotypes and to improve the ability to detect minor genotypes in mixed infections.

  4. Multispectral photoacoustic decomposition with localized regularization for detecting targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Tavakoli, Behnoosh; Chen, Ying; Guo, Xiaoyu; Kang, Hyun Jae; Pomper, Martin; Boctor, Emad M.

    2015-03-01

    Targeted contrast agents can improve the sensitivity of imaging systems for cancer detection and monitoring the treatment. In order to accurately detect contrast agent concentration from photoacoustic images, we developed a decomposition algorithm to separate photoacoustic absorption spectrum into components from individual absorbers. In this study, we evaluated novel prostate-specific membrane antigen (PSMA) targeted agents for imaging prostate cancer. Three agents were synthesized through conjugating PSMA-targeting urea with optical dyes ICG, IRDye800CW and ATTO740 respectively. In our preliminary PA study, dyes were injected in a thin wall plastic tube embedded in water tank. The tube was illuminated with pulsed laser light using a tunable Q-switch ND-YAG laser. PA signal along with the B-mode ultrasound images were detected with a diagnostic ultrasound probe in orthogonal mode. PA spectrums of each dye at 0.5 to 20 μM concentrations were estimated using the maximum PA signal extracted from images which are obtained at illumination wavelengths of 700nm-850nm. Subsequently, we developed nonnegative linear least square optimization method along with localized regularization to solve the spectral unmixing. The algorithm was tested by imaging mixture of those dyes. The concentration of each dye was estimated with about 20% error on average from almost all mixtures albeit the small separation between dyes spectrums.

  5. Studies on the optical and photoelectric properties of anthocyanin and chlorophyll as natural co-sensitizers in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Nan, Hui; Shen, He-Ping; Wang, Gang; Xie, Shou-Dong; Yang, Gui-Jun; Lin, Hong

    2017-11-01

    Anthocyanin and Chlorophyll extracted from Troll flower and Cypress leaf respectively are used as natural sensitizers in dye sensitized solar cells (DSCs), with their optical and electrochemical properties investigated. UV-Vis absorption measurement showed that the mixture of two dyes enabled an enhanced and wider absorption in the wavelength range of 300 nm-700 nm compared to each single dye. FTIR results proved that anthocyanin is chemically adsorbed onto the TiO2 film, while it is physical adsorption for chlorophyll. The energy level offsets on the TiO2/dye/electrolyte interface for each dye and the dye mixture with different ratios were calculated from the electrochemical analysis, which affect the electron injection and dye regeneration efficiencies. The optimized ratio of the two dyes in the mixture was found to be ∼2:5, inducing both sufficient charge transfer driving force and minimal energy loss. By incorporating this mixture into the solar cell as co-adsorbing sensitizer, the photovoltaic performance was prominently improved compared with the single dye sensitization system.

  6. Nonlinear detection of secondary isotopic chemical shifts in NMR through spin noise

    PubMed Central

    Pöschko, Maria Theresia; Rodin, Victor V.; Schlagnitweit, Judith; Müller, Norbert; Desvaux, Hervé

    2017-01-01

    The detection of minor species in the presence of large amounts of similar main components remains a key challenge in analytical chemistry, for instance, to obtain isotopic fingerprints. As an alternative to the classical NMR scheme based on coherent excitation and detection, here we introduce an approach based on spin-noise detection. Chemical shifts and transverse relaxation rates are determined using only the detection circuit. Thanks to a nonlinear effect in mixtures with small chemical shift dispersion, small signals on top of a larger one can be observed with increased sensitivity as bumps on a dip; the latter being the signature of the main magnetization. Experimental observations are underpinned by an analytical theory: the coupling between the magnetization and the coil provides an amplified detection capability of both small static magnetic field inhomogeneities and small NMR signals. This is illustrated by two-bond 12C/13C isotopic measurements. PMID:28067218

  7. Real-time reverse transcription-polymerase chain reaction assays for identification of wild poliovirus 1 & 3.

    PubMed

    Sharma, Deepa K; Nalavade, Uma P; Deshpande, Jagadish M

    2015-10-01

    The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolated in India since 2000. The specificity of the rRT-PCR assays was evaluated using WPV1 and WPV3 of different genetic lineages, non-polio enteroviruses (NPEVs) and mixtures of wild/wild and wild/Sabin vaccine strains. The sensitivity of the assays was determined by testing serial 10-fold dilutions of wild poliovirus 1 and 3 stock suspensions of known titre. No cross-reactivity with Sabin strains, intertypic wild poliovirus isolates or 27 types of NPEVs across all the four Enterovirus species was found for both the wild poliovirus 1 and 3 rRT-PCR assays. All WPV1 and WPV3 strains isolated since 2000 were successfully amplified. The rRT-PCR assays detected 10 4.40 CCID 50 /ml of WPV1 and 10 4.00 CCID 50 /ml of WPV3, respectively either as single isolate or mixture with Sabin vaccine strains or intertypic wild poliovirus. rRT-PCR assays for WPV1 and WPV3 have been validated to detect all the genetic variations of the WPV1 and WPV3 isolated in India for the last decade. When used in combination with the current rRT-PCR assay testing was complete for confirmation of the presence of wild poliovirus in intratypic mixtures.

  8. Simultaneous determination of benznidazole and itraconazole using spectrophotometry applied to the analysis of mixture: A tool for quality control in the development of formulations

    NASA Astrophysics Data System (ADS)

    Pinho, Ludmila A. G.; Sá-Barreto, Lívia C. L.; Infante, Carlos M. C.; Cunha-Filho, Marcílio S. S.

    2016-04-01

    The aim of this work was the development of an analytical procedure using spectrophotometry for simultaneous determination of benznidazole (BNZ) and itraconazole (ITZ) in a medicine used for the treatment of Chagas disease. In order to achieve this goal, the analysis of mixtures was performed applying the Lambert-Beer law through the absorbances of BNZ and ITZ in the wavelengths 259 and 321 nm, respectively. Diverse tests were carried out for development and validation of the method, which proved to be selective, robust, linear, and precise. The lower limits of detection and quantification demonstrate its sensitivity to quantify small amounts of analytes, enabling its application for various analytical purposes, such as dissolution test and routine assays. In short, the quantification of BNZ and ITZ by analysis of mixtures had shown to be efficient and cost-effective alternative for determination of these drugs in a pharmaceutical dosage form.

  9. [Analysis of pesticides including chlorine in welsh onions and mushrooms using gas chromatograph with an atomic emission detector (GC-AED)].

    PubMed

    Tateishi, Yukinari; Takano, Ichiro; Kobayashi, Maki; Tamura, Yasuhiro; Tomizawa, Sanae; Sakai, Naoko; Kamijo, Kyoko; Nagayama, Toshihiro; Kamata, Kunihiro

    2004-12-01

    An analytical method for the determination of 32 kinds of pesticide residues in onions, Welsh onions and mushrooms using gas chromatograph with an atomic emission detector (GC-AED) was developed. The pesticides were extracted with acetone-n-hexane (2:3) mixture. The crude extract was partitioned between 5% sodium chloride and ethyl acetate-n-hexane (1:4) mixture. The extract was passed through a Florisil mini-column for cleanup with 10 mL of acetone-n-hexane (1:9) mixture. Although the sensitivity of GC-AED was inferior to that of GC-ECD, GC-AED has a superior element-selectivity. Therefore pesticide residues in foods could be analyzed more exactly by using GC-AED. Thirty-two pesticides including chlorine in onion, Welsh onion and shiitake mushroom were detected without interference. Recoveries of these pesticides from samples determined by GC-AED were 64-114%, except for a few pesticides.

  10. Proteomic studies in zebrafish liver cells exposed to the brominated flame retardants HBCD and TBBPA.

    PubMed

    Kling, Peter; Förlin, Lars

    2009-10-01

    Proteomic effect screening in zebrafish liver cells was performed to generate hypotheses regarding single and mixed exposure to the BFRs HBCD and TBBPA. Responses at sublethal exposure were analysed by two-dimensional gel electrophoresis followed by MALDI-TOF and FT-ICR protein identification. Mixing of HBCD and TBBPA at sublethal doses of individual substances seemed to increase toxicity. Proteomic analyses revealed distinct exposure-specific and overlapping responses suggesting novel mechanisms with regard to HBCD and TBBPA exposure. While distinct HBCD responses were related to decreased protein metabolism, TBBPA revealed effects related to protein folding and NADPH production. Overlapping responses suggest increased gluconeogenesis (GAPDH and aldolase) while distinct mixture effects suggest a pronounced NADPH production and changes in proteins related to cell cycle control (prohibitin and crk-like oncogene). We conclude that mixtures containing HBCD and TBBPA may result in unexpected effects highlighting proteomics as a sensitive tool for detecting and hypothesis generation of mixture effects.

  11. Single-Scan Multidimensional NMR Analysis of Mixtures at Sub-Millimolar Concentrations by using SABRE Hyperpolarization.

    PubMed

    Daniele, Valeria; Legrand, François-Xavier; Berthault, Patrick; Dumez, Jean-Nicolas; Huber, Gaspard

    2015-11-16

    Signal amplification by reversible exchange (SABRE) is a promising method to increase the sensitivity of nuclear magnetic resonance (NMR) experiments. However, SABRE-enhanced (1)H NMR signals are short lived, and SABRE is often used to record 1D NMR spectra only. When the sample of interest is a complex mixture, this results in severe overlaps for (1)H spectra. In addition, the use of a co-substrate, whose signals may obscure the (1) H spectra, is currently the most efficient way to lower the detection limit of SABRE experiments. Here, we describe an approach to obtain clean, SABRE-hyperpolarized 2D (1)H NMR spectra of mixtures of small molecules at sub-millimolar concentrations in a single scan. The method relies on the use of para-hydrogen together with a deuterated co-substrate for hyperpolarization and ultrafast 2D NMR for acquisition. It is applicable to all substrates that can be polarized with SABRE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Simultaneous determination of benznidazole and itraconazole using spectrophotometry applied to the analysis of mixture: A tool for quality control in the development of formulations.

    PubMed

    Pinho, Ludmila A G; Sá-Barreto, Lívia C L; Infante, Carlos M C; Cunha-Filho, Marcílio S S

    2016-04-15

    The aim of this work was the development of an analytical procedure using spectrophotometry for simultaneous determination of benznidazole (BNZ) and itraconazole (ITZ) in a medicine used for the treatment of Chagas disease. In order to achieve this goal, the analysis of mixtures was performed applying the Lambert-Beer law through the absorbances of BNZ and ITZ in the wavelengths 259 and 321 nm, respectively. Diverse tests were carried out for development and validation of the method, which proved to be selective, robust, linear, and precise. The lower limits of detection and quantification demonstrate its sensitivity to quantify small amounts of analytes, enabling its application for various analytical purposes, such as dissolution test and routine assays. In short, the quantification of BNZ and ITZ by analysis of mixtures had shown to be efficient and cost-effective alternative for determination of these drugs in a pharmaceutical dosage form. Copyright © 2016. Published by Elsevier B.V.

  13. Synchronized flash photolysis and pulse deposition in matrix isolation experiments

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1978-01-01

    An apparatus is described which permits flash photolysis of a pulse-deposited gas mixture in a matrix isolation experiment. This technique obviates the limitations of in situ photolysis imposed by the cage effect and by secondary photolysis. The matrix is deposited in pulses at 30-s intervals and photolyzed sequentially by four synchronized flashlamps approximately 1 ms before the pulse strikes the cold surface. Pulsed deposition maintains adequate isolation and causes line narrowing, which enhances spectral sensitivity. The efficacy of flash photolysis combined with pulsed deposition for producing and trapping transient species was demonstrated by infrated detection of CF3 (from photolysis of CF3I/Ar mixtures) and of ClCO (from photolysis of Cl2/CO/Ar mixtures). The apparatus was used to study the photolytic decomposition of gaseous tricarbonylironcyclobutadiene, C4H4Fe(CO)3. The results indicate that the primary photolytic step is not elimination of C4H4, as suggested earlier, but rather of CO.

  14. DN/DG Screening of Environmental Swipe Samples: FY2016 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasgow, David C.; Croft, Stephen; Venkataraman, Ramkumar

    The Delayed Neutron Delayed Gamma (DNDG) technique provides a new analytical capability to the International Atomic Energy Agency (IAEA) for detecting undeclared nuclear activities. IAEA’s Long Term R&D (LTRD) plan has a stated high urgency need to develop elemental and isotopic signatures of nuclear fuel cycle activities and processes (LTRD 2.2). The new DNDG capability is used to co-detect both uranium and plutonium as an extension of a DN only method that is already being utilized by the IAEA for the analysis of swipes to inform on undeclared nuclear activities. Analytical method involving irradiation of swipe samples potentially containing tracemore » quantities of fissile material in a thermal neutron field, followed by the counting of delayed neutrons, is a well-known technique in the field of safeguards and nonproliferation. It is used for detecting the presence of microscopic amounts of fissile material, (typically a linear combination of 233U, 235U, 239Pu, and 241Pu)and quantifying it in terms of the equivalent mass of 235U. The delayed neutron (DN) technique is very sensitive and is been routinely employed at the High Flux Isotope Reactor (HFIR) facility at Oak Ridge National Laboratory (ORNL). Both uranium and plutonium are of high safeguards value. However, the DN technique is not well suited for distinguishing between U and Pu isotopes since the decay curves overlap closely. The delayed gamma (DG) technique will help detect the presence of 239Pu in a mixture of U and Pu. Thus the DNDG approach combines the best of both worlds; the sensitivity of DN counting and the isotopic specificity of DG counting. The present work seeks to build on the delayed neutron and delayed gamma methods that have been developed at ORNL. It is recognized that the distribution profile of heavy fission products remains fairly invariant for the fissile nuclides whereas the distribution of light fission products varies from one isotope to another. That is, the ratio of the yield of a light fission fragment to a heavy fission fragments is isotope specific. Measurement of the ratio of the net full energy peak (FEP) from low/high mass fission products is an elegant way to characterize the fraction of fissile materials present in a mixture. By empirically calibrating the ratio of the net FEP as a function of known concentration of the binary mixture, one can determine the fraction of fissile isotopes in an unknown sample. In the work done in fiscal year (FY) 2016, samples of single fissile material isotopes as well as binary mixtures were irradiated in a well thermalized irradiation field in the HFIR. Delayed neutron counting was performed using the neutron counter at the HFIR Neutron Activation Analysis (NAA) laboratory. Delayed gamma counting was performed using a shielded high purity germanium (HPGe) detector. Delayed neutron decay curve results highlighted the difficulty of distinguishing between U and Pu isotopes, and the need for including the delayed gamma component. Based on delayed gamma spectrometry, twelve ratios of low mass/high fission product gamma ray FEP have been identified as valid candidates. Linearity of the ratios, as a function of 239Pu fraction in 235U+ 239Pu mixtures, was confirmed for the low mass/high mass candidates that were selected. The DNDG method we are spearheading allows not only the presence of total fissile content to be detected, but whether the material is predominantly U or predominantly Pu, or a mixture. This provides additional SG relevant information.« less

  15. Ultra-Sensitive Lab-on-a-Chip Detection of Sudan I in Food using Plasmonics-Enhanced Diatomaceous Thin Film.

    PubMed

    Kong, Xianming; Squire, Kenny; Chong, Xinyuan; Wang, Alan X

    2017-09-01

    Sudan I is a carcinogenic compound containing an azo group that has been illegally utilized as an adulterant in food products to impart a bright red color to foods. In this paper, we develop a facile lab-on-a-chip device for instant, ultra-sensitive detection of Sudan I from real food samples using plasmonics-enhanced diatomaceous thin film, which can simultaneously perform on-chip separation using thin layer chromatography (TLC) and highly specific sensing using surface-enhanced Raman scattering (SERS) spectroscopy. Diatomite is a kind of nature-created photonic crystal biosilica with periodic pores and was used both as the stationary phase of the TLC plate and photonic crystals to enhance the SERS sensitivity. The on-chip chromatography capability of the TLC plate was verified by isolating Sudan I in a mixture solution containing Rhodamine 6G, while SERS sensing was achieved by spraying gold colloidal nanoparticles into the sensing spot. Such plasmonics-enhanced diatomaceous film can effectively detect Sudan I with more than 10 times improvement of the Raman signal intensity than commercial silica gel TLC plates. We applied this lab-on-a-chip device for real food samples and successfully detected Sudan I in chili sauce and chili oil down to 1 ppm, or 0.5 ng/spot. This on-chip TLC-SERS biosensor based on diatomite biosilica can function as a cost-effective, ultra-sensitive, and reliable technology for screening Sudan I and many other illicit ingredients to enhance food safety.

  16. Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy.

    PubMed

    He, Yabai; Kan, Ruifeng; Englich, Florian V; Liu, Wenqing; Orr, Brian J

    2010-09-13

    The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.

  17. Future water quality monitoring--adapting tools to deal with mixtures of pollutants in water resource management.

    PubMed

    Altenburger, Rolf; Ait-Aissa, Selim; Antczak, Philipp; Backhaus, Thomas; Barceló, Damià; Seiler, Thomas-Benjamin; Brion, Francois; Busch, Wibke; Chipman, Kevin; de Alda, Miren López; de Aragão Umbuzeiro, Gisela; Escher, Beate I; Falciani, Francesco; Faust, Michael; Focks, Andreas; Hilscherova, Klara; Hollender, Juliane; Hollert, Henner; Jäger, Felix; Jahnke, Annika; Kortenkamp, Andreas; Krauss, Martin; Lemkine, Gregory F; Munthe, John; Neumann, Steffen; Schymanski, Emma L; Scrimshaw, Mark; Segner, Helmut; Slobodnik, Jaroslav; Smedes, Foppe; Kughathas, Subramaniam; Teodorovic, Ivana; Tindall, Andrew J; Tollefsen, Knut Erik; Walz, Karl-Heinz; Williams, Tim D; Van den Brink, Paul J; van Gils, Jos; Vrana, Branislav; Zhang, Xiaowei; Brack, Werner

    2015-04-15

    Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ecotoxicological evaluation of propranolol hydrochloride and losartan potassium to Lemna minor L. (1753) individually and in binary mixtures.

    PubMed

    Godoy, Aline A; Kummrow, Fábio; Pamplin, Paulo Augusto Z

    2015-07-01

    Antihypertensive pharmaceuticals, including the beta-blockers, are one of the most detected therapeutic classes in the environment. The ecotoxicity of propranolol hydrochloride and losartan potassium was evaluated, both individually and combined in a binary mixture, by using the Lemna minor growth inhibition test. The endpoints evaluated in the single-pharmaceutical tests were frond number, total frond area and fresh weight. For the evaluation of the mixture toxicity, the selected endpoint was frond number. Water quality criteria values (WQC) were derived for the protection of freshwater and saltwater pelagic communities regarding the effects induced by propranolol and losartan using ecotoxicological data from the literature, including our data. The risks associated with both pharmaceutical effects on non-target organisms were quantified through the measured environmental concentration (MEC)/predicted-no-effect concentration (PNEC) ratios. For propranolol, the total frond area was the most sensitive endpoint (EC50 = 77.3 mg L(-1)), while for losartan there was no statistically significant difference between the endpoints. Losartan is only slightly more toxic than propranolol. Both concentration addition and independent action models overestimated the mixture toxicity of the pharmaceuticals at all the effect concentration levels evaluated. The joint action of both pharmaceuticals showed an antagonistic interaction to L. minor. Derived WQC assumed lower values for propranolol than for losartan. The MEC/PNEC ratios showed that propranolol may pose a risk for the most sensitive aquatic species, while acceptable risks posed by losartan were estimated for most of aquatic matrices. To the authors knowledge these are the first data about losartan toxicity for L. minor.

  19. Quantitative Detection of Streptococcus pneumoniae in Nasopharyngeal Secretions by Real-Time PCR

    PubMed Central

    Greiner, Oliver; Day, Philip J. R.; Bosshard, Philipp P.; Imeri, Fatime; Altwegg, Martin; Nadal, David

    2001-01-01

    Streptococcus pneumoniae is an important cause of community-acquired pneumonia. However, in this setting the diagnostic sensitivity of blood cultures is below 30%. Since during such infections changes in the amounts of S. pneumoniae may also occur in the upper respiratory tract, quantification of these bacteria in nasopharnygeal secretions (NPSs) may offer a suitable diagnostic approach. Real-time PCR offers a sensitive, efficient, and routinely reproducible approach to quantification. Using primers and a fluorescent probe specific for the pneumolysin gene, we were able to detect DNA from serial dilutions of S. pneumoniae cells in which the quantities of DNA ranged from the amounts extracted from 1 to 106 cells. No difference was noted when the same DNA was mixed with DNA extracted from NPSs shown to be deficient of S. pneumoniae following culture, suggesting that this bacterium can be detected and accurately quantitated in clinical samples. DNAs from Haemophilus influenzae, Moraxella catarrhalis, or alpha-hemolytic streptococci other than S. pneumoniae were not amplified or were only weakly amplified when there were ≥106 cells per reaction mixture. When the assay was applied to NPSs from patients with respiratory tract infections, the assay performed with a sensitivity of 100% and a specificity of up to 96% compared to the culture results. The numbers of S. pneumoniae organisms detected by real-time PCR correlated with the numbers detected by semiquantitative cultures. A real-time PCR that targeted the pneumolysin gene provided a sensitive and reliable means for routine rapid detection and quantification of S. pneumoniae present in NPSs. This assay may serve as a tool to study changes in the amounts of S. pneumoniae during lower respiratory tract infections. PMID:11526140

  20. Rapid, sensitive and simultaneous determination of fluorescence-labeled polyamines in human hair by high-pressure liquid chromatography coupled with electrospray-ionization time-of-flight mass spectrometry.

    PubMed

    Sugiura, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa; Inagaki, Shinsuke

    2008-09-26

    The rapid, sensitive and simultaneous determination of six polyamines, i.e., ornithine (ORN), 1,3-diaminopropane (DAP), putrescine (PUT), cadaverine (CAD), spermidine (SPD) and spermine (SPM), in human hairs was performed by ultra-performance liquid chromatography (UPLC) with fluorescence (FL) detection and electrospray-ionization time-of-flight mass spectrometry (ESI-TOF-MS). The primary (-NH(2)) and secondary (-NH) amines in the polyamine structures were first labeled with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) at 60 degrees C for 30 min in the mixture of 0.1M borax (pH 9.3) and acetonitrile (CH(3)CN). The resulting derivatives were perfectly separated using an ACQUITY UPLC BEH C(18) column (1.7 microm, 100 mm x 2.1mm i.d.) by a gradient elution with a mixture of water-acetonitrile containing 0.1% formic acid (HCOOH). The separated polyamine derivatives were sensitively detected with both FL and TOF-MS. The detection limits in FL and TOF-MS were 11-86 and 2-5 fmol, respectively. However, the determination of several polyamines by FL detection was interfered with by endogenous substances in the hair. Therefore, the simultaneous determination in hair was carried out by the combination of UPLC separation and the ESI-TOF-MS detection. The structures of the polyamines were identified from the protonated-molecular ions [M+H](+) obtained from the TOF-MS measurement. A good linearity was achieved from the calibration curves, that was obtained by plotting the peak area ratios of the analytes relative to the internal standard (IS), i.e., 1,6-diaminohexane (DAH), against the injected amounts of each polyamine (0.05-50 pmol, r(2)>0.999). The proposed method was applied to the determination in the hairs of healthy volunteers. The mean concentrations of ORN, DAP, PUT, CAD, SPD and SPM in 1mg of human hairs (n=20) were 1.46, 0.18, 1.18, 0.11, 1.97 and 0.98 pmol, respectively. Because the proposed method provides a good mass accuracy and the trace detection of the polyamines in hair, this analytical technique seems to be applicable for the determination of various biological compounds in hair.

  1. High Degree of Interlaboratory Reproducibility of Human Immunodeficiency Virus Type 1 Protease and Reverse Transcriptase Sequencing of Plasma Samples from Heavily Treated Patients

    PubMed Central

    Shafer, Robert W.; Hertogs, Kurt; Zolopa, Andrew R.; Warford, Ann; Bloor, Stuart; Betts, Bradley J.; Merigan, Thomas C.; Harrigan, Richard; Larder, Brendon A.

    2001-01-01

    We assessed the reproducibility of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) and protease sequencing using cryopreserved plasma aliquots obtained from 46 heavily treated HIV-1-infected individuals in two laboratories using dideoxynucleotide sequencing. The rates of complete sequence concordance between the two laboratories were 99.1% for the protease sequence and 99.0% for the RT sequence. Approximately 90% of the discordances were partial, defined as one laboratory detecting a mixture and the second laboratory detecting only one of the mixture's components. Only 0.1% of the nucleotides were completely discordant between the two laboratories, and these were significantly more likely to occur in plasma samples with lower plasma HIV-1 RNA levels. Nucleotide mixtures were detected at approximately 1% of the nucleotide positions, and in every case in which one laboratory detected a mixture, the second laboratory either detected the same mixture or detected one of the mixture's components. The high rate of concordance in detecting mixtures and the fact that most discordances between the two laboratories were partial suggest that most discordances were caused by variation in sampling of the HIV-1 quasispecies by PCR rather than by technical errors in the sequencing process itself. PMID:11283081

  2. Massively Parallel Sequencing of Forensic STRs Using the Ion Chef™ and the Ion S5™ XL Systems.

    PubMed

    Wang, Le; Chen, Man; Wu, Bo; Liu, Yi-Cheng; Zhang, Guang-Feng; Jiang, Li; Xu, Xiu-Lan; Zhao, Xing-Chun; Ji, An-Quan; Ye, Jian

    2018-03-01

    Next-generation sequencing (NGS) has been used to genotype forensic short tandem repeat (STR) markers for individual identification and kinship analysis. STR data from several NGS platforms have been published, but forensic application trials using the Ion S5™ XL system have not been reported. In this work, we report sensitivity, reproducibility, mixture, simulated degradation, and casework sample data on the Ion Chef™ and S5™ XL systems using an early access 25-plex panel. Sensitivity experiments showed that over 97% of the alleles were detectable with down to 62 pg input of genomic DNA. In mixture studies, alleles from minor contributors were correctly assigned at 1:9 and 9:1 ratios. NGS successfully gave 12 full genotype results from 13 challenging casework samples, compared with five full results using the CE platform. In conclusion, the Ion Chef™ and the Ion S5™ XL systems provided an alternative and promising approach for forensic STR genotyping. © 2018 American Academy of Forensic Sciences.

  3. An investigation of the matrix sensitivity of refinery gas analysis using gas chromatography with flame ionisation detection.

    PubMed

    Ferracci, Valerio; Brown, Andrew S; Harris, Peter M; Brown, Richard J C

    2015-02-27

    The response of a flame ionisation detector (FID) on a gas chromatograph to methane, ethane, propane, i-butane and n-butane in a series of multi-component refinery gas standards was investigated to assess the matrix sensitivity of the instrument. High-accuracy synthetic gas standards, traceable to the International System of Units, were used to minimise uncertainties. The instrument response exhibited a small dependence on the component amount fraction: this behaviour, consistent with that of another FID, was thoroughly characterised over a wide range of component amount fractions and was shown to introduce a negligible bias in the analysis of refinery gas samples, provided a suitable reference standard is employed. No significant effects of the molar volume, density and viscosity of the gas mixtures on the instrument response were observed, indicating that the FID is suitable for the analysis of refinery gas mixtures over a wide range of component amount fractions provided that appropriate drift-correction procedures are employed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Application of Fiber Optic ATR-FTIR Methods for In Situ Characterization of Protein Delivery Systems in Real Time

    PubMed Central

    McFearin, Cathryn L.; Sankaranarayanan, Jagadis; Almutairi, Adah

    2011-01-01

    Real Time Characterization of Protein Delivery Systems A fiber optic coupled ATR-FTIR spectroscopy technique was applied to the study of two different therapeutic delivery systems, acid degradable hydrogels and nanoparticles. Real time exponential release of a model protein, human serum albumin (HSA), was observed from two different polymeric hydrogels formulated with a pH sensitive crosslinker. Spectroscopic examination of nanoparticles formulated with an acid degradable polymer shell and encapsulated HSA exhibited vibrational signatures characteristic of both particle and payload when exposed to lowered pH conditions demonstrating the ability of this methodology to simultaneously measure phenomena arising from a system with a mixture of components. In addition, thorough characterization of these pH sensitive delivery vehicles without encapsulated protein was also accomplished in order to separate the effects of the payload during degradation. By providing in situ, real time detection in combination with the ability to specifically identify different components in a mixture without involved sample preparation and minimal sample disturbance, the versatility and suitability of this type of experiment for research in the pharmaceutical field is demonstrated. PMID:21476582

  5. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach

    USGS Publications Warehouse

    Martin, Julien; Royle, J. Andrew; MacKenzie, Darryl I.; Edwards, Holly H.; Kery, Marc; Gardner, Beth

    2011-01-01

    Summary 1. Binomial mixture models use repeated count data to estimate abundance. They are becoming increasingly popular because they provide a simple and cost-effective way to account for imperfect detection. However, these models assume that individuals are detected independently of each other. This assumption may often be violated in the field. For instance, manatees (Trichechus manatus latirostris) may surface in turbid water (i.e. become available for detection during aerial surveys) in a correlated manner (i.e. in groups). However, correlated behaviour, affecting the non-independence of individual detections, may also be relevant in other systems (e.g. correlated patterns of singing in birds and amphibians). 2. We extend binomial mixture models to account for correlated behaviour and therefore to account for non-independent detection of individuals. We simulated correlated behaviour using beta-binomial random variables. Our approach can be used to simultaneously estimate abundance, detection probability and a correlation parameter. 3. Fitting binomial mixture models to data that followed a beta-binomial distribution resulted in an overestimation of abundance even for moderate levels of correlation. In contrast, the beta-binomial mixture model performed considerably better in our simulation scenarios. We also present a goodness-of-fit procedure to evaluate the fit of beta-binomial mixture models. 4. We illustrate our approach by fitting both binomial and beta-binomial mixture models to aerial survey data of manatees in Florida. We found that the binomial mixture model did not fit the data, whereas there was no evidence of lack of fit for the beta-binomial mixture model. This example helps illustrate the importance of using simulations and assessing goodness-of-fit when analysing ecological data with N-mixture models. Indeed, both the simulations and the goodness-of-fit procedure highlighted the limitations of the standard binomial mixture model for aerial manatee surveys. 5. Overestimation of abundance by binomial mixture models owing to non-independent detections is problematic for ecological studies, but also for conservation. For example, in the case of endangered species, it could lead to inappropriate management decisions, such as downlisting. These issues will be increasingly relevant as more ecologists apply flexible N-mixture models to ecological data.

  6. Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food.

    PubMed

    Yang, Minghui; Kostov, Yordan; Bruck, Hugh A; Rasooly, Avraham

    2009-08-15

    Staphylococcal enterotoxins (SEs) are major cause of foodborne diseases, so sensitive detection (<1 ng/ml) methods are needed for SE detection in food. The surface area, geometric and physical properties of gold nanoparticles make them well-suited for enhancing interactions with biological molecules in assays. To take advantage of the properties of gold nanoparticles for immunodetection, we have developed a gold nanoparticle-based enhanced chemiluminescence (ECL) immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. Anti-SEB primary antibodies were immobilized onto a gold nanoparticle surface through physical adsorption and then the antibody-gold nanoparticle mixture was immobilized onto a polycarbonate surface. SEB was detected by a "sandwich-type" ELISA assay on the polycarbonate surface with a secondary antibody and ECL detection. The signal from ECL was read using a point-of-care detector based on a cooled charge-coupled device (CCD) sensor or a plate reader. The system was used to test for SEB in buffer and various foods (mushrooms, tomatoes, and baby food meat). The limit of detection was found to be approximately 0.01 ng/mL, which is approximately 10 times more sensitive than traditional ELISA. The gold nanoparticles were relatively easy to use for antibody immobilization because of their physical adsorption mechanism; no other reagents were required for immobilization. The use of our simple and inexpensive detector combined with the gold nanoparticle-based ECL method described here is adaptable to simplify and increase sensitivity of any immunological assay and for point-of-care diagnostics.

  7. Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food

    PubMed Central

    Yang, Minghui; Kostov, Yordan; Bruck, Hugh A.; Rasooly, Avraham

    2010-01-01

    Staphylococcal enterotoxins (SEs) are major cause of foodborne diseases, so sensitive detection (<1 ng/ml) methods are needed for SE detection in food. The surface area, geometric and physical properties of gold nanoparticles make them well-suited for enhancing interactions with biological molecules in assays. To take advantage of the properties of gold nanoparticles for immunodetection, we have developed a gold nanoparticle-based enhanced chemiluminescence (ECL) immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. Anti-SEB primary antibodies were immobilized onto a gold nanoparticle surface through physical adsorption and then the antibody–gold nanoparticle mixture was immobilized onto a polycarbonate surface. SEB was detected by a “sandwich-type” ELISA assay on the polycarbonate surface with a secondary antibody and ECL detection. The signal from ECL was read using a point-of-care detector based on a cooled charge-coupled device (CCD) sensor or a plate reader. The system was used to test for SEB in buffer and various foods (mushrooms, tomatoes, and baby food meat). The limit of detection was found to be ~0.01 ng/mL, which is ~10 times more sensitive than traditional ELISA. The gold nanoparticles were relatively easy to use for antibody immobilization because of their physical adsorption mechanism; no other reagents were required for immobilization. The use of our simple and inexpensive detector combined with the gold nanoparticle-based ECL method described here is adaptable to simplify and increase sensitivity of any immunological assay and for point-of-care diagnostics. PMID:19540011

  8. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans.

    PubMed

    Derby, Charles D; Sorensen, Peter W

    2008-07-01

    This manuscript reviews the chemical ecology of two of the major aquatic animal models, fish and crustaceans, in the study of chemoreception. By necessity, it is restricted in scope, with most emphasis placed on teleost fish and decapod crustaceans. First, we describe the nature of the chemical world perceived by fish and crustaceans, giving examples of the abilities of these animals to analyze complex natural odors. Fish and crustaceans share the same environments and have evolved some similar chemosensory features: the ability to detect and discern mixtures of small metabolites in highly variable backgrounds and to use this information to identify food, mates, predators, and habitat. Next, we give examples of the molecular nature of some of these natural products, including a description of methodologies used to identify them. Both fish and crustaceans use their olfactory and gustatory systems to detect amino acids, amines, and nucleotides, among many other compounds, while fish olfactory systems also detect mixtures of sex steroids and prostaglandins with high specificity and sensitivity. Third, we discuss the importance of plasticity in chemical sensing by fish and crustaceans. Finally, we conclude with a description of how natural chemical stimuli are processed by chemosensory systems. In both fishes and crustaceans, the olfactory system is especially adept at mixture discrimination, while gustation is well suited to facilitate precise localization and ingestion of food. The behaviors of both fish and crustaceans can be defined by the chemical worlds in which they live and the abilities of their nervous systems to detect and identify specific features in their domains. An understanding of these worlds and the sensory systems that provide the animals with information about them provides insight into the chemical ecology of these species.

  9. Identification of Pork Adulteration in Processed Meat Products Using the Developed Mitochondrial DNA-Based Primers

    PubMed Central

    Ha, Jimyeong; Kim, Sejeong; Lee, Jeeyeon; Lee, Soomin; Lee, Heeyoung; Choi, Yukyung; Oh, Hyemin; Yoon, Yohan

    2017-01-01

    The identification of pork in commercially processed meats is one of the most crucial issues in the food industry because of religious food ethics, medical purposes, and intentional adulteration to decrease production cost. This study therefore aimed to develop a method for the detection of pork adulteration in meat products using primers specific for pig mitochondrial DNA. Mitochondrial DNA sequences for pig, cattle, chicken, and sheep were obtained from GenBank and aligned. The 294-bp mitochondrial DNA D-loop region was selected as the pig target DNA sequence and appropriate primers were designed using the MUSCLE program. To evaluate primer sensitivity, pork-beef-chicken mixtures were prepared as follows: i) 0% pork-50% beef-50% chicken, ii) 1% pork-49.5% beef-49.5% chicken, iii) 2% pork-49% beef-49% chicken, iv) 5% pork-47.5% beef-47.5% chicken, v) 10% pork-45% beef-45% chicken, and vi) 100% pork-0% beef-0% chicken. In addition, a total of 35 commercially packaged products, including patties, nuggets, meatballs, and sausages containing processed chicken, beef, or a mixture of various meats, were purchased from commercial markets. The primers developed in our study were able to detect as little as 1% pork in the heat treated pork-beef-chicken mixtures. Of the 35 processed products, three samples were pork positive despite being labeled as beef or chicken only or as a beef-chicken mix. These results indicate that the developed primers could be used to detect pork adulteration in various processed meat products for application in safeguarding religious food ethics, detecting allergens, and preventing food adulteration. PMID:28747833

  10. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    NASA Astrophysics Data System (ADS)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  11. Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR).

    PubMed

    Felder, Eva; Mossbrugger, Ilona; Lange, Mirko; Wölfel, Roman

    2012-09-01

    Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR) assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5'-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.

  12. Novel selective TOCSY method enables NMR spectral elucidation of metabolomic mixtures

    NASA Astrophysics Data System (ADS)

    MacKinnon, Neil; While, Peter T.; Korvink, Jan G.

    2016-11-01

    Complex mixture analysis is routinely encountered in NMR-based investigations. With the aim of component identification, spectral complexity may be addressed chromatographically or spectroscopically, the latter being favored to reduce sample handling requirements. An attractive experiment is selective total correlation spectroscopy (sel-TOCSY), which is capable of providing tremendous spectral simplification and thereby enhancing assignment capability. Unfortunately, isolating a well resolved resonance is increasingly difficult as the complexity of the mixture increases and the assumption of single spin system excitation is no longer robust. We present TOCSY optimized mixture elucidation (TOOMIXED), a technique capable of performing spectral assignment particularly in the case where the assumption of single spin system excitation is relaxed. Key to the technique is the collection of a series of 1D sel-TOCSY experiments as a function of the isotropic mixing time (τm), resulting in a series of resonance intensities indicative of the underlying molecular structure. By comparing these τm -dependent intensity patterns with a library of pre-determined component spectra, one is able to regain assignment capability. After consideration of the technique's robustness, we tested TOOMIXED firstly on a model mixture. As a benchmark we were able to assign a molecule with high confidence in the case of selectively exciting an isolated resonance. Assignment confidence was not compromised when performing TOOMIXED on a resonance known to contain multiple overlapping signals, and in the worst case the method suggested a follow-up sel-TOCSY experiment to confirm an ambiguous assignment. TOOMIXED was then demonstrated on two realistic samples (whisky and urine), where under our conditions an approximate limit of detection of 0.6 mM was determined. Taking into account literature reports for the sel-TOCSY limit of detection, the technique should reach on the order of 10 μ M sensitivity. We anticipate this technique will be highly attractive to various analytical fields facing mixture analysis, including metabolomics, foodstuff analysis, pharmaceutical analysis, and forensics.

  13. Detection of Mycobacterium bovis in Bovine and Bubaline Tissues Using Nested-PCR for TbD1

    PubMed Central

    Araújo, Cristina P.; Osório, Ana Luiza A. R.; Jorge, Kláudia S. G.; Ramos, Carlos Alberto N.; Filho, Antonio Francisco S.; Vidal, Carlos Eugênio S.; Roxo, Eliana; Nishibe, Christiane; Almeida, Nalvo F.; Júnior, Antônio A. F.; Silva, Marcio R.; Neto, José Diomedes B.; Cerqueira, Valíria D.; Zumárraga, Martín J.; Araújo, Flábio R.

    2014-01-01

    In the present study, a nested-PCR system, targeting the TbD1 region, involving the performance of conventional PCR followed by real-time PCR, was developed to detect Mycobacterium bovis in bovine/bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. In terms of analytical sensitivity, the DNA of M. bovis AN5 was detected up to 1.56 ng with conventional PCR, 97.6 pg with real-time PCR, and 1.53 pg with nested-PCR in the reaction mixture. The nested-PCR exhibited 100% analytical specificity for M. bovis when tested with the DNA of reference strains of environmental mycobacteria and closely-related Actinomycetales. A clinical sensitivity value of 76.0% was detected with tissue samples from animals that exhibited positive results in the comparative intradermal tuberculin test (CITT), as well as from those with lesions compatible with tuberculosis (LCT) that rendered positive cultures. A clinical specificity value of 100% was detected with tissue samples from animals with CITT- results, with no visible lesions (NVL) and negative cultures. No significant differences were found between the nested-PCR and culture in terms of detecting CITT+ animals with LCT or with NVL. No significant differences were recorded in the detection of CITT- animals with NVL. However, nested-PCR detected a significantly higher number of positive animals than the culture in the group of animals exhibiting LCT with no previous records of CITT. The use of the nested-PCR assay to detect M. bovis in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis. PMID:24618787

  14. Detection of Mycobacterium bovis in bovine and bubaline tissues using nested-PCR for TbD1.

    PubMed

    Araújo, Cristina P; Osório, Ana Luiza A R; Jorge, Kláudia S G; Ramos, Carlos Alberto N; Filho, Antonio Francisco S; Vidal, Carlos Eugênio S; Roxo, Eliana; Nishibe, Christiane; Almeida, Nalvo F; Júnior, Antônio A F; Silva, Marcio R; Neto, José Diomedes B; Cerqueira, Valíria D; Zumárraga, Martín J; Araújo, Flábio R

    2014-01-01

    In the present study, a nested-PCR system, targeting the TbD1 region, involving the performance of conventional PCR followed by real-time PCR, was developed to detect Mycobacterium bovis in bovine/bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. In terms of analytical sensitivity, the DNA of M. bovis AN5 was detected up to 1.56 ng with conventional PCR, 97.6 pg with real-time PCR, and 1.53 pg with nested-PCR in the reaction mixture. The nested-PCR exhibited 100% analytical specificity for M. bovis when tested with the DNA of reference strains of environmental mycobacteria and closely-related Actinomycetales. A clinical sensitivity value of 76.0% was detected with tissue samples from animals that exhibited positive results in the comparative intradermal tuberculin test (CITT), as well as from those with lesions compatible with tuberculosis (LCT) that rendered positive cultures. A clinical specificity value of 100% was detected with tissue samples from animals with CITT- results, with no visible lesions (NVL) and negative cultures. No significant differences were found between the nested-PCR and culture in terms of detecting CITT+ animals with LCT or with NVL. No significant differences were recorded in the detection of CITT- animals with NVL. However, nested-PCR detected a significantly higher number of positive animals than the culture in the group of animals exhibiting LCT with no previous records of CITT. The use of the nested-PCR assay to detect M. bovis in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis.

  15. Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas.

    PubMed

    Suslick, Benjamin A; Feng, Liang; Suslick, Kenneth S

    2010-03-01

    The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 degrees C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures.

  16. Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas

    PubMed Central

    Suslick, Benjamin A.; Feng, Liang; Suslick, Kenneth S.

    2010-01-01

    The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 °C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures. PMID:20143838

  17. Odor Perception by Dogs: Evaluating Two Training Approaches for Odor Learning of Sniffer Dogs.

    PubMed

    Fischer-Tenhagen, Carola; Johnen, Dorothea; Heuwieser, Wolfgang; Becker, Roland; Schallschmidt, Kristin; Nehls, Irene

    2017-06-01

    In this study, a standardized experimental set-up with various combinations of herbs as odor sources was designed. Two training approaches for sniffer dogs were compared; first, training with a pure reference odor, and second, training with a variety of odor mixtures with the target odor as a common denominator. The ability of the dogs to identify the target odor in a new context was tested. Six different herbs (basil, St. John's wort, dandelion, marjoram, parsley, ribwort) were chosen to produce reference materials in various mixtures with (positive) and without (negative) chamomile as the target odor source. The dogs were trained to show 1 of 2 different behaviors, 1 for the positive, and 1 for the negative sample as a yes/no task. Tests were double blind with one sample presented at a time. In both training approaches, dogs were able to detect chamomile as the target odor in any presented mixture with an average sensitivity of 72% and a specificity of 84%. Dogs trained with odor mixture containing the target odor had more correct indications in the transfer task. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Process Dissociation and Mixture Signal Detection Theory

    ERIC Educational Resources Information Center

    DeCarlo, Lawrence T.

    2008-01-01

    The process dissociation procedure was developed in an attempt to separate different processes involved in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal detection models. The dual process model is shown to be a special case. The mixture signal detection model is applied to data from a widely…

  19. The predatory mite Phytoseiulus persimilis does not perceive odor mixtures as strictly elemental objects.

    PubMed

    van Wijk, Michiel; de Bruijn, Paulien J A; Sabelis, Maurice W

    2010-11-01

    Phytoseiulus persimilis is a predatory mite that in absence of vision relies on the detection of herbivore-induced plant odors to locate its prey, the two-spotted spider-mite Tetranychus urticae. This herbivorous prey is feeding on leaves of a wide variety of plant species in different families. The predatory mites respond to numerous structurally different compounds. However, typical spider-mite induced plant compounds do not attract more predatory mites than plant compounds not associated with prey. Because the mites are sensitive to many compounds, components of odor mixtures may affect each other's perception. Although the response to pure compounds has been well documented, little is known how interactions among compounds affect the response to odor mixtures. We assessed the relation between the mites' responses elicited by simple mixtures of two compounds and by the single components of these mixtures. The preference for the mixture was compared to predictions under three conceptual models, each based on one of the following assumptions: (1) the responses elicited by each of the individual components can be added to each other; (2) they can be averaged; or (3) one response overshadows the other. The observed response differed significantly from the response predicted under the additive response, average response, and overshadowing response model in 52, 36, and 32% of the experimental tests, respectively. Moreover, the behavioral responses elicited by individual compounds and their binary mixtures were determined as a function of the odor concentration. The relative contribution of each component to the behavioral response elicited by the mixture varied with the odor concentration, even though the ratio of both compounds in the mixture was kept constant. Our experiments revealed that compounds that elicited no response had an effect on the response elicited by binary mixtures that they were part of. The results are not consistent with the hypothesis that P. persimilis perceives odor mixtures as a collection of strictly elemental objects. They suggest that odor mixtures rather are perceived as one synthetic whole.

  20. Detection of β-Lactams and Chloramphenicol Residues in Raw Milk-Development and Application of an HPLC-DAD Method in Comparison with Microbial Inhibition Assays.

    PubMed

    Karageorgou, Eftychia; Christoforidou, Sofia; Ioannidou, Maria; Psomas, Evdoxios; Samouris, Georgios

    2018-06-01

    The present study was carried out to assess the detection sensitivity of four microbial inhibition assays (MIAs) in comparison with the results obtained by the High Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) method for antibiotics of the β-lactam group and chloramphenicol in fortified raw milk samples. MIAs presented fairly good results when detecting β-lactams, whereas none were able to detect chloramphenicol at or above the permissible limits. HPLC analysis revealed high recoveries of examined compounds, whereas all detection limits observed were lower than their respective maximum residue limits (MRL) values. The extraction and clean-up procedure of antibiotics was performed by a modified matrix solid phase dispersion procedure using a mixture of Plexa by Agilent and QuEChERS as a sorbent. The HPLC method developed was validated, determining the accuracy, precision, linearity, decision limit, and detection capability. Both methods were used to monitor raw milk samples of several cows and sheep, obtained from producers in different regions of Greece, for the presence of examined antibiotic residues. Results obtained showed that MIAs could be used effectively and routinely to detect antibiotic residues in several milk types. However, in some cases, spoilage of milk samples revealed that the kits' sensitivity could be strongly affected, whereas this fact does not affect the effectiveness of HPLC-DAD analysis.

  1. Detection and quantification of new psychoactive substances (NPSs) within the evolved "legal high" product, NRG-2, using high performance liquid chromatography-amperometric detection (HPLC-AD).

    PubMed

    Zuway, Khaled Y; Smith, Jamie P; Foster, Christopher W; Kapur, Nikil; Banks, Craig E; Sutcliffe, Oliver B

    2015-09-21

    The global increase in the production and abuse of cathinone-derived New Psychoactive Substances (NPSs) has developed the requirement for rapid, selective and sensitive protocols for their separation and detection. Electrochemical sensing of these compounds has been demonstrated to be an effective method for the in-field detection of these substances, either in their pure form or in the presence of common adulterants, however, the technique is limited in its ability to discriminate between structurally related cathinone-derivatives (for example: (±)-4′-methylmethcathinone (4-MMC, 2a) and (±)-4′-methyl-N-ethylmethcathinone (4-MEC, 2b) when they are both present in a mixture. In this paper we demonstrate, for the first time, the combination of HPLC-UV with amperometric detection (HPLC-AD) for the qualitative and quantitative analysis of 4-MMC and 4-MEC using either a commercially available impinging jet (LC-FC-A) or custom-made iCell channel (LC-FC-B) flow-cell system incorporating embedded graphite screen-printed macroelectrodes. The protocol offers a cost-effective, reproducible and reliable sensor platform for the simultaneous HPLC-UV and amperometric detection of the target analytes. The two systems have similar limits of detection, in terms of amperometric detection [LC-FC-A: 14.66 μg mL(-1) (2a) and 9.35 μg mL(-1) (2b); LC-FC-B: 57.92 μg mL(-1) (2a) and 26.91 μg mL(-1) (2b)], to the previously reported oxidative electrochemical protocol [39.8 μg mL(-1) (2a) and 84.2 μg mL(-1) (2b)], for two synthetic cathinones, prevalent on the recreational drugs market. Though not as sensitive as standard HPLC-UV detection, both flow cells show a good agreement, between the quantitative electroanalytical data, thereby making them suitable for the detection and quantification of 4-MMC and 4-MEC, either in their pure form or within complex mixtures. Additionally, the simultaneous HPLC-UV and amperometric detection protocol detailed herein shows a marked improvement and advantage over previously reported electroanalytical methods, which were either unable to selectively discriminate between structurally related synthetic cathinones (e.g. 4-MMC and 4-MEC) or utilised harmful and restrictive materials in their design.

  2. Total hydrocarbon analysis by ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Limero, Thomas F.; James, John T.

    1994-01-01

    Astronauts must be alerted quickly to chemical leaks that compromise their health and the success of their missions. An ideal leak detector would be equally sensitive to all compounds that might constitute a hazard and insensitive to nontoxic compounds. No ideal sensor exists; thus, selection of a methodology is a series of compromises. The commonly used methods are either insensitive at the low exposure levels set by OSHA, NASA, and other organizations or are selectively insensitive to important classes of chemicals such as Freons. After extensive study and experience, the Toxicology Group at JSC has selected ion mobility spectrometry (IMS) for development into a broad range, sensitive detector. In addition to the sensing method, signal processing is important leak detection because a background signal can be expected at all times. The leak-detecting instrument must be programmed to discriminate between authentic leaks and background fluctuations caused by routine operations. The results of an evaluation of the prototype THA is presented in terms related to spacecraft operations. The evaluation included determination of instrumental parameters such as stability and response times. We also included responses to some common components of spacecraft atmospheres in pure form and in binary and ternary mixtures. The output of the four algorithms to the mixtures was found to be noticeably different. These responses are compared on the basis of their utility for signaling a chemical leak. As a means of evaluating its resistance to a falsely positive response, the THA was challenged with carbon dioxide and methane, compounds whose concentrations normally increase in spacecraft air during human habitation. The instrument showed virtually no response to these interferences. Although the prototype THA is designed for space flight, this detector is expected to be useful for field screening at chemical waste dumps and other environmentally sensitive locations.

  3. Development of dispersive liquid-liquid microextraction technique using ternary solvents mixture followed by heating for the rapid and sensitive analysis of phthalate esters and di(2-ethylhexyl) adipate.

    PubMed

    Farajzadeh, Mir Ali; Khoshmaram, Leila

    2015-01-30

    In this study, for the first time, a dispersive liquid-liquid microextraction technique using a ternary solvent mixture is reported. In order to extract five phthalate esters and di(2-ethylhexyl) adipate with different polarities from aqueous samples, a simplex centroid experimental design method was used to select an optimal mixture of ternary solvents prior to gas chromatographyflame ionization detection. In this work, dimethyl formamide as a disperser solvent containing dichloromethane, chloroform, and carbon tetrachloride as a ternary extraction solvent mixture is injected into sample solution and a cloudy solution is formed. After centrifuging, 250μL of the obtained sedimented phase was transferred into another tube and 5μL DMF was added to it. Then, the tube was heated in a water bath at 75°C for 5min in order to evaporate the main portion of the extraction solvents. Finally, 2μL of the remained phase is injected into the separation system. Under the optimum extraction conditions, the method shows wide linear ranges and low limits of detection and quantification between 0.03-0.15 and 0.09-0.55μgL(-1), respectively. Enrichment factors and extraction recoveries are in the ranges of 980-4500 and 20-90%, respectively. The method is successfully applied in the determination of the target analytes in mineral water, soda, lemon juice, vinegar, dough, and yogurt packed in plastic packages. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Magneto-optical contrast in liquid-state optically detected NMR spectroscopy

    PubMed Central

    Pagliero, Daniela; Meriles, Carlos A.

    2011-01-01

    We use optical Faraday rotation (OFR) to probe nuclear spins in real time at high-magnetic field in a range of diamagnetic sample fluids. Comparison of OFR-detected NMR spectra reveals a correlation between the relative signal amplitude and the fluid Verdet constant, which we interpret as a manifestation of the variable detuning between the probe beam and the sample optical transitions. The analysis of chemical-shift-resolved, optically detected spectra allows us to set constraints on the relative amplitudes of hyperfine coupling constants, both for protons at chemically distinct sites and other lower-gyromagnetic-ratio nuclei including carbon, fluorine, and phosphorous. By considering a model binary mixture we observe a complex dependence of the optical response on the relative concentration, suggesting that the present approach is sensitive to the solvent-solute dynamics in ways complementary to those known in inductive NMR. Extension of these experiments may find application in solvent suppression protocols, sensitivity-enhanced NMR of metalloproteins in solution, the investigation of solvent-solute interactions, or the characterization of molecular orbitals in diamagnetic systems. PMID:22100736

  5. Development of an Early Warning Fire Detection System using Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Goswami, K.; Voevodkin, G.; Rubstov, V.; Lieberman, R.; Piltch, N.

    2001-01-01

    Combustion byproducts are numerous. A few examples of the gaseous byproducts include carbon dioxide, carbon monoxide, hydrogen chloride, hydrogen cyanide and ammonia. For detecting these chemical species, classic absorption spectroscopy has been used for many decades, but the sensitivity of steady-state methods is often unsuitable for the detection of trace compounds at the low levels (parts per million to parts per billion) appropriate for scientific purposes. This is particularly so for monitoring equipment, which must be compact and cost-effective, and which is often subjected to shock, vibration, and other environmental effects that can severely degrade the performance of high-sensitivity spectrometers in an aircraft. Steady-state techniques also suffer from a lack of specificity; the deconvolution of the spectra of complex mixtures is a laborious and error prone process. These problems are exacerbated in remote fiber-optic monitoring where, for practical reasons, the fundamental absorbance region of the spectrum (often between 3 and 8 microns) is inaccessible, and the low-strength, closely spaced, near-infrared overtone absorbance bands must be used. We circumvented these challenges by employing correlation spectroscopy, a variation of modulation spectroscopy.

  6. A sensitive HPLC-MS/MS method for the simultaneous detection of microbial transglutaminase, and bovine and porcine fibrinogen/thrombin in restructured meat.

    PubMed

    Jira, Wolfgang; Schwägele, Fredi

    2017-12-15

    A sensitive HPLC-MS/MS method for the simultaneous detection of microbial transglutaminase (TG) from Streptomyces mobaraensis, and bovine and porcine fibrinogen/thrombin in restructured meat was developed using tryptic marker peptides of TG (five markers), and bovine and porcine fibrinogen (six markers each). Meat binding experiments with beef and pork were performed using a technical TG mixture (Activa, Ajinomoto), and bovine and porcine plasmapowder FG (PPFG; Sonac B.V.). The method developed allows the simultaneous detection of the use of these cold-set binders in raw and heated samples. The peak areas of the fibrinogen marker peptides were increased by a factor of about 100, compared to blank values originating from the occurrence of residual blood in meat, using a concentration of 0.6% bovine and porcine PPFG. A differentiation between the use of blood plasma powder and PPFG using the ratios of fibrinogen to serotransferrin peptide peak areas seems to be possible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Validation of a sensitive DNA walking strategy to characterise unauthorised GMOs using model food matrices mimicking common rice products.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Taverniers, Isabel; De Loose, Marc; Van Nieuwerburgh, Filip; Deforce, Dieter; Roosens, Nancy H

    2015-04-15

    To identify unauthorised GMOs in food and feed matrices, an integrated approach has recently been developed targeting pCAMBIA family vectors, highly present in transgenic plants. Their presence is first assessed by qPCR screening and is subsequently confirmed by characterising the transgene flanking regions, using DNA walking. Here, the DNA walking performance has been thoroughly tested for the first time, regarding the targeted DNA quality and quantity. Several assays, on model food matrices mimicking common rice products, have allowed to determine the limit of detection as well as the potential effects of food mixture and processing. This detection system allows the identification of transgenic insertions as low as 10 HGEs and was not affected by the presence of untargeted DNA. Moreover, despite the clear impact of food processing on DNA quality, this method was able to cope with degraded DNA. Given its specificity, sensitivity, reliability, applicability and practicability, the proposed approach is a key detection tool, easily implementable in enforcement laboratories. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A Pentaplex PCR Assay for the Detection and Differentiation of Shigella Species

    PubMed Central

    Ojha, Suvash Chandra; Yean Yean, Chan; Ismail, Asma; Banga Singh, Kirnpal-Kaur

    2013-01-01

    The magnitude of shigellosis in developing countries is largely unknown because an affordable detection method is not available. Current laboratory diagnosis of Shigella spp. is laborious and time consuming and has low sensitivity. Hence, in the present study, a molecular-based diagnostic assay which amplifies simultaneously four specific genes to identify invC for Shigella genus, rfc for S. flexneri, wbgZ for S. sonnei, and rfpB for S. dysenteriae, as well as one internal control (ompA) gene, was developed in a single reaction to detect and differentiate Shigella spp. Validation with 120 Shigella strains and 37 non-Shigella strains yielded 100% specificity. The sensitivity of the PCR was 100 pg of genomic DNA, 5.4 × 104 CFU/ml, or approximately 120 CFU per reaction mixture of bacteria. The sensitivity of the pentaplex PCR assay was further improved following preincubation of the stool samples in Gram-negative broth. A preliminary study with 30 diarrhoeal specimens resulted in no cross-reaction with other non-Shigella strains tested. We conclude that the developed pentaplex PCR assay is robust and can provide information about the four target genes that are essential for the identification of the Shigella genus and the three Shigella species responsible for the majority of shigellosis cases. PMID:23509722

  9. Two different spectrofluorimetric methods for simultaneous determination of gemfibrozil and rosiglitazone in human plasma.

    PubMed

    El-Din, Mohie M K Sharaf; Attia, Khalid A M; Nassar, Mohamed W I; Kaddah, Mohamed M Y

    2010-10-15

    Two accurate, reliable, and highly sensitive spectrofluorimetric methods were developed for simultaneous determination of binary mixture gemfibrozil and rosiglitazone in human plasma without prior separation steps. The first method is based on synchronous fluorescence spectrometry using double scans. At Δλ=27nm, gemfibrozil yields detectable signal that is independent of the presence of rosiglitazone. Similarly, at Δλ=120nm the signal of rosiglitazone is not influenced by the presence of gemfibrozil. Signals at two wavelengths, 301 (Δλ=27nm) and 368nm (Δλ=120nm) vary linearly with gemfibrozil and rosiglitazone concentrations over the range 100-700ngmL(-1) (for gemfibrozil) and 20-140ngmL(-1) (for rosiglitazone), respectively. The limits of detection (LOD) were 2.3 and 2.72ngmL(-1) for gemfibrozil and rosiglitazone, respectively. The second method is based on the technique of simultaneous equations (Vierodt's method), in which 258nm was selected as the excitation wavelength. Two equations are constructed based on the fact that at ( λ(EM)₂=302 nm of gemfibrozil) and (λ(EM)₂=369 nm of rosiglitazone) the fluorescence of the mixture is the sum of the individual fluorescence of gemfibrozil and rosiglitazone. The limits of detection (LOD) were 28.1 and 23.63ngmL(-1) for gemfibrozil and rosiglitazone, respectively. The proposed methods were successfully applied for the determination of the two compounds in synthetic mixtures and in human plasma with a good recovery. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. [Determination of phenazine-1-carboxylic acid in anti-fungal agent M18 by high performance liquid chromatography].

    PubMed

    Zhu, D H; Zhu, X D; Xu, Y Q

    2001-11-01

    A reversed-phase HPLC method for the determination of phenazine-1-carboxylic acid (PCA) in antifungal agent M18 is established. The mobile phase was a mixture of MeOH-5 mmol/L phosphate buffer (pH 5.0) (60:40, volume ratio). The flow rate was 1.0 mL/min, and the detection wavelength was 248 nm. The linear range and detectable limit were 50 mg/L-500 mg/L and 30 mg/L respectively. The recovery was 97.53% and RSD was 1.5%. The method of PCA extraction and detection has proven to be much faster, simpler, more sensitive, accurate and reproducible than those reported already. The assay results can be used as a very important criterion for large-scale production.

  11. Forensic validation of the PowerPlex® ESI 16 STR Multiplex and comparison of performance with AmpFlSTR® SGM Plus®.

    PubMed

    Tucker, Valerie C; Kirkham, Amanda J; Hopwood, Andrew J

    2012-05-01

    We describe the forensic validation of Promega's PowerPlex® European Standard Investigator 16 (ESI 16) multiplex kit and compare results generated with the AmpFlSTR® SGM Plus® (SGM+) multiplex. ESI 16 combines the loci contained within the SGM+ multiplex with five additional loci: D2S441, D10S1248, D22S1045, D1S1656, and D12S391. A relative reduction in amplicon size of the SGM+ loci facilitates an increased robustness and amplification success of these amplicons with degraded DNA samples. Tests performed herein supplement ESI 16 data published previously with sensitivity, profile quality, mock casework, inhibitor and mixture study data collected in our laboratories in alignment with our internal technical and quality guidelines and those issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM), the DNA Advisory Board (DAB) and the DNA working group (DNAWG) of the European Network of Forensic Science Institutes (ENFSI). Full profiles were routinely generated from a fully heterozygous single source DNA template using 62.5 pg for ESI 16 and 500 pg for SGM+. This increase in sensitivity has a consequent effect on mixture analyses and the detection of minor mixture components. The improved PCR chemistry confers enhanced tolerance to high levels of laboratory prepared inhibitors compared with SGM+ results. In summary, our results demonstrate that the ESI 16 multiplex kit is more robust and sensitive compared with SGM+ and will be a suitable replacement system for the analysis of forensic DNA samples providing compliance with the European standard set of STR loci.

  12. Significant enhancement of 11-Hydroxy-THC detection by formation of picolinic acid esters and application of liquid chromatography/multi stage mass spectrometry (LC-MS(3) ): Application to hair and oral fluid analysis.

    PubMed

    Thieme, Detlef; Sachs, Ulf; Sachs, Hans; Moore, Christine

    2015-07-01

    Formation of picolinic acid esters of hydroxylated drugs or their biotransformation products is a promising tool to improve their mass spectrometric ionization efficiency, alter their fragmentation behaviour and enhance sensitivity and specificity of their detection. The procedure was optimized and tested for the detection of cannabinoids, which proved to be most challenging when dealing with alternative specimens, for example hair and oral fluid. In particular, the detection of the THC metabolites hydroxyl-THC and carboxy-THC requires ultimate sensitivity because of their poor incorporation into hair or saliva. Both biotransformation products are widely accepted as incorporation markers to distinguish drug consumption from passive contamination. The derivatization procedure was carried out by adding a mixture of picolinic acid, 4-(dimethylamino)pyridine and 2-methyl-6-nitrobenzoic anhydride in tetrahydrofuran/triethylamine to the dry extraction residues. Resulting derivatives were found to be very stable and could be reconstituted in aqueous or organic buffers and subsequently analyzed by liquid chromatography-mass spectrometry (LC-MS). Owing to the complex consecutive fragmentation patterns, the application of multistage MS3 proved to be extremely useful for a sensitive identification of doubly picolinated hydroxy-THC in complex matrices. The detection limits - estimated by comparison of corresponding signal-to-noise ratios - increased by a factor of 100 following picolination. All other species examined, like cannabinol, THC, cannabidiol, and carboxy-THC, could also be derivatized exhibiting only moderate sensitivity improvements. The assay was systematically tested using hair samples and exemplarily applied to oral fluid. Concentrations of OH-THC identified in THC-positive hair samples ranged from 0.02 to 0.29pg/mg. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Impact of solvent conditions on separation and detection of basic drugs by micro liquid chromatography-mass spectrometry under overloading conditions.

    PubMed

    Schubert, Birthe; Oberacher, Herbert

    2011-06-03

    In this study the impact of solvent conditions on the performance of μLC/MS for the analysis of basic drugs was investigated. Our aim was to find experimental conditions that enable high-performance chromatographic separation particularly at overloading conditions paired with a minimal loss of mass spectrometric detection sensitivity. A focus was put on the evaluation of the usability of different kinds of acidic modifiers (acetic acid (HOAc), formic acid (FA), methansulfonic acid (CH₃SO₃H), trifluoroacetic acid (TFA), pentafluoropropionic acid (PFPA), and heptafluorobutyric acid (HFBA)). The test mixture consisted of eleven compounds (bunitrolol, caffeine, cocaine, codeine, diazepam, doxepin, haloperidol, 3,4-methylendioxyamphetamine, morphine, nicotine, and zolpidem). Best chromatographic performance was obtained with the perfluorinated acids. Particularly, 0.010-0.050% HFBA (v/v) was found to represent a good compromise in terms of chromatographic performance and mass spectrometric detection sensitivity. Compared to HOAc, on average a 50% reduction of the peak widths was observed. The use of HFBA was particularly advantageous for polar compounds such as nicotine; only with such a hydrophobic ion-pairing reagent chromatographic retention of nicotine was observed. Best mass spectrometric performance was obtained with HOAc and FA. Loss of detection sensitivity induced by HFBA, however, was moderate and ranged from 0 to 40%, which clearly demonstrates that improved chromatographic performance is able to compensate to a large extent the negative effect of reduced ionization efficiency on detection sensitivity. Applications of μLC/MS for the qualitative and quantitative analysis of clinical and forensic toxicological samples are presented. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. A sensitive one-step method for quantitative detection of α-amylase in serum and urine using a personal glucose meter.

    PubMed

    Wang, Qing; Wang, Hui; Yang, Xiaohai; Wang, Kemin; Liu, Rongjuan; Li, Qing; Ou, Jinqing

    2015-02-21

    Assays of α-amylase (AMS) activity in serum and urine constitute the important indicator for the diagnosis of acute pancreatitis, mumps, renal disease and abdominal disorders. Since these diseases confer a heavy financial burden on the health care system, AMS detection in point-of-care is fundamental. Here, a one-step assay for direct determination of the AMS activity was developed using a portable personal glucose meter (PGM). In this assay, maltopentaose was used as a substrate for sensitive detection of AMS with the assistance of α-glucosidase. In the presence of AMS, maltopentaose can be readily hydrolyzed to form maltotriose and maltose quickly. With the enzymatic hydrolysis of α-glucosidase, maltotriose and maltose can be turned into glucose rapidly, which can be quantitatively measured using a portable PGM. This assay did not require any cumbersome and time consuming operations, such as surface modification, synthesis of invertase conjugate, washing and centrifugation. Detection of AMS can be achieved using only a one-step mixture, and the limit of detection was 20 U L(-1) which was lower than the clinical cutoff for AMS. More importantly, this sensitive and selective assay was also used for the detection of AMS in human serum/urine samples. The results showed that the recovery of AMS from human serum/urine samples was 91-107%. The rapid and easy-to-operate assay may have potential application in the fields of point-of-care (POC) clinical diagnosis, particularly in rural and remote areas where lab equipment may be limited.

  15. Research notes : evaluation of open-graded "F" mixtures for water sensitivity.

    DOT National Transportation Integrated Search

    1993-12-01

    In 1992, many "F" mixtures failed the Index of Retained Strength (IRS) used by ODOT to evaluate the water damage potential of asphalt concrete mixtures. Although "F" mixtures had difficulty passing the IRS test, ODOT engineers felt that the problem w...

  16. Antioxidant power as biochemical endpoint in bread for screening and early managing quality and toxicant-related safety anomalies in food production.

    PubMed

    Dragone, Roberto; Ermilov, Laura; Grasso, Gerardo; Maggioni, Silvia; Mantovani, Alberto; Frazzoli, Chiara

    2016-08-01

    Flaxseeds are both a food ingredient and a natural source of antioxidants (e.g. lignans, PUFAs) and pro-oxidant contaminants (e.g. cadmium): the variable mixture of anti- and pro-oxidant substances may impact on the redox homeostasis of flaxseed-enriched foods. The antioxidant power is studied here as biochemical activity of flaxseeds in white wheat bread and as endpoint for possible screening of anomalous variations of bioactive mixtures (antioxidants vs. prooxidants) in food matrices. A bioprobe assay based on the superoxide dismutase (SOD) enzyme (6 channels of the multiprobe bioelectronic platform BEST) was performed on white wheat bread with and without flaxseeds. Nine BEST channels were simultaneously used for validation and monitoring of measuring conditions (temperature, pH, conductivity). Findings were compared with quantitative analysis of antioxidants and pro-oxidant contaminants. Organic and aqueous extracts of both bread types were examined in parallel. The SOD-probe detected the difference in antioxidant power given by 10% flaxseed, thus supporting the use of antioxidant power detected by bioenzymatic screening as sensitive biochemical endpoint. Mixtures of bioactive molecules in foods generate biochemical activities that can be monitored as time-effective indicators of invariability, which is pivotal in the daily control of anomalies in food production and therefore in the protection of consumers' health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. RAPD/SCAR Approaches for Identification of Adulterant Breeds' Milk in Dairy Products.

    PubMed

    Cunha, Joana T; Domingues, Lucília

    2017-01-01

    Food safety and quality are nowadays a major consumers' concern. In the dairy industry the fraudulent addition of cheaper/lower-quality milks from nonlegitimate species/breeds compromises the quality and value of the final product. Despite the already existing approaches for identification of the species origin of milk, there is little information regarding differentiation at an intra-species level. In this protocol we describe a low-cost, sensitive, fast, and reliable analytical technique-Random Amplified Polymorphic DNA/Sequence Characterized Amplified Region (RAPD/SCAR)-capable of an efficient detection of adulterant breeds in milk mixtures used for fraudulent manufacturing of dairy products and suitable for the detection of milk adulteration in processed dairy foods.

  18. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities.

    PubMed

    Zhang, Xingwang; Zhou, Guangya; Shi, Peng; Du, Han; Lin, Tong; Teng, Jinghua; Chau, Fook Siong

    2016-03-15

    Complex refractive index sensing is proposed and experimentally demonstrated in optofluidic sensors based on silicon photonic crystal nanobeam cavities. The sensitivities are 58 and 139 nm/RIU, respectively, for the real part (n) and the imaginary part (κ) of the complex refractive index, and the corresponding detection limits are 1.8×10(-5) RIU for n and 4.1×10(-6) RIU for κ. Moreover, the capability of the complex refractive index sensing method to detect the concentration composition of the ternary mixture is demonstrated without the surface immobilization of functional groups, which is impossible to realize with the conventional refractive index sensing scheme.

  19. Sensitive ionization of non-volatile analytes using protein solutions as spray liquid in desorption electrospray ionization mass spectrometry.

    PubMed

    Zhu, Zhiqiang; Han, Jing; Zhang, Yan; Zhou, Yafei; Xu, Ning; Zhang, Bo; Gu, Haiwei; Chen, Huanwen

    2012-12-15

    Desorption electrospray ionization (DESI) is the most popular ambient ionization technique for direct analysis of complex samples without sample pretreatment. However, for many applications, especially for trace analysis, it is of interest to improve the sensitivity of DESI-mass spectrometry (MS). In traditional DESI-MS, a mixture of methanol/water/acetic acid is usually used to generate the primary ions. In this article, dilute protein solutions were electrosprayed in the DESI method to create multiply charged primary ions for the desorption ionization of trace analytes on various surfaces (e.g., filter paper, glass, Al-foil) without any sample pretreatment. The analyte ions were then detected and structurally characterized using a LTQ XL mass spectrometer. Compared with the methanol/water/acetic acid (49:49:2, v/v/v) solution, protein solutions significantly increased the signal levels of non-volatile compounds such as benzoic acid, TNT, o-toluidine, peptide and insulin in either positive or negative ion detection mode. For all the analytes tested, the limits of detection (LODs) were reduced to about half of the original values which were obtained using traditional DESI. The results showed that the signal enhancement is highly correlated with the molecular weight of the proteins and the selected solid surfaces. The proposed DESI method is a universal strategy for rapid and sensitive detection of trace amounts of strongly bound and/or non-volatile analytes, including explosives, peptides, and proteins. The results indicate that the sensitivity of DESI can be further improved by selecting larger proteins and appropriate solid surfaces. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Detection of mastitis in dairy cattle by use of mixture models for repeated somatic cell scores: a Bayesian approach via Gibbs sampling.

    PubMed

    Odegård, J; Jensen, J; Madsen, P; Gianola, D; Klemetsdal, G; Heringstad, B

    2003-11-01

    The distribution of somatic cell scores could be regarded as a mixture of at least two components depending on a cow's udder health status. A heteroscedastic two-component Bayesian normal mixture model with random effects was developed and implemented via Gibbs sampling. The model was evaluated using datasets consisting of simulated somatic cell score records. Somatic cell score was simulated as a mixture representing two alternative udder health statuses ("healthy" or "diseased"). Animals were assigned randomly to the two components according to the probability of group membership (Pm). Random effects (additive genetic and permanent environment), when included, had identical distributions across mixture components. Posterior probabilities of putative mastitis were estimated for all observations, and model adequacy was evaluated using measures of sensitivity, specificity, and posterior probability of misclassification. Fitting different residual variances in the two mixture components caused some bias in estimation of parameters. When the components were difficult to disentangle, so were their residual variances, causing bias in estimation of Pm and of location parameters of the two underlying distributions. When all variance components were identical across mixture components, the mixture model analyses returned parameter estimates essentially without bias and with a high degree of precision. Including random effects in the model increased the probability of correct classification substantially. No sizable differences in probability of correct classification were found between models in which a single cow effect (ignoring relationships) was fitted and models where this effect was split into genetic and permanent environmental components, utilizing relationship information. When genetic and permanent environmental effects were fitted, the between-replicate variance of estimates of posterior means was smaller because the model accounted for random genetic drift.

  1. High-performance liquid chromatography with peroxyoxalate chemiluminescence detection of bisphenol A migrated from polycarbonate baby bottles using 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride as a label.

    PubMed

    Sun, Y; Wada, M; Al-Dirbashi, O; Kuroda, N; Nakazawa, H; Nakashima, K

    2000-11-10

    A highly sensitive and selective high-performance liquid chromatographic method with peroxyoxalate chemiluminescence detection for the determination of bisphenol A at sub-ppb levels is described. Bisphenol A was derivatized with 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride and the excess unreacted reagent was removed by a simple solid-phase extraction procedure with recoveries of approximately 60%. The separation was carried out isocratically on an ODS column and the derivatized bisphenol A was detected by peroxyoxalate chemiluminescence. A mixture of bis[2-(3,6,9-trioxadecanyloxycarbonyl)-4-nitrophenyl]oxalate (0.6 mM) and hydrogen peroxide (25.0 mM) dissolved in acetonitrile was used as a chemiluminescence reagent solution with a mixture of imidazole-HNO3 buffer (40.0 mM, pH 7.0): acetonitrile (17:83, v/v) as a mobile phase. The linear standard curve was obtained over the range from 0.57 (2.5) to 22.8 (100) ppb (nM) (r=0.996) with a detection limit of 0.38 ppb (2.8 fmol on column) at a signal-to-noise ratio of 3. The method was successfully applied to the determination of bisphenol A in hot water in contact with commercially available baby bottle samples.

  2. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Net analyte signal-based simultaneous determination of ethanol and water by quartz crystal nanobalance sensor.

    PubMed

    Mirmohseni, A; Abdollahi, H; Rostamizadeh, K

    2007-02-28

    Net analyte signal (NAS)-based method called HLA/GO was applied for the selectively determination of binary mixture of ethanol and water by quartz crystal nanobalance (QCN) sensor. A full factorial design was applied for the formation of calibration and prediction sets in the concentration ranges 5.5-22.2 microg mL(-1) for ethanol and 7.01-28.07 microg mL(-1) for water. An optimal time range was selected by procedure which was based on the calculation of the net analyte signal regression plot in any considered time window for each test sample. A moving window strategy was used for searching the region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 600 s were used to determine mixtures of both compounds by HLA/GO method. The calculation of the net analytical signal using HLA/GO method allows determination of several figures of merit like selectivity, sensitivity, analytical sensitivity and limit of detection, for each component. To check the ability of the proposed method in the selection of linear regions of adsorption profile, a test for detecting non-linear regions of adsorption profile data in the presence of methanol was also described. The results showed that the method was successfully applied for the determination of ethanol and water.

  4. Highly sensitive detection of bovine serum albumin based on the aggregation of triangular silver nanoplates

    NASA Astrophysics Data System (ADS)

    Zhang, Ling Ling; Ma, Fang Fang; Kuang, Yang Fang; Cheng, Shu; Long, Yun Fei; Xiao, Qiu Guo

    2016-02-01

    A simple, fast and highly sensitive spectrophotometric method for the determination of bovine serum albumin (BSA) has been developed based on the interactions between triangular silver nanoplates (TAgNPs) and BSA in the presence of Britton-Robison buffer solution (BR). Particularly, the wavelength of absorption maximum (λmax) of TAgNPs is red shifted in the presence of BSA together with Britton-Robinson buffer solution (BR, pH = 2.56), and the color of the solution changed from blue to light blue. This may be due to the interactions between BSA molecules on the surface of TAgNPs through electrostatic forces, hydrogen bonds, hydrophobic effects and van der Waals forces at pH 2.56, which leads to the aggregation of TAgNPs. The determination of BSA was achieved by measuring the change of λmax corresponding to localized surface plasmon resonance (LSPR) from UV-visible spectrophotometry. It was found that the shift value in the wavelength of absorption maximum (Δλ, the difference in absorption maxima of the TAgNPs/BSA/BR mixture and the TAgNPs/BR mixture) was proportionate to the concentration of BSA in the range of 1.0 ng mL- 1 to 100.0 ng mL- 1 with the correlation coefficient of r = 0.9969. The detection limit (3 σ/k) for BSA was found to be as low as 0.5 ng mL- 1.

  5. Performance of mid infrared spectroscopy in skin cancer cell type identification

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen

    2017-02-01

    Marker free optical spectroscopy is a powerful tool for the rapid inspection of pathologically suspicious skin lesions and the non-invasive detection of early skin tumors. This goal can be reached by the combination of signal localization and the spectroscopical detection of chemical cell signatures. We here present the development and application of mid infrared spectroscopy (midIR) for the analysis of skin tumor cell types and three dimensional tissue phantoms towards the application of midIR spectroscopy for fast and reliable skin diagnostics. We developed standardized in vitro skin systems with increasing complexity, from single skin cell types as fibroblasts, keratinocytes and melanoma cells, to mixtures of these and finally three dimensional skin cancer phantoms. The cell systems were characterized with different systems in the midIR range up to 12 μm. The analysis of the spectra by novel data processing algorithms demonstrated the clear separation of all cell types, especially melanoma cells. Special attention and algorithm training was required for closely related mesenchymal cell types as dedifferentiated melanoma cells and fibroblasts. Proof of concept experiments with mixtures of in vivo fluorescence labelled skin cell types allowed the test of the new algorithms performance for the identification of specific cell types. The intense training of the software systems with various samples resulted in a increased sensitivity and specificity of the combined midIR and software system. These data highlight the potential of midIR spectroscopy as sensitive and specific future optical biopsy technology.

  6. Near-infrared incoherent broadband cavity enhanced absorption spectroscopy (NIR-IBBCEAS) for detection and quantification of natural gas components.

    PubMed

    Prakash, Neeraj; Ramachandran, Arun; Varma, Ravi; Chen, Jun; Mazzoleni, Claudio; Du, Ke

    2018-06-28

    The principle of near-infrared incoherent broadband cavity enhanced absorption spectroscopy was employed to develop a novel instrument for detecting natural gas leaks as well as for testing the quality of natural gas mixtures. The instrument utilizes the absorption features of methane, butane, ethane, and propane in the wavelength region of 1100 nm to 1250 nm. The absorption cross-section spectrum in this region for methane was adopted from the HITRAN database, and those for the other three gases were measured in the laboratory. A singular-value decomposition (SVD) based analysis scheme was employed for quantifying methane, butane, ethane, and propane by performing a linear least-square fit. The developed instrument achieved a detection limit of 460 ppm, 141 ppm, 175 ppm and 173 ppm for methane, butane, ethane, and propane, respectively, with a measurement time of 1 second and a cavity length of 0.59 m. These detection limits are less than 1% of the Lower Explosive Limit (LEL) for each gas. The sensitivity can be further enhanced by changing the experimental parameters (such as cavity length, lamp power etc.) and using longer averaging intervals. The detection system is a low-cost and portable instrument suitable for performing field monitorings. The results obtained on the gas mixture emphasize the instrument's potential for deployment at industrial facilities dealing with natural gas, where potential leaks pose a threat to public safety.

  7. The shock sensitivities of nitromethane/methanol mixtures

    NASA Astrophysics Data System (ADS)

    Dattelbaum, D. M.; Sheffield, S. A.; Bartram, B. D.; Gibson, L. L.; Bowden, P. R.; Schilling, B. F.

    2014-05-01

    Dilution of liquid explosives with "inert" solvents have been shown previously to affect a degradation in the detonation performance properties of the explosive, and result in a rapid increase in the critical diameter with increasing diluent. To date, the shock sensitivities of liquid explosive-diluent mixtures have not been measured. In this work, we describe the results of a series of gas gun-driven plate impact experiments on nitromethane (NM)-methanol (MeOH) solutions of several concentrations, using in situ electromagnetic gauging to measure the initial shock state (Hugoniot) of the mixture, as well as the overtake-time-to-detonation (Pop-plot). Surprisingly, the shock sensitivities did not fall off dramatically with increasing MeOH concentration. In fact, at some concentrations MeOH appears to sensitize NM, relative to neat NM.

  8. In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode.

    PubMed

    Shalini, Jayakumar; Sankaran, Kamatchi Jothiramalingam; Dong, Chung-Li; Lee, Chi-Young; Tai, Nyan-Hwa; Lin, I-Nan

    2013-02-07

    Significant difference was observed for the simultaneous detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA) mixture using nitrogen incorporated diamond nanowire (DNW) film electrodes grown by microwave plasma enhanced chemical vapor deposition. For the simultaneous sensing of ternary mixtures of DA, AA, and UA, well-separated voltammetric peaks are obtained using DNW film electrodes in differential pulse voltammetry (DPV) measurements. Remarkable signals in cyclic voltammetry responses to DA, AA and UA (three well defined voltammetric peaks at potentials around 235, 30, 367 mV for DA, AA and UA respectively) and prominent enhancement of the voltammetric sensitivity are observed at the DNW electrodes. In comparison to the DPV results of graphite, glassy carbon and boron doped diamond electrodes, the high electrochemical potential difference is achieved via the use of the DNW film electrodes which is essential for distinguishing the aforementioned analytes. The enhancement in EC properties is accounted for by increase in sp(2) content, new C-N bonds at the diamond grains, and increase in the electrical conductivity at the grain boundary, as revealed by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure measurements. Consequently, the DNW film electrodes provide a clear and efficient way for the selective detection of DA in the presence of AA and UA.

  9. Development of a Small, Inexpensive, and Field-deployable Gas Chromatograph for the Automated Collection, Separation, and Analysis of Gas-phase Organic Compounds

    NASA Astrophysics Data System (ADS)

    Skog, K.; Xiong, F.; Gentner, D. R.

    2017-12-01

    The identification and quantification of gas-phase organic compounds, like volatile organic compounds (VOCs), in the atmosphere relies on separation of complex mixtures and sensitive detection. Gas chromatography (GC) is widely applied, but relies on the need for high-purity compressed gases for separation and, often for detection. We have developed a low-cost, compact GC-based system for the collection and quantitative chemical speciation of complex mixtures of common atmospheric VOCs without the need for compressed high-purity gases or expensive detectors. We present results of lab and field testing against a commercially-available GC system. At optimized linear velocities challenging VOC pairs of similar volatility were resolved within 30 minutes, including n- and i-pentane; n-pentane and isoprene; and ethylbenzene and m/p-xylene. For 5-30 minute samples, we observe ppt-level detection limits for common VOCs such as benzene, toluene, ethylbenzene, xylenes, alpha-pinene, and limonene. We also present results of in-field use for VOC measurements. In all, this instrument is accurate, precise, small, and inexpensive (<$2500). Its lack of compressed gas cylinders make it ideal for field deployment and has been demonstrated to produce similar quality data to available GC technology.

  10. Evaluation of Turmeric Powder Adulterated with Metanil Yellow Using FT-Raman and FT-IR Spectroscopy

    PubMed Central

    Dhakal, Sagar; Chao, Kuanglin; Schmidt, Walter; Qin, Jianwei; Kim, Moon; Chan, Diane

    2016-01-01

    Turmeric powder (Curcuma longa L.) is valued both for its medicinal properties and for its popular culinary use, such as being a component in curry powder. Due to its high demand in international trade, turmeric powder has been subject to economically driven, hazardous chemical adulteration. This study utilized Fourier Transform-Raman (FT-Raman) and Fourier Transform-Infra Red (FT-IR) spectroscopy as separate but complementary methods for detecting metanil yellow adulteration of turmeric powder. Sample mixtures of turmeric powder and metanil yellow were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1%, and 0.01% (w/w). FT-Raman and FT-IR spectra were acquired for these mixture samples as well as for pure samples of turmeric powder and metanil yellow. Spectral analysis showed that the FT-IR method in this study could detect the metanil yellow at the 5% concentration, while the FT-Raman method appeared to be more sensitive and could detect the metanil yellow at the 1% concentration. Relationships between metanil yellow spectral peak intensities and metanil yellow concentration were established using representative peaks at FT-Raman 1406 cm−1 and FT-IR 1140 cm−1 with correlation coefficients of 0.93 and 0.95, respectively. PMID:28231130

  11. The noninvasive mouse ear swelling assay. II. Testing the contact sensitizing potency of fragrances.

    PubMed

    Thorne, P S; Hawk, C; Kaliszewski, S D; Guiney, P D

    1991-11-01

    The noninvasive mouse ear swelling assay (MESA) for contact allergy testing was evaluated using fragrance components and complex fragrance mixtures. The test materials represented weak sensitizers and nonsensitizers. Two versions of the MESA were investigated. Both were noninvasive and utilized only topical abdominal dosing and ear challenge with single applications in BALB/cBy mice. The vit A MESA differed from the regular MESA only in that mice were maintained on a diet with 17-fold higher levels of vitamin A (vit A) acetate beginning 3 weeks prior to induction. Sensitization reactions were determined by measuring the mean increase in ear swelling over baseline at 24, 48 and 72 hr postexposure. Irritation dose-response curves facilitated choosing a high nonirritating challenge dose. Sensitization dose-response curves were developed for cinnamaldehyde (CINN) and a complex fragrance mixture, F-16. From these curves, the SD50 was determined. This value represents the dose which sensitized half the animals and serves to rank the potency of compounds for allergic contact dermatitis and to compare values among different assays. The SD50 for CINN was 21.6% while the SD50vit A for F-16 was 26.6%. The other fragrance, isoeugenol (ISOE), and fragrance mixtures, F-07 and F-22, were also found to be weak sensitizers in the MESA and vit A MESA. The results in the MESA for CINN and ISOE were in the range observed with guinea pig test protocols but showed that the MESA was more sensitive than human test protocols. Two of the fragrance mixtures tested in the MESA gave comparable results in the Buehler guinea pig assay. However, the third (F-22) was negative in the Buehler assay and the MESA, but positive in the vit A MESA. The results of this work with weak sensitizers and the companion study (Thorne et al., 1991) with potent sensitizers at low doses illustrate that the noninvasive MESA is as sensitive as many standard guinea pig assays. In addition, it is easier and much less expensive to perform. The vit A MESA has the sensitivity and predictive power needed to test compounds and mixtures for contact sensitizing potency.

  12. Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm

    NASA Astrophysics Data System (ADS)

    Farooq, A.; Jeffries, J. B.; Hanson, R. K.

    2009-07-01

    Tunable diode-laser absorption of CO2 near 2.7 μm incorporating wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) is used to provide a new sensor for sensitive and accurate measurement of the temperature behind reflected shock waves in a shock-tube. The temperature is inferred from the ratio of 2f signals for two selected absorption transitions, at 3633.08 and 3645.56 cm-1, belonging to the ν 1+ ν 3 combination vibrational band of CO2 near 2.7 μm. The modulation depths of 0.078 and 0.063 cm-1 are optimized for the target conditions of the shock-heated gases ( P˜1-2 atm, T˜800-1600 K). The sensor is designed to achieve a high sensitivity to the temperature and a low sensitivity to cold boundary-layer effects and any changes in gas pressure or composition. The fixed-wavelength WMS-2f sensor is tested for temperature and CO2 concentration measurements in a heated static cell (600-1200 K) and in non-reactive shock-tube experiments (900-1700 K) using CO2-Ar mixtures. The relatively large CO2 absorption strength near 2.7 μm and the use of a WMS-2f strategy minimizes noise and enables measurements with lower concentration, higher accuracy, better sensitivity and improved signal-to-noise ratio (SNR) relative to earlier work, using transitions in the 1.5 and 2.0 μm CO2 combination bands. The standard deviation of the measured temperature histories behind reflected shock waves is less than 0.5%. The temperature sensor is also demonstrated in reactive shock-tube experiments of n-heptane oxidation. Seeding of relatively inert CO2 in the initial fuel-oxidizer mixture is utilized to enable measurements of the pre-ignition temperature profiles. To our knowledge, this work represents the first application of wavelength modulation spectroscopy to this new class of diode lasers near 2.7 μm.

  13. Investigation of hydrate formation in the system H2-CH4-H2O at a pressure up to 250 MPa.

    PubMed

    Skiba, Sergei S; Larionov, Eduard G; Manakov, Andrey Y; Kolesov, Boris A; Kosyakov, Viktor I

    2007-09-27

    Phase equilibria in the system H2-CH4-H2O are investigated by means of differential thermal analysis within hydrogen concentration range 0-70 mol % and at a pressure up to 250 MPa. All the experiments were carried out under the conditions of gas excess. With an increase in hydrogen concentration in the initial gas mixture, decomposition temperature of the formed hydrates decreased. X-ray diffraction patterns and Raman spectra of the quenched hydrate samples obtained at a pressure of 20 MPA from a gas mixture containing 40 mol % hydrogen were recorded. It turned out that the hydrate has cubic structure I under these conditions. The Raman spectra showed that hydrogen molecules are not detected in the hydrate within the sensitivity of the method, that is, almost pure methane hydrate is formed. The general view of the phase diagram of the investigated system is proposed. A thermodynamic model was proposed to explain a decrease in hydrate decomposition temperature in the system with an increase in the concentration of hydrogen in the initial mixture.

  14. Robust high temperature composite and CO sensor made from such composite

    DOEpatents

    Dutta, Prabir K.; Ramasamy, Ramamoorthy; Li, Xiaogan; Akbar, Sheikh A.

    2010-04-13

    Described herein is a composite exhibiting a change in electrical resistance proportional to the concentration of a reducing gas present in a gas mixture, detector and sensor devices comprising the composite, a method for making the composite and for making devices comprising the composite, and a process for detecting and measuring a reducing gas in an atmosphere. In particular, the reducing gas may be carbon monoxide and the composite may comprise rutile-phase TiO2 particles and platinum nanoclusters. The composite, upon exposure to a gas mixture containing CO in concentrations of up to 10,000 ppm, exhibits an electrical resistance proportional to the concentration of the CO present. The composite is useful for making sensitive, low drift, fast recovering detectors and sensors, and for measuring CO concentrations in a gas mixture present at levels from sub-ppm up to 10,000 ppm. The composites, and devices made from the composites, are stable and operable in a temperature range of from about 450.degree. C. to about 700.degree. C., such as may be found in a combustion chamber.

  15. Performance testing of asphalt concrete containing crumb rubber modifier and warm mix additives

    NASA Astrophysics Data System (ADS)

    Ikpugha, Omo John

    Utilisation of scrap tire has been achieved through the production of crumb rubber modified binders and rubberised asphalt concrete. Terminal and field blended asphalt rubbers have been developed through the wet process to incorporate crumb rubber into the asphalt binder. Warm mix asphalt technologies have been developed to curb the problem associated with the processing and production of such crumb rubber modified binders. Also the lowered production and compaction temperatures associated with warm mix additives suggests the possibility of moisture retention in the mix, which can lead to moisture damage. Conventional moisture sensitivity tests have not effectively discriminated good and poor mixes, due to the difficulty of simulating field moisture damage mechanisms. This study was carried out to investigate performance properties of crumb rubber modified asphalt concrete, using commercial warm mix asphalt technology. Commonly utilised asphalt mixtures in North America such as dense graded and stone mastic asphalt were used in this study. Uniaxial Cyclic Compression Testing (UCCT) was used to measure permanent deformation at high temperatures. Indirect Tensile Testing (IDT) was used to investigate low temperature performance. Moisture Induced Sensitivity Testing (MiST) was proposed to be an effective method for detecting the susceptibility of asphalt mixtures to moisture damage, as it incorporates major field stripping mechanisms. Sonnewarm(TM), Sasobit(TM) and Evotherm(TM) additives improved the resistance to permanent deformation of dense graded mixes at a loading rate of 0.5 percent by weight of the binder. Polymer modified mixtures showed superior resistance to permanent deformation compared to asphalt rubber in all mix types. Rediset(TM) WMX improves low temperature properties of dense graded mixes at 0.5 percent loading on the asphalt cement. Rediset LQ and Rediset WMX showed good anti stripping properties at 0.5 percent loading on the asphalt cement. The American Association of State Highway and Transportation Official's Mechanistic-Empirical Pavement Design Guide (AASHTO MEPDG) software was used to predict long term low temperature performance of the mixtures in various areas of Ontario. Sasobit, Rediset LQ and Rediset WMX gave good 15 years prediction with stone mastic asphalt mixtures but the performance of dense graded mixtures was less satisfactory.

  16. Carbon nanotubes based methanol sensor for fuel cells application.

    PubMed

    Kim, D W; Lee, J S; Lee, G S; Overzet, L; Kozlov, M; Aliev, A E; Park, Y W; Yang, D J

    2006-11-01

    An electrochemical sensor is built using vertically grown multi-walled carbon nanotubes (MWNTs) micro-array to detect methanol concentration in water. This study is done for the potential use of the array as methanol sensor for portable units of direct methanol fuel cells (DMFCs). Platinum (Pt) nanoparticles electro-deposited CNTs (Pt/CNTs) electrode shows high sensitivity in the measurement of methanol concentration in water with cyclic voltammetry (CV) measurement at room temperature. Further investigation has also been undertaken to measure the concentration by changing the amount of the mixture of methanol and formic acid in water. We compared the performance of our micro array sensor built with Pt/CNTs electrodes versus that of Pt wire electrode using CV measurement. We found that our Pt/CNTs array sensor shows high sensitivity and detects methanol concentrations in the range of 0.04 M to 0.10 M. In addition, we found that co-use of formic acid as electrolyte enables us to measure up to 1.0 M methanol concentration.

  17. Highly sensitive detection and discrimination of LR and YR microcystins based on protein phosphatases and an artificial neural network.

    PubMed

    Covaci, O I; Sassolas, A; Alonso, G A; Muñoz, R; Radu, G L; Bucur, B; Marty, J-L

    2012-08-01

    The inhibition characteristics of three different protein phosphatases by three microcystin (MC) variants--LR, YR, and RR--were studied. The corresponding K (I) for each enzyme-MC couple was calculated. The toxicity of MC varies in the following order: MC-LR > MC-YR > MC-RR. The sensitivity of the enzymes increased in the following order: mutant PP2A < mutant PP1 < natural PP2A. The best limit of detection obtained was 21.2 pM MC-LR using the most sensible enzyme. Methanol, ethanol, and acetonitrile up to 2 % (v/v) may be used in inhibition measurements. An artificial neural network (ANN) was used to discriminate two MC variants--LR and YR--using the differences in inhibition percentages measured with mutant PP1 and natural PP2A. The ANN is able to analyze mixtures with concentrations ranging from 8 to 98 pM MC-LR and 31 to 373 pM MC-YR.

  18. Composition and apparatus for detecting gamma radiation

    DOEpatents

    Hofstetter, Kenneth J.

    1994-01-01

    A gamma radiation detector and a radioluminiscent composition for use therein. The detector includes a radioluminscent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO.sub.4) or cerussite (PbCO.sub.3) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes.

  19. Composition and apparatus for detecting gamma radiation

    DOEpatents

    Hofstetter, K.J.

    1994-08-09

    A gamma radiation detector and a radioluminescent composition for use therein. The detector includes a radioluminescent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO[sub 4]) or cerussite (PbCO[sub 3]) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes. 3 figs.

  20. Psychoacoustics

    NASA Astrophysics Data System (ADS)

    Moore, Brian C. J.

    Psychoacoustics psychological is concerned with the relationships between the physical characteristics of sounds and their perceptual attributes. This chapter describes: the absolute sensitivity of the auditory system for detecting weak sounds and how that sensitivity varies with frequency; the frequency selectivity of the auditory system (the ability to resolve or hear out the sinusoidal components in a complex sound) and its characterization in terms of an array of auditory filters; the processes that influence the masking of one sound by another; the range of sound levels that can be processed by the auditory system; the perception and modeling of loudness; level discrimination; the temporal resolution of the auditory system (the ability to detect changes over time); the perception and modeling of pitch for pure and complex tones; the perception of timbre for steady and time-varying sounds; the perception of space and sound localization; and the mechanisms underlying auditory scene analysis that allow the construction of percepts corresponding to individual sounds sources when listening to complex mixtures of sounds.

  1. Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase-osmolytes interaction

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Hoornam, S.; Vesaghi, M. A.; Ranjbar, B.; Azizi, A.; Mobasheri, H.

    2014-09-01

    Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180 W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H) thin film was used as intermediate material to immobilize Au NPs on the SiO2 substrate. The interaction between two types of osmolytes, i.e. sorbitol and trehalose, with Pseudomonas cepacia lipase (PCL) were detected by the prepared LSPR biosensor chip. The detection mechanism is based on LSPR spectroscopy in which the wavelength of absorption peak is sensitive to the refractive index of the environment of the Au NPs. This mechanism eliminates the use of a probe or immobilization of PCL on the Au NPs of LSPR sensor chip. The interaction between PCL and osmolytes can change refractive index of the mixture or solution. We found that unlike to trehalose, sorbitol interacts with the PCL. This interaction increases refractive index of the PCL and sorbitol mixture. Refractive index of PCL in the presence of different concentration of sorbitol was obtained by Mie theory modeling of LSPR peaks. This modeling stated that the present LSPR sensor chip has sensitivity as high as wavelength shift of 175 nm per refractive index. Moreover, the detection of such weakly interaction between bio-molecules cannot be achieved by other analysis.

  2. Laser Ablation Surface-Enhanced Raman Spectroscopy (LA-SERS) for the Characterization of Organic Colorants in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Londero, Pablo

    The characterization of artistic practice throughout history often requires measurements of material composition with microscopic resolution, either due to the fine detail of the material composition or to the amount of sample available. This problem is exacerbated for the detection of organic colorants, which are often embedded in a complex matrix (e.g. oil, natural fibers) and in low concentration due to their high tinting strength. Surface-Enhanced Raman Spectroscopy (SERS) is increasingly used in detection of organic colorants in cultural heritage due to its high sensitivity and inherent preferential sensitivity to small organic molecules. This talk will discuss recent results from a new SERS measurement technique, in which laser ablation is used as a micro-sampling method onto a SERS-active film to characterize art samples with microscopic precision and sensitivity comparable to many mass spectrometry measurements. Furthermore, the nature of the sampling method provides built-in benefits to other SERS-based techniques, such as more quantitative characterization of mixtures, improved sensitivity to some analytes, and reduced background interference. Examples will be shown for measurements of reference materials and art objects, including a restored 16th-century dish and a Renaissance fresco, The Incredulity of San Thomas, by Luca Signorelli. Supported by the National Science Foundation (NSF-CHE-1402750).

  3. Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry

    PubMed Central

    Polanski, Andrzej; Marczyk, Michal; Pietrowska, Monika; Widlak, Piotr; Polanska, Joanna

    2015-01-01

    Mixture - modeling of mass spectra is an approach with many potential applications including peak detection and quantification, smoothing, de-noising, feature extraction and spectral signal compression. However, existing algorithms do not allow for automated analyses of whole spectra. Therefore, despite highlighting potential advantages of mixture modeling of mass spectra of peptide/protein mixtures and some preliminary results presented in several papers, the mixture modeling approach was so far not developed to the stage enabling systematic comparisons with existing software packages for proteomic mass spectra analyses. In this paper we present an efficient algorithm for Gaussian mixture modeling of proteomic mass spectra of different types (e.g., MALDI-ToF profiling, MALDI-IMS). The main idea is automated partitioning of protein mass spectral signal into fragments. The obtained fragments are separately decomposed into Gaussian mixture models. The parameters of the mixture models of fragments are then aggregated to form the mixture model of the whole spectrum. We compare the elaborated algorithm to existing algorithms for peak detection and we demonstrate improvements of peak detection efficiency obtained by using Gaussian mixture modeling. We also show applications of the elaborated algorithm to real proteomic datasets of low and high resolution. PMID:26230717

  4. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOEpatents

    Owen, Thomas E.; Miller, Michael A.

    2010-08-24

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  5. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOEpatents

    Owen, Thomas E.; Miller, Michael A.

    2007-03-13

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  6. Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor.

    PubMed

    Yu, Xiaofan; Chen, Fang; Wang, Ronghui; Li, Yanbin

    2018-01-20

    The rapid detection of foodborne pathogens is critical to ensure food safety. The objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium, were performed. The aptamer pool from the last round was cloned and sequenced. One sequence S1 that appeared 16 times was characterized and a dissociation constant (K d ) of 10.30nM was obtained. Subsequently, a QCM aptasensor was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the detection time of the aptasensor was determined to be 1.46×10 3 CFU/ml and 50min, respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium SELEX possessed higher sensitivity than previous work and the potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin Films as Effective Chemical Capacitive Sensors.

    PubMed

    Assen, Ayalew H; Yassine, Omar; Shekhah, Osama; Eddaoudi, Mohamed; Salama, Khaled N

    2017-09-22

    This work reports on the fabrication and deployment of a select metal-organic framework (MOF) thin film as an advanced chemical capacitive sensor for the sensing/detection of ammonia (NH 3 ) at room temperature. Namely, the MOF thin film sensing layer consists of a rare-earth (RE) MOF (RE-fcu-MOF) deposited on a capacitive interdigitated electrode (IDE). Purposely, the chemically stable naphthalene-based RE-fcu-MOF (NDC-Y-fcu-MOF) was elected and prepared/arranged as a thin film on a prefunctionalized capacitive IDE via the solvothermal growth method. Unlike earlier realizations, the fabricated MOF-based sensor showed a notable detection sensitivity for NH 3 at concentrations down to 1 ppm, with a detection limit appraised to be around 100 ppb (at room temperature) even in the presence of humidity and/or CO 2 . Distinctly, the NDC-Y-fcu-MOF based sensor exhibited the required stability to NH 3 , in contrast to other reported MOFs, and a remarkable detection selectivity toward NH 3 vs CH 4 , NO 2 , H 2 , and C 7 H 8 . The NDC-Y-fcu-MOF based sensor exhibited excellent performance for sensing ammonia for simulated breathing system in the presence of the mixture of carbon dioxide and/or humidity (water vapor), with no major alteration in the detection signal.

  8. Measurement and Evaluation of the Gas Density and Viscosity of Pure Gases and Mixtures Using a Micro-Cantilever Beam

    PubMed Central

    Badarlis, Anastasios; Pfau, Axel; Kalfas, Anestis

    2015-01-01

    Measurement of gas density and viscosity was conducted using a micro-cantilever beam. In parallel, the validity of the proposed modeling approach was evaluated. This study also aimed to widen the database of the gases on which the model development of the micro-cantilever beams is based. The density and viscosity of gases are orders of magnitude lower than liquids. For this reason, the use of a very sensitive sensor is essential. In this study, a micro-cantilever beam from the field of atomic force microscopy was used. Although the current cantilever was designed to work with thermal activation, in the current investigation, it was activated with an electromagnetic force. The deflection of the cantilever beam was detected by an integrated piezo-resistive sensor. Six pure gases and sixteen mixtures of them in ambient conditions were investigated. The outcome of the investigation showed that the current cantilever beam had a sensitivity of 240 Hz/(kg/m3), while the accuracy of the determined gas density and viscosity in ambient conditions reached ±1.5% and ±2.0%, respectively. PMID:26402682

  9. Evaluation of the effects of the metals Cd, Cr, Pb and their mixture on the filtration and oxygen consumption rates in catarina scallop, Argopecten ventricosus juveniles.

    PubMed

    Sobrino-Figueroa, Alma S; Cáceres-Martinez, Carlos

    2014-01-01

    In this work, we evaluated the effect of sublethal concentrations ( LC25, LC10 and LC5) of cadmium, chromium, lead, and their mixture on the filtration rate and oxygen consumption rate of Catarina scallop, Argopecten ventricosus (Sowerby, 1842), juveniles, in order to evaluate the use of these biomarkers as a reliable tool in environmental monitoring studies, because these metals have been found at high levels in water and sediments in the Mexican Pacific systems. An inverse dose-response relationship was observed when metal concentration and exposure time increased, the filtration rate and oxygen consumption rate reduced. The physiological responses evaluated in this study were sufficiently sensitive to detect alterations in the organisms at 0.014 mg l(-1) Cd, 0.311 mg l(-1) Cr, 0.125 mg l(-1) Pb and 0.05 mg l(-1) Cd + Cr + Pb at 24 and 72 hrs. Cd showed the most drastic effect. The Catarina scallop juveniles were more sensitive to Cd, Cr and Pb as compared to other bivalves. The biomarkers evaluated are a reliable tool to carry out environmental monitoring studies.

  10. Use of zero order diffraction of a grating monochromator towards convenient and sensitive detection of fluorescent analytes in multi fluorophoric systems

    NASA Astrophysics Data System (ADS)

    Panigrahi, Suraj Kumar; Mishra, Ashok Kumar

    2018-02-01

    White light excitation fluorescence (WLEF) is known to possess analytical advantage in terms of enhanced sensitivity and facile capture of the entire fluorescence spectral signature of multi component fluorescence systems. Using the zero order diffraction of the grating monochromator on the excitation side of a commercial spectrofluorimeter, it has been shown that WLEF spectral measurements can be conveniently carried out. Taking analyte multi-fluorophoric systems like (i) drugs and vitamins spiked in urine sample, (ii) adulteration of extra virgin olive oil with olive pomace oil and (iii) mixture of fabric dyes, it was observed that there is a significant enhancement of measurement sensitivity. The total fluorescence spectral response could be conveniently analysed using PLS2 regression. This work brings out the ease of the use of a conventional fluorimeter for WLEF measurements.

  11. Sensitivities of single nerve fibers in the hamster chorda tympani to mixtures of taste stimuli

    PubMed Central

    1980-01-01

    Responses of three groups of neural fibers from the chorda tympani of the hamster to binary mixtures of taste stimuli applied to the tongue were analyzed. The groups displayed different sensitivities to six chemicals at concentrations that had approximately equal effects on the whole nerve. Sucrose-best fibers responded strongly only to sucrose and D-phenylalanine. NaCl-best and HCl-best fibers, responded to four electrolytes: equally to CaCl2 and nearly equally to HCl, but the former responded more to NaCl, and the latter responded more to NH4Cl. The groups of fibers dealt differently with binary mixtures. Sucrose- best fibers responded to a mixture of sucrose and D-phenylalanine as if one of the chemicals had been appropriately increased in concentration, but they responded to a mixture of either one and an electrolyte as if the concentration of sucrose or D-phenylalanine had been reduced. NaCl- best fibers responded to a mixture as if it were a "mixture" of two appropriate concentrations of one chemical, or somewhat less. But, responses of HCl-best fibers to mixtures were greater than that, approaching a sum of responses to components. These results explain effects on the whole nerve, suggest that the sensitivity of a mammalian taste receptor to one chemical can be affected by a second, which may or may not be a stimulus for that receptor, and suggest that some effects of taste mixtures in humans may be the result of peripheral processes. PMID:7190997

  12. Development, application, and results of routine monitoring of Marek's disease virus in broiler house dust using real-time quantitative PCR.

    PubMed

    Walkden-Brown, Stephen W; Islam, A F Aminul; Groves, Peter J; Rubite, Ambrosio; Sharpe, Sue M; Burgess, Susan K

    2013-06-01

    Results are presented from four studies between 2002 and 2011 into the feasibility of routinely monitoring Marek's disease virus serotype 1 (MDV-1) in broiler house dust using real-time quantitative PCR (qPCR) measurement. Study 1 on two farms showed that detection of MDV-1 occurred earlier on average in dust samples tested using qPCR than standard PCR and in spleen samples from five birds per shed assayed for MDV-1 by qPCR or standard PCR. DNA quality following extraction from dust had no effect on detection of MDV-1. Study 2 demonstrated that herpesvirus of turkeys (HVT) and MDV serotype 2 (MDV-2) in addition to MDV-1 could be readily amplified from commercial farm dust samples, often in mixtures. MDV-2 was detected in 11 of 20 samples despite the absence of vaccination with this serotype. Study 3 investigated the reproducibility and sensitivity of the qPCR test and the presence of inhibitors in the samples. Samples extracted and amplified in triplicate showed a high level of reproducibility except at very low levels of virus near the limit of detection. Mixing of samples prior to extraction provided results consistent with the proportions in the mixture. Tests for inhibition showed that if the template contained DNA in the range 0.5-20 ng/microl no inhibition of the reaction was detectable. The sensitivity of the tests in terms of viral copy number (VCN) per milligram of dust was calculated to be in the range 24-600 VCN/mg for MDV-1, 48-1200 VCN/mg for MDV-2, and 182-4560 VCN/mg for HVT. In study 4 the results of 1976 commercial tests carried out for one company were analyzed. Overall 23.1% of samples were positive for MDV-1, 26.1% in unvaccinated and 16.4% in vaccinated chickens. There was marked regional and temporal variation in the proportion of positive samples and the MDV-1 load. The tests were useful in formulating Marek's disease vaccination strategies. The number of samples submitted has increased recently, as has the incidence of positive samples. These studies provide strong evidence that detection and quantitation of MDV-1, HVT, and MDV-2 in poultry house dust using qPCR is robust, sensitive, reproducible, and meaningful, both biologically and commercially. Tactical vaccination based on monitoring of MDV-1 rather than routine vaccination may reduce selection pressure for increased virulence in MDV-1.

  13. Fine-tuning molecular acoustic models: sensitivity of the predicted attenuation to the Lennard-Jones parameters

    NASA Astrophysics Data System (ADS)

    Petculescu, Andi G.; Lueptow, Richard M.

    2005-01-01

    In a previous paper [Y. Dain and R. M. Lueptow, J. Acoust. Soc. Am. 109, 1955 (2001)], a model of acoustic attenuation due to vibration-translation and vibration-vibration relaxation in multiple polyatomic gas mixtures was developed. In this paper, the model is improved by treating binary molecular collisions via fully pairwise vibrational transition probabilities. The sensitivity of the model to small variations in the Lennard-Jones parameters-collision diameter (σ) and potential depth (ɛ)-is investigated for nitrogen-water-methane mixtures. For a N2(98.97%)-H2O(338 ppm)-CH4(1%) test mixture, the transition probabilities and acoustic absorption curves are much more sensitive to σ than they are to ɛ. Additionally, when the 1% methane is replaced by nitrogen, the resulting mixture [N2(99.97%)-H2O(338 ppm)] becomes considerably more sensitive to changes of σwater. The current model minimizes the underprediction of the acoustic absorption peak magnitudes reported by S. G. Ejakov et al. [J. Acoust. Soc. Am. 113, 1871 (2003)]. .

  14. Quantitative subpixel spectral detection of targets in multispectral images. [terrestrial and planetary surfaces

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Adams, John B.; Smith, Milton O.

    1992-01-01

    The conditions that affect the spectral detection of target materials at the subpixel scale are examined. Two levels of spectral mixture analysis for determining threshold detection limits of target materials in a spectral mixture are presented, the cases where the target is detected as: (1) a component of a spectral mixture (continuum threshold analysis) and (2) residuals (residual threshold analysis). The results of these two analyses are compared under various measurement conditions. The examples illustrate the general approach that can be used for evaluating the spectral detectability of terrestrial and planetary targets at the subpixel scale.

  15. Performance of a time-resolved fluorescence immunoassay for measuring varicella-zoster virus immunoglobulin G levels in adults and comparison with commercial enzyme immunoassays and Merck glycoprotein enzyme immunoassay.

    PubMed

    Maple, P A C; Gray, J; Breuer, J; Kafatos, G; Parker, S; Brown, D

    2006-02-01

    Highly sensitive and specific, quantitative assays are needed to detect varicella-zoster virus (VZV) immunoglobulin G in human sera, particularly for determining immune status and response following vaccination. A time-resolved fluorescence immunoassay (TRFIA) has been developed, and its performance was compared to that of two commercial enzyme immunoassays (EIAs) and Merck glycoprotein EIA (gpEIA). The TRFIA had equivalent sensitivity (97.8%) and high specificity (93.5%) in relation to gpEIA. A commercial (Behring) EIA compared favorably with TRFIA in terms of sensitivity (98.4%) but had lower specificity (80.7%). Another commercial EIA (Diamedix) had high specificity (97.1%) but low sensitivity (76.4%) compared to TRFIA if equivocal test results were treated as negative for VZV antibody. A novel feature of the TRFIA was that the cutoff was generated using population mixture modeling and was expressed in mIU/ml, as the assay was calibrated using the British standard VZV antibody.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, B.T.

    Embryos of the cricket Acheta domesticus (L.) have been shown by bioassay to develop gross morphological abnormalities after exposure to a number of complex organic mixtures as well as to display a critical period of teratogen sensitivity and an ability to metabolize xenobiotics during development. Because the assay is simple, inexpensive, short-term (less than two weeks), and objective, it could be useful as an in vivo screen in an hierarchical approach to teratogen detection. Further investigation of cricket embryo responses to known teratogens is needed to establish the predictive value of this assay. 25 references, 1 figure, 2 tables.

  17. Hyalella azteca (Saussure) responses to Coldwater River backwater sediments in Mississippi, USA.

    PubMed

    Knight, Scott S; Lizotte, Richard E; Shields, F Douglas

    2009-10-01

    Sediment from three Coldwater River, Mississippi backwaters was examined using 28 day Hyalella azteca bioassays and chemical analyses for 33 pesticides, seven metals and seven PCB mixtures. Hydrologic connectivity between the main river channel and backwater varied widely among the three sites. Mortality occurred in the most highly connected backwater while growth impairment occurred in the other two. Precopulatory guarding behavior was not as sensitive as growth. Fourteen contaminants (seven metals, seven pesticides) were detected in sediments. Survival was associated with the organochlorine insecticide heptachlor.

  18. Practical direct plaque assay for coliphages in 100-ml samples of drinking water.

    PubMed Central

    Grabow, W O; Coubrough, P

    1986-01-01

    A practical single-agar-layer plaque assay for the direct detection of coliphages in 100-ml samples of water was designed and evaluated. With this assay a 100-ml sample of water, an agar medium containing divalent cations, and the host Escherichia coli C (ATCC 13706) were mixed in a single container, and the mixture was plated on 10 14-cm-diameter petri dishes. It was more sensitive, reliable, and accurate than various other methods and proved rapid, simple, and economic. PMID:3532952

  19. Neutron activation analysis for antimetabolites. [in food samples

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Determination of metal ion contaminants in food samples is studied. A weighed quantity of each sample was digested in a concentrated mixture of nitric, hydrochloric and perchloric acids to affect complete solution of the food products. The samples were diluted with water and the pH adjusted according to the specific analysis performed. The samples were analyzed by neutron activation analysis, polarography, and atomic absorption spectrophotometry. The solid food samples were also analyzed by neutron activation analysis for increased sensitivity and lower levels of detectability. The results are presented in tabular form.

  20. Purification and Quantification of an Isomeric Compound in a Mixture by Collisional Excitation in Multistage Mass Spectrometry Experiments.

    PubMed

    Jeanne Dit Fouque, Dany; Maroto, Alicia; Memboeuf, Antony

    2016-11-15

    The differentiation, characterization, and quantification of isomers and/or isobars in mixtures is a recurrent problem in mass spectrometry and more generally in analytical chemistry. Here we present a new strategy to assess the purity of a compound that is susceptible to be contaminated with another isomeric side-product in trace levels. Providing one of the isomers is available as pure sample, this new strategy allows the detection of isomeric contamination. This is done thanks to a "gas-phase collisional purification" inside an ion trap mass spectrometer paving the way for an improved analysis of at least similar samples. This strategy consists in using collision induced dissociation (CID) multistage mass spectrometry (MS 2 and MS 3 ) experiments and the survival yield (SY) technique. It has been successfully applied to mixtures of cyclic poly( L -lactide) (PLA) with increasing amounts of its linear topological isomer. Purification in gas phase of PLA mixtures was established based on SY curves obtained in MS 3 mode: all samples gave rise to the same SY curve corresponding then to the pure cyclic component. This new strategy was sensitive enough to detect traces of linear PLA (<3%) in a sample of cyclic PLA that was supposedly pure according to other characterization techniques ( 1 H NMR, MALDI-HRMS, and size-exclusion chromatography). Moreover, in this case, the presence of linear isomer was undetectable according to MS/MS or MS/MS/MS analysis only as fragment ions are also of the same m/z values. This type of approach could easily be implemented in hyphenated mass spectrometric techniques to improve the structural and quantitative analysis of complex samples.

  1. Mixture models in diagnostic meta-analyses--clustering summary receiver operating characteristic curves accounted for heterogeneity and correlation.

    PubMed

    Schlattmann, Peter; Verba, Maryna; Dewey, Marc; Walther, Mario

    2015-01-01

    Bivariate linear and generalized linear random effects are frequently used to perform a diagnostic meta-analysis. The objective of this article was to apply a finite mixture model of bivariate normal distributions that can be used for the construction of componentwise summary receiver operating characteristic (sROC) curves. Bivariate linear random effects and a bivariate finite mixture model are used. The latter model is developed as an extension of a univariate finite mixture model. Two examples, computed tomography (CT) angiography for ruling out coronary artery disease and procalcitonin as a diagnostic marker for sepsis, are used to estimate mean sensitivity and mean specificity and to construct sROC curves. The suggested approach of a bivariate finite mixture model identifies two latent classes of diagnostic accuracy for the CT angiography example. Both classes show high sensitivity but mainly two different levels of specificity. For the procalcitonin example, this approach identifies three latent classes of diagnostic accuracy. Here, sensitivities and specificities are quite different as such that sensitivity increases with decreasing specificity. Additionally, the model is used to construct componentwise sROC curves and to classify individual studies. The proposed method offers an alternative approach to model between-study heterogeneity in a diagnostic meta-analysis. Furthermore, it is possible to construct sROC curves even if a positive correlation between sensitivity and specificity is present. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Detection of cocrystal formation based on binary phase diagrams using thermal analysis.

    PubMed

    Yamashita, Hiroyuki; Hirakura, Yutaka; Yuda, Masamichi; Teramura, Toshio; Terada, Katsuhide

    2013-01-01

    Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram. Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30 °C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy. When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected. These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.

  3. Glucose-responsive hydrogel electrode for biocompatible glucose transistor

    NASA Astrophysics Data System (ADS)

    Kajisa, Taira; Sakata, Toshiya

    2017-12-01

    In this paper, we propose a highly sensitive and biocompatible glucose sensor using a semiconductor-based field effect transistor (FET) with a functionalized hydrogel. The principle of the FET device contributes to the easy detection of ionic charges with high sensitivity, and the hydrogel coated on the electrode enables the specific detection of glucose with biocompatibility. The copolymerized hydrogel on the Au gate electrode of the FET device is optimized by controlling the mixture ratio of biocompatible 2-hydroxyethylmethacrylate (HEMA) as the main monomer and vinylphenylboronic acid (VPBA) as a glucose-responsive monomer. The gate surface potential of the hydrogel FETs shifts in the negative direction with increasing glucose concentration from 10 μM to 40 mM, which results from the increase in the negative charges on the basis of the diol-binding of PBA derivatives with glucose molecules in the hydrogel. Moreover, the hydrogel coated on the gate suppresses the signal noise caused by the nonspecific adsorption of proteins such as albumin. The hydrogel FET can serve as a highly sensitive and biocompatible glucose sensor in in vivo or ex vivo applications such as eye contact lenses and sheets adhering to the skin.

  4. Mixture toxicity of water contaminants-effect analysis using the zebrafish embryo assay (Danio rerio).

    PubMed

    Schmidt, Susanne; Busch, Wibke; Altenburger, Rolf; Küster, Eberhard

    2016-06-01

    Three water contaminants were selected to be tested in the zebrafish embryo toxicity test (DarT) in order to investigate the sensitivity of the zebrafish embryo toxicity test with respect to mixture effect detection. The concentration-response curves for the observed effects lethality and hypo-pigmentation were calculated after an exposure of the embryos for 96 h with a fungicide (carbendazim), a plasticizer or propellent precursor (2,4-DNT: 2,4- dinitrotoluene) and an aromatic compound (AαC: 2-amino-9H-pyrido[2,3-b]indol), respectively. Follow-up mixture tests were based on the calculated LC50 or EC50 of the single compounds and combined effects were predicted according to the mixture concepts of concentration addition (CA) and independent action (IA). The order of toxicity for the single substances was carbendazim (LC50 = 1.25 μM) < AαC (LC50 = 8.16 μM) < 2,4-DNT (LC50 = 177.05 μM). For AαC and 2,4 DNT hypo-pigmentation was observed in addition (AαC EC50 = 1.81 μM; 2,4-DNT EC50 = 8.81 μM). Two binary and one ternary mixture were studied on lethality and one on hypo-pigmentation: 2,4-DNT/AαC (LC50 = 119.21 μM, EC50 = 5.37 μM), carbendazim/AαC (LC50 = 4.49 μM) and AαC/Carbendazim/2,4 DNT (LC50 = 108.62 μM). Results showed that the effects were in agreement with the CA model when substances were tested in mixtures. Therefore, in a reasonable worst case scenario substance combination effects in fish embryos were at maximum only prone to overestimation when using CA as the mixture concept. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Process dissociation and mixture signal detection theory.

    PubMed

    DeCarlo, Lawrence T

    2008-11-01

    The process dissociation procedure was developed in an attempt to separate different processes involved in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal detection models. The dual process model is shown to be a special case. The mixture signal detection model is applied to data from a widely analyzed study. The results suggest that a process other than recollection may be involved in the process dissociation procedure.

  6. The Predatory Mite Phytoseiulus persimilis Does Not Perceive Odor Mixtures As Strictly Elemental Objects

    PubMed Central

    de Bruijn, Paulien J. A.; Sabelis, Maurice W.

    2010-01-01

    Phytoseiulus persimilis is a predatory mite that in absence of vision relies on the detection of herbivore-induced plant odors to locate its prey, the two-spotted spider-mite Tetranychus urticae. This herbivorous prey is feeding on leaves of a wide variety of plant species in different families. The predatory mites respond to numerous structurally different compounds. However, typical spider-mite induced plant compounds do not attract more predatory mites than plant compounds not associated with prey. Because the mites are sensitive to many compounds, components of odor mixtures may affect each other’s perception. Although the response to pure compounds has been well documented, little is known how interactions among compounds affect the response to odor mixtures. We assessed the relation between the mites’ responses elicited by simple mixtures of two compounds and by the single components of these mixtures. The preference for the mixture was compared to predictions under three conceptual models, each based on one of the following assumptions: (1) the responses elicited by each of the individual components can be added to each other; (2) they can be averaged; or (3) one response overshadows the other. The observed response differed significantly from the response predicted under the additive response, average response, and overshadowing response model in 52, 36, and 32% of the experimental tests, respectively. Moreover, the behavioral responses elicited by individual compounds and their binary mixtures were determined as a function of the odor concentration. The relative contribution of each component to the behavioral response elicited by the mixture varied with the odor concentration, even though the ratio of both compounds in the mixture was kept constant. Our experiments revealed that compounds that elicited no response had an effect on the response elicited by binary mixtures that they were part of. The results are not consistent with the hypothesis that P. persimilis perceives odor mixtures as a collection of strictly elemental objects. They suggest that odor mixtures rather are perceived as one synthetic whole. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9858-3) contains supplementary material, which is available to authorized users. PMID:20872172

  7. Establishment of three permanent cover crop seed mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Miglécz, Tamas; Valkó, Orsolya; Donkó, Ádám; Deák, Balázs; Török, Péter; Kelemen, András; Drexler, Dóra; Tóthmérész, Béla

    2015-04-01

    In organic vineyard farming sowing high diversity cover crop seed mixtures offers a great opportunity to overcome high-priority problems mitigating vineyard cultivation, such as gain erosion control, save soil fertility, improve soil microbial activity and control weeds. Furthermore, we can also improve the biodiversity and ecosystem services of vineyards. Mainly non-native or low diversity seed mixtures are used for cover cropping containing some grass, grain or Fabaceae species. We studied vegetation development after sowing native high-diversity seed mixtures in four vineyards in an on farm field trial. We compared the effects of 4 treatments: (i) Biocont-Ecowin mixture (12 species), (ii) Fabaceae mixture (9 species), (iii) Grass-forb mixture (16 species) and control (no seed sowing). Study sites were located in Tokaj wine region, East Hungary. Seed mixtures were sown in March, 2012. After sowing, we recorded the percentage cover of vascular plant species in the end of June 2012, 2013 and 2014 in altogether 80 permanent plots. In the first year the establishment and weed control of Biocont-Ecowin and Legume seed mixture was the best. For the second year in inter-rows sown with Grass-herb and Legume seed mixtures we detected decreasing weed cover scores, while in inter-rows sown with Biocont-Ecowin seed mixture and in control inter-rows we detected higher weed cover scores. In the third year we still detected lower weed cover scores in inter-rows sown with Grass-forb and Legume seed mixtures, however on several sites we also detected decreasing cover of sown species. All sown species were detected in our plots during the time of the study, however some species were present only with low cover scores or only in a few plots. Out of the sown species Lotus corniculatus, Medicago lupulina, Plantago lanceolata, Trifolium repens, T. pratense and Coronilla varia established the most successfully, and had high cover scores on most sites even in the second and third year. Our trial to develop species rich cover crops was successful. According to our findings sowing high-diversity seed mixtures in cover cropping offers a good opportunity to gain weed control.

  8. Single-Plex Quantitative Assays for the Detection and Quantification of Most Pneumococcal Serotypes

    PubMed Central

    Chochua, Sopio; Satzke, Catherine; Dunne, Eileen M.; Mulholland, Kim; Klugman, Keith P.

    2015-01-01

    Streptococcus pneumoniae globally kills more children than any other infectious disease every year. A prerequisite for pneumococcal disease and transmission is colonization of the nasopharynx. While the introduction of pneumococcal conjugate vaccines has reduced the burden of pneumococcal disease, understanding the impact of vaccination on nasopharyngeal colonization has been hampered by the lack of sensitive quantitative methods for the detection of >90 known S. pneumoniae serotypes. In this work, we developed 27 new quantitative (q)PCR reactions and optimized 26 for a total of 53 qPCR reactions targeting pneumococcal serotypes or serogroups, including all vaccine types. Reactions proved to be target-specific with a limit of detection of 2 genome equivalents per reaction. Given the number of probes required for these assays and their unknown shelf-life, the stability of cryopreserved reagents was evaluated. Our studies demonstrate that two-year cryopreserved probes had similar limit of detection as freshly-diluted probes. Moreover, efficiency and limit of detection of 1-month cryopreserved, ready-to-use, qPCR reaction mixtures were similar to those of freshly prepared mixtures. Using these reactions, our proof-of-concept studies utilizing nasopharyngeal samples (N=30) collected from young children detected samples containing ≥2 serotypes/serogroups. Samples colonized by multiple serotypes/serogroups always had a serotype that contributes at least 50% of the pneumococcal load. In addition, a molecular approach called S6-q(PCR)2 was developed and proven to individually detect and quantify epidemiologically-important serogroup 6 strains including 6A, 6B, 6C and 6D. This technology will be useful for epidemiological studies, diagnostic platforms and to study the pneumobiome. PMID:25798884

  9. Optical Addressing Electronic Tongue Based on Low Selective Photovoltaic Transducer with Nanoporous Silicon Layer

    NASA Astrophysics Data System (ADS)

    Litvinenko, S. V.; Bielobrov, D. O.; Lysenko, V.; Skryshevsky, V. A.

    2016-08-01

    The electronic tongue based on the array of low selective photovoltaic (PV) sensors and principal component analysis is proposed for detection of various alcohol solutions. A sensor array is created at the forming of p-n junction on silicon wafer with porous silicon layer on the opposite side. A dynamical set of sensors is formed due to the inhomogeneous distribution of the surface recombination rate at this porous silicon side. The sensitive to molecular adsorption photocurrent is induced at the scanning of this side by laser beam. Water, ethanol, iso-propanol, and their mixtures were selected for testing. It is shown that the use of the random dispersion of surface recombination rates on different spots of the rear side of p-n junction and principal component analysis of PV signals allows identifying mentioned liquid substances and their mixtures.

  10. Evaluation of open-graded "F" mixtures for water sensitivity : final report.

    DOT National Transportation Integrated Search

    1993-07-01

    The Oregon Department of Transportation (ODOT) has increased their use of open-graded paving mixtures. During the last five years, ODOT has constructed several hundred miles of highways with open-graded "F" asphalt concrete mixtures. These pavements ...

  11. Effect of Long Term Low-Level Gamma Radiation on Thermal Sensitivity of RDX/HMX Mixtures

    DTIC Science & Technology

    1976-11-01

    1.1x10 R. It was concluded that the slight exothermic reaction before the 3^6 HMX polymorphic transition could be caused by a radiation-induced...Radiation on Thermal Sensitivity of RDX / HMX Mixtures 5. TYPE OF REPORT 4 PERIOD COVERED Final Report 6. PERFORMING ORG. REPORT NUMBER 7...and Identity by block number) Gamma radiation Weight loss HMX Impact sensitivity test RDX Vacuum stability test DTA Infrared spectrometry TGA

  12. Electrically biased GaAs/AlGaAs heterostructures for enhanced detection of bacteria

    NASA Astrophysics Data System (ADS)

    Aziziyan, Mohammad R.; Hassen, Walid M.; Dubowski, Jan J.

    2016-03-01

    We have examined the influence of electrical bias on immobilization of bacteria on the surface of GaAs/AlGaAs heterostructures, functionalized with an alkanethiol based architecture. A mixture of biotinylated polyethylene glycol (PEG) thiol and hexadecanethiol was applied to attach neutravidin and antibodies targeting specific immobilization of Legionella pneumophila. An electrochemical setup was designed to bias biofunctionalized samples with the potential measured versus silver/silver chloride reference electrode in a three electrode configuration system. The immobilization efficiency has been examined with fluorescence microscopy after tagging captured bacteria with fluorescein labeled antibodies. We demonstrate more than 2 times enhanced capture of Legionella pneumophila, suggesting the potential of electrically biased biochips to deliver enhanced sensitivity in detecting these bacteria.

  13. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  14. Nanosensor for detection of glucose

    NASA Astrophysics Data System (ADS)

    Del Villar, Ignacio; Matias, Ignacio R.; Arregui, Francisco J.

    2004-06-01

    A novel fiber-optic sensor sensitive to glucose has been designed based on electrostatic self-assembly method. The polycation of the structure is a mixture of poly(allylamine hydrochloride) (PAH) and Prussian Blue, whereas the polyanion is well-known enzyme gluocose oxidase (GOx). The range of glucose concentration that can be measured is submilimolar and is located between 0.1 and 2 mM. Measures are based on a new detection scheme based on the slope of the change of signal produced by injection of glucose, yielding to a linear response. The sensor responses in a PH range between 4 and 7.4, which includes the physiological PH of blood. Some rules for esitmation of the refractive index of the material deposited and the thickness of bilayers are also given.

  15. Examining the Latent Structure of Anxiety Sensitivity in Adolescents using Factor Mixture Modeling

    PubMed Central

    Allan, Nicholas P.; MacPherson, Laura; Young, Kevin C.; Lejuez, Carl W.; Schmidt, Norman B.

    2014-01-01

    Anxiety sensitivity has been implicated as an important risk factor, generalizable to most anxiety disorders. In adults, factor mixture modeling has been used to demonstrate that anxiety sensitivity is best conceptualized as categorical between individuals. That is, whereas most adults appear to possess normative levels of anxiety sensitivity, a small subset of the population appears to possess abnormally high levels of anxiety sensitivity. Further, those in the high anxiety sensitivity group are at increased risk of having high levels of anxiety and of having an anxiety disorder. This study was designed to determine whether these findings extend to adolescents. Factor mixture modeling was used to examine the best fitting model of anxiety sensitivity in a sample of 277 adolescents (M age = 11.0, SD = .81). Consistent with research in adults, the best fitting model consisted of two classes, one containing adolescents with high levels of anxiety sensitivity (n = 25), and another containing adolescents with normative levels of anxiety sensitivity (n = 252). Examination of anxiety sensitivity subscales revealed that the social concerns subscale was not important for classification of individuals. Convergent and discriminant validity of anxiety sensitivity classes were found in that membership in the high anxiety sensitivity class was associated with higher mean levels of anxiety symptoms, controlling for depression and externalizing problems, and was not associated with higher mean levels of depression or externalizing symptoms controlling for anxiety problems. PMID:24749756

  16. Establishment and Evaluation of a One-Step Microplate Chemiluminescence Immunoassay to Detect IgG Antibody Against Treponema Pallidum.

    PubMed

    Liu, Lijuan; Xie, Yuling; Dai, Zhenxian; Zhuo, Chuanshang; Wu, Yushui

    2015-11-01

    The serological detection of specific antibodies against Treponema pallidum is of particular importance in the diagnosis of syphilis. The chemiluminescence immunoassay (CLIA) has been widely used for clinical diagnosis because they remit no radical waste products, cause no enzyme precipitation, and exhibit an excellent sensitivity. A one-step CLIA was established to detect T. pallidum IgG antibody based on microplate coated with a mixture of recombinant T. pallidum antigens TpN15, TpN17, and TpN47. The Chinese national reference substances standard panel for T. pallidum diagnosis was applied to test the accuracy, stability, interference, and cross-reactivity of the established CLIA. The validation of efficacy for clinical application was performed by comparing the established method with the marketed T. pallidum particle agglutination (TPPA) kit and the Abbott ARCHITEC Auto System. The established method met the requirement of the Chinese national reference substances standard for T. pallidum diagnosis. When compared with TPPA (n = 1,052), the specificity, sensitivity, and overall concordance were 99.7%, 99.0%, and 98.8% respectively, showing a great agreement with a kappa value of 0.81. When compared with the Abbott ARCHITEC Auto System (n = 352), the results showed that the specificity, sensitivity, and overall concordance were 98.6.0%, 96.6% and 98.6% respectively, and a high-degree agreement was observed (kappa value = 0.95). The established rapid, specific, sensitive, and stable microplate CLIA method to detect IgG antibody against T pallidum will provide an efficient alternative to the treponemal tests and wide application in clinical laboratory. © 2014 Wiley Periodicals, Inc.

  17. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    PubMed

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.

  18. Universal digital high-resolution melt: a novel approach to broad-based profiling of heterogeneous biological samples.

    PubMed

    Fraley, Stephanie I; Hardick, Justin; Masek, Billie J; Jo Masek, Billie; Athamanolap, Pornpat; Rothman, Richard E; Gaydos, Charlotte A; Carroll, Karen C; Wakefield, Teresa; Wang, Tza-Huei; Yang, Samuel

    2013-10-01

    Comprehensive profiling of nucleic acids in genetically heterogeneous samples is important for clinical and basic research applications. Universal digital high-resolution melt (U-dHRM) is a new approach to broad-based PCR diagnostics and profiling technologies that can overcome issues of poor sensitivity due to contaminating nucleic acids and poor specificity due to primer or probe hybridization inaccuracies for single nucleotide variations. The U-dHRM approach uses broad-based primers or ligated adapter sequences to universally amplify all nucleic acid molecules in a heterogeneous sample, which have been partitioned, as in digital PCR. Extensive assay optimization enables direct sequence identification by algorithm-based matching of melt curve shape and Tm to a database of known sequence-specific melt curves. We show that single-molecule detection and single nucleotide sensitivity is possible. The feasibility and utility of U-dHRM is demonstrated through detection of bacteria associated with polymicrobial blood infection and microRNAs (miRNAs) associated with host response to infection. U-dHRM using broad-based 16S rRNA gene primers demonstrates universal single cell detection of bacterial pathogens, even in the presence of larger amounts of contaminating bacteria; U-dHRM using universally adapted Lethal-7 miRNAs in a heterogeneous mixture showcases the single copy sensitivity and single nucleotide specificity of this approach.

  19. Fully automated screening of immunocytochemically stained specimens for early cancer detection

    NASA Astrophysics Data System (ADS)

    Bell, André A.; Schneider, Timna E.; Müller-Frank, Dirk A. C.; Meyer-Ebrecht, Dietrich; Böcking, Alfred; Aach, Til

    2007-03-01

    Cytopathological cancer diagnoses can be obtained less invasive than histopathological investigations. Cells containing specimens can be obtained without pain or discomfort, bloody biopsies are avoided, and the diagnosis can, in some cases, even be made earlier. Since no tissue biopsies are necessary these methods can also be used in screening applications, e.g., for cervical cancer. Among the cytopathological methods a diagnosis based on the analysis of the amount of DNA in individual cells achieves high sensitivity and specificity. Yet this analysis is time consuming, which is prohibitive for a screening application. Hence, it will be advantageous to retain, by a preceding selection step, only a subset of suspicious specimens. This can be achieved using highly sensitive immunocytochemical markers like p16 ink4a for preselection of suspicious cells and specimens. We present a method to fully automatically acquire images at distinct positions at cytological specimens using a conventional computer controlled microscope and an autofocus algorithm. Based on the thus obtained images we automatically detect p16 ink4a-positive objects. This detection in turn is based on an analysis of the color distribution of the p16 ink4a marker in the Lab-colorspace. A Gaussian-mixture-model is used to describe this distribution and the method described in this paper so far achieves a sensitivity of up to 90%.

  20. Infrared detection of chlorinated hydrocarbons in water at ppb levels of concentrations.

    PubMed

    Roy, Gilles; Mielczarski, Jerzy A

    2002-04-01

    Infrared sensor, based on attenuated total reflection phenomenon, for the detection of chlorinated hydrocarbons (CHCs) represents a big advantage compared to chromatographic and mass spectroscopic techniques since it is a one step detector. Pre-concentration and separation take place in the polymer film with simultaneous identification of pollutants by the infrared beam. The analysis is rapid, sample does not require any initial preparation, and can be easily performed in the field. The main default of the latest version of the sensor was a low sensibility (above 1 ppm) compared to the threshold levels of the contaminants. In the present work, it is documented that the response dynamics of the optical sensor and its sensitivity depend strongly on the diffusion of pollutants through a boundary layer formed between polymer film and the monitored solution and in the polymer film. The reduction of thickness of the boundary layer through a controlled high flow rate, and the optimization of thickness (volume) of polymer films result in a tremendous improvement of the response dynamics. It is demonstrated that the sensor can detect simultaneously six CHCs: monochlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, chloroform, trichloroethylene, and perchloroethylene in their mixture with a sensitivity as low as a few ppb. This level of detection opens up numerous applications for the optical sensor.

  1. Quantification of MDMA and MDA in abusers' hair samples by semi-micro column HPLC with fluorescence detection.

    PubMed

    Nakamura, Shinichi; Tomita, Mamoru; Wada, Mitsuhiro; Chung, Heesun; Kuroda, Naotaka; Nakashima, Kenichiro

    2006-01-01

    A sensitive semi-micro column high-performance liquid chromatography with fluorescence detection method was developed for the determination of 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), methamphetamine (MP) and amphetamine (AP) in human hair. 4-(4,5-Diphenyl-1H-imidazol-2-yl)benzoyl chloride (DIB-Cl) and 1-methyl-3-phenylpropylamine were used as labeling reagent and internal standard, respectively. These drugs were extracted from hair into 5% trifluoroacetic acid in methanol, and fluorescent labeled with DIB-Cl. The separation of DIB-derivatives was achieved on a reversed-phase semi-micro ODS column with an acetonitrile-methanol-water (30:40:30, v/v/v%) mixture as a mobile phase. The limits of detection at a signal-to-noise ratio of 3 for MDMA, MDA, MP and AP were 0.25, 0.15, 0.25 and 0.19 ng/mg, respectively. Precision of intra- and inter-day assay as the relative standard deviation were in the range 1.5-6.8% (n = 5) and 2.7-4.7% (n = 5), respectively. The proposed method was highly sensitive and able to detect MDMA and its related compounds in small amounts of hair sample, and could be applied to quantification of six abusers' hair samples. Copyright 2006 John Wiley & Sons, Ltd.

  2. Enantiomeric separation of fluoxetine and norfluoxetine in plasma and serum samples with high detection sensitivity capillary electrophoresis.

    PubMed

    Desiderio, C; Rudaz, S; Raggi, M A; Fanali, S

    1999-11-01

    A capillary electrophoresis method was optimized for the stereoselective analysis of the antidepressant drug fluoxetine and its main demethylated metabolite norfluoxetine using a cyclodextrin-modified sodium phosphate buffer at pH 2.5. The combination of a neutral and a negatively charged cyclodextrin, dimethylated-beta- and phosphated-gamma-respectively, provided the baseline enantiomeric separation of the two compounds. The very low concentrations of chiral selectors employed together with the use of a high sensitivity detection cell of special design (zeta-shaped) in a diode array UV detector allowed us to reach a limit of detection of 0.005 and 0.01 microg/mL for fluoxetine and norfluoxetine, respectively. Analysis of fluoxetine and norfluoxetine standard mixtures showed a reproducibility of migration times and peak area and linearity in the concentration range of 0.1-2.0 microg/mL. The optimized method was applied to the analysis of clinical serum and plasma samples of patients under depression therapy. In all the analyzed samples the enantiomeric forms of fluoxetine and norfluoxetine were easily identified. The fluoxetine and metabolite enantiomeric ratio confirmed the stereoselectivity of the metabolic process of the fluoxetine drug in accordance with the literature data.

  3. Peroxyoxalate chemiluminescence detection for the highly sensitive determination of fluorescence-labeled chlorpheniramine with Suzuki coupling reaction.

    PubMed

    Adutwum, Lawrence Asamoah; Kishikawa, Naoya; Ohyama, Kaname; Harada, Shiro; Nakashima, Kenichiro; Kuroda, Naotaka

    2010-09-01

    A sensitive and selective high performance liquid chromatography-peroxyoxalate chemiluminescence (PO-CL) method has been developed for the simultaneous determination of chlorpheniramine (CPA) and monodesmethyl chlorpheniramine (MDCPA) in human serum. The method combines fluorescent labeling with 4-(4,5-diphenyl-1H-imidazole-2-yl)phenyl boronic acid using Suzuki coupling reaction with PO-CL detection. CPA and MDCPA were extracted from human serum by liquid-liquid extraction with n-hexane. Excess labeling reagent, which interfered with trace level determination of analytes, was removed by solid-phase extraction using a C18 cartridge. Separation of derivatives of both analytes was achieved isocratically on a silica column with a mixture of acetonitrile and 60 mM imidazole-HNO(3) buffer (pH 7.2; 85:15, v/v) containing 0.015% triethylamine. The proposed method exhibited a good linearity with a correlation coefficient of 0.999 for CPA and MDCPA within the concentration range of 0.5-100 ng/mL. The limits of detection (S/N = 3) were 0.14 and 0.16 ng/mL for CPA and MDCPA, respectively. Using the proposed method, CPA could be selectively determined in human serum after oral administration.

  4. Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho

    2018-05-01

    We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.

  5. Ion mobility spectrometry for food quality and safety.

    PubMed

    Vautz, W; Zimmermann, D; Hartmann, M; Baumbach, J I; Nolte, J; Jung, J

    2006-11-01

    Ion mobility spectrometry is known to be a fast and sensitive technique for the detection of trace substances, and it is increasingly in demand not only for protection against explosives and chemical warfare agents, but also for new applications in medical diagnosis or process control. Generally, a gas phase sample is ionized by help of ultraviolet light, ss-radiation or partial discharges. The ions move in a weak electrical field towards a detector. During their drift they collide with a drift gas flowing in the opposite direction and, therefore, are slowed down depending on their size, shape and charge. As a result, different ions reach the detector at different drift times, which are characteristic for the ions considered. The number of ions reaching the detector are a measure of the concentration of the analyte. The method enables the identification and quantification of analytes with high sensitivity (ng l(-1) range). The selectivity can even be increased - as necessary for the analyses of complex mixtures - using pre-separation techniques such as gas chromatography or multi-capillary columns. No pre-concentration of the sample is necessary. Those characteristics of the method are preserved even in air with up to a 100% relative humidity rate. The suitability of the method for application in the field of food quality and safety - including storage, process and quality control as well as the characterization of food stuffs - was investigated in recent years for a number of representative examples, which are summarized in the following, including new studies as well: (1) the detection of metabolites from bacteria for the identification and control of their growth; (2) process control in food production - beer fermentation being an example; (3) the detection of the metabolites of mould for process control during cheese production, for quality control of raw materials or for the control of storage conditions; (4) the quality control of packaging materials during the production of polymeric materials; and (5) the characterization of products - wine being an example. The challenges of such applications were operation in humid air, fast on-line analyses of complex mixtures, high sensitivity - detection limits have to be, for example, in the range of the odour limits - and, in some cases, the necessity of mobile instrumentation. It can be shown that ion mobility spectrometry is optimally capable of fulfilling those challenges for many applications.

  6. Massively parallel sequencing of 32 forensic markers using the Precision ID GlobalFiler™ NGS STR Panel and the Ion PGM™ System.

    PubMed

    Wang, Zheng; Zhou, Di; Wang, Hui; Jia, Zhenjun; Liu, Jing; Qian, Xiaoqin; Li, Chengtao; Hou, Yiping

    2017-11-01

    Massively parallel sequencing (MPS) technologies have proved capable of sequencing the majority of the key forensic STR markers. By MPS, not only the repeat-length size but also sequence variations could be detected. Recently, Thermo Fisher Scientific has designed an advanced MPS 32-plex panel, named the Precision ID GlobalFiler™ NGS STR Panel, where the primer set has been designed specifically for the purpose of MPS technologies and the data analysis are supported by a new version HID STR Genotyper Plugin (V4.0). In this study, a series of experiments that evaluated concordance, reliability, sensitivity of detection, mixture analysis, and the ability to analyze case-type and challenged samples were conducted. In addition, 106 unrelated Han individuals were sequenced to perform genetic analyses of allelic diversity. As expected, MPS detected broader allele variations and gained higher power of discrimination and exclusion rate. MPS results were found to be concordant with current capillary electrophoresis methods, and single source complete profiles could be obtained stably using as little as 100pg of input DNA. Moreover, this MPS panel could be adapted to case-type samples and partial STR genotypes of the minor contributor could be detected up to 19:1 mixture. Aforementioned results indicate that the Precision ID GlobalFiler™ NGS STR Panel is reliable, robust and reproducible and have the potential to be used as a tool for human forensics. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.

    PubMed

    Penza, M; Rossi, R; Alvisi, M; Serra, E

    2010-03-12

    Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100 ppb NO(2), at the sensor temperature of 150 degrees C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110 degrees C. A comparison of the NO(2) gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.

  8. Gas chromatography: Possible application of advanced instrumentation developed for solar system exploration to space station cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1985-01-01

    Gas chromatography (GC) technology was developed for flight experiments in solar system exploration. The GC is a powerful analytical technique with simple devices separating individual components from complex mixtures to make very sensitive quantitative and qualitative measurements. It monitors samples containing mixtures of fixed gases and volatile organic molecules. The GC was used on the Viking mission in support of life detection experiments and on the Pioneer Venus Large Probe to determine the composition of the venusian atmosphere. A flight GC is under development to study the progress and extent of STS astronaut denitrogenation prior to extravehicular activity. Advanced flight GC concepts and systems for future solar system exploration are also studied. Studies include miniature ionization detectors and associated control systems capable of detecting from ppb up to 100% concentration levels. Further miniaturization is investigated using photolithography and controlled chemical etching in silicon wafers. Novel concepts such as ion mobility drift spectroscopy and multiplex gas chromatography are also developed for future flight experiments. These powerful analytical concepts and associated hardware are ideal for the monitoring of cabin atmospheres containing potentially dangerous volatile compounds.

  9. Detection of melamine in milk powders using near-infrared hyperspectral imaging combined with regression coefficient of partial least square regression model.

    PubMed

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Kim, Moon S; Chao, Kuanglin; Qin, Jianwei; Fu, Xiaping; Baek, Insuck; Cho, Byoung-Kwan

    2016-05-01

    Illegal use of nitrogen-rich melamine (C3H6N6) to boost perceived protein content of food products such as milk, infant formula, frozen yogurt, pet food, biscuits, and coffee drinks has caused serious food safety problems. Conventional methods to detect melamine in foods, such as Enzyme-linked immunosorbent assay (ELISA), High-performance liquid chromatography (HPLC), and Gas chromatography-mass spectrometry (GC-MS), are sensitive but they are time-consuming, expensive, and labor-intensive. In this research, near-infrared (NIR) hyperspectral imaging technique combined with regression coefficient of partial least squares regression (PLSR) model was used to detect melamine particles in milk powders easily and quickly. NIR hyperspectral reflectance imaging data in the spectral range of 990-1700nm were acquired from melamine-milk powder mixture samples prepared at various concentrations ranging from 0.02% to 1%. PLSR models were developed to correlate the spectral data (independent variables) with melamine concentration (dependent variables) in melamine-milk powder mixture samples. PLSR models applying various pretreatment methods were used to reconstruct the two-dimensional PLS images. PLS images were converted to the binary images to detect the suspected melamine pixels in milk powder. As the melamine concentration was increased, the numbers of suspected melamine pixels of binary images were also increased. These results suggested that NIR hyperspectral imaging technique and the PLSR model can be regarded as an effective tool to detect melamine particles in milk powders. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Detection of illicit drugs with the technique of spectral fluorescence signatures (SFS)

    NASA Astrophysics Data System (ADS)

    Poryvkina, Larisa; Babichenko, Sergey

    2010-10-01

    The SFS technology has already proved its analytical capabilities in a variety of industrial and environmental tasks. Recently it has been introduced for forensic applications. The key features of the SFS method - measuring a 3-dimensional spectrum of fluorescence of the sample (intensity versus excitation and emission wavelengths) with following recognition of specific spectral patterns of SFS responsible for individual drugs - provide an effective tool for the analysis of untreated seized samples, without any separation of the substance of interest from its mixture with accompanying cutting agents and diluents as a preparatory step. In such approach the chemical analysis of the sample is substituted by the analysis of SFS matrix visualized as an optical image. The SFS technology of drug detection is realized by NarTest® NTX2000 analyzer, compact device intended to measure suspicious samples in liquid, solid and powder forms. It simplifies the detection process due to fully automated procedures of SFS measuring and integrated expert system for recognition of spectral patterns. Presently the expert system of NTX2000 is able to detect marijuana, cocaine, heroin, MDMA, amphetamine and methamphetamine with the detection limit down to 5% of the drug concentration in various mixtures. The numerous tests with street samples confirmed that the use of SFS method provides reliable results with high sensitivity and selectivity for identification of drugs of abuse. More than 3000 street samples of the aforesaid drugs were analyzed with NTX2000 during validation process, and the correspondence of SFS results and conclusions of standard forensic analyses with GC/MS techniques was in 99.4% cases.

  11. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification

    PubMed Central

    Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C.

    2018-01-01

    Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in gel electrophoresis. Our assay is significantly faster than the conventional methods used in the identification of P. triticina. The assay developed in the study shall be very much useful in the development of diagnostic kit for monitoring disease, creation of prediction model and efficient management of disease. PMID:29698484

  12. Rapid detection of Puccinia triticina causing leaf rust of wheat by PCR and loop mediated isothermal amplification.

    PubMed

    Manjunatha, C; Sharma, Sapna; Kulshreshtha, Deepika; Gupta, Sangeeta; Singh, Kartar; Bhardwaj, Subhash C; Aggarwal, Rashmi

    2018-01-01

    Leaf rust of wheat caused by Puccinia triticina has significant impact on wheat production worldwide. Effective and quick detection methodologies are required to mitigate yield loss and time constraints associated with monitoring and management of leaf rust of wheat. In the present study, detection of P. triticina has been simplified by developing a rapid, reliable, efficient and visual colorimetric method i.e., loop mediated isothermal amplification of DNA (LAMP). Based on in silico analysis of P. triticina genome, PTS68, a simple sequence repeat was found highly specific to leaf rust fungus. A marker (PtRA68) was developed and its specificity was validated through PCR technique which gave a unique and sharp band of 919 bp in P. triticina pathotypes only. A novel gene amplification method LAMP which enables visual detection of pathogen by naked eye was developed for leaf rust pathogen. A set of six primers was designed from specific region of P. triticina and conditions were optimised to complete the observation process in 60 minutes at 65o C. The assay developed in the study could detect presence of P. triticina on wheat at 24 hpi (pre-symptomatic stage) which was much earlier than PCR without requiring thermal cycler. Sensitivity of LAMP assay developed in the study was 100 fg which was more sensitive than conventional PCR (50 pg) and equivalent to qPCR (100 fg). The protocol developed in the study was utilized for detection of leaf rust infected samples collected from different wheat fields. LAMP based colorimetric detection assay showed sky blue color in positive reaction and violet color in negative reaction after addition of 120 μM hydroxyl napthol blue (HNB) solution to reaction mixture. Similarly, 0.6 mg Ethidium bromide/ml was added to LAMP products, placed on transilluminator to witness full brightness in positive reaction and no such brightness could be seen in negative reaction mixture. Further, LAMP products spread in a ladder like banding pattern in gel electrophoresis. Our assay is significantly faster than the conventional methods used in the identification of P. triticina. The assay developed in the study shall be very much useful in the development of diagnostic kit for monitoring disease, creation of prediction model and efficient management of disease.

  13. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.

    PubMed

    Tan, Yueming; Deng, Wenfang; Li, Yunyong; Huang, Zhao; Meng, Yue; Xie, Qingji; Ma, Ming; Yao, Shouzhuo

    2010-04-22

    We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.

  14. Reversed phase liquid chromatography with UV absorbance and flame ionization detection using a water mobile phase and a cyano propyl stationary phase Analysis of alcohols and chlorinated hydrocarbons.

    PubMed

    Quigley, W W; Ecker, S T; Vahey, P G; Synovec, R E

    1999-10-01

    The development of liquid chromatography with a commercially available cyano propyl stationary phase and a 100% water mobile phase is reported. Separations were performed at ambient temperature, simplifying instrumental requirements. Excellent separation efficiency using a water mobile phase was achieved, for example N=18 800, or 75 200 m(-1), was obtained for resorcinol, at a retention factor of k'=4.88 (retention time of 9.55 min at 1 ml min(-1) for a 25 cmx4.6 mm i.d. column, packed with 5 mum diameter particles with the cyano propyl stationary phase). A separation via reversed phase liquid chromatography (RP-LC) with a 100% water mobile phase of six phenols and related compounds was compared to a separation of the same compounds by traditional RP-LC, using octadecylsilane (ODS), i.e. C18, bound to silica and an aqueous mobile phase modified with acetonitrile. Nearly identical analysis time was achieved for the separation of six phenols and related compounds using the cyano propyl stationary phase with a 100% water mobile phase, as compared to traditional RP-LC requiring a relatively large fraction of organic solvent modifier in the mobile phase (25% acetonitrile:75% water). Additional understanding of the retention mechanism with the 100% water mobile phase was obtained by relating measured retention factors of aliphatic alcohols, phenols and related compounds, and chlorinated hydrocarbons to their octanol:water partition coefficients. The retention mechanism is found to be consistent with a RP-LC mechanism coupled with an additional retention effect due to residual hydroxyl groups on the cyano propyl stationary phase. Advantages due to a 100% water mobile phase for the chemical analysis of alcohol mixtures and chlorinated hydrocarbons are reported. By placing an absorbance detector in-series and preceding a novel drop interface to a flame ionization detector (FID), selective detection of a separated mixture of phenols and related compounds and aliphatic alcohols is achieved. The compound class of aliphatic alcohols is selectively and sensitively detected by the drop interface/FID, and the phenols and related compounds are selectively and sensitively detected by absorbance detection at 200 nm. The separation and detection of chlorinated hydrocarbons in a water sample matrix further illustrated the advantages of this methodology. The sensitivity and selectivity of the FID signal for the chlorinated hydrocarbons are significantly better than absorbance detection, even at 200 nm. This methodology is well suited to continuous and automated monitoring of water samples. The applicability of samples initially in an organic solvent matrix is explored, since an organic sample matrix may effect retention and efficiency. Separations in acetonitrile and isopropyl alcohol sample matrices compared well to separations with a water sample matrix.

  15. An assessment of the information content of likelihood ratios derived from complex mixtures.

    PubMed

    Marsden, Clare D; Rudin, Norah; Inman, Keith; Lohmueller, Kirk E

    2016-05-01

    With the increasing sensitivity of DNA typing methodologies, as well as increasing awareness by law enforcement of the perceived capabilities of DNA typing, complex mixtures consisting of DNA from two or more contributors are increasingly being encountered. However, insufficient research has been conducted to characterize the ability to distinguish a true contributor (TC) from a known non-contributor (KNC) in these complex samples, and under what specific conditions. In order to investigate this question, sets of six 15-locus Caucasian genotype profiles were simulated and used to create mixtures containing 2-5 contributors. Likelihood ratios were computed for various situations, including varying numbers of contributors and unknowns in the evidence profile, as well as comparisons of the evidence profile to TCs and KNCs. This work was intended to illustrate the best-case scenario, in which all alleles from the TC were detected in the simulated evidence samples. Therefore the possibility of drop-out was not modeled in this study. The computer program DNAMIX was then used to compute LRs comparing the evidence profile to TCs and KNCs. This resulted in 140,000 LRs for each of the two scenarios. These complex mixture simulations show that, even when all alleles are detected (i.e. no drop-out), TCs can generate LRs less than 1 across a 15-locus profile. However, this outcome was rare, 7 of 140,000 replicates (0.005%), and associated only with mixtures comprising 5 contributors in which the numerator hypothesis includes one or more unknown contributors. For KNCs, LRs were found to be greater than 1 in a small number of replicates (75 of 140,000 replicates, or 0.05%). These replicates were limited to 4 and 5 person mixtures with 1 or more unknowns in the numerator. Only 5 of these 75 replicates (0.004%) yielded an LR greater than 1,000. Thus, overall, these results imply that the weight of evidence that can be derived from complex mixtures containing up to 5 contributors, under a scenario in which no drop-out is required to explain any of the contributors, is remarkably high. This is a useful benchmark result on top of which to layer the effects of additional factors, such as drop-out, peak height, and other variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Method of dehydrating natural gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, R. E.

    1985-01-01

    A method for dehydration of natural gas is provided wherein well head gas is supplied to a three-phase inlet separator, the vapor mixture of natural gas and water removed from that inlet separator means is supplied to a turboexpander, and the resulting refrigerated mixture of natural gas and condensed water vapor is supplied to a multi-phase outlet separator. The turboexpander may have integral means for subsequent compression of the refrigerated mixture and may be coupled through reduction gears to a means for generating electricity. A portion of the refrigerated mixture may be connected to a heat exchanger for cooling themore » well head natural gas prior to entry into the inlet separator. The flow of refrigerated mixture to this heat exchanger may be controlled by a temperature sensitive valve downstream of the heat exchanger. Methanol may be injected into the vapor mixture prior to entry into the turboexpander. The flow of methanol into the vapor mixture may be controlled by a valve sensitive to the flow rate of the vapor mixture and the water vapor content of the refrigerated mixture. Natural gas vapor from the outlet separator may be recirculated through the turboexpander if the output water vapor content of the natural gas vapor stream is too high.« less

  17. Bacteria in the apical root canals of teeth with apical periodontitis.

    PubMed

    Lee, Li-Wan; Lee, Ya-Ling; Hsiao, Sheng-Huang; Lin, Hung-Pin

    2017-06-01

    Bacteria in the tooth root canal may cause apical periodontitis. This study examined the bacterial species present in the apical root canal of teeth with apical periodontitis. Antibiotic sensitivity tests were performed to evaluate whether these identified bacterial species were susceptible to specific kinds of antibiotics. Selective media plating and biochemical tests were used first to detect the bacterial species in samples taken from the apical portion of root canals of 62 teeth with apical periodontitis. The isolated bacterial species were further confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. We found concomitant presence of two (32 teeth) or three species (18 teeth) of bacteria in 50 (80.6%) out of 62 tested teeth. However, only 34 bacterial species were identified. Of a total of 118 bacterial isolates (83 anaerobes and 35 aerobes), Prophyromonas endodontalis was detected in 10; Bacteroides, Dialister invisus or Fusobacterium nucleatum in 9; Treponema denticola or Enterococcus faecalis in 8; Peptostreptococcus or Olsenella uli in 6; and Veillonella in 5 teeth. The other 25 bacterial species were detected in fewer than five teeth. Approximately 80-95% of bacterial isolates of anaerobes were sensitive to ampicillin/sulbactam (Unasyn), amoxicillin/clavulanate (Augmentin), cefoxitin, and clindamycin. For E. faecalis, 85-90% of bacterial isolates were sensitive to gentamicin and linezolid. Root canal infections are usually caused by a mixture of two or three species of bacteria. Specific kinds of antibiotic can be selected to control these bacterial infections after antibiotic sensitivity testing. Copyright © 2016. Published by Elsevier B.V.

  18. Sequencing of oligosaccharides using enzyme array digestion with electrochemical and fluorescent detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, M.; Lee, C.S.

    1997-12-31

    The objective of this study is to develop a rapid and sensitive method for oligosaccharide sequencing. The oligosaccharides are subjected to the enzyme array digestion with exoglycosidases of known and well-defined specificities. The enzyme array method involves the division of oligosaccharide sample into aliquots, and the incubation of each aliquot with a precisely defined mixture of exoglycosidases. In the enzyme array method, the presence of a specific linkage anywhere in the oligosaccharide is determined by the inability of an enzyme mixture lacking a given enzyme to cleave that linkage ( a stop point) and the ability of the other enzymesmore » to cleave the linkage up to that point. The direct quantification of released monosaccharides from the enzyme array can be achieved by using pulsed amperometric detection (PAD) or by fluorescent derivatization with a fluorophoric agent. The measured monosaccharide concentrations in combination with the enzyme array analysis provide detail characterization of oligosaccharides with their sugar composition, configuration, and linkage information, The released monosaccharides are further quantified by anion exchange chromatography and capillary electrophoresis for the comparison with the results obtained from PAD and fluorescence measurements. Our enzyme array-electrochemical (or fluorescent) detection method does not require any separation procedure and any prior labeling of oligosaccharide and have several practical advantages over the current carbohydrate sequencing techniques including simplicity, speed, and the ability to use small amounts of starting material.« less

  19. A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots.

    PubMed

    Pan, Jiahong; Zheng, Zengyao; Yang, Jianying; Wu, Yaoyu; Lu, Fushen; Chen, Yaowen; Gao, Wenhua

    2017-05-01

    A novel fluorescence sensor based on controlling the surface passivation degree of carbon quantum dots (CQDs) was developed for glutathione (GSH) detection. First, we found that the fluorescence intensity of the CQDs which was obtained by directly pyrolyzing citric acid would increased largely after the surface passivation treatment by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). In the light of this phenomenon, we designed a simple, rapid and selective fluorescence sensor based on the surface passivated CQDs. A certain and excess amount of EDC were mixed with GSH, part of EDC would form a stable complex with GSH owing to the exposed sulfhydryl group of GSH. As the synthesized CQDs were added into the above mixture solution, the fluorescence intensity of the (EDC/GSH)/CQDs mixture solution could be directly related to the amount of GSH. Compared to other fluorescence analytical methods, the fluorescence sensor we design is neither the traditional fluorescent "turn on" probes nor "turn off" probes. It is a new fluorescence analytical method that target object indirectly control the surface passivation degree of CQDs so that it can realize the detection of the target object. Moreover, the proposed method manifested great advantages including short analysis time, low cost and ease of operation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Coupling state-of-the-art supercritical fluid chromatography and mass spectrometry: from hyphenation interface optimization to high-sensitivity analysis of pharmaceutical compounds.

    PubMed

    Grand-Guillaume Perrenoud, Alexandre; Veuthey, Jean-Luc; Guillarme, Davy

    2014-04-25

    The recent market release of a new generation of supercritical fluid chromatography (SFC) instruments compatible with state-of-the-art columns packed with sub-2μm particles (UHPSFC) has contributed to the reemergence of interest in this technology at the analytical scale. However, to ensure performance competitiveness of this technique with modern analytical standards, a robust hyphenation of UHPSFC to mass spectrometry (MS) is mandatory. UHPSFC-MS hyphenation interface should be able to manage the compressibility of the SFC mobile phase and to preserve as much as possible the chromatographic separation integrity. Although several interfaces can be envisioned, each will have noticeable effects on chromatographic fidelity, flexibility and user-friendliness. In the present study, various interface configurations were evaluated in terms of their impact on chromatographic efficiency and MS detection sensitivity. An interface including a splitter and a make-up solvent inlet was found to be the best compromise and exhibited good detection sensitivity while maintaining more than 75% of the chromatographic efficiency. This interface was also the most versatile in terms of applicable analytical conditions. In addition, an accurate model of the fluidics behavior of this interface was created for a better understanding of the influence of chromatographic settings on its mode of operation. In the second part, the most influential experimental factors affecting MS detection sensitivity were identified and optimized using a design-of-experiment approach. The application of low capillary voltage and high desolvation temperature and drying gas flow rate were required for optimal ESI ionization and nebulization processes. The detection sensitivity achieved using the maximized UHPSFC-ESI-MS/MS conditions for a mixture of basic pharmaceutical compounds showed 4- to 10-fold improvements in peak intensity compared to the best performance achieved by UHPLC-ESI-MS/MS with the same MS detector. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. An improved UPLC method for the detection of undeclared horse meat addition by using myoglobin as molecular marker.

    PubMed

    Di Giuseppe, Antonella M A; Giarretta, Nicola; Lippert, Martina; Severino, Valeria; Di Maro, Antimo

    2015-02-15

    In 2013, following the scandal of the presence of undeclared horse meat in various processed beef products across the Europe, several researches have been undertaken for the safety of consumer health. In this framework, an improved UPLC separation method has been developed to detect the presence of horse myoglobin in raw meat samples. The separation of both horse and beef myoglobins was achieved in only seven minutes. The methodology was improved by preparing mixtures with different composition percentages of horse and beef meat. By using myoglobin as marker, low amounts (0.50mg/0.50g, w/w; ∼0.1%) of horse meat can be detected and quantified in minced raw meat samples with high reproducibility and sensitivity, thus offering a valid alternative to conventional PCR techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. An integrated strategy combining DNA walking and NGS to detect GMOs.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Papazova, Nina; De Loose, Marc; Deforce, Dieter; Ruttink, Tom; Roosens, Nancy H

    2017-10-01

    Recently, we developed a DNA walking system for the detection and characterization of a broad spectrum of GMOs in routine analysis of food/feed matrices. Here, we present a new version with improved throughput and sensitivity by coupling the DNA walking system to Pacific Bioscience® Next-generation sequencing technology. The performance of the new strategy was thoroughly assessed through several assays. First, we tested its detection and identification capability on grains with high or low GMO content. Second, the potential impacts of food processing were investigated using rice noodle samples. Finally, GMO mixtures and a real-life sample were analyzed to illustrate the applicability of the proposed strategy in routine GMO analysis. In all tested samples, the presence of multiple GMOs was unambiguously proven by the characterization of transgene flanking regions and the combinations of elements that are typical for transgene constructs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Examining the latent structure of anxiety sensitivity in adolescents using factor mixture modeling.

    PubMed

    Allan, Nicholas P; MacPherson, Laura; Young, Kevin C; Lejuez, Carl W; Schmidt, Norman B

    2014-09-01

    Anxiety sensitivity has been implicated as an important risk factor, generalizable to most anxiety disorders. In adults, factor mixture modeling has been used to demonstrate that anxiety sensitivity is best conceptualized as categorical between individuals. That is, whereas most adults appear to possess normative levels of anxiety sensitivity, a small subset of the population appears to possess abnormally high levels of anxiety sensitivity. Further, those in the high anxiety sensitivity group are at increased risk of having high levels of anxiety and of having an anxiety disorder. This study was designed to determine whether these findings extend to adolescents. Factor mixture modeling was used to examine the best fitting model of anxiety sensitivity in a sample of 277 adolescents (M age = 11.0 years, SD = 0.81). Consistent with research in adults, the best fitting model consisted of 2 classes, 1 containing adolescents with high levels of anxiety sensitivity (n = 25) and another containing adolescents with normative levels of anxiety sensitivity (n = 252). Examination of anxiety sensitivity subscales revealed that the social concerns subscale was not important for classification of individuals. Convergent and discriminant validity of anxiety sensitivity classes were found in that membership in the high anxiety sensitivity class was associated with higher mean levels of anxiety symptoms, controlling for depression and externalizing problems, and was not associated with higher mean levels of depression or externalizing symptoms controlling for anxiety problems. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Highly Sensitive Assay for Detection of Enterovirus in Clinical Specimens by Reverse Transcription-PCR with an Armored RNA Internal Control

    PubMed Central

    Beld, Marcel; Minnaar, René; Weel, Jan; Sol, Cees; Damen, Marjolein; van der Avoort, Harry; Wertheim-van Dillen, Pauline; Breda, Alex van; Boom, René

    2004-01-01

    The objective of the present study was the development of a diagnostic reverse transcription (RT)-PCR for the specific detection of enterovirus (EV) RNA in clinical specimens controlled by an internal control (IC) RNA. The IC RNA contains the same primer binding sites as EV RNA but has a different probe region. The IC RNA was packaged into an MS2 phage core particle (armored) and was added to the clinical sample to allow monitoring of both extraction efficiency and RT-PCR efficiency. Serial dilutions of the IC RNA were made, and the detection limit of the RT-PCR was tested in a background of EV RNA-negative cerebrospinal fluid. The sensitivity and specificity of the RT-PCR assay were tested by using all 64 known EV serotypes, several non-EV serotypes, and two Quality Control for Molecular Diagnostics (QCMD) Program EV proficiency panels from 2001 and 2002. In total, 322 clinical specimens were tested by RT-PCR, and to establish the clinical utility of the RT-PCR, a comparison of the results of viral culture and RT-PCR was done with 87 clinical specimens. The lower limit of sensitivity was reached at about 150 copies of IC RNA/ml. All 64 EV serotypes were positive, while all non-EV serotypes were negative. All culture-positive samples of the 2001 QCMD proficiency panel (according to the 50% tissue culture infective doses per milliliter) were positive by RT-PCR. Invalid results, i.e., negativity for both EV RNA and IC RNA, due to inhibition of RT-PCR were observed for 33.3% of the members of the 2002 QCMD proficiency panel and 3.1% of the clinical specimens. Inhibition of RT-PCR could be relieved by the addition of 400 ng of bovine α-casein per μl to both the RT reaction mixture and the PCR mixture. With this optimized protocol, the results for all samples of the 2002 QCMD proficiency panel and all clinical specimens except one fecal sample (0.3%) were valid. Evaluation of the clinical samples demonstrated that EV infection could be detected in 12 of 87 samples (13.8%) by RT-PCR, while viral culture was negative. Our data show that the RT-PCR with armored IC RNA offers a very reliable and rapid diagnostic tool for the detection of EV in clinical specimens and that the addition of bovine α-casein relieved inhibition of the RT-PCR for 99.7% of clinical specimens. PMID:15243060

  5. High sensitivity detection of bisphenol A using liposome chromatography.

    PubMed

    Liu, Xue-Ying; Nakamura, Chikashi; Tanimoto, Itsuro; Miyake, Shiro; Nakamura, Noriyuki; Hirano, Takashi; Miyake, Jun

    2006-09-18

    An antibody column in tandem with a fluorescent dye entrapped liposome column was developed for highly sensitive detection of an endocrine disruptor, bisphenol A (BPA). Anti-BPA antibody was immobilized in a protein G column with orientation control. A derivative of BPA was conjugated to phospholipase A2 (PLA2). BPA sample solutions mixed with the BPA-PLA2 conjugates were injected on to the anti-BPA antibody column and competitive binding occurred in the antibody column. The amount of the free conjugate was proportional to the concentration of the BPA sample. The eluted conjugates were injected on to the second column gel on which calcein-entrapped liposomes were immobilized and the PLA2-catalyzed hydrolysis of liposomal phospholipids causing fluorescent dye leakage as a signal amplification. In this system, the mixture of BPA and BPA-PLA2 conjugate were incubated for 60 min in the anti-BPA column, and then the collected solution was applied to the liposome column. The BPA detection range of 0.02-140 ng mL(-1) was wider than 0.03-6.6 ng mL(-1) obtained by the method of competitive ELISA using the same antibody. Moreover, this system could be adapted to an HPLC system resulting in almost the same detection limit in online detection. The method could be applied to environmental samples, river water and soil extracts. The BPA concentration of 0.1 ng mL(-1) and 10 ng g(-1) was detectable in water and soil extract, respectively.

  6. Knock-limited performance of several internal coolants

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R; Evvard, John C

    1945-01-01

    The effect of internal cooling on the knock-limited performance of an-f-28 fuel was investigated in a CFR engine, and the following internal coolants were used: (1) water, (2), methyl alcohol-water mixture, (3) ammonia-methyl alcohol-water mixture, (4) monomethylamine-water mixture, (5) dimethylamine-water mixture, and (6) trimethylamine-water mixture. Tests were run at inlet-air temperatures of 150 degrees and 250 degrees F. to indicate the temperature sensitivity of the internal-coolant solutions.

  7. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus.

    PubMed

    Shangguan, Jingfang; Li, Yuhong; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Zou, Zhen; Shi, Hui

    2015-07-07

    Staphylococcus aureus (S. aureus) is an important human pathogen that causes several diseases ranging from superficial skin infections to life-threatening diseases. Here, a method combining positive dielectrophoresis (pDEP) driven on-line enrichment and aptamer-fluorescent silica nanoparticle label has been developed for the rapid and sensitive detection of S. aureus in microfluidic channels. An aptamer, having high affinity to S. aureus, is used as the molecular recognition tool and immobilized onto chloropropyl functionalized fluorescent silica nanoparticles through a click chemistry approach to obtain S. aureus aptamer-nanoparticle bioconjugates (Apt(S.aureus)/FNPs). The pDEP driven on-line enrichment technology was used for accumulating the Apt(S.aureus)/FNP labeled S. aureus. After incubating with S. aureus, the mixture of Apt(S.aureus)/FNP labeled S. aureus and Apt(S.aureus)/FNPs was directly introduced into the pDEP-based microfluidic system. By applying an AC voltage in a pDEP frequency region, the Apt(S.aureus)/FNP labelled S. aureus moved to the electrodes and accumulated in the electrode gap, while the free Apt(S.aureus)/FNPs flowed away. The signal that came from the Apt(S.aureus)/FNP labelled S. aureus in the focused detection areas was then detected. Profiting from the specificity of aptamer, signal amplification of FNP label and pDEP on-line enrichment, this assay can detect as low as 93 and 270 cfu mL(-1)S. aureus in deionized water and spiked water samples, respectively, with higher sensitivities than our previously reported Apt(S.aureus)/FNP based flow cytometry. Moreover, without the need for separation and washing steps usually required for FNP label involved bioassays, the total assay time including sample pretreatment was within 2 h.

  8. Sensitive Spectrophotometric Determination of Atenolol in Pharmaceutical Formulations Using Bromate-Bromide Mixture as an Eco-Friendly Brominating Agent

    PubMed Central

    Prashanth, Kudige N.; Basavaiah, Kanakapura

    2012-01-01

    Three simple and sensitive spectrophotometric methods are proposed for the determination of atenolol (ATN) in bulk drug and tablets. The methods are based on the bromination of ATN by the bromine generated in situ by the action of the acid on the bromate–bromide mixture followed by the determination of unreacted bromine by reacting with a fixed amount of either meta-cresol purple (MCP) and measuring the absorbance at 540 nm (method A) and 445 nm (method B) or erioglaucine (EGC) and measuring the absorbance at 630 nm (method C). Beer's law is valid within the concentration ranges of 1.0–20.0, 2.0–40.0 and 1.0–8.0 μg/mL for method A, method B and method C, respectively. The calculated molar absorptivities were found to be 1.20×104, 4.51×103 and 3.46 × 104  L/mol · cm for method A, method B and method C, respectively. Sandell's sensitivity values, correlation coefficients, limits of detection and quantification are also reported. Recovery results were statistically compared with those of a reference method by applying Student's t- and F-test. The novelty of the present study is the measurement of two different colors using MCP, that is, red-pink color of MCP in acid medium at 540 nm and yellowish-orange color of brominated MCP at 445 nm. PMID:22567567

  9. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    NASA Astrophysics Data System (ADS)

    Bannan, T.; Booth, M.; Benyezzar, M.; Bacak, A.; Alfarra, M. R. R.; Topping, D. O.; Percival, C.

    2015-12-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  10. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    NASA Astrophysics Data System (ADS)

    Bannan, Thomas; Booth, A. Murray; Alfarra, Rami; Bacak, Asan; Pericval, Carl

    2016-04-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  11. Formation of pH-sensitive cationic liposomes from a binary mixture of monoalkylated primary amine and cholesterol.

    PubMed

    Cui, Zhong-Kai; Bouisse, Anne; Cottenye, Nicolas; Lafleur, Michel

    2012-09-25

    It has been shown that mixtures of monoalkylated amphiphiles and sterols can form liquid-ordered (lo) lamellar phases. These bilayers can be extruded using conventional methods to obtain large unilamellar vesicles (LUVs) that have very low permeability and a specific response to a given stimulus. For example, pH variations can trigger the release from LUVs formed with palmitic acid and sterols. In the present work, the possibility to form non phospholipid liposomes with mixtures of stearylamine (SA) and cholesterol (Chol) was investigated. The phase behavior of these mixtures was characterized by differential scanning calorimetry, infrared, and (2)H NMR spectroscopy. It is found that this particular mixture can form a lo lamellar phase that is pH-sensitive as the system undergoes a transition from a lo phase to a solid state when pH is increased from 5.5 to 12. LUVs have been successfully extruded from equimolar SA/Chol mixtures. Release experiments as a function of time revealed the relatively low permeability of these systems. The fact that the stability of these liposomes is pH dependent implies that these LUVs display an interesting potential as new cationic carriers for pH-triggered release. This is the first report of non phospholipid liposomes with high sterol content combining an overall positive charge and pH-sensitivity.

  12. Amiloride-Sensitive and Amiloride-Insensitive Responses to NaCl + Acid Mixtures in Hamster Chorda Tympani Nerve

    PubMed Central

    Hettinger, Thomas P.; Savoy, Lawrence D.; Frank, Marion E.

    2012-01-01

    Component signaling in taste mixtures containing both beneficial and dangerous chemicals depends on peripheral processing. Unidirectional mixture suppression of chorda tympani (CT) nerve responses to sucrose by quinine and acid is documented for golden hamsters (Mesocricetus auratus). To investigate mixtures of NaCl and acids, we recorded multifiber responses to 50 mM NaCl, 1 and 3 mM citric acid and acetic acid, 250 μM citric acid, 20 mM acetic acid, and all binary combinations of each acid with NaCl (with and without 30 μM amiloride added). By blocking epithelial Na+ channels, amiloride treatment separated amiloride-sensitive NaCl-specific responses from amiloride-insensitive electrolyte-generalist responses, which encompass all of the CT response to the acids as well as responses to NaCl. Like CT sucrose responses, the amiloride-sensitive NaCl responses were suppressed by as much as 50% by citric acid (P = 0.001). The amiloride-insensitive electrolyte-generalist responses to NaCl + acid mixtures approximated the sum of NaCl and acid component responses. Thus, although NaCl-specific responses to NaCl were weakened in NaCl–acid mixtures, electrolyte-generalist responses to acid and NaCl, which tastes KCl-like, were transmitted undiminished in intensity to the central nervous system. The 2 distinct CT pathways are consistent with known rodent behavioral discriminations. PMID:22451526

  13. Characterization of the Androgen-sensitive MDA-kb2 Cell Line for Assessing Complex Environmental Mixtures, Presentation

    EPA Science Inventory

    Synthetic and natural steroidal androgens and estrogens and many other non-steroidal endocrine-active compounds commonly occur as complex mixtures in aquatic environments. It is important to understand the potential interactive effects of these mixtures to properly assess their r...

  14. COMPARISON OF THE NON-ADDITIVE INTERACTIONS OF AN ORGANOPHOSPHORUS PESTICIDE MIXTURE IN ADULT AND PREWEANLING RATS.

    EPA Science Inventory

    Critical features of risk assessment include the evaluation of risk following exposure to pesticide mixtures as well as the potential for increased sensitivity of the young. This research tested for interaction(s) using a mixture of five organophosphorus (OP) pesticides (chlorp...

  15. Bivalent vaccination against pneumonic pasteurellosis in domestic sheep and goats with modified-live in-frame lktA deletion mutants of Mannheimia haemolytica.

    PubMed

    Briggs, Robert E; Hauglund, Melissa J; Maheswaran, Samuel K; Tatum, Fred M

    2013-11-01

    A temperature-sensitive shuttle vector, pBB80C, was utilized to generate in-frame deletion mutants of the leukotoxin structural gene (lktA) of Mannheimia haemolytica serotypes 1, 2, 5, 6, 7, 8, 9, and 12. Culture supernatants from the mutants contained a truncated protein with an approximate molecular weight of 66 kDa which was reactive to anti-leukotoxin monoclonal antibody. No protein reactive to anti-LktA monoclonal antibody was detected at the molecular weight 100-105 kDa of native LktA. Sheep and goats vaccinated intramuscularly with a mixture of serotypes 5 and 6 mutants were resistant to virulent challenge with a mixture of the wild-type parent strains. These vaccinates responded serologically to both vaccine serotypes and exhibited markedly-reduced lung lesion volume and pulmonary infectious load compared to control animals. Control animals yielded a mixture of serotypes from lung lobes, but the proportion even within an individual animal varied widely from 95% serotype 5-95% serotype 6. Cultures recovered from liver were homogeneous, but two animals yielded serotype 5 and the other two yielded serotype 6 in pure culture. Published by Elsevier Ltd.

  16. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF6 Decomposition Gases under Partial Discharge

    PubMed Central

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-01-01

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors’ resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors. PMID:26569245

  17. Analysis of the Sensitivity of K-Type Molecular Sieve-Deposited MWNTs for the Detection of SF₆ Decomposition Gases under Partial Discharge.

    PubMed

    Zhang, Xiaoxing; Li, Xin; Luo, Chenchen; Dong, Xingchen; Zhou, Lei

    2015-11-11

    Sulfur hexafluoride (SF6) is widely utilized in gas-insulated switchgear (GIS). However, part of SF6 decomposes into different components under partial discharge (PD) conditions. Previous research has shown that the gas responses of intrinsic and 4 Å-type molecular sieve-deposited multi-wall carbon nanotubes (MWNTs) to SOF2 and SO2F2, two important decomposition components of SF6, are not obvious. In this study, a K-type molecular sieve-deposited MWNTs sensor was developed. Its gas response characteristics and the influence of the mixture ratios of gases on the gas-sensing properties were studied. The results showed that, for sensors with gas mixture ratios of 5:1, 10:1, and 20:1, the resistance change rate increased by nearly 13.0% after SOF2 adsorption, almost 10 times that of MWNTs sensors, while the sensors' resistance change rate with a mixture ratio of 10:1 reached 17.3% after SO2F2 adsorption, nearly nine times that of intrinsic MWNT sensors. Besides, a good linear relationship was observed between concentration of decomposition components and the resistance change rate of sensors.

  18. Fluorescence- and magnetic-activated cell sorting strategies to separate spermatozoa involving plural contributors from biological mixtures for human identification

    PubMed Central

    Xu, Yan; Xie, Jianhui; Chen, Ronghua; Cao, Yu; Ping, Yuan; Xu, Qingwen; Hu, Wei; Wu, Dan; Gu, Lihua; Zhou, Huaigu; Chen, Xin; Zhao, Ziqin; Zhong, Jiang; Li, Rui

    2016-01-01

    No effective method has been developed to distinguish sperm cells originating from different men in multi-suspect sexual assault cases. Here we combined MACS and FACS to isolate single donor sperm cells from forensic mixture samples including female vaginal epithelial cells and sperm cells from multiple contributors. Sperms from vaginal swab were isolated by MACS using FITC-conjugated A kinase anchor protein 3 (AKAP3) antibody; target individual sperm cells involving two or three donors were separated by FACS using FITC-labeled blood group A/B antigen antibody. This procedure was further tested in two mock multi-suspect sexual assault samples and one practical casework sample. Our results showed that complete single donor STR profiles could be successfully obtained from sperm/epithelial cell and sperm mixtures from two contributors. For unbalanced sperm/epithelial cells and sperm cells mixtures, sensitivity results revealed that target cells could be detected at as low as 1:32 and 1:8 mixed ratios, respectively. Although highly relies on cell number and blood types or secretor status of the individuals, this procedure would still be useful tools for forensic DNA analysis of multi-suspect sexual assault cases by the combined use of FACS and MACS based on sperm-specific AKAP3 antigen and human blood type antigen. PMID:27857155

  19. Magnetic analysis of commercial hematite, magnetite, and their mixtures

    NASA Astrophysics Data System (ADS)

    Ahmadzadeh, Mostafa; Romero, Camila; McCloy, John

    2018-05-01

    Magnetic techniques are suitable to detect iron oxides even in trace concentrations. However, since several iron oxides may be simultaneously present in natural and synthetic samples, mixtures of magnetic particles and magnetic interactions between grains can complicate magnetic signatures. Among the iron oxide minerals, hematite (α-Fe2O3) and magnetite (Fe3O4) are the most common. In this work, different commercial hematite powders, normally used as Fe precursor in laboratory synthesis of Fe-containing oxides, were characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The effects of different concentrations of the hematite and magnetite on the magnetic properties of a set of mixtures (from 1 to 10 wt% magnetite) were then investigated by measuring the hysteresis loops, first order reversal curves (FORCs), thermal demagnetization, and isothermal remanent magnetization (IRM) curves. The three commercial hematite powders presented different magnetic behaviors mostly due to the effects of particle size. The magnetic results of mixtures reveal that it is very difficult to identify hematite magnetic signals by means of hysteresis loops, FORCs, or thermal demagnetization when even a small amount of magnetite (>5 wt%) is present due to magnetite's high specific magnetization. However, IRM was found to be a sensitive method to determine the presence of hematite when magnetite is simultaneously present as high as 10 wt%.

  20. Crystallization-induced dynamic resolution R-epimer from 25-OCH3-PPD epimeric mixture.

    PubMed

    Zhang, Sainan; Tang, Yun; Cao, Jiaqing; Zhao, Chen; Zhao, Yuqing

    2015-11-15

    25-OCH3-PPD is a promising antitumor dammarane sapogenin isolated from the total saponin-hydrolyzed extract of Panax ginseng berry and Panax notoginseng leaves. 20(R)-25-OCH3-PPD was more potent as an anti-cancer agent than 20(S)-25-OCH3-PPD and epimeric mixture of 25-OCH3-PPD. This paper describes the rapid separation process of the R-epimer of 25-OCH3-PPD from its epimeric mixture by crystallization-induced dynamic resolution (CIDR). The optimized CIDR process was based on single factor analysis and nine well-planned orthogonal design experiments (OA9 matrix). A rapid and sensitive reverse phase high-performance liquid chromatographic (HPLC) method with evaporative light-scattering detector (ELSD) was developed and validated for the quantitation of 25-OCH3-PPD epimeric mixture and crystalline product. Separation and quantitation were achieved with a silica column using a mobile phase consisting of methanol and water (87:13, v/v) at a flow rate of 1.0mL/min. The ELSD detection was performed at 50°C and 3L/min. Under conditions involving 3mL of 95% ethanol, 8% HCl, and a hermetically sealed environment for 72h, the maximum production of 25(R)-OCH3-PPD was achieved with a chemical purity of 97% and a total yield of 87% through the CIDR process. The 25(R)-OCH3-PPD was nearly completely separated from the 220mg 25-OCH3-PPD epimeric mixture. Overall, a simple and steady small-batch purification process for the large-scale production of 25(R)-OCH3-PPD from 25-OCH3-PPD epimeric mixture was developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images.

    PubMed

    Sidibé, Désiré; Sankar, Shrinivasan; Lemaître, Guillaume; Rastgoo, Mojdeh; Massich, Joan; Cheung, Carol Y; Tan, Gavin S W; Milea, Dan; Lamoureux, Ecosse; Wong, Tien Y; Mériaudeau, Fabrice

    2017-02-01

    This paper proposes a method for automatic classification of spectral domain OCT data for the identification of patients with retinal diseases such as Diabetic Macular Edema (DME). We address this issue as an anomaly detection problem and propose a method that not only allows the classification of the OCT volume, but also allows the identification of the individual diseased B-scans inside the volume. Our approach is based on modeling the appearance of normal OCT images with a Gaussian Mixture Model (GMM) and detecting abnormal OCT images as outliers. The classification of an OCT volume is based on the number of detected outliers. Experimental results with two different datasets show that the proposed method achieves a sensitivity and a specificity of 80% and 93% on the first dataset, and 100% and 80% on the second one. Moreover, the experiments show that the proposed method achieves better classification performance than other recently published works. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Sol-Gel Synthesis of Carbon Xerogel-ZnO Composite for Detection of Catechol

    PubMed Central

    Li, Dawei; Zang, Jun; Zhang, Jin; Ao, Kelong; Wang, Qingqing; Dong, Quanfeng; Wei, Qufu

    2016-01-01

    Carbon xerogel-zinc oxide (CXZnO) composites were synthesized by a simple method of sol-gel condensation polymerization of formaldehyde and resorcinol solution containing zinc salt followed by drying and thermal treatment. ZnO nanoparticles were observed to be evenly dispersed on the surfaces of the carbon xerogel microspheres. The as-prepared CXZnO composites were mixed with laccase (Lac) and Nafion to obtain a mixture solution, which was further modified on an electrode surface to construct a novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect the environmental pollutant, catechol. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards catechol with high sensitivity (31.2 µA·mM−1), a low detection limit (2.17 µM), and a wide linear range (6.91–453 µM). Moreover, the biosensor also displayed favorable repeatability, reproducibility, selectivity, and stability besides being successfully used in the trace detection of catechol existing in lake water environments. PMID:28773407

  3. Resonant photoacoustic detection of NO2 traces with a Q-switched green laser

    NASA Astrophysics Data System (ADS)

    Slezak, Verónica; Codnia, Jorge; Peuriot, Alejandro L.; Santiago, Guillermo

    2003-01-01

    Resonant photoacoustic detection of NO2 traces by means of a high repetition pulsed green laser is presented. The resonator is a cylindrical Pyrex glass cell with a measured Q factor 380 for the first radial mode in air at atmospheric pressure. The system is calibrated with known mixtures in dry air and a minimum detectable volume concentration of 50 parts in 109 is obtained (S/N=1). Its sensitivity allows one to detect and quantify NO2 traces in the exhaust gases of cars. Previously, the analysis of gas adsorption and desorption on the walls and of changes in the sample composition is carried out in order to minimize errors in the determination of NO2 content upon application of the extractive method. The efficiency of catalytic converters of several models of automobiles is studied and the NO2 concentration in samples from exhausts of different types of engine (gasoline, diesel, and methane gas) at idling operation are measured.

  4. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    PubMed

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  5. Surface-Enhanced Raman Scattering Based Nonfluorescent Probe for Multiplex DNA Detection

    PubMed Central

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2008-01-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive and multiplex format, an alternative surface enhanced Raman scattering (SERS) based probe was designed and fabricated to covalently attach both DNA probing sequence and non-fluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the non-fluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA (ssDNA) to its complementary targets was successfully accomplished with a long-term goal to use non-fluorescent RTags in a Raman-based DNA microarray platform. PMID:17465531

  6. Immobilized lipid-bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  7. Moving target detection method based on improved Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Ma, J. Y.; Jie, F. R.; Hu, Y. J.

    2017-07-01

    Gaussian Mixture Model is often employed to build background model in background difference methods for moving target detection. This paper puts forward an adaptive moving target detection algorithm based on improved Gaussian Mixture Model. According to the graylevel convergence for each pixel, adaptively choose the number of Gaussian distribution to learn and update background model. Morphological reconstruction method is adopted to eliminate the shadow.. Experiment proved that the proposed method not only has good robustness and detection effect, but also has good adaptability. Even for the special cases when the grayscale changes greatly and so on, the proposed method can also make outstanding performance.

  8. Patch tests with fragrance materials and preservatives.

    PubMed

    de Groot, A C; Liem, D H; Nater, J P; van Ketel, W G

    1985-02-01

    179 patients suspected of cosmetic allergy were patch tested with a series of 16 fragrance materials and 9 preservatives. In 67 patients (37.4%), 1 or more of these substances gave positive reactions. In the group of fragrance materials, the largest numbers of positive patch test reactions were seen to isoeugenol, oak moss, geraniol, alpha-amylcinnamic alcohol, and a mixture of alpha-amylcinnamic aldehyde and alpha-hexylcinnamic aldehyde. The fragrance mix in the ICDRG standard series detected nearly 80% of cases of contact allergy to fragrance materials other than its constituents. In the group of preservatives, Kathon CG and quaternium-15 scored the highest number of positive reactions. It is argued that the commonly used patch test concentrations of 2% for oak moss and geraniol may be too low to detect all cases of sensitization.

  9. Influence of protein size on surface-enhanced Raman scattering (SERS) spectra in binary protein mixtures.

    PubMed

    Avci, Ertug; Culha, Mustafa

    2014-01-01

    The size-dependent interactions of eight blood proteins with silver nanoparticles (AgNPs) in their binary mixtures were investigated using surface-enhanced Raman scattering (SERS). Principal component analysis (PCA) was performed on the SERS spectra of each binary mixture, and the differentiation ability of the mixtures was tested. It was found that the effect of relative concentration change on the SERS spectra of the binary mixtures of small proteins could be detected using PCA. However, this change was not observed with the binary mixtures of large proteins. This study demonstrated that the relative interactions of the smaller proteins with an average size of 50 nm AgNPs smaller than the large proteins could be monitored, and this information can be used for the detection of proteins in protein mixtures.

  10. High sensitive analysis of steroids in doping control using gas chromatography/time-of-flight mass-spectrometry.

    PubMed

    Revelsky, A I; Samokhin, A S; Virus, E D; Rodchenkov, G M; Revelsky, I A

    2011-04-01

    The method of high sensitive gas chromatographic/time-of-flight mass-spectrometric (GC/TOF-MS) analysis of steroids was developed. Low-resolution TOF-MS instrument (with fast spectral acquisition rate) was used. This method is based on the formation of the silyl derivatives of steroids; exchange of the reagent mixture (pyridine and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)) for tert-butylmethylether; offline large sample volume injection of this solution based on sorption concentration of the respective derivatives from the vapour-gas mixture flow formed from the solution and inert gas flows; and entire analytes solvent-free concentrate transfer into the injector of the gas chromatograph. Detection limits for 100 µl sample solution volume were 0.5-2 pg/µl (depending on the component). Application of TOF-MS model 'TruTOF' (Leco, St Joseph, MO, USA) coupled with gas chromatograph and ChromaTOF software (Leco, St Joseph, MO, USA) allowed extraction of the full mass spectra and resolving coeluted peaks. Due to use of the proposed method (10 µl sample aliquot) and GC/TOF-MS, two times more steroid-like compounds were registered in the urine extract in comparison with the injection of 1 µl of the same sample solution. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Analysis of hydroxamate siderophores in soil solution using liquid chromatography with mass spectrometry and tandem mass spectrometry with on-line sample preconcentration.

    PubMed

    Olofsson, Madelen A; Bylund, Dan

    2015-10-01

    A liquid chromatography with electrospray ionization mass spectrometry method was developed to quantitatively and qualitatively analyze 13 hydroxamate siderophores (ferrichrome, ferrirubin, ferrirhodin, ferrichrysin, ferricrocin, ferrioxamine B, D1 , E and G, neocoprogen I and II, coprogen and triacetylfusarinine C). Samples were preconcentrated on-line by a switch-valve setup prior to analyte separation on a Kinetex C18 column. Gradient elution was performed using a mixture of an ammonium formate buffer and acetonitrile. Total analysis time including column conditioning was 20.5 min. Analytes were fragmented by applying collision-induced dissociation, enabling structural identification by tandem mass spectrometry. Limit of detection values for the selected ion monitoring method ranged from 71 pM to 1.5 nM with corresponding values of two to nine times higher for the multiple reaction monitoring method. The liquid chromatography with mass spectrometry method resulted in a robust and sensitive quantification of hydroxamate siderophores as indicated by retention time stability, linearity, sensitivity, precision and recovery. The analytical error of the methods, assessed through random-order, duplicate analysis of soil samples extracted with a mixture of 10 mM phosphate buffer and methanol, appears negligible in relation to between-sample variations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Second-derivative synchronous fluorescence spectroscopy for the simultaneous determination of cinnarizine and nicergoline in pharmaceutical preparations.

    PubMed

    Walash, Mohamed I; Belal, Fathalla; El-Enany, Nahed; Abdelal, Amina

    2008-01-01

    A rapid, simple, and highly sensitive second-derivative synchronous fluorometric method has been developed for the simultaneous analysis of binary mixtures of cinnarizine (CN) and nicergoline (NIC). The method is based upon measurement of the native fluorescence of these drugs at constant wavelength difference (Deltalambda) = 80 nm in aqueous methanol (50%, v/v). The different experimental parameters affecting the native fluorescence of the studied drugs were carefully studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.025-1.5 and 0.25-5.5 microg/mL for CN and NIC, respectively, with lower detection limits of 0.58 and 0.82 ng/mL and quantitation limits of 1.93 and 2.73 ng/mL for CN and NIC, respectively. The proposed method was successfully applied for the determination of the studied compounds in synthetic mixtures and in commercial tablets. The results obtained were in good agreement with those obtained with reference methods. The high sensitivity attained by the proposed method allowed the determination of CN in real and spiked human plasma. The mean recovery in the case of spiked human plasma [number of trials (n) = 3] was 102.82 +/- 2.17%, while that in real human plasma (n = 3) was 105.25 +/- 2.05.

  13. DetectTLC: Automated Reaction Mixture Screening Utilizing Quantitative Mass Spectrometry Image Feature

    PubMed Central

    Kaddi, Chanchala D.; Bennett, Rachel V.; Paine, Martin R. L.; Banks, Mitchel D.; Weber, Arthur L.; Fernández, Facundo M.; Wang, May D.

    2016-01-01

    Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. PMID:26508443

  14. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs

    NASA Astrophysics Data System (ADS)

    Muraviev, A. V.; Smolski, V. O.; Loparo, Z. E.; Vodopyanov, K. L.

    2018-04-01

    Mid-infrared spectroscopy offers supreme sensitivity for the detection of trace gases, solids and liquids based on tell-tale vibrational bands specific to this spectral region. Here, we present a new platform for mid-infrared dual-comb Fourier-transform spectroscopy based on a pair of ultra-broadband subharmonic optical parametric oscillators pumped by two phase-locked thulium-fibre combs. Our system provides fast (7 ms for a single interferogram), moving-parts-free, simultaneous acquisition of 350,000 spectral data points, spaced by a 115 MHz intermodal interval over the 3.1-5.5 µm spectral range. Parallel detection of 22 trace molecular species in a gas mixture, including isotopologues containing isotopes such as 13C, 18O, 17O, 15N, 34S, 33S and deuterium, with part-per-billion sensitivity and sub-Doppler resolution is demonstrated. The technique also features absolute optical frequency referencing to an atomic clock, a high degree of mutual coherence between the two mid-infrared combs with a relative comb-tooth linewidth of 25 mHz, coherent averaging and feasibility for kilohertz-scale spectral resolution.

  15. A Highly Sensitive and Selective Method for the Determination of an Iodate in Table-salt Samples Using Malachite Green-based Spectrophotometry.

    PubMed

    Konkayan, Mongkol; Limchoowong, Nunticha; Sricharoen, Phitchan; Chanthai, Saksit

    2016-01-01

    A simple, rapid, and sensitive malachite green-based spectrophotometric method for the selective trace determination of an iodate has been developed and presented for the first time. The reaction mixture was specifically involved in the liberation of iodine in the presence of an excess of iodide in an acidic condition following an instantaneous reaction between the liberated iodine and malachite green dye. The optimum condition was obtained with a buffer solution pH of 5.2 in the presence of 40 mg L -1 potassium iodide and 1.5 × 10 -5 M malachite green for a 5-min incubation time. The iodate contents in some table-salt samples were in the range of 26 to 45 mg kg -1 , while those of drinking water, tap water, canal water, and seawater samples were not detectable (< 96 ng mL -1 of limits of detection, LOQ) with their satisfied method of recoveries of between 93 and 108%. The results agreed with those obtained using ICP-OES for comparison.

  16. Low power, lightweight vapor sensing using arrays of conducting polymer composite chemically-sensitive resistors

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Lewis, N. S.

    2001-01-01

    Arrays of broadly responsive vapor detectors can be used to detect, identify, and quantify vapors and vapor mixtures. One implementation of this strategy involves the use of arrays of chemically-sensitive resistors made from conducting polymer composites. Sorption of an analyte into the polymer composite detector leads to swelling of the film material. The swelling is in turn transduced into a change in electrical resistance because the detector films consist of polymers filled with conducting particles such as carbon black. The differential sorption, and thus differential swelling, of an analyte into each polymer composite in the array produces a unique pattern for each different analyte of interest, Pattern recognition algorithms are then used to analyze the multivariate data arising from the responses of such a detector array. Chiral detector films can provide differential detection of the presence of certain chiral organic vapor analytes. Aspects of the spaceflight qualification and deployment of such a detector array, along with its performance for certain analytes of interest in manned life support applications, are reviewed and summarized in this article.

  17. Intracavity widely-tunable quantum cascade laser spectrometer.

    PubMed

    Brownsword, Richard A; Weidmann, Damien

    2013-01-28

    A grating-tuned extended-cavity quantum cascade laser (EC-QCL) operating around 7.6 µm was assembled to provide a tuning range of ~80 cm⁻¹ with output power of up to 30 mW. The EC-QCL output power was shown to be sensitive to the presence of a broadband absorbing gas mixture contained in a 2-cm cell introduced inside the extended laser cavity. In this arrangement, enhanced absorption relative to single path linear absorption was observed. To describe observations, in the QCL rate-equation model was included the effect of intracavity absorption. The model qualitatively reproduced the absorption behavior observed. In addition, it allowed quantitative measurements of mixing ratio of dimethyl carbonate, which was used as a test broadband absorber. A number of alternative data acquisition and reduction methods were identified. As the intracavity absorber modifies the laser threshold current, phase-sensitive detection of the laser threshold current was found to be the most attractive way to determine the mixing ratio of the absorber. The dimethyl carbonate detection limit was estimated to be 1.4 ppmv for 10 second integration. Limitations and possible ways of improvements were also identified.

  18. LAMPhimerus: A novel LAMP assay for detecting Amphimerus sp. DNA in human stool samples

    PubMed Central

    Calvopiña, Manuel; Fontecha-Cuenca, Cristina; Sugiyama, Hiromu; Sato, Megumi; López Abán, Julio; Vicente, Belén; Muro, Antonio

    2017-01-01

    Background Amphimeriasis is a fish-borne disease caused by the liver fluke Amphimerus spp. that has recently been reported as endemic in the tropical Pacific side of Ecuador with a high prevalence in humans and domestic animals. The diagnosis is based on the stool examination to identify parasite eggs, but it lacks sensitivity. Additionally, the morphology of the eggs may be confounded with other liver and intestinal flukes. No immunological or molecular methods have been developed to date. New diagnostic techniques for specific and sensitive detection of Amphimerus spp. DNA in clinical samples are needed. Methodology/Principal findings A LAMP targeting a sequence of the Amphimerus sp. internal transcribed spacer 2 region was designed. Amphimerus sp. DNA was obtained from adult worms recovered from animals and used to optimize the molecular assays. Conventional PCR was performed using outer primers F3-B3 to verify the proper amplification of the Amphimerus sp. DNA target sequence. LAMP was optimized using different reaction mixtures and temperatures, and it was finally set up as LAMPhimerus. The specificity and sensitivity of both PCR and LAMP were evaluated. The detection limit was 1 pg of genomic DNA. Field testing was done using 44 human stool samples collected from localities where fluke is endemic. Twenty-five samples were microscopy positive for Amphimerus sp. eggs detection. In molecular testing, PCR F3-B3 was ineffective when DNA from fecal samples was used. When testing all human stool samples included in our study, the diagnostic parameters for the sensitivity and specificity were calculated for our LAMPhimerus assay, which were 76.67% and 80.77%, respectively. Conclusions/Significance We have developed and evaluated, for the first time, a specific and sensitive LAMP assay for detecting Amphimerus sp. in human stool samples. The procedure has been named LAMPhimerus method and has the potential to be adapted for field diagnosis and disease surveillance in amphimeriasis-endemic areas. Future large-scale studies will assess the applicability of this novel LAMP assay. PMID:28628614

  19. Pork detection in binary meat mixtures and some commercial food products using conventional and real-time PCR techniques.

    PubMed

    Al-Kahtani, Hassan A; Ismail, Elsayed A; Asif Ahmed, Mohammed

    2017-03-15

    Pork DNA was detected in meat mixtures using both conventional PCR and real-time PCR (RT-PCR). Thirty meat mixtures containing beef, chicken, camel, rabbit, goat and sheep with varying percentage of pork (0%, 1%, 5%, 10%, and 20%) and 75 commercial food products, were analyzed using conventional and RT-PCR to determine the presence of pork DNA. Pork DNA standard curves and cycle threshold (Ct) values were used for quantification. The detection limits for pork DNA in the mixtures were 0.22, 0.047, 0.048, 0.0000037, 0.015ng/μl respectively. Unlike conventional PCR, RT-PCR detected pork DNA in nine processed food samples [chicken sausages (2), chicken luncheon (2), turkey meat loaf, milk chocolate with soft nougat, jelly, cake, and candies] at pork DNA concentrations of 0.0001ng/μl or less. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fabrication of Natural Sensitizer Extracted from Mixture of Purple Cabbage, Roselle, Wormwood and Seaweed with High Conversion Efficiency for DSSC.

    PubMed

    Chang, Ho; Lai, Xuan-Rong

    2016-02-01

    This study aims to deal with the influence of different solvent in extraction of natural sensitizer and different thickness of photoelectrode thin film on the photoelectric conversion efficiency and the electron transport properties for the prepared dye-sensitized solar cells (DSSC). The natural dyes of anthocyanin and chlorophyll dyes are extracted from mixture of purple cabbage and roselle and mixture of wormwood and seaweed, respectively. The experimental results show the cocktail dye extracted with ethanol and rotating speed of spin coating at 1000 rpm can achieve the greatest photoelectric conversion efficiency up to 1.85%. Electrochemical impedance result shows that the effective diffusion coefficient for the prepared DSSC with the thickness of photoelectrode thin film at 21 microm are 5.23 x 10(-4) cm2/s.

  1. Teleoperated robotic sorting system

    DOEpatents

    Roos, Charles E.; Sommer, Jr., Edward J.; Parrish, Robert H.; Russell, James R.

    2008-06-24

    A method and apparatus are disclosed for classifying materials utilizing a computerized touch sensitive screen or other computerized pointing device for operator identification and electronic marking of spatial coordinates of materials to be extracted. An operator positioned at a computerized touch sensitive screen views electronic images of the mixture of materials to be sorted as they are conveyed past a sensor array which transmits sequences of images of the mixture either directly or through a computer to the touch sensitive display screen. The operator manually "touches" objects displayed on the screen to be extracted from the mixture thereby registering the spatial coordinates of the objects within the computer. The computer then tracks the registered objects as they are conveyed and directs automated devices including mechanical means such as air jets, robotic arms, or other mechanical diverters to extract the registered objects.

  2. Teleoperated robotic sorting system

    DOEpatents

    Roos, Charles E.; Sommer, Edward J.; Parrish, Robert H.; Russell, James R.

    2000-01-01

    A method and apparatus are disclosed for classifying materials utilizing a computerized touch sensitive screen or other computerized pointing device for operator identification and electronic marking of spatial coordinates of materials to be extracted. An operator positioned at a computerized touch sensitive screen views electronic images of the mixture of materials to be sorted as they are conveyed past a sensor array which transmits sequences of images of the mixture either directly or through a computer to the touch sensitive display screen. The operator manually "touches" objects displayed on the screen to be extracted from the mixture thereby registering the spatial coordinates of the objects within the computer. The computer then tracks the registered objects as they are conveyed and directs automated devices including mechanical means such as air jets, robotic arms, or other mechanical diverters to extract the registered objects.

  3. Development of analytically capable time-of-flight mass spectrometer with continuous ion introduction

    NASA Astrophysics Data System (ADS)

    Hárs, György; Dobos, Gábor

    2010-03-01

    The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 μs. Accordingly, the sample is under excitation in 10-4 part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 1010 V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the mathematical calculations as well as the future potentiality for use in chemical analysis of gaseous mixtures.

  4. New and highly sensitive assay for L-5-hydroxytryptophan decarboxylase activity by high-performance liquid chromatography-voltammetry.

    PubMed

    Rahman, M K; Nagatsu, T; Kato, T

    1980-12-12

    This paper describes a new, inexpensive and highly sensitive assay for aromatic L-amino acid decarboxylase (AADC) activity, using L-5-hydroxytryptophan (L-5-HTP) as substrate, in rat and human brains and serum by high-performance liquid chromatography (HPLC) with voltammetric detection. L-5-HTP was used as substrate and D-5-HTP for the blank. After isolating serotonin (5-HT) formed enzymatically from L-5-HTP on a small Amberlite CG-50 column, the 5-HT was eluted with hydrochloric acid and assayed by HPLC with a voltammetric detector. N-Methyldopamine was added to each incubation mixture as an internal standard. This method is sensitive enough to measure 5-HT, formed by the enzyme, 100 fmol to 140 pmol or more. An advantage of this method is that one can incubate the enzyme for longer time (up to 150 min), as compared with AADC assay using L-DOPA as substrate, resulting in a very high sensitivity. By using this new method, AADC activity was discovered in rat serum.

  5. Development of a tape transport bacterial detection system

    NASA Technical Reports Server (NTRS)

    Witz, S.; Hartung, W. H.

    1972-01-01

    The feasibility of a tape transport chemiluminescence system for bacterial monitoring of regenerated water was demonstrated using a manually operated laboratory breadboard. The principle of detection is based on measuring the increase in chemiluminescence produced by the catalytic action of bacterial porphyrins on a luminol-hydrogen peroxide mixture. Viable organisms are distinguished from nonviable by comparing the signals of incubated and unincubated water samples. Using optimized protocols, sensitivities were obtained with 400 ml suspensions of E. coli and Cl. sporogenes. The sensitivity of the unincubated cycle E. coli (aerobe) was found to be 30 to 35 cells/m1, and that of the Cl. sporogenes (anaerobe) was 1000 to 10,000 cells/m1. The lower sensitivity toward Cl. sporogenes is attributed to several factors, namely the lower cytochrome content, the tendency to sporulate, long lag periods and the lower growth rate of Clostridia in general. The operational procedures used for processing the incubated and unincubated samples involved the following sequence: (1) concentrating the sample by filtration through a membrane filter, (2) washing with Dextrose-Thioglycollate Broth (3) incubating (0 to 4 hrs as required), (4) washing with 4M Urea, and (5) reacting with reagent in front of a photomultiplier tube. The signal output was recorded on a strip chart recorder.

  6. Resistive Plate Chambers as thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Mongelli, T.; Paticchio, V.; Ranieri, A.; Trentadue, R.

    2003-09-01

    We present a construction procedure suitable to make Resistive Plate Chambers detectors sensitive also to thermal neutrons. This procedure, consisting in coating the inner surface of one of the RPC Bakelite electrodes with a mixture of linseed oil and Gd203, is very simple, cheap, and suitable to be employed for industrial, medical or de-mining applications. Here the results of extensive tests aimed to asset the performance of two prototypes of Gd-RPCs are shown. While the detection efficiency to thermal neutrons for a standard not Gd-coated RPC results to be about 0.1%, Gd-RPCs reach, in stand-alone, absolute efficiencies of about 10%, and, when two of these detectors are coupled together, more than 15%. In addition RPCs have excellent time resolution and good imaging performance. This new type, position sensitive gas detector can be operated at atmospheric pressure, is light-weighted, has low γ-ray sensitivity, and is easy to build and handle even when large areas are to be covered.

  7. Allergenic activity of an air-oxidized ethoxylated surfactant.

    PubMed

    Karlberg, Ann-Therese; Bodin, Anna; Matura, Mihaly

    2003-11-01

    Ethoxylated surfactants are used in household and industrial cleaners, topical pharmaceuticals, cosmetics and laundry products. Polyethers, e.g. ethoxylated surfactants and polyethylene glycols, are oxidized by atmospheric oxygen (autoxidized) when stored and handled. We have previously shown that a chemically well-defined non-ionic surfactant, the ethoxylated alcohol penta-ethylene glycol mono-n-dodecyl ether (C12E5), forms a complex mixture of autoxidation products when exposed to air. Predictive testing in guinea pigs showed that the surfactant itself is a non-sensitizer, but that oxidation products formed are skin sensitizers. The aim of this study was to investigate the sensitizing capacity of a total oxidation mixture of C12E5 obtained after autoxidation. The allergenic activity of different oxidation products is discussed as well as the clinical importance of the findings. This study shows that the non-ionic surfactant C12E5 containing 20% oxidation products is a sensitizing mixture. The result accords with what is observed for other compounds that are unstable when in contact with air, e.g. limonene and linalool, major fragrance terpenes. Studies regarding the clinical relevance of our findings should be performed. However, it is already clear from this study that precautions must be taken in handling and storage of ethoxylated surfactants to avoid formation of allergenic mixtures.

  8. Estimating abundance while accounting for rarity, correlated behavior, and other sources of variation in counts

    USGS Publications Warehouse

    Dorazio, Robert M.; Martin, Juulien; Edwards, Holly H.

    2013-01-01

    The class of N-mixture models allows abundance to be estimated from repeated, point count surveys while adjusting for imperfect detection of individuals. We developed an extension of N-mixture models to account for two commonly observed phenomena in point count surveys: rarity and lack of independence induced by unmeasurable sources of variation in the detectability of individuals. Rarity increases the number of locations with zero detections in excess of those expected under simple models of abundance (e.g., Poisson or negative binomial). Correlated behavior of individuals and other phenomena, though difficult to measure, increases the variation in detection probabilities among surveys. Our extension of N-mixture models includes a hurdle model of abundance and a beta-binomial model of detectability that accounts for additional (extra-binomial) sources of variation in detections among surveys. As an illustration, we fit this model to repeated point counts of the West Indian manatee, which was observed in a pilot study using aerial surveys. Our extension of N-mixture models provides increased flexibility. The effects of different sets of covariates may be estimated for the probability of occurrence of a species, for its mean abundance at occupied locations, and for its detectability.

  9. Estimating abundance while accounting for rarity, correlated behavior, and other sources of variation in counts.

    PubMed

    Dorazio, Robert M; Martin, Julien; Edwards, Holly H

    2013-07-01

    The class of N-mixture models allows abundance to be estimated from repeated, point count surveys while adjusting for imperfect detection of individuals. We developed an extension of N-mixture models to account for two commonly observed phenomena in point count surveys: rarity and lack of independence induced by unmeasurable sources of variation in the detectability of individuals. Rarity increases the number of locations with zero detections in excess of those expected under simple models of abundance (e.g., Poisson or negative binomial). Correlated behavior of individuals and other phenomena, though difficult to measure, increases the variation in detection probabilities among surveys. Our extension of N-mixture models includes a hurdle model of abundance and a beta-binomial model of detectability that accounts for additional (extra-binomial) sources of variation in detections among surveys. As an illustration, we fit this model to repeated point counts of the West Indian manatee, which was observed in a pilot study using aerial surveys. Our extension of N-mixture models provides increased flexibility. The effects of different sets of covariates may be estimated for the probability of occurrence of a species, for its mean abundance at occupied locations, and for its detectability.

  10. Method of and apparatus for measuring the mean concentration of thoron and/or radon in a gas mixture

    DOEpatents

    Lucas, Henry

    1990-01-01

    A method of and an apparatus for detecting and accurately measuring the mean concentrations of .sup.222 Rn and .sup.220 Tn in a gas mixture, such as the ambient atmosphere in a mine, is provided. The apparatus includes an alpha target member which defines at least one operative target surface and which is preferably fabricated from a single piece of an alpha particle sensitive material. At least one portion of the operative target surface is covered with an alpha particle filter. The uncovered and filter covered operative surface is exposed to the gas mixture containing the .sup.222 Rn and .sup.220 Tn. In the radioactive decay series of these isotopes the maximum kinetic energy emitted by the alpha decay of .sup.222 Rn is about 1.1 MeV less than the maximum kinetic energy emitted by the alpha decay of a .sup.220 Tn. The alpha particle filter has a predetermined mass per unit area of the covered portion of the operative target surface that prevents penetration of alpha particles which originate from .sup.222 Rn decay, but which allows passage therethrough of the maximum kinetic energy alpha particles from .sup.220 Tn decay. Thus, a count of the alpha particle tracks in the uncovered portion of the target member is proportional to the mean concentration of sum of .sup.222 Rn and .sup.220 Tn in the gas mixture, while the count of alpha tracks in the target member under the filter is proportional to the concentration of only the .sup.220 Tn in the gas mixture.

  11. Hierarchical Bayesian Approach To Reduce Uncertainty in the Aquatic Effect Assessment of Realistic Chemical Mixtures.

    PubMed

    Oldenkamp, Rik; Hendriks, Harrie W M; van de Meent, Dik; Ragas, Ad M J

    2015-09-01

    Species in the aquatic environment differ in their toxicological sensitivity to the various chemicals they encounter. In aquatic risk assessment, this interspecies variation is often quantified via species sensitivity distributions. Because the information available for the characterization of these distributions is typically limited, optimal use of information is essential to reduce uncertainty involved in the assessment. In the present study, we show that the credibility intervals on the estimated potentially affected fraction of species after exposure to a mixture of chemicals at environmentally relevant surface water concentrations can be extremely wide if a classical approach is followed, in which each chemical in the mixture is considered in isolation. As an alternative, we propose a hierarchical Bayesian approach, in which knowledge on the toxicity of chemicals other than those assessed is incorporated. A case study with a mixture of 13 pharmaceuticals demonstrates that this hierarchical approach results in more realistic estimations of the potentially affected fraction, as a result of reduced uncertainty in species sensitivity distributions for data-poor chemicals.

  12. DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS

    PubMed Central

    Yang, Jun; Vykoukal, Jody; Noshari, Jamileh; Becker, Frederick; Gascoyne, Peter; Krulevitch, Peter; Fuller, Chris; Ackler, Harold; Hamilton, Julie; Boser, Bernhard; Eldredge, Adam; Hitchens, Duncan; Andrews, Craig

    2009-01-01

    Diagnosis and treatment of human diseases frequently requires isolation and detection of certain cell types from a complex mixture. Compared with traditional separation and detection techniques, microfluidic approaches promise to yield easy-to-use diagnostic instruments tolerant of a wide range of operating environments and capable of accomplishing automated analyses. These approaches will enable diagnostic advances to be disseminated from sophisticated clinical laboratories to the point-of-care. Applications will include the separation and differential analysis of blood cell subpopulations for host-based detection of blood cell changes caused by disease, infection, or exposure to toxins, and the separation and analysis of surface-sensitized, custom dielectric beads for chemical, biological, and biomolecular targets. Here we report a new particle separation and analysis microsystem that uses dielectrophoretic field-flow fractionation (DEP-FFF). The system consists of a microfluidic chip with integrated sample injector, a DEP-FFF separator, and an AC impedance sensor. We show the design of a miniaturized impedance sensor integrated circuit (IC) with improved sensitivity, a new packaging approach for micro-flumes that features a slide-together compression package and novel microfluidic interconnects, and the design, control, integration and packaging of a fieldable prototype. Illustrative applications will be shown, including the separation of different sized beads and different cell types, blood cell differential analysis, and impedance sensing results for beads, spores and cells. PMID:22025905

  13. Comparison of multi- and hyperspectral imaging data of leaf rust infected wheat plants

    NASA Astrophysics Data System (ADS)

    Franke, Jonas; Menz, Gunter; Oerke, Erich-Christian; Rascher, Uwe

    2005-10-01

    In the context of precision agriculture, several recent studies have focused on detecting crop stress caused by pathogenic fungi. For this purpose, several sensor systems have been used to develop in-field-detection systems or to test possible applications of remote sensing. The objective of this research was to evaluate the potential of different sensor systems for multitemporal monitoring of leaf rust (puccinia recondita) infected wheat crops, with the aim of early detection of infected stands. A comparison between a hyperspectral (120 spectral bands) and a multispectral (3 spectral bands) imaging system shows the benefits and limitations of each approach. Reflectance data of leaf rust infected and fungicide treated control wheat stand boxes (1sqm each) were collected before and until 17 days after inoculation. Plants were grown under controlled conditions in the greenhouse and measurements were taken under consistent illumination conditions. The results of mixture tuned matched filtering analysis showed the suitability of hyperspectral data for early discrimination of leaf rust infected wheat crops due to their higher spectral sensitivity. Five days after inoculation leaf rust infected leaves were detected, although only slight visual symptoms appeared. A clear discrimination between infected and control stands was possible. Multispectral data showed a higher sensitivity to external factors like illumination conditions, causing poor classification accuracy. Nevertheless, if these factors could get under control, even multispectral data may serve a good indicator for infection severity.

  14. Response Times to Gustatory–Olfactory Flavor Mixtures: Role of Congruence

    PubMed Central

    Shepard, Timothy G.; Veldhuizen, Maria G.

    2015-01-01

    A mixture of perceptually congruent gustatory and olfactory flavorants (sucrose and citral) was previously shown to be detected faster than predicted by a model of probability summation that assumes stochastically independent processing of the individual gustatory and olfactory signals. This outcome suggests substantial integration of the signals. Does substantial integration also characterize responses to mixtures of incongruent flavorants? Here, we report simple response times (RTs) to detect brief pulses of 3 possible flavorants: monosodium glutamate, MSG (gustatory: “umami” quality), citral (olfactory: citrus quality), and a mixture of MSG and citral (gustatory–olfactory). Each stimulus (and, on a fraction of trials, water) was presented orally through a computer-operated, automated flow system, and subjects were instructed to press a button as soon as they detected any of the 3 non-water stimuli. Unlike responses previously found to the congruent mixture of sucrose and citral, responses here to the incongruent mixture of MSG and citral took significantly longer (RTs were greater) and showed lower detection rates than the values predicted by probability summation. This outcome suggests that the integration of gustatory and olfactory flavor signals is less extensive when the component flavors are perceptually incongruent rather than congruent, perhaps because incongruent flavors are less familiar. PMID:26304508

  15. Synergism and Combinatorial Coding for Binary Odor Mixture Perception in Drosophila

    PubMed Central

    Chakraborty, Tuhin Subhra; Siddiqi, Obaid

    2016-01-01

    Most odors in the natural environment are mixtures of several compounds. Olfactory receptors housed in the olfactory sensory neurons detect these odors and transmit the information to the brain, leading to decision-making. But whether the olfactory system detects the ingredients of a mixture separately or treats mixtures as different entities is not well understood. Using Drosophila melanogaster as a model system, we have demonstrated that fruit flies perceive binary odor mixtures in a manner that is heavily dependent on both the proportion and the degree of dilution of the components, suggesting a combinatorial coding at the peripheral level. This coding strategy appears to be receptor specific and is independent of interneuronal interactions. PMID:27588303

  16. Toxicity of inorganic contaminants, individually and in environmental mixtures, to three endangered fishes (Colorado squawfish, bonytail, and razorback sucker)

    USGS Publications Warehouse

    Buhl, Kevin J.; Hamilton, S.J.

    1996-01-01

    Two life stages of three federally-listed endangered fishes, Colorado squawfish (Ptychocheilus lucius), bonytail (Gila elegans), and razorback sucker (Xyrauchen texanus) were exposed to copper, selenate, selenite, and zinc individually, and to mixtures of nine inorganics in a reconstituted water that simulated the water quality of the middle Green River, Utah. The mixtures simulated environmental ratios of arsenate, boron, copper, molybdenum, selenate, selenite, uranium, vanadium, and zinc in two tributaries, Ashley Creek and Stewart Lake outlet, of the middle Green River. The rank order of toxicity of the individual inorganics, from most to least toxic, was: copper > zinc > selenite > selenate. Colorado squawfish larvae were more sensitive to all four inorganics and the two mixtures than the juveniles, whereas there was no consistent response between the two life stages for the other two species. There was no consistent difference in sensitivity to the inorganics among the three endangered fishes. Both mixtures exhibited either additive or greater than additive toxicity to these fishes. The primary toxic components in the mixtures, based on toxic units, were copper and zinc. Acute toxicity values were compared to measured environmental concentrations in the two tributaries to derive margins of uncertainty. Margins of uncertainty were low for both mixtures (9–22 for the Stewart Lake outlet mixture, and 12–32 for the Ashley Creek mixture), indicating that mixtures of inorganics derived from irrigation activities may pose a hazard to endangered fishes in the Green River.

  17. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    PubMed

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.

  18. [Study of mixed dry binders in directly compressible lactoses and microcrystalline cellulose].

    PubMed

    Muzíková, J; Vinklarová, S

    2004-09-01

    The paper evaluated the compressibility of dry binders prepared in the ratios of 3:1, 1:1, and 1:3 from Pharmatosa DCL 15 and DCL 21 and Avicel PH 200, and the sensitivity of the mixtures to an addition of the lubricant magnesium stearate from the standpoint of the effect on the strength of tablets. Mixtures of lactoses with Avicel PH -200 in a ratio of 3:1 proved to be most advantageous. The strengths of tablets made of these mixtures oscillated in the optimal range and they showed the least sensitivity to the added lubricant. An increase in stearate concentration did not result in a marked decrease in the strength of compacts. Pharmatosa DCL 21 in a mixture with Avicel PH 200 yielded stronger compacts at lower compression force than Pharmatosa DCL 15.

  19. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reducemore » effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.« less

  20. Direct duplex real-time loop mediated isothermal amplification assay for the simultaneous detection of cow and goat species origin of milk and yogurt products for field use.

    PubMed

    Kim, Mi-Ju; Kim, Hae-Yeong

    2018-04-25

    A multiple loop-mediated isothermal amplification (LAMP) method was developed to detect cow and goat milk in the field using a portable fluorescence device. For rapid on-site detection, this duplex LAMP assay was used in combination with direct amplification, without DNA extraction. The cow- and goat-specific LAMP primer sets were designed based on the mitochondrial cytochrome b gene, and showed specificity against 13 other animal species in the reactions. The sensitivity of the duplex LAMP assay for cow and goat was 0.1 and 1 pg, respectively. The detection limit for both target species in milk mixtures was 2%. This assay successfully amplified and identified the two target species in 24 samples of commercial milk and yogurt products, with 30 min sampling-to-result analysis time. Therefore, this direct duplex real-time LAMP assay is useful for on-site simultaneous detection of cow and goat milk in commercial products, a capability needed to confirm accurate labeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  2. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect.

    PubMed

    Revalde, Gita; Sholupov, Sergey; Ganeev, Alexander; Pogarev, Sergey; Ryzhov, Vladimir; Skudra, Atis

    2015-08-05

    A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions ((196)Hg, (198)Hg, (202)Hg, (204)Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope (204)Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m(3) for benzene) level, the interference from SO2, NO2, O3, H2S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m(3) at 1 s averaging and 0.1 mg/m(3) at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds.

    PubMed

    Marcillo, Andrea; Jakimovska, Viktorija; Widdig, Anja; Birkemeyer, Claudia

    2017-09-08

    Volatile organic compounds (VOCs) are commonly collected from gaseous samples by adsorption to materials such as the porous polymer Tenax TA. Adsorbed compounds are subsequently released from these materials by thermal desorption (TD) and separated then by gas chromatography (GC) with flame ionization (FID) or mass spectrometry (MS) detection. Tenax TA is known to be particularly suitable for non-polar to semipolar volatiles, however, many volatiles from environmental and biological samples possess a rather polar character. Therefore, we tested if the polymer XAD-2, which so far is widely used to adsorb organic compounds from aqueous and organic solvents, could provide a broader coverage for (semi)polar VOCs during gas-phase sampling. Mixtures of volatile compounds covering a wide range of volatility (bp. 20-256°C) and different chemical classes were introduced by liquid spiking into sorbent tubes with one of the two porous polymers, Tenax TA or XAD-2, and analyzed by TD/GC-MS. At first, an internal standard mixture composed of 17 authentic standards was used to optimize desorption temperature with respect to sorbent degradation and loading time for calibration. Secondly, we tested the detectability of a complex standard mixture composed of 57 volatiles, most of them common constituents of the body odor of mammals. Moreover, the performance of XAD-2 compared with Tenax TA was assessed as limit of quantitation and linearity for the internal standard mixture and 33 compounds from the complex standard mixture. Volatiles were analyzed in a range between 0.01-∼250ng/tube depending on the compound and material. Lower limits of quantitation were between 0.01 and 3 ng±<25% RSD (R 2 >0.9). Interestingly, we found different kinetics for compound adsorption with XAD-2, and a partially better sensitivity in comparison with Tenax TA. For these analytes, XAD-2 might be recommended as an alternative of Tenax TA for TD/GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A validated stability indicating RP-HPLC method for estimation of Armodafinil in pharmaceutical dosage forms and characterization of its base hydrolytic product.

    PubMed

    Venkateswarlu, Kambham; Rangareddy, Ardhgeri; Narasimhaiah, Kanaka; Sharma, Hemraj; Bandi, Naga Mallikarjuna Raja

    2017-01-01

    The main objective of present study was to develop a RP-HPLC method for estimation of Armodafinil in pharmaceutical dosage forms and characterization of its base hydrolytic product. The method was developed for Armodafinil estimation and base hydrolytic products were characterized. The separation was carried out on C18 column by using mobile phase as mixture of water and methanol (45:55%v/v). Eluents were detected at 220nm at 1ml/min. Stress studies were performed with milder conditions followed by stronger conditions so as to get sufficient degradation around 20%. A total of five degradation products were detected and separated from analyte. The linearity of the proposed method was investigated in the range of 20-120µg/ml for Armodafinil. The detection limit and quantification limit was found to be 0.01183μg/ml and 0.035µg/ml respectively. The precision % RSD was found to be less than 2% and the recovery was between 98-102%. Armodafinil was found to be more sensitive to the base hydrolysis and yielded its carboxylic acid as degradant. The developed method was stability indicating assay, suitable to quantify Armodafinil in presence of possible degradants. The drug was sensitive to acid, base &photolytic stress and resistant to thermal &oxidation.

  5. Differentiating the levels of risk for muscle dysmorphia among Hungarian male weightlifters: a factor mixture modeling approach.

    PubMed

    Babusa, Bernadett; Czeglédi, Edit; Túry, Ferenc; Mayville, Stephen B; Urbán, Róbert

    2015-01-01

    Muscle dysmorphia (MD) is a body image disturbance characterized by a pathological preoccupation with muscularity. The study aimed to differentiate the levels of risk for MD among weightlifters and to define a tentative cut-off score for the Muscle Appearance Satisfaction Scale (MASS) for the identification of high risk MD cases. Hungarian male weightlifters (n=304) completed the MASS, the Exercise Addiction Inventory, and specific exercise and body image related questions. For the differentiation of MD, factor mixture modeling was performed, resulting in three independent groups: low-, moderate-, and high risk MD groups. The estimated prevalence of high risk MD in this sample of weightlifters was 15.1%. To determine a cut-off score for the MASS, sensitivity and specificity analyses were performed and a cut-off point of 63 was suggested. The proposed cut-off score for the MASS can be useful for the early detection of high risk MD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Spectrophotometric catalytic determination of small amounts of rhenium in mineralized rocks and molybdenite

    USGS Publications Warehouse

    Simon, F.O.; Grimaldi, F.S.

    1962-01-01

    Rhenium is determined by spectrophotometry of the tellurium sol formed by the reduction of tellurate by stannous chloride under the catalytic influence of rhenium. A detailed investigation of the conditions for high sensitivity and stability at lowest concentration levels of rhenium is presented as well as the behavior of 26 ions. The method is applied to the determination of some tenths of 1 p.p.m. or more of rhenium in a 1-mg. aliquot of mineralized rocks, mixtures of molybdenite and rocks, and molybdenite concentrates. The practical quantity limit of detection is 2 ?? 10-10 gram of rhenium. Samples are decomposed with a mixture of CaO, CaCl2, and MgO. On leaching, most constituents of the sample are precipitated either as calcium salts or hydroxides, except for rhenium and a small amount of molybdenum which pass into the filtrate. Residual molybdenum is removed by extraction with 8-quinolinol in chloroform. Better than 95% recoveries are obtained with two fusions with flux.

  7. Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms.

    PubMed

    Knauert, Stefanie; Singer, Heinz; Hollender, Juliane; Knauer, Katja

    2010-01-01

    The submersed macrophytes Elodea canadensis, Myriophyllum spicatum and Potamogeton lucens were constantly exposed over a five-week period to environmentally relevant concentrations of atrazine, isoproturon, diuron, and their mixture in outdoor mesocosms. Effects were evaluated investigating photosynthetic efficiency (PE) of the three macrophytes and growth of M. spicatum and E. canadensis. Adverse effects on PE were observed on days 2 and 5 after application. M. spicatum was found to be the more sensitive macrophyte. E. canadensis and P. lucens were less sensitive to atrazine, diuron and the mixture and insensitive to isoproturon. PE of M. spicatum was similarly affected by the single herbicides and the mixture demonstrating concentration addition. Growth of E. canadensis and M. spicatum was not reduced indicating that herbicide exposure did not impair plant development. Although PE measurements turned out to be a sensitive method to monitor PSII herbicides, plant growth remains the more relevant ecological endpoint in risk assessment.

  8. Liquid-state nuclear spin comagnetometers.

    PubMed

    Ledbetter, M P; Pustelny, S; Budker, D; Romalis, M V; Blanchard, J W; Pines, A

    2012-06-15

    We discuss nuclear spin comagnetometers based on ultralow-field nuclear magnetic resonance in mixtures of miscible solvents, each rich in a different nuclear spin. In one version thereof, Larmor precession of protons and 19F nuclei in a mixture of thermally polarized pentane and hexafluorobenzene is monitored via a sensitive alkali-vapor magnetometer. We realize transverse relaxation times in excess of 20 s and suppression of magnetic field fluctuations by a factor of 3400. We estimate it should be possible to achieve single-shot sensitivity of about 5×10(-9)  Hz, or about 5×10(-11)  Hz in ≈1 day of integration. In a second version, spin precession of protons and 129Xe nuclei in a mixture of pentane and hyperpolarized liquid xenon is monitored using superconducting quantum interference devices. Application to spin-gravity experiments, electric dipole moment experiments, and sensitive gyroscopes is discussed.

  9. A Multiplex PCR Approach for Detecting Dual Infections and Recombinants Involving Major HIV Variants

    PubMed Central

    Cappy, Pierre; De Oliveira, Fabienne; Gueudin, Marie; Alessandri-Gradt, Elodie

    2016-01-01

    The cocirculation of different HIV types and groups can lead to dual infections and recombinants, which hinder diagnosis and therapeutic management. We designed two multiplex PCRs (mPCRs) coupled with capillary electrophoresis to facilitate the detection of such infections. The first, MMO2, targets three variants (HIV-1/M, HIV-1/O, and HIV-2), and the second, MMO, targets HIV-1/M and HIV-1/O. These mPCRs were validated on DNA and RNA extracts from 19 HIV-1/M, 12 HIV-1/O, and 13 HIV-2 cultures and from mixtures simulating dual infections. They were then assessed with DNA and RNA extracts from samples of 47 clinical monoinfections and HIV-1/M+O dual infections or infections with HIV-1/MO recombinants. Both mPCRs had excellent specificity. Sensitivities ranged from 80 to 100% for in vitro samples and from 58 to 100% for clinical samples, with the results obtained depending on the material used and the region of the genome concerned. Sensitivity was generally lower for DNA than for RNA and for amplifications of the integrase and matrix regions. In terms of global detection (at least one target gene for each strain), both mPCRs yielded a detection rate of 100% for in vitro samples. MMO2 detected 100% of the clinical strains from DNA and 97% from RNA, whereas MMO detected 100% of the strains from both materials. Thus, for in vitro and clinical samples, MMO2 was a useful tool for detecting dual infections with HIV-1 and HIV-2 (referred to as HIV-1+HIV-2) and HIV-1/M+O, and MMO was useful for detecting both MO dual infections and MO mosaic patterns. PMID:26912747

  10. Approaches for assessing health risks from complex mixtures in indoor air: a panel overview.

    PubMed Central

    Henry, C J; Fishbein, L; Meggs, W J; Ashford, N A; Schulte, P A; Anderson, H; Osborne, J S; Sepkovic, D W

    1991-01-01

    Critical to a more definitive human health assessment of the potential health risks from exposure to complex mixtures in indoor air is the need for a more definitive clinical measure and etiology of the health effects of complex mixtures. This panel overview highlights six of the eight presentations of the conference panel discussion and features a number of the major topical areas of indoor air concern. W. G. Meggs assessed clinical research priorities with primary focus on the role of volatile organic chemicals in human health, recognizing the areas where definitive data are lacking. By recognizing many types of chemical sensitivity, it may be possible to design studies that can illuminate the mechanisms by which chemical exposure may cause disease. The critically important topic of multiple chemical sensitivity was discussed by N. A. Ashford, who identified four high risk groups and defined the demographics of these groups. P. A. Schulte addressed the issue of biological markers of susceptibility with specific considerations of both methodological and societal aspects that may be operative in the ability to detect innate or inborne differences between individuals and populations. Three case studies were reviewed. H. Anderson discussed the past and present priorities from a public health perspective, focusing on those issues dealing with exposures to environmental tobacco smoke and formaldehyde off-gassing from materials used in mobile home construction. J. J. Osborne described several case studies involving wood smoke exposure to children, with emphasis on the significantly greater occurrence of chronic respiratory symptoms and acute chest illness for children from homes heated with woodburning stoves.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1821367

  11. Multiple Cross Displacement Amplification Coupled With Nanoparticles-Based Lateral Flow Biosensor for Detection of Staphylococcus aureus and Identification of Methicillin-Resistant S. aureus.

    PubMed

    Wang, Yi; Yan, Weiqiang; Fu, Shanshan; Hu, Shoukui; Wang, Yan; Xu, Jianguo; Ye, Changyun

    2018-01-01

    Staphylococcus aureus ( S. aureus ), including methicillin-resistant S. aureus (MRSA), is one of the most important human pathogens, which is responsible for bacteremia, soft-tissue infections, and food poisoning. Hence, multiple cross displacement amplification (MCDA) is employed to detect all S. aureus strains, and differentiates MRSA from methicillin-sensitive S. aureus . Multiplex MCDA (m-MCDA), which targets the nuc gene ( S. aureus -specific gene) and mecA gene (encoding penicillin-binding protein-2'), could detect S. aureus strains and identify MRSA within 85 min. Detection of the m-MCDA products is achieved using disposable lateral flow biosensors. A total of 58 strains, including various species of Gram-positive and Gram-negative strains, are used for evaluating and optimizing m-MCDA assays. The optimal amplification condition is found to be 63°C for 40 min, with detection limits at 100 fg DNA/reaction for nuc and mecA genes in the pure cultures, and 10 CFU/tube for nuc and mecA genes in the blood samples. The analytical specificity of m-MCDA assay is of 100%, and no cross-reactions to non- S. aureus strains are produced according to the specificity testing. Particularly, two additional components, including AUDG enzyme and dUTP, are added into the m-MCDA amplification mixtures, which are used for eliminating the unwanted results arising from carryover contamination. Thus, the m-MCDA technique appears to be a simple, rapid, sensitive, and reliable assay to detect all S. aureus strains, and identify MRSA infection for appropriate antibiotic therapy.

  12. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids.

    PubMed

    Uttenthaler, E; Schräml, M; Mandel, J; Drost, S

    2001-12-01

    Quartz crystal microbalance (QCM) sensors are widely used for determining liquid properties or probing interfacial processes. For some applications the sensitivity of the QCM sensors typically used (5-20 MHz) is limited compared with other biosensor methods. In this study ultrasensitive QCM sensors with resonant frequencies from 39 to 110 MHz for measurements in the liquid phase are presented. The fundamental sensor effect of a QCM is the decrease of the resonant frequency of an oscillating quartz crystal due to the binding of mass on a coated surface during the measurement. The sensitivity of QCM sensors increases strongly with an increasing resonant frequency and, therefore, with a decreasing thickness of the sensitive area. The new kind of ultrasensitive QCM sensors used in this study is based on chemically milled shear mode quartz crystals which are etched only in the center of the blank, forming a thin quartz membrane with a thick, mechanically stable outer ring. An immunoassay using a virus specific monoclonal antibody and a M13-Phage showed an increase in the signal to noise ratio by a factor of more than 6 for 56 MHz quartz crystals compared with standard 19 MHz quartz crystals, the detection limit was improved by a factor of 200. Probing of acoustic properties of glycerol/water mixtures resulted in an increase in sensitivity, which is in very good agreement with theory. Chemically milled QCM sensors strongly improve the sensitivity in biosensing and probing of acoustic properties and, therefore, offer interesting new application fields for QCM sensors.

  13. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  14. Application of thin-layer chromatography/infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry to structural analysis of bacteria-binding glycosphingolipids selected by affinity detection.

    PubMed

    Müsken, Anne; Souady, Jamal; Dreisewerd, Klaus; Zhang, Wenlan; Distler, Ute; Peter-Katalinić, Jasna; Miller-Podraza, Halina; Karch, Helge; Müthing, Johannes

    2010-04-15

    Glycosphingolipids (GSLs) play key roles in the manifestation of infectious diseases as attachment sites for pathogens. The thin-layer chromatography (TLC) overlay assay represents one of the most powerful approaches for the detection of GSL receptors of microorganisms. Here we report on the direct structural characterization of microbial GSL receptors by employment of the TLC overlay assay combined with infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry (IR-MALDI-o-TOF-MS). The procedure includes TLC separation of GSL mixtures, overlay of the chromatogram with GSL-specific bacteria, detection of bound microbes with primary antibodies against bacterial surface proteins and appropriate alkaline phosphatase labeled secondary antibodies, and in situ MS analysis of bacteria-specific GSL receptors. The combined method works on microgram scale of GSL mixtures and is advantageous in that it omits laborious and time-consuming GSL extraction from the silica gel layer. This technique was successfully applied to the compositional analysis of globo-series neutral GSLs recognized by P-fimbriated Escherichia coli bacteria, which were used as model microorganisms for infection of the human urinary tract. Thus, direct TLC/IR-MALDI-o-TOF-MS adds a novel facet to this fast and sensitive method offering a wide range of applications for the investigation of carbohydrate-specific pathogens involved in human infectious diseases. 2010 John Wiley & Sons, Ltd.

  15. [Analysis of phthalates in plastic food-packaging bags by thin layer chromatography].

    PubMed

    Chen, Hui; Wang, Yuan; Zhu, Ruohua

    2006-01-01

    The method for simultaneous determination of four phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) in plastic food-packaging bags by thin layer chromatography (TLC) was developed. The plastic food-packaging bags were extracted with ethanol by ultrasonication, then the mixture was filtrated through membrane (0.45 microm). The mixture of ethyl acetate-anhydrous ether-isooctane (1 : 4 : 15, v/v) was used as developing agent on the TLC silica gel plate for development. The filtered liquid was spotted on the TLC plate dealt by acetone, and detected with scanning wavelength of 275 nm and reference wavelength of 340 nm. The qualitative analysis of the phthalates was performed using the R(f) values of the chromatogram. The quantitative analysis was performed with external standard method. Good linearities were obtained for DMP, DEP, DBP and DEHP. The detection limits were 2.1 ng for DMP, 2.4 ng for DEP, 3.4 ng for DBP and 4.0 ng for DEHP. The relative standard deviations (RSDs) of the four phthalates were 2.8% - 3.5%. The recoveries of the four phthalate standards in real sample were 78.58% - 111.04%. The method presented has the advantages of high precision, high sensitivity, small sample size, and simple pretreatment . The method was used to detect the four phthalates in the food-packaging bags. The contents in real samples were close to the results by gas chromatography.

  16. A novel method to detect unlabeled inorganic nanoparticles and submicron particles in tissue by sedimentation field-flow fractionation

    PubMed Central

    Deering, Cassandra E; Tadjiki, Soheyl; Assemi, Shoeleh; Miller, Jan D; Yost, Garold S; Veranth, John M

    2008-01-01

    A novel methodology to detect unlabeled inorganic nanoparticles was experimentally demonstrated using a mixture of nano-sized (70 nm) and submicron (250 nm) silicon dioxide particles added to mammalian tissue. The size and concentration of environmentally relevant inorganic particles in a tissue sample can be determined by a procedure consisting of matrix digestion, particle recovery by centrifugation, size separation by sedimentation field-flow fractionation (SdFFF), and detection by light scattering. Background Laboratory nanoparticles that have been labeled by fluorescence, radioactivity, or rare elements have provided important information regarding nanoparticle uptake and translocation, but most nanomaterials that are commercially produced for industrial and consumer applications do not contain a specific label. Methods Both nitric acid digestion and enzyme digestion were tested with liver and lung tissue as well as with cultured cells. Tissue processing with a mixture of protease enzymes is preferred because it is applicable to a wide range of particle compositions. Samples were visualized via fluorescence microscopy and transmission electron microscopy to validate the SdFFF results. We describe in detail the tissue preparation procedures and discuss method sensitivity compared to reported levels of nanoparticles in vivo. Conclusion Tissue digestion and SdFFF complement existing techniques by precisely identifying unlabeled metal oxide nanoparticles and unambiguously distinguishing nanoparticles (diameter<100 nm) from both soluble compounds and from larger particles of the same nominal elemental composition. This is an exciting capability that can facilitate epidemiological and toxicological research on natural and manufactured nanomaterials. PMID:19055780

  17. Development of a Fluorescent Based Immunosensor for the Serodiagnosis of Canine Leishmaniasis Combining Immunomagnetic Separation and Flow Cytometry

    PubMed Central

    Sousa, Susana; Cardoso, Luís; Reed, Steven G.; Reis, Alexandre B.; Martins-Filho, Olindo A.; Silvestre, Ricardo; Cordeiro da Silva, Anabela

    2013-01-01

    Background An accurate diagnosis is essential for the control of infectious diseases. In the search for effective and efficient tests, biosensors have increasingly been exploited for the development of new and highly sensitive diagnostic methods. Here, we describe a new fluorescent based immunosensor comprising magnetic polymer microspheres coated with recombinant antigens to improve the detection of specific antibodies generated during an infectious disease. As a challenging model, we used canine leishmaniasis due to the unsatisfactory sensitivity associated with the detection of infection in asymptomatic animals where the levels of pathogen-specific antibodies are scarce. Methodology Ni-NTA magnetic microspheres with 1,7 µm and 8,07 µm were coated with the Leishmania recombinant proteins LicTXNPx and rK39, respectively. A mixture of equal proportions of both recombinant protein-coated microspheres was used to recognize and specifically bind anti-rK39 and anti-LicTNXPx antibodies present in serum samples of infected dogs. The microspheres were recovered by magnetic separation and the percentage of fluorescent positive microspheres was quantified by flow cytometry. Principal Findings A clinical evaluation carried out with 129 dog serum samples using the antigen combination demonstrated a sensitivity of 98,8% with a specificity of 94,4%. rK39 antigen alone demonstrated a higher sensitivity for symptomatic dogs (96,9%), while LicTXNPx antigen showed a higher sensitivity for asymptomatic (94,4%). Conclusions Overall, our results demonstrated the potential of a magnetic microsphere associated flow cytometry methodology as a viable tool for highly sensitive laboratorial serodiagnosis of both clinical and subclinical forms of canine leishmaniasis. PMID:23991232

  18. [Identification of Vibrio cholerae O1 by flow cytometry].

    PubMed

    Alvarado-Alemán, F J; González-Bonilla, C; Wong-Arambula, C; Gutiérrez-Cogco, L; Sepúlveda-Amor, J; Kumate-Rodríguez, J

    1994-01-01

    A total of 72 peptonated water samples suspected of carrying Vibrio cholerae were assessed by laser flow cytometry (LFC) and compared with positive culture. We used a direct fluorescence technique using polyclonal (PolAb) and monoclonal antibodies (MoAb) conjugated to fluorescein. The PolAb were able to detect 33 positive samples. A clear difference among the 20 positive samples was found with only three V. cholerae O1 false negatives when MoAb were used whereas all 13 V. cholerae Non O1 samples were detected. The correlation index comparing control autofluorescence with peptonated water samples show a R = 0.69, versus 0.96 with pure V. cholerae O1 strains. Our data suggest that the LFC technique is able to recognize V. cholerae O1 from a mixture of microorganisms with high sensitivity and specificity in a few hours.

  19. The pristine graphene produced by liquid exfoliation of graphite in mixed solvent and its application to determination of dopamine.

    PubMed

    Zhang, Juan; Xu, Liao; Zhou, Bo; Zhu, Yinyan; Jiang, Xiaoqing

    2018-03-01

    The pristine graphene can be easily prepared in isopropanol-water mixture with salts as assistant via liquid-phase exfoliation method. The concentration of graphene dispersion reaches as high as 0.565 mg/mL. The graphene film prepared by drop-casting method shows an excellent electrical conductivity (7.095 × 10 4  S/m). Furthermore, an electrochemical biosensor based on the pristine graphene shows high selectivity and sensitivity for the determination of dopamine. The linear detection range for dopamine is 2.5-1500 μM with detection limit of 1.5 μM. This method provides a potential process for preparing high-quality graphene ready-to-use in low-boiling point solvent. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 2-Pyridylfuran: a new fluorescent tag for the analysis of carbohydrates.

    PubMed

    Cai, Zhi Peng; Hagan, Andrew Kevin; Wang, Mao Mao; Flitsch, Sabine Lahja; Liu, Li; Voglmeir, Josef

    2014-05-20

    We herein report the use of 1,3-di(2-pyridyl)-1,3-propanedione (DPPD) as a fluorogenic labeling reagent for sugars. Reaction of DPPD with the anomeric carbon affords a fluorescent 2-pyridylfuran (2-PF) moiety that permits the sensitive HPLC-based detection of monosaccharides. 2-PF-labeled monosaccharides can be easily separated and analyzed from mixtures thereof, and the reported protocol compares favorably with established labeling reagents such as 2-aminobenzoic acid (2-AA) and 1-phenyl-3-methyl-5-pyrazolone (PMP), ultimately allowing subfemtomole detection of the galactose-derived product. Furthermore, we demonstrate the application of DPPD in the labeling of monosaccharides in complex biological matrices such as blood and milk samples. We envisage that DPPD will prove to be an excellent choice of labeling reagent in monosaccharide and carbohydrate analysis.

  1. Design and evaluation of a high sensitivity spiral TDR scour sensor

    NASA Astrophysics Data System (ADS)

    Gao, Quan; (Bill Yu, Xiong

    2015-08-01

    Bridge scour accounts for more than half of the reported bridge failures in the United States. Scour monitoring technology based on time domain reflectometry (TDR) features the advantages of being automatic and inexpensive. The senior author’s team has developed a few generations of a TDR bridge scour monitoring system, which have succeeded in both laboratory and field evaluations. In this study, an innovative spiral TDR sensor is proposed to further improve the sensitivity of the TDR sensor in scour detection. The spiral TDR sensor is made of a parallel copper wire waveguide wrapped around a mounting rod. By using a spiral path for the waveguide, the TDR sensor achieves higher sensitivity than the traditional straight TDR probes due to longer travel distance of the electromagnetic (EM) wave per unit length in the spiral probe versus traditional probe. The performance of the new TDR spiral scour sensor is validated by calibration with liquids with known dielectric constant and wet soils. Laboratory simulated scour-refilling experiments are performed to evaluate the performance of the new spiral probe in detecting the sediment-water interface and therefore the scour-refill process. The tests results indicate that scour depth variation of less than 2 cm can be easily detected by this new spiral sensor. A theory is developed based on the dielectric mixing model to simplify the TDR signal analyses for scour depth detection. The sediment layer thickness (directly related to scour depth) varies linearly with the square root of the bulk dielectric constant of the water-sediment mixture measured by the spiral TDR probe, which matches the results of theoretical prediction. The estimated sediment layer thickness and therefore scour depth from the spiral TDR sensor agrees very well with that by direct physical measurement. The spiral TDR sensor is four times more sensitive than a traditional straight TDR probe.

  2. Development of a highly sensitive loop-mediated isothermal amplification (LAMP) method for the detection of Loa loa.

    PubMed

    Fernández-Soto, Pedro; Mvoulouga, Prosper Obolo; Akue, Jean Paul; Abán, Julio López; Santiago, Belén Vicente; Sánchez, Miguel Cordero; Muro, Antonio

    2014-01-01

    The filarial parasite Loa loa, the causative agent of loiasis, is endemic in Central and Western Africa infecting 3-13 million people. L. loa has been associated with fatal encephalopathic reactions in high Loa-infected individuals receiving ivermectin during mass drug administration programs for the control of onchocerciasis and lymphatic filariasis. In endemic areas, the only diagnostic method routinely used is the microscopic examination of mid-day blood samples by thick blood film. Improved methods for detection of L. loa are needed in endemic regions with limited resources, where delayed diagnosis results in high mortality. We have investigated the use of a loop-mediated isothermal amplification (LAMP) assay to facilitate rapid, inexpensive, molecular diagnosis of loiasis. Primers for LAMP were designed from a species-specific repetitive DNA sequence from L. loa retrieved from GenBank. Genomic DNA of a L. loa adult worm was used to optimize the LAMP conditions using a thermocycler or a conventional heating block. Amplification of DNA in the LAMP mixture was visually inspected for turbidity as well as addition of fluorescent dye. LAMP specificity was evaluated using DNA from other parasites; sensitivity was evaluated using DNA from L. loa 10-fold serially diluted. Simulated human blood samples spiked with DNA from L. loa were also tested for sensitivity. Upon addition of fluorescent dye, all positive reactions turned green while the negative controls remained orange under ambient light. After electrophoresis on agarose gels, a ladder of multiple bands of different sizes could be observed in positive samples. The detection limit of the assay was found to be as little as 0.5 ag of L. loa genomic DNA when using a heating block. We have designed, for the first time, a highly sensitive LAMP assay for the detection of L. loa which is potentially adaptable for field diagnosis and disease surveillance in loiasis-endemic areas.

  3. Development of a Highly Sensitive Loop-Mediated Isothermal Amplification (LAMP) Method for the Detection of Loa loa

    PubMed Central

    Fernández-Soto, Pedro; Mvoulouga, Prosper Obolo; Akue, Jean Paul; Abán, Julio López; Santiago, Belén Vicente; Sánchez, Miguel Cordero; Muro, Antonio

    2014-01-01

    The filarial parasite Loa loa, the causative agent of loiasis, is endemic in Central and Western Africa infecting 3–13 million people. L. loa has been associated with fatal encephalopathic reactions in high Loa-infected individuals receiving ivermectin during mass drug administration programs for the control of onchocerciasis and lymphatic filariasis. In endemic areas, the only diagnostic method routinely used is the microscopic examination of mid-day blood samples by thick blood film. Improved methods for detection of L. loa are needed in endemic regions with limited resources, where delayed diagnosis results in high mortality. We have investigated the use of a loop-mediated isothermal amplification (LAMP) assay to facilitate rapid, inexpensive, molecular diagnosis of loiasis. Primers for LAMP were designed from a species-specific repetitive DNA sequence from L. loa retrieved from GenBank. Genomic DNA of a L. loa adult worm was used to optimize the LAMP conditions using a thermocycler or a conventional heating block. Amplification of DNA in the LAMP mixture was visually inspected for turbidity as well as addition of fluorescent dye. LAMP specificity was evaluated using DNA from other parasites; sensitivity was evaluated using DNA from L. loa 10-fold serially diluted. Simulated human blood samples spiked with DNA from L. loa were also tested for sensitivity. Upon addition of fluorescent dye, all positive reactions turned green while the negative controls remained orange under ambient light. After electrophoresis on agarose gels, a ladder of multiple bands of different sizes could be observed in positive samples. The detection limit of the assay was found to be as little as 0.5 ag of L. loa genomic DNA when using a heating block. We have designed, for the first time, a highly sensitive LAMP assay for the detection of L. loa which is potentially adaptable for field diagnosis and disease surveillance in loiasis-endemic areas. PMID:24722638

  4. Coactivation of Gustatory and Olfactory Signals in Flavor Perception

    PubMed Central

    Veldhuizen, Maria G.; Shepard, Timothy G.; Wang, Miao-Fen

    2010-01-01

    It is easier to detect mixtures of gustatory and olfactory flavorants than to detect either component alone. But does the detection of mixtures exceed the level predicted by probability summation, assuming independent detection of each component? To answer this question, we measured simple response times (RTs) to detect brief pulses of one of 3 flavorants (sucrose [gustatory], citral [olfactory], sucrose–citral mixture) or water, presented into the mouth by a computer-operated, automated flow system. Subjects were instructed to press a button as soon as they detected any of the 3 nonwater stimuli. Responses to the mixtures were faster (RTs smaller) than predicted by a model of probability summation of independently detected signals, suggesting positive coactivation (integration) of gustation and retronasal olfaction in flavor perception. Evidence for integration appeared mainly in the fastest 60% of the responses, indicating that integration arises relatively early in flavor processing. Results were similar when the 3 possible flavorants, and water, were interleaved within the same session (experimental condition), and when each flavorant was interleaved with water only (control conditions). This outcome suggests that subjects did not attend selectively to one flavor component or the other in the experimental condition and further supports the conclusion that (late) decisional or attentional strategies do not exert a large influence on the gustatory–olfactory flavor integration. PMID:20032112

  5. Response Times to Gustatory-Olfactory Flavor Mixtures: Role of Congruence.

    PubMed

    Shepard, Timothy G; Veldhuizen, Maria G; Marks, Lawrence E

    2015-10-01

    A mixture of perceptually congruent gustatory and olfactory flavorants (sucrose and citral) was previously shown to be detected faster than predicted by a model of probability summation that assumes stochastically independent processing of the individual gustatory and olfactory signals. This outcome suggests substantial integration of the signals. Does substantial integration also characterize responses to mixtures of incongruent flavorants? Here, we report simple response times (RTs) to detect brief pulses of 3 possible flavorants: monosodium glutamate, MSG (gustatory: "umami" quality), citral (olfactory: citrus quality), and a mixture of MSG and citral (gustatory-olfactory). Each stimulus (and, on a fraction of trials, water) was presented orally through a computer-operated, automated flow system, and subjects were instructed to press a button as soon as they detected any of the 3 non-water stimuli. Unlike responses previously found to the congruent mixture of sucrose and citral, responses here to the incongruent mixture of MSG and citral took significantly longer (RTs were greater) and showed lower detection rates than the values predicted by probability summation. This outcome suggests that the integration of gustatory and olfactory flavor signals is less extensive when the component flavors are perceptually incongruent rather than congruent, perhaps because incongruent flavors are less familiar. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Year-Round Monitoring of Contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and Assessment of Risks to Salmonids.

    PubMed

    Hapke, Whitney B; Morace, Jennifer L; Nilsen, Elena B; Alvarez, David A; Masterson, Kevin

    2016-01-01

    Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011-Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin's streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July-Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown.

  7. Year-round monitoring of contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and assessment of risks to salmonids

    USGS Publications Warehouse

    Temple, Whitney B.; Morace, Jennifer L.; Nilsen, Elena B.; Alvarez, David; Masterson, Kevin

    2016-01-01

    Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011–Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin’s streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July–Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown.

  8. Year-Round Monitoring of Contaminants in Neal and Rogers Creeks, Hood River Basin, Oregon, 2011-12, and Assessment of Risks to Salmonids

    PubMed Central

    Hapke, Whitney B.; Morace, Jennifer L.; Nilsen, Elena B.; Alvarez, David A.; Masterson, Kevin

    2016-01-01

    Pesticide presence in streams is a potential threat to Endangered Species Act listed salmonids in the Hood River basin, Oregon, a primarily forested and agricultural basin. Two types of passive samplers, polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs), were simultaneously deployed at four sites in the basin during Mar. 2011–Mar. 2012 to measure the presence of pesticides, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). The year-round use of passive samplers is a novel approach and offers several new insights. Currently used pesticides and legacy contaminants, including many chlorinated pesticides and PBDEs, were present throughout the year in the basin’s streams. PCBs were not detected. Time-weighted average water concentrations for the 2-month deployment periods were estimated from concentrations of chemicals measured in the passive samplers. Currently used pesticide concentrations peaked during spring and were detected beyond their seasons of expected use. Summed concentrations of legacy contaminants in Neal Creek were highest during July–Sept., the period with the lowest streamflows. Endosulfan was the only pesticide detected in passive samplers at concentrations exceeding Oregon or U.S. Environmental Protection Agency water-quality thresholds. A Sensitive Pesticide Toxicity Index (SPTI) was used to estimate the relative acute potential toxicity among sample mixtures. The acute potential toxicity of the detected mixtures was likely greater for invertebrates than for fish and for all samples in Neal Creek compared to Rogers Creek, but the indices appear to be low overall (<0.1). Endosulfans and pyrethroid insecticides were the largest contributors to the SPTIs for both sites. SPTIs of some discrete (grab) samples from the basin that were used for comparison exceeded 0.1 when some insecticides (azinphos methyl, chlorpyrifos, malathion) were detected at concentrations near or exceeding acute water-quality thresholds. Early life stages and adults of several sensitive fish species, including salmonids, are present in surface waters of the basin throughout the year, including during periods of peak estimated potential toxicity. Based on these data, direct toxicity to salmonids from in-stream pesticide exposure is unlikely, but indirect impacts (reduced fitness due to cumulative exposures or negative impacts to invertebrate prey populations) are unknown. PMID:27348521

  9. Optimization of a Low Cost and Broadly Sensitive Genotyping Assay for HIV-1 Drug Resistance Surveillance and Monitoring in Resource-Limited Settings

    PubMed Central

    Zhou, Zhiyong; Wagar, Nick; DeVos, Joshua R.; Rottinghaus, Erin; Diallo, Karidia; Nguyen, Duc B.; Bassey, Orji; Ugbena, Richard; Wadonda-Kabondo, Nellie; McConnell, Michelle S.; Zulu, Isaac; Chilima, Benson; Nkengasong, John; Yang, Chunfu

    2011-01-01

    Commercially available HIV-1 drug resistance (HIVDR) genotyping assays are expensive and have limitations in detecting non-B subtypes and circulating recombinant forms that are co-circulating in resource-limited settings (RLS). This study aimed to optimize a low cost and broadly sensitive in-house assay in detecting HIVDR mutations in the protease (PR) and reverse transcriptase (RT) regions of pol gene. The overall plasma genotyping sensitivity was 95.8% (N = 96). Compared to the original in-house assay and two commercially available genotyping systems, TRUGENE® and ViroSeq®, the optimized in-house assay showed a nucleotide sequence concordance of 99.3%, 99.6% and 99.1%, respectively. The optimized in-house assay was more sensitive in detecting mixture bases than the original in-house (N = 87, P<0.001) and TRUGENE® and ViroSeq® assays. When the optimized in-house assay was applied to genotype samples collected for HIVDR surveys (N = 230), all 72 (100%) plasma and 69 (95.8%) of the matched dried blood spots (DBS) in the Vietnam transmitted HIVDR survey were genotyped and nucleotide sequence concordance was 98.8%; Testing of treatment-experienced patient plasmas with viral load (VL) ≥ and <3 log10 copies/ml from the Nigeria and Malawi surveys yielded 100% (N = 46) and 78.6% (N = 14) genotyping rates, respectively. Furthermore, all 18 matched DBS stored at room temperature from the Nigeria survey were genotyped. Phylogenetic analysis of the 236 sequences revealed that 43.6% were CRF01_AE, 25.9% subtype C, 13.1% CRF02_AG, 5.1% subtype G, 4.2% subtype B, 2.5% subtype A, 2.1% each subtype F and unclassifiable, 0.4% each CRF06_CPX, CRF07_BC and CRF09_CPX. Conclusions The optimized in-house assay is broadly sensitive in genotyping HIV-1 group M viral strains and more sensitive than the original in-house, TRUGENE® and ViroSeq® in detecting mixed viral populations. The broad sensitivity and substantial reagent cost saving make this assay more accessible for RLS where HIVDR surveillance is recommended to minimize the development and transmission of HIVDR. PMID:22132237

  10. Microscopic Characterization of Defect Structure in RDX Crystals

    DTIC Science & Technology

    2013-10-09

    of mixtures of nitromethane and silica beads of 1–4 μm and 40 μm, with the smaller beads being more sensitizing than the larger beads (Dattelbaum et...al., 2010). Furthermore, the authors men- tioned that also the number density of hot spots plays a role in sensitizing mixtures of nitromethane and... nitromethane . In Proceedings of 14th International Detonation Symposium, Office of Naval Research. Doherty, R.M., Watt, D.S. & Nock, L. (2006) Reduced

  11. Alignment of Carbon Nanotubes Comprising Magnetically Sensitive Metal Oxides in Nanofluids

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G. P. " Bud" (Inventor)

    2016-01-01

    The present invention is a nanoparticle mixture or suspension or nanofluid comprising nonmagnetically sensitive nanoparticles, magnetically sensitive nanoparticles, and surfactant(s). The present invention also relates to methods of preparing and using the same.

  12. Alignment of Carbon Nanotubes Comprising Magnetically Sensitive Metal Oxides in Nanofluids

    NASA Technical Reports Server (NTRS)

    Peterson, G. P. 'Bud' (Inventor); Hong, Haiping (Inventor)

    2014-01-01

    The present invention is a nanoparticle mixture or suspension or nanofluid comprising nonmagnetically sensitive nanoparticles, magnetically sensitive nanoparticles, and surfactant(s). The present invention also relates to methods of preparing and using the same.

  13. Using a filtering task to measure the spatial extent of selective attention

    PubMed Central

    Palmer, John; Moore, Cathleen M.

    2009-01-01

    The spatial extent of attention was investigated by measuring sensitivity to stimuli at to-be-ignored locations. Observers detected a stimulus at a cued location (target), while ignoring otherwise identical stimuli at nearby locations (foils). Only an attentional cue distinguished target from foil. Several experiments varied the contrast and separation of targets and foils. Two theories of selection were compared: contrast gain and a version of attention switching called an all-or-none mixture model. Results included large effects of separation, rejection of the contrast gain model, and the measurement of the size and profile of the spatial extent of attention. PMID:18405935

  14. Multi-species detection using multi-mode absorption spectroscopy (MUMAS)

    NASA Astrophysics Data System (ADS)

    Northern, J. H.; Thompson, A. W. J.; Hamilton, M. L.; Ewart, P.

    2013-06-01

    The detection of multiple species using a single laser and single detector employing multi-mode absorption spectroscopy (MUMAS) is reported. An in-house constructed, diode-pumped, Er:Yb:glass micro-laser operating at 1,565 nm with 10 modes separated by 18 GHz was used to record MUMAS signals in a gas mixture containing C2H2, N2O and CO. The components of the mixture were detected simultaneously by identifying multiple transitions in each of the species. By using temperature- and pressure-dependent modelled spectral fits to the data, partial pressures of each species in the mixture were determined with an uncertainty of ±2 %.

  15. Effect of electrode gap on the sensing properties of multiwalled carbon nanotubes based gas sensor

    NASA Astrophysics Data System (ADS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti; Burhanudin, Zainal Arif

    2016-11-01

    Vertically aligned multiwalled carbon nanotubes (MWCNT) were grown on Si substrate coated with alumina and iron using chemical vapor deposition. Electrode gap of 10, 25 and 50 µm were adopted to determine the effect of varying gap spacing on the sensing properties such as voltage breakdown, sensitivity and selectivity for three gases namely argon, carbon dioxide and ammonia. Argon has the lowest voltage breakdown for every electrode gap. The fabricated MWCNT based gas sensor drastically reduced the voltage breakdown by 89.5% when the electrode spacing is reduced from 50 µm to 10 µm. The reduction is attributed to the high non-uniform electric field between the electrodes caused by the protrusion of nanotips. The sensor shows good sensitivity and selectivity with the ability to detect the gas in the mixture with air provided that the concentration is ≥ 20% where the voltage breakdown will be close to the pure gas.

  16. Sensitive Spectroscopic Analysis of Biomarkers in Exhaled Breath

    NASA Astrophysics Data System (ADS)

    Bicer, A.; Bounds, J.; Zhu, F.; Kolomenskii, A. A.; Kaya, N.; Aluauee, E.; Amani, M.; Schuessler, H. A.

    2018-06-01

    We have developed a novel optical setup which is based on a high finesse cavity and absorption laser spectroscopy in the near-IR spectral region. In pilot experiments, spectrally resolved absorption measurements of biomarkers in exhaled breath, such as methane and acetone, were carried out using cavity ring-down spectroscopy (CRDS). With a 172-cm-long cavity, an efficient optical path of 132 km was achieved. The CRDS technique is well suited for such measurements due to its high sensitivity and good spectral resolution. The detection limits for methane of 8 ppbv and acetone of 2.1 ppbv with spectral sampling of 0.005 cm-1 were achieved, which allowed to analyze multicomponent gas mixtures and to observe absorption peaks of 12CH4 and 13CH4. Further improvements of the technique have the potential to realize diagnostics of health conditions based on a multicomponent analysis of breath samples.

  17. Experimental investigation of detonation waves instabilities in liquid high explosives

    NASA Astrophysics Data System (ADS)

    Sosikov, V. A.; Torunov, S. I.; Utkin, A. V.; Mochalova, V. M.; Rapota, D. Yu

    2018-01-01

    Experimental investigation of unstable detonation front structure in mixtures of liquid high explosives (nitromethane and FEFO—bis-(2-fluor-2.2-dinitroethyl)-formal) with inert diluents (acetone, methanol, DETA—diethylene triamine) has been carried out. Inhomogeneities have been registered by electro-optical camera NANOGATE 4BP allowing to make 4 frames with the exposure time 10 ns. According to experimental results the detonation front in nitromethane-acetone mixture is unstable. It is evident that pulsations on detonation front do not form spatial periodic structure and their dimensions differ several times. But mean longitudinal size of pulsation is about 500 μm at 20 wt% of acetone concentration. This means that the typical size of cell equals to reaction zone width. The same structure of cellular front have been registered in 70/30 FEFO-methanol mixture. Second kind of instability, failure waves, was observed in neat nitromethane at the free surface. In this case the stability loss result in turbulent flow which is clearly detected in the shots obtained. Adding small amount of DETA (0.5 wt%) results in disappearance of the failure waves and flow stabilization. The effect is caused by the fact that DETA sharply accelerates initial rate of chemical reaction because it is sensitizer for nitromethane.

  18. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazurek, M.A.; Hildemann, L.M.; Cass, G.R.

    1990-04-01

    Extractable organic compounds having between 6 to 40 carbon atoms comprise an important mass fraction of the fine particulate matter samples from major urban emission sources. Depending on the emission source type, this solvent-soluble fraction accounts for <20% to 100% of the total organic aerosol mass, as measured by quantitative high-resolution has chromatography (HRGC) with flame ionization detection. In addition to total extract quantitation, HRGC can be applied to further analyses of the mass distributions of elutable organics present in the complex aerosol extract mixtures, thus generating profiles that serve as fingerprints'' for the sources of interest. This HRGC analyticalmore » method is applied to emission source samples that contain between 7 to 12,000 {mu}g/filter organic carbon. It is shown to be a sensitive technique for analysis of carbonaceous aerosol extract mixtures having diverse mass loadings and species distributions. This study describes the analytical chemical methods that have been applied to: the construction of chemical mass balances based on the mass of fine organic aerosol emitted for major urban sources of particulate carbon; and the generation of discrete emission source chemical profiles derived from chromatographic characteristics of the organic aerosol components. 21 refs., 1 fig., 2 tabs.« less

  19. A validated LC method for determination of 2,3-dichlorobenzoic acid and its associated regio isomers.

    PubMed

    Krishnaiah, Ch; Sri, Khagga Bhavya

    2012-05-01

    A simple, selective and sensitive gradient reversed-phase liquid chromatography method has been developed for the separation and determination of 2,3-dichlorobenzoic acid, which is an intermediate of the lamotrizine drug substance, and its regio isomers. The separation was achieved on a reversed-phase United States Pharmacopeia L1 (C-18) column using 0.01 M ammonium acetate buffer at pH 2.5 and methanol (50:50 v/v) mixture as mobile phase A and a methanol and water mixture (80:20 v/v) as mobile phase B in a gradient elution at flow rate 1.2 mL/min with ultraviolet detection at 210 nm. The method is found to be selective, precise, linear, accurate and robust. It was used for quality assurance and monitoring the synthetic reactions involved in the process development of lamotrizine. The method is found to be simple, rapid, specific and reliable for the determination of unreacted levels of raw materials and isomers in reaction mixtures and finished product lamotrizine. The method was fully validated as per International Conference of Harmonization guidelines and results from validation confirm that the method is highly suitable for its intended purpose. © The Author [2012]. Published by Oxford University Press. All rights reserved.

  20. Influence of excipients in comilling on mitigating milling-induced amorphization or structural disorder of crystalline pharmaceutical actives.

    PubMed

    Balani, Prashant N; Ng, Wai Kiong; Tan, Reginald B H; Chan, Sui Yung

    2010-05-01

    The feasibility of using excipients to suppress the amorphization or structural disorder of crystalline salbutamol sulphate (SS) during milling was investigated. SS was subjected to ball-milling in the presence of alpha-lactose monohydrate (LAC), adipic acid (AA), magnesium stearate (MgSt), or polyvinyl pyrrolidone (PVP). X-ray powder diffraction, dynamic vapor sorption (DVS), high sensitivity differential scanning calorimetry (HSDSC) were used to analyze the crystallinity of the milled mixtures. Comilling with crystalline excipients, LAC, AA, and MgSt proved effective in reducing the amorphization of SS. LAC, AA, or MgSt acting as seed crystals to induce recrystallization of amorphous SS formed by milling. During comilling, both SS and LAC turned predominantly amorphous after 45 min but transformed back to a highly crystalline state after 60 min. Amorphous content was below the detection limits of DVS (0.5%) and HSDSC (5%). Comilled and physical mixtures of SS and ALM were stored under normal and elevated humidity conditions. This was found to prevent subsequent changes in crystallinity and morphology of comilled SS:LAC as compared to significant changes in milled SS and physical mixture. These results demonstrate a promising application of comilling with crystalline excipients in mitigating milling induced amorphization of pharmaceutical actives.

  1. Application of headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography (GC x GC) for the chemical profiling of volatile oils in complex herbal mixtures.

    PubMed

    Di, Xin; Shellie, Robert A; Marriott, Philip J; Huie, Carmen W

    2004-04-01

    The coupling of headspace solid-phase microextraction (HS-SPME) with comprehensive two-dimensional gas chromatography (GC x GC) was shown to be a powerful technique for the rapid sampling and analysis of volatile oils in complex herbal materials. When compared to one-dimensional (1-D) GC, the improved analytical capabilities of GC x GC in terms of increased detection sensitivity and separation power were demonstrated by using HS-SPME/GC x GC for the chemical profiling (fingerprinting) of essential/volatile oils contained in herbal materials of increasing analytical complexity. More than 20 marker compounds belonging to Panax quinquefolius (American ginseng) can be observed within the 2-D contour plots of ginseng itself, a mixture of ginseng and another important herb (P. quinquefolius/Radix angelicae sinensis), as well as a mixture of ginseng and three other herbs (P. quinquefolius /R. angelicae sinensis/R. astragali/R. rehmanniae preparata). Such analytical capabilities should be important towards the authentication and quality control of herbal products, which are receiving increasing attention as alternative medicines worldwide. In particular, the presence of Panax in the herb formulation could be readily identified through its specific peak pattern in the 2-D GC x GC plot.

  2. Low concentration biomolecular detection using liquid core photonic crystal fiber (LCPCF) SERS sensor

    NASA Astrophysics Data System (ADS)

    Shi, Chao; Zhang, Yi; Gu, Claire; Seballos, Leo; Zhang, Jin Z.

    2008-02-01

    This work demonstrates the use of a highly sensitive Liquid Core Photonic Crystal Fiber (LCPCF) Surface Enhanced Raman Scattering (SERS) sensor in detecting biological and biochemical molecules. The Photonic Crystal Fiber (PCF) probe was prepared by carefully sealing the cladding holes using a fusion splicer while leaving the central hollow core open, which ensures that the liquid mixture of the analyte and silver nanoparticles only fills in the hollow core of the PCF, therefore preserving the photonic bandgap. The dependence of the SERS signal on the excitation power and sample concentration was fully characterized using Rhodamine 6G (R6G) molecules. The result shows that the LCPCF sensor has significant advantages over flat surface SERS detections at lower concentrations. This is attributed to the lower absorption at lower concentration leading to a longer effective interaction length inside the LCPCF, which in turn, results in a stronger SERS signal. Several biomolecules, such as Prostate Specific Antigen (PSA) and alpha-synuclein, which are indicators of prostate cancer and Parkinson's disease, respectively, and fail to be detected directly, are successfully detected by the LCPCF sensor. Our results demonstrate the potential of the LCPCF SERS sensor for biomedical detection at low concentrations.

  3. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    NASA Astrophysics Data System (ADS)

    Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó.; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O'Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.

    2016-07-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.

  4. Phase change material for temperature control and material storage

    NASA Technical Reports Server (NTRS)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  5. A FLEXIBLE APPROACH FOR EVALUATING FIXED RATIO MIXTURES OF FULL AND PARTIAL AGONISTS FOR MIXTURES OF MANY CHEMICALS.

    EPA Science Inventory

    Detecting interaction in chemical mixtures can be complicated by differences in the shapes of the dose-response curves of the individual components (e.g. mixtures of full and partial agonists with differing response maxima). We present an analysis scheme where flexible single che...

  6. Application of a new chemiluminescence method for the determination of glucose-6-phosphate dehydrogenase activity in healthy and enzyme-deficient individuals.

    PubMed

    Gumuslu, Saadet; Yucel, Gultekin; Sarikcioglu, Sureyya Bilmen; Serteser, Mustafa

    2005-01-01

    A chemiluminescence (CL) technique, which determines the glucose-6-phosphate dehydrogenase (G-6-PD) activities in healthy, heterozygous, and completely enzyme-deficient individuals was applied. CL intensities were detected for 4 h at 15-min intervals in each sample with or without addition of G-6-PD substrates into the reaction mixture. The results revealed an inverse correlation to the reference UV method (Zinkham method; r=-0.80). Furthermore, the CL assay was able to detect G-6-PD activities as low as 0.2 IU/gHb, which was not possible by the UV method. In conclusion, we believe that this method offers a new diagnostic tool for the detection of G-6-PD activities in enzyme-deficient individuals and, because of its increased sensitivity, makes it amenable for determining the effects of different pharmaceutical agents on G-6-PD activity in tissue or cell cultures.

  7. Apricot DNA as an indicator for persipan: detection and quantitation in marzipan using ligation-dependent probe amplification.

    PubMed

    Luber, Florian; Demmel, Anja; Hosken, Anne; Busch, Ulrich; Engel, Karl-Heinz

    2012-06-13

    The confectionery ingredient marzipan is exclusively prepared from almond kernels and sugar. The potential use of apricot kernels, so-called persipan, is an important issue for the quality assessment of marzipan. Therefore, a ligation-dependent probe amplification (LPA) assay was developed that enables a specific and sensitive detection of apricot DNA, as an indicator for the presence of persipan. The limit of detection was determined to be 0.1% persipan in marzipan. The suitability of the method was confirmed by the analysis of 20 commercially available food samples. The integration of a Prunus -specific probe in the LPA assay as a reference allowed for the relative quantitation of persipan in marzipan. The limit of quantitation was determined to be 0.5% persipan in marzipan. The analysis of two self-prepared mixtures of marzipan and persipan demonstrated the applicability of the quantitation method at concentration levels of practical relevance for quality control.

  8. Chemical Detection and Identification Techniques for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Sheverev, Valery A.; Khromov, Nikolai A.

    2002-01-01

    Exobiology flight experiments require highly sensitive instrumentation for in situ analysis of the volatile chemical species that occur in the atmospheres and surfaces of various bodies within the solar system. The complex mixtures encountered place a heavy burden on the analytical Instrumentation to detect and identify all species present. The minimal resources available onboard for such missions mandate that the instruments provide maximum analytical capabilities with minimal requirements of volume, weight and consumables. Advances in technology may be achieved by increasing the amount of information acquired by a given technique with greater analytical capabilities and miniaturization of proven terrestrial technology. We describe here methods to develop analytical instruments for the detection and identification of a wide range of chemical species using Gas Chromatography. These efforts to expand the analytical capabilities of GC technology are focused on the development of detectors for the GC which provide sample identification independent of the GC retention time data. A novel new approach employs Penning Ionization Electron Spectroscopy (PIES).

  9. Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode.

    PubMed

    Wang, Hailong; Hu, Quanqin; Meng, Yuan; Jin, Zier; Fang, Zilin; Fu, Qinrui; Gao, Wenhua; Xu, Liang; Song, Yibing; Lu, Fushen

    2018-02-19

    Reduced graphite oxide (rGO) was incorporated into a metal organic framework (MOF) MIL-101(Cr) for the modification of carbon paste electrode. Taking advantages of the large surface area of MOF and the electrical conductivity of rGO, the resulted electrodes exhibited high sensitivity and reliability in the simultaneous electrochemical identification and quantification of catechol (CC) and hydroquinone (HQ). Specifically, in the mixture solution of catechol and hydroquinone (constant concentration of an analyte), the linear response ranges for catechol and hydroquinone were 10-1400 μM and 4-1000 μM, and detection limits were 4 μM and 0.66 μM (S/N = 3) for individual catechol and hydroquinone, respectively. Therefore, the relatively easy fabrication of modified CPE and its fascinating reliability towards HQ and CC detection may simulate more research interest in the applications of MIL-101(Cr)-rGO composites for electrochemical sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation.

    PubMed

    Liao, Gary J W; Gronowski, Ann M; Zhao, Zhen

    2014-01-20

    The identification of cell-free fetal DNA (cffDNA) in maternal circulation has made non-invasive prenatal testing (NIPT) possible. Maternal plasma cell free DNA is a mixture of maternal and fetal DNA, of which, fetal DNA represents a minor population in maternal plasma. Therefore, methods with high sensitivity and precision are required to detect and differentiate fetal DNA from the large background of maternal DNA. In recent years, technical advances in the molecular analysis of fetal DNA (e.g., digital PCR and massively parallel sequencing (MPS)) has enabled the successful implementation of noninvasive testing into clinical practice, such as fetal sex assessment, RhD genotyping, and fetal chromosomal aneuploidy detection.With the ability to decipher the entire fetal genome from maternal plasma DNA, we foresee that an increased number of non-invasive prenatal tests will be available for detecting many single-gene disorders in the near future. This review briefly summarizes the technical aspects of the NIPT and application of NIPT in clinical practice.

  11. Comparative toxicity of inorganic contaminants released by placer mining to early life stages of salmonids

    USGS Publications Warehouse

    Buhl, Kevin J.; Hamilton, Steven J.

    1990-01-01

    The acute toxicities of four trace inorganics associated with placer mining were determined, individually and in environmentally relevant mixtures, to early life stages of Arctic grayling (Thymallus arcticus) from Alaska and Montana, coho salmon (Oncorhynchus kitsutch) from Alaska and Washington, and rainbow trout (Oncorhynchus mykiss) from Montana. The descending rank order of toxicity to all species and life stages was copper > zinc > lead > arsenic. For each of the three species, sensitivity to the inorganics was greater in juveniles than in alvenins or in swim-up fry. Arctic grayling from Alaska were more sensitive than the other species tested, including Arctic grayling from Montana. For Arctic grayling, sensitivity to all four inorganics was significantly greater in swim-up fry from Alaska than in alevins from Montana, and sensitivity to arsenic and copper was significantly greater in juveniles from Alaska than in juveniles from Montana. In tests with environmentally relevant mixtures (based on ratios of concentrations measured in streams with placer mining) of these four inorganics, copper was identified as the major toxic component because it accounted for ⩾97% of the summed toxic units of the mixture, and an equitoxic mixture of these inorganics showed less-than-additive toxicity. Total and total recoverable copper concentrations reported in five Alaskan streams with active placer mines were higher than the acutely toxic concentrations, either individually or in mixtures, that the authors found to be acutely toxic to Arctic grayling and coho salmon from Alaska. However, caution should be used when comparing our results obtained in “clear” water to field situations, because speciation and toxicity of these inorganics may be altered in the presence of sediments suspended by placer mining activities.

  12. A study of a novel coprocessed dry binder composed of α-lactose monohydrate, microcrystalline cellulose and corn starch.

    PubMed

    Mužíková, Jitka; Srbová, Alena; Svačinová, Petra

    2017-12-01

    This paper deals with a study of the novel coprocessed dry binder Combilac®, which contains 70% of α-lactose monohydrate, 20% of microcrystalline cellulose and 10% of native corn starch. These tests include flow properties, compressibility, lubricant sensitivity, tensile strength and disintegration time of tablets. Compressibility is evaluated by means of the energy profile of compression process, test of stress relaxation and tablet strength. The above-mentioned parameters are also evaluated in the physical mixture of α-lactose monohydrate, microcrystalline cellulose and native corn starch and compared with Combilac. Combilac shows much better flowability than the physical mixture of the used dry binders. Its compressibility is better, tablets possess a higher tensile strength. Neither Combilac, nor the physical mixture can be compressed without lubricants due to high friction and sticking to the matrix. Combilac has a higher lubricant sensitivity than the physical mixture of the dry binders. Disintegration time of Combilac tablets is comparable with the disintegration time of tablets made from the physical mixture.

  13. VizieR Online Data Catalog: Gas-phase detection of c-C3H3

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Doney, K. D.; Linnartz, H.

    2017-03-01

    The experimental setup has been described in detail by Zhao et al. (2013CPL...565..132Z, 2014JMoSp.296....1Z). In brief, the c-C3H3+ cations are generated by discharging a propyne (C3H4):He ~ 1:200 gas mixture in a multi-layer slit discharge nozzle (Motylewski & Linnartz 1999RScI...70.1305M) in combination with a pulsed valve (General Valve, Series 9,2 mm orifice). The gas mixture is expanded with a backing pressure of ~7 bar through a 300umx3cm slit into a vacuum chamber. A pulsed negative high voltage (-600 V/300 mA) with a ~600 us duration is found to be optimum for c-C3H3+ production, is applied to the expanding gas mixture, and is set to coincide with the expanding gas pulse (~800 us). Continuous-wave cavity ring-down spectroscopy (cw-CRDS) is used to record spectra in direct absorption. The axis of the optical cavity is aligned parallel to and ~2 mm downstream of the slit nozzle throat. A single-mode cw optical parametric oscillator (Aculight), operating at ~3.15 um with a bandwidth <5x10-5cm-1, is employed as tunable IR light source. A hardware-based (boxcar integrator) multi-trigger and timing scheme recently reported by Zhao et al. (2013CPL...565..132Z) is used to apply cw-CRDS to the pulsed plasma. In the present experiment, typical ring-down time values are ~8-10 us, corresponding to a detection sensitivity, i.e., noise equivalent absorption, of up to ~2x10-7 per centimeter for the 3 cm long plasma jet. (1 data file).

  14. Proton Transfer Reaction Time-of-Flight Mass Spectrometric (PTR-TOF-MS) determination of volatile organic compounds (VOCs) emitted from a biomass fire developed under stable nocturnal conditions

    NASA Astrophysics Data System (ADS)

    Brilli, Federico; Gioli, Beniamino; Ciccioli, Paolo; Zona, Donatella; Loreto, Francesco; Janssens, Ivan A.; Ceulemans, Reinhart

    2014-11-01

    Combustion of solid and liquid fuels is the largest source of potentially toxic volatile organic compounds (VOCs), which can strongly affect health and the physical and chemical properties of the atmosphere. Among combustion processes, biomass burning is one of the largest at global scale. We used a Proton Transfer Reaction “Time-of-Flight” Mass Spectrometer (PTR-TOF-MS), which couples high sensitivity with high mass resolution, for real-time detection of multiple VOCs emitted by burned hay and straw in a barn located near our measuring station. We detected 132 different organic ions directly attributable to VOCs emitted from the fire. Methanol, acetaldehyde, acetone, methyl vinyl ether (MVE), acetic acid and glycolaldehyde dominated the VOC mixture composition. The time-course of the 25 most abundant VOCs, representing ∼85% of the whole mixture of VOCs, was associated with that of carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) emissions. The strong linear relationship between the concentrations of pyrogenic VOC and of a reference species (i.e. CO) allowed us to compile a list of emission ratios (ERs) and emission factors (EFs), but values of ER (and EF) were overestimated due to the limited mixing of the gases under the stable (non-turbulent) nocturnal conditions. In addition to the 25 most abundant VOCs, chemical formula and concentrations of the residual, less abundant VOCs in the emitted mixture were also estimated by PTR-TOF-MS. Furthermore, the evolution of the complex combustion process was described on the basis of the diverse types of pyrogenic gases recorded.

  15. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    PubMed Central

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses. PMID:27790067

  16. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air.

    PubMed

    Lee, Samantha; Hung, Richard; Yin, Guohua; Klich, Maren A; Grimm, Casey; Bennett, Joan W

    2016-09-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor , and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

  17. Use of Molecular Methods for the Rapid Mass Detection of Schistosoma mansoni (Platyhelminthes: Trematoda) in Biomphalaria spp. (Gastropoda: Planorbidae)

    PubMed Central

    Jannotti-Passos, Liana Konovaloffi; Dos Santos Carvalho, Omar

    2017-01-01

    The low stringency-polymerase chain reaction (LS-PCR) and loop-mediated isothermal amplification (LAMP) assays were used to detect the presence of S. mansoni DNA in (1) Brazilian intermediate hosts (Biomphalaria glabrata, B. straminea, and B. tenagophila) with patent S. mansoni infections, (2) B. glabrata snails with prepatent S. mansoni infections, (3) various mixtures of infected and noninfected snails; and (4) snails infected with other trematode species. The assays showed high sensitivity and specificity and could detect S. mansoni DNA when one positive snail was included in a pool of 1,000 negative specimens of Biomphalaria. These molecular approaches can provide a low-cost, effective, and rapid method for detecting the presence of S. mansoni in pooled samples of field-collected Biomphalaria. These assays should aid mapping of transmission sites in endemic areas, especially in low prevalence regions and improve schistosomiasis surveillance. It will be a useful tool to monitor low infection rates of snails in areas where control interventions are leading towards the elimination of schistosomiasis. PMID:28246533

  18. The Design of a Quantitative Western Blot Experiment

    PubMed Central

    Taylor, Sean C.; Posch, Anton

    2014-01-01

    Western blotting is a technique that has been in practice for more than three decades that began as a means of detecting a protein target in a complex sample. Although there have been significant advances in both the imaging and reagent technologies to improve sensitivity, dynamic range of detection, and the applicability of multiplexed target detection, the basic technique has remained essentially unchanged. In the past, western blotting was used simply to detect a specific target protein in a complex mixture, but now journal editors and reviewers are requesting the quantitative interpretation of western blot data in terms of fold changes in protein expression between samples. The calculations are based on the differential densitometry of the associated chemiluminescent and/or fluorescent signals from the blots and this now requires a fundamental shift in the experimental methodology, acquisition, and interpretation of the data. We have recently published an updated approach to produce quantitative densitometric data from western blots (Taylor et al., 2013) and here we summarize the complete western blot workflow with a focus on sample preparation and data analysis for quantitative western blotting. PMID:24738055

  19. An UV-vis spectroelectrochemical approach for rapid detection of phenazines and exploration of their redox characteristics.

    PubMed

    Chen, Wei; Liu, Xiao-Yang; Qian, Chen; Song, Xiang-Ning; Li, Wen-Wei; Yu, Han-Qing

    2015-02-15

    Phenazines are widely distributed in the environment and play an important role in various biological processes to facilitate microbial metabolism and electron transfer. In this work, an efficient and reliable spectroelectrochemical method is developed to quantitatively detect 1-hydroxyphenazine (1-OHPZ), a representative phenazine, and explore its redox characteristics. This approach is based on the sensitive absorption change of 1-OHPZ in response to its changes under redox state in rapid electrochemical reduction. The redox reaction of 1-OHPZ in aqueous solution is a proton-coupled electron transfer process, with a reversible one-step 2e(-)/2H(+) transfer reaction. This spectroelectrochemical approach exhibits good linear response covering two magnitudes to 1-OHPZ with a detection limit of 0.48µM, and is successfully applied to detect 1-OHPZ from a mixture of phenazines produced by Pseudomonas aeruginosa cultures. This method might also be applicable in exploring the abundance and redox processes of a wide range of other redox-active molecules in natural and engineered environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Non-Antibody Universal Detection of Protein Phosphorylation Using pIMAGO

    PubMed Central

    Iliuk, Anton B.; Tao, W. Andy

    2015-01-01

    With recent technical advances, important signaling pathways have continuously been discovered and dissected in many biological events. The vast majority of these signaling pathways involve reversible protein phosphorylation, and the dynamics of phosphorylation provides important mechanisms on how signaling networks function and interact. With a variety of research projects using lab models or clinical samples, a simple and reliable phosphorylation assay is highly desirable for routine detection of phosphorylation in sample mixtures. The protocols in this article describe the general procedure for a new non-antibody strategy for phosphorylation assay, termed pIMAGO (phospho-imaging). This novel design takes advantage of not only the unique properties of the soluble nanoparticles, but also of the multiple functionality of the molecule, allowing for highly selective, sensitive and quantitative assessment of protein phosphorylation without the use of either radioactive isotopes or limited phosphospecific antibodies. It also offers the capability for multiplexed detection of phosphorylation and total protein amount simultaneously. The described procedures allow for straightforward and routine detection and quantitation of general phosphorylation on any site of any protein in Western Blot and ELISA formats. PMID:25727060

  1. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    PubMed Central

    Kudr, Jiri; Nguyen, Hoai Viet; Gumulec, Jaromir; Nejdl, Lukas; Blazkova, Iva; Ruttkay-Nedecky, Branislav; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-01

    In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933). PMID:25558996

  2. Highly sensitive and selective dynamic light-scattering assay for TNT detection using p-ATP attached gold nanoparticle.

    PubMed

    Dasary, Samuel S R; Senapati, Dulal; Singh, Anant Kumar; Anjaneyulu, Yerramilli; Yu, Hongtao; Ray, Paresh Chandra

    2010-12-01

    TNT is one of the most commonly used nitro aromatic explosives for landmines of military and terrorist activities. As a result, there is an urgent need for rapid and reliable methods for the detection of trace amount of TNT for screenings in airport, analysis of forensic samples, and environmental analysis. Driven by the need to detect trace amounts of TNT from environmental samples, this article demonstrates a label-free, highly selective, and ultrasensitive para-aminothiophenol (p-ATP) modified gold nanoparticle based dynamic light scattering (DLS) probe for TNT recognition in 100 pico molar (pM) level from ethanol:acetonitile mixture solution. Because of the formation of strong π-donor-acceptor interaction between TNT and p-ATP, para-aminothiophenol attached gold nanoparticles undergo aggregation in the presence of TNT, which changes the DLS intensity tremendously. A detailed mechanism for significant DLS intensity change has been discussed. Our experimental results show that TNT can be detected quickly and accurately without any dye tagging in 100 pM level with excellent discrimination against other nitro compounds.

  3. Loop-mediated isothermal amplification assay for detection of Haemophilus influenzae type b in cerebrospinal fluid.

    PubMed

    Kim, Dong Wook; Kilgore, Paul Evan; Kim, Eun Jin; Kim, Soon Ae; Anh, Dang Duc; Seki, Mitsuko

    2011-10-01

    Haemophilus influenzae type b (Hib) is one of the leading causes of meningitis in developing countries. To establish and evaluate a novel loop-mediated isothermal amplification (LAMP) assay for Hib, we designed a LAMP primer set targeting the Hib-specific capsulation locus. LAMP detected 10 copies of purified DNA in a 60-min reaction. This indicated that the detection limit of LAMP was >100-fold lower than the detection limits of both a PCR for the detection of bexA and a nested PCR for Hib (Hib PCR). No H. influenzae, other than Hib or control bacteria, was detected. Linear determination ranged from 10 to 1,000,000 microorganisms per reaction mixture using real-time turbidimetry. We evaluated the Hib LAMP assay using a set of 52 randomly selected cerebrospinal fluid (CSF) specimens obtained from children with suspected meningitis. For comparison, the CSF specimens were tested using a conventional Hib PCR assay. Hib was detected in 30 samples using LAMP and in 22 samples using the Hib PCR assay. The Hib PCR showed a clinical sensitivity of 73.3% and a clinical specificity of 100% relative to the Hib LAMP assay. These results suggest that further development and evaluation of the Hib LAMP will enhance the global diagnostic capability for Hib detection.

  4. On studies of 3He and isobutane mixture as neutron proportional counter gas

    NASA Astrophysics Data System (ADS)

    Desai, S. S.; Shaikh, A. M.

    2006-02-01

    The performance of neutron detectors filled with 3He+iC 4H 10 (isobutane) gas mixtures has been studied and compared with the performance of detectors filled with 3He+Kr gas mixtures. The investigations are made to determine suitable concentration of isobutane in the gas mixture to design neutron proportional counters and linear position sensitive neutron detectors (1-D PSDs). Energy resolution, range of proportionality, plateau and gas gain characteristics are studied for various gas mixtures of 3He and isobutane. The values for various gas constants are determined by fitting the gas gains to Diethorn and Bateman's equations and their variation with isobutane concentration in the fill gas mixture is studied.

  5. Detecting Mixtures from Structural Model Differences Using Latent Variable Mixture Modeling: A Comparison of Relative Model Fit Statistics

    ERIC Educational Resources Information Center

    Henson, James M.; Reise, Steven P.; Kim, Kevin H.

    2007-01-01

    The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…

  6. A large 2D PSD for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Knott, R. B.; Smith, G. C.; Watt, G.; Boldeman, J. W.

    1997-02-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 × 640 mm 2. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa 3He plus 100 kPa CF 4, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10 5 events per secod. The (calculated) neutron detection efficiency was 60% for 2 Å neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 × 5 mm 2) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  7. Molecular survey of Dirofilaria immitis and Dirofilaria repens by new real-time TaqMan® PCR assay in dogs and mosquitoes (Diptera: Culicidae) in Corsica (France).

    PubMed

    Tahir, Djamel; Bittar, Fadi; Barré-Cardi, Hélène; Sow, Doudou; Dahmani, Mustapha; Mediannikov, Oleg; Raoult, Didier; Davoust, Bernard; Parola, Philippe

    2017-02-15

    Dirofilaria immitis and D. repens are filarioid nematodes of animals and humans, transmitted by the bite of infected mosquitoes. Domestic and wild canids are a major natural host and reservoir for these parasites. In this study, we designed a duplex real-time PCR protocol targeting the mitochondrial cytochrome c oxidase subunit I (COI) gene, detecting both D. immitis and D. repens using two primer pairs and two Dirofilaria-specific hydrolysable probes. The sensitivity and specificity of the primers and probes were tested in both experimental and naturally infected samples. The detection limits of this assay were evaluated using plasmid DNA from D. immitis and D. repens. No cross-reaction was observed when testing this system against DNA from other filarial nematodes. The detection limit of the real-time PCR system was one copy per reaction mixture containing 5μl of template DNA. Field application of the new duplex real-time assay was conducted in Corsica. The prevalence rate of D. immitis was 21.3% (20/94) in dogs. In a locality where most dogs with Dirofilaria spp. infection were found, D. immitis and D. repens were detected in 5% (20/389) and 1.5% (6/389) of the Aedes albopictus population, respectively. These results suggest that this sensitive assay is a powerful tool for monitoring dirofilariosis in endemic or high risk areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ultrasensitive Determination of Malathion Using Acetylcholinesterase Immobilized on Chitosan-Functionalized Magnetic Iron Nanoparticles

    PubMed Central

    Rodrigues, Núbia Fernanda Marinho; Neto, Sakae Yotsumoto; Luz, Rita de Cássia Silva; Yamanaka, Hideko

    2018-01-01

    A renewable, disposable, low cost, and sensitive sensor for the detection of organophosphorus pesticides was constructed by immobilizing the acetylcholinesterase enzyme (AChE), via glutaraldehyde, on magnetic iron nanoparticles (Fe3O4) previously synthesized and functionalized with chitosan (CS). The sensor was denoted AChE/CS/Fe3O4. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy. Acetylthiocholine (ATCh) was incubated with AChE/CS/Fe3O4 and attached to a screen-printed electrode using a magnet. The oxidation of thiocholine (from ATCh hydrolysis) was monitored at an applied potential of +0.5 V vs. Ag/AgCl(KClsat) in 0.1 mol L−1 phosphate buffer solution (pH 7.5) as the supporting electrolyte. A mixture of the pesticide malathion and ATCh was investigated using the same procedure, and the results were compared and expressed as inhibition percentages. For determination of malathion, the proposed sensor presented a linear response in the range from 0.5 to 20 nmol L−1 (R = 0.9942). The limits of detection (LOD) and quantification (LOQ) were 0.3 and 0.8 nmol L−1, respectively. Real samples were also investigated, with recovery values of 96.0% and 108.3% obtained for tomato and pond water samples, respectively. The proposed sensor is a feasible option for malathion detection, offering a linear response, good sensitivity, and a low detection limit. PMID:29438301

  9. Intracellular nucleotide and nucleotide sugar contents of cultured CHO cells determined by a fast, sensitive, and high-resolution ion-pair RP-HPLC.

    PubMed

    Kochanowski, N; Blanchard, F; Cacan, R; Chirat, F; Guedon, E; Marc, A; Goergen, J-L

    2006-01-15

    Analysis of intracellular nucleotide and nucleotide sugar contents is essential in studying protein glycosylation of mammalian cells. Nucleotides and nucleotide sugars are the donor substrates of glycosyltransferases, and nucleotides are involved in cellular energy metabolism and its regulation. A sensitive and reproducible ion-pair reverse-phase high-performance liquid chromatography (RP-HPLC) method has been developed, allowing the direct and simultaneous detection and quantification of some essential nucleotides and nucleotide sugars. After a perchloric acid extraction, 13 molecules (8 nucleotides and 5 nucleotide sugars) were separated, including activated sugars such as UDP-glucose, UDP-galactose, GDP-mannose, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine. To validate the analytical parameters, the reproducibility, linearity of calibration curves, detection limits, and recovery were evaluated for standard mixtures and cell extracts. The developed method is capable of resolving picomolar quantities of nucleotides and nucleotide sugars in a single chromatographic run. The HPLC method was then applied to quantify intracellular levels of nucleotides and nucleotide sugars of Chinese hamster ovary (CHO) cells cultivated in a bioreactor batch process. Evolutions of the titers of nucleotides and nucleotide sugars during the batch process are discussed.

  10. Automatic detection of obstructive sleep apnea using speech signals.

    PubMed

    Goldshtein, Evgenia; Tarasiuk, Ariel; Zigel, Yaniv

    2011-05-01

    Obstructive sleep apnea (OSA) is a common disorder associated with anatomical abnormalities of the upper airways that affects 5% of the population. Acoustic parameters may be influenced by the vocal tract structure and soft tissue properties. We hypothesize that speech signal properties of OSA patients will be different than those of control subjects not having OSA. Using speech signal processing techniques, we explored acoustic speech features of 93 subjects who were recorded using a text-dependent speech protocol and a digital audio recorder immediately prior to polysomnography study. Following analysis of the study, subjects were divided into OSA (n=67) and non-OSA (n=26) groups. A Gaussian mixture model-based system was developed to model and classify between the groups; discriminative features such as vocal tract length and linear prediction coefficients were selected using feature selection technique. Specificity and sensitivity of 83% and 79% were achieved for the male OSA and 86% and 84% for the female OSA patients, respectively. We conclude that acoustic features from speech signals during wakefulness can detect OSA patients with good specificity and sensitivity. Such a system can be used as a basis for future development of a tool for OSA screening. © 2011 IEEE

  11. Estimating Lion Abundance using N-mixture Models for Social Species

    PubMed Central

    Belant, Jerrold L.; Bled, Florent; Wilton, Clay M.; Fyumagwa, Robert; Mwampeta, Stanslaus B.; Beyer, Dean E.

    2016-01-01

    Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170–551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species. PMID:27786283

  12. Estimating Lion Abundance using N-mixture Models for Social Species.

    PubMed

    Belant, Jerrold L; Bled, Florent; Wilton, Clay M; Fyumagwa, Robert; Mwampeta, Stanslaus B; Beyer, Dean E

    2016-10-27

    Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170-551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species.

  13. The value of automated gel column agglutination technology in the identification of true inherited D blood types in massively transfused patients.

    PubMed

    Summers, Thomas; Johnson, Viviana V; Stephan, John P; Johnson, Gloria J; Leonard, George

    2009-08-01

    Massive transfusion of D- trauma patients in the combat setting involves the use of D+ red blood cells (RBCs) or whole blood along with suboptimal pretransfusion test result documentation. This presents challenges to the transfusion service of tertiary care military hospitals who ultimately receive these casualties because initial D typing results may only reflect the transfused RBCs. After patients are stabilized, mixed-field reaction results on D typing indicate the patient's true inherited D phenotype. This case series illustrates the utility of automated gel column agglutination in detecting mixed-field reactions in these patients. The transfusion service test results, including the automated gel column agglutination D typing results, of four massively transfused D- patients transfused D+ RBCs is presented. To test the sensitivity of the automated gel column agglutination method in detecting mixed-field agglutination reactions, a comparative analysis of three automated technologies using predetermined mixtures of D+ and D- RBCs is also presented. The automated gel column agglutination method detected mixed-field agglutination in D typing in all four patients and in the three prepared control specimens. The automated microwell tube method identified one of the three prepared control specimens as indeterminate, which was subsequently manually confirmed as a mixed-field reaction. The automated solid-phase method was unable to detect any mixed fields. The automated gel column agglutination method provides a sensitive means for detecting mixed-field agglutination reactions in the determination of the true inherited D phenotype of combat casualties transfused massive amounts of D+ RBCs.

  14. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-01-01

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya. PMID:25337891

  15. A universal multi-wavelength fluorescence polarization immunoassay for multiplexed detection of mycotoxins in maize.

    PubMed

    Li, Chenglong; Wen, Kai; Mi, Tiejun; Zhang, Xiya; Zhang, Huiyan; Zhang, Suxia; Shen, Jianzhong; Wang, Zhanhui

    2016-05-15

    Multi-analyte immunoassays have attracted increasing attention due to their short assay times, low sample consumption, and reduced detection costs per assay. In this work, we describe a homologous and high-throughput multi-wavelength fluorescence polarization immunoassay (MWFPIA) for the multiplexed detection of mycotoxins. Three typical Fusarium mycotoxins, deoxynivalenol (DON), T-2 toxin and fumonisin B1 (FB1), were labeled with different dyes. Tracers and specific monoclonal antibodies (mAbs) were employed in the MWFPIA to simultaneously detect the three mycotoxins. Under optimal conditions, the limits of detection using MWFPIA were 242.0 μg kg(-1) for DON, 17.8 μg kg(-1) for T-2 toxin and 331.5 μg kg(-1) for FB1, providing sufficient sensitivity to meet the action levels of these three contaminants in maize as set by the European Union. The use of a methanol/water (2:3, v/v) mixture for sample pretreatment allowed recoveries ranging from 76.5-106.3%, with coefficients of variation less than 21.7%. The total time of analysis, including sample preparation, was less than 30 min. Twenty naturally contaminated maize samples were tested using MWFPIA and HPLC-MS/MS, with correlation coefficients (R(2)) of 0.97 for DON and 0.99 for FB1. By changing the targets of interest, homologous MWFPIA, a method with high sensitivity, a simple procedure and a short analysis time, can easily be extended to other chemical contaminants. Thus, MWFPIA represents a versatile strategy for food safety analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. In-line open-cavity Fabry-Pérot interferometer formed by C-shaped fiber fortemperature-insensitive refractive index sensing.

    PubMed

    Wu, Chuang; Liu, Zhengyong; Zhang, A Ping; Guan, Bai-Ou; Tam, Hwa-Yaw

    2014-09-08

    We report an open-cavity optical fiber Fabry-Pérot interferometer (FPI) capable of measuring refractive index with very low temperature cross-sensitivity. The FPI was constructed by splicing a thin piece of C-shaped fiber between two standard single-mode fibers. The refractive index (RI) response of the FPI was characterized using water-ethanol mixtures with RI in the range of 1.33 to 1.36. The RI sensitivity was measured to be 1368 nm/RIU at the wavelength of 1600 nm with good linearity. Thanks to its all-glass structure, the FPI exhibits very low temperature cross-sensitivity of 3.04 × 10⁻⁷ RIU/°C. The effects of cavity length on the performance of the sensor were also studied. A shorter cavity gives rise to broader measurement range while offering larger detection limit, and vice versa. What's more, the effect of material dispersion of analyte on the sensitivity of open-cavity FPIs was identified for the first time. The sensor is compact in size and easy to fabricate. It is potentially useful for label-free optical sensing of chemical and biological samples.

  17. Heat detection and compositions and devices therefor

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1975-01-01

    Temperature change of a substrate such as a microelectronic component is sensed and detected by means of a mixture of a weak molecular complex of an electron donor compound such as an organic amine and an electron acceptor compound such as nitroaromatic compound. The mixture is encapsulated in a clear binder such as a vinyl resin.

  18. Detecting Math Anxiety with a Mixture Partial Credit Model

    ERIC Educational Resources Information Center

    Ölmez, Ibrahim Burak; Cohen, Allan S.

    2017-01-01

    The purpose of this study was to investigate a new methodology for detection of differences in middle grades students' math anxiety. A mixture partial credit model analysis revealed two distinct latent classes based on homogeneities in response patterns within each latent class. Students in Class 1 had less anxiety about apprehension of math…

  19. The potential of three different PCR-related approaches for the authentication of mixtures of herbal substances and finished herbal medicinal products.

    PubMed

    Doganay-Knapp, Kirsten; Orland, Annika; König, Gabriele M; Knöss, Werner

    2018-04-01

    Herbal substances and preparations thereof play an important role in healthcare systems worldwide. Due to the variety of these products regarding origin, composition and processing procedures, appropriate methodologies for quality assessment need to be considered. A majority of herbal substances is administered as multicomponent mixtures, especially in the field of Traditional Chinese Medicine and ayurvedic medicine, but also in finished medicinal products. Quality assessment of complex mixtures of herbal substances with conventional methods is challenging. Thus, emphasis of the present work was directed on the development of complementary methods to elucidate the composition of mixtures of herbal substances and finished herbal medicinal products. An indispensable prerequisite for the safe and effective use of herbal medicines is the unequivocal authentication of the medicinal plants used therein. In this context, we investigated the potential of three different PCR-related methods in the characterization and authentication of herbal substances. A multiplex PCR assay and a quantitative PCR (qPCR) assay were established to analyze defined mixtures of the herbal substances Quercus cortex, Juglandis folium, Aristolochiae herba, Matricariae flos and Salviae miltiorrhizae radix et rhizoma and a finished herbal medicinal product. Furthermore, a standard cloning approach using universal primers targeting the ITS region was established in order to allow the investigation of herbal mixtures with unknown content. The cloning approach had some limitations regarding the detection/recovery of the components in defined mixtures of herbal substances, but the complementary use of two sets of universal primer pairs increased the detection of components out of the mixture. While the multiplex PCR did not retrace all components in the defined mixtures of herbal substances, the established qPCR resulted in simultaneous and specific detection of the five target sequences in all defined mixtures. These data indicate that for authentication purposes, complementary PCR-related methods are highly recommendable for the analysis of herbal mixtures in parallel. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Odor detection of mixtures of homologous carboxylic acids and coffee aroma compounds by humans.

    PubMed

    Miyazawa, Toshio; Gallagher, Michele; Preti, George; Wise, Paul M

    2009-11-11

    Mixture summation among homologous carboxylic acids, that is, the relationship between detection probabilities for mixtures and detection probabilities for their unmixed components, varies with similarity in carbon-chain length. The current study examined detection of acetic, butyric, hexanoic, and octanoic acids mixed with three other model odorants that differ greatly from the acids in both structure and odor character, namely, 2-hydroxy-3-methylcyclopent-2-en-1-one, furan-2-ylmethanethiol, and (3-methyl-3-sulfanylbutyl) acetate. Psychometric functions were measured for both single compounds and binary mixtures (2 of 5, forced-choice method). An air dilution olfactometer delivered stimuli, with vapor-phase calibration using gas chromatography-mass spectrometry. Across the three odorants that differed from the acids, acetic and butyric acid showed approximately additive (or perhaps even supra-additive) summation at low perithreshold concentrations, but subadditive interactions at high perithreshold concentrations. In contrast, the medium-chain acids showed subadditive interactions across a wide range of concentrations. Thus, carbon-chain length appears to influence not only summation with other carboxylic acids but also summation with at least some unrelated compounds.

  1. Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory; Boyter, Chris; Errico, Michael; Vandervoort, Kurt; Salik, Ertan

    2010-03-01

    A single biconical fiber taper is a simple and low-cost yet powerful sensor. With a distinct strength in refractive index (RI) sensing, biconical tapered fiber sensors can find their place in handheld sensor platforms, especially as biosensors that are greatly needed in health care, environmental protection, food safety, and biodefense. We report doubling of sensitivity for these sensors with two passes through the tapered region, which becomes possible through the use of sensitive and high-dynamic-range photodetectors. In a proof-of-principle experiment, we measured transmission through the taper when it was immersed in isopropyl alcohol-water mixtures of varying concentrations, in which a thin gold layer at the tip of the fiber acted as a mirror enabling two passes through the tapered region. This improved the sensitivity from 0.43 dB/vol % in the single-pass case to 0.78 dB/vol % with two passes through the taper. The refractive index detection limit was estimated to be ~1.2×10-5 RI units (RIU) and ~0.6×10-5 RIU in the single- and double-pass schemes, respectively. We predict that further enhancement of sensitivity may be achieved with a higher number of passes through the taper.

  2. Molecular Detection of Invasive Species in Heterogeneous Mixtures Using a Microfluidic Carbon Nanotube Platform

    PubMed Central

    Mahon, Andrew R.; Barnes, Matthew A.; Senapati, Satyajyoti; Feder, Jeffrey L.; Darling, John A.; Chang, Hsueh-Chia; Lodge, David M.

    2011-01-01

    Screening methods to prevent introductions of invasive species are critical for the protection of environmental and economic benefits provided by native species and uninvaded ecosystems. Coastal ecosystems worldwide remain vulnerable to damage from aquatic species introductions, particularly via ballast water discharge from ships. Because current ballast management practices are not completely effective, rapid and sensitive screening methods are needed for on-site testing of ships in transit. Here, we describe a detection technology based on a microfluidic chip containing DNA oligonucleotide functionalized carbon nanotubes. We demonstrate the efficacy of the chip using three ballast-transported species either established (Dreissena bugensis) or of potential threat (Eriocheir sinensis and Limnoperna fortuneii) to the Laurentian Great Lakes. With further refinement for on-board application, the technology could lead to real-time ballast water screening to improve ship-specific management and control decisions. PMID:21364993

  3. Western blotting using capillary electrophoresis.

    PubMed

    Anderson, Gwendolyn J; M Cipolla, Cynthia; Kennedy, Robert T

    2011-02-15

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ∼1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot.

  4. TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery.

    PubMed

    Vanwetswinkel, Sophie; Heetebrij, Robert J; van Duynhoven, John; Hollander, Johan G; Filippov, Dmitri V; Hajduk, Philip J; Siegal, Gregg

    2005-02-01

    We propose a ligand screening method, called TINS (target immobilized NMR screening), which reduces the amount of target required for the fragment-based approach to drug discovery. Binding is detected by comparing 1D NMR spectra of compound mixtures in the presence of a target immobilized on a solid support to a control sample. The method has been validated by the detection of a variety of ligands for protein and nucleic acid targets (K(D) from 60 to 5000 muM). The ligand binding capacity of a protein was undiminished after 2000 different compounds had been applied, indicating the potential to apply the assay for screening typical fragment libraries. TINS can be used in competition mode, allowing rapid characterization of the ligand binding site. TINS may allow screening of targets that are difficult to produce or that are insoluble, such as membrane proteins.

  5. High granularity tracker based on a Triple-GEM optically read by a CMOS-based camera

    NASA Astrophysics Data System (ADS)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2015-12-01

    The detection of photons produced during the avalanche development in gas chambers has been the subject of detailed studies in the past. The great progresses achieved in last years in the performance of micro-pattern gas detectors on one side and of photo-sensors on the other provide the possibility of making high granularity and very sensitive particle trackers. In this paper, the results obtained with a triple-GEM structure read-out by a CMOS based sensor are described. The use of an He/CF4 (60/40) gas mixture and a detailed optimization of the electric fields made possible to obtain a very high GEM light yield. About 80 photons per primary electron were detected by the sensor resulting in a very good capability of tracking both muons from cosmic rays and electrons from natural radioactivity.

  6. Advances in Molecular Rotational Spectroscopy for Applied Science

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xing; Ibrahim, Yehia M.; Chen, Tsung-Chi

    We report the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (µFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The µFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional information of detected features from the measured FAIMS compensation fields and IMS drift times, while also obtaining accurate ion masses. These separations thereby increase the overall separation power, resulting increased information content, and provide more complete characterization of more complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressuresmore » in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by e.g. improving isomeric separations and allowing detection of species obscured by “chemical noise” and other interfering peaks.« less

  8. Optical sensors for application in intelligent food-packaging technology

    NASA Astrophysics Data System (ADS)

    McEvoy, Aisling K.; Von Bueltzingsloewen, Christoph; McDonagh, Colette M.; MacCraith, Brian D.; Klimant, Ingo; Wolfbeis, Otto S.

    2003-03-01

    Modified Atmosphere Packaged (MAP) food employs a protective gas mixture, which normally contains selected amounts of carbon dioxide (CO2) and oxygen (O2), in order to extend the shelf life of food. Conventional MAP analysis of package integrity involves destructive sampling of packages followed by carbon dioxide and oxygen detection. For quality control reasons, as well as to enhance food safety, the concept of optical on-pack sensors for monitoring the gas composition of the MAP package at different stages of the distribution process is very attractive. The objective of this work was to develop printable formulations of oxygen and carbon dioxide sensors for use in food packaging. Oxygen sensing is achieved by detecting the degree of quenching of a fluorescent ruthenium complex entrapped in a sol-gel matrix. In particular, a measurement technique based on the quenching of the fluorescence decay time, phase fluorometric detection, is employed. A scheme for detecting CO2 has been developed which is compatible with the oxygen detection scheme. It is fluorescence-based and uses the pH-sensitive 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) indicator dye encapsulated in an organically modified silica (ORMOSIL) glass matrix. Dual Luminophore Referencing (DLR) has been employed as an internal referencing scheme, which provides many of the advantages of lifetime-based fluorometric methods. Oxygen cross-sensitivity was minimised by encapsulating the reference luminophore in dense sol-gel microspheres. The sensor performance compared well with standard methods for both oxygen and carbon dioxide detection. The results of preliminary on-pack print trials are presented and a preliminary design of an integrated dual gas optical read-out device is discussed.

  9. Sensitive, microliter PCR with consensus degenerate primers for Epstein Barr virus amplification

    PubMed Central

    Oh, Kyudam; Pak, Nikita; Saunders, D. Curtis; Conrardy, Christina; Landers, James P.; Tong, Suxiang; Forest, Craig R.

    2016-01-01

    Sensitive identification of the etiology of viral diseases is key to implementing appropriate prevention and treatment. The gold standard for virus identification is the polymerase chain reaction (PCR), a technique that allows for highly specific and sensitive detection of pathogens by exponentially amplifying a specific region of DNA from as little as a single copy through thermocycling a biochemical cocktail. Today, molecular biology laboratories use commercial instruments that operate in 0.5–2 h/analysis using reaction volumes of 5–50 μL contained within polymer tubes or chambers. Towards reducing this volume and maintaining performance, we present a semi-quantitative, systematic experimental study of how PCR yield is affected by tube/chamber substrate, surface-area-to-volume ratio (SA:V), and passivation methods. We perform PCR experiments using traditional PCR tubes as well as using disposable polymer microchips with 1 μL reaction volumes thermocycled using water baths. We report the first oil encapsulation microfluidic PCR method without fluid flow and its application to the first microfluidic amplification of Epstein Barr virus using consensus degenerate primers, a powerful and broad PCR method to screen for both known and novel members of a viral family. The limit of detection is measured as 140 starting copies of DNA from a starting concentration of 3×105 copies/mL, regarded as an accepted sensitivity threshold for diagnostic purposes, and reaction specificity was improved as compared to conventional methods. Also notable, these experiments were conducted with conventional reagent concentrations, rather than commonly spiked enzyme and/or template mixtures. This experimental study of the effects of substrate, SA:V, and passivation, together with sensitive and specific microfluidic PCR with consensus degenerate primers represent advances towards lower cost and higher throughput pathogen screening. PMID:23080522

  10. Autonomous detection of crowd anomalies in multiple-camera surveillance feeds

    NASA Astrophysics Data System (ADS)

    Nordlöf, Jonas; Andersson, Maria

    2016-10-01

    A novel approach for autonomous detection of anomalies in crowded environments is presented in this paper. The proposed models uses a Gaussian mixture probability hypothesis density (GM-PHD) filter as feature extractor in conjunction with different Gaussian mixture hidden Markov models (GM-HMMs). Results, based on both simulated and recorded data, indicate that this method can track and detect anomalies on-line in individual crowds through multiple camera feeds in a crowded environment.

  11. DOSY Analysis of Micromolar Analytes: Resolving Dilute Mixtures by SABRE Hyperpolarization.

    PubMed

    Reile, Indrek; Aspers, Ruud L E G; Tyburn, Jean-Max; Kempf, James G; Feiters, Martin C; Rutjes, Floris P J T; Tessari, Marco

    2017-07-24

    DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes' diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low-micromolar mixtures, thus reducing the concentration requirements by at least 100-fold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles.

    PubMed

    Cui, Zhimin; Han, Cuiping; Li, Haibing

    2011-04-07

    A versatile yet simple strategy for the fabrication of a highly selective and sensitive fenamithion probe based on Rhodamine B (RB) modified silver nanoparticles (RB-Ag NPs) was developed. The advantage of our system over classical assays is that it combined fluorescence with colorimetry which can realize the prompt on-site and real-time detection of fenamithion with high sensitivity (0.1 nM) in aqueous solution. Moreover, the detection system presents excellent anti-disturbance ability when exposed to a series of interfering ionic/pesticides mixtures and can be applied to the determination of fenamithion in real vegetables and different water samples with the limit of detection (LOD) as low as 10 nM (0.0026 mg L(-1)), which is in accord with the maximum contamination level of 0.001∼0.25 mg L(-1) for organophosphorus pesticides as defined by the U.S. Environmental Protection Agency (EPA). Advantage is taken of the fact that RB would be displaced from the surface of the Ag NPs because of the stronger coordination ability of Ag NPs with fenamithion, an amino-containing organophosphorus pesticide, accompanying the clustered Ag NPs (9 nm) dissipating into smaller individual particles (7 nm). Based on this phenomenon, a novel analyte-induced etching mechanism was proposed. © The Royal Society of Chemistry 2011

  13. Nanoscale detection of bacteriophage triggered ion cascade (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Dobozi-King, Maria; Seo, Sungkyu; Kim, Jong U.; Cheng, Mosong; Kish, Laszlo B.; Young, Ryland

    2005-05-01

    In an era of potential bioterrorism and pandemics of antibiotic-resistant microbes, bacterial contaminations of food and water supplies is a major concern. There is an urgent need for the rapid, inexpensive and specific identification of bacteria under field conditions. Here we describe a method that combines the specificity and avidity of bacteriophages with fluctuation analysis of electrical noise. The method is based on the massive, transitory ion leakage that occurs at the moment of phage DNA injection into the host cell. The ion fluxes require only that the cells be physiologically viable (i.e., have energized membranes) and can occur within seconds after mixing the cells with sufficient concentrations of phage particles. To detect these fluxes, we have constructed a nano-well, a lateral, micron-size capacitor of titanium electrodes with gap size of 150 nm, and used it to measure the electrical field fluctuations in microliter (mm3) samples containing phage and bacteria. In mixtures where the analyte bacteria were sensitive to the phage, large stochastic waves with various time and amplitude scales were observed, with power spectra of approximately 1/f2 shape over at 1 - 10 Hz. Development of this SEPTIC (SEnsing of Phage-Triggered Ion Cascades) technology could provide rapid detection and identification of live, pathogenic bacteria on the scale of minutes, with unparalleled specificity. The method has a potential ultimate sensitivity of 1 bacterium/microliter (1 bacterium/mm3).

  14. Simultaneous multicolor detection system of the single-molecular microbial antigen by total internal reflection fluorescence microscopy with fluorescent nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Yamamoto, Mayu; Manabe, Noriyoshi; Yasuhara, Masato; Suzuki, Kazuo; Yamamoto, Kenji

    2005-11-01

    Immunological diagnostic methods have been widely performed and showed high performance in molecular and cellular biology, molecular imaging, and medical diagnostics. We have developed novel methods for the fluorescent labeling of several antibodies coupled with fluorescent nanocrystals QDs. In this study we demonstrated that two bacterial toxins, diphtheria toxin and tetanus toxin, were detected simultaneously in the same view field of a cover slip by using directly QD-conjugated antibodies. We have succeeded in detecting bacterial toxins by counting luminescent spots on the evanescent field with using primary antibody conjugated to QDs. In addition, each bacterial toxin in the mixture can be separately detected by single excitation laser with emission band pass filters, and simultaneously in situ pathogen quantification was performed by calculating the luminescent density on the surface of the cover slip. Our results demonstrate that total internal reflection fluorescence microscopy (TIRFM) enables us to distinguish each antigen from mixed samples and can simultaneously quantitate multiple antigens by QD-conjugated antibodies. Bioconjugated QDs could have great potentialities for in practical biomedical applications to develop various high-sensitivity detection systems.

  15. Spectroscopic signatures of PETN in contact with sand particles

    NASA Astrophysics Data System (ADS)

    Ballesteros, Luz M.; Herrera, Gloria M.; Castro, Miguel E.; Briano, Julio; Mina, Nairmen; Hernandez-Rivera, Samuel P.

    2005-06-01

    The detection of explosive materials is not only important as an issue in landmines but also for global security reasons, unexploded ordnance, and Improvised Explosive Devices detection. In such areas, explosives detection has played a central role in ensuring the safety of the lives of citizens in many countries. Raman Spectroscopy is a well established tool for vibrational spectroscopic analysis and can be applied to the field of explosives identification and detection. The analysis of PETN is important because it is used in laminar form or mixed with RDX to manufacture Semtex plastic explosive and in the fabrication of Improvised Explosive Devices (IEDs). Our investigation is focused on the study of spectroscopic signatures of PETN in contact with soil. Ottawa sand mixed in different proportions with PETN together with the study of the influence of pH, temperature, humidity, and UV light on the vibrational signatures of the mixtures constitute the core of the investigation. The results reveal that the characteristic bands of PETN are not significantly shifted but rather appear constant with respect of the ubiquitous band of sand (~463 cm-1). These results will make possible the development of highly sensitive sensors for detection of explosives materials and IDEs.

  16. Simple, Rapid, and Highly Sensitive Detection of Diphosgene and Triphosgene by Spectrophotometric Methods

    PubMed Central

    Joy, Abraham; Anim-Danso, Emmanuel; Kohn, Joachim

    2009-01-01

    Methods for the detection and estimation of diphosgene and triphosgene are described. These compounds are widely used phosgene precursors which produce an intensely colored purple pentamethine oxonol dye when reacted with 1,3-dimethylbarbituric acid (DBA) and pyridine (or a pyridine derivative). Two quantitative methods are described, based on either UV absorbance or fluorescence of the oxonol dye. Detection limits are ~ 4 µmol/L by UV and <0.4 µmol/L by fluorescence. The third method is a test strip for the simple and rapid detection and semi-quantitative estimation of diphosgene and triphosgene, using a filter paper embedded with dimethylbarbituric acid and poly(4-vinylpyridine). Addition of a test solution to the paper causes a color change from white to light blue at low concentrations and to pink at higher concentrations of triphosgene. The test strip is useful for quick on-site detection of triphosgene and diphosgene in reaction mixtures. The test strip is easy to perform and provides clear signal readouts indicative of the presence of phosgene precursors. The utility of this method was demonstrated by the qualitative determination of residual triphosgene during the production of poly(Bisphenol A carbonate). PMID:19782219

  17. Nylon bead enzyme-linked immunosorbent assay for detection of sub-picogram quantities of Brucella antigens.

    PubMed Central

    Perera, V Y; Creasy, M T; Winter, A J

    1983-01-01

    An indirect sandwich enzyme-linked immunosorbent assay, using antibody covalently coupled to nylon beads, has been adapted for the detection of Brucella antigens. Optimum conditions were achieved by incubation of 1 ml of reaction mixture with a single bead, and by minimizing nonspecific interactions through the use of beads coated with purified bovine antibodies, preabsorption of third layer rabbit antibodies with normal bovine serum, and treatment of beads with normal goat serum before addition of the goat anti-rabbit enzyme conjugate. Beta-galactosidase was selected for use with clinical samples primarily because of low levels of endogenous enzyme in bovine leukocytes. Use of a fluorogenic substrate enhanced sensitivity 20-fold. Under these conditions, 100 fg of solubilized crude lipopolysaccharide or 8 to 10 Brucella cells was detectable in a fixed volume of 1 ml. A system was also devised for concentrating antigen which permitted ready detection of 2 pg of lipopolysaccharide in a volume of 50 ml (40 fg/ml). Attempts to detect lipopolysaccharide in the presence of concentrated serum or plasma were unsuccessful, but 10 brucellae added to a suspension of leukocytes from 100 ml of normal bovine blood were easily measured. PMID:6415094

  18. Real-time polymerase chain reaction assay for rapid and sensitive detection of anthrax spores in spiked soil and talcum powder.

    PubMed

    Jain, Neha; Merwyn, S; Rai, G P; Agarwal, G S

    2012-05-01

    Real-time polymerase chain reaction (real-time PCR) is a laboratory technique based on PCR. This technique is able to detect sequence-specific PCR products as they accumulate in "real time" during the PCR amplification, and also to quantify the number of substrates present in the initial PCR mixture before amplification begins. In the present study, real-time PCR assay was employed for rapid and real-time detection of Bacillus anthracis spores spiked in 0.1 g of soil and talcum powder ranging from 5 to 10(7) spores. DNA was isolated from spiked soil and talcum powder, using PBS containing 1 % Triton-X-100, followed by heat treatment. The isolated DNA was used as template for real-time PCR and PCR. Real-time PCR amplification was obtained in 60 min under the annealing condition at 60°C by employing primers targeting the pag gene of B. anthracis. In the present study, the detection limit of real-time PCR assay in soil was 10(3) spores and 10(2) spores in talcum powder, respectively, whereas PCR could detect 10(4) spores in soil and 10(3) spores in talcum powder, respectively.

  19. Classification of SD-OCT volumes for DME detection: an anomaly detection approach

    NASA Astrophysics Data System (ADS)

    Sankar, S.; Sidibé, D.; Cheung, Y.; Wong, T. Y.; Lamoureux, E.; Milea, D.; Meriaudeau, F.

    2016-03-01

    Diabetic Macular Edema (DME) is the leading cause of blindness amongst diabetic patients worldwide. It is characterized by accumulation of water molecules in the macula leading to swelling. Early detection of the disease helps prevent further loss of vision. Naturally, automated detection of DME from Optical Coherence Tomography (OCT) volumes plays a key role. To this end, a pipeline for detecting DME diseases in OCT volumes is proposed in this paper. The method is based on anomaly detection using Gaussian Mixture Model (GMM). It starts with pre-processing the B-scans by resizing, flattening, filtering and extracting features from them. Both intensity and Local Binary Pattern (LBP) features are considered. The dimensionality of the extracted features is reduced using PCA. As the last stage, a GMM is fitted with features from normal volumes. During testing, features extracted from the test volume are evaluated with the fitted model for anomaly and classification is made based on the number of B-scans detected as outliers. The proposed method is tested on two OCT datasets achieving a sensitivity and a specificity of 80% and 93% on the first dataset, and 100% and 80% on the second one. Moreover, experiments show that the proposed method achieves better classification performances than other recently published works.

  20. Characterization of the Androgen-sensitive MDA-kb2 Cell Line for Assessing Complex Environmental Mixtures

    EPA Science Inventory

    Complex mixtures of synthetic and natural androgens and estrogens, and many other non-steroidal components are commonly released to the aquatic environment from anthropogenic sources. It is important to understand the potential interactive (i.e., additive, synergistic, antagonist...

  1. Safety Testing of Ammonium Nitrate Based Mixtures

    NASA Astrophysics Data System (ADS)

    Phillips, Jason; Lappo, Karmen; Phelan, James; Peterson, Nathan; Gilbert, Don

    2013-06-01

    Ammonium nitrate (AN)/ammonium nitrate based explosives have a lengthy documented history of use by adversaries in acts of terror. While historical research has been conducted on AN-based explosive mixtures, it has primarily focused on detonation performance while varying the oxygen balance between the oxidizer and fuel components. Similarly, historical safety data on these materials is often lacking in pertinent details such as specific fuel type, particle size parameters, oxidizer form, etc. A variety of AN-based fuel-oxidizer mixtures were tested for small-scale sensitivity in preparation for large-scale testing. Current efforts focus on maintaining a zero oxygen-balance (a stoichiometric ratio for active chemical participants) while varying factors such as charge geometry, oxidizer form, particle size, and inert diluent ratios. Small-scale safety testing was conducted on various mixtures and fuels. It was found that ESD sensitivity is significantly affected by particle size, while this is less so for impact and friction. Thermal testing is in progress to evaluate hazards that may be experienced during large-scale testing.

  2. High-throughput assay for long chain fatty acyl-CoA elongase using homogeneous scintillation proximity format.

    PubMed

    Shimamura, Ken; Miyamoto, Yasuhisa; Kitazawa, Hidefumi; Kobayashi, Tsutomu; Kotani, Hidehito; Tokita, Shigeru

    2009-04-01

    Elongase of very-long-chain fatty acid (Elovl) 6 is a rate-limiting enzyme that is responsible for the elongation of long-chain fatty acids such as palmitoic acid (C16). Elovl6 is abundantly expressed in liver and adipose tissue, and the expression levels in these tissues are up-regulated in obese animals. Furthermore, Elovl6-deficient mice display improved glucose homeostasis and insulin sensitivity, suggesting that Elovl6 might be a potential therapeutic target for metabolic disorders. From the drug discovery point of view, it is critical to establish a high-throughput screening (HTS) assay for the identification of therapeutic agents. Conventional assay methods for fatty acid elongases include an extraction step for respective radioactive products from the reaction mixtures, which is labor-intensive and not feasible for HTS. In this study, we utilized the acyl-coenzyme A (CoA) binding protein (ACBP) as a molecular probe to detect radioactive long-chain acyl-CoA, a direct product of Elovl6. Recombinant ACBP binds stearoyl-CoA but not malonyl-CoA, enabling specific detection of the radioactive product in the homogenous reaction mixture without the liquid extraction step. Finally, combination of ACBP and scintillation proximity assay beads led to specific detection of Elovl6 activity with appropriate window and reproducibility amenable to HTS (signal-to-background noise ratio of approximately 13.0-fold, Z' = 0.85). The assay system described here has the potential to enable identification of small compounds that modify fatty acid elongase activity and assessment of the therapeutic potential of acyl-CoA elongases.

  3. Penicillinase-based enzyme-linked immunosorbent assay for the detection of plant viruses.

    PubMed

    Sudarshana, M R; Reddy, D V

    1989-10-01

    A penicillinase (PNC)-based, enzyme-linked immunosorbent assay (ELISA) was standardized to detect maize mosaic virus (MMV) in sorghum leaf extracts, peanut mottle virus (PMV) in pea leaf extracts, and tomato spotted wilt virus (TSWV) in peanut leaf extracts. Rabbit Fc-specific antibodies were conjugated with PNC by a single step glutaraldehyde bridge. Among several indicators tested, bromothymol blue (BTB) was found suitable for measuring PNC activity under simulated conditions. Two reagents, starch-iodine complex (SIC) and a mixed pH indicator, containing bromocresol purple and BTB (2:1) used earlier for the PNC-based ELISA, were compared with BTB for utilization in the PNC-based ELISA. SIC gave a slightly higher virus titre than BTB or the mixed pH indicator, but it often gave nonspecific reactions. Sodium or potassium salts of penicillin-G at 0.5-1.0 mg/ml and BTB at 0.2 mg/ml were found to be suitable as substrate-indicator mixture for PNC-based ELISA. The sensitivity of the PNC system was comparable to those of the alkaline phosphatase (ALP) and horseradish peroxidase (HRP) systems in detecting MMV, PMV, and TSWV. The PNC conjugate could be used at a greater dilution than those of the ALP and HRP conjugates and the BTB substrate mixture was stable for at least 3 weeks at 4 degrees C. Penicillin is readily available in developing countries, and at a substantially lower cost than p-nitrophenyl phosphate, the commonly used substrate for ALP in the plate ELISA. Thus the PNC-based ELISA provides a less expensive means for assaying plant viruses by ELISA.

  4. Impacts of pesticide mixtures in European rivers as predicted by the Species Sensitivity Distribution (SSD) models and SPEAR bioindication

    NASA Astrophysics Data System (ADS)

    Jesenska, Sona; Liess, Mathias; Schäfer, Ralf; Beketov, Mikhail; Blaha, Ludek

    2013-04-01

    Species sensitivity distribution (SSD) is statistical method broadly used in the ecotoxicological risk assessment of chemicals. Originally it has been used for prospective risk assessment of single substances but nowadays it is becoming more important also in the retrospective risk assessment of mixtures, including the catchment scale. In the present work, SSD predictions (impacts of mixtures consisting of 25 pesticides; data from several catchments in Germany, France and Finland) were compared with SPEAR-pesticides, which a bioindicator index based on biological traits responsive to the effects of pesticides and post-contamination recovery. The results showed statistically significant correlations (Pearson's R, p<0.01) between SSD (predicted msPAF values) and values of SPEAR-pesticides (based on field biomonitoring observations). Comparisons of the thresholds established for the SSD and SPEAR approaches (SPEAR-pesticides=45%, i.e. LOEC level, and msPAF = 0.05 for SSD, i.e. HC5) showed that use of chronic toxicity data significantly improved the agreement between the two methods but the SPEAR-pesticides index was still more sensitive. Taken together, the validation study shows good potential of SSD models in predicting the real impacts of micropollutant mixtures on natural communities of aquatic biota.

  5. Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2013-03-01

    This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution `Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10-9 M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.

  6. Sniffer mice discriminate urine odours of patients with bladder cancer: A proof-of-principle study for non-invasive diagnosis of cancer-induced odours.

    PubMed

    Sato, Takaaki; Katsuoka, Yoji; Yoneda, Kimihiko; Nonomura, Mitsuo; Uchimoto, Shinya; Kobayakawa, Reiko; Kobayakawa, Ko; Mizutani, Yoichi

    2017-11-07

    Similar to fingerprints, humans have unique, genetically determined body odours. In case of urine, the odour can change due to variations in diet as well as upon infection or tumour formation. We investigated the use of mice in a manner similar to "sniffer dogs" to detect changes in urine odour in patients with bladder cancer. We measured the odour discrimination thresholds of mice in a Y-maze, using urine mixtures from patients with bladder cancer (Stage I) and healthy volunteers (dietary variations) as well as occult blood- or antibiotic drug metabolite-modulated samples. Threshold difference indicated that intensities of urinary olfactory cues increase in the following order: dietary variation < bladder cancer < occult blood < antibiotic drug metabolites. After training with patient urine mixtures, sniffer mice discriminated between urine odours of pre- and post-transurethral resection in individual patients with bladder cancer in an equal-occult blood diluted condition below the detection level of dietary variations, achieving a success rate of 100% (11/11). Furthermore, genetic ablation of all dorsal olfactory receptors elevated the discrimination thresholds of mice by ≥ 10 5 -fold. The marked reduction in discrimination sensitivity indicates an essential role of the dorsal olfactory receptors in the recognition of urinary body odours in mice.

  7. Testing isotopic labeling with [¹³C₆]glucose as a method of advanced glycation sites identification.

    PubMed

    Kielmas, Martyna; Kijewska, Monika; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-12-01

    The Maillard reaction occurring between reducing sugars and reactive amino groups of biomolecules leads to the formation of a heterogeneous mixture of compounds: early, intermediate, and advanced glycation end products (AGEs). These compounds could be markers of certain diseases and of the premature aging process. Detection of Amadori products can be performed by various methods, including MS/MS techniques and affinity chromatography on immobilized boronic acid. However, the diversity of the structures of AGEs makes detection of these compounds more difficult. The aim of this study was to test a new method of AGE identification based on isotope (13)C labeling. The model protein (hen egg lysozyme) was modified with an equimolar mixture of [(12)C(6)]glucose and [(13)C(6)]glucose and then subjected to reduction of the disulfide bridges followed by tryptic hydrolysis. The digest obtained was analyzed by LC-MS. The glycation products were identified on the basis of characteristic isotopic patterns resulting from the use of isotopically labeled glucose. This method allowed identification of 38 early Maillard reaction products and five different structures of the end glycation products. This isotopic labeling technique combined with LC-MS is a sensitive method for identification of advanced glycation end products even if their chemical structure is unknown. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. DNA-polyfluorophore Chemosensors for Environmental Remediation: Vapor-phase Identification of Petroleum Products in Contaminated Soil†

    PubMed Central

    Jiang, Wei; Wang, Shenliang; Yuen, Lik Hang; Kwon, Hyukin; Ono, Toshikazu

    2013-01-01

    Contamination of soil and groundwater by petroleum-based products is an extremely widespread and important environmental problem. Here we have tested a simple optical approach for detecting and identifying such industrial contaminants in soil samples, using a set of fluorescent DNA-based chemosensors in pattern-based sensing. We used a set of diverse industrial volatile chemicals to screen and identify a set of five short oligomeric DNA fluorophores on PEG-polystyrene microbeads that could differentiate the entire set after exposure to their vapors in air. We then tested this set of five fluorescent chemosensor compounds for their ability to respond with fluorescence changes when exposed to headgas over soil samples contaminated with one of ten different samples of crude oil, petroleum distillates, fuels, lubricants and additives. Statistical analysis of the quantitative fluorescence change data (as Δ(R,G,B) emission intensities) revealed that these five chemosensors on beads could differentiate all ten product mixtures at 1000 ppm in soil within 30 minutes. Tests of sensitivity with three of the contaminant mixtures showed that they could be detected and differentiated in amounts at least as low as one part per million in soil. The results establish that DNA-polyfluorophores may have practical utility in monitoring the extent and identity of environmental spills and leaks, while they occur and during their remediation. PMID:23878719

  9. A comparison of moving object detection methods for real-time moving object detection

    NASA Astrophysics Data System (ADS)

    Roshan, Aditya; Zhang, Yun

    2014-06-01

    Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.

  10. Lab-On-a-Chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB).

    PubMed

    Yang, Minghui; Sun, Steven; Kostov, Yordan; Rasooly, Avraham

    2010-04-21

    We describe a new eight channel Lab-On-a-Chip (LOC) for a Carbon Nanotube (CNT) based immunoassay with optical detection of Staphylococcal Enterotoxin B (SEB) for food safety applications. In this work, we combined four biosensing elements: (1) CNT technology for primary antibody immobilization, (2) Enhanced Chemiluminescence (ECL) for light signal generation, (3) a cooled charge-coupled device (CCD) for detection and (4) polymer lamination technology for developing a point of care immunological assay for SEB detection. Our concept for developing versatile LOCs, which can be used for many different applications, is to use a modular design with interchangeable recognition elements (e.g. various antibodies) to determine the specificity. Polymer lamination technology was used for the fabrication of a six layer, syringe operated LOC capable of analyzing eight samples simultaneously. An anti-SEB antibody-nanotube mixture was immobilized onto a polycarbonate strip, to serve as an interchangeable ligand surface that was then bonded onto the LOC. SEB samples are loaded into the device and detected by an ELISA assay using Horse Radish Peroxidase (HRP) conjugated anti-SEB IgG as a secondary antibody and ECL, with detection by a previously described portable cooled CCD detector. Eight samples of SEB in buffer or soy milk were assayed simultaneously with a limit of detection of 0.1 ng mL(-1). CNT immobilization of the antibody increased the sensitivity of detection six fold. Use of a simple interchangeable immunological surface allows this LOC to be adapted to any immunoassay by simply replacing the ligand surface. A syringe was used to move fluids for this assay so no power is needed to operate the device. Our versatile portable point-of-care CCD detector combined with the LOC immunoassay method described here can be used to reduce the exposure of users to toxins and other biohazards when working outside the lab, as well as to simplify and increase sensitivity for many other types of immunological diagnostics and detection assays.

  11. Biological markers of intermediate outcomes in studies of indoor air and other complex mixtures.

    PubMed Central

    Wilcosky, T C

    1993-01-01

    Biological markers of intermediate health outcomes sometimes provide a superior alternative to traditional measures of pollutant-related disease. Some opportunities and methodologic issues associated with using markers are discussed in the context of exposures to four complex mixtures: environmental tobacco smoke and nitrogen dioxide, acid aerosols and oxidant outdoor pollution, environmental tobacco smoke and radon, and volatile organic compounds. For markers of intermediate health outcomes, the most important property is the positive predictive value for clinical outcomes of interest. Unless the marker has a known relationship with disease, a marker response conveys no information about disease risk. Most markers are nonspecific in that various exposures cause the same marker response. Although nonspecificity can be an asset in studies of complex mixtures, it leads to problems with confounding and dilution of exposure-response associations in the presence of other exposures. The timing of a marker's measurement in relation to the occurrence of exposure influences the ability to detect a response; measurements made too early or too late may underestimate the response's magnitude. Noninvasive markers, such as those measured in urine, blood, or nasal lavage fluid, are generally more useful for field studies than are invasive markers. However, invasive markers, such as those measured in bronchoalveolar lavage fluid or lung specimens from autopsies, provide the most direct evidence of pulmonary damage from exposure to air pollutants. Unfortunately, the lack of basic information about marker properties (e.g., sensitivity, variability, statistical link with disease) currently precludes the effective use of most markers in studies of complex mixtures. PMID:8206030

  12. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, Edward S.; Koutny, Lance B.; Hogan, Barry L.; Cheung, Chan K.; Ma, Yinfa

    1993-03-09

    A means and method for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  13. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, E.S.; Koutny, L.B.; Hogan, B.L.; Cheung, C.K.; Yinfa Ma.

    1993-03-09

    A means and method are described for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  14. ANALYSIS OF FUNCTIONAL EFFECTS OF A MIXTURE OF FIVE PESTICIDES USING A RAY DESIGN

    EPA Science Inventory


    Abstract
    The protection of human health from the adverse effects of cumulative environmental exposure to chemical mixtures is an important issue. Of particular interest is the potential detection and characterization of interaction among chemicals in complex mixtures. R...

  15. NEUROTOXICOLOGICAL AND STATISTICAL ANALYSES OF A MIXTURE OF FIVE ORGANOPHOSPHORUS PESTICIDES USING A RAY DESIGN.

    EPA Science Inventory

    Pesticide application patterns generally result in exposure to mixtures instead of single chemicals. Of particular importance in the estimation of pesticide mixture risks is the detection and characterization of their interactions. This research tested for interaction(s) in a mix...

  16. A quantitative headspace-solid-phase microextraction-gas chromatography-flame ionization detector method to analyze short chain free fatty acids in rat feces.

    PubMed

    Fiorini, Dennis; Boarelli, Maria Chiara; Gabbianelli, Rosita; Ballini, Roberto; Pacetti, Deborah

    2016-09-01

    This study sought to develop and validate a quantitative method to analyze short chain free fatty acids (SCFAs) in rat feces by solid-phase microextraction and gas chromatography (SPME-GC) using the salt mixture ammonium sulfate and sodium dihydrogen phosphate as salting out agent. Conditioning and extraction time, linearity, limits of detection and quantification, repeatability, and recovery were evaluated. The proposed method allows quantification with improved sensitivity as compared with other methods exploiting SPME-GC. The method has been applied to analyze rat fecal samples, quantifying acetic, propionic, isobutyric, butyric, isopentanoic, pentanoic, and hexanoic acids. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Application of Partial Least Square (PLS) Analysis on Fluorescence Data of 8-Anilinonaphthalene-1-Sulfonic Acid, a Polarity Dye, for Monitoring Water Adulteration in Ethanol Fuel.

    PubMed

    Kumar, Keshav; Mishra, Ashok Kumar

    2015-07-01

    Fluorescence characteristic of 8-anilinonaphthalene-1-sulfonic acid (ANS) in ethanol-water mixture in combination with partial least square (PLS) analysis was used to propose a simple and sensitive analytical procedure for monitoring the adulteration of ethanol by water. The proposed analytical procedure was found to be capable of detecting even small adulteration level of ethanol by water. The robustness of the procedure is evident from the statistical parameters such as square of correlation coefficient (R(2)), root mean square of calibration (RMSEC) and root mean square of prediction (RMSEP) that were found to be well with in the acceptable limits.

  18. Electrochemical biotin detection based on magnetic beads and a new magnetic flow cell for screen printed electrode.

    PubMed

    Biscay, Julien; González García, María Begoña; Costa García, Agustín

    2015-01-01

    The use of the first flow-cell for magnetic assays with an integrated magnet is reported here. The flow injection analysis system (FIA) is used for biotin determination. The reaction scheme is based on a one step competitive assay between free biotin and biotin labeled with horseradish peroxidase (B-HRP). The mixture of magnetic beads modified with streptavidin (Strep-MB), biotin and B-HRP is left 15 min under stirring and then a washing step is performed. After that, 100 μL of the mixture is injected and after 30s 100 μL of 3,3',5,5'-Tetramethylbenzidine (TMB) is injected and the FIAgram is recorded applying a potential of -0.2V. The linear range obtained is from 0.01 to 1 nM of biotin and the sensitivity is 758 nA/nM. The modification and cleaning of the electrode are performed in an easy way due to the internal magnet of the flow cell. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fluorescence life-time imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles.

    PubMed

    Schwartz, Shmulik; Fixler, Dror; Popovtzer, Rachela; Shefi, Orit

    2015-11-01

    Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Measurements of charge and light in pure high pressure Xe towards the study of Xe+TMA mixtures with dark matter directionality sensitivity and supra-intrinsic energy resolution for 0νββ decay searches

    DOE PAGES

    Oliveira, C. A.B.; Gehman, V.; Goldschmidt, A.; ...

    2015-03-24

    Trimethylamine (TMA) may improve the energy resolution of gaseous xenon based detectors for 0νββ decay searches through the reduction of the Fano factor by the Penning effect. This molecule may also be the key for sensing directionality of nuclear recoils induced by Weakly Interacting Massive Particles (WIMPs) in monolithic massive (ton-scale) detectors, without the need of track imaging, by making use of columnar recombination. Nuclear recoil directionality may be the path for a definite discovery of the WIMP nature of Dark Matter. An ionization chamber has been constructed and operated to explore the properties of high pressure gaseous Xe +more » TMA mixtures for particle detection in rare-event experiments. The ionization, scintillation and electroluminescence (EL) signals are measured as function of pressure and electric field. We present results for pure xenon at pressures up to 8 bar. This work has been carried out within the context of the NEXT collaboration.« less

  1. Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore.

    PubMed

    Fahie, Monifa; Chisholm, Christina; Chen, Min

    2015-02-24

    Oligomeric protein nanopores with rigid structures have been engineered for the purpose of sensing a wide range of analytes including small molecules and biological species such as proteins and DNA. We chose a monomeric β-barrel porin, OmpG, as the platform from which to derive the nanopore sensor. OmpG is decorated with seven flexible loops that move dynamically to create a distinct gating pattern when ionic current passes through the pore. Biotin was chemically tethered to the most flexible one of these loops. The gating characteristic of the loop's movement in and out of the porin was substantially altered by analyte protein binding. The gating characteristics of the pore with bound targets were remarkably sensitive to molecular identity, even providing the ability to distinguish between homologues within an antibody mixture. A total of five gating parameters were analyzed for each analyte to create a unique fingerprint for each biotin-binding protein. Our exploitation of gating noise as a molecular identifier may allow more sophisticated sensor design, while OmpG's monomeric structure greatly simplifies nanopore production.

  2. Miniaturized system of a gas chromatograph coupled with a Paul ion trap mass spectrometer

    NASA Technical Reports Server (NTRS)

    Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.

    2005-01-01

    Miniature gas chromatography (GC) and miniature mass spectrometry (MS) instrumentation has been developed to identify and quantify the chemical compounds present in complex mixtures of gases. The design approach utilizes micro-GC components coupled with a Paul quadrupole ion trap (QIT) mass spectrometer. Inherent to the system are high sensitivity, good dynamic range, good QIT resolution, low GC flow-rates to minimize vacuum requirements and the need for consumables; and the use of a modular approach to adapt to volatile organic compounds dissolved in water or present in sediment. Measurements are reported on system response to gaseous species at concentrations varying over four orders of magnitude. The ability of the system to deal with complicated mixtures is demonstrated, and future improvements are discussed. The GC/QIT system described herein has a mass, volume and power that are, conservatively, one-twentieth of those of commercial off-the-shelf systems. Potential applications are to spacecraft cabin-air monitoring, robotic planetary exploration and trace-species detection for residual gas analysis and environmental monitoring.

  3. Partitioning Detectability Components in Populations Subject to Within-Season Temporary Emigration Using Binomial Mixture Models

    PubMed Central

    O’Donnell, Katherine M.; Thompson, Frank R.; Semlitsch, Raymond D.

    2015-01-01

    Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model’s potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3–5 surveys each spring and fall 2010–2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability. PMID:25775182

  4. Capacity building and predictors of success for HIV-1 drug resistance testing in the Asia-Pacific region and Africa

    PubMed Central

    Land, Sally; Zhou, Julian; Cunningham, Philip; Sohn, Annette H; Singtoroj, Thida; Katzenstein, David; Mann, Marita; Sayer, David; Kantor, Rami

    2013-01-01

    Background The TREAT Asia Quality Assessment Scheme (TAQAS) was developed as a quality assessment programme through expert education and training, for laboratories in the Asia-Pacific and Africa that perform HIV drug-resistance (HIVDR) genotyping. We evaluated the programme performance and factors associated with high-quality HIVDR genotyping. Methods Laboratories used their standard protocols to test panels of human immunodeficiency virus (HIV)-positive plasma samples or electropherograms. Protocols were documented and performance was evaluated according to a newly developed scoring system, agreement with panel-specific consensus sequence, and detection of drug-resistance mutations (DRMs) and mixtures of wild-type and resistant virus (mixtures). High-quality performance was defined as detection of ≥95% DRMs. Results Over 4.5 years, 23 participating laboratories in 13 countries tested 45 samples (30 HIV-1 subtype B; 15 non-B subtypes) in nine panels. Median detection of DRMs was 88–98% in plasma panels and 90–97% in electropherogram panels. Laboratories were supported to amend and improve their test outcomes as appropriate. Three laboratories that detected <80% DRMs in early panels demonstrated subsequent improvement. Sample complexity factors – number of DRMs (p<0.001) and number of DRMs as mixtures (p<0.001); and laboratory performance factors – detection of mixtures (p<0.001) and agreement with consensus sequence (p<0.001), were associated with high performance; sample format (plasma or electropherogram), subtype and genotyping protocol were not. Conclusion High-quality HIVDR genotyping was achieved in the TAQAS collaborative laboratory network. Sample complexity and detection of mixtures were associated with performance quality. Laboratories conducting HIVDR genotyping are encouraged to participate in quality assessment programmes. PMID:23845227

  5. Hyperspectral target detection using heavy-tailed distributions

    NASA Astrophysics Data System (ADS)

    Willis, Chris J.

    2009-09-01

    One promising approach to target detection in hyperspectral imagery exploits a statistical mixture model to represent scene content at a pixel level. The process then goes on to look for pixels which are rare, when judged against the model, and marks them as anomalies. It is assumed that military targets will themselves be rare and therefore likely to be detected amongst these anomalies. For the typical assumption of multivariate Gaussianity for the mixture components, the presence of the anomalous pixels within the training data will have a deleterious effect on the quality of the model. In particular, the derivation process itself is adversely affected by the attempt to accommodate the anomalies within the mixture components. This will bias the statistics of at least some of the components away from their true values and towards the anomalies. In many cases this will result in a reduction in the detection performance and an increased false alarm rate. This paper considers the use of heavy-tailed statistical distributions within the mixture model. Such distributions are better able to account for anomalies in the training data within the tails of their distributions, and the balance of the pixels within their central masses. This means that an improved model of the majority of the pixels in the scene may be produced, ultimately leading to a better anomaly detection result. The anomaly detection techniques are examined using both synthetic data and hyperspectral imagery with injected anomalous pixels. A range of results is presented for the baseline Gaussian mixture model and for models accommodating heavy-tailed distributions, for different parameterizations of the algorithms. These include scene understanding results, anomalous pixel maps at given significance levels and Receiver Operating Characteristic curves.

  6. Environmentally relevant pyrethroid mixtures: A study on the correlation of blood and brain concentrations of a mixture of pyrethroid insecticides to motor activity in the rat.

    PubMed

    Hughes, Michael F; Ross, David G; Starr, James M; Scollon, Edward J; Wolansky, Marcelo J; Crofton, Kevin M; DeVito, Michael J

    2016-06-01

    Human exposure to multiple pyrethroid insecticides may occur because of their broad use on crops and for residential pest control. To address the potential health risk from co-exposure to pyrethroids, it is important to understand their disposition and toxicity in target organs such as the brain, and surrogates such as the blood when administered as a mixture. The objective of this study was to assess the correlation between blood and brain concentrations of pyrethroids and neurobehavioral effects in the rat following an acute oral administration of the pyrethroids as a mixture. Male Long-Evans rats were administered a mixture of β-cyfluthrin, cypermethrin, deltamethrin, esfenvalerate and cis- and trans-permethrin in corn oil at seven dose levels. The pyrethroid with the highest percentage in the dosing solution was trans-permethrin (31% of total mixture dose) while deltamethrin and esfenvalerate had the lowest percentage (3%). Motor activity of the rats was then monitored for 1h. At 3.5h post-dosing, the animals were euthanized and blood and brain were collected. These tissues were extracted and analyzed for parent pyrethroid using HPLC-tandem mass spectrometry. Cypermethrin and cis-permethrin were the predominate pyrethroids detected in blood and brain, respectively, at all dosage levels. The relationship of total pyrethroid concentration between blood and brain was linear (r=0.93). The pyrethroids with the lowest fraction in blood were trans-permethrin and β-cyfluthrin and in brain were deltamethrin and esfenvalerate. The relationship between motor activity of the treated rats and summed pyrethroid blood and brain concentration was described using a sigmoidal Emax model with the Effective Concentration50 being more sensitive for brain than blood. The data suggests summed pyrethroid rat blood concentration could be used as a surrogate for brain concentration as an aid to study the neurotoxic effects of pyrethroids administered as a mixture under the conditions used in this study. Published by Elsevier Ireland Ltd.

  7. Thin silica shell coated Ag assembled nanostructures for expanding generality of SERS analytes

    PubMed Central

    Kang, Yoo-Lee; Lee, Minwoo; Kang, Homan; Kim, Jaehi; Pham, Xuan-Hung; Kim, Tae Han; Hahm, Eunil; Lee, Yoon-Sik; Jeong, Dae Hong

    2017-01-01

    Surface-enhanced Raman scattering (SERS) provides a unique non-destructive spectroscopic fingerprint for chemical detection. However, intrinsic differences in affinity of analyte molecules to metal surface hinder SERS as a universal quantitative detection tool for various analyte molecules simultaneously. This must be overcome while keeping close proximity of analyte molecules to the metal surface. Moreover, assembled metal nanoparticles (NPs) structures might be beneficial for sensitive and reliable detection of chemicals than single NP structures. For this purpose, here we introduce thin silica-coated and assembled Ag NPs (SiO2@Ag@SiO2 NPs) for simultaneous and quantitative detection of chemicals that have different intrinsic affinities to silver metal. These SiO2@Ag@SiO2 NPs could detect each SERS peak of aniline or 4-aminothiophenol (4-ATP) from the mixture with limits of detection (LOD) of 93 ppm and 54 ppb, respectively. E-field distribution based on interparticle distance was simulated using discrete dipole approximation (DDA) calculation to gain insight into enhanced scattering of these thin silica coated Ag NP assemblies. These NPs were successfully applied to detect aniline in river water and tap water. Results suggest that SiO2@Ag@SiO2 NP-based SERS detection systems can be used as a simple and universal detection tool for environment pollutants and food safety. PMID:28570633

  8. Massively parallel sequencing of forensic STRs and SNPs using the Illumina® ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx™ Forensic Genomics System.

    PubMed

    Guo, Fei; Yu, Jiao; Zhang, Lu; Li, Jun

    2017-11-01

    The ForenSeq™ DNA Signature Prep Kit (ForenSeq Kit) is designed to detect more than 200 forensically relevant markers in a single reaction on the MiSeq FGx™ Forensic Genomics System (MiSeq FGx System), including Amelogenin, 27 autosomal short tandem repeats (A-STRs), 7 X chromosomal STRs (X-STRs), 24 Y chromosomal STRs (Y-STRs) and 94 identity-informative single nucleotide polymorphisms (iSNPs) with the option to contain 22 phenotypic-informative SNPs (pSNPs) and 56 ancestry-informative SNPs (aSNPs). In this study, we evaluated the MiSeq FGx System on three major parts: methodological optimization (DNA extraction, sample quantification, library normalization, diluted libraries concentration, and sample-to-cell arrangement), massively parallel sequencing (MPS) performance (depth of coverage, sequence coverage ratio, and allele coverage ratio), and ForenSeq Kit characteristics (repeatability and concordance, sensitivity, mixture, stability and case-type samples). Results showed that quantitative polymerase chain reaction (qPCR)-based sample quantification and library normalization and the appropriate number of pooled libraries and concentration of diluted libraries provided a greater level of MPS performance and repeatability. Repeatable and concordant genotypes were obtained by the ForenSeq Kit. Full profiles were obtained from ≥100pg input DNA for STRs and ≥200pg for SNPs. A sample with ≥5% minor contributors was considered as a mixture by imbalanced allele coverage ratio distribution, and full profiles from minor contributors were easily detected between 9:1 and 1:9 mixtures with known reference profiles. The ForenSeq Kit tolerated considerable concentrations of inhibitors like ≤200μM hematin and ≤50μg/ml humic acid, and >56% STR profiles and >88% SNP profiles were obtained from ≥200-bp degraded samples. Also, it was adapted to case-type samples. As a whole, the ForenSeq Kit is a well-performed, robust, reliable, reproducible and highly informative assay, and it can fully meet requirements for human identification. Further, sensitive QC indicator and automated sample comparison function in the ForenSeq™ Universal Analysis Software are quite helpful, so that we can concentrate on questionable genotypes and avoid tedious and time-consuming labor to maximum the time spent in data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Which chemicals drive biological effects in wastewater and recycled water?

    PubMed

    Tang, Janet Y M; Busetti, Francesco; Charrois, Jeffrey W A; Escher, Beate I

    2014-09-01

    Removal of organic micropollutants from wastewater during secondary treatment followed by reverse osmosis and UV disinfection was evaluated by a combination of four in-vitro cell-based bioassays and chemical analysis of 299 organic compounds. Concentrations detected in recycled water were below the Australian Guidelines for Water Recycling. Thus the detected chemicals were considered not to pose any health risk. The detected pesticides in the wastewater treatment plant effluent and partially advanced treated water explained all observed effects on photosynthesis inhibition. In contrast, mixture toxicity experiments with designed mixtures containing all detected chemicals at their measured concentrations demonstrated that the known chemicals explained less than 3% of the observed cytotoxicity and less than 1% of the oxidative stress response. Pesticides followed by pharmaceuticals and personal care products dominated the observed mixture effects. The detected chemicals were not related to the observed genotoxicity. The large proportion of unknown toxicity calls for effect monitoring complementary to chemical monitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Isoelectric focusing and ELISA for detecting adulteration of donkey milk with cow milk.

    PubMed

    Pizzano, Rosa; Salimei, Elisabetta

    2014-06-25

    Donkey milk has been recently revalued intensely due to its nutritional properties. Moreover, donkey milk has been proposed as an effective alternative food for some infants with cow milk allergy. Two fast analytical methods were proposed to detect the fraudulent practice of blending cow milk to donkey milk. Detection of cow αs1-casein bands along the profiles of experimental donkey-cow milk mixtures analyzed by isoelectric focusing was adequate to estimate cow milk used as adulterant of donkey milk starting from 5% (v/v). An ELISA-based method using the antipeptide antibodies raised against the 1-28 sequence stretch of cow β-casein was also developed for an accurate definition of composition of donkey-cow milk mixtures. The presence of cow milk at levels as low as 0.5% (v/v) was detected in donkey-cow milk mixtures prepared at laboratory scale and assayed by ELISA.

  11. Criteria for Remote Sensing Detection of Sulfate Cemented Soils on Mars

    NASA Technical Reports Server (NTRS)

    Cooper, Christopher D.; Mustard, John F.

    2000-01-01

    Spectral measurements of loose and cemented mixtures of palagonitic soil and sulfates were made to determine whether cemented soils could be identified on Mars. Cemented MgSO4 mixtures exhibit an enhanced 9 micron sulfate fundamental compared to gypsum mixtures due to more diffuse and pervasive cementing.

  12. Developmental exposure to a mixture of two mechanistically distinct antiandrogens results in cumulative adverse reproductive effects in adult male rats

    EPA Science Inventory

    Typically, toxicological studies have focused on the adverse effects from exposure to single chemicals. However, endocrine disrupting chemicals (EDCs) are detected in the environment as mixtures. Empirical evidence suggests that mixtures of EDCs with the same mechanism of action...

  13. Different Approaches to Covariate Inclusion in the Mixture Rasch Model

    ERIC Educational Resources Information Center

    Li, Tongyun; Jiao, Hong; Macready, George B.

    2016-01-01

    The present study investigates different approaches to adding covariates and the impact in fitting mixture item response theory models. Mixture item response theory models serve as an important methodology for tackling several psychometric issues in test development, including the detection of latent differential item functioning. A Monte Carlo…

  14. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    PubMed

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Geophysical monitoring of organic contaminants in sediments

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Jennings, J.

    2016-12-01

    Soil and groundwater contamination pose threats to the health of human and the environment. Successful contaminant remediation requires effective in situ monitoring of physical, chemical, and biological processes in the subsurface. Minimally invasive geophysical methods have shown promise in characterizing organic contaminants in soil and groundwater and have been applied to monitor remediation processes. This study examines the sensitivity of low field proton nuclear magnetic resonance (NMR) and complex conductivity to the presence of organic contaminants in sediments. We aim to improve understanding of relationships between NMR and complex conductivity observables and hydrological properties of the sediments, as well as the amount and state of contaminants in porous media. We used toluene as a representative organic contaminant, and pure silica sands and montmorillonite clay as synthetic sediments. Sand-clay mixtures with various sand/clay ratios were prepared and saturated with different concentration of toluene. Relationships between the compositions of porous media, hydrocarbon concentration, and hydrological properties of sediments and geophysical response were investigated. The results from NMR relaxation time (T2) measurements reveal the dominant control of clay content on T2 relaxation, establish minimum toluene detectability, and demonstrate the effect of contaminant concentration on NMR signals. The diffusion-relaxation (D-T2) correlation measurement show toluene can be resolved from toluene-water mixture in sand-clay mixture. The results from ongoing complex conductivity measurements will also be presented and discussed.

  16. Spectrophotometric study on the proton transfer reaction between 2-amino-4-methylpyridine with 2,6-dichloro-4-nitrophenol in methanol, acetonitrile and the binary mixture 50% methanol + 50% acetonitrile

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2016-02-01

    Proton transfer reaction between 2-amino-4-methylpyridine (2AMP) as the proton acceptor with 2,6-dichloro-4-nitrophenol (DCNP) as the proton donor has been investigated spectrophotometrically in methanol (MeOH), acetonitrile (AN) and a binary mixture composed of 50% MeOH and 50% AN (AN-Me). The composition of the complex has been investigated utilizing Job's and photometric titration methods to be 1:1. Minimum-maximum absorbance equation has been applied to estimate the formation constant of the proton transfer reaction (KPT) where it reached high values in the investigated solvent confirming its high stability. The formation constant recorded higher value in AN compared with MeOH and mixture of AN-Me. Based on the formation of stable proton transfer complex, a sensitive spectrophotometric method was suggested for quantitative determination of 2AMP. The Lambert-Beer's law was obeyed in the concentration range 0.5-8 μg mL- 1 with small values of limits of detection and quantification. The solid complex between 2AMP with DCNP has been synthesized and characterized by elemental analysis to be 1:1 in concordant with the molecular stoichiometry in solution. Further analysis of the solid complex was carried out using infrared and 1H NMR spectroscopy.

  17. Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

    PubMed Central

    Buzid, Alyah; Shang, Fengjun; Reen, F. Jerry; Muimhneacháin, Eoin Ó; Clarke, Sarah L.; Zhou, Lin; Luong, John H. T.; O’Gara, Fergal; McGlacken, Gerard P.; Glennon, Jeremy D.

    2016-01-01

    Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen. PMID:27427496

  18. Site occupancy models with heterogeneous detection probabilities

    USGS Publications Warehouse

    Royle, J. Andrew

    2006-01-01

    Models for estimating the probability of occurrence of a species in the presence of imperfect detection are important in many ecological disciplines. In these ?site occupancy? models, the possibility of heterogeneity in detection probabilities among sites must be considered because variation in abundance (and other factors) among sampled sites induces variation in detection probability (p). In this article, I develop occurrence probability models that allow for heterogeneous detection probabilities by considering several common classes of mixture distributions for p. For any mixing distribution, the likelihood has the general form of a zero-inflated binomial mixture for which inference based upon integrated likelihood is straightforward. A recent paper by Link (2003, Biometrics 59, 1123?1130) demonstrates that in closed population models used for estimating population size, different classes of mixture distributions are indistinguishable from data, yet can produce very different inferences about population size. I demonstrate that this problem can also arise in models for estimating site occupancy in the presence of heterogeneous detection probabilities. The implications of this are discussed in the context of an application to avian survey data and the development of animal monitoring programs.

  19. POLYCHLORINATED BIPHENYL MIXTURES (AROCLORS) INHIBIT LPS-INDUCED MURINE SPLENOCYTE PROLIFERATION IN VITRO. (R826687)

    EPA Science Inventory

    Abstract

    The immune system is believed to be a sensitive indicator for adverse polychlorinated biphenyl (PCB)-induced health effects. Four commercial PCB mixtures (Aroclors) or six individual PCB congeners were evaluated for their effect on splenocyte viability and lip...

  20. MAMMARY GLAND DEVELOPMENT AS A SENSITIVE END-POINT FOLLOWING ACUTE PERNATAL EXPOSURE TO A LOW DOSE ATRAZINE METABOLITE MIXTURE IN FEMALE LONG EVANS RATS

    EPA Science Inventory

    In order to characterize the potential developmental effects of atrazine (ATR) metabolites at low doses, an environmentally-based mixture (EBM) of ATR and its metabolites hydroxyatrazine, diaminochlorotriazine, deethylatrazine, and deisopropylatrazine was formulated based on surv...

Top