Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei
2014-07-15
Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Fiber optic SERS-based plasmonics nanobiosensing in single living cells
NASA Astrophysics Data System (ADS)
Scaffidi, Jonathan P.; Gregas, Molly K.; Seewaldt, Victoria; Vo-Dinh, Tuan
2009-05-01
We describe the development of small molecule-sensitive plasmonics-active fiber-optic nanoprobes suitable for intracellular bioanalysis in single living human cells using surface-enhanced Raman scattering (SERS) detection. The practical utility of SERS-based fiber-optic nanoprobes is illustrated by measurements of intracellular pH in HMEC- 15/hTERT immortalized "normal" human mammary epithelial cells and PC-3 human prostate cancer cells. The results indicate that fiber-optic nanoprobe insertion and interrogation provide a sensitive and selective means to monitor biologically-relevant small molecules at the single cell level.
Investigation of endosome and lysosome biology by ultra pH-sensitive nanoprobes.
Wang, Chensu; Zhao, Tian; Li, Yang; Huang, Gang; White, Michael A; Gao, Jinming
2017-04-01
Endosomes and lysosomes play a critical role in various aspects of cell physiology such as nutrient sensing, receptor recycling, protein/lipid catabolism, and cell death. In drug delivery, endosomal release of therapeutic payloads from nanocarriers is also important in achieving efficient delivery of drugs to reach their intracellular targets. Recently, we invented a library of ultra pH-sensitive (UPS) nanoprobes with exquisite fluorescence response to subtle pH changes. The UPS nanoprobes also displayed strong pH-specific buffer effect over small molecular bases with broad pH responses (e.g., chloroquine and NH 4 Cl). Tunable pH transitions from 7.4 to 4.0 of UPS nanoprobes cover the entire physiological pH of endocytic organelles (e.g., early and late endosomes) and lysosomes. These unique physico-chemical properties of UPS nanoprobes allowed a 'detection and perturbation' strategy for the investigation of luminal pH in cell signaling and metabolism, which introduces a nanotechnology-enabled paradigm for the biological studies of endosomes and lysosomes. Published by Elsevier B.V.
Zhu, Jiali; Sun, Shan; Jiang, Kai; Wang, Yuhui; Liu, Wenqing; Lin, Hengwei
2017-11-15
Herein, a highly sensitive and selective fluorimetric nanoprobe for peroxynitrite (ONOO - ) detection based on photoinduced electron transfer (PET) from ferrocene (Fc) to carbon dots (CDs) is reported. The nanoprobe (named CDs-Fc) can be facilely constructed through covalently conjugating CDs and ferrocenecarboxylic acid. Further studies reveal that the energy level of highest occupied molecular orbital (HOMO) of the CDs is lowered with the addition of ONOO - due to its oxidation and nitration capabilities. Thus, an efficient electron transfer from Fc to the excited states of CDs could occur, leading to obvious fluorescence quenching. The fluorescence quenching of the nanoprobe was determined to be peroxynitrite concentrations dependence with a linear range between 4nM to 0.12μM. Thanks to the excellent optical properties of the CDs and efficient electron transfer efficiency from Fc to the excited CDs, the nanoprobe exhibits very high sensitivity to ONOO - with a limit of detection (LOD) of 2.9nM. To the best of our knowledge, this LOD is the highest reported value till today for the detection of peroxynitrite. Besides, the nanoprobe also shows excellent selectivity to ONOO - among a broad range of substances, even including other reactive oxygen/nitrogen species (ROS/RNS). Finally, the nanoprobe was verified to be very low cytotoxicity, and was successfully applied for intracellular ONOO - detection. This work would provide a promising tool for the research of ONOO - in cytobiology and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Self-illuminating nanoprobe for in vivo imaging of cancers over-expressing the folate receptor
NASA Astrophysics Data System (ADS)
Miller, Steven C.; Beviglia, Lucia; Yeung, Pete; Bhattacharyya, Sukanta; Sobek, Daniel
2012-03-01
New in vivo imaging reagents with increased sensitivity and penetration depth are needed to advance our understanding of metastases and accelerate the development of therapeutics. The folate receptor (FR) is a promising imaging target that is up-regulated in many human carcinomas, including cancers of the ovary, breast, pancreas, endometrium, lungs, kidneys, colon, brain, and myeloid cells. Zymera has developed a self-illuminating Bioluminescence Resonance Energy Transfer Quantum Dot (BRET-Qdot) nanoprobe conjugated with folate (BQ-Folate) for in vivo imaging of cancers overexpressing FR. BQ-Folate is a novel nanoprobe formed by co-conjugating Renilla reniformis luciferase enzyme and folate to near-infrared (NIR) emitting quantum dots. The luciferase substrate, coelenterazine, activates the BQ-Folate nanoprobe generating luminescence emission in the near-infrared (NIR) region (655 nm) for increased sensitivity and penetration depth. Because BQ-Folate requires no external light source for light emission, it has significant advantages for challenging in vivo preclinical optical imaging applications, such as the detection of early stage metastases. Zymera and OncoMed Pharmaceuticals have demonstrated that in vivo imaging with the BQ-Folate nanoprobe detected the primary tumor and early stage metastases in an orthotopic NOD/SCID mouse model of human pancreatic cancer.
SERS detection and targeted ablation of lymphoma cells using functionalized Ag nanoparticles
NASA Astrophysics Data System (ADS)
Yao, Qian; Cao, Fei; Feng, Chao; Zhao, Yan; Wang, Xiuhong
2016-03-01
Lymphoma is a heterogeneous group of malignancies of the lymphoid tissue, and is prevalent worldwide affecting both children and adults with a high mortality rate. There is in dire need of accurate and noninvasive approaches for early detection of the disease. Herein, we report a facile way to fabricate silver nanoparticle based nanoprobe by incorporating the corner-stone immunotherapeutic drug Rituxan for simultaneous detection and ablation of lymphoma cells in vitro. The fabricated nanoprobe can detect CD20 positive single lymphoma cell by surface enhanced Raman scattering technique with high specificity. The engineered nanoprobe retains the same antibody property as intact drug via Antibody-Dependent Cell-mediated Cytotoxicity (ADCC) analysis. The nanoprobe efficiently eradicates lymphoma cells in vitro. By integrating the advantages of sensitive SERS detection with targeted ablation capabilities of immunotherapeutic drug through site specificity, this nanoprobe can be applied as outstanding tools in living imaging, cancer diagnosis and treatment.
NASA Astrophysics Data System (ADS)
Zou, Xianmei; Liu, Yi; Zhu, Xingjun; Chen, Min; Yao, Liming; Feng, Wei; Li, Fuyou
2015-02-01
Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in vivo. The excitation laser efficiently reduced the heating effect, compared to the commonly used 980 nm laser for upconversion systems.Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in vivo. The excitation laser efficiently reduced the heating effect, compared to the commonly used 980 nm laser for upconversion systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06407k
Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie
2015-02-01
As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Crawford, Bridget M.; Wang, Hsin-Neng; Fales, Andrew M.; Bowie, Michelle L.; Seewaldt, Victoria L.; Vo-Dinh, Tuan
2017-02-01
The development of sensitive and selective biosensing techniques is of great interest for clinical diagnostics. Here, we describe the development and application of a surface enhanced Raman scattering (SERS) sensing technology, referred to as "inverse Molecular Sentinel (iMS)" nanoprobes, for the detection of nucleic acid biomarkers in biological samples. This iMS nanoprobe involves the use of plasmonic-active nanostars as the sensing platform for a homogenous assay for multiplexed detection of nucleic acid biomarkers, including DNA, RNA and microRNA (miRNA). The "OFF-to-ON" signal switch is based on a non-enzymatic strand-displacement process and the conformational change of stem-loop (hairpin) oligonucleotide probes upon target binding. Here, we demonstrate the development of iMS nanoprobes for the detection of DNA sequences as well as a modified design of the nanoprobe for the detection of short (22-nt) microRNA sequences. The application of iMS nanoprobes to detect miRNAs in real biological samples was performed with total small RNA extracted from breast cancer cell lines. The multiplex capability of the iMS technique was demonstrated using a mixture of the two differently labeled nanoprobes to detect miR-21 and miR-34a miRNA biomarkers for breast cancer. The results of this study demonstrate the feasibility of applying the iMS technique for multiplexed detection of nucleic acid biomarkers, including short miRNAs molecules.
NASA Astrophysics Data System (ADS)
Jia, Li; Ding, Lin; Tian, Jiangwei; Bao, Lei; Hu, Yaoping; Ju, Huangxian; Yu, Jun-Sheng
2015-09-01
In this work we designed a MoS2 nanoplate-based nanoprobe for fluorescence imaging of intracellular ATP and photodynamic therapy (PDT) via ATP-mediated controllable release of 1O2. The nanoprobe was prepared by simply assembling a chlorine e6 (Ce6) labelled ATP aptamer on MoS2 nanoplates, which have favorable biocompatibility, unusual surface-area-to-mass ratio, strong affinity to single-stranded DNA, and can quench the fluorescence of Ce6. After the nanoprobe was internalized into the cells and entered ATP-abundant lysosomes, its recognition to ATP led to the release of the single-stranded aptamer from MoS2 nanoplates and thus recovered the fluorescence of Ce6 at an excitation wavelength of 633 nm, which produced a highly sensitive and selective method for imaging of intracellular ATP. Meanwhile, the ATP-mediated release led to the generation of 1O2 under 660 nm laser irradiation, which could induce tumor cell death with a lysosomal pathway. The controllable PDT provided a model approach for design of multifunctional theranostic nanoprobes. These results also promoted the development and application of MoS2 nanoplate-based platforms in biomedicine.In this work we designed a MoS2 nanoplate-based nanoprobe for fluorescence imaging of intracellular ATP and photodynamic therapy (PDT) via ATP-mediated controllable release of 1O2. The nanoprobe was prepared by simply assembling a chlorine e6 (Ce6) labelled ATP aptamer on MoS2 nanoplates, which have favorable biocompatibility, unusual surface-area-to-mass ratio, strong affinity to single-stranded DNA, and can quench the fluorescence of Ce6. After the nanoprobe was internalized into the cells and entered ATP-abundant lysosomes, its recognition to ATP led to the release of the single-stranded aptamer from MoS2 nanoplates and thus recovered the fluorescence of Ce6 at an excitation wavelength of 633 nm, which produced a highly sensitive and selective method for imaging of intracellular ATP. Meanwhile, the ATP-mediated release led to the generation of 1O2 under 660 nm laser irradiation, which could induce tumor cell death with a lysosomal pathway. The controllable PDT provided a model approach for design of multifunctional theranostic nanoprobes. These results also promoted the development and application of MoS2 nanoplate-based platforms in biomedicine. Electronic supplementary information (ESI) available: Supplementary figures. See DOI: 10.1039/c5nr02224j
Design of SERS nanoprobes for Raman imaging: materials, critical factors and architectures.
Li, Mingwang; Qiu, Yuanyuan; Fan, Chenchen; Cui, Kai; Zhang, Yongming; Xiao, Zeyu
2018-05-01
Raman imaging yields high specificity and sensitivity when compared to other imaging modalities, mainly due to its fingerprint signature. However, intrinsic Raman signals are weak, thus limiting medical applications of Raman imaging. By adsorbing Raman molecules onto specific nanostructures such as noble metals, Raman signals can be significantly enhanced, termed surface-enhanced Raman scattering (SERS). Recent years have witnessed great interest in the development of SERS nanoprobes for Raman imaging. Rationally designed SERS nanoprobes have greatly enhanced Raman signals by several orders of magnitude, thus showing great potential for biomedical applications. In this review we elaborate on recent progress in design strategies with emphasis on material properties, modifying factors, and structural parameters.
NASA Astrophysics Data System (ADS)
Jean, Ren-Der; Larsson, Mikael; Cheng, Wei-Da; Hsu, Yu-Yuan; Bow, Jong-Shing; Liu, Dean-Mo
2016-12-01
Metallic nanoparticles have been utilized as analytical tools to detect a wide range of organic analytes. In most reports, gold (Au)-based nanosensors have been modified with ligands to introduce selectivity towards a specific target molecule. However, in a recent study a new concept was presented where bare Au-nanorods on self-assembled carboxymethyl-hexanoyl chitosan (CHC) nanocarriers achieved sensitive and selective detection of human serum albumin (HSA) after manipulation of the solution pH. Here this concept was further advanced through optimization of the ratio between Au-nanorods and CHC nanocarriers to create a nanotechnology-based sensor (termed CHC-AuNR nanoprobe) with an outstanding lower detection limit (LDL) for HSA. The CHC-AuNR nanoprobe was evaluated in simulated urine solution and a LDL as low as 1.5 pM was achieved at an estimated AuNR/CHC ratio of 2. Elemental mapping and protein adsorption kinetics over three orders of magnitude in HSA concentration confirmed accumulation of HSA on the nanorods and revealed the adsorption to be completed within 15 min for all investigated concentrations. The results suggest that the CHC-AuNR nanoprobe has potential to be utilized for cost-effective detection of analytes in complex liquids.
Biomolecular recognition and detection using gold-based nanoprobes
NASA Astrophysics Data System (ADS)
Crew, Elizabeth
The ability to control the biomolecular interactions is important for developing bioanalytical probes used in biomolecule and biomarker detections. This work aims at a fundamental understanding of the interactions and reactivities involving DNA, miRNA, and amino acids using gold-based nanoparticles as nanoprobes, which has implications for developing new strategies for the early detection of diseases, such as cancer, and controlled delivery of drugs. Surface modifications of the nanoprobes with DNA, miRNA, and amino acids and the nanoprobe directed biomolecular reactivities, such as complementary-strand binding, enzymatic cutting and amino acid interactions, have been investigated. Among various analytical techniques employed for the analysis of the biomolecule-nanoprobe interactions, surface enhanced Raman scattering spectroscopy (SERS) has been demonstrated to provide a powerful tool for real time monitoring of the DNA assembly and enzymatic cutting processes in solutions. This demonstration harnesses the "hot-spot" characteristic tuned by the interparticle biomolecular-regulated interactions and distances. The assembly of gold nanoparticles has also been exploited as sensing thin films on chemiresistor arrays for the detection of volatile organic compounds, including biomarker molecules associated with diabetes. Important findings of the nanoprobes in delivering miRNA to cells, detecting DNA hybridization kinetics, discerning chiral recognition with enantiomeric cysteines, and sensing biomarker molecules with the nanostructured thin films will be discussed, along with their implications to enhancing sensitivity, selectivity and limits of detection.
Two-Dimensional Optoelectronic Graphene Nanoprobes for Neural Nerwork
NASA Astrophysics Data System (ADS)
Hong, Tu; Kitko, Kristina; Wang, Rui; Zhang, Qi; Xu, Yaqiong
2014-03-01
Brain is the most complex network created by nature, with billions of neurons connected by trillions of synapses through sophisticated wiring patterns and countless modulatory mechanisms. Current methods to study the neuronal process, either by electrophysiology or optical imaging, have significant limitations on throughput and sensitivity. Here, we use graphene, a monolayer of carbon atoms, as a two-dimensional nanoprobe for neural network. Scanning photocurrent measurement is applied to detect the local integration of electrical and chemical signals in mammalian neurons. Such interface between nanoscale electronic device and biological system provides not only ultra-high sensitivity, but also sub-millisecond temporal resolution, owing to the high carrier mobility of graphene.
Nuclear nanoprobe development for visualization of three-dimensional nanostructures
NASA Astrophysics Data System (ADS)
Takai, M.; Abo, S.; Wakaya, F.; Kikuchi, T.; Sawaragi, H.
2007-08-01
A nanoprobe system, having a liquid metal ion source with a compact electrostatic accelerating column with a maximum accelerating voltage of 200 kV and an ultra high vacuum chamber, giving rise to the enhanced sensitivity because of the large scattering cross-section, has been designed for analysis of nanostructures. The focusing performance of the probes down to 10 nm was measured and compared with the simulation. Time-of-flight (TOF) RBS using a micro channel plate (MCP) further increases the sensitivity because of the increase in acceptance angle, which realizes the visualization of nanostructures with a beam spot diameter less than 10 nm with less probe damage.
NASA Astrophysics Data System (ADS)
Tian, Xiumei; Guan, Xiaoying; Luo, Ningqi; Yang, Fanwen; Chen, Dihu; Peng, Ye; Zhu, Jixiang; He, Fupo; Li, Li; Chen, Xiaoming
2014-09-01
Gd2O3 nanoprobes prepared by laser ablation in liquid can be used as magnetic resonance imaging contrast agent. However, their immunotoxicity in vivo remains unknown. In this article, the in vitro biocompatibility of the Gd2O3 nanoprobe was evaluated in terms of cell uptake, cell viability, and apoptosis. In vivo immunotoxicity was detected by monitoring the levels of the immunity mediator, cluster of differentiation (CD) markers in Balb/c mice. The results show that no in vitro cytotoxicity was observed, and no significant changes in the expression levels of CD206 and CD69 between the nanoprobe-injected group and the Gd-DTPA group in mice were observed. Importantly, the immunotoxicity data revealed significant differences in the expression levels of CD40, CD80, CD11b, and reactive oxygen species. In addition, transmission electron microscopy images showed that few Gd2O3 nanoprobes were localized in phagosomes by the endocytic pathway. In conclusion, the toxic effects of our Gd2O3 nanoprobe may be due to endocytosis during which the microstructure or ultrastructure of cells is slightly damaged and induces the generation of an oxidative stress reaction that further stimulates the innate immune response. Therefore, it is important to use a sensitive assay for the in vivo immunotoxicity measurements to evaluate the risk assessment of Gd2O3-based biomaterials at the molecular level.
Keshtkar, Mohammad; Shahbazi-Gahrouei, Daryoush; Khoshfetrat, Seyyed Mehdi; Mehrgardi, Masoud A; Aghaei, Mahmoud
2016-01-01
Early detection of breast cancer is the most effective way to improve the survival rate in women. Magnetic resonance imaging (MRI) offers high spatial resolution and good anatomic details, and its lower sensitivity can be improved by using targeted molecular imaging. In this study, AS1411 aptamer was conjugated to Fe 3 O 4 @Au nanoparticles for specific targeting of mouse mammary carcinoma (4T1) cells that overexpress nucleolin. In vitro cytotoxicity of aptamer-conjugated nanoparticles was assessed on 4T1 and HFFF-PI6 (control) cells. The ability of the synthesized nanoprobe to target specifically the nucleolin overexpressed cells was assessed with the MRI technique. Results show that the synthesized nanoprobe produced strongly darkened T 2 -weighted magnetic resonance (MR) images with 4T1 cells, whereas the MR images of HFFF-PI6 cells incubated with the nanoprobe are brighter, showing small changes compared to water. The results demonstrate that in a Fe concentration of 45 μg/mL, the nanoprobe reduced by 90% MR image intensity in 4T1 cells compared with the 27% reduction in HFFF-PI6 cells. Analysis of MR signal intensity showed statistically significant signal intensity difference between 4T1 and HFFF-PI6 cells treated with the nanoprobe. MRI experiments demonstrate the high potential of the synthesized nanoprobe as a specific MRI contrast agent for detection of nucleolin-expressing breast cancer cells.
Hanif, Sumaira; Liu, Hailing; Chen, Ming; Muhammad, Pir; Zhou, Yue; Cao, Jiao; Ahmed, Saud Asif; Xu, Jingjuan; Xia, Xinghua; Chen, Hongyuan; Wang, Kang
2017-02-21
It is challenging to develop a robust nanoprobe for real-time operational and accurate detection of heavy metals in single cells. Fe-CN coordination chemistry has been well studied to determine the structural characteristics of hemeproteins by different techniques. However, the frequently used cyanide ligands are inorganic molecules that release cyanide anion under particular conditions and cause cyanide poisoning. In the present study, organic cyanide (4-mercaptobenzonitrile, MBN) was utilized for the first time in developing a facile nanoprobe based on surface-enhanced Raman scattering (SERS) for quantitative detection of hemeproteins (oxy-Hb) and trivalent iron (Fe 3+ ) ions. The nanoprobe prepared by coating the glass capillary tip (100 nm) with a thin gold film, which enables highly localized study in living cell system. The cyanide stretching vibration in MBN was highly sensitive and selective to Fe 3+ and oxy-Hb with excellent binding affinity (K d 0.4 pM and 0.1 nM, respectively). The high sensitivity of the nanoprobe to analyte (Fe 3+ ) was attributed to the two adsorption conformations (-SH and -CN) of MBN to the gold surface. Therefore, MBN showed an exceptional dual-peak (2126 and 2225 cm -1 ) behavior. Furthermore, the special Raman peaks of cyanide in 2100-2300 cm -1 (silent region of SERS spectra) are distinguishable from other biomolecules characteristic peaks. The selective detection of Fe 3+ in both free and protein-bound states in aqueous solution is achieved with 0.1 pM and 0.08 μM levels of detection limits, respectively. Furthermore, practical applicability of fabricated nanoprobe was validated by detection of free Fe 3+ in pretreated living HeLa cells by direct insertion of a SERS active nanoprobe. Regarding the appropriate precision, good reproducibility (relative standard deviation, RSD 7.2-7.6%), and recyclability (retain good Raman intensity even after three renewing cycles) of the method, the developed sensing strategy on a nanopipette has potential benefits for label-free, qualitative and quantitative recognition of heavy metal ions within nanoliter volumes.
NASA Astrophysics Data System (ADS)
Dumani, Diego S.; Brecht, Hans-Peter; Ivanov, Vassili; Deschner, Ryan; Harris, Justin T.; Homan, Kimberly A.; Cook, Jason R.; Emelianov, Stanislav Y.; Ermilov, Sergey A.
2018-02-01
We introduce a preclinical imaging platform - a 3D photoacoustic/fluorescence tomography (PAFT) instrument augmented with an environmentally responsive dual-contrast biocompatible nanoprobe. The PAFT instrument was designed for simultaneous acquisition of photoacoustic and fluorescence orthogonal projections at each rotational position of a biological object, enabling direct co-registration of the two imaging modalities. The nanoprobe was based on liposomes loaded with J-aggregates of indocyanine green (PAtrace). Once PAtrace interacts with the environment, a transition from J-aggregate to monomeric ICG is induced. The subsequent recovery of monomeric ICG is characterized by dramatic changes in the optical absorption spectrum and reinstated fluorescence. In the activated state, PAtrace can be simultaneously detected by both imaging modes of the PAFT instrument using 780 nm excitation and fluorescence detection at 810 nm. The fluorescence imaging component is used to boost detection sensitivity by providing lowresolution map of activated nanoprobes, which are then more precisely mapped in 3D by the photoacoustic imaging component. Activated vs non-activated particles can be distinguished based on their different optical absorption peaks, removing the requirements for complex image registration between reference and detection scans. Preliminary phantom and in vivo animal imaging results showed successful activation and visualization of PAtrace with high sensitivity and resolution. The proposed PAFT-PAtrace imaging platform could be used in various functional and molecular imaging applications including multi-point in vivo assessment of early metastasis.
Wang, Xiaoguang; Wang, Jingshuai; Chen, Fei; Zhong, Zhengxiang; Qi, Lifeng
2018-01-01
The present study aimed to investigate the feasibility and effectiveness of detecting K-ras mutation by using magnetic nanoparticles in fecal samples of patients with pancreatic cancer at different stages. The novel methodology of K-ras mutation detection was compared to the existing methodology of cancer antigen (CA)19-9 examination. Patients with pancreatic cancer (n=88), pancreatic benign diseases who displayed chronic pancreatitis (n=35), pancreatic mucinous cyst neoplasms (n=10) and pancreatic serous cyst (n=9) admitted to the Department of Surgery, Jiaxing Second Hospital were enrolled in the present study. Fecal samples were collected from all patients, DNA was extracted and magnetic nanoprobe was then used to detect K-ras mutation. The results obtained using the novel magnetic nanoprobe detection technique showed a K-ras mutation rate of 81.8% (72/88) in the patients with pancreatic cancer and 18.5% (10/54) in patients with pancreatic benign diseases. In patients with pancreatic cancer, the K-ras mutation rate was comparable in stages I + IIA and IIB + III + IV (78.9 vs. 84.0%; P>0.05). The sensitivity and specificity of K-ras mutation for detection of pancreatic cancer was 81.8 and 81.5%, respectively. Sixty-eight pancreatic cancer patients had >37 U/ml CA99 with a sensitivity and specificity for pancreatic cancer detection of 77.3 and 77.8%, which was not significantly lower than detection by the fecal K-ras mutations (P>0.05). Combinational detection of fecal K-ras mutations and serum CA19-9 significantly increased the sensitivity regarding pancreatic cancer detection to 97.7% (P<0.05), while the specificity was not enhanced (80.9%; P>0.05) compared with fecal K-ras mutations or CA19-9 alone. The findings showed that the magnetic nanoprobe is able to detect fecal K-ras mutations in different stages of pancreatic cancer, with comparable sensitivity and specificity to CA19-9 examination for differentiating pancreatic cancer. Furthermore, combined detection of CA19-9 and K-ras mutations has enhanced sensitivity compared with CA19-9 alone.
Gao, Tang; Cao, Xiaozheng; Ge, Peng; Dong, Jie; Yang, Shuqi; Xu, Huan; Wu, Yong; Gao, Feng; Zeng, Wenbin
2017-05-23
Sulfur dioxide (SO 2 ) is a widely distributed air pollutant, and humans can easily be exposed to sulfite by inhaling SO 2 , thus inducing respiratory responses and diseases. Hence, to develop a rapid, sensitive and selective method for detection of sulfites is of great importance. Herein, we designed and synthesized a novel tetraphenyl imidazole compound TIBM with aggregation-induced emission enhancement (AIEE). TIBM can self-assemble into well-organized nanoparticles and is reported as an excellent probe for detection of sulfite with high selectivity and sensitivity. The nanoprobe performed very well for the detection of sulfite with an ultrafast detection time (15 s) and an ultralow detection limit (7.4 nM), which is superior to most of the reported probes. Moreover, the nanoprobe was successfully used to detect sulfite in food samples with a favorable accuracy. In addition, we developed paper-based devices for point-of-care detection of sulfite with naked eyes. Furthermore, due to its high water solubility, cell membrane permeability and good biocompatibility, the nanoproboe was further applied to detect sulfite in living systems. This study may offer some helpful insights for designing other AIE-based fluorescent nanosensors for various analytes.
Single Nanowire Probe for Single Cell Endoscopy and Sensing
NASA Astrophysics Data System (ADS)
Yan, Ruoxue
The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily adaptable to average bio-lab environment. These probes are mechanically robust and flexible and can withstand repeated bending and deformation without significant deterioration in optical performance, which offers an ideal instrumental platform for out subsequent effort of using these nanoprobes in chemical sensing as well as single cell endoscopy and spot delivery. Parameters affecting the coupling efficiency and output power of the nanoprobe were studied and chemical etched of single mode fiber with small cone angle was established to be optimized for highly effective optical nanoprobes. The versatility of the nanoprobe design was first tested by transforming the nanowire probe into a pH sensor with near-field photopolymerization of a copolymer containing pH sensitive dye on the tip of the nanowire. The pH-sensitive nanoprobe was able to report the pH difference in micro-droplets containing buffer solution with the excitation of light waveguided on the nanoprobe with internal calibration, fast response time and good photostability and reversibility. Such nanoprobe sensors are ideal for high definition spatial and temporal sensing of concentration profile, especially for the kinetic processes in single cell studies for which chemical probes of minute sizes and fast response are desired. The nanoprobe was then applied into spot cargo delivery and in-situ single cell endoscopy. It was demonstrated that nanowire-based optical probe can deliver payloads into the cell with a high spatiotemporal precision, guide and confine visible light into intracellular compartments selectively and detect optical signals from the subcellular regions with high spatial resolution. The nanoprobe was proven to be biocompatible and non-invasive. The effective optical coupling between the fiber optics and the nanowire enables highly localized excitation and detection, limiting the probe volume to the close proximity of the nanowire. None the less, this versatile technique does not rely on any expensive or bulky instrumentation, and relies only on micromanipulator and optical microscope that are readily available in most biological labs. The different functions can be further integrated to make the whole nanoprobe system more compact and even portable. In addition, my research also includes the first demonstration of the synthesis of the longitudinal heterostructured SiO2/Al2O 3 nanotubes and the nanofluidic diode device based on the discontinuity of their internal surface charge. Comprehensive characterization shows that the nanotubes has heterostructured inner tube walls, as well as a discontinuity of surface charge. The ionic transport through these nanotube heterojunctions exhibits clear current rectification, a signature of ionic diode behavior. The development of such nanofluidic devices would enable the modulation of ionic and molecular transport at a more sophisticated level, and lead to large-scale integrated nanofluidic networks and logic circuits.
Dual-Modality, Dual-Functional Nanoprobes for Cellular and Molecular Imaging
Menon, Jyothi U.; Gulaka, Praveen K.; McKay, Madalyn A.; Geethanath, Sairam; Liu, Li; Kodibagkar, Vikram D.
2012-01-01
An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO) nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence), dual-functional (oximetry/detection) nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications. PMID:23382776
Status of the Nanoscopium scanning nanoprobe beamline of Synchrotron Soleil
NASA Astrophysics Data System (ADS)
Somogyi, A.; Medjoubi, K.; Kewish, C. M.; Leroux, V.; Ribbens, M.; Baranton, G.; Polack, F.; Samama, J. P.
2013-09-01
The Nanoscopium 155 m-long scanning nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal imaging. Dedicated experimental stations, working in consecutive operation mode, will provide coherent scatter imaging and spectro-microscopy techniques in the 5-20 keV energy range for various user communities. Next to fast scanning, cryogenic cooling will reduce the radiation damage of sensitive samples during the measurements. Nanoscopium is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this contribution.
Wang, Qin; Zhang, Shengrui; Zhong, Yaogang; Yang, Xiao-Feng; Li, Zheng; Li, Hua
2017-02-07
Selenocysteine (Sec) carries out the majority of the functions of the various Se-containing species in vivo. Thus, it is of great importance to develop sensitive and selective assays to detect Sec. Herein, a carbon-dot-based fluorescent turn-on probe for highly selective detection of selenol in living cells is presented. The highly photoluminescent carbon dots that emit yellow-green fluorescence (Y-G-CDs; λ max = 520 nm in water) were prepared by using m-aminophenol as carbon precursor through a facile solvothermal method. The surface of Y-G-CDs was then covalently functionalized with 2,4-dinitrobenzenesulfonyl chloride (DNS-Cl) to afford the 2,4-dinitrobenzene-functionalized CDs (CD-DNS) as a nanoprobe for selenol. CD-DNS is almost nonfluorescent. However, upon treating with Sec, the DNS moiety of CD-DNS can be readily cleaved by selenolate through a nucleophilic substitution process, resulting in the formation of highly fluorescent Y-G-CDs and hence leads to a dramatic increase in fluorescence intensity. The proposed nanoprobe exhibits high sensitivity and selectivity toward Sec over biothiols and other biological species. A preliminary study shows that CD-DNS can function as a useful tool for fluorescence imaging of exogenous and endogenous selenol in living cells.
Zhou, Yuan; Zhou, Tao; Zhou, Rui; Hu, Yonggang
2014-06-01
A rapid, simple, facile, sensitive and enzyme-amplified chemiluminescence immunoassay (CLIA) method to detect antibodies against porcine parvovirus has been developed. Horseradish peroxidase (HRP) and the detection antibody were simultaneously co-immobilized on the surface of gold nanoparticles using the electrostatic method to form gold nanoparticle-based nanoprobes. This nanoprobe was employed in a sandwich-type CLIA, which enables CL signal readout from enzymatic catalysis and results in signal amplification. The presence of porcine parvovirus infection was determined in porcine parvovirus antibodies by measuring the CL intensity caused by the reaction of HRP-luminol with H2 O2 . Under optimal conditions, the obtained calibration plot for the standard positive serum was approximately linear within the dilution range of 1:80 to 1:5120. The limit of detection for the assay was 1:10,240 (S/N = 3), which is much lower than that typically achieved with an enzyme-linked immunosorbent assay (1:160; S/N = 3). A series of repeatability measurements using 1:320-fold diluted standard positive serum gave reproducible results with a relative standard deviation of 4.9% (n = 11). The ability of the immunosensor to analyze clinical samples was tested on porcine sera. The immunosensor had an efficiency of 90%, a sensitivity of 93.3%, and a specificity of 87.5% relative to the enzyme-linked immunosorbent assay results. Copyright © 2013 John Wiley & Sons, Ltd.
Rana, Muhit; Balcioglu, Mustafa; Robertson, Neil M.; Hizir, Mustafa Salih; Yumak, Sumeyra
2017-01-01
The EPA's recommended maximum allowable level of inorganic mercury in drinking water is 2 ppb (10 nM). To our knowledge, the most sensitive colorimetric mercury sensor reported to date has a limit of detection (LOD) of 800 pM. Here, we report an instrument-free and highly practical colorimetric methodology, which enables detection of as low as 2 ppt (10 pM) of mercury and/or silver ions with the naked eye using a gold nanoprobe. Synthesis of the nanoprobe costs less than $1.42, which is enough to perform 200 tests in a microplate; less than a penny for each test. We have demonstrated the detection of inorganic mercury from water, soil and urine samples. The assay takes about four hours and the color change is observed within minutes after the addition of the last required element of the assay. The nanoprobe is highly programmable which allows for the detection of mercury and/or silver ions separately or simultaneously by changing only a single parameter of the assay. This highly sensitive approach for the visual detection relies on the combination of the signal amplification features of the hybridization chain reaction with the plasmonic properties of the gold nanoparticles. Considering that heavy metal ion contamination of natural resources is a major challenge and routine environmental monitoring is needed, yet time-consuming, this colorimetric approach may be instrumental for on-site heavy metal ion detection. Since the color transition can be measured in a variety of formats including using the naked eye, a simple UV-Vis spectrophotometer, or recording using mobile phone apps for future directions, our cost-efficient assay and method have the potential to be translated into the field. PMID:28451261
Gao, Na; Yang, Wen; Nie, Hailiang; Gong, Yunqian; Jing, Jing; Gao, Loujun; Zhang, Xiaoling
2017-10-15
This paper reports a turn-on theranostic fluorescent nanoprobe P-CDs/HA-Dox obtained by electrostatic assembly of polyethylenimine (PEI)-modified carbon dots (P-CDs) and Hyaluronic acid (HA)-conjugated doxorubicin (Dox) for hyaluronidase (HAase) detection, self-targeted imaging and drug delivery. P-CDs/HA-Dox show weak emission in a physiological environment. By utilizing the high affinity of HA to CD44 receptors overexpressed on many cancer cells, P-CDs/HA-Dox are capable of targeting and penetrating into cancer cells, where they are activated by HAase. As a result, HA-Dox can be digested into small fragments, causing the release of Dox and thereby restoring the fluorescence of P-CDs. The theranostic fluorescent nanoprobe can effectively distinguish cancer cells from normal cells. The as-prepared nanoprobe achieves a sensitive assay of HAase with a detection limit of 0.65UmL -1 . Furthermore, upon Dox release, the Dox could efficiently induce apoptosis in HeLa cells, as confirmed by MTT assay. The design of such a turn-on theranostic fluorescent probe provides a new strategy for self-targeted and image-guided chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Yuqin; Lin, Fanbo; Zhang, Youyu; Li, Haitao; Zeng, Yue; Tang, Hao; Yao, Shouzhuo
2011-01-01
A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection. 2011 © The Japan Society for Analytical Chemistry
NASA Astrophysics Data System (ADS)
Ge, Xiaoqian; Sun, Lining; Ma, Binbin; Jin, Di; Dong, Liang; Shi, Liyi; Li, Nan; Chen, Haige; Huang, Wei
2015-08-01
We have constructed a multifunctional nanoprobe with sensing and imaging properties by using hollow mesoporous silica coated upconversion nanoparticles (UCNPs) and Hg2+ responsive ruthenium (Ru) complex. The Ru complex was loaded into the hollow mesoporous silica and the UCNPs acted as an energy donor, transferring luminescence energy to the Ru complex. Furthermore, polyethylenimine (PEI) was assembled on the surface of mesoporous silica to achieve better hydrophilic and bio-compatibility. Upon addition of Hg2+, a blue shift of the absorption peak of the Ru complex is observed and the energy transfer process between the UCNPs and the Ru complex was blocked, resulting in an increase of the green emission intensity of the UCNPs. The un-changed 801 nm emission of the nanoprobe was used as an internal standard reference and the detection limit of Hg2+ was determined to be 0.16 μM for this nanoprobe in aqueous solution. In addition, based on the low cytotoxicity as studied by CCK-8 assay, the nanoprobe was successfully applied for cell imaging and small animal imaging. Furthermore, when doped with Gd3+ ions, the nanoprobe was successfully applied to in vivo magnetic resonance imaging (MRI) of Kunming mice, which demonstrates its potential as a MRI positive-contrast agent. Therefore, the method and results may provide more exciting opportunities to afford nanoprobes with multimodal bioimaging and multifunctional applications.We have constructed a multifunctional nanoprobe with sensing and imaging properties by using hollow mesoporous silica coated upconversion nanoparticles (UCNPs) and Hg2+ responsive ruthenium (Ru) complex. The Ru complex was loaded into the hollow mesoporous silica and the UCNPs acted as an energy donor, transferring luminescence energy to the Ru complex. Furthermore, polyethylenimine (PEI) was assembled on the surface of mesoporous silica to achieve better hydrophilic and bio-compatibility. Upon addition of Hg2+, a blue shift of the absorption peak of the Ru complex is observed and the energy transfer process between the UCNPs and the Ru complex was blocked, resulting in an increase of the green emission intensity of the UCNPs. The un-changed 801 nm emission of the nanoprobe was used as an internal standard reference and the detection limit of Hg2+ was determined to be 0.16 μM for this nanoprobe in aqueous solution. In addition, based on the low cytotoxicity as studied by CCK-8 assay, the nanoprobe was successfully applied for cell imaging and small animal imaging. Furthermore, when doped with Gd3+ ions, the nanoprobe was successfully applied to in vivo magnetic resonance imaging (MRI) of Kunming mice, which demonstrates its potential as a MRI positive-contrast agent. Therefore, the method and results may provide more exciting opportunities to afford nanoprobes with multimodal bioimaging and multifunctional applications. Electronic supplementary information (ESI) available: DLS of Ru-UCNPs@HmSiO2-PEI in water. The zeta potential. The XRD patterns. EDX spectrum of Ru-UCNPs@HmSiO2-PEI. FT-IR spectra. N2 adsorption-desorption isotherm and pore size distribution. The investigation of the stability of Ru-UCNPs@HmSiO2-PEI. TG curves. UV/Vis absorption spectra of Ru complex at different concentrations. The sensitivity test of Ru-UCNPs@HmSiO2-PEI towards Hg2+. Cell viabilities of HeLa cells incubated with Ru-UCNPs@HmSiO2-PEI. See DOI: 10.1039/c5nr04006j
Rapid Nanoprobe Signal Enhancement by In Situ Gold Nanoparticle Synthesis.
Dias, Jorge T; Svedberg, Gustav; Nystrand, Mats; Andersson-Svahn, Helene; Gantelius, Jesper
2018-03-07
The use of nanoprobes such as gold, silver, silica or iron-oxide nanoparticles as detection reagents in bioanalytical assays can enable high sensitivity and convenient colorimetric readout. However, high densities of nanoparticles are typically needed for detection. The available synthesis-based enhancement protocols are either limited to gold and silver nanoparticles or rely on precise enzymatic control and optimization. Here, we present a protocol to enhance the colorimetric readout of gold, silver, silica, and iron oxide nanoprobes. It was observed that the colorimetric signal can be improved by up to a 10000-fold factor. The basis for such signal enhancement strategies is the chemical reduction of Au 3+ to Au 0 . There are several chemical reactions that enable the reduction of Au 3+ to Au 0 . In the protocol, Good's buffers and H2O2 are used and it is possible to favor the deposition of Au 0 onto the surface of existing nanoprobes, in detriment of the formation of new gold nanoparticles. The protocol consists of the incubation of the microarray with a solution consisting of chloroauric acid and H2O2 in 2-(N-morpholino)ethanesulfonic acid pH 6 buffer following the nanoprobe-based detection assay. The enhancement solution can be applied to paper and glass-based sensors. Moreover, it can be used in commercially available immunoassays as demonstrated by the application of the method to a commercial allergen microarray. The signal development requires less than 5 min of incubation with the enhancement solution and the readout can be assessed by naked eye or low-end image acquisition devices such as a table-top scanner or a digital camera.
NASA Astrophysics Data System (ADS)
Bozorgmehr, Ali; Yazdanparast, Razieh; Mollasalehi, Hamidreza
2016-12-01
In this study, we developed a non-crosslinking gold nanoprobe loop-mediated isothermal amplification (LAMP) method for nanodiagnosis of bacterial typhoid fever source, Salmonella typhi. Therefore, a unique region in the S. typhi genomic DNA was targeted for LAMP amplification using a specific set of four precisely designed primers. Also, for specific colorimetric visualization of the amplicons, a thiolated oligonucleotide probe, complementary to the single-stranded loop region of the amplicons between F2 and F1C segments, was designed. The probe was bound to the surface of gold nanoparticles via covalent bonds. Increasing the salt concentration in the detection reaction medium led to aggregation of nanoprobes in the blank and the negative vessels in a time-dependent form. That was followed by a change in the surface plasmon resonance (SPR) leading to blue/black color that was observable by the naked eyes after about 5 min. Meanwhile, the original pink/red color was retained in the positive sample due to the large interparticle spaces and the stability against the ionic strength elevation which persisted for about 30 min. The whole process of DNA extraction, amplification, and detection took less than 2 h with a sensitivity of 20 CFU/ml. The developed gold nanoprobe-LAMP could serve as a simple, rapid, and cost-effective method for nanodiagnosis of S. typhi in point-of-need applications.
Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains
NASA Astrophysics Data System (ADS)
Nahali, Negar; Rosa, Angelo
2018-05-01
We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring) polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that nanoprobe motion in rings' solutions shows both Gaussian and ergodic behaviors, in all regimes considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain architecture in the motion of nanoprobes dispersed in polymer solutions.
NASA Astrophysics Data System (ADS)
Yin, Ting; Huang, Peng; Gao, Guo; Shapter, Joseph G.; Shen, Yulan; Sun, Rongjin; Yue, Caixia; Zhang, Chunlei; Liu, Yanlei; Zhou, Sui; Cui, Daxiang
2016-11-01
The development of targeted nanoprobes is a promising approach to cancer diagnostics and therapy. In the present work, a novel multifunctional photo/magnet-diagnostic nanoprobe (MNPs-PEG2K-FA@Ce6) has been developed. This nanoprobe is built using folic acid (FA), bifunctional polyethylene glycol (PEG2K) and photosensitizer chlorin e6 (Ce6). The MNPs-PEG2K-FA@Ce6 nanoprobes are superparamagnetic, can be synthesized on a large scale by a one-pot hydrothermal process without further surface modification and are stable in an aqueous environment for eight months. Compared with free Ce6 nanoprobes in vitro studies, the MNPs-PEG2K-FA@Ce6 nanoprobes significantly enhance cellular uptake efficiency and promote the effectiveness of photodynamic therapy (PDT) with the assistance of 633 nm laser irradiation. The unique nanoprobes show superior penetration and a retention time of more than six days with less accumulation in the liver allowing highly effective tumor recognition and monitoring. Additionally, there was little damage to healthy organs or tissues. These exciting new nanoprobes could be potential building blocks to develop new clinical therapies and translational medicine.
Kim, Myung; Seo, Young Hun; Kim, Youngsun; Heo, Jeongyun; Jang, Woo-Dong; Sim, Sang Jun; Kim, Sehoon
2017-02-14
A nanoreactor approach based on the amphiphilic assembly of various molecules offers a chance to finely engineer the internal reaction medium to enable highly selective and sensitive detection of H 2 S in biological media, being useful for microscopic imaging of cellular processes and in vitro diagnostics with blood samples.
NASA Astrophysics Data System (ADS)
Peng, Dong; Du, Yang; Shi, Yiwen; Mao, Duo; Jia, Xiaohua; Li, Hui; Zhu, Yukun; Wang, Kun; Tian, Jie
2016-07-01
Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases.Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03809c
Single-Cell Quantification of Cytosine Modifications by Hyperspectral Dark-Field Imaging.
Wang, Xiaolei; Cui, Yi; Irudayaraj, Joseph
2015-12-22
Epigenetic modifications on DNA, especially on cytosine, play a critical role in regulating gene expression and genome stability. It is known that the levels of different cytosine derivatives are highly dynamic and are regulated by a variety of factors that act on the chromatin. Here we report an optical methodology based on hyperspectral dark-field imaging (HSDFI) using plasmonic nanoprobes to quantify the recently identified cytosine modifications on DNA in single cells. Gold (Au) and silver (Ag) nanoparticles (NPs) functionalized with specific antibodies were used as contrast-generating agents due to their strong local surface plasmon resonance (LSPR) properties. With this powerful platform we have revealed the spatial distribution and quantity of 5-carboxylcytosine (5caC) at the different stages in cell cycle and demonstrated that 5caC was a stably inherited epigenetic mark. We have also shown that the regional density of 5caC on a single chromosome can be mapped due to the spectral sensitivity of the nanoprobes in relation to the interparticle distance. Notably, HSDFI enables an efficient removal of the scattering noises from nonspecifically aggregated nanoprobes, to improve accuracy in the quantification of different cytosine modifications in single cells. Further, by separating the LSPR fingerprints of AuNPs and AgNPs, multiplex detection of two cytosine modifications was also performed. Our results demonstrate HSDFI as a versatile platform for spatial and spectroscopic characterization of plasmonic nanoprobe-labeled nuclear targets at the single-cell level for quantitative epigenetic screening.
NASA Astrophysics Data System (ADS)
Zheng, Tingting; Tan, Tingting; Zhang, Qingfeng; Fu, Jia-Ju; Wu, Jia-Jun; Zhang, Kui; Zhu, Jun-Jie; Wang, Hui
2013-10-01
We have developed a robust, nanobiotechnology-based electrochemical cytosensing approach with high sensitivity, selectivity, and reproducibility toward the simultaneous multiplex detection and classification of both acute myeloid leukemia and acute lymphocytic leukemia cells. The construction of the electrochemical cytosensor involves the hierarchical assembly of dual aptamer-functionalized, multilayered graphene-Au nanoparticle electrode interface and the utilization of hybrid electrochemical nanoprobes co-functionalized with redox tags, horseradish peroxidase, and cell-targeting nucleic acid aptamers. The hybrid nanoprobes are multifunctional, capable of specifically targeting the cells of interest, amplifying the electrochemical signals, and generating distinguishable signals for multiplex cytosensing. The as-assembled electrode interface not only greatly facilitates the interfacial electron transfer process due to its high conductivity and surface area but also exhibits excellent biocompatibility and specificity for cell recognition and adhesion. A superstructured sandwich-type sensor geometry is adopted for electrochemical cytosensing, with the cells of interest sandwiched between the nanoprobes and the electrode interface. Such an electrochemical sensing strategy allows for ultrasensitive, multiplex acute leukemia cytosensing with a detection limit as low as ~350 cells per mL and a wide linear response range from 5 × 102 to 1 × 107 cells per mL for HL-60 and CEM cells, with minimal cross-reactivity and interference from non-targeting cells. This electrochemical cytosensing approach holds great promise as a new point-of-care diagnostic tool for early detection and classification of human acute leukemia and may be readily expanded to multiplex cytosensing of other cancer cells.We have developed a robust, nanobiotechnology-based electrochemical cytosensing approach with high sensitivity, selectivity, and reproducibility toward the simultaneous multiplex detection and classification of both acute myeloid leukemia and acute lymphocytic leukemia cells. The construction of the electrochemical cytosensor involves the hierarchical assembly of dual aptamer-functionalized, multilayered graphene-Au nanoparticle electrode interface and the utilization of hybrid electrochemical nanoprobes co-functionalized with redox tags, horseradish peroxidase, and cell-targeting nucleic acid aptamers. The hybrid nanoprobes are multifunctional, capable of specifically targeting the cells of interest, amplifying the electrochemical signals, and generating distinguishable signals for multiplex cytosensing. The as-assembled electrode interface not only greatly facilitates the interfacial electron transfer process due to its high conductivity and surface area but also exhibits excellent biocompatibility and specificity for cell recognition and adhesion. A superstructured sandwich-type sensor geometry is adopted for electrochemical cytosensing, with the cells of interest sandwiched between the nanoprobes and the electrode interface. Such an electrochemical sensing strategy allows for ultrasensitive, multiplex acute leukemia cytosensing with a detection limit as low as ~350 cells per mL and a wide linear response range from 5 × 102 to 1 × 107 cells per mL for HL-60 and CEM cells, with minimal cross-reactivity and interference from non-targeting cells. This electrochemical cytosensing approach holds great promise as a new point-of-care diagnostic tool for early detection and classification of human acute leukemia and may be readily expanded to multiplex cytosensing of other cancer cells. Electronic supplementary information (ESI) available: Additional figures as noted in the text. See DOI: 10.1039/c3nr02903d
Tang, Cong; Qian, Zhaosheng; Huang, Yuanyuan; Xu, Jiamin; Ao, Hang; Zhao, Meizhi; Zhou, Jin; Chen, Jianrong; Feng, Hui
2016-09-15
A convenient, reliable and highly sensitive assay for alkaline phosphatase (ALP) activity in the real-time manner is developed based on β-cyclodextrin-modified carbon quantum dots (β-CD-CQDs) nanoprobe through specific host-guest recognition. Carbon quantum dots were first functionalized with 3-aminophenyl boronic acid to produce boronic acid-functionalized CQDs, and then further modified with hydropropyl β-cyclodextrins (β-CD) through B-O bonds to form β-CD-CQDs nanoprobe. p-Nitrophenol phosphate disodium salt is used as the substrate of ALP, and can hydrolyze to p-nitrophenol under the catalysis of ALP. The resulting p-nitrophenol can enter the cavity of β-CD moiety in the nanoprobe due to their specific host-guest recognition, where photoinduced electron transfer process between p-nitrophenol and CQDs takes place to efficiently quench the fluorescence of the probe. The correlation between quenched fluorescence and ALP level can be used to establish quantitative evaluation of ALP activity in a broad range from 3.4 to 100.0U/L with the detection limit of 0.9U/L. This assay shows a high sensitivity to ALP even in the presence of a very high concentration of glucose. This study demonstrates a good electron donor/acceptor pair, which can be used to design general detection strategy through PET process, and also broadens the application of host-guest recognition for enzymes detection in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hua, Jianhao; Yang, Jian; Zhu, Yan; Zhao, Chunxi; Yang, Yaling
2017-12-01
A novel carbon quantum dots (CQDs) was successfully prepared through one-step green hydrothermal method using polyacrylamide as carbon source. The prepared CQDs were characterized using TEM, XRD, XPS, FT-IR, UV-Vis, and fluorescence spectroscopy. The CQDs was demonstrated as nanoprobes for mercury ion detection, moreover, it demonstrated excitation-dependent and superior stability in acidic and alkaline media. Besides, the probe exhibited a good linearity range (0.25-50 μM) and a low detection limit (13.48 nM). These attractive properties indicated that this novel CQDs can adapt to a variety of complex pH environment, which had extensive prospect and promising application for detection of mercury ions in complex water samples.
NASA Astrophysics Data System (ADS)
Nabiev, I. R.
2017-01-01
Molecules recognizing biomarkers of diseases (monoclonal antibodies (monoABs)) are often too large for biomedical applications, and the conditions that are used to bind them with nanolabels lead to disordered orientation of monoABs with respect to the nanoparticle surface. Extremely small nanoprobes, designed via oriented conjugation of quantum dots (QDs) with single-domain antibodies (sdABs) derived from the immunoglobulin of llama and produced in the E. coli culture, have a hydrodynamic diameter less than 12 nm and contain equally oriented sdAB molecules on the surface of each QD. These nanoprobes exhibit excellent specificity and sensitivity in quantitative determination of a small number of cells expressing biomarkers. In addition, the higher diffusion coefficient of sdABs makes it possible to perform immunohistochemical analysis in bulk tissue, inaccessible for conventional monoABs. The necessary conditions for implementing high-quality immunofluorescence diagnostics are a high specificity of labeling and clear differences between the fluorescence of nanoprobes and the autofluorescence of tissues. Multiphoton micros-copy with excitation in the near-IR spectral range, which is remote from the range of tissue autofluorescence excitation, makes it possible to solve this problem and image deep layers in biological tissues. The two-photon absorption cross sections of CdSe/ZnS QDs conjugated with sdABs exceed the corresponding values for organic fluorophores by several orders of magnitude. These nanoprobes provide clear discrimination between the regions of tumor and normal tissues with a ratio of the sdAB fluorescence to the tissue autofluorescence upon two-photon excitation exceeding that in the case of single-photon excitation by a factor of more than 40. The data obtained indicate that the sdAB-QD conjugates used as labels provide the same, or even better, quality as the "gold standard" of immunohistochemical diagnostics. The developed nanoprobes are expected to find wide application in high-efficiency imaging of tumor and multiparameter diagnostics.
Gadolinium-encapsulating iron oxide nanoprobe as activatable NMR/MRI contrast agent.
Santra, Santimukul; Jativa, Samuel D; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J Manuel
2012-08-28
Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the poly(acrylic acid) (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA), yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T(1)). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T(1) relaxation rate (1/T(1)) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T(1)-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T(1) signal was observed. This result suggests that, upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T(1) activation. In addition, when an anticancer drug (Taxol) was coencapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T(1) activation of the probe coincided with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T(1) nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI.
Chen, Ning; Shao, Chen; Li, Shuai; Wang, Zihao; Qu, Yanming; Gu, Wei; Yu, Chunjiang; Ye, Ling
2015-11-01
The fusion of molecular and anatomical modalities facilitates more reliable and accurate detection of tumors. Herein, we prepared the PEG-Cy5.5 conjugated MnO nanoparticles (MnO-PEG-Cy5.5 NPs) with magnetic resonance (MR) and near-infrared fluorescence (NIRF) imaging modalities. The applicability of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe for the detection of brain gliomas was investigated. In vivo MR contrast enhancement of the MnO-PEG-Cy5.5 nanoprobe in the tumor region was demonstrated. Meanwhile, whole-body NIRF imaging of glioma bearing nude mouse exhibited distinct tumor localization upon injection of MnO-PEG-Cy5.5 NPs. Moreover, ex vivo CLSM imaging of the brain slice hosting glioma indicated the preferential accumulation of MnO-PEG-Cy5.5 NPs in the glioma region. Our results therefore demonstrated the potential of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe in improving the diagnostic efficacy by simultaneously providing anatomical information from deep inside the body and more sensitive information at the cellular level. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Guomei; Qiao, Yunyun; Xu, Ting; Zhang, Caihong; Zhang, Yan; Shi, Lihong; Shuang, Shaomin; Dong, Chuan
2015-07-01
We report a novel and environmentally friendly fluorescent probe for detecting the cyanide ion (CN-) using l-amino acid oxidase (LAAOx)-protected Au nanoclusters (LAAOx@AuNCs) with red emission. The fluorescence-based sensing behaviour of LAAOx@AuNCs towards anions was investigated in buffered aqueous media. Among the anions studied, CN- was found to effectively quench the fluorescence emission of AuNCs based on CN- induced Au core decomposition. Excellent sensitivity and selectivity toward the detection of CN- in aqueous solution were observed. The CN- detection limit was determined to be approximately 180 nM, which is 15 times lower than the maximum level (2700 nM) of CN- in drinking water permitted by the World Health Organization (WHO). A linear relationship between the fluorescence intensity and CN- concentration was observed in two ranges of CN- concentration, including 3.2 × 10-6 to 3.4 × 10-5 mol L-1 and 3.81 × 10-5 to 1.04 × 10-4 mol L-1. The high sensitivity and selectivity to CN- among the 17 types of anions make the AuNCs good candidates for use in fluorescent nanoprobes of CN-.
In Vivo MR Imaging of Glioma Recruitment of Adoptive T-Cells Labeled with NaGdF4 -TAT Nanoprobes.
Zhang, Hua; Wu, Yue; Wang, Jing; Tang, Zhongmin; Ren, Yan; Ni, Dalong; Gao, Hongbo; Song, Ruixue; Jin, Teng; Li, Qiao; Bu, Wenbo; Yao, Zhenwei
2018-01-01
Adoptive T lymphocyte immunotherapy is one of the most promising methods to treat residual lesions after glioma surgery. However, the fate of the adoptively transferred T-cells in vivo is unclear, hampering the understanding of this emerging therapy. Thus, it is highly desirable to develop noninvasive and quantitative in vivo tracking of these T-cells to glioma for better identification of the migratory fate and to provide objective evaluation of outcomes of adoptive T-cell immunotherapy targeting glioma. In this work, ultrasmall T 1 MR-based nanoprobes, NaGdF 4 -TAT, as molecular probes with high longitudinal relaxivity (8.93 mm -1 s -1 ) are designed. By means of HIV-1 transactivator (TAT) peptides, nearly 95% of the adoptive T-cells are labeled with the NaGdF 4 -TAT nanoprobes without any measurable side effects on the labeled T-cells, which is remarkably superior to that of the control fluorescein isothiocyanate-NaGdF 4 concerning labeling efficacy. Labeled adoptive T-cell clusters can be sensitively tracked in an orthotopic GL261-glioma model 24 h after intravenous infusion of 10 7 labeled T-cells by T 1 -weighted MR imaging. Both in vitro and in vivo experiments show that the NaGdF 4 -TAT nanoprobes labeling of T-cells may be a promising method to track adoptive T-cells to improve our understanding of the pathophysiology in adoptive immunotherapy for gliomas. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoacoustic-Based Multimodal Nanoprobes: from Constructing to Biological Applications.
Gao, Duyang; Yuan, Zhen
2017-01-01
Multimodal nanoprobes have attracted intensive attentions since they can integrate various imaging modalities to obtain complementary merits of single modality. Meanwhile, recent interest in laser-induced photoacoustic imaging is rapidly growing due to its unique advantages in visualizing tissue structure and function with high spatial resolution and satisfactory imaging depth. In this review, we summarize multimodal nanoprobes involving photoacoustic imaging. In particular, we focus on the method to construct multimodal nanoprobes. We have divided the synthetic methods into two types. First, we call it "one for all" concept, which involves intrinsic properties of the element in a single particle. Second, "all in one" concept, which means integrating different functional blocks in one particle. Then, we simply introduce the applications of the multifunctional nanoprobes for in vivo imaging and imaging-guided tumor therapy. At last, we discuss the advantages and disadvantages of the present methods to construct the multimodal nanoprobes and share our viewpoints in this area.
Graphene-based nanoprobes for molecular diagnostics.
Chen, Shixing; Li, Fuwu; Fan, Chunhai; Song, Shiping
2015-10-07
In recent years, graphene has received widespread attention owing to its extraordinary electrical, chemical, optical, mechanical and structural properties. Lately, considerable interest has been focused on exploring the potential applications of graphene in life sciences, particularly in disease-related molecular diagnostics. In particular, the coupling of functional molecules with graphene as a nanoprobe offers an excellent platform to realize the detection of biomarkers, such as nucleic acids, proteins and other bioactive molecules, with high performance. This article reviews emerging graphene-based nanoprobes in electrical, optical and other assay methods and their application in various strategies of molecular diagnostics. In particular, this review focuses on the construction of graphene-based nanoprobes and their special advantages for the detection of various bioactive molecules. Properties of graphene-based materials and their functionalization are also comprehensively discussed in view of the development of nanoprobes. Finally, future challenges and perspectives of graphene-based nanoprobes are discussed.
Dielectrophoretic trapping of nanoparticles with an electrokinetic nanoprobe.
Wood, Nicholas R; Wolsiefer, Amanda I; Cohn, Robert W; Williams, Stuart J
2013-07-01
A high aspect ratio 3D electrokinetic nanoprobe is used to trap polystyrene particles (200 nm), gold nanoshells (120 nm), and gold nanoparticles (mean diameter 35 nm) at low voltages (<1 V(rms)). The nanoprobe is fabricated using room temperature self-assembly methods, without the need for nanoresolution lithography. The nanoprobe (150-500 nm in diameter, 2-150 μm in length) is mounted on the end of a glass micropipette, enabling user-specified positioning. The nanoprobe is one electrode within a point-and-plate configuration, with an indium-tin oxide cover slip serving as the planar electrode. The 3D structure of the nanoprobe enhances dielectrophoretic capture; further, electro-hydrodynamic flow enhances trapping, increasing the effective trapping region. Numerical simulations show low heating (1 K), even in biological media of moderate conductivity (1 S/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lee, Seunghyun; Li, Xingshu; Lee, Dayoung; Yoon, Juyoung; Kim, Chulhong
2018-02-01
Visualizing biological markers and delivering bioactive agents to living organisms are important to biological research. In recent decades, photoacoustic imaging (PAI) has been significantly improved in the area of molecular imaging, which provides high-resolution volume imaging with high optical absorption contrast. To demonstrate the ability of nanoprobes to target tumors using PAI, we synthesize convertible nanostructured agents with strong photothermal and photoacoustic properties and linked the nanoprobe with biotin to target tumors in small animal model. Interestingly, these nanoprobes allow partial to disassemble in the presence of targeted proteins that switchable photoactivity, thus the nanoprobes provides a fluorescent-cancer imaging with high signal-to-background ratios. The proposed nanoprobe produce a much stronger PA signal compared to the same concentration of methylene blue (MB), which is widely used in clinical study and contrast agent for PAI. The biotin conjugated nanoprobe has high selectivity for biotin receptor positive cancer cells such as A549 (human lung cancer). Then we subsequently examined the PA properties of the nanoprobe that are inherently suitable for in vivo PAI. After injecting of the nanoprobe via intravenous method, we observed the mice's whole body by PA imaging and acquired the PA signal near the cancer. The PA signal increased linearly with time after injection and the fluorescence signal near the cancer was confirmed by fluorescence imaging. The ability to target a specific cancer of the nanoprobe was well verified by PA imaging. This study provides valuable perspective on the advancement of clinical translations and in the design of tumor-targeting phototheranostic agents that could act as new nanomedicines.
Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent
Santra, Santimukul; Jativa, Samuel D.; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J. Manuel
2012-01-01
Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the polyacrylic acid (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA) yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T1). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T1 relaxation rate (1/T1) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T1-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T1 signal was observed. This result suggests that upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH = 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T1 activation. No change in T1 was observed when the Gd-DTPA complex was chemically conjugated on the surface of the nanoparticle's polymeric coating or when encapsulated in the polymeric coating of a non-magnetic nanoparticle. These results confirmed that the observed (T1) quenching of the composite magnetic nanoprobe is due to the encapsulation and close proximity of the Gd ion to the nanoparticles superparamagnetic iron oxide (IO) core. In addition, when an anticancer drug (Taxol) was co-encapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T1 activation of the probe coincide with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T1 nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI. PMID:22809405
NASA Astrophysics Data System (ADS)
Lucas, Leanne J.; Hewitt, Kevin C.
2012-03-01
Our aim is to create and validate a novel SERS-based nanoprobe for optical imaging of the epidermal growth factor receptor (EGFR). Gold and silver nanoparticles (Au/AgNPs) of various sizes were synthesized and coupled to epidermal growth factor (EGF) via a short ligand, α-lipoic acid (206 g/mol), which binds strongly to both Au and Ag nanoparticles via its disulfide end group. We used carbodiimide chemistry to couple EGF to α-lipoic acid. These nanoprobes were tested for binding affinity using Enzyme Linked ImmunoSorbent Assay (ELISA) and, in-vitro, using EGFRoverexpressing A431 cells. The nanoprobes show excellent EGFR-specific binding. Time of Flight Mass Spectrometry demonstrate the carbodiimide based linking of the carboxylic acid end-group of α-lipoic acid to one or more of the three (terminal, or 2 lysine) amine groups on EGF. ELISA confirms that the linked EGF is active by itself, and following conjugation with gold or silver nanoparticles. Compared with bare nanoparticles, UV-Vis spectroscopy of Ag-based nanoprobes exhibit significant plasmon red-shift, while there was no discernable shift for Au-based ones. Dark field microscopy shows abundant uptake by EGFR overexpressing A431 cells, and serves to further confirm the excellent binding affinity. Nanoprobe internalization and consequent aggregation is thought to be the basis of enhanced light scattering in the dark field images, supporting the notion that these nanoprobes should provide excellent SERS signals at all nanoprobe sizes. In summary, novel EGFR-specific nanoprobes have been synthesized and validated by standard assay and in cell culture for use as SERS optical imaging probes.
Joshi, Kuldeep V; Joshi, Bhoomika K; Pandya, Alok; Sutariya, Pinkesh G; Menon, Shobhana K
2012-10-21
In this communication we report a p-sulfonatocalix[4]arene coated ZnS quantum dots "cup type" highly stable optical probe for the detection and determination of menadione (VK(3)) with high sensitivity and selectivity. The detection of VK(3) depends on supramolecular host-guest chemistry.
A hard X-ray nanoprobe beamline for nanoscale microscopy.
Winarski, Robert P; Holt, Martin V; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G Brian; McNulty, Ian; Maser, Jörg
2012-11-01
The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.
Achieving Vibration Stability of the NSLS-II Hard X-ray Nanoprobe Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, N.; Chu, Y. N.; Broadbent, A.
2010-08-30
The Hard X-ray Nanoprobe (HXN) Beamline of National Synchrotron Light Source II (NSLS-lI) requires high levels of stability in order to achieve the desired instrument resolution. To ensure that the design of the endstation helps meet the stringent criteria and that natural and cultural vibration is mitigated both passively and actively, a comprehensive study complimentary to the design process has been undertaken. Vibration sources that have the potential to disrupt sensitive experiments such as wind, traffic and NSLS II operating systems have been studied using state of the art simulations and an array of field data. Further, final stage vibrationmore » isolation principles have been explored in order to be utilized in supporting endstation instruments. This paper presents results of the various study aspects and their influence on the HXN design optimization.« less
Liu, Jing; Zuo, Wei; Zhang, Wei; Liu, Jian; Wang, Zhiyi; Yang, Zhengyin; Wang, Baodui
2014-10-07
Ultrasensitive, accurate detection and separation of heavy metal ions is very important in environmental monitoring and biological detection. In this paper, a highly sensitive and specific detection method for Cu(2+) based on the fluorescence quenching of a europium(III) hybrid magnetic nanoprobe is presented. This nanoprobe can detect Cu(2+) over a wide pH range (5.0-10.0) with a detection limit as low as 0.1 nM and it can be used for detecting Cu(2+) in living cells. After the magnetic separation, the Cu(2+) concentration decreased to 1.18 ppm, which is less than the US EPA drinking water standard (1.3 ppm), and more than 70% Cu(2+) could be removed when the amount of nanocomposite 1 reached 1 mg.
Sun, Duanping; Lu, Jing; Zhong, Yuwen; Yu, Yanyan; Wang, Yu; Zhang, Beibei; Chen, Zuanguang
2016-01-15
Human cancer is becoming a leading cause of death in the world and the development of a straightforward strategy for early detection of cancer is urgently required. Herein, a sandwich-type electrochemical aptamer cytosensor was developed for detection of human liver hepatocellular carcinoma cells (HepG2) based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. The thiolated TLS11a aptamers were used as a selective bio-recognition element, attached to the gold nanoparticles (AuNPs) modified the glassy carbon electrode (GCE) surface. Meanwhile, the electrochemical nanoprobes were fabricated through the G-quadruplex/hemin/aptamer complexes and horseradish peroxidase (HRP) immobilized on the surfaces of Au@Pd core-shell nanoparticle-modified magnetic Fe3O4/MnO2 beads (Fe3O4/MnO2/Au@Pd). After the target cells were captured, the hybrid nanoprobes were further assembled to form an aptamer-cell-nanoprobes sandwich-like system on the electrode surface. Then, hybrid Fe3O4/MnO2/Au@Pd nanoelectrocatalysts, G-quadruplex/hemin HRP-mimicking DNAzymes and the natural HRP enzyme efficiently catalyzed the oxidation of hydroquinone (HQ) with H2O2, amplifying the electrochemical signals and improving the detection sensitivity. This electrochemical cytosensor delivered a wide detection range of 1×10(2)-1×10(7)cellsmL(-1), high sensitivity with a low detection limit of 15cellsmL(-1), good selectivity and repeatability. Finally, an electrochemical reductive desorption method was performed to break gold-thiol bond and desorb the components on the AuNPs/GCE for regenerating the cytosensor. These results have demonstrated that the electrochemical cytosensor has the potential to be a feasible tool for cost-effective cancer cell detection in early cancer diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.
Wei, Jianjun; Zeng, Zheng; Lin, Yongbin
2017-01-01
Here is presented a miniaturized, fiber-optic (FO) nanoprobe biosensor based on the localized surface plasmon resonance (LSPR) at the reusable dielectric-metallic hybrid interface with a robust, gold nano-disk array at the fiber end facet. The nanodisk array is directly fabricated using electron beam lithography (EBL) and metal lift-off process. The free prostate-specific antigen (f-PSA) has been detected with a mouse anti-human prostate-specific antigen (PSA) monoclonal antibody (mAb) as a specific receptor linked with a self-assembled monolayer (SAM) at the LSPR-FO facet surfaces. Experimental investigation and data analysis found near field refractive index (RI) sensitivity at ~226 nm/RIU with the LSPR-FO nanoprobe, and demonstrated the lowest limit of detection (LOD) at 100 fg/mL (~3 fM) of f-PSA in PBS solutions. The SAM shows insignificant nonspecific binding to the target biomarkers in the solution. The control experimentation using 5 mg/mL bovine serum albumin in PBS and nonspecific surface test shows the excellent specificity and selectivity in the detection of f-PSA in PBS. These results indicate important progress toward a miniaturized, multifunctional fiber-optic technology that integrates informational communication and sensing function for developing a high-performance, label-free, point-of-care (POC) device.
Yang, Meng; Cheng, Kai; Qi, Shibo; Liu, Hongguang; Jiang, Yuxin; Jiang, Han; Li, Jinbo; Chen, Kai; Zhang, Huimao; Cheng, Zhen
2013-01-01
A highly monodispersed hetero-nanostructure with two different functional nanomaterials (gold (Au) and iron oxide (Fe3O4, IO)) within one structure was successfully developed as Affibody based trimodality nanoprobe (positron emission tomography, PET; optical imaging; and magnetic resonance imaging, MRI) for imaging of epidermal growth factor receptor (EGFR) positive tumors. Unlike other regular nanostructures with a single component, the Au-IO hetero-nanostructures (Au-IONPs) with unique chemical and physical properties have capability to combine several imaging modalities together to provide complementary information. The IO component within hetero-nanostructures serve as a T2 reporter for MRI; and gold component serve as both optical and PET reporters. Moreover, such hetero-nanoprobes could provide a robust nano-platform for surface-specific modification with both targeting molecules (anti-EGFR Affibody protein) and PET imaging reporters (radiometal 64Cu chelators) in highly efficient and reliable manner. In vitro and in vivo study showed that the resultant nanoprobe provided high specificity, sensitivity, and excellent tumor contrast for both PET and MRI imaging in the human EGFR-expressing cells and tumors. Our study data also highlighted the EGFR targeting efficiency of hetero-nanoparticles and the feasibility for their further theranostic applications. PMID:23343632
Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification.
Li, Fan; Liu, Xiaoguo; Zhao, Bin; Yan, Juan; Li, Qian; Aldalbahi, Ali; Shi, Jiye; Song, Shiping; Fan, Chunhai; Wang, Lihua
2017-05-10
Isothermal amplification is an efficient way to amplify DNA with high accuracy; however, the real-time monitoring for quantification analysis mostly relied on expensive and precisely designed probes. In the present study, a graphene oxide (GO)-based nanoprobe was used to real-time monitor the isothermal amplification process. The interaction between GO and different DNA structures was systematically investigated, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), DNA 3-helix, and long rolling circle amplification (RCA) and hybridization chain reaction (HCR) products, which existed in one-, two-, and three-dimensional structures. It was found that the high rigid structures exhibited much lower affinity with GO than soft ssDNA, and generally the rigidity was dependent on the length of targets and the hybridization position with probe DNA. On the basis of these results, we successfully monitored HCR amplification process, RCA process, and the enzyme restriction of RCA products with GO nanoprobe; other applications including the detection of the assembly/disassembly of DNA 3-helix structures were also performed. Compared to the widely used end-point detection methods, the GO-based sensing platform is simple, sensitive, cost-effective, and especially in a real-time monitoring mode. We believe such studies can provide comprehensive understandings and evocation on design of GO-based biosensors for broad application in various fields.
NASA Astrophysics Data System (ADS)
Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong
2013-10-01
The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies. Electronic supplementary information (ESI) available: Absorbance and fluorescence spectra of quantum dot nanoprobes, electrophoresis analysis, and experimental setup for fluorescence imaging with dual channels. See DOI: 10.1039/c3nr03291d
A hard X-ray nanoprobe beamline for nanoscale microscopy
Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg
2012-01-01
The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770
Yi, Zhigao; Lu, Wei; Xu, Yaru; Yang, Jing; Deng, Li; Qian, Chao; Zeng, Tianmei; Wang, Haibo; Rao, Ling; Liu, Hongrong; Zeng, Songjun
2014-12-01
Simultaneous in vivo luminescence and X-ray bioimaging in a tissue or animal integrates the advantages of each single-modal imaging technology, and will find widespread application in biological and clinical fields. However, synergistic dual-modal bioimaging that utilizes a new generation of upconversion nanoprobes is still limited. In addition, investigations concentrated on in vivo biodistribution of these nanoprobes may contribute to diagnosis and treatment, but long-term in vivo tracking based on these nanoprobes is rarely reported. In this work, water-soluble NaLuF4: Yb/Er nanophosphors were prepared through modified one-pot simultaneous synthesis and surface modification method. Owing to the outstanding upconverting emissions and large X-ray absorption coefficient/K-edge value of Lu and doped Yb ions, the obtained nanoprobes were successfully used as luminescent nanoprobes and X-ray contrast agents for in vivo synergistic upconversion luminescence and X-ray bioimaging. The in vivo biodistribution of these nanoprobes were observed, and the results based on long-term tracking reveal that the as-prepared nanoprobes first aggregated in the lung of the mouse, transferred to the liver, and finally moved to the spleen. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhao, Tao; Liu, Ran; Ding, Xiaofan; Zhao, Juncai; Yu, Haixiang; Wang, Lei; Xu, Qing; Wang, Xuan; Lou, Xinhui; He, Miao; Xiao, Yi
2015-08-04
It is quite challenging to improve the binding affinity of antismall molecule aptamers. We report that the binding affinity of anticocaine split aptamer pairs improved by up to 66-fold by gold nanoparticles (AuNP)-attached aptamers due to the substantially increased local concentration of aptamers and multiple and simultaneous ligand interactions. The significantly improved binding affinity enables the detection of small molecule targets with unprecedented sensitivity, as demonstrated in nanoprobe-enhanced split aptamer-based electrochemical sandwich assays (NE-SAESA). NE-SAESA replaces the traditional molecular reporter probe with AuNPs conjugated to multiple reporter probes. The increased binding affinity allowed us to use 1,000-fold lower reporter probe concentrations relative to those employed in SAESA. We show that the near-elimination of background in NE-SAESA effectively improves assay sensitivity by ∼1,000-100,000-fold for ATP and cocaine detection, relative to equivalent SAESA. With the ongoing development of new strategies for the selection of aptamers, we anticipate that our sensor platform should offer a generalizable approach for the high-sensitivity detection of diverse targets. More importantly, we believe that NE-SAESA represents a novel strategy to improve the binding affinity between a small molecule and its aptamer and potentially can be extended to other detection platforms.
Sun, Duanping; Lu, Jing; Chen, Zuanguang; Yu, Yanyan; Mo, Manni
2015-07-23
In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au-thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer-AuNPs-HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1×10(2) to 1×10(7) cells mL(-1) and high sensitivity with a low detection limit of 30 cells mL(-1). Furthermore, after the electrochemical detection, the activation potential of -0.9 to -1.7V was performed to break Au-thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing. Copyright © 2015 Elsevier B.V. All rights reserved.
Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics
NASA Astrophysics Data System (ADS)
Liu, Yang; Chang, Zheng; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan
2013-11-01
A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications.A unique quintuple-modality theranostic nanoprobe (QMT) is developed with gold nanostars for surface-enhanced Raman scattering (SERS), magnetic resonance imaging (MRI), computed tomography (CT), two-photon luminescence (TPL) imaging and photothermal therapy (PTT). The synthesized gold nanostars were tagged with a SERS reporter and linked with an MRI contrast agent Gd3+. In vitro experiments demonstrated the developed QMT nanoprobe to be a potential theranostic agent for future biomedical applications. Electronic supplementary information (ESI) available: Details of experimental section, characterization details and relaxivity curve of developed QMT nanoprobe in water at 1.5 T magnetic filed strength. See DOI: 10.1039/c3nr03762b
Chemically engineered persistent luminescence nanoprobes for bioimaging
Lécuyer, Thomas; Teston, Eliott; Ramirez-Garcia, Gonzalo; Maldiney, Thomas; Viana, Bruno; Seguin, Johanne; Mignet, Nathalie; Scherman, Daniel; Richard, Cyrille
2016-01-01
Imaging nanoprobes are a group of nanosized agents developed for providing improved contrast for bioimaging. Among various imaging probes, optical sensors capable of following biological events or progresses at the cellular and molecular levels are actually actively developed for early detection, accurate diagnosis, and monitoring of the treatment of diseases. The optical activities of nanoprobes can be tuned on demand by chemists by engineering their composition, size and surface nature. This review will focus on researches devoted to the conception of nanoprobes with particular optical properties, called persistent luminescence, and their use as new powerful bioimaging agents in preclinical assays. PMID:27877248
Characterizing the biocompatibility and tumor-imaging capability of Cu2S nanocrystals in vivo
NASA Astrophysics Data System (ADS)
Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Sakamoto, Yasushi; Hirosawa, Narumi; Suzuki, Yuko; Zhang, Minfang; Yudasaka, Masako; Radhakrishnan, Neelima; Maekawa, Toru; Mohanan, P. V.; Sakthi Kumar, D.
2015-07-01
Multifunctional nanomaterial-based probes have had key impacts on high-resolution and high-sensitivity bioimaging and therapeutics. Typically, NIR-absorbing metal sulfide-based nanocrystals (NCs) are highly assuring due to their unique optical properties. Yet, their in vivo behavior remains undetermined, which in turn undermines their potential bioapplications. Herein, we have examined the application of PEGylated Cu2S NCs as tumor contrast optical nanoprobes as well as investigated the short- and long-term in vivo compatibility focusing on anti-oxidant defense mechanism, genetic material, immune system, and vital organs. The studies revealed an overall safe profile of the NCs with no apparent toxicity even at longer exposure periods. The acquired observations culminate into a set of primary safety data of this nanomaterial and the use of PEGylated Cu2S NCs as promising optical nanoprobes with immense futuristic bioapplications.
Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes.
Liu, Zhen; Ju, Enguo; Liu, Jianhua; Du, Yingda; Li, Zhengqiang; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang
2013-10-01
Nanoparticulate contrast agents have attracted a great deal of attention along with the rapid development of modern medicine. Here, a binary contrast agent based on PAA modified BaYbF5:Tm nanoparticles for direct visualization of gastrointestinal (GI) tract has been designed and developed via a one-pot solvothermal route. By taking advantages of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of these well-designed nanoparticles, their feasibility as a multi-modal contrast agent for GI tract was intensively investigated. Significant enhancement of contrast efficacy relative to clinical barium meal and iodine-based contrast agent was evaluated via X-ray imaging and CT imaging in vivo. By doping Tm(3+) ions into these nanoprobes, in vivo NIR-NIR imaging was then demonstrated. Unlike some invasive imaging modalities, non-invasive imaging strategy including X-ray imaging, CT imaging, and UCL imaging for GI tract could extremely reduce the painlessness to patients, effectively facilitate imaging procedure, as well as rationality economize diagnostic time. Critical to clinical applications, long-term toxicity of our contrast agent was additionally investigated in detail, indicating their overall safety. Based on our results, PAA-BaYbF5:Tm nanoparticles were the excellent multi-modal contrast agent to integrate X-ray imaging, CT imaging, and UCL imaging for direct visualization of GI tract with low systemic toxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gold nanoprobes for theranostics
Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph
2011-01-01
Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586
Huang, Jin; Ying, Le; Yang, Xiaohai; Yang, Yanjing; Quan, Ke; Wang, He; Xie, Nuli; Ou, Min; Zhou, Qifeng; Wang, Kemin
2015-09-01
We designed a new ratiometric fluorescent nanoprobe for sensing pH values in living cells. Briefly, the nanoprobe consists of a gold nanoparticle (AuNP), short single-stranded oligonucleotides, and dual-fluorophore-labeled i-motif sequences. The short oligonucleotides are designed to bind with the i-motif sequences and immobilized on the AuNP surface via Au-S bond. At neutral pH, the dual fluorophores are separated, resulting in very low fluorescence resonance energy transfer (FRET) efficiency. At acidic pH, the i-motif strands fold into a quadruplex structure and leave the AuNP, bringing the dual fluorophores into close proximity, resulting in high FRET efficiency, which could be used as a signal for pH sensing. The nanoprobe possesses abilities of cellular transfection, enzymatic protection, fast response and quantitative pH detection. The in vitro and intracellular applications of the nanoprobe were demonstrated, which showed excellent response in the physiological pH range. Furthermore, our experimental results suggested that the nanoprobe showed excellent spatial and temporal resolution in living cells. We think that the ratiometric sensing strategy could potentially be applied to create a variety of new multicolor sensors for intracellular detection.
Draz, Mohamed Shehata; Lu, Xiaonan
2016-01-01
As a major foodborne pathogen, Salmonella enterica serotype Enteritidis is increasingly rising as a global health concern. Here, we developed an integrated assay that combines loop mediated isothermal amplification (LAMP) and surface enhanced Raman spectroscopy (SERS) for DNA detection of S. Enteritidis using specifically designed Raman active Au-nanoprobes. The target DNA was amplified by LAMP and then labeled with Au-nanoprobes comprised of gold nanoparticle-modified with specific cy5/DNA probes to allow the detection by SERS. The sensitivity of the developed LAMP-SERS detection assay (66 CFU/mL) was ~100-fold higher than the conventional polymerase chain reaction (PCR) method. Significantly, this technique allowed highly specific detection of the target DNA of S. Enteritidis and could differentiate it from the DNA of closely related bacterial species or non-specific contamination, making it more accurate and reliable than the standard LAMP technique. The applicability of detection of S. Enteritidis in milk samples using LAMP-SERS assay was validated as well. In sum, the developed LAMP-SERS assay is highly specific and sensitive, and has the potential to be applied for rapid detection of different foodborne pathogens and other microbial contaminants.
Apak, Reşat; Demirci Çekiç, Sema; Üzer, Ayşem; Çelik, Saliha Esin; Bener, Mustafa; Bekdeşer, Burcu; Can, Ziya; Sağlam, Şener; Önem, Ayşe Nur; Erçağ, Erol
2018-01-11
Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N , N -dimethyl- p -phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent-derivatized gold nanoparticles.
Apak, Reşat; Demirci Çekiç, Sema; Üzer, Ayşem; Çelik, Saliha Esin; Bener, Mustafa; Bekdeşer, Burcu; Can, Ziya; Sağlam, Şener; Önem, Ayşe Nur; Erçağ, Erol
2018-01-01
Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N,N-dimethyl-p-phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent−derivatized gold nanoparticles. PMID:29324685
Akazawa, Kazuki; Sugihara, Fuminori; Nakamura, Tatsuya; Mizukami, Shin; Kikuchi, Kazuya
2018-05-16
Highly sensitive imaging of enzymatic activities in the deep tissues of living mammals provides useful information about their biological functions and for developing new drugs; however, such imaging is challenging. 19 F magnetic resonance imaging (MRI) is suitable for noninvasive visualization of enzymatic activities without endogenous background signals. Although various enzyme-responsive 19 F MRI probes have been developed, most cannot be used for in vivo imaging because of their low sensitivity. Recently, we developed unique nanoparticles, called FLAMEs, that are composed of a liquid perfluorocarbon core and a robust silica shell, and demonstrated their outstanding sensitivity in vivo. Here, we report a highly functionalized nanoprobe, FLAME-DEVD 2, with an OFF/ON 19 F MRI switch for detecting caspase-3/7 activity based on the paramagnetic relaxation enhancement effect. To improve the cleavage efficiency of peptides by caspase-3, we designed a novel Gd 3+ complex-conjugated peptide, DEVD X ( X = 1, 2), which is a substrate peptide sequence tandemly repeated X times, and demonstrated that DEVD 2 showed faster cleavage kinetics than DEVD 1. By incorporating this novel concept into a signal activation strategy, FLAME-DEVD 2 showed a high 19 F MRI signal enhancement rate in response to caspase-3 activity. After intravenous injection of FLAME-DEVD 2 and an apoptosis-inducing reagent, caspase-3/7 activity in the spleen of a living mouse was successfully imaged by 19 F MRI. This imaging platform shows great potential for highly sensitive detection of enzymatic activities in vivo.
Zhi, Lihua; Zeng, Xiaofan; Wang, Hao; Hai, Jun; Yang, Xiangliang; Wang, Baodui; Zhu, Yanhong
2017-07-18
The development of sensitive and reliable methods to monitor the presence of mercuric ions in cells and organisms is of great importance to biological research and biomedical applications. In this work, we propose a strategy to construct a solar-driven nanoprobe using a 3D Au@MoS 2 heterostructure as a photocatalyst and rhodamine B (RB) as a fluorescent and color change reporter molecule for monitoring Hg 2+ in living cells and animals. The sensing mechanism is based on the photoinduced electron formation of gold amalgam in the 3D Au@MoS 2 heterostructure under visible light illumination. This formation is able to remarkably inhibit the photocatalytic activity of the heterostructure toward RB decomposition. As a result, "OFF-ON" fluorescence and color change are produced. Such characteristics enable this new sensing platform to sensitively and selectively detect Hg 2+ in water by fluorescence and colorimetric methods. The detection limits of the fluorescence assay and colorimetric assay are 0.22 and 0.038 nM for Hg 2+ , respectively; these values are well below the acceptable limits in drinking water standards (10 nM). For the first time, such photocatalysis-based sensing platform is successfully used to monitor Hg 2+ in live cells and mice. Our work therefore opens a promising photocatalysis-based analysis methodology for highly sensitive and selective in vivo Hg 2+ bioimaging studies.
Wu, Wenhe; Li, Jun; Pan, Dun; Li, Jiang; Song, Shiping; Rong, Mingge; Li, Zixi; Gao, Jimin; Lu, Jianxin
2014-10-08
Enzyme-linked immunosorbent assay (ELISA) provides a convenient means for the detection of Salmonella enterica serovar Typhimurium (STM), which is important for rapid diagnosis of foodborne pathogens. However, conventional ELISA is limited by antibody-antigen immunoreactions and suffers from poor sensitivity and tedious sample pretreatment. Therefore, development of novel ELISA remains challenging. Herein, we designed a comprehensive strategy for rapid, sensitive, and quantitative detection of STM with high specificity by gold nanoparticle-based enzyme-linked antibody-aptamer sandwich (nano-ELAAS) method. STM was captured and preconcentrated from samples with aptamer-modified magnetic particles, followed by binding with detector antibodies. Then nanoprobes carrying a large amount of reporter antibodies and horseradish peroxidase molecules were used for colorimetric signal amplification. Under the optimized reaction conditions, the nano-ELAAS assay had a quantitative detection range from 1 × 10(3) to 1 × 10(8) CFU mL(-1), a limit of detection of 1 × 10(3) CFU mL(-1), and a selectivity of >10-fold for STM in samples containing other bacteria at higher concentration with an assay time less than 3 h. In addition, the developed nanoprobes were improved in terms of detection range and/or sensitivity when compared with two commercial enzyme-labeled antibody signal reporters. Finally, the nano-ELAAS method was demonstrated to work well in milk samples, a common source of STM contamination.
Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges
He, Xiaoxiao; Gao, Jinhao; Gambhir, Sanjiv Sam; Cheng, Zhen
2010-01-01
Near-infrared fluorescence (NIRF) imaging promises to improve cancer imaging and management; advances in nanomaterials allow scientists to combine new nanoparticles with NIRF imaging techniques, thereby fulfilling this promise. Here, we present a synopsis of current developments in NIRF nanoprobes, their use in imaging small living subjects, their pharmacokinetics and toxicity and finally their integration into multimodal imaging strategies. We also discuss challenges impeding the clinical translation of NIRF nanoprobes for molecular imaging of cancer. Whereas utilization of most NIRF nanoprobes remains at a proof-of-principle stage, optimizing the impact of nanomedicine in cancer patient diagnosis and management will likely be realized through persistent interdisciplinary amalgamation of diverse research fields. PMID:20870460
NASA Astrophysics Data System (ADS)
Zhao, Xu; Yang, Cheng-Xiong; Chen, Li-Gong; Yan, Xiu-Ping
2017-05-01
The integrated functions of diagnostics and therapeutics make theranostics great potential for personalized medicine. Stimulus-responsive therapy allows spatial control of therapeutic effect only in the site of interest, and offers promising opportunities for imaging-guided precision therapy. However, the imaging strategies in previous stimulus-responsive therapies are `always on' or irreversible `turn on' modality, resulting in poor signal-to-noise ratios or even `false positive' results. Here we show the design of dual-stimuli-responsive and reversibly activatable nanoprobe for precision tumour-targeting and fluorescence-guided photothermal therapy. We fabricate the nanoprobe from asymmetric cyanine and glycosyl-functionalized gold nanorods (AuNRs) with matrix metalloproteinases (MMPs)-specific peptide as a linker to achieve MMPs/pH synergistic and pH reversible activation. The unique activation and glycosyl targetibility makes the nanoprobe bright only in tumour sites with negligible background, while AuNRs and asymmetric cyanine give synergistic photothermal effect. This work paves the way to designing efficient nanoprobes for precision theranostics.
SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation.
Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Wang, Chunlei; Xu, Shuhong; Cui, Yiping
2014-11-01
A new kind of cancer cell separation method is demonstrated, using surface-enhanced Raman scattering (SERS) and fluorescence dual-encoded magnetic nanoprobes. The designed nanoprobes can realize SERS-fluorescence joint spectral encoding (SFJSE) and greatly improve the multiplexing ability. The nanoprobes have four main components, that is, the magnetic core, SERS generator, fluorescent agent, and targeting antibody. These components are assembled with a multi-layered structure to form the nanoprobes. Specifically, silica-coated magnetic nanobeads (MBs) are used as the inner core. Au core-Ag shell nanorods (Au@Ag NRs) are employed as the SERS generators and attached on the silica-coated MBs. After burying these Au@Ag NRs with another silica layer, CdTe quantum dots (QDs), that is, the fluorescent agent, are anchored onto the silica layer. Finally, antibodies are covalently linked to CdTe QDs. SFJSE is fulfilled by using different Raman molecules and QDs with different emission wavelengths. By utilizing four human cancer cell lines and one normal cell line as the model cells, the nanoprobes can specifically and simultaneously separate target cancer cells from the normal ones. This SFJSE-based method greatly facilitates the multiplex, rapid, and accurate cancer cell separation, and has a prosperous potential in high-throughput analysis and cancer diagnosis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Su, Xiaoqian; Chan, Chunyu; Shi, Jingyu; Tsang, Ming-Kiu; Pan, Yi; Cheng, Changming; Gerile, Oudeng; Yang, Mo
2017-06-15
A novel graphene quantum dot (GQD)@Fe 3 O 4 @SiO 2 based nanoprobe was reported for targeted drug delivery, sensing, dual-modal imaging and therapy. Carboxyl-terminated GQD (C-GQD) was firstly conjugated with Fe 3 O 4 @SiO 2 and then functionalized with cancer targeting molecule folic acid (FA). DOX drug molecules were then loaded on GQD surface of Fe 3 O 4 @SiO 2 @GQD-FA nanoprobe via pi-pi stacking, which resulted in Fe 3 O 4 @SiO 2 @GQD-FA/DOX conjugates based on a FRET mechanism with GQD as donor molecules and DOX as acceptor molecules. Meanwhile, we successfully performed in vitro MRI and fluorescence imaging of living Hela cells and monitored intracellular drug release process using this Fe 3 O 4 @SiO 2 @GQD-FA/DOX nanoprobe. Cell viability study demonstrated the low cytotoxicity of Fe 3 O 4 @SiO 2 @GQD-FA nanocarrier and the enhanced therapeutic efficacy of Fe 3 O 4 @SiO 2 @GQD-FA/DOX nanoprobe for cancer cells. This luminomagnetic nanoprobe will be a potential platform for cancer accurate diagnosis and therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Design and development of a microfluidic platform for use with colorimetric gold nanoprobe assays
NASA Astrophysics Data System (ADS)
Bernacka-Wojcik, Iwona
Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio ( 13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 mul on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/mul) with 10 times lower solution volume (3 mul). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.
Bioimaging with micro/nanoelectrode systems.
Matsue, Tomokazu
2013-01-01
This article presents an overview of the recent progress made by our group in the development of bioelectrochemical imaging devices and systems with micro/nanoelectrodes. The topics include bioimaging of enzymes and live cells by scanning electrochemical microscopy (SECM), high-resolution bioimaging by SECM equipped with a nanoprobe, comprehensive measurements and bioimaging with local-redox cycling-based electrochemical (LRC-EC) devices, and rapid and sensitive bioimaging with BioLSI.
Sun, Shao-Kai; Wang, He-Fang; Yan, Xiu-Ping
2018-05-15
Persistent luminescence nanoparticles (PLNPs) are unique optical materials emitting long-lasting luminescence after ceasing excitation. Such a unique optical feature allows luminescence detection without constant external illumination to avoid the interferences of autofluorescence and scattering light from biological fluids and tissues. Besides, near-infrared (NIR) PLNPs have advantages of deep penetration and the reactivation of the persistent luminescence (PL) by red or NIR light. These features make the application of NIR-emitting PLNPs in long-term bioimaging no longer limited by the lifetime of PL. To take full advantage of PLNPs for biological applications, the versatile strategies for bridging PLNPs and biological system become increasingly significant for the design of PLNPs-based nanoprobes. In this Account, we summarize our systematic achievements in the biological applications of PLNPs from biosensing/bioimaging to theranostics with emphasizing the engineering strategies for fabricating specific PLNPs-based nanoprobes. We take surface engineering and manipulating energy transfer as the major principles to design various PLNPs-based nanoprobes based on the nature of interactions between nanoprobes and targets. We have developed target-induced formation or interruption of fluorescence resonance energy transfer systems for autofluorescence-free biosensing and imaging of cancer biomarkers. We have decorated single or dual targeting ligands on PLNPs for tumor-targeted imaging, and integrated other modal imaging agents into PLNPs for multimodal imaging. We have also employed specific functionalization for various biomedical applications including chemotherapy, photodynamic therapy, photothermal therapy, stem cells tracking and PL imaging-guided gene therapy. Besides, we have modified PLNPs with multiple functional units to achieve challenging metastatic tumor theranostics. The proposed design principle and comprehensive strategies show great potential in guiding the design of PLNPs nanoprobes and promoting further development of PLNPs in the fields of biological science and medicine. We conclude this Account by outlining the future directions to further promote the practical application of PLNPs. The novel protocols for the synthesis of small-size, monodisperse, and water-soluble PLNPs with high NIR PL intensity and superlong afterglow are the vibrant directions for the biomedical applications of PLNPs. In-depth theories and evidence on luminescence mechanism of PLNPs are highly desired for further improvement of their luminescence performance. Furthermore, other irradiations without tissue penetrating depth limit, such as X-ray, are encouraged for use in energy storage and re-excitation of PLNPs, enabling imaging in deep tissue in vivo and integrating other X-ray sensitized theranostic techniques such as computed tomography imaging and radiotherapy. Last but not least, PLNPs-based nanoprobes and the brand new hybrids of PLNPs with other nanomaterials show a bright prospect for accurate diagnosis and efficient treatment of diseases besides tumors.
Anthracene-based fluorescent nanoprobes for singlet oxygen detection in biological media.
Bresolí-Obach, Roger; Nos, Jaume; Mora, Margarita; Sagristà, Maria Lluïsa; Ruiz-González, Rubén; Nonell, Santi
2016-10-15
We have developed a novel singlet oxygen nanoprobe based on 9,10-anthracenedipropionic acid covalently bound to mesoporous silica nanoparticles. The nanoparticle protects the probe from interactions with proteins, which detract from its ability to detect singlet oxygen. In vitro studies show that the nanoprobe is internalized by cells and is distributed throughout the cytoplasm, thus being capable of detecting intracellularly-generated singlet oxygen. Copyright © 2016 Elsevier Inc. All rights reserved.
Guo, Qingfa; Kuang, Lei; Cao, Hui; Li, Weizhong; Wei, Jing
2015-12-01
In this paper, a novel bifunctional nanoprobe based on polyethylene glycol(MPEG)-poly(ϵ-caprolactone)(ϵ-CL)-polyethylenimine(PEI) labeled with FITC (MPEG-PCL-PEI-FITC, PCIF) were prepared to provide tumor therapy and simultaneous diagnostic information via magnetic resonance imaging (MRI) and optical imaging. Superparamagnetic iron oxide (SPIO) and doxorubicin (DOX) loaded PCIF (PCIF/SPIO/DOX) nanoprobes were prepared by self-assembling into micelles, which had uniformly distributed particle size of 130 ± 5 nm and a zeta potential of +35 ± 2 mV. Transmission electronic microscopy(TEM) showed that SPIO NPs were loaded into PCIF micelles. The PCIF/SPIO/DOX nanoprobes were superparamagnetic at 300 K with saturated magnetization of 20.5 emu/g Fe by vibrating-sample-magnetomete (VSM). Studies on cellular uptake of PCIF/SPIO/DOX nanoprobes demonstrated that SPIO NPs, DOX and FITC labeled MPEG-PCL-PEI were simultaneously taken up by the breast cancer (4T1) cells. After intravenous injection of PCIF/SPIO/DOX nanoprobes in 4T1 tumor-bearing mice, SPIO NPs, DOX and FITC labeled MPEG-PCL-PEI micelles were simultaneously delivered into tumor tissue by histochemisty. This work is important for the applications to multimodal diagnostic and theragnosis as nanomedicine. Copyright © 2015 Elsevier B.V. All rights reserved.
Gold-carbon dots for the intracellular imaging of cancer-derived exosomes.
Jiang, Xiaoyue; Zong, Shenfei; Chen, Chen; Zhang, Yizhi; Wang, Zhuyuan; Cui, Yiping
2018-04-27
As a novel fluorescent nanomaterial, gold-carbon quantum dots (GCDs) possess high biocompatibility and can be easily synthesized by a microwave-assisted method. Owing to their small sizes and unique optical properties, GCDs can be applied to imaging of biological targets, such as cells, exosomes and other organelles. In this study, GCDs were used for fluorescence imaging of exosomes. Tumor-specific antibodies are attached to the GCDs, forming exosome specific nanoprobes. The nanoprobes can label exosomes via immuno-reactions and thus facilitate fluorescent imaging of exosomes. When incubated with live cells, exosomes labeled with the nanoprobes can be taken up by the cells. The intracellular experiments confirmed that the majority of exosomes were endocytosed by cells and transported to lysosomes. The manner by which exosomes were taken up and the intracellular distribution of exosomes are unaffected by the GCDs. The experimental results successfully demonstrated that the presented nanoprobe can be used to study the intrinsic intracellular behavior of tumor derived exosomes. We believe that the GCDs based nanoprobe holds a great promise in the study of exosome related cellular events, such as cancer metastasis.
Zhang, Jinfeng; Chen, Rui; Zhu, Zelin; Adachi, Chihaya; Zhang, Xiaohong; Lee, Chun-Sing
2015-12-02
Fluorescent organic nanoparticles based on small molecules have been regarded as promising candidates for bioimaging in recent years. In this study, we report a highly stable near-infrared (NIR) fluorescent organic nanoprobes based on nanoparticles of an anthraquinone derivate with strong aggregation-induced emission (AIE) characteristics and a large Stokes shift (>175 nm). These endow the nanoprobe with high fluorescent brightness and high signal-to-noise ratio. On the other hand, the nanoprobe also shows low cytotoxicity, good stability over a wide pH range, superior resistance against photodegradation and photobleaching comparing to typical commercial fluorescent organic dyes such as fluorescein sodium. Endowed with such merits in term of optical performance, biocompatibility, and stability, the nanoprobe is demonstrated to be an ideal fluorescent probe for noninvasive long-term cellular tracing and imaging applications. As an example, it is shown that strong red fluorescence from the nanoprobe can still be clearly observed in A549 human lung cancer cells after incubation for six generations over 15 days.
Gold-carbon dots for the intracellular imaging of cancer-derived exosomes
NASA Astrophysics Data System (ADS)
Jiang, Xiaoyue; Zong, Shenfei; Chen, Chen; Zhang, Yizhi; Wang, Zhuyuan; Cui, Yiping
2018-04-01
As a novel fluorescent nanomaterial, gold-carbon quantum dots (GCDs) possess high biocompatibility and can be easily synthesized by a microwave-assisted method. Owing to their small sizes and unique optical properties, GCDs can be applied to imaging of biological targets, such as cells, exosomes and other organelles. In this study, GCDs were used for fluorescence imaging of exosomes. Tumor-specific antibodies are attached to the GCDs, forming exosome specific nanoprobes. The nanoprobes can label exosomes via immuno-reactions and thus facilitate fluorescent imaging of exosomes. When incubated with live cells, exosomes labeled with the nanoprobes can be taken up by the cells. The intracellular experiments confirmed that the majority of exosomes were endocytosed by cells and transported to lysosomes. The manner by which exosomes were taken up and the intracellular distribution of exosomes are unaffected by the GCDs. The experimental results successfully demonstrated that the presented nanoprobe can be used to study the intrinsic intracellular behavior of tumor derived exosomes. We believe that the GCDs based nanoprobe holds a great promise in the study of exosome related cellular events, such as cancer metastasis.
NASA Astrophysics Data System (ADS)
Shi, Ying; Yang, Liu; Zhu, Jinghui; Yang, Jidong; Liu, Shaopu; Qiao, Man; Duan, Ruilin; Hu, Xiaoli
2017-02-01
Carbon dots (CDs) are raising a substantial amount of attention owing to their many unique and novel physicochemical properties. Herein one-pot synthesized CDs, to the best of our knowledge, were first served as the robust nanoprobe for detection tannic acid (TA) based on resonance Rayleigh scattering technique. The as-prepared CDs can combine with TA via hydrogen bond, resulting in remarkable enhancement of scattering signal with no changes in the fluorescence of CDs. Therefore, a novel protocol for TA determination was established and this strategy allowed quantitative detection of TA in the linear range of 0.2-10.0 μmol L- 1 with an excellent detection limit of 9.0 nmol L- 1. Moreover, the CDs based nanoprobe can be applied to the determination of TA in water sample with satisfactory results. Our study can potentially influence our current views on CDs and particularly impressive and offers new insights into application of CDs beyond the traditional understanding of CDs.
Fu, Jingni; Ding, Changqin; Zhu, Anwei; Tian, Yang
2016-08-07
Intracellular pH plays a vital role in cell biology, including signal transduction, ion transport and homeostasis. Herein, a ratiometric fluorescent silica probe was developed to detect intracellular pH values. The pH sensitive dye fluorescein isothiocyanate isomer I (FITC), emitting green fluorescence, was hybridized with reference dye rhodamine B (RB), emitting red fluorescence, as a dual-emission fluorophore, in which RB was embedded in a silica core of ∼40 nm diameter. Moreover, to prevent fluorescence resonance energy transfer between FITC and RB, FITC was grafted onto the surface of core-shell silica colloidal particles with a shell thickness of 10-12 nm. The nanoprobe exhibited dual emission bands centered at 517 and 570 nm, under single wavelength excitation of 488 nm. RB encapsulated in silica was inert to pH change and only served as reference signals for providing built-in correction to avoid environmental effects. Moreover, FITC (λem = 517 nm) showed high selectivity toward H(+) against metal ions and amino acids, leading to fluorescence variation upon pH change. Consequently, variations of the two fluorescence intensities (Fgreen/Fred) resulted in a ratiometric pH fluorescent sensor. The specific nanoprobe showed good linearity with pH variation in the range of 6.0-7.8. It can be noted that the fluorescent silica probe demonstrated good water dispersibility, high stability and low cytotoxicity. Accordingly, imaging and biosensing of pH variation was successfully achieved in HeLa cells.
2016-01-01
Circulating tumor cells (CTC) are highly heterogeneous in nature due to epithelial–mesenchymal transition (EMT), which is the major obstacle for CTC analysis via “liquid biopsy”. This article reports the development of a new class of multifunctional fluorescent–magnetic multicolor nanoprobes for targeted capturing and accurate identification of heterogeneous CTC. A facile design approach for the synthesis and characterization of bioconjugated multifunctonal nanoprobes that exhibit excellent magnetic properties and emit very bright and photostable multicolor fluorescence at red, green, and blue under 380 nm excitation is reported. Experimental data presented show that the multifunctional multicolor nanoprobes can be used for targeted capture and multicolor fluorescence mapping of heterogeneous CTC and can distinguish targeted CTC from nontargeted cells. PMID:27255574
NASA Astrophysics Data System (ADS)
Hu, He; Arena, Francesca; Gianolio, Eliana; Boffa, Cinzia; di Gregorio, Enza; Stefania, Rachele; Orio, Laura; Baroni, Simona; Aime, Silvio
2016-03-01
A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors.A novel fluorescein/Gd-DOTAGA containing nanoprobe for the visualization of tumors by optical and Magnetic Resonance Imaging (MRI) is reported herein. It is based on the functionalization of the surface of small mesoporous silica nanoparticles (MSNs) (~30 nm) with the arginine-glycine-aspartic (RGD) moieties, which are known to target αvβ3 integrin receptors overexpressed in several tumor cells. The obtained nanoprobe (Gd-MSNs-RGD) displays good stability, tolerability and high relaxivity (37.6 mM-1 s-1 at 21.5 MHz). After a preliminary evaluation of their cytotoxicity and targeting capability toward U87MG cells by in vitro fluorescence and MR imaging, the nanoprobes were tested in vivo by T1-weighted MR imaging of xenografted murine tumor models. The obtained results demonstrated that the Gd-MSNs-RGD nanoprobes are good reporters both in vitro and in vivo for the MR-visualization of tumor cells overexpressing αvβ3 integrin receptors. Electronic supplementary information (ESI) available: Absorption and emission spectra, energy dispersive X-ray analysis (EDXA) and XPS spectra, TGA, zeta-potential and the molecular structures of the Gd-complexes. See DOI: 10.1039/c5nr08878j
Moving graphene devices from lab to market: advanced graphene-coated nanoprobes
NASA Astrophysics Data System (ADS)
Hui, Fei; Vajha, Pujashree; Shi, Yuanyuan; Ji, Yanfeng; Duan, Huiling; Padovani, Andrea; Larcher, Luca; Li, Xiao Rong; Xu, Jing Juan; Lanza, Mario
2016-04-01
After more than a decade working with graphene there is still a preoccupying lack of commercial devices based on this wonder material. Here we report the use of high-quality solution-processed graphene sheets to fabricate ultra-sharp probes with superior performance. Nanoprobes are versatile tools used in many fields of science, but they can wear fast after some experiments, reducing the quality and increasing the cost of the research. As the market of nanoprobes is huge, providing a solution for this problem should be a priority for the nanotechnology industry. Our graphene-coated nanoprobes not only show enhanced lifetime, but also additional unique properties of graphene, such as hydrophobicity. Moreover, we have functionalized the surface of graphene to provide piezoelectric capability, and have fabricated a nano relay. The simplicity and low cost of this method, which can be used to coat any kind of sharp tip, make it suitable for the industry, allowing production on demand.After more than a decade working with graphene there is still a preoccupying lack of commercial devices based on this wonder material. Here we report the use of high-quality solution-processed graphene sheets to fabricate ultra-sharp probes with superior performance. Nanoprobes are versatile tools used in many fields of science, but they can wear fast after some experiments, reducing the quality and increasing the cost of the research. As the market of nanoprobes is huge, providing a solution for this problem should be a priority for the nanotechnology industry. Our graphene-coated nanoprobes not only show enhanced lifetime, but also additional unique properties of graphene, such as hydrophobicity. Moreover, we have functionalized the surface of graphene to provide piezoelectric capability, and have fabricated a nano relay. The simplicity and low cost of this method, which can be used to coat any kind of sharp tip, make it suitable for the industry, allowing production on demand. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06235g
Bacteriophage-based nanoprobes for rapid bacteria separation
NASA Astrophysics Data System (ADS)
Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.
2015-10-01
The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03779d
Optical biosensor technologies for molecular diagnostics at the point-of-care
NASA Astrophysics Data System (ADS)
Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan
2015-05-01
Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.
Multi-modal in cellulo evaluation of NPR-C targeted C-ANF-peptide and C-ANF-comb nanoparticles
NASA Astrophysics Data System (ADS)
Shokeen, Monica; Pressly, Eric; Connal, Luke; Liu, Yongjian; Hawker, Craig J.; Woodard, Pamela K.; Anderson, Carolyn J.; Achilefu, Samuel; Welch, Michael J.
2012-03-01
Natriuretic peptides (NPs) are clinical markers of heart disease that have anti-proliferative and anti-migratory effects on vascular smooth-muscle cells (VSMCs). In atherosclerosis, NPs participate in vascular remodeling, where the expression of NP clearance receptors (NPR-Cs) is upregulated both in the endothelium and in VSMCs[1-3]. In this study, we investigated the enhanced targeting potential of novel multifunctional nanoprobes conjugated with multiple copies of a C-type atrial natriuretic factor (C-ANF) peptide fragment to target NPR-C transfected cells. The cell binding results of the NPR-C targeted nanoprobes were compared with that of the C-ANF peptide fragment alone. The nanoprobe and peptide structures contain the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) for labeling with the PET tracer, 64Cu, for radioactive assays and luminescent Eu (III) for confocal cell imaging. Cell assays performed with the radioactive nanoprobe and peptide demonstrated higher cell binding of the targeted nanoprobe comapred with the peptide alone (8.63+/-1.67 vs. 1.13+/-0.06). The targeting specificity of both moieties was tested by using the control cell lines NPR-A and NPR-B, and receptor mediated uptake was demonstrated by reduced uptake in the presence of excess unlabeled respective probes.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-06-29
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2009-11-10
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P.; Chernobrod, Boris M.
2007-12-11
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2010-07-13
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P [Los Alamos, NM; Chernobrod, Boris M [Los Alamos, NM
2009-10-27
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Liu, Pei; Han, Lei; Wang, Fei; Petrenko, Valery A; Liu, Aihua
2016-08-15
Staphylococcus aureus (S. aureus) is one of the most ubiquitous pathogens in public healthcare worldwide. It holds great insterest in establishing robust analytical method for S. aureus. Herein, we report a S. aureus-specific recognition element, isolated from phage monoclone GQTTLTTS, which was selected from f8/8 landscape phage library against S. aureus in a high-throughput way. By functionalizing cysteamine (CS)-stabilized gold nanoparticles (CS-AuNPs) with S. aureus-specific pVIII fusion protein (fusion-pVIII), a bifunctional nanoprobe (CS-AuNPs@fusion-pVIII) for S. aureus was developed. In this strategy, the CS-AuNPs@fusion-pVIII could be induced to aggregate quickly in the presence of target S. aureus, resulting in a rapid colorimetric response of gold nanoparticles. More importantly, the as-designed probe exhibited excellent selectivity over other bacteria. Thus, the CS-AuNPs@fusion-pVIII could be used as the indicator of target S. aureus. This assay can detect as low as 19CFUmL(-1)S. aureus within 30min. Further, this approach can be applicable to detect S. aureus in real water samples. Due to its sensitivity, specificity and rapidness, this proposed method is promising for on-site testing of S. aureus without using any costly instruments. Copyright © 2016 Elsevier B.V. All rights reserved.
Single cell genomic quantification by non-fluorescence nonlinear microscopy
NASA Astrophysics Data System (ADS)
Kota, Divya; Liu, Jing
2017-02-01
Human epidermal growth receptor 2 (Her2) is a gene which plays a major role in breast cancer development. The quantification of Her2 expression in single cells is limited by several drawbacks in existing fluorescence-based single molecule techniques, such as low signal-to-noise ratio (SNR), strong autofluorescence and background signals from biological components. For rigorous genomic quantification, a robust method of orthogonal detection is highly desirable and we demonstrated it by two non-fluorescent imaging techniques -transient absorption microscopy (TAM) and second harmonic generation (SHG). In TAM, gold nanoparticles (AuNPs) are chosen as an orthogonal probes for detection of single molecules which gives background-free quantifications of single mRNA transcript. In SHG, emission from barium titanium oxide (BTO) nanoprobes was demonstrated which allows stable signal beyond the autofluorescence window. Her2 mRNA was specifically labeled with nanoprobes which are conjugated with antibodies or oligonucleotides and quantified at single copy sensitivity in the cancer cells and tissues. Furthermore, a non-fluorescent super-resolution concept, named as second harmonic super-resolution microscopy (SHaSM), was proposed to quantify individual Her2 transcripts in cancer cells beyond the diffraction limit. These non-fluorescent imaging modalities will provide new dimensions in biomarker quantification at single molecule sensitivity in turbid biological samples, offering a strong cross-platform strategy for clinical monitoring at single cell resolution.
Magnetomotive Molecular Nanoprobes
John, Renu; Boppart, Stephen A.
2012-01-01
Tremendous developments in the field of biomedical imaging in the past two decades have resulted in the transformation of anatomical imaging to molecular-specific imaging. The main approaches towards imaging at a molecular level are the development of high resolution imaging modalities with high penetration depths and increased sensitivity, and the development of molecular probes with high specificity. The development of novel molecular contrast agents and their success in molecular optical imaging modalities have lead to the emergence of molecular optical imaging as a more versatile and capable technique for providing morphological, spatial, and functional information at the molecular level with high sensitivity and precision, compared to other imaging modalities. In this review, we discuss a new class of dynamic contrast agents called magnetomotive molecular nanoprobes for molecular-specific imaging. Magnetomotive agents are superparamagnetic nanoparticles, typically iron-oxide, that are physically displaced by the application of a small modulating external magnetic field. Dynamic phase-sensitive position measurements are performed using any high resolution imaging modality, including optical coherence tomography (OCT), ultrasonography, or magnetic resonance imaging (MRI). The dynamics of the magnetomotive agents can be used to extract the biomechanical tissue properties in which the nanoparticles are bound, and the agents can be used to deliver therapy via magnetomotive displacements to modulate or disrupt cell function, or hyperthermia to kill cells. These agents can be targeted via conjugation to antibodies, and in vivo targeted imaging has been shown in a carcinogen-induced rat mammary tumor model. The iron-oxide nanoparticles also exhibit negative T2 contrast in MRI, and modulations can produce ultrasound imaging contrast for multimodal imaging applications. PMID:21517766
Ghosh, Debadyuti; Bagley, Alexander F.; Na, Young Jeong; Birrer, Michael J.; Bhatia, Sangeeta N.; Belcher, Angela M.
2014-01-01
Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950–1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery. PMID:25214538
Ghosh, Debadyuti; Bagley, Alexander F; Na, Young Jeong; Birrer, Michael J; Bhatia, Sangeeta N; Belcher, Angela M
2014-09-23
Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950-1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery.
Wang, Siqi; Ren, Wenzhi; Wang, Jianhua; Jiang, Zhenqi; Saeed, Madiha; Zhang, Lili; Li, Aiguo; Wu, Aiguo
2018-06-27
At present, transmembrane glycoprotein CD133 highly expressed pancreatic cancer stem cells (PCSCs), with the features of chemotherapeutic/radiotherapeutic resistance and exclusive tumorigenic potential, are considered as the primary cause of metastasis and recurrence in pancreatic cancer, and therefore are an effective target in the disease treatment. Furthermore, with the launch of precision medicine, multifunctional nanoprobes have been applied as an efficient strategy for the magnetic resonance imaging (MRI)-guided photothermal therapy (PTT) of pancreatic cancer. In this research, with the aim of achieving precise MRI-guided PTT in CD133 highly expressed PCSCs, novel bTiO2-Gd-CD133mAb nanoprobes were designed and successfully prepared by loading Gd-DOTA and CD133 monoclonal antibodies on black TiO2 nanoparticles. It was very interesting to find that the r1 relaxivity value of the nanoprobes was 34.394 mM-1 s-1, about 7.5 times that of commercial Magnevist (4.5624 mM-1 s-1), which indicates that the nanoprobes have good potential as MRI T1 contrast agents with excellent performance. Herein, CD133 highly expressed PANC-1 cells were selected and verified as PCSCs model. In vitro experiments demonstrated that the nanoprobes exhibited active-targeting ability in PANC-1 cells, and consequently could specially enhance T1-weighted MR imaging and 808 nm near-infrared (NIR)-triggered PTT efficiency in the PCSCs model. Our study not only provides a new strategy for the effective treatment of pancreatic cancer and its' stem cells, but also further broadens the application of black TiO2 in the field of cancer theranostics.
Zheng, Tingting; Zhang, Rui; Zhang, Qingfeng; Tan, Tingting; Zhang, Kui; Zhu, Jun-Jie; Wang, Hui
2013-09-18
We have developed a robust enzymatic peptide cleavage-based assay for the ultrasensitive dual-channel detection of matrix metalloproteinase-2 (MMP-2) in human serum using gold-quantum dot (Au-QD) core-satellite nanoprobes.
A choline derivate-modified nanoprobe for glioma diagnosis using MRI
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Huang, Shixian; Shao, Kun; Liu, Yang; An, Sai; Kuang, Yuyang; Guo, Yubo; Ma, Haojun; Wang, Xuxia; Jiang, Chen
2013-04-01
Gadolinium (Gd) chelate contrast-enhanced magnetic resonance imaging (MRI) is a preferred method of glioma detection and preoperative localisation because it offers high spatial resolution and non-invasive deep tissue penetration. Gd-based contrast agents, such as Gd-diethyltriaminepentaacetic acid (DTPA-Gd, Magnevist), are widely used clinically for tumor diagnosis. However, the Gd-based MRI approach is limited for patients with glioma who have an uncompromised blood-brain barrier (BBB). Moreover, the rapid renal clearance and non-specificity of such contrast agents further hinders their prevalence. We present a choline derivate (CD)-modified nanoprobe with BBB permeability, glioma specificity and a long blood half-life. Specific accumulation of the nanoprobe in gliomas and subsequent MRI contrast enhancement are demonstrated in vitro in U87 MG cells and in vivo in a xenograft nude model. BBB and glioma dual targeting by this nanoprobe may facilitate precise detection of gliomas with an uncompromised BBB and may offer better preoperative and intraoperative tumor localization.
NASA Astrophysics Data System (ADS)
Chen, Jingwen; Sun, Yingqi; Chen, Qian; Wang, Le; Wang, Suhe; Tang, Yun; Shi, Xiangyang; Wang, Han
2016-07-01
Multifunctional gold nanocomposites, which were designed as dendrimer-entrapped gold nanoparticles functionalized with gadolinium, cyanine dye (Cy5.5), and folic acid, were synthesized to be used as the first dendrimer-based clinical nanoprobes for targeted X-ray computed tomography/magnetic resonance/optical trimodal imaging in vitro and in vivo of human non-small cell cancer cells.Multifunctional gold nanocomposites, which were designed as dendrimer-entrapped gold nanoparticles functionalized with gadolinium, cyanine dye (Cy5.5), and folic acid, were synthesized to be used as the first dendrimer-based clinical nanoprobes for targeted X-ray computed tomography/magnetic resonance/optical trimodal imaging in vitro and in vivo of human non-small cell cancer cells. Electronic supplementary information (ESI) available: Synthesis and characterization data of the nanoprobes; biocompatibility results; confirmation of the tumor cell uptake of the nanoprobes in vitro and in vivo; biodistribution results in vivo. See DOI: 10.1039/c6nr03143a
Dong, Kai; Ju, Enguo; Liu, Jianhua; Han, Xueli; Ren, Jinsong; Qu, Xiaogang
2014-10-21
Multimodal molecular imaging has recently attracted much attention on disease diagnostics by taking advantage of individual imaging modalities. Herein, we have demonstrated a new paradigm for multimodal bioimaging based on amino acids-anchored ultrasmall lanthanide-doped GdVO4 nanoprobes. On the merit of special metal-cation complexation and abundant functional groups, these amino acids-anchored nanoprobes showed high colloidal stability and excellent dispersibility. Additionally, due to typical paramagnetic behaviour, high X-ray mass absorption coefficient and strong fluorescence, these nanoprobes would provide a unique opportunity to develop multifunctional probes for MRI, CT and luminescence imaging. More importantly, the small size and biomolecular coatings endow the nanoprobes with effective metabolisability and high biocompatibility. With the superior stability, high biocompatibility, effective metabolisability and excellent contrast performance, amino acids-capped GdVO4:Eu(3+) nanocastings are a promising candidate as multimodal contrast agents and would bring more opportunities for biological and medical applications with further modifications.
Choi, Chun Kit K; Li, Jinming; Wei, Kongchang; Xu, Yang J; Ho, Lok Wai C; Zhu, Meiling; To, Kenneth K W; Choi, Chung Hang J; Bian, Liming
2015-06-17
The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of cells as well as cell lysis. Such requirements lead to the unavoidable loss of cell sources and preclude real-time monitoring of cellular events. In this work, we report the detection of microRNAs (miRNAs) in living human mesenchymal stem cells (hMSCs) by using polydopamine-coated gold nanoparticles (Au@PDA NPs). The PDA shell facilitates the immobilization of fluorescently labeled hairpin DNA strands (hpDNAs) that can recognize specific miRNA targets. The gold core and PDA shell quench the fluorescence of the immobilized hpDNAs, and subsequent binding of the hpDNAs to the target miRNAs leads to their dissociation from Au@PDA NPs and the recovery of fluorescence signals. Remarkably, these Au@PDA-hpDNA nanoprobes can naturally enter stem cells, which are known for their poor transfection efficiency, without the aid of transfection agents. Upon cellular uptake of these nanoprobes, we observe intense and time-dependent fluorescence responses from two important osteogenic marker miRNAs, namely, miR-29b and miR-31, only in hMSCs undergoing osteogenic differentiation and living primary osteoblasts but not in undifferentiated hMSCs and 3T3 fibroblasts. Strikingly, our nanoprobes can afford long-term tracking of miRNAs (5 days) in the differentiating hMSCs without the need of continuously replenishing cell culture medium with fresh nanoprobes. Our results demonstrate the capability of our Au@PDA-hpDNA nanoprobes for monitoring the differentiation status of hMSCs (i.e., differentiating versus undifferentiated) via the detection of specific miRNAs in living stem cells. Our nanoprobes show great promise in the investigation of the long-term dynamics of stem cell differentiation, identification and isolation of specific cell types, and high-throughput drug screening.
Status of the Nanoscopium Scanning Hard X-ray Nanoprobe Beamline of Synchrotron Soleil
NASA Astrophysics Data System (ADS)
Somogyi, A.; Kewish, C. M.; Ribbens, M.; Moreno, T.; Polack, F.; Baranton, G.; Desjardins, K.; Samama, J. P.
2013-10-01
The Nanoscopium 155 m-long scanning hard X-ray nanoprobe beamline of Synchrotron Soleil (St Aubin, France) is dedicated to quantitative multi-modal 2D/3D imaging. The beamline aims to reach down to 30 nm spatial resolution in the 5-20 keV energy range. Two experimental stations working in consecutive operation mode will be dedicated to coherent diffractive imaging and scanning X-ray nanoprobe techniques. The beamline is in the construction phase, the first user experiments are expected in 2014. The main characteristics of the beamline and an overview of its status are given in this paper.
Chakraborty, Atanu; Jana, Nikhil R
2015-09-17
Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.
A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo
NASA Astrophysics Data System (ADS)
Wu, Chenxin; Zhang, Yejun; Li, Zhen; Li, Chunyan; Wang, Qiangbin
2016-06-01
Atherosclerosis is a major cause of cardiovascular and cerebrovascular diseases that have high mortality and disability rates. Because of its unclear pathogenic mechanism and heterogeneous distribution feature, it is still a big challenge to achieve precise diagnosis and therapy of atherosclerosis at its early stage in vivo. Herein, we fabricated a new ICG@PEG-Ag2S nanoprobe by a simple self-assembly of DT-Ag2S QDs, amphipathic C18/PEG polymer molecules and ICG. The ICG@PEG-Ag2S nanoprobe showed relatively long blood retention and was selectively accumulated in the region of atherosclerotic plaque due to the lipophilicity of the C18 chain to the atherosclerosis microenvironment, and thus the atherosclerosis was real-time monitored by high contrast-enhanced photoacoustic (PA) imaging of ICG. Combining the high signal-to-noise ratio (SNR) and high spatial resolution fluorescence imaging of Ag2S QDs in the second near-infrared window (NIR-II) and related histological assessment in vitro, the feasibility of this new nanoprobe for atherosclerosis targeting in an Apoe-/- mouse model was verified. Additionally, hemolysis and coagulation assays of the ICG@PEG-Ag2S revealed its decent hemocompatibility and no histological changes were observed in the main organs of the mouse. Such a simple, multifunctional nanoprobe for targeting and PA imaging of atherosclerosis will have a great potential for future clinical applications.Atherosclerosis is a major cause of cardiovascular and cerebrovascular diseases that have high mortality and disability rates. Because of its unclear pathogenic mechanism and heterogeneous distribution feature, it is still a big challenge to achieve precise diagnosis and therapy of atherosclerosis at its early stage in vivo. Herein, we fabricated a new ICG@PEG-Ag2S nanoprobe by a simple self-assembly of DT-Ag2S QDs, amphipathic C18/PEG polymer molecules and ICG. The ICG@PEG-Ag2S nanoprobe showed relatively long blood retention and was selectively accumulated in the region of atherosclerotic plaque due to the lipophilicity of the C18 chain to the atherosclerosis microenvironment, and thus the atherosclerosis was real-time monitored by high contrast-enhanced photoacoustic (PA) imaging of ICG. Combining the high signal-to-noise ratio (SNR) and high spatial resolution fluorescence imaging of Ag2S QDs in the second near-infrared window (NIR-II) and related histological assessment in vitro, the feasibility of this new nanoprobe for atherosclerosis targeting in an Apoe-/- mouse model was verified. Additionally, hemolysis and coagulation assays of the ICG@PEG-Ag2S revealed its decent hemocompatibility and no histological changes were observed in the main organs of the mouse. Such a simple, multifunctional nanoprobe for targeting and PA imaging of atherosclerosis will have a great potential for future clinical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00060f
Ilić, Nataša; Pilarczyk, Götz; Lee, Jin-Ho; Logeswaran, Abiramy; Borroni, Aurora Paola; Krufczik, Matthias; Theda, Franziska; Waltrich, Nadine; Bestvater, Felix; Hildenbrand, Georg; Cremer, Christoph; Blank, Michael
2017-01-01
Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP) tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2) in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine. PMID:28956810
Imaging Tiny Hepatic Tumor Xenografts via Endoglin-Targeted Paramagnetic/Optical Nanoprobe.
Yan, Huihui; Gao, Xihui; Zhang, Yunfei; Chang, Wenju; Li, Jianhui; Li, Xinwei; Du, Qin; Li, Cong
2018-05-23
Surgery is the mainstay for treating hepatocellular carcinoma (HCC). However, it is a great challenge for surgeons to identify HCC in its early developmental stage. The diagnostic sensitivity for a tiny HCC with a diameter less than 1.0 cm is usually as low as 10-33% for computed tomography (CT) and 29-43% for magnetic resonance imaging (MRI). Although MRI is the preferred imaging modality for detecting HCC, with its unparalleled spatial resolution for soft tissue, the commercially available contrast agent, such as Gd 3+ -DTPA, cannot accurately define HCC because of its short circulation lifetime and lack of tumor-targeting specificity. Endoglin (CD105), a type I membrane glycoprotein, is highly expressed both in HCC cells and in the endothelial cells of neovasculature, which are abundant at the tumor periphery. In this work, a novel single-stranded DNA oligonucleotide-based aptamer was screened by systematic evolution of ligands in an exponential enrichment assay and showed a high binding affinity ( K D = 98 pmol/L) to endoglin. Conjugating the aptamers and imaging reporters on a G5 dendrimer created an HCC-targeting nanoprobe that allowed the successful visualization of orthotopic HCC xenografts with diameters as small as 1-4 mm. Significantly, the invasive tumor margin was clearly delineated, with a tumor to normal ratio of 2.7 by near-infrared (NIR) fluorescence imaging and 2.1 by T 1 -weighted MRI. This multimodal nanoprobe holds promise not only for noninvasively defining tiny HCC by preoperative MRI but also for guiding tumor excision via intraoperative NIR fluorescence imaging, which will probably gain benefit for the patient's therapeutic response and improve the survival rate.
Hausmann, Michael; Ilić, Nataša; Pilarczyk, Götz; Lee, Jin-Ho; Logeswaran, Abiramy; Borroni, Aurora Paola; Krufczik, Matthias; Theda, Franziska; Waltrich, Nadine; Bestvater, Felix; Hildenbrand, Georg; Cremer, Christoph; Blank, Michael
2017-09-28
Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP) tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2) in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine.
The Quality of In Vivo Upconversion Fluorescence Signals Inside Different Anatomic Structures.
Wang, Lijiang; Draz, Mohamed Shehata; Wang, Wei; Liao, Guodong; Xu, Yuhong
2015-02-01
Fluorescence imaging is a broadly interesting and rapidly growing strategy for non-invasive clinical applications. However, because of interference from light scattering, absorbance, and tissue autofluorescence, the images can exhibit low sensitivity and poor quality. Upconversion fluorescence imaging, which is based on the use of near-infrared (NIR) light for excitation, has recently been introduced as an improved approach to minimize the effects of light scattering and tissue autofluorescence. This strategy is promising for ultrasensitive and deep tissue imaging applications. However, the emitted upconversion fluorescence signals are primarily in the visible range and are likely to be absorbed and scattered by tissues. Therefore, different anatomic structures could impose various effects on the quality of the images. In this study, we used upconversion-core/silica-shell nanoprobes to evaluate the quality of upconversion fluorescence at different anatomic locations in athymic nude mice. The nanoprobe contained an upconversion core, which was green (β-NaYF4:Yb3+/Ho3+) or red (β-NaYF4:Yb3+/Er3+), and a nonporous silica shell to allow for multicolor imaging. High-quality upconversion fluorescence signals were detected with signal-to-noise ratios of up to 170 at tissue depths of up to - 1.0 cm when a 980 nm laser excitation source and a bandpass emission filter were used. The presence of dense tissue structures along the imaging path reduced the signal intensity and imaging quality, and nanoprobes with longer-wavelength emission spectra were therefore preferable. This study offers a detailed analysis of the quality of upconversion signals in vivo inside different anatomic structures. Such information could be essential for the analysis of upconversion fluorescence images in any in vivo biodiagnostic and microbial tracking applications.
Sahu, Abhishek; Hwang, Youngmin; Vilos, Cristian; Lim, Jong-Min; Kim, Sunghyun; Choi, Won Il; Tae, Giyoong
2018-05-22
The calcium (Ca2+) ion concentration in the blood serum is tightly regulated, and any abnormalities in the level of serum calcium ions are associated with many potentially dangerous diseases. Thus, monitoring of the Ca2+ ion concentration in the blood serum is of fundamental importance. Gold nanoparticle (GNP)-based colorimetric biosensors have enormous potential in clinical diagnostic applications due to their simplicity, versatility, and unique optical properties. In this study, we have developed an alendronate functionalized gold nanoparticle (GNP-ALD) system for the measurement of Ca2+ ion concentration in biological samples. The GNP-ALD system showed higher sensitivity towards the Ca2+ ion compared to adenosine diphosphate (ADP) or adenosine triphosphate (ATP). The strong interaction between the Ca2+ ion and ALD at the GNP/solution interface resulted in significant aggregation of the ALD conjugated GNPs, and induced a color change of the solution from red to blue, which could be visually observed with the naked eye. The interaction between the Ca2+ ion and GNP-ALD was characterized by UV-visible spectroscopy, transmission electron microscopy (TEM) imaging, and dynamic light scattering (DLS) analysis. Under the optimized conditions, the lower limit of Ca2+ ion detection using this method was found to be 25 μM and a linear response range from 25 μM to 300 μM Ca2+ ions was obtained with excellent discrimination against other metal ions. The GNP-ALD nanoprobe could successfully determine the ionized Ca2+ concentration in various serum samples and the results were validated using a commercial calcium assay kit. Moreover, as a practical application, we demonstrated the utility of this nanoprobe for the detection of cancer-associated hypercalcemia in a mouse model.
Novel CuS-based nanoprobes for photoacoustic molecular imaging in the second near-infrared region
NASA Astrophysics Data System (ADS)
Yuan, Zhen; Gao, Duyang
2018-02-01
In this work, protein-modified hydrophilic copper sufide (CuS) nanotriangles with tunable absorption in the second near-infrared (NIR-II) region are developed, which can be served as contrast agents for enhanced in vivo photoacoustic imaging. In vitro and in vivo toxicity analysis are also performed, which show that the nanoprobes are biocompatible for most of the test cases. As a result, the nanoprones is able to pave a new avenue for improving the photoacoustic imaigng contrast and penetration depth in cancer detection. It should be pointed out that other functional blocks may also be linked on it, which makes it a general method to design multifunctional nanoprobes.
NASA Astrophysics Data System (ADS)
Moradi Khaniabadi, P.; S. A Majid, A. M.; Asif, M.; Moradi Khaniabadi, B.; Shahbazi-Gahrouei, D.; Jaafar, M. S.
2017-05-01
Effective and specific diagnostic imaging techniques are important in early-stage breast cancer treatment. The objective of this study was to develop a specific breast cancer contrast agent for magnetic resonance imaging (MRI). In so doing, superparamagnetic iron oxide nanoparticles (SPIONs) were conjugated to C595 monoclonal antibody using EDC chemistry to produce nanoprobe with high relaxivity and narrow size (87.4±0.7 nm). To test the developed nanoprobe in vitro, assessments including Cell toxicity, targeting efficacy, cellular binding, and MR imaging were carried out. The results indicated that after 6 hrs incubation with MCF-7 cells at 200 to 25 µg Fe/ml doses, 76% to 16% T2 reduction was obtained. The presence of iron localised in MCF-7 cells measured by atomic absorption spectroscopy (AAS) was about 9.95±0.09 ppm iron/cell at higher doses of nanoprobe. Moreover, a linear relationship between iron concentration of nontoxic SPION-C595 and T2 relaxation times was observed. This study also revealed that developed nanoprobe might be used as a specific negative contrast agent for detecting breast cancer.
Jia, Ruizhen; Song, Pengfei; Wang, Jingjing; Mai, Hengtang; Li, Sixian; Cheng, Yu; Wu, Song
2018-05-29
Carbon monoxide (CO) is recognized as a biologically essential gaseous neurotransmitter that modulates many physiological processes in living subjects. Currently reported fluorescent probes for CO imaging in cells basically utilize palladium related chemistry which requires complicated synthetic work. Herein we provide a new strategy to construct a fluorescent nanoprobe, NanoCO-1, based on the Forster resonance energy transfer (FRET) mechanism by entrapping the existing dirhodium complex as the energy acceptor and the CO recognition part, and a commonly used nitrobenzoxadiazole (NBD) dye as energy donor into a micelle formed by self-assembly. The exchange of ligands in the dirhodium complex by CO in the nanoprobe disrupts the FRET and leads to the turn-on of fluorescence. The merits of NanoCO-1 including good biocompatibility, selectivity, photostability, and low cytotoxity, render this nanoprobe ability to track CO in living cells, zebrafish embryo, and larvae. Our straightforward approach can be extended to establish the CO fluorescent probes based on adsorption of CO on a variety of metal derivatives.
Luminescent single-walled carbon nanotube-sensitized europium nanoprobes for cellular imaging
Avti, Pramod K; Sitharaman, Balaji
2012-01-01
Lanthanoid-based optical probes with excitation wavelengths in the ultra-violet (UV) range (300–325 nm) have been widely developed as imaging probes. Efficient cellular imaging requires that lanthanoid optical probes be excited at visible wavelengths, to avoid UV damage to cells. The efficacy of europium-catalyzed single-walled carbon nanotubes (Eu-SWCNTs), as visible nanoprobes for cellular imaging, is reported in this study. Confocal fluorescence microscopy images of breast cancer cells (SK-BR-3 and MCF-7) and normal cells (NIH 3T3), treated with Eu-SWCNT at 0.2 μg/mL concentration, showed bright red luminescence after excitation at 365 nm and 458 nm wavelengths. Cell viability analysis showed no cytotoxic effects after the incubation of cells with Eu-SWCNTs at this concentration. Eu-SWCNT uptake is via the endocytosis mechanism. Labeling efficiency, defined as the percentage of incubated cells that uptake Eu-SWCNT, was 95%–100% for all cell types. The average cellular uptake concentration was 6.68 ng Eu per cell. Intracellular localization was further corroborated by transmission electron microscopy and Raman microscopy. The results indicate that Eu-SWCNT shows potential as a novel cellular imaging probe, wherein SWCNT sensitizes Eu3+ ions to allow excitation at visible wavelengths, and stable time-resolved red emission. The ability to functionalize biomolecules on the exterior surface of Eu-SWCNT makes it an excellent candidate for targeted cellular imaging. PMID:22619533
Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui
2016-12-09
Accurate quantitation of intracellular pH (pH i ) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pH i sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pH i . Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pH i , in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF 4 :Yb 3+ , Tm 3+ UCNPs were used as pH i response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pH i value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pH i related areas and development of the intracellular drug delivery systems.
NASA Astrophysics Data System (ADS)
Li, Cuixia; Zuo, Jing; Zhang, Li; Chang, Yulei; Zhang, Youlin; Tu, Langping; Liu, Xiaomin; Xue, Bin; Li, Qiqing; Zhao, Huiying; Zhang, Hong; Kong, Xianggui
2016-12-01
Accurate quantitation of intracellular pH (pHi) is of great importance in revealing the cellular activities and early warning of diseases. A series of fluorescence-based nano-bioprobes composed of different nanoparticles or/and dye pairs have already been developed for pHi sensing. Till now, biological auto-fluorescence background upon UV-Vis excitation and severe photo-bleaching of dyes are the two main factors impeding the accurate quantitative detection of pHi. Herein, we have developed a self-ratiometric luminescence nanoprobe based on förster resonant energy transfer (FRET) for probing pHi, in which pH-sensitive fluorescein isothiocyanate (FITC) and upconversion nanoparticles (UCNPs) were served as energy acceptor and donor, respectively. Under 980 nm excitation, upconversion emission bands at 475 nm and 645 nm of NaYF4:Yb3+, Tm3+ UCNPs were used as pHi response and self-ratiometric reference signal, respectively. This direct quantitative sensing approach has circumvented the traditional software-based subsequent processing of images which may lead to relatively large uncertainty of the results. Due to efficient FRET and fluorescence background free, a highly-sensitive and accurate sensing has been achieved, featured by 3.56 per unit change in pHi value 3.0-7.0 with deviation less than 0.43. This approach shall facilitate the researches in pHi related areas and development of the intracellular drug delivery systems.
Alloy metal nanoparticles for multicolor cancer diagnostics
NASA Astrophysics Data System (ADS)
Baptista, Pedro V.; Doria, Gonçalo; Conde, João
2011-03-01
Cancer is a multigenic complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus results in a more accurate indicator of degree of cancerous activity than either locus alone. Metal nanoparticles have been thoroughly used as labels for in vitro identification and quantification of target sequences. We have synthesized nanoparticles with assorted noble metal compositions in an alloy format and functionalized them with thiol-modified ssDNA (nanoprobes). These nanoprobes were then used for the simultaneous specific identification of several mRNA targets involved in cancer development - one pot multicolor detection of cancer expression. The different metal composition in the alloy yield different "colors" that can be used as tags for identification of a given target. Following a non-cross-linking hybridization procedure previously developed in our group for gold nanoprobes, these multicolor nanoprobes were used for the molecular recognition of several different targets including differently spliced variants of relevant genes (e.g. gene products involved in chronic myeloid leukemia BCR, ABL, BCR-ABL fusion product). Based on the spectral signature of mixtures, before and after induced aggregation of metal nanoparticles, the correct identification could be made. Further application to differentially quantify expression of each locus in relation to another will be presented. The differences in nanoparticle stability and labeling efficiency for each metal combination composing the colloids, as well as detection capability for each nanoprobe will be discussed. Additional studies will be conducted towards allele specific expression studies.
Zhang, Yunfei; Liu, Haoran; Tang, Jiali; Li, Zhuoyun; Zhou, Xingyu; Zhang, Ren; Chen, Liang; Mao, Ying; Li, Cong
2017-05-31
A handheld Raman detector with operational convenience, high portability, and rapid acquisition rate has been applied in clinics for diagnostic purposes. However, the inherent weakness of Raman scattering and strong scattering of the turbid tissue restricts its utilization to superficial locations. To extend the applications of a handheld Raman detector to deep tissues, a gold nanostar-based surface-enhanced Raman scattering (SERS) nanoprobe with robust colloidal stability, a fingerprint-like spectrum, and extremely high sensitivity (5.0 fM) was developed. With the assistance of FPT, a multicomponent optical clearing agent (OCA) efficiently suppressing light scattering from the turbid dermal tissues, the handheld Raman detector noninvasively visualized the subcutaneous tumor xenograft with a high target-to-background ratio after intravenous injection of the gold nanostar-based SERS nanoprobe. To the best of our knowledge, this work is the first example to introduce the optical clearing technique in assisting SERS imaging in vivo. The combination of optical clearing technology and SERS is a promising strategy for the extension of the clinical applications of the handheld Raman detector from superficial tissues to subcutaneous or even deeper lesions that are usually "concealed" by the turbid dermal tissue.
Han, Jing; Zhuo, Ying; Chai, Ya-Qin; Xiang, Yun; Yuan, Ruo
2015-02-03
Carbon nanomaterials were usually exploited as nanocarriers in an electrochemical immunosensor but rarely acted as redox nanoprobes. Herein, our motivation is to adequately utilize the inner redox activity of fullerene (C60) to obtain a new type of redox nanoprobe based on a hydrophilic C60 nanomaterial. First, C60 nanoparticles (C60NPs) were prepared by phase-transfer method and functionalized with amino-terminated polyamidoamine (PAMAM) to obtain the PAMAM decorated C60NPs (PAMAM-C60NPs) which have better hydrophilicity compared to that of unmodified C60NPs and possesses abundant amine groups for further modification. Following that, gold nanoparticles (nano-Au) were absorbed on the PAMAM-C60NPs surface, and the resultant Au-PAMAM-C60NPs were employed as a new type of redox nanoprobe and nanocarrier to label detection antibodies (Ab2). Doping control has become the biggest problem facing international sport. Erythropoietin (EPO) as a blood doping agent has been a hotspot in doping control. After sandwich-type immunoreaction between EPO (as a model) and Ab2-labeled Au-PAMAM-C60NPs, the resultant immunosensor was further incubated with a drop of tetraoctylammonium bromide (TOAB) which acts as booster to arouse the inner redox activity of Au-PAMAM-C60NPs, thus a pair of reversible redox peaks is observed. As a result, the proposed immunosensor shows a wide linear range and a relatively low detection limit for EPO. This strategy paves a new avenue for exploring the redox nanoprobe based on carbon nanomaterials in the electrochemical biosensor field.
NASA Astrophysics Data System (ADS)
Connolly, Emma; Subhash, Hrebesh M.; Leahy, Martin; Rooney, Niall; Barry, Frank; Murphy, Mary; Barron, Valerie
2014-02-01
Despite the fact, that a range of clinically viable imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), photo emission tomography (PET), ultrasound and bioluminescence imaging are being optimised to track cells in vivo, many of these techniques are subject to limitations such as the levels of contrast agent required, toxic effects of radiotracers, photo attenuation of tissue and backscatter. With the advent of nanotechnology, nanoprobes are leading the charge to overcome these limitations. In particular, single wall nanotubes (SWNT) have been shown to be taken up by cells and as such are effective nanoprobes for cell imaging. Consequently, the main aim of this research is to employ mesenchymal stem cells (MSC) containing SWNT nanoprobes to image cell distribution in a 3D scaffold for cartilage repair. To this end, MSC were cultured in the presence of 32μg/ml SWNT in cell culture medium (αMEM, 10% FBS, 1% penicillin/streptomycin) for 24 hours. Upon confirmation of cell viability, the MSC containing SWNT were encapsulated in hyaluronic acid gels and loaded on polylactic acid polycaprolactone scaffolds. After 28 days in complete chondrogenic medium, with medium changes every 2 days, chondrogenesis was confirmed by the presence of glycosaminoglycan. Moreover, using photothermal optical coherence tomography (PT-OCT), the cells were seen to be distributed through the scaffold with high resolution. In summary, these data reveal that MSC containing SWNT nanoprobes in combination with PT-OCT offer an exciting opportunity for stem cell tracking in vitro for assessing seeding scaffolds and in vivo for determining biodistribution.
A Targeted Nanoprobe Based on Carbon Nanotubes-Natural Biopolymer Chitosan Composites
Wu, Baoyan; Zhao, Na
2016-01-01
A novel targeting theranostic nanoprobe based on single-walled carbon nanotubes (SWCNTs)-natural biopolymer chitosan composites was developed for cancer cell targeting imaging and fluorescence imaging-guided photodynamic therapy. First, chitosan was respectively conjugated with a tumor-homing molecule folic acid, or a photosensitizing drug pyropheophorbide a using a water-soluble carbodiimide coupling chemistry. Chitosan was fluorescently labeled by fluorescein isothiocyanate via the covalently linkage of the isothiocyanate group with the amino group. Second, SWCNTs were sonicated in the functional chitosan aqueous solution for 6 h at room temperature in order to obtain the nanoprobe (PPa/FITC-SWCNT-FA). The as-prepared nanoprobe has been characterized with transmission electron microscope, confocal microscopy, and cell cytotoxicity tests. Chitosan was decorated onto SWCNTs resulting in the water-dispersible PPa/FITC-SWCNT-FA, and can be selectively transported inside folate receptor-positive tumor cell with good targeting imaging. PPa/FITC-SWCNT-FA exhibited low dark toxicity about 7%–13%, and high phototoxicity about 60%–74% against HeLa cells upon a 635 nm laser irradiation, indicating satisfying biocompatibility and antitumor activity. These results suggest the study could offer a feasible alternative to presently available nanoparticle-based theranostic agents. PMID:28335344
Xu, Wenjie; Chen, Zhenyi; Chen, Na; Zhang, Heng; Liu, Shupeng; Hu, Xinmao; Wen, Jianxiang; Wang, Tingyun
2017-01-01
A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs) with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP) with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD) technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L. PMID:28245618
Gedi, Vinayakumar; Kim, Young-Pil
2014-01-01
Detection and characterization of cells using aptamers and aptamer-conjugated nanoprobes has evolved a great deal over the past few decades. This evolution has been driven by the easy selection of aptamers via in vitro cell-SELEX, permitting sensitive discrimination between target and normal cells, which includes pathogenic prokaryotic and cancerous eukaryotic cells. Additionally, when the aptamer-based strategies are used in conjunction with nanomaterials, there is the potential for cell targeting and therapeutic effects with improved specificity and sensitivity. Here we review recent advances in aptamer-based nano-conjugates and their applications for detecting cancer cells and pathogenic bacteria. The multidisciplinary research utilized in this field will play an increasingly significant role in clinical medicine and drug discovery. PMID:25268922
A turn-on coordination nanoparticle-based fluorescent probe for phosphate in human serum
NASA Astrophysics Data System (ADS)
Lin, Na; Li, Jian; Lu, Zhixiang; Bian, Longchun; Zheng, Liyan; Cao, Qiue; Ding, Zhongtao
2015-03-01
Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in the detection of phosphate in human serum samples. This work not only develops a probe for phosphate but also provides a general strategy for designing nanoprobes or nanocarriers towards various targets by altering organic linkers or metal ions.Coordination nanoparticles (CNPs) are becoming attractive platforms for chemical sensing applications because their unique adjustable properties offer the opportunity to design various luminescent nanoprobes. Here, we present a CNP-based fluorescent nanoprobe, in which fluorophores (rhodamine B, RB) and quenchers (methylene blue, MB) were spontaneously enfolded by coordination networks self-assembled of adenine, biphenyl-4,4'-dicarboxylic acid (BDA) and zinc ions. The aggregation of fluorophores and quenchers in CNPs resulted in a quenched state fluorescence of RB. RB and MB could be released from CNPs in the presence of phosphate, which triggered the fluorescence of RB. On the basis of recognition-driven disassembly principle, a novel turn-on fluorescent probe for the determination of PO43- with a wide response range (0.5-50 μM) has been successfully applied in the detection of phosphate in human serum samples. This work not only develops a probe for phosphate but also provides a general strategy for designing nanoprobes or nanocarriers towards various targets by altering organic linkers or metal ions. Electronic supplementary information (ESI) available: Supplementary figures. See DOI: 10.1039/c5nr00515a
Dong, Haifeng; Meng, Xiangdan; Dai, Wenhao; Cao, Yu; Lu, Huiting; Zhou, Shufeng; Zhang, Xueji
2015-04-21
Herein, a highly sensitive and selective microRNA (miRNA) detection strategy using DNA-bio-bar-code amplification (BCA) and Nb·BbvCI nicking enzyme-assisted strand cycle for exponential signal amplification was designed. The DNA-BCA system contains a locked nucleic acid (LNA) modified DNA probe for improving hybridization efficiency, while a signal reported molecular beacon (MB) with an endonuclease recognition site was designed for strand cycle amplification. In the presence of target miRNA, the oligonucleotides functionalized magnetic nanoprobe (MNP-DNA) and gold nanoprobe (AuNP-DNA) with numerous reported probes (RP) can hybridize with target miRNA, respectively, to form a sandwich structure. After sandwich structures were separated from the solution by the magnetic field, the RP were released under high temperature to recognize the MB and cleaved the hairpin DNA to induce the dissociation of RP. The dissociated RP then triggered the next strand cycle to produce exponential fluorescent signal amplification for miRNA detection. Under optimized conditions, the exponential signal amplification system shows a good linear range of 6 orders of magnitude (from 0.3 pM to 3 aM) with limit of detection (LOD) down to 52.5 zM, while the sandwich structure renders the system with high selectivity. Meanwhile, the feasibility of the proposed strategy for cell miRNA detection was confirmed by analyzing miRNA-21 in HeLa lysates. Given the high-performance for miRNA analysis, the strategy has a promising application in biological detection and in clinical diagnosis.
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy. PMID:28638483
Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da
2017-01-01
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.
Liu, Rongjun; Zhang, Liangliang; Chen, Yunyun; Huang, Zirong; Huang, Yong; Zhao, Shulin
2018-04-03
The superoxide anion (O 2 •- ) and hydroxyl radical ( • OH) are important reactive oxygen species (ROS) used as biomarkers in physiological and pathological processes. ROS generation is closely related to the development of a variety of inflammatory diseases. However, the changes of ROS are difficult to ascertain with in situ tracing of the inflammation process by real-time monitoring, owing to the short half-lives of ROS and high tissue autofluorescence in vivo. Here we developed a new near-infrared (NIR) ratiometric fluorescence imaging approach by using a Förster resonance energy transfer (FRET)-based ratiometric fluorescent nanoprobe for real-time monitoring of O 2 •- and • OH generation and also by using in situ tracing of the inflammation process in vivo. The proposed nanoprobe was composed of PEG functionalized GQDs as the energy donor connecting to hydroIR783, serving as both the O 2 •- / • OH recognizing ligand and the energy acceptor. The nanoprobe not only exhibited a fast response to O 2 •- and • OH but also presented good biocomapatibility as well as a high photostability and signal-to-noise ratio. We have demonstrated that the proposed NIR ratiometric fluorescent nanoprobe can monitor the changes of O 2 •- and • OH in living RAW 264.7 cells via a drug mediating inflammation model and further realized visual monitoring of the change of O 2 •- and • OH in mice for in situ tracing of the inflammation process. Our design may provide a new paradigm for long-term and real-time imaging applications for in vivo tracing of the pathological process related to the inflammatory diseases.
NASA Astrophysics Data System (ADS)
Narayanan, Nisha; Nair, Lakshmi V.; Karunakaran, Varsha; Joseph, Manu M.; Nair, Jyothi B.; N, Ramya A.; Jayasree, Ramapurath S.; Maiti, Kaustabh Kumar
2016-06-01
Herein, we have examined distinctive structural and functional variations of cellular components during apoptotic cell death induced by a targeted theranostic nanoprobe, MMP-SQ@GNR@LAH-DOX, which acted as a SERS ``on/off'' probe in the presence of a MMP protease and executed synergistic photothermal chemotherapy, as reflected by the SERS fingerprinting, corresponding to the phosphodiester backbone of DNA.Herein, we have examined distinctive structural and functional variations of cellular components during apoptotic cell death induced by a targeted theranostic nanoprobe, MMP-SQ@GNR@LAH-DOX, which acted as a SERS ``on/off'' probe in the presence of a MMP protease and executed synergistic photothermal chemotherapy, as reflected by the SERS fingerprinting, corresponding to the phosphodiester backbone of DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03385g
Jia, Nengqin; Lian, Qiong; Tian, Zhong; Duan, Xin; Yin, Min; Jing, Lihong; Chen, Shouhui; Shen, Hebai; Gao, Mingyuan
2010-01-29
Novel multi-color fluorescent nanoprobes were prepared by electrostatically assembling differently sized CdTe quantum dots on polyethylenimine (PEI) functionalized multi-walled carbon nanotubes (MWNTs). The structural and optical properties of the nano-assemblies (MWNTs-PEI-CdTe) were characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectroscopy, confocal microscopy and photoluminescence spectroscopy (PL), respectively. Electrochemical impedance spectroscopy (EIS) was also applied to investigate the electrostatic assembling among oxidized MWNTs, PEI and CdTe. Furthermore, confocal fluorescence microscopy was used to monitor the nano-assemblies' delivery into tumor cells. It was found that the nano-assemblies exhibit efficient intracellular transporting and strong intracellular tracking. These properties would make this luminescent nano-assembly an excellent building block for the construction of intracellular nanoprobes, which could hold great promise for biomedical applications.
Sun, Lu; Xie, Shuping; Qi, Jing; Liu, Ergang; Liu, Di; Liu, Quan; Chen, Sunhui; He, Huining; Yang, Victor C
2017-11-15
Matrix metalloproteinases (MMPs) activatable imaging probe has been explored for tumor detection. However, activation of the probe is mainly done in the extracellular space without intracellular uptake of the probe for more sensitivity. Although cell-penetrating peptides (CPPs) have been demonstrated to enable intracellular delivery of the imaging probe, they nevertheless encounter off-target delivery of the cargos to normal tissues. Herein, we have developed a dual MMP-2-activatable and tumor cell-permeable magnetic nanoprobe to simultaneously achieve selective and intracellular tumor imaging. This novel imaging probe was constructed by self-assembling a hexahistidine-tagged (His-tagged) fluorescent fusion protein chimera and nickel ferrite nanoparticles via a chelation mechanism. The His-tagged fluorescent protein chimera consisted of a red fluorescent protein mCherry that acted as the fluorophore, the low-molecular-weight protamine peptide as the CPP, and the MMP-2 cleavage sequence fused with the hexahistidine tag, whereas the nickel ferrite nanoparticles functioned as the His-tagged protein binder and also the fluorescent quencher. Both in vitro and in vivo results revealed that this imaging probe would not only remain nonpermeable to normal tissues, thereby offsetting the nonselective cellular uptake, but was also suppressed of fluorescent signals during magnetic tumor-targeting in the circulation, primarily because of the masking of the CPP activity and quenching of the fluorophore by the associated NiFe 2 O 4 nanoparticles. However, these properties were recovered or "turned on" by the action of tumor-associated MMP-2 stimuli, leading to cell penetration of the nanoprobes as well as fluorescence restoration and visualization within the tumor cells. In this regard, the presented tumor-activatable and cell-permeable system deems to be an appealing platform to achieve selective tumor imaging and intracellular protein delivery. Its impact is therefore significant, far-reaching, and wide-spread.
Montalti, M; Cantelli, A; Battistelli, G
2015-07-21
Fluorescence bioimaging is a powerful, versatile, method for investigating, both in vivo and in vitro, the complex structures and functions of living organisms in real time and space, also using super-resolution techniques. Being poorly invasive, fluorescence bioimaging is suitable for long-term observation of biological processes. Long-term detection is partially prevented by photobleaching of organic fluorescent probes. Semiconductor quantum dots, in contrast, are ultrastable, fluorescent contrast agents detectable even at the single nanoparticle level. Emission color of quantum dots is size dependent and nanoprobes emitting in the near infrared (NIR) region are ideal for low back-ground in vivo imaging. Biocompatibility of nanoparticles, containing toxic elements, is debated. Recent safety concerns enforced the search for alternative ultrastable luminescent nanoprobes. Most recent results demonstrated that optimized silicon quantum dots (Si QDs) and fluorescent nanodiamonds (FNDs) show almost no photobleaching in a physiological environment. Moreover in vitro and in vivo toxicity studies demonstrated their unique biocompatibility. Si QDs and FNDs are hence ideal diagnostic tools and promising non-toxic vectors for the delivery of therapeutic cargos. Most relevant examples of applications of Si QDs and FNDs to long-term bioimaging are discussed in this review comparing the toxicity and the stability of different nanoprobes.
NASA Astrophysics Data System (ADS)
Pons, Thomas
2017-02-01
Near infrared (NIR) emitting quantum dots based on copper indium chalcogenides present unique optical properties for in vivo fluorescence imaging. Here we present the synthesis of CuIn(S,Se)2/ZnS core/shell QDs with 30-50% quantum yield in the NIR range. These nanoprobes are solubilized in water using a block copolymer surface ligand composed of multiple binding groups for enhanced stability and zwitterionic groups for solubility and minimized nonspecific adsorption. They present limited toxicity compared to heavy metal-containing QDs. These versatile nanoprobes can be directly injected in the peritumoral region for sentinel lymph node imaging. We also demonstrate their vectorization with RGD peptides or their incorporation in folic acid-functionalized silica particles to target specific cancer cells. Their long fluorescence lifetime enables rejection of autofluorescence using time-gated detection. This considerably enhances the sensitivity of in vivo fluorescence imaging. These QDs have been used for long term labeling of cancer cells ex vivo. Following reinjection of these cells, time-gated detection enables in vivo imaging of these cancer cells in the blood stream at the single cell level. Finally, these QDs can be doped with paramagnetic manganese ions to provide multimodal contrast in both fluorescence and magnetic resonance imaging.
Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan
2018-05-15
pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.
Li, Junwei; Zrazhevskiy, Pavel; Gao, Xiaohu
2016-02-24
Nanoparticle probes enable implementation of advanced on-surface assay formats, but impose often underappreciated size-associated constraints, in particular on assay kinetics and sensitivity. The present study highlights substantially slower diffusion-limited assay kinetics due to the rapid development of a nanoprobe depletion layer next to the surface, which static incubation and mixing of bulk solution employed in conventional assay setups often fail to disrupt. In contrast, cyclic solution draining and replenishing yields reaction-limited assay kinetics irrespective of the probe size. Using common surface bioassays, enzyme-linked immunosorbent assays and immunofluorescence, this study shows that this conceptually distinct approach effectively "erases" size-dependent diffusion constraints, providing a straightforward route to rapid on-surface bioassays employing bulky probes and procedures involving multiple labeling cycles, such as multicycle single-cell molecular profiling. For proof-of-concept, the study demonstrates that the assay time can be shortened from hours to minutes with the same probe concentration and, at a typical incubation time, comparable target labeling can be achieved with up to eight times lower nanoprobe concentration. The findings are expected to enable realization of novel assay formats and stimulate development of rapid on-surface bioassays with nanoparticle probes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Calderón Bustillo, Juan; Salemi, Francesco; Dal Canton, Tito; Jani, Karan P.
2018-01-01
The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter-based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, E.; Yan, H.; Lauer, K.
2016-08-30
The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm 2 spatial resolution x-ray fluorescence images.
Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2015-12-01
In this paper, we propose a cost-sensitive local binary feature learning (CS-LBFL) method for facial age estimation. Unlike the conventional facial age estimation methods that employ hand-crafted descriptors or holistically learned descriptors for feature representation, our CS-LBFL method learns discriminative local features directly from raw pixels for face representation. Motivated by the fact that facial age estimation is a cost-sensitive computer vision problem and local binary features are more robust to illumination and expression variations than holistic features, we learn a series of hashing functions to project raw pixel values extracted from face patches into low-dimensional binary codes, where binary codes with similar chronological ages are projected as close as possible, and those with dissimilar chronological ages are projected as far as possible. Then, we pool and encode these local binary codes within each face image as a real-valued histogram feature for face representation. Moreover, we propose a cost-sensitive local binary multi-feature learning method to jointly learn multiple sets of hashing functions using face patches extracted from different scales to exploit complementary information. Our methods achieve competitive performance on four widely used face aging data sets.
Dual-sensitivity profilometry with defocused projection of binary fringes.
Garnica, G; Padilla, M; Servin, M
2017-10-01
A dual-sensitivity profilometry technique based on defocused projection of binary fringes is presented. Here, two sets of fringe patterns with a sinusoidal profile are produced by applying the same analog low-pass filter (projector defocusing) to binary fringes with a high- and low-frequency spatial carrier. The high-frequency fringes have a binary square-wave profile, while the low-frequency binary fringes are produced with error-diffusion dithering. The binary nature of the binary fringes removes the need for calibration of the projector's nonlinear gamma. Working with high-frequency carrier fringes, we obtain a high-quality wrapped phase. On the other hand, working with low-frequency carrier fringes we found a lower-quality, nonwrapped phase map. The nonwrapped estimation is used as stepping stone for dual-sensitivity temporal phase unwrapping, extending the applicability of the technique to discontinuous (piecewise continuous) surfaces. We are proposing a single defocusing level for faster high- and low-frequency fringe data acquisition. The proposed technique is validated with experimental results.
Neural assembly models derived through nano-scale measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Hongyou; Branda, Catherine; Schiek, Richard Louis
2009-09-01
This report summarizes accomplishments of a three-year project focused on developing technical capabilities for measuring and modeling neuronal processes at the nanoscale. It was successfully demonstrated that nanoprobes could be engineered that were biocompatible, and could be biofunctionalized, that responded within the range of voltages typically associated with a neuronal action potential. Furthermore, the Xyce parallel circuit simulator was employed and models incorporated for simulating the ion channel and cable properties of neuronal membranes. The ultimate objective of the project had been to employ nanoprobes in vivo, with the nematode C elegans, and derive a simulation based on the resultingmore » data. Techniques were developed allowing the nanoprobes to be injected into the nematode and the neuronal response recorded. To the authors's knowledge, this is the first occasion in which nanoparticles have been successfully employed as probes for recording neuronal response in an in vivo animal experimental protocol.« less
Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing
2016-05-11
In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging.
CARNAÚBA: The Coherent X-Ray Nanoprobe Beamline for the Brazilian Synchrotron SIRIUS/LNLS
NASA Astrophysics Data System (ADS)
Tolentino, Hélio C. N.; Soares, Márcio M.; Perez, Carlos A.; Vicentin, Flávio C.; Abdala, Dalton B.; Galante, Douglas; Teixeira, Verônica de C.; de Araújo, Douglas H. C.; Westfahl, Harry, Jr.
2017-06-01
The CARNAÚBA beamline is the tender-to-hard X-ray (2 - 15 keV) scanning nanoprobe planned for the 4th generation storage ring SIRIUS at the LNLS. CARNAÚBA uses an undulator source with vertical linear polarization in a low-beta straight section and grazing incidence-focusing mirrors to create a nanoprobe at 143 m from the source. The beamline optic is based on KB mirrors and provides high brilliance at an achromatic focal spot down to the diffraction limit diameter of ˜30 nm with a working distance of ˜6 cm. These characteristics are crucial for studying nanometric samples in experiments involving complex stages and environments. The CARNAÚBA beamline aims to perform raster scans using x-ray fluorescence, x-ray absorption spectroscopy, x-ray diffraction and coherent x-ray imaging techniques. Computed tomography will extend these methods to three dimensions.
Multifunctional hydrogel nano-probes for atomic force microscopy
Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul
2016-01-01
Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165
A next-generation in-situ nanoprobe beamline for the Advanced Photon Source
NASA Astrophysics Data System (ADS)
Maser, Jörg; Lai, Barry; Buonassisi, Tonio; Cai, Zhonghou; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Harder, Ross; Jacobsen, Chris; Liu, Wenjun; Murray, Conal; Preissner, Curt; Roehrig, Chris; Rose, Volker; Shu, Deming; Vine, David; Vogt, Stefan
2013-09-01
The Advanced Photon Source is currently developing a suite of new hard x-ray beamlines, aimed primarily at the study of materials and devices under real conditions. One of the flagship beamlines of the APS Upgrade is the In-Situ Nanoprobe beamline (ISN beamline), which will provide in-situ and operando characterization of advanced energy materials and devices under change of temperature and gases, under applied fields, in 3D. The ISN beamline is designed to deliver spatially coherent x-rays with photon energies between 4 keV and 30 keV to the ISN instrument. As an x-ray source, a revolver-type undulator with two interchangeable magnetic structures, optimized to provide high brilliance throughout the range of photon energies of 4 keV - 30 keV, will be used. The ISN instrument will provide a smallest hard x-ray spot of 20 nm using diffractive optics, with sensitivity to sub-10 nm sample structures using coherent diffraction. Using nanofocusing mirrors in Kirkpatrick-Baez geometry, the ISN will also provide a focus of 50 nm with a flux of 8·1011 Photons/s at a photon energy of 10 keV, several orders of magnitude larger than what is currently available. This will allow imaging of trace amounts of most elements in the periodic table, with a sensitivity to well below 100 atoms for most metals in thin samples. It will also enable nanospectroscopic studies of the chemical state of most materials relevant to energy science. The ISN beamline will be primarily used to study inorganic and organic photovoltaic systems, advanced batteries and fuel cells, nanoelectronics devices, and materials and systems diesigned to reduce the environmental impact of combustion.
Long, Dongping; Shang, Yunfei; Qiu, Youyi; Zhou, Bin; Yang, Peihui
2018-04-15
A novel single-cell analysis platform (SCA) was developed for the investigation of platelets adhesion to single human umbilical vein endothelial cell (HUVEC) via using the adhesion molecule (E-selectin) on the damaged HUVEC as the marker site, and integrating electrochemiluminescence (ECL) with the ultrasensitive Au@DL-ZnCQDs nanoprobes. The Au@DL-ZnCQDs nanocomposite, a kind of double layer zinc-coadsorbed carbon quantum dot (ZnCQDs) core-shell nanoprobe, was firstly constructed by using gold nanoparticles (AuNPs) as the core to load with ZnCQDs and then the citrate-modified silver nanoparticles (AgNPs) as the bridge to link AuNPs-ZnCQDs with ZnCQDs to form the core-shell with double layer ZnCQDs (DL-ZnCQDs) nanoprobe, revealed a 10-fold signal amplification. The H 2 O 2 -induced oxidative damage HUVECs were utilized as the cellular model on which anti-E-selectin functionalized nanoprobes specially recognized E-selectin, the SCA showed that the ECL signals decreased with platelets adhesion to single HUVEC. The proposed SCA could effectively and dynamically monitor the adhesion between single HUVEC and platelets in the absence and presence of collagen activation, moreover, be able to quantitatively detect the number of platelets adhesion to single HUVEC, and show a good analytical performance with linear range from 1 to 15 platelets. In contrast, the HUVEC was down-regulated the expression of adhesion molecules by treating with quercetin inhibitor, and the SCA also exhibited the feasibility for analysis of platelets adhesion to single HUVEC. Therefore, the single-cell analysis platform provided a novel and promising protocol for analysis of the single intercellular adhesion, and it will be beneficial to elucidate the pathogenesis of cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Xianzhu; Zhang, Xiaoying; Wu, Yanli
2016-11-01
Both fluorescent and magnetic nanoprobes have great potential applications for diagnostics and therapy. In the present work, a folic acid-conjugated and silica-modified GdPO4:Tb3+ (GdPO4:Tb3+@SiO2-FA) dual nanoprobe was strategically designed and synthesized for the targeted dual-modality optical and magnetic resonance (MR) imaging via a facile aqueous method. Their structural, optical, and magnetic properties were determined using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet-visible spectra (UV-Vis), photoluminescence (PL), and superconducting quantum interference device (SQUID). These results indicated that GdPO4:Tb3+@SiO2-FA were uniform monodisperse core-shell structured nanorods (NRs) with an average length of 200 nm and an average width of 25 nm. The paramagnetic property of the synthesized GdPO4:Tb3+@SiO2-FA NRs was confirmed with its linear hysteresis plot (M-H). In addition, the NRs displayed an obvious T1-weighted effect and thus it could potentially serve as a T1-positive contrast agent. The NRs emitted green lights due to the 5D4 → 7F5 transition of the Tb3+. The in vitro assays with NCI-H460 lung cancer cells and human embryonic kidney cell line 293T cells indicated that the GdPO4:Tb3+@SiO2-FA nanoprobe could specifically bind the cells bearing folate receptors (FR). The MTT assay of the NRs revealed that its cytotoxicity was very low. Further in vivo MRI experiments distinctively depict enhanced anatomical features in a xenograft tumor. These results suggest that the GdPO4:Tb3+@SiO2-FA NPs have excellent imaging and cell-targeting abilities for the folate receptor-targeted dual-modality optical and MR imaging and can be potentially used as the nanoprobe for bioimaging.
Searching for the full symphony of black hole binary mergers
NASA Astrophysics Data System (ADS)
Harry, Ian; Bustillo, Juan Calderón; Nitz, Alex
2018-01-01
Current searches for the gravitational-wave signature of compact binary mergers rely on matched-filtering data from interferometric observatories with sets of modeled gravitational waveforms. These searches currently use model waveforms that do not include the higher-order mode content of the gravitational-wave signal. Higher-order modes are important for many compact binary mergers and their omission reduces the sensitivity to such sources. In this work we explore the sensitivity loss incurred from omitting higher-order modes. We present a new method for searching for compact binary mergers using waveforms that include higher-order mode effects, and evaluate the sensitivity increase that using our new method would allow. We find that, when evaluating sensitivity at a constant rate-of-false alarm, and when including the fact that signal-consistency tests can reject some signals that include higher-order mode content, we observe a sensitivity increase of up to a factor of 2 in volume for high mass ratio, high total-mass systems. For systems with equal mass, or with total mass ˜50 M⊙, we see more modest sensitivity increases, <10 %, which indicates that the existing search is already performing well. Our new search method is also directly applicable in searches for generic compact binaries.
Chen, S.; Deng, J.; Nashed, Y. S. G.; ...
2016-07-25
Bionanoprobe (BNP), a hard x-ray fluorescence sample-scanning nanoprobe at the Advanced Photon Source of Argonne National Laboratory, has been used to quantitatively study elemental distributions in biological cells with sub-100 nm spatial resolution and high sensitivity. Cryogenic conditions enable biological samples to be studied in their frozen-hydrated state with both ultrastructure and elemental distributions more faithfully preserved compared to conventional chemical fixation or dehydration methods. Furthermore, radiation damage is reduced in two ways: the diffusion rate of free radicals is decreased at low temperatures; and the sample is embedded in vitrified ice, which reduces mass loss.
He, Yuezhen; Sun, Jian; Feng, Dexiang; Chen, Hongqi; Gao, Feng; Wang, Lun
2015-12-15
In this paper, a simple and sensitive photoluminescence method is developed for the hydroquinone quantitation by using graphene quantum dots which simultaneously serve as a peroxidase-mimicking catalyst and a photoluminescence indicator. In the presence of dissolved oxygen, graphene quantum dots with intrinsic peroxidase-mimicking catalytic activity can catalyze the oxidation of hydroquinone to produce p-benzoquinone, an intermediate, which can efficiently quench graphene quantum dots' photoluminescence. Based on this effect, a novel fluorescent platform is proposed for the sensing of hydroquinone, and the detection limit of 5 nM is found. Copyright © 2015 Elsevier B.V. All rights reserved.
Oriented conjugation of single-domain antibodies and quantum dots.
Brazhnik, Kristina; Nabiev, Igor; Sukhanova, Alyona
2014-01-01
Nanoparticle-based biodetection routinely employs monoclonal antibodies (mAbs) for targeting. However, the large size of mAbs limits the number of ligands per nanoparticle and severely restricts the bioavailability and distribution of these probes in a sample. Furthermore, conventional conjugation techniques provide nanoprobes with irregular orientation of mAbs on the nanoparticle surface and often provoke mAb unfolding. Here, we describe a protocol for engineering a new generation of ultrasmall diagnostic nanoprobes through oriented conjugation of semiconductor quantum dots (QDs) with 13 kDa single-domain antibodies (sdAbs) derived from llama immunoglobulin G (IgG). The sdAbs are conjugated with QDs in a highly oriented manner via an additional cysteine residue specifically integrated into the sdAb C-terminus. The resultant nanoprobes are <12 nm in diameter, ten times smaller in volume compared to the known alternatives. They have been proved highly efficient in flow cytometry and immunuhistochemical diagnostics. This approach can be easily extended to other semiconductor and plasmonic nanoparticles.
NASA Astrophysics Data System (ADS)
Yin, Naiqiang; Jiang, Tongtong; Yu, Jing; He, Jiawei; Li, Xu; Huang, Qianpeng; Liu, Ling; Xu, Xiaoliang; Zhu, Lixin
2014-03-01
A novel class of cell probe structured as gold nanostar@SiO2@CdTeS quantum dots@SiO2 nanoprobes with multifunctional (MFNPs) fluorescent and photothermal properties were demonstrated. The MFNPs with good homogeneity (129 ± 10 nm) and dispersity were synthesized by a liquid phase method. The fluorescence signal of quantum dots was enhanced in the MFNPs, compared with the pure quantum dots. The vitro study showed that the MFNPs can realize the targeted labeling after functionalized with anti-body. Furthermore, the nanoprobe displays strong surface plasmonic resonance absorbance in the near-infrared region, thus exhibiting an NIR (808 nm)-induced temperature elevation. When cancer cells were cultured with the anti-body linked MFNPs and irradiated by laser, the MFNPs were demonstrated as good candidates for curing cancer cells. Therefore, such a multifunctional probe can be developed as a promising nanosystem that integrates multiple capabilities for effective cancer diagnosis and therapy.
EGFR-specific nanoprobe biodistribution in mouse models
NASA Astrophysics Data System (ADS)
Fashir, Samia A.; Castilho, Maiara L.; Hupman, Michael A.; Lee, Christopher L. D.; Raniero, Leandro J.; Alwayn, Ian; Hewitt, Kevin C.
2015-06-01
Nanotechnology offers a targeted approach to both imaging and treatment of cancer, the leading cause of death worldwide. Previous studies have found nanoparticles with a wide variety of coatings initiate an immune response leading to sequestration in the liver and spleen. In an effort to find a nanoparticle platform which does not elicit an immune response we created 43/44 nm gold or silver nanoparticles coated with biomolecules normally produced by the body, α-lipoic acid and the Epidermal Growth Factor (EGF), and have used mass spectroscopy to determine their biodistribution in mouse models, 24 hours following tail vein injection. Relative to controls, mouse EGF (mEGF) coated silver and gold nanoprobes are found at reduced levels in the liver and spleen. mEGF coated gold nanoprobes on the other hand do not appear to elicit any immune response, as they are found at background levels in these organs. As a result they should remain in circulation for longer and accumulate at high levels in tumors by the enhanced permeability retention (EPR) effect.
Multiscale deformation of a liquid surface in interaction with a nanoprobe
NASA Astrophysics Data System (ADS)
Ledesma-Alonso, R.; Tordjeman, P.; Legendre, D.
2012-06-01
The interaction between a nanoprobe and a liquid surface is studied. The surface deformation depends on physical and geometric parameters, which are depicted by employing three dimensionless parameters: Bond number Bo, modified Hamaker number Ha, and dimensionless separation distance D*. The evolution of the deformation is described by a strongly nonlinear partial differential equation, which is solved by means of numerical methods. The dynamic analysis of the liquid profile points out the existence of a critical distance Dmin*, below which the irreversible wetting process of the nanoprobe happens. For D*≥Dmin*, the numerical results show the existence of two deformation profiles, one stable and another unstable from the energetic point of view. Different deformation length-scales, characterizing the stable liquid equilibrium interface, define the near- and the far-field deformation zones, where self-similar profiles are found. Finally, our results allow us to provide simple relationships between the parameters, which leads to determine the optimal conditions when performing atomic force microscope measurements over liquids.
Molecular recognition between insulin and dextran encapsulated gold nanoparticles.
Lee, Kai-Chieh; Chiang, Hsiang-Ling; Chiu, Wei-Ru; Chen, Yu-Chie
2016-11-01
Insulin is a peptide hormone that can regulate the metabolism of carbohydrates and lipids. This hormone is closely related to glucose-uptake in cells and can control blood glucose levels. Dextran is a polysaccharide composed of glucose units. In this study, we discovered that dextran-encapsulated gold nanoparticles (AuNPs@Dextran) and nanoclusters (AuNCs@Dextran) can be used to recognize insulin. The dissociation constant of insulin toward AuNPs@Dextran was estimated to be ∼5.3 × 10 -6 M. The binding site on insulin toward the dextran on the nanoprobes was explored as well. It was found that the sequence of numbers 1-22 on the insulin B chain can interact with the dextran encapsulated nanoprobes. Additionally, we also demonstrated that the dextran-encapsulated nanoprobes could be used as concentration probes to selectively enrich trace amounts of insulin (∼1 pM) from serum samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan
2009-10-26
We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.
Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.
Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin
2016-08-02
Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.
Tsang, Ming-Kiu; Ye, WeiWei; Wang, Guojing; Li, Jingming; Yang, Mo; Hao, Jianhua
2016-01-26
Ebola outbreaks are currently of great concern, and therefore, development of effective diagnosis methods is urgently needed. The key for lethal virus detection is high sensitivity, since early-stage detection of virus may increase the probability of survival. Here, we propose a luminescence scheme of assay consisting of BaGdF5:Yb/Er upconversion nanoparticles (UCNPs) conjugated with oligonucleotide probe and gold nanoparticles (AuNPs) linked with target Ebola virus oligonucleotide. As a proof of concept, a homogeneous assay was fabricated and tested, yielding a detection limit at picomolar level. The luminescence resonance energy transfer is ascribed to the spectral overlapping of upconversion luminescence and the absorption characteristics of AuNPs. Moreover, we anchored the UCNPs and AuNPs on a nanoporous alumina (NAAO) membrane to form a heterogeneous assay. Importantly, the detection limit was greatly improved, exhibiting a remarkable value at the femtomolar level. The enhancement is attributed to the increased light-matter interaction throughout the nanopore walls of the NAAO membrane. The specificity test suggested that the nanoprobes were specific to Ebola virus oligonucleotides. The strategy combining UCNPs, AuNPs, and NAAO membrane provides new insight into low-cost, rapid, and ultrasensitive detection of different diseases. Furthermore, we explored the feasibility of clinical application by using inactivated Ebola virus samples. The detection results showed great potential of our heterogeneous design for practical application.
Chen, Min-Yan; Chen, Ze-Zhong; Wu, Ling-Ling; Tang, Hong-Wu; Pang, Dai-Wen
2013-11-12
We report an indirect method for cancer cell recognition using photostable fluorescent silica nanoprobes as biological labels. The dye-doped fluorescent silica nanoparticles were synthesized using the water-in-oil (W/O) reverse microemulsion method. The silica matrix was produced by the controlled hydrolysis of tetraethylorthosilicate (TEOS) in water nanodroplets with the initiation of ammonia (NH3·H2O). Fluorescein isothiocyanate (FITC) or rhodamine B isothiocyanate conjugated with dextran (RBITC-Dextran) was doped in silica nanoparticles (NPs) with a size of 60 ± 5 nm as a fluorescent signal element by covalent bonding and steric hindrance, respectively. The secondary antibody, goat anti-rabbit IgG, was conjugated on the surface of the PEG-terminated modified FITC-doped or RBITC-Dextran-doped silica nanoparticles (PFSiNPs or PBSiNPs) by covalent binding to the PEG linkers using the cyanogen bromide method. The concentrations of goat anti-rabbit IgG covering the nanoprobes were quantified via the Bradford method. In the proof-of-concept experiment, an epithelial cell adhesion molecule (EpCAM) on the human breast cancer SK-Br-3 cell surface was used as the tumor marker, and the nanoparticle functionalized with rabbit anti-EpCAM antibody was employed as the nanoprobe for cancer cell recognition. Compared with fluorescent dye labeled IgG (FITC-IgG and RBITC-IgG), the designed nanoprobes display dramatically increased stability of fluorescence as well as photostability under continuous irradiation.
Zeng, Leyong; Pan, Yuanwei; Zou, Ruifen; Zhang, Jinchao; Tian, Ying; Teng, Zhaogang; Wang, Shouju; Ren, Wenzhi; Xiao, Xueshan; Zhang, Jichao; Zhang, Lili; Li, Aiguo; Lu, Guangming; Wu, Aiguo
2016-10-01
To avoid the overheating effect of excitation light and improve the efficacy of photodynamic therapy (PDT) of upconversion nanoplatform, a novel nanoprobe based on 808 nm-excited upconversion nanocomposites (T-UCNPs@Ce6@mSiO2) with low heating effect and deep penetration has been successfully constructed for targeted upconversion luminescence, magnetic resonance imaging (MRI) and high-efficacy PDT in HER2-overexpressed breast cancer. In this nanocomposite, photosensitizers (Ce6) were covalently conjugated inside of mesoporous silica to enhance the PDT efficacy by shortening the distance of fluorescence resonance energy transfer and to decrease the cytotoxicity by preventing the undesired leakage of Ce6. Compared with UCNPs@mSiO2@Ce6, UCNPs@Ce6@mSiO2 greatly promoted the singlet oxygen generation and amplified the PDT efficacy under the excitation of 808 nm laser. Importantly, the designed nanoprobe can greatly improve the uptake of HER2-positive cells and tumors by modifying the site-specific peptide, and the in vivo experiments showed excellent MRI and PDT via intravenous injection by modeling MDA-MB-435 tumor-bearing nude mice. Our strategy may provide an effective solution for overcoming the heating effect and improving the PDT efficacy of upconversion nanoprobes, and has potential application in visualized theranostics of HER2-overexpressed breast cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement of minority carrier diffusion lengths in GaAs nanowires by a nanoprobe technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darbandi, A.; Watkins, S. P., E-mail: simonw@sfu.ca
Minority carrier diffusion lengths in both p-type and n-type GaAs nanowires were studied using electron beam induced current by means of a nanoprobe technique without lithographic processing. The diffusion lengths were determined for Au/GaAs rectifying junctions as well as axial p-n junctions. By incorporating a thin lattice-matched InGaP passivating shell, a 2-fold enhancement in the minority carrier diffusion lengths and one order of magnitude reduction in the surface recombination velocity were achieved.
Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens
NASA Astrophysics Data System (ADS)
Seo, Youngmin; Kim, Ji-Eun; Jeong, Yoon; Lee, Kwan Hong; Hwang, Jangsun; Hong, Jongwook; Park, Hansoo; Choi, Jonghoon
2016-01-01
Many countries categorize the causative agents of severe infectious diseases as high-risk pathogens. Given their extreme infectivity and potential to be used as biological weapons, a rapid and sensitive method for detection of high-risk pathogens (e.g., Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Vaccinia virus) is highly desirable. Here, we report the construction of a novel detection platform comprising two units: (1) magnetic beads separately conjugated with multiple capturing antibodies against four different high-risk pathogens for simple and rapid isolation, and (2) genetically engineered apoferritin nanoparticles conjugated with multiple quantum dots and detection antibodies against four different high-risk pathogens for signal amplification. For each high-risk pathogen, we demonstrated at least 10-fold increase in sensitivity compared to traditional lateral flow devices that utilize enzyme-based detection methods. Multiplexed detection of high-risk pathogens in a sample was also successful by using the nanoconstructs harboring the dye molecules with fluorescence at different wavelengths. We ultimately envision the use of this novel nanoprobe detection platform in future applications that require highly sensitive on-site detection of high-risk pathogens.
NASA Astrophysics Data System (ADS)
Maldiney, Thomas; Bessière, Aurélie; Seguin, Johanne; Teston, Eliott; Sharma, Suchinder K.; Viana, Bruno; Bos, Adrie J. J.; Dorenbos, Pieter; Bessodes, Michel; Gourier, Didier; Scherman, Daniel; Richard, Cyrille
2014-04-01
Optical imaging for biological applications requires more sensitive tools. Near-infrared persistent luminescence nanoparticles enable highly sensitive in vivo optical detection and complete avoidance of tissue autofluorescence. However, the actual generation of persistent luminescence nanoparticles necessitates ex vivo activation before systemic administration, which prevents long-term imaging in living animals. Here, we introduce a new generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low-energy red photons. Surface functionalization of this photonic probe can be adjusted to favour multiple biomedical applications such as tumour targeting. Notably, we show that cells can endocytose these nanoparticles in vitro and that, after intravenous injection, we can track labelled cells in vivo and follow their biodistribution by a simple whole animal optical detection, opening new perspectives for cell therapy research and for a variety of diagnosis applications.
Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy
Paës, Gabriel; Habrant, Anouck; Terryn, Christine
2018-01-01
Lignocellulosic biomass is a complex network of polymers making up the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals, and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that requires some pretreatments and several types of catalysts to be transformed efficiently. Gaining more knowledge in the architecture of plant cell walls is therefore important to understand and optimize transformation processes. For the first time, super-resolution imaging of poplar wood samples has been performed using the Stimulated Emission Depletion (STED) technique. In comparison to standard confocal images, STED reveals new details in cell wall structure, allowing the identification of secondary walls and middle lamella with fine details, while keeping open the possibility to perform topochemistry by the use of relevant fluorescent nano-probes. In particular, the deconvolution of STED images increases the signal-to-noise ratio so that images become very well defined. The obtained results show that the STED super-resolution technique can be easily implemented by using cheap commercial fluorescent rhodamine-PEG nano-probes which outline the architecture of plant cell walls due to their interaction with lignin. Moreover, the sample preparation only requires easily-prepared plant sections of a few tens of micrometers, in addition to an easily-implemented post-treatment of images. Overall, the STED super-resolution technique in combination with a variety of nano-probes can provide a new vision of plant cell wall imaging by filling in the gap between classical photon microscopy and electron microscopy. PMID:29415498
Fluorescent Nano-Probes to Image Plant Cell Walls by Super-Resolution STED Microscopy.
Paës, Gabriel; Habrant, Anouck; Terryn, Christine
2018-02-06
Lignocellulosic biomass is a complex network of polymers making up the cell walls of plants. It represents a feedstock of sustainable resources to be converted into fuels, chemicals, and materials. Because of its complex architecture, lignocellulose is a recalcitrant material that requires some pretreatments and several types of catalysts to be transformed efficiently. Gaining more knowledge in the architecture of plant cell walls is therefore important to understand and optimize transformation processes. For the first time, super-resolution imaging of poplar wood samples has been performed using the Stimulated Emission Depletion (STED) technique. In comparison to standard confocal images, STED reveals new details in cell wall structure, allowing the identification of secondary walls and middle lamella with fine details, while keeping open the possibility to perform topochemistry by the use of relevant fluorescent nano-probes. In particular, the deconvolution of STED images increases the signal-to-noise ratio so that images become very well defined. The obtained results show that the STED super-resolution technique can be easily implemented by using cheap commercial fluorescent rhodamine-PEG nano-probes which outline the architecture of plant cell walls due to their interaction with lignin. Moreover, the sample preparation only requires easily-prepared plant sections of a few tens of micrometers, in addition to an easily-implemented post-treatment of images. Overall, the STED super-resolution technique in combination with a variety of nano-probes can provide a new vision of plant cell wall imaging by filling in the gap between classical photon microscopy and electron microscopy.
Plasmonic-based nanoprobes for dynamic sensing of single tumor cells (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Zixuan
2017-02-01
We described here two plasmonic-based nanoprobes with purpose of imaging dynamic biologic process of single tumor cells. At first, we proposed a multi-modified core-shell gold@silver nanorods for real-time monitoring the entire autophagy process at single-cell level. Autophagy is vital for understanding the mechanisms of human pathologies, developing novel drugs and exploring approaches for autophagy controlling. The plasmon resonance scattering spectra of the nanoprobes was superoxide radicals (O2•-)-dependent, a major indicator of cell autophagy, and suitable for real-time monitoring at single-cell level. More importantly, with the introduction of `relay probe' operation, two types of O2•-regulating autophagy processes were successfully traced from the beginning to the end, and the possible mechanism was also proposed. According to our results, intracellular O2•- level controlled the autophagy process by mediating the autolysosome generation. Different starvation approaches can induce different autophagy processes, such as diverse steady state time-consuming. In addition, a plasmonic-based nanothermometer was prepared via dense thermosensitive polymer (pNIPAAm) capping on gold nanorods, of which the plasmon resonance spectra was linearly dependent on adjacent temperature. In this work, the white light transmitted dark-field illuminator was replaced by a laser total internal reflection dark-field microscope (LTIR-DFM) system in order to overcome the low-throughput and inexorable biological scattering background of DFM, as well as interference from mechanic noise, nanoprobe direction, optical system drift, etc. With this nanothermometer, we have successfully captured temporal biological thermal process (thermogenesis) occurred in single tumor cells, providing a new potential strategy for in-situ cellular analysis.
Song, Xinyue; Yue, Zihong; Zhang, Jiayu; Jiang, Yanxialei; Wang, Zonghua; Zhang, Shusheng
2018-04-25
Intracellular [Ca 2+ ] i and pH i have a close relationship, and their abnormal levels can result in cell dysfunction and accompanying diseases. Thus, simultaneous determination of [Ca 2+ ] i and pH i can more accurately investigate complex biological processes in an integrated platform. Herein, multicolor upconversion nanoparticles (UCNPs) were prepared with the advantages of no spectral overlapping, single NIR excitation wavelengths, and greater tissue penetration depth. The upconversion nanoprobes were easily prepared by the attachment of two fluorescent dyes, Fluo-4 and SNARF-4F. Based on the dual luminescence resonance energy transfer (LRET) process, the blue and green fluorescence of the UCNPs were specially quenched and selectively recovered after the detachment and/or absorbance change of the attached fluorescent dyes, enabling dual detection. Importantly, the developed nanoprobe could successfully be applied for the detection of [Ca 2+ ] i and pH i change in adenosine triphosphate (ATP) and ethylene glycol tetraacetic acid (EGTA) stimulation in living cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging
Bright, Vanessa
2011-01-01
A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by conjugation of superparamagnetic Fe3O4 nanoparticles and visible light-emitting (~600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. Synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) (~800 nm) by conjugation of superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water soluble glutathione stabilized AgInS2/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. Observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging. PMID:21597146
Li, Zhiming; Huang, Peng; Lin, Jing; He, Rong; Liu, Bing; Zhang, Xiaomin; Yang, Sen; Xi, Peng; Zhang, Xuejun; Ren, Qiushi; Cui, Daxiang
2010-08-01
Angiogenesis is essential for the development of malignant tumors and provides important targets for tumor diagnosis and therapy. Quantum dots have been broadly investigated for their potential application in cancer molecular imaging. In present work, CdSe quantum dots were synthesized, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified CdSe quantum dots were conjugated with arginine-glycine-aspartic acid (RGD) peptides. These prepared nanoprobes were injected into nude mice loaded with melanoma (A375) tumor xenografts via tail vessels, IVIS imaging system was used to image the targeting and bio-distribution of as-prepared nanoprobes. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. RGD-conjugated quantum dots can specifically target human umbilical vein endothelial cells (HUVEC) and A375 melanoma cells, as well as nude mice loaded with A735 melanoma cells. High-performance RGD-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as tumor diagnosis and therapy.
Identification of Paracoccidioides brasiliensis by gold nanoprobes
NASA Astrophysics Data System (ADS)
Martins, Jaciara F. S.; Castilho, Maiara L.; Cardoso, Maria A. G.; Carreiro, Andrea P.; Martin, Airton A.; Raniero, Leandro
2012-01-01
Paracoccidioides brasiliensis (P. brasiliensis) is a thermal dimorphic fungus and causal agent of paracoccidioidomycosis. Epidemiological data shows that it is mainly concentrated in Central and South America countries, with most registered cases in Colombia, Brazil, and Venezuela. The histopathological similarity with others fungal infection makes the diagnosis of P. brasiliensis more complicated. Therefore, the aim of this work was to find a positive and negative test for P. brasiliensis using gold nanoprobes as a new tool for P. brasiliensis detection. Gold nanoparticles were synthesized by reduction of gold chloride with sodium citrate. The results of this procedure is a wine-red solution with a maximum absorption in the range of ~520-530nm. A specific P. brasiliensis sequence of oligonucleotide was bonded to the nanoparticles, which maintained the wine-red color. The color changes from red to blue for negative diagnostic and is unchanged for a positive test. The H-bond interaction of DNA with the complementary DNA keeps strands together and forms double helical structure, maintaining the colloid stability. However, for non-complimentary DNA sequence the nanoprobes merge into a cluster, changing the light absorption.
NASA Astrophysics Data System (ADS)
Maser, Jörg; Shi, Xianbo; Reininger, Ruben; Lai, Barry; Vogt, Stefan
2016-12-01
Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of Δ E/ E = 10-4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as Δ E/ E = 10-2 into a focal spot of 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. To quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software " HYBRID."
NASA Astrophysics Data System (ADS)
Xia, Xiuli; Shao, Yuanzhi
2018-02-01
We report the magneto-electric behavior of a dual-modality biomedical nanoprobe, a ternary nanosystem consisting of gold and gadolinia clusters and water molecules, with the effect of both nanoclusters on the structural and electronic properties of water. The hydrogen-oxygen bond lengths and angles as well as electronic charges of water molecules surrounding both nanoclusters were calculated using Hubbard U corrected density functional theory aided by molecular dynamics approach. The calculations reveal existence of a magneto-electric interaction between gold and gadolinium oxide nanoclusters, which influences the physical properties of surrounding water remarkably. A broader (narrower) distribution of Hsbnd O bond lengths (Hsbnd Osbnd H bond angles) was observed at the presence of either gold or gadolinia nanoclusters. The presence of Gd6O9 cluster leads to the larger charges of neighbour oxygen atoms. The distribution of oxygen atom charges becomes border when both Gd6O9 and Au13 clusters coexist. Ab initio calculation provides a feasible approach to explore the most essential interactions among functional components of a multimodal nanoprobe applied in aqueous environment.
NASA Astrophysics Data System (ADS)
Dong, Kai; Liu, Zhen; Liu, Jianhua; Huang, Sa; Li, Zhenhua; Yuan, Qinghai; Ren, Jinsong; Qu, Xiaogang
2014-01-01
In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. Additionally, the presence of Mn in these nanoparticles endow them with excellent T1-weighted MR imaging capabilities. As an alternative to T2-weighted MRI and CT dual-modality contrast agents, the nanoprobes can provide a positive contrast signal, which prevents confusion with the dark signals from hemorrhage and blood clots. To the best of our knowledge, this is the first report that a non-lanthanide imaging nanoprobe is applied for CT and T1-weighted MRI simultaneously. Moreover, comparing with gadolinium-based T1-weighted MRI and CT dual-modality contrast agents that were associated with nephrogenic systemic fibrosis (NSF), our contrast agents have superior biocompatibility, which is proved by a detailed study of the pharmacokinetics, biodistribution, and in vivo toxicology. Together with excellent dispersibility, high biocompatibility and superior contrast efficacy, these nanoprobes provide detailed and complementary information from dual-modality imaging over traditional single-mode imaging and bring more opportunities to the new generation of non-lanthanide nanoparticulate-based contrast agents.In the present work, a novel non-lanthanide dual-modality contrast agent, manganese tungstate (MnWO4), has been successfully constructed by a facile and versatile hydrothermal route. With the merits of a high atomic number and a well-positioned K-edge energy of tungsten, our well-prepared non-lanthanide nanoprobes provide a higher contrast efficacy than routine iodine-based agents in clinics. Additionally, the presence of Mn in these nanoparticles endow them with excellent T1-weighted MR imaging capabilities. As an alternative to T2-weighted MRI and CT dual-modality contrast agents, the nanoprobes can provide a positive contrast signal, which prevents confusion with the dark signals from hemorrhage and blood clots. To the best of our knowledge, this is the first report that a non-lanthanide imaging nanoprobe is applied for CT and T1-weighted MRI simultaneously. Moreover, comparing with gadolinium-based T1-weighted MRI and CT dual-modality contrast agents that were associated with nephrogenic systemic fibrosis (NSF), our contrast agents have superior biocompatibility, which is proved by a detailed study of the pharmacokinetics, biodistribution, and in vivo toxicology. Together with excellent dispersibility, high biocompatibility and superior contrast efficacy, these nanoprobes provide detailed and complementary information from dual-modality imaging over traditional single-mode imaging and bring more opportunities to the new generation of non-lanthanide nanoparticulate-based contrast agents. Electronic supplementary information (ESI) available: TEM images of MnWO4 nanoparticles synthesized at pH = 7, 180 °C pH = 9, 180 °C pH = 6, 200 °C with various amino acid molecules as capped agents, survey XPS spectra, FTIR spectrum of glycine capped MnWO4 nanorods, photos of glycine capped MnWO4 nanorods in various solutions including PBS, DMEM cell medium, and FBS, in vivo coronal view CT images of a rat before and after intravenous injection of iobitridol at different timed intervals, in vivo CT imaging of the rat one month after intravenous injection of MnWO4 nanorods, CT values of the heart, liver, spleen and kidney of a rat before and after intravenous administration of MnWO4 nanorods and iobitridol at different time intervals, hematology analysis and blood biochemical assay. See DOI: 10.1039/c3nr05455a
Zhang, Qi; Wang, Sudan; Qiao, Ruirui; Whittaker, Michael; Quinn, John; Davis, Thomas P; Li, Hongjun
2018-05-15
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, leading to the second most likely cause of cancer-related deaths. Medical imaging is crucial in clinic for HCC screening and diagnosis. Due to the relatively high special resolution and excellent sensitivity, magnetic resonance imaging (MRI) by using magnetic nanoparticle-based contrast agents has been used so far in HCC imaging and staging, demonstrating great potential and promising in vivo applications. This review focuses on the use of different magnetic nanoparticles for construction of HCC nanoprobes for MR imaging and theranostic purpose. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Reduction from cost-sensitive ordinal ranking to weighted binary classification.
Lin, Hsuan-Tien; Li, Ling
2012-05-01
We present a reduction framework from ordinal ranking to binary classification. The framework consists of three steps: extracting extended examples from the original examples, learning a binary classifier on the extended examples with any binary classification algorithm, and constructing a ranker from the binary classifier. Based on the framework, we show that a weighted 0/1 loss of the binary classifier upper-bounds the mislabeling cost of the ranker, both error-wise and regret-wise. Our framework allows not only the design of good ordinal ranking algorithms based on well-tuned binary classification approaches, but also the derivation of new generalization bounds for ordinal ranking from known bounds for binary classification. In addition, our framework unifies many existing ordinal ranking algorithms, such as perceptron ranking and support vector ordinal regression. When compared empirically on benchmark data sets, some of our newly designed algorithms enjoy advantages in terms of both training speed and generalization performance over existing algorithms. In addition, the newly designed algorithms lead to better cost-sensitive ordinal ranking performance, as well as improved listwise ranking performance.
Leiding, Thom; Górecki, Kamil; Kjellman, Tomas; Vinogradov, Sergei A; Hägerhäll, Cecilia; Arsköld, Sindra Peterson
2009-05-15
Accurate real-time measurements of proton concentration gradients are pivotal to mechanistic studies of proton translocation by membrane-bound enzymes. Here we report a detailed characterization of the pH-sensitive fluorescent nanoprobe Glu(3), which is well suited for pH measurements in microcompartmentalized biological systems. The probe is a polyglutamic porphyrin dendrimer in which multiple carboxylate termini ensure its high water solubility and prevent its diffusion across phospholipid membranes. The probe's pK is in the physiological pH range, and its protonation can be followed ratiometrically by absorbance or fluorescence in the ultraviolet-visible spectral region. The usefulness of the probe was enhanced by using a semiautomatic titration system coupled to a charge-coupled device (CCD) spectrometer, enabling fast and accurate titrations and full spectral coverage of the system at millisecond time resolution. The probe's pK was measured in bulk solutions as well as inside large unilamellar vesicles in the presence of physiologically relevant ions. Glu(3) was found to be completely membrane impermeable, and its distinct spectroscopic features permit pH measurements inside closed membrane vesicles, enabling quantitative mechanistic studies of membrane-spanning proteins. Performance of the probe was demonstrated by monitoring the rate of proton leakage through the phospholipid bilayer in large vesicles with and without the uncoupler gramicidin present. Overall, as a probe for biological proton translocation measurements, Glu(3) was found to be superior to the commercially available pH indicators.
Hu, Pengcheng; Cheng, Dengfeng; Huang, Tao; Banizs, Anna B; Xiao, Jie; Liu, Guobing; Chen, Quan; Wang, Yuenan; He, Jiang; Shi, Hongcheng
2017-09-06
Radiation therapy of liver cancer is limited by low tolerance of the liver to radiation. Radiosensitizers can effectively reduce the required radiation dose. AGuIX nanoparticles are small, multifunctional gadolinium-based nanoparticles that can carry radioisotopes or fluorescent markers for single-photon emission computed tomography (SPECT), positron emission tomography (PET), fluorescence imaging, and even multimodality imaging. In addition, due to the high atomic number of gadolinium, it can also serve as a tumor radiation sensitizer. It is critical to define the biodistribution and pharmacokinetics of these gadolinium-based nanoparticles to quantitate the magnitude and duration of their retention within the tumor microenvironment during radiotherapy. Therefore, in this study, we successfully labeled AGuIX with 64 Cu through the convenient built-in chelator. The biodistribution studies indicated that the radiotracer 64 Cu-AGuIX accumulates to high levels in the HepG2 xenograft of nude mice, suggesting that it would be a potential theranostic nanoprobe for image-guided radiotherapy in HCC. We also used a transmission electron microscope to confirm AGuIX uptake in the HepG2 cells. In radiation therapy studies, a decrease in 18 F-FDG uptake was observed in the xenografts of the nude mice irradiated with AGuIX, which was injected 1 h before. These results provide proof-of-concept that AGuIX can be used as a theranostic radiosensitizer for PET imaging to guide radiotherapy for liver cancer.
NASA Astrophysics Data System (ADS)
Hu, Pengcheng; Cheng, Dengfeng; Huang, Tao; Banizs, Anna B.; Xiao, Jie; Liu, Guobing; Chen, Quan; Wang, Yuenan; He, Jiang; Shi, Hongcheng
2017-09-01
Radiation therapy of liver cancer is limited by low tolerance of the liver to radiation. Radiosensitizers can effectively reduce the required radiation dose. AGuIX nanoparticles are small, multifunctional gadolinium-based nanoparticles that can carry radioisotopes or fluorescent markers for single-photon emission computed tomography (SPECT), positron emission tomography (PET), fluorescence imaging, and even multimodality imaging. In addition, due to the high atomic number of gadolinium, it can also serve as a tumor radiation sensitizer. It is critical to define the biodistribution and pharmacokinetics of these gadolinium-based nanoparticles to quantitate the magnitude and duration of their retention within the tumor microenvironment during radiotherapy. Therefore, in this study, we successfully labeled AGuIX with 64Cu through the convenient built-in chelator. The biodistribution studies indicated that the radiotracer 64Cu-AGuIX accumulates to high levels in the HepG2 xenograft of nude mice, suggesting that it would be a potential theranostic nanoprobe for image-guided radiotherapy in HCC. We also used a transmission electron microscope to confirm AGuIX uptake in the HepG2 cells. In radiation therapy studies, a decrease in 18F-FDG uptake was observed in the xenografts of the nude mice irradiated with AGuIX, which was injected 1 h before. These results provide proof-of-concept that AGuIX can be used as a theranostic radiosensitizer for PET imaging to guide radiotherapy for liver cancer.
Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications
NASA Astrophysics Data System (ADS)
Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao
2013-03-01
We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.
Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.
Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng
2018-05-23
Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.
Zhou, Xing; Zhang, Xiangjun; Han, Songling; Dou, Yin; Liu, Mengyu; Zhang, Lin; Guo, Jiawei; Shi, Qing; Gong, Genghao; Wang, Ruibing; Hu, Jiang; Li, Xiaohui; Zhang, Jianxiang
2017-02-08
Targeting of nanoparticles to distant diseased sites after oral delivery remains highly challenging due to the existence of many biological barriers in the gastrointestinal tract. Here we report targeted oral delivery of diverse nanoparticles in multiple disease models, via a "Trojan horse" strategy based on a bioinspired yeast capsule (YC). Diverse charged nanoprobes including quantum dots (QDs), iron oxide nanoparticles (IONPs), and assembled organic fluorescent nanoparticles can be effectively loaded into YC through electrostatic force-driven spontaneous deposition, resulting in different diagnostic YC assemblies. Also, different positive nanotherapies containing an anti-inflammatory drug indomethacin (IND) or an antitumor drug paclitaxel (PTX) are efficiently packaged into YC. YCs containing either nanoprobes or nanotherapies may be rapidly endocytosed by macrophages and maintained in cells for a relatively long period of time. Post oral administration, nanoparticles packaged in YC are first transcytosed by M cells and sequentially endocytosed by macrophages, then transported to neighboring lymphoid tissues, and finally delivered to remote diseased sites of inflammation or tumor in mice or rats, all through the natural route of macrophage activation, recruitment, and deployment. For the examined acute inflammation model, the targeting efficiency of YC-delivered QDs or IONPs is even higher than that of control nanoprobes administered at the same dose via intravenous injection. Assembled IND or PTX nanotherapies orally delivered via YCs exhibit remarkably potentiated efficacies as compared to nanotherapies alone in animal models of inflammation and tumor, which is consistent with the targeting effect and enhanced accumulation of drug molecules at diseased sites. Consequently, through the intricate transportation route, nanoprobes or nanotherapies enveloped in YC can be preferentially delivered to desired targets, affording remarkably improved efficacies for the treatment of multiple diseases associated with inflammation.
Ma, Hua; Wang, Yuanxiu; Cong, Deyuan; Jiang, Yufei
2017-01-01
We have developed a ratiometric time-gated luminescence sensory system for in vivo imaging of hypochlorous acid (HClO) by preparing a dual-emissive nanoarchitecture of europium- and terbium-complex-modified silica nanoparticles. The design of this nanoarchitecture is based on our new finding that the strong, long-lived luminescence of the β-diketonate–Eu3+ complex can be rapidly and selectively quenched by HClO. Therefore, the β-diketonate–Eu3+ complex was decorated on the surface of the silica nanoparticles for responding to HClO, while a HClO-insensitive luminescent terbium complex was immobilized in the inner solid core of the nanoparticles to serve as an internal standard. This nanosensing probe combines the advantages of both ratiometric and time-gated detection modes to afford high accuracy and sensitivity. Upon exposure to HClO, the nanoprobe displayed a remarkable luminescence color change from red to green, and the intensity ratio of the green over the red luminescence (I 539/I 607) showed a rapid, sensitive and selective response to HClO. Additionally, the feasibility of using the nanoprobe for intracellular detection of exogenous and endogenous HClO and for real-time mapping of HClO in small laboratory animals has been demonstrated via ratiometric time-gated luminescence imaging microscopy. The results reveal that the constructed nanoarchitecture cloud is a favorable and useful sensing probe for the real-time imaging of HClO in vivo with high specificity and contrast. PMID:28451159
Detectability of gravitational waves from binary black holes: Impact of precession and higher modes
NASA Astrophysics Data System (ADS)
Calderón Bustillo, Juan; Laguna, Pablo; Shoemaker, Deirdre
2017-05-01
Gravitational wave templates used in current searches for binary black holes omit the effects of precession of the orbital plane and higher-order modes. While this omission seems not to impact the detection of sources having mass ratios and spins similar to those of GW150914, even for total masses M >200 M⊙ , we show that it can cause large fractional losses of sensitive volume for binaries with mass ratio q ≥4 and M >100 M⊙, measured in the detector frame. For the highest precessing cases, this is true even when the source is face-on to the detector. Quantitatively, we show that the aforementioned omission can lead to fractional losses of sensitive volume of ˜15 %, reaching >25 % for the worst cases studied. Loss estimates are obtained by evaluating the effectualness of the SEOBNRv2-ROM double spin model, currently used in binary black hole searches, towards gravitational wave signals from precessing binaries computed by means of numerical relativity. We conclude that, for sources with q ≥4 , a reliable search for binary black holes heavier than M >100 M⊙ needs to consider the effects of higher-order modes and precession. The latter seems especially necessary when Advanced LIGO reaches its design sensitivity.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018-03-01
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f =25 Hz )=1. 8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f =25 Hz )=1. 1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paterson, D.; Jonge, M. D. de; Howard, D. L.
2011-09-09
A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.
Mosley, Garrett L; Nguyen, Phuong; Wu, Benjamin M; Kamei, Daniel T
2016-08-07
The lateral-flow immunoassay (LFA) is a well-established diagnostic technology that has recently seen significant advancements due in part to the rapidly expanding fields of paper diagnostics and paper-fluidics. As LFA-based diagnostics become more complex, it becomes increasingly important to quantitatively determine important parameters during the design and evaluation process. However, current experimental methods for determining these parameters have certain limitations when applied to LFA systems. In this work, we describe our novel methods of combining paper and radioactive measurements to determine nanoprobe molarity, the number of antibodies per nanoprobe, and the forward and reverse rate constants for nanoprobe binding to immobilized target on the LFA test line. Using a model LFA system that detects for the presence of the protein transferrin (Tf), we demonstrate the application of our methods, which involve quantitative experimentation and mathematical modeling. We also compare the results of our rate constant experiments with traditional experiments to demonstrate how our methods more appropriately capture the influence of the LFA environment on the binding interaction. Our novel experimental approaches can therefore more efficiently guide the research process for LFA design, leading to more rapid advancement of the field of paper-based diagnostics.
Maser, Jorg; Shi, Xianbo; Reininger, Ruben; ...
2016-02-22
Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of ΔE/E = 10 –4 into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as ΔE/E = 10 –2 into a focal spot ofmore » 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. Furthermore, to quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software “HYBRID.”« less
Single molecule localization imaging of exosomes using blinking silicon quantum dots
NASA Astrophysics Data System (ADS)
Zong, Shenfei; Zong, Junzhu; Chen, Chen; Jiang, Xiaoyue; Zhang, Yizhi; Wang, Zhuyuan; Cui, Yiping
2018-02-01
Discovering new fluorophores, which are suitable for single molecule localization microscopy (SMLM) is important for promoting the applications of SMLM in biological or material sciences. Here, we found that silicon quantum dots (Si QDs) possess a fluorescence blinking behavior, making them an excellent candidate for SMLM. The Si QDs are fabricated using a facile microwave-assisted method. Blinking of Si QDs is confirmed by single particle fluorescence measurement and the spatial resolution achieved is about 30 nm. To explore the potential application of Si QDs as the nanoprobes for SMLM imaging, cell derived exosomes are chosen as the object owing to their small size (50-100 nm in diameter). Since CD63 is commonly presented on the membrane of exosomes, CD63 aptamers are attached to the surface of Si QDs to form nanoprobes which can specifically recognize exosomes. SMLM imaging shows that Si QDs based nanoprobes can indeed realize super resolved optical imaging of exosomes. More importantly, blinking of Si QDs is observed in water or PBS buffer with no need for special imaging buffers. Besides, considering that silicon is highly biocompatible, Si QDs should have minimal cytotoxicity. These features make Si QDs quite suitable for SMLM applications especially for live cell imaging.
Zou, Fengming; Zhou, Hongjian; Tan, Tran Van; Kim, Jeonghyo; Koh, Kwangnak; Lee, Jaebeom
2015-06-10
A novel dual-mode immunoassay based on surface-enhanced Raman scattering (SERS) and fluorescence was designed using graphene quantum dot (GQD) labels to detect a tuberculosis (TB) antigen, CFP-10, via a newly developed sensing platform of linearly aligned magnetoplasmonic (MagPlas) nanoparticles (NPs). The GQDs were excellent bilabeling materials for simultaneous Raman scattering and photoluminescence (PL). The one-dimensional (1D) alignment of MagPlas NPs simplified the immunoassay process and enabled fast, enhanced signal transduction. With a sandwich-type immunoassay using dual-mode nanoprobes, both SERS signals and fluorescence images were recognized in a highly sensitive and selective manner with a detection limit of 0.0511 pg mL(-1).
Carbon nanopipettes characterize calcium release pathways in breast cancer cells
NASA Astrophysics Data System (ADS)
Schrlau, Michael G.; Brailoiu, Eugen; Patel, Sandip; Gogotsi, Yury; Dun, Nae J.; Bau, Haim H.
2008-08-01
Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.
Carbon nanopipettes characterize calcium release pathways in breast cancer cells.
Schrlau, Michael G; Brailoiu, Eugen; Patel, Sandip; Gogotsi, Yury; Dun, Nae J; Bau, Haim H
2008-08-13
Carbon-based nanoprobes are attractive for minimally invasive cell interrogation but their application in cell physiology has thus far been limited. We have developed carbon nanopipettes (CNPs) with nanoscopic tips and used them to inject calcium-mobilizing messengers into cells without compromising cell viability. We identify pathways sensitive to cyclic adenosine diphosphate ribose (cADPr) and nicotinic acid adenine dinucleotide phosphate (NAADP) in breast carcinoma cells. Our findings demonstrate the superior utility of CNPs for intracellular delivery of impermeant molecules and, more generally, for cell physiology studies. The CNPs do not appear to cause any lasting damage to cells. Their advantages over commonly used glass pipettes include smaller size, breakage and clogging resistance, and potential for multifunctionality such as in concurrent injection and electrical measurements.
NASA Astrophysics Data System (ADS)
Liu, Shuning; Liu, Chenchen; Luan, Xinying; Yao, Rui; Feng, Yakai
2017-09-01
The far-red/near infrared photoluminescence of zinc phthalocyanines would be strongly quenched once they are aggregated, which will obviously hinder their wide applications in environmental, energy related and biomedical fields. Herein, the ultra-small sized semiconductor quantum dots with core-shell structures (CdSe@CdS) have been firstly synthesized and then assembled with a dendritic zinc phthalocyanine (ZnPc) in the H2O/DMF mixed solvent to obtain monodispersed nanospheres. Finally, it was found that the resultant ethanolic colloids can be employed as a sensitive and specific fluorescent nanoprobe for silver ions discrimination with a limit of detection (LOD) approaching to 10-8 mol/L.
Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution.
Martínez-Criado, Gema; Segura-Ruiz, Jaime; Chu, Manh-Hung; Tucoulou, Remi; López, Iñaki; Nogales, Emilio; Mendez, Bianchi; Piqueras, Javier
2014-10-08
Crossed nanowire structures are the basis for high-density integration of a variety of nanodevices. Owing to the critical role of nanowires intersections in creating hybrid architectures, it has become a challenge to investigate the local structure in crossing points in metal oxide nanowires. Thus, if intentionally grown crossed nanowires are well-patterned, an ideal model to study the junction is formed. By combining electron and synchrotron beam nanoprobes, we show here experimental evidence of the role of impurities in the coupling formation, structural modifications, and atomic site configuration based on crossed Ga2O3/SnO2 nanowires. Our experiment opens new avenues for further local structure studies with both nanometer resolution and elemental sensitivity.
Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography
NASA Astrophysics Data System (ADS)
Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea
2013-09-01
Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.
NASA Astrophysics Data System (ADS)
Luo, Yu; Yang, Jia; Yan, Yu; Li, Jingchao; Shen, Mingwu; Zhang, Guixiang; Mignani, Serge; Shi, Xiangyang
2015-08-01
We report a convenient approach to prepare ultrasmall Fe3O4 nanoparticles (NPs) functionalized with an arginylglycylaspartic acid (RGD) peptide for in vitro and in vivo magnetic resonance (MR) imaging of gliomas. In our work, stable sodium citrate-stabilized Fe3O4 NPs were prepared by a solvothermal route. Then, the carboxylated Fe3O4 NPs stabilized with sodium citrate were conjugated with polyethylene glycol (PEG)-linked RGD. The formed ultrasmall RGD-functionalized nanoprobe (Fe3O4-PEG-RGD) was fully characterized using different techniques. We show that these Fe3O4-PEG-RGD particles with a size of 2.7 nm are water-dispersible, stable, cytocompatible and hemocompatible in a given concentration range, and display targeting specificity to glioma cells overexpressing αvβ3 integrin in vitro. With the relatively high r1 relaxivity (r1 = 1.4 mM-1 s-1), the Fe3O4-PEG-RGD particles can be used as an efficient nanoprobe for targeted T1-weighted positive MR imaging of glioma cells in vitro and the xenografted tumor model in vivo via an active RGD-mediated targeting pathway. The developed RGD-functionalized Fe3O4 NPs may hold great promise to be used as a nanoprobe for targeted T1-weighted MR imaging of different αvβ3 integrin-overexpressing cancer cells or biological systems.We report a convenient approach to prepare ultrasmall Fe3O4 nanoparticles (NPs) functionalized with an arginylglycylaspartic acid (RGD) peptide for in vitro and in vivo magnetic resonance (MR) imaging of gliomas. In our work, stable sodium citrate-stabilized Fe3O4 NPs were prepared by a solvothermal route. Then, the carboxylated Fe3O4 NPs stabilized with sodium citrate were conjugated with polyethylene glycol (PEG)-linked RGD. The formed ultrasmall RGD-functionalized nanoprobe (Fe3O4-PEG-RGD) was fully characterized using different techniques. We show that these Fe3O4-PEG-RGD particles with a size of 2.7 nm are water-dispersible, stable, cytocompatible and hemocompatible in a given concentration range, and display targeting specificity to glioma cells overexpressing αvβ3 integrin in vitro. With the relatively high r1 relaxivity (r1 = 1.4 mM-1 s-1), the Fe3O4-PEG-RGD particles can be used as an efficient nanoprobe for targeted T1-weighted positive MR imaging of glioma cells in vitro and the xenografted tumor model in vivo via an active RGD-mediated targeting pathway. The developed RGD-functionalized Fe3O4 NPs may hold great promise to be used as a nanoprobe for targeted T1-weighted MR imaging of different αvβ3 integrin-overexpressing cancer cells or biological systems. Electronic supplementary information (ESI) available: Additional experimental results. See DOI: 10.1039/c5nr04003e
Microlensing Signature of Binary Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson
2012-01-01
We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.
Köker, Tuğba; Tang, Nathalie; Tian, Chao; Zhang, Wei; Wang, Xueding; Martel, Richard; Pinaud, Fabien
2018-02-09
The in cellulo assembly of plasmonic nanomaterials into photo-responsive probes is of great interest for many bioimaging and nanophotonic applications but remains challenging with traditional nucleic acid scaffolds-based bottom-up methods. Here, we address this quandary using split-fluorescent protein (FP) fragments as molecular glue and switchable Raman reporters to assemble gold or silver plasmonic nanoparticles (NPs) into photonic clusters directly in live cells. When targeted to diffusing surface biomarkers in cancer cells, the NPs self-assemble into surface-enhanced Raman-scattering (SERS) nanoclusters having hot spots homogenously seeded by the reconstruction of full-length FPs. Within plasmonic hot spots, autocatalytic activation of the FP chromophore and near-field amplification of its Raman fingerprints enable selective and sensitive SERS imaging of targeted cells. This FP-driven assembly of metal colloids also yields enhanced photoacoustic signals, allowing the hybrid FP/NP nanoclusters to serve as contrast agents for multimodal SERS and photoacoustic microscopy with single-cell sensitivity.
Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2018-03-02
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25 Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25 Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
Wang, Lanlan; Ma, Rongna; Jiang, Liushan; Jia, Liping; Jia, Wenli; Wang, Huaisheng
2017-06-15
A novel dual-signal ratiometric electrochemical aptasensor for highly sensitive and selective detection of thrombin has been designed on the basis of signal-on and signal-off strategy. Ferrocene labeled hairpin probe (Fc-HP), thrombin aptamer and methyl blue labeled bio-bar-coded AuNPs (MB-P3-AuNPs) were rationally introduced for the construction of the assay platform, which combined the advantages of the recognition of aptamer, the amplification of bio-bar-coded nanoprobe, and the ratiometric signaling readout. In the presence of thrombin, the interaction between thrombin and the aptamer leads to the departure of MB-P3-AuNPs from the sensing interface, and the conformation of the single stranded Fc-HP to a hairpin structure to take the Fc confined near the electrode surface. Such conformational changes resulted in the oxidation current of Fc increased and that of MB decreased. Therefore, the recognition event of the target can be dual-signal ratiometric electrochemical readout in both the "signal-off" of MB and the "signal-on" of Fc. The proposed strategy showed a wide linear detection range from 0.003 to 30nM with a detection limit of 1.1 pM. Moreover, it exhibits good performance of excellent selectivity, good stability, and acceptable fabrication reproducibility. By changing the recognition probe, this protocol could be easily expanded into the detection of other targets, showing promising potential applications in disease diagnostics and bioanalysis. Copyright © 2016. Published by Elsevier B.V.
ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells
NASA Astrophysics Data System (ADS)
Baek, Hyeonjun; Kwak, Hankyul; Song, Minho S.; Ha, Go Eun; Park, Jongwoo; Tchoe, Youngbin; Hyun, Jerome K.; Park, Hye Yoon; Cheong, Eunji; Yi, Gyu-Chul
2017-04-01
We report on scalable and position-controlled optical nanoprobe arrays using ZnO nanotube waveguides on graphene films for use in local optical excitation. For the waveguide fabrication, position-controlled and well-ordered ZnO nanotube arrays were grown on chemical vapor deposited graphene films with a submicron patterned mask layer and Au prepared between the interspace of nanotubes. Mammalian cells were cultured on the nanotube waveguide arrays and were locally excited by light illuminated through the nanotubes. Fluorescence and optogenetic signals could be excited through the optical nanoprobes. This method offers the ability to investigate cellular behavior with a high spatial resolution that surpasses the current limitation.
Zheng, Wenjing; Balzer, Laura; van der Laan, Mark; Petersen, Maya
2018-01-30
Binary classification problems are ubiquitous in health and social sciences. In many cases, one wishes to balance two competing optimality considerations for a binary classifier. For instance, in resource-limited settings, an human immunodeficiency virus prevention program based on offering pre-exposure prophylaxis (PrEP) to select high-risk individuals must balance the sensitivity of the binary classifier in detecting future seroconverters (and hence offering them PrEP regimens) with the total number of PrEP regimens that is financially and logistically feasible for the program. In this article, we consider a general class of constrained binary classification problems wherein the objective function and the constraint are both monotonic with respect to a threshold. These include the minimization of the rate of positive predictions subject to a minimum sensitivity, the maximization of sensitivity subject to a maximum rate of positive predictions, and the Neyman-Pearson paradigm, which minimizes the type II error subject to an upper bound on the type I error. We propose an ensemble approach to these binary classification problems based on the Super Learner methodology. This approach linearly combines a user-supplied library of scoring algorithms, with combination weights and a discriminating threshold chosen to minimize the constrained optimality criterion. We then illustrate the application of the proposed classifier to develop an individualized PrEP targeting strategy in a resource-limited setting, with the goal of minimizing the number of PrEP offerings while achieving a minimum required sensitivity. This proof of concept data analysis uses baseline data from the ongoing Sustainable East Africa Research in Community Health study. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Siloxane nanoprobes for labeling and dual modality imaging of neural stem cells
Addington, Caroline P.; Cusick, Alex; Shankar, Rohini Vidya; Agarwal, Shubhangi; Stabenfeldt, Sarah E.; Kodibagkar, Vikram D.
2015-01-01
Cell therapy represents a promising therapeutic for a myriad of medical conditions, including cancer, traumatic brain injury, and cardiovascular disease among others. A thorough understanding of the efficacy and cellular dynamics of these therapies necessitates the ability to non-invasively track cells in vivo. Magnetic resonance imaging (MRI) provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. We recently reported a new nanoprobe platform for cell labeling and imaging using fluorophore doped siloxane core nanoemulsions as dual modality (1H MRI/Fluorescence), dual-functional (oximetry/detection) nanoprobes. Here, we successfully demonstrate the labeling, dual-modality imaging, and oximetry of neural progenitor/stem cells (NPSCs) in vitro using this platform. Labeling at a concentration of 10 μl/104 cells with a 40%v/v polydimethylsiloxane core nanoemulsion, doped with rhodamine, had minimal effect on viability, no effect on migration, proliferation and differentiation of NPSCs and allowed for unambiguous visualization of labeled NPSCs by 1H MR and fluorescence and local pO2 reporting by labeled NPSCs. This new approach for cell labeling with a positive contrast 1H MR probe has the potential to improve mechanistic knowledge of current therapies, and guide the design of future cell therapies due to its clinical translatability. PMID:26597417
NASA Astrophysics Data System (ADS)
Huang, Long; Tian, Xiumei; Liu, Jun; Zheng, Cunjing; Xie, Fukang; Li, Li
2017-02-01
Our group has synthesized Gd2O3:Yb3+/Er3+ nanocomposites as magnetic/fluorescence imaging successfully in the previous study, which exhibit good uniformity and monodispersibility with a mean size of 7.4 nm. However, their systematic risk assessment remains unknown. In this article, the in vitro biocompatibility of the Gd2O3:Yb3+/Er3+ was assessed on the basis of cell viability and apoptosis. In vivo immunotoxicity was evaluated by monitoring the product of reactive oxygen species (ROS), clusters of differentiation (CD) markers, and superoxide dismutase (SOD) in Balb/c mice. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd2O3:Yb3+/Er3+ and gadodiamide which are used commonly in clinical. Few nanoprobes were localized in the phagosomes of the liver, heart, lung, spleen, kidney, brain, and tumor under the transmission electron microscopy (TEM) images. In addition, our products reveal good T1-weighted contrast enhancement of xenografted murine tumor. Therefore, the above results may contribute to the effective application of Gd2O3:Yb3+/Er3+ as molecular imaging contrast agents and dual-modal nanoprobes for cancer detection.
Searches for all types of binary mergers in the first Advanced LIGO observing run
NASA Astrophysics Data System (ADS)
Read, Jocelyn
2017-01-01
The first observational run of the Advanced LIGO detectors covered September 12, 2015 to January 19, 2016. In that time, two definitive observations of merging binary black hole systems were made. In particular, the second observation, GW151226, relied on matched-filter searches targeting merging binaries. These searches were also capable of detecting binary mergers from binary neutron stars and from black-hole/neutron-star binaries. In this talk, I will give an overview of LIGO compact binary coalescence searches, in particular focusing on systems that contain neutron stars. I will discuss the sensitive volumes of the first observing run, the astrophysical implications of detections and non-detections, and prospects for future observations
An optofluidic approach for gold nanoprobes based-cancer theranostics
NASA Astrophysics Data System (ADS)
Panwar, Nishtha; Song, Peiyi; Yang, Chengbin; Yong, Ken-Tye; Tjin, Swee Chuan
2017-02-01
Suppression of overexpressed gene mutations in cancer cells through RNA interference (RNAi) technique is a therapeutically effective modality for oncogene silencing. In general, transfection agent is needed for siRNA delivery. Also, it is a tedious and time consuming process to analyze the gene transfection using current conventional flow cytometry systems and commercially available transfection kits. Therefore, there are two urgent challenges that we need to address for understanding and real time monitoring the delivery of siRNA to cancer cells more effectively. One, nontoxic, biocompatible and stable non-viral transfection agents need to be developed and investigated for gene delivery in cancer cells. Two, new, portable optofluidic methods need to be engineered for determining the transfection efficiency of the nanoformulation in real time. First, we demonstrate the feasibility of using gold nanorods (AuNRs) as nanoprobes for the delivery of Interleukin-8 (IL-8) siRNA in a pancreatic cancer cell line- MiaPaCa-2. An optimum ratio of 10:1 for the AuNRs-siRNA nanoformulation required for efficient loading has been experimentally determined. Promising transfection rates (≈88%) of the nanoprobe-assisted gene delivery are quantified by flow cytometry and fluorescence imaging, which are higher than the commercial control, Oligofectamine. The excellent gene knockdown performance (over 81%) of the proposed model support in vivo trials for RNAi-based cancer theranostics. In addition to cancer theranostics, our nanoprobe combination can be also applied for disease outbreak monitoring like MERS. Second, we present an optical fiber-integrated microfluidic chip that utilizes simple hydrodynamic and optical setups for miniaturized on-chip flow cytometry. The chip provides a powerful and convenient tool to quantitatively determine the siRNA transfection into cancer cells without using bulky flow cytometer. These studies outline the role of AuNRs as potential non-viral gene delivery vehicles, and their suitability for microfluidics-based lab-on-chip flow cytometry applications.
Chen, Zhu; Xiao, En-Hua; Kang, Zhen; Zeng, Wen-Bin; Tan, Hui-Long; Li, Hua-Bing; Bian, Du-Jun; Shang, Quan-Liang
2016-05-01
The present study aimed to assess the in vitro and in vivo magnetic resonance imaging (MRI) features of chlorotoxin (CTX)-conjugated superparamagnetic iron oxide (SPIO) nanoprobes. CTX-conjugated nanoprobes were composed of SPIO coated with polyethylene glycol (PEG) and conjugated with CTX. The nanoprobes were termed SPIO-PEG-CTX. MRI of the SPIO and SPIO-PEG-CTX solutions at a different concentration was performed with a 3.0-T MRI scanner (Philips Achieva 3.0T X Series; Phillips Healthcare, The Netherlands). Rabbit VX2 hepatocarcinoma was established by a traditional laparotomy method (injection of the tumor particles into the liver using a 15G syringe needle) following approval by the institutional animal care and use committee. Contrast-enhanced MRI of VX2 rabbits (n=8) was performed using the same MRI scanner with SPIO‑PEG-CTX solutions as the contrast agent. Data were analyzed with calibration curve and a paired t-test. The SPIO-PEG-CTX nanoparticles were successfully prepared. With increasing concentrations of the solutions, the MRI signal intensity was increased at T1WI, but decreased at T2WI, which were the same as that for SPIO. Rabbit VX2 carcinoma appeared as a low MRI signal at T1WI, and high at T2WI. After injection of the contrast agent, the MRI signal of carcinoma was decreased relative to that before injection at T2WI (1,161±331.5 vs. 1,346±300.5; P=0.004<0.05), while the signal of the adjacent normal hepatic tissues was unchanged (480.6±165.1 vs. 563.4±67.8; P=0.202>0.05). The SPIO-PEG-CTX nanoparticles showed MRI negative enhancement at T2WI and a targeting effect in liver cancer, which provides the theoretical basis for further study of the early diagnosis of hepatocellular carcinoma.
NASA Astrophysics Data System (ADS)
Biswas, Sujit Kumar
Nanoprobes are an extraordinary set of experimental tools that allow fabrication, manipulation, and measurement in nano-scale systems. The primary use of a nanoprobe for imaging tiny objects is supplemented by powerful electrical techniques, namely scanning surface potential microscopy and current sensing atomic force microscopy. They allow us to measure potential, and current in carbon nanotube circuits. Nanoprobes are superior to conventional two- or four-probe measurements because they can provide spatial information of local electronic properties. This makes them highly attractive in studying junctions and contacts with carbon nanotubes. We have studied single-walled carbon nanotube circuits, forming junctions to other nanotubes. The experimental results indicate that these junctions act like potential barriers of about 50 meV that can confine electrons with an effective mass of 0.003 me , within nanotube channels of length 0.5 mum lying in-between two such potential barriers. This leads to quantization of the channel, forming a resonant tunneling structure. We have also found that single-walled nanotubes have phase coherence lengths of the order of 1 mum. This leads to situations where the electron interference effects at scattering centers need to be considered. We have seen direct evidence of this, in the non-linear resistance increase within nanotubes with few defects. Ambipolar transistor behavior was measured in a p-type single-walled nanotube circuit that showed electron injection across the Schottky junction at high positive bias. We have also studied multi-walled carbon nanotube circuits using scanning potential microscopy, and found that a back gate potential can vary the resistance of the channel. Vertical nanotube arrays, suitable for interconnects, were also measured. These hollow multi-walled nanotube channels were about 45 nm in diameter, and 50 mum in length, fabricated in an anodized alumina template. We found that these structures could sustain current densities greater than 105 A/cm2. Conventional use of nanoprobes in imaging aluminum nitride surfaces displayed curious step bunching structures. We have used an innovative analysis technique with which the bulk lattice constant of the crystal was measured to an accuracy of about 4% of X-ray crystallography value of 0.497 nm. In addition, this technique showed that there were regions on the surface that had a larger lattice parameter of 0.64 nm, which we interpreted to be due to a variation in the chemical composition of the surface such as oxide formation. We believe that this technique may prove useful as a study of chemical-composition variations on a surface as well as relaxation of the surface layer.
Can We Distinguish Low-mass Black Holes in Neutron Star Binaries?
NASA Astrophysics Data System (ADS)
Yang, Huan; East, William E.; Lehner, Luis
2018-04-01
The detection of gravitational waves (GWs) from coalescing binary neutron stars (NS) represents another milestone in gravitational-wave astronomy. However, since LIGO is currently not as sensitive to the merger/ringdown part of the waveform, the possibility that such signals are produced by a black hole (BH)–NS binary can not be easily ruled out without appealing to assumptions about the underlying compact object populations. We review a few astrophysical channels that might produce BHs below 3 M ⊙ (roughly the upper bound on the maximum mass of an NS), as well as existing constraints for these channels. We show that, due to the uncertainty in the NS equation of state, it is difficult to distinguish GWs from a binary NS system from those of a BH–NS system with the same component masses, assuming Advanced LIGO sensitivity. This degeneracy can be broken by accumulating statistics from many events to better constrain the equation of state, or by third-generation detectors with higher sensitivity to the late-spiral to post-merger signal. We also discuss the possible differences in electromagnetic (EM) counterparts between binary NS and low-mass BH–NS mergers, arguing that it will be challenging to definitively distinguish the two without better understanding of the underlying astrophysical processes.
Persistent luminescence nanothermometers
NASA Astrophysics Data System (ADS)
Martín Rodríguez, Emma; López-Peña, Gabriel; Montes, Eduardo; Lifante, Ginés; García Solé, José; Jaque, Daniel; Diaz-Torres, Luis Armando; Salas, Pedro
2017-08-01
Persistent phosphorescence nanoparticles emitting in the red and near-infrared spectral regions are strongly demanded as contrast nanoprobes for autofluorescence free bioimaging and biosensing. In this work, we have developed Sr4Al14O25:Eu2+, Cr3+, Nd3+ nanopowders that produce persistent red phosphorescence peaking at 694 nm generated by Cr3+ ions. This emission displays temperature sensitivity in the physiological temperature range (20-60 °C), which makes these nanoparticles potentially useful as fluorescence (contactless) nanothermometers operating without requiring optical excitation. Nd3+ ions, which act as shallow electron traps for the red Cr3+ persistent emission, also display infrared emission bands, extending the fluorescence imaging capability to the second biological window. This unique combination of properties makes these nanoparticles multifunctional luminescent probes with great potential applications in nanomedicine.
Measuring In-Plane Displacements with Variable Sensitivity Using Diffractive Optic Interferometry
NASA Technical Reports Server (NTRS)
Shepherd, Robert L.; Gilbert, John A.; Cole, Helen J.; Ashley, Paul R.
1998-01-01
This paper introduces a method called diffractive optic interferometry (DOI) which allows in-plane displacement components to be measured with variable sensitivity. DOI relies on binary optical elements fabricated as phase-type Dammann gratings which produce multiple diffraction orders of nearly equal intensity. Sensitivity is varied by combining the different wavefronts produced by a conjugate pair of these binary optical elements; a transmission element is used to produce several illumination beams while a reflective element, replicated on the surface of a specimen, provides the reference for the undeformed state. The steps taken to design and fabricate these binary optical elements are described. The specimen grating is characterized, and tested on a disk subjected to diametrical compression. Overall, the results are excellent, with experimental data agreeing to within a few percent of the theoretical predictions.
Binary photonic crystal for refractometric applications (TE case)
NASA Astrophysics Data System (ADS)
Taya, Sofyan A.; Shaheen, Somaia A.
2018-04-01
In this work, a binary photonic crystal is proposed as a refractometric sensor. The dispersion relation and the sensitivity are derived for transverse electric (TE) mode. In our analysis, the first layer is considered to be the analyte layer and the second layer is assumed to be left-handed material (LHM), dielectric or metal. It is found that the sensitivity of the LHM structure is the highest among other structures. It is possible for LHM photonic crystal to achieve a sensitivity improvement of 412% compared to conventional slab waveguide sensor.
Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.
Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A
2015-07-31
The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.
Asymmetric distances for binary embeddings.
Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana
2014-01-01
In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.
NASA Astrophysics Data System (ADS)
Chen, Quansheng; Yang, Mingxiu; Yang, Xiaojing; Li, Huanhuan; Guo, Zhiming; Rahma, M. H.
2018-01-01
With growing concern on oil safety problems, developing a simple and sensitive method to detect Aflatoxin B1 (AFB1), a common mycotoxin in peanut oil, is very necessary. In this study, Surface-enhanced Raman Scattering (SERS) aptasensor was developed for ultrasensitive AFB1 detection using the amino-terminal AFB1 aptamer (NH2-DNA1); and thiol-terminal AFB1 complementary aptamer (SH-DNA2) conjugated magnetic-beads (CS-Fe3O4) as enrichment nanoprobe and AuNR@DNTB@Ag nanorods (ADANRs) as reporter nanoprobe respectively. 5,5‧-Dithiobis(2-nitrobenzoicacid) (DNTB) with large Raman scattering cross-section and no fluorescence interference was embedded in Au and Ag core/shell nanorods as Raman reporter molecules. CS-Fe3O4 possessed excellent biocompatibility and superparamagnetism for rapid signal enrichment. Therefore, NH2-DNA1-CS-Fe3O4 and SH-DNA2-ADANRs were fabricated via the hybrid reaction between aptamers and complementary aptamers. When there is AFB1, AFB1 would competitively combine with the NH2-DNA1-CS-Fe3O4 inducing the dissociation of SH-DNA2-ADANRs from CS-Fe3O4 and further decreasing the SERS signal. Based on this developed SERS aptasensor, a low limit of 0.0036 ng/mL and an effective linear detection range from 0.01 to 100 ng/mL with the correlation coefficient up to 0.986 for AFB1 detection were obtained. Moreover, the specificity of this SERS aptasensor was demonstrated by detecting other two mycotoxins and its accuracy for AFB1 detection in real peanut oil was further confirmed by standard addition recovery test.
Mendoza-Nava, Héctor; Ramírez, Flor de María; Ocampo-García, Blanca; Santos-Cuevas, Clara; Azorín-Vega, Erika; Jiménez-Mancilla, Nallely; Luna-Gutiérrez, Myrna; Isaac-Olivé, Keila
2017-01-01
The integration of fluorescence and plasmonic properties into one molecule is of importance in developing multifunctional imaging and therapy nanoprobes. The aim of this research was to evaluate the fluorescent properties and the plasmonic–photothermal, therapeutic, and radiotherapeutic potential of 177Lu–dendrimer conjugated to folate and bombesin with gold nanoparticles in the dendritic cavity (177Lu–DenAuNP–folate–bombesin) when it is internalized in T47D breast cancer cells. The intense near-Infrared (NIR) fluorescence emitted at 825 nm from the conjugate inside cells corroborated the usefulness of DenAuNP–folate–bombesin for optical imaging. After laser irradiation, the presence of the nanosystem in cells caused a significant increase in the temperature of the medium (46.8°C, compared to 39.1°C without DenAuNP–folate–bombesin, P < 0.05), resulting in a significant decrease in cell viability (down to 16.51% ± 1.52%) due to the 177Lu–DenAuNP–folate–bombesin plasmonic properties. After treatment with 177Lu–DenAuNP–folate–bombesin, the T47D cell viability decreased 90% because of the radiation-absorbed dose (63.16 ± 4.20 Gy) delivered inside the cells. The 177Lu–DenAuNP–folate–bombesin nanoprobe internalized in cancer cells exhibited properties suitable for optical imaging, plasmonic–photothermal therapy, and targeted radiotherapy. PMID:28654384
Zhan, Yuanjin; Luo, Fang; Guo, Longhua; Qiu, Bin; Lin, Yuhong; Li, Juan; Chen, Guonan; Lin, Zhenyu
2017-11-22
Hypochlorite (ClO - ) is one of the most important reactive oxygen species (ROS), which plays an important role in sustaining human innate immunity during microbial invasion. Moreover, ClO - is a powerful oxidizer for water treatment. The safety of drinking water is closely related to its content. Herein, m-phenylenediamine (mPD) is used as a precursor to prepare carbon dots (named m-CDs) with highly fluorescent quantum yield (31.58% in water), and our investigation shows that the strong fluorescent emission of m-CDs can be effectively quenched by ClO - . Based on these findings, we developed a novel fluorescent nanoprobe (m-CDs) for highly selective detection of ClO - . The linear range was from 0.05 to 7 μM (R 2 = 0.998), and the limit of detection (S/N = 3) was as low as 0.012 μM. Moreover, a portable agarose hydrogel solid matrix-based ratiometric fluorescent nanoprobe (m-CDs@[Ru(bpy) 3 ] 2+ ) sensor was subsequently developed for visual on-site detection of ClO - with the naked eyes under a UV lamp, suggesting its potential in practical application with low cost and excellent performance in water quality monitoring. Additionally, intracellular detection of exogenous ClO - was demonstrated via ratiometric imaging microscopy.
NASA Astrophysics Data System (ADS)
Mansur, Alexandra A. P.; Mansur, Herman S.; Mansur, Rafael L.; de Carvalho, Fernanda G.; Carvalho, Sandhra M.
2018-01-01
Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M = Cd, Pb, Zn, X = S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0 nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine.
Essaidi, N; Chen, Y; Kottler, V; Cambril, E; Mayeux, C; Ronarch, N; Vieu, C
1998-02-01
The current scanning near-field optical microscopy has been developed with optical-fiber probes obtained by use of either laser-heated pulling or chemical etching. For high-resolution near-field imaging, the detected signal is rapidly attenuated as the aperture size of the probe decreases. It is thus important to fabricate probes optimized for both spot size and optical transmission. We present a two-step fabrication that allowed us to achieve an improved performance of the optical-fiber probes. Initially, a CO(2) laser-heated pulling was used to produce a parabolic transitional taper ending with a top thin filament. Then, a rapid chemical etching with 50% buffered hydrofluoric acid was used to remove the thin filament and to result in a final conical tip on the top of the parabolic transitional taper. Systematically, we obtained optical-fiber nanoprobes with the apex size as small as 10 nm and the final cone angle varying from 15 degrees to 80 degrees . It was found that the optical transmission efficiency increases rapidly as the taper angle increases from 15 degrees to 50 degrees , but a further increase in the taper angle gives rise to important broadening of the spot size. Finally, the fabricated nanoprobes were used in photon-scanning tunneling microscopy, which allowed observation of etched double lines and grating structures with periods as small as 200 nm.
Gao, Jinhao; Chen, Kai; Luong, Richard; Bouley, Donna M.; Mao, Hua; Qiao, Tiecheng; Gambhir, Sanjiv S.; Cheng, Zhen
2011-01-01
The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QDs as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding non-tumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD2 to integrin αvβ3–positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron based nanoprobes in the clinical setting in the near future. PMID:22172022
Gao, Jinhao; Chen, Kai; Luong, Richard; Bouley, Donna M; Mao, Hua; Qiao, Tiecheng; Gambhir, Sanjiv S; Cheng, Zhen
2012-01-11
The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD(2) to integrin α(v)β(3)-positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Mills, Cameron; Tiwari, Vaibhav; Fairhurst, Stephen
2018-05-01
The observation of gravitational wave signals from binary black hole and binary neutron star mergers has established the field of gravitational wave astronomy. It is expected that future networks of gravitational wave detectors will possess great potential in probing various aspects of astronomy. An important consideration for successive improvement of current detectors or establishment on new sites is knowledge of the minimum number of detectors required to perform precision astronomy. We attempt to answer this question by assessing the ability of future detector networks to detect and localize binary neutron stars mergers on the sky. Good localization ability is crucial for many of the scientific goals of gravitational wave astronomy, such as electromagnetic follow-up, measuring the properties of compact binaries throughout cosmic history, and cosmology. We find that although two detectors at improved sensitivity are sufficient to get a substantial increase in the number of observed signals, at least three detectors of comparable sensitivity are required to localize majority of the signals, typically to within around 10 deg2 —adequate for follow-up with most wide field of view optical telescopes.
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25 Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
Coherent Bragg nanodiffraction at the hard X-ray Nanoprobe beamline.
Hruszkewycz, S O; Holt, M V; Maser, J; Murray, C E; Highland, M J; Folkman, C M; Fuoss, P H
2014-03-06
Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques.
Coherent Bragg nanodiffraction at the hard X-ray Nanoprobe beamline
Hruszkewycz, S. O.; Holt, M. V.; Maser, J.; Murray, C. E.; Highland, M. J.; Folkman, C. M.; Fuoss, P. H.
2014-01-01
Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques. PMID:24470418
Development of an aptamer-conjugated fluorescent nanoprobe for MMP2
NASA Astrophysics Data System (ADS)
Han, Myoung-Eun; Baek, Sungmin; Kim, Hyun-Jung; Lee, Jung Hwan; Ryu, Sung-Ho; Oh, Sae-Ock
2014-03-01
Matrix metalloproteinase 2 (MMP2) plays critical roles in various diseases, such as atherosclerosis and cancer, and has been suggested to contribute to the instability of atherosclerotic plaque. To visualize MMP2 in pathologic tissues, we developed an aptamer targeting MMP2 protein by performing eight rounds of modified DNA systematic evolution of ligands by exponential enrichment (SELEX). The aptamer showed high affinity for MMP2 ( K d = 5.59 nM), precipitated MMP2, and detected MMP2 protein in pathological tissues such as atherosclerotic plaque and gastric cancer tissues. Furthermore, a MMP2 aptamer-conjugated fluorescent nanoprobe successfully visualized atherosclerotic plaques in apolipoprotein E (ApoE) knockout mice. These results suggest that the devised MMP2 aptamer could be useful for the development of various diagnostic tools.
NASA Astrophysics Data System (ADS)
Rezeq, Moh'd.; Ali, Ahmed; Patole, Shashikant P.; Eledlebi, Khouloud; Dey, Ripon Kumar; Cui, Bo
2018-05-01
We have studied the dependence of Schottky junction (I-V) characteristics on the metal contact size in metal-semiconductor (M-S) junctions using different metal nanoprobe sizes. The results show strong dependence of (I-V) characteristics on the nanoprobe size when it is in contact with a semiconductor substrate. The results show the evolution from sub-10 nm reversed Schottky diode behavior to the normal diode behavior at 100 nm. These results also indicate the direct correlation between the electric field at the M-S interface and the Schottky rectification behavior. The effect of the metal contact size on nano-Schottky diode structure is clearly demonstrated, which would help in designing a new type of nano-devices at sub-10 nm scale.
NASA Astrophysics Data System (ADS)
Li, J.-H.; Du, Y.; Feng, G.-K.; Du, Y.-B.; Zhou, Y.-Q.; Zeng, M.-S.
2017-11-01
Surface-enhanced Raman scattering (SERS) nanotags as an ultrasensitive nanoprobe is becoming popular for the detection of biomarkers. Herein, antibody-conjugated gold nanoparticles (AuNPs) were used to target LMP2A in an LMP2A-infected CNE2 cell line. SERS maps showed that the LMP2A was distributed around the cell, which was consistent with the results of immunofl uorescence staining in the previous report. This location could be due to the specific binding of the bioconjugated nanotags to the receptors on the cell surface. However, the CNE2 cell line without LMP2A-infected showed no detectable signal at 1044 cm-1. The results demonstrated the potential feasibility of AuNPs nanotags as highly sensitive probes conjugated at the subcellular level for detection and localization of cancer markers in nasopharyngeal carcinoma (NPC).
Searching for gravitational waves from compact binaries with precessing spins
NASA Astrophysics Data System (ADS)
Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra
2016-07-01
Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.
Chang, Zhi-Min; Wang, Zheng; Shao, Dan; Yue, Juan; Xing, Hao; Li, Li; Ge, Mingfeng; Li, Mingqiang; Yan, Huize; Hu, Hanze; Xu, Qiaobing; Dong, Wen-Fei
2018-04-04
Magnetic mesoporous silica nanoparticles (M-MSNs) are attractive candidates for the immunomagnetic isolation and detection of circulating tumor cells (CTCs). Understanding of the interactions between the effects of the shape of M-MSNs and CTCs is crucial to maximize the binding capacity and capture efficiency as well as to facilitate the sensitivity and efficiency of detection. In this work, fluorescent M-MSNs were rationally designed with sphere and rod morphologies while retaining their robust fluorescence and uniform surface functionality. After conjugation with the antibody of epithelial cell adhesion molecule (EpCAM), both of the differently shaped M-MSNs-EpCAM obtained achieved efficient enrichment of CTCs and fluorescent-based detection. Importantly, rodlike M-MSNs exhibited faster immunomagnetic isolation as well as better performance in the isolation and detection of CTCs in spiked cells and real clinical blood samples than those of their spherelike counterparts. Our results showed that shape engineering contributes positively toward immunomagnetic isolation, which might open new avenues to the rational design of magnetic-fluorescent nanoprobes for the sensitive and efficient isolation and detection of CTCs.
Gao, Baojiao; Shi, Nan; Qiao, Zongwen
2015-11-05
Via polymer reactions, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polystyrene (PS), respectively, and two aryl carboxylic acid-functionalized polystyrenes, PSNA and PSBA, were obtained. Using PSNA and PSBA as macromolecule ligands and Eu(3+) and Tb(3+) ions as central ions, various luminescent binary polymer-rare earth complexes were prepared. At the same time, with 1,10-phenanthroline (Phen) and 4,4'-bipyridine (Bipy) as small-molecule co-ligands, various ternary polymer-rare earth complexes were also prepared. On the basis of characterizing PSNA, PSBA and complexes, the relationship between structure and luminescent property for these prepared complexes were mainly investigated. The study results show that the macromolecule ligands PSNA and PSBA, or the bonded NA and BA ligands, can strongly sensitize the fluorescence emissions of Eu(3+) ion or Tb(3+) ion, but the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions, namely it is strongly dependent on the matching degree of energy levels. The fluorescence emission of the binary complex PS-(NA)3-Eu(III) is stronger than that PS-(BA)3-Eu(III), indicating ligand NA has stronger sensitization action for Eu(3+) ion than ligand BA; the binary complex PS-(BA)3-Tb(III) emit strong characteristic fluorescence of Tb(3+) ion, displaying that ligand BA can strongly sensitize Tb(3+) ion, whereas the binary complex PS-(NA)3-Tb(III) nearly does not emit the characteristic fluorescence of Tb(3+) ion, showing that ligand NA does not sensitize Tb(3+) ion. The fluorescence intensity of the ternary complexes is much stronger than that of the binary complexes in the same series. Copyright © 2015 Elsevier B.V. All rights reserved.
Cai, Guangyu; Sun, Jianfeng; Li, Guangyuan; Zhang, Guo; Xu, Mengmeng; Zhang, Bo; Yue, Chaolei; Liu, Liren
2016-06-10
A self-homodyne laser communication system based on orthogonally polarized binary phase shift keying is demonstrated. The working principles of this method and the structure of a transceiver are described using theoretical calculations. Moreover, the signal-to-noise ratio, sensitivity, and bit error rate are analyzed for the amplifier-noise-limited case. The reported experiment validates the feasibility of the proposed method and demonstrates its advantageous sensitivity as a self-homodyne communication system.
High specificity ZnO quantum dots for diagnosis and treatment in bacterial infection
NASA Astrophysics Data System (ADS)
Zhang, Min; Qian, Zhiyu; Gu, Yueqing
2016-03-01
Early diagnosis and effective treatment of bacterial infection has become increasingly important. Herein, we developed a fluorescent nano-probe MPA@ZnO-PEP by conjugating SiO2-stabilized ZnO quantum dot (ZnO@SiO2) with bacteria-targeting peptide PEP, which was encapsulated with MPA, a near infrared (NIR) dye. The nanoprobe MPA@ZnO-PEP showed excellent fluorescence property and could specifically distinguish bacterial infection from sterile inflammation both in vitro and in vivo. The favorable biocompatability of MPA@ZnO-PEP was verified by MTT assay. This probe was further modified with antibiotic methicillin to form the theranostic nanoparticle MPA/Met@ZnO-PEP with amplified antibacterial activity. These results promised the great potential of MPA@ZnO-PEP for efficient non-invasive early diagnosis of bacterial infections and effective bacterial-targeting therapy.
NASA Astrophysics Data System (ADS)
Vishwakarma, Sandeep Kumar; Lakkireddy, Chandrakala; Marjan, Tuba; Fatima, Anjum; Bardia, Avinash; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed
2018-05-01
Cancer nanotheranostics has emerged as one of the most promising fields of medicine wherein nano-sized molecules/agents are used for combined diagnosis and treatment of cancer. Despite promises of novel cancer therapeutic approaches, several crucial challenges have remained to be overcome for successful clinical translation of such agents. Hence, the present study has been aimed to investigate the therapeutic efficacy of bimetallic gadolinium super-paramagnetic iron oxide nanoformulation of ascorbic acid in synergism with hyperthermia on ascorbic acid-resistant breast cancer cells. This particular strategy provides real-time MRI-based non-invasive imaging of drug loading in resistant cancer cells along with highly enhanced therapeutic efficacy. This unique redox nanoprobe is capable of reversing drug-resistance mechanism in cancer cells and offers better therapeutic possibilities in targeted and effective destruction of drug-resistant cancer cells.
Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization.
Wortmann, Laura; Ilyas, Shaista; Niznansky, Daniel; Valldor, Martin; Arroub, Karim; Berger, Nadja; Rahme, Kamil; Holmes, Justin; Mathur, Sanjay
2014-10-08
A facile bottom-up approach for the synthesis of inorganic/organic bioconjugated nanoprobes based on iron oxide nanocubes as the core with a nanometric silica shell is demonstrated. Surface coating and functionalization protocols developed in this work offered good control over the shell thickness (8-40 nm) and enabled biovectorization of SiO2@Fe3O4 core-shell structures by covalent attachment of folic acid (FA) as a targeting unit for cellular uptake. The successful immobilization of folic acid was investigated both quantitatively (TGA, EA, XPS) and qualitatively (AT-IR, UV-vis, ζ-potential). Additionally, the magnetic behavior of the nanocomposites was monitored after each functionalization step. Cell viability studies confirmed low cytotoxicity of FA@SiO2@Fe3O4 conjugates, which makes them promising nanoprobes for targeted internalization by cells and their imaging.
Ptáčková, Renata; Ječmen, Tomáš; Novák, Petr; Hudeček, Jiří; Stiborová, Marie; Šulc, Miroslav
2014-01-01
Protein–protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8–Met78). The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr). The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis) to map the protein-protein interface or regions with a flexible structure. PMID:24865487
NASA Astrophysics Data System (ADS)
Sukhanova, Alyona; Even-Desrumeaux, Klervi; Millot, Jean-Marc; Chames, Patrick; Baty, Daniel; Artemyev, Mikhail; Oleinikov, Vladimir; Cohen, Jacques H. M.; Nabiev, Igor
2012-03-01
Ideal diagnostic nanoprobes should not exceed 15 nm in size and should contain high-affinity homogeneously oriented capture molecules on their surface. An advanced procedure for antibody (Ab) reduction was used to cleave each Ab into two functional half-Abs, 75-kDa heavy-light chain fragments, each containing an intact antigen-binding site. Affinity purification of half-Abs followed by their linkage to quantum dots (QDs) yielded oriented QD-Ab conjugates whose functionality was considerably improved compared to those obtained using the standard protocols. Ultrasmall diagnostic nanoprobes were engineered through oriented conjugation of QDs with 13-kDa single-domain Abs (sdAbs) derived from llama IgG. sdAbs were tagged with QDs via an additional cysteine residue specifically integrated into the C-terminal region of sdAb using genetic engineering. This approach made it possible to obtain sdAb-QD nanoprobes <12 nm in diameter comprising four copies of sdAbs linked to the same QD in an oriented manner. sdAb-QD conjugates against carcinoembryonic antigen (CEA) and HER2 exhibited an extremely high specificity in flow cytometry; the quality of immunohistochemical labeling of biopsy samples was found to be superior to that of labeling according to the current "gold standard" protocols of anatomo-pathological practice. The nano-bioengineering approaches developed can be extended to oriented conjugation of Abs and sdAbs with different semiconductor, noble metal, or magnetic nanoparticles.
Wang, Ting; Hou, Yi; Bu, Bo; Wang, Wenxin; Ma, Tiancong; Liu, Chunyan; Lin, Lan; Ma, Lin; Lou, Xin; Gao, Mingyuan
2018-04-17
Ischemic stroke is one of the major leading causes for long-term disability and mortality. Collateral vessels provide an alternative pathway to protect the brain against ischemic injury after arterial occlusion. Aiming at visualizing the collaterals occurring during acute ischemic stroke, an integrin α v β 3 -specific Fe 3 O 4 -Arg-Gly-Asp (RGD) nanoprobe is prepared for magnetic resonance imaging (MRI) of the collaterals. Rat models are constructed by occluding the middle cerebral artery for imaging studies of cerebral ischemia and ischemia-reperfusion on 7.0 Tesla MRI using susceptibility-weighted imaging sequence. To show the binding specificity to the collaterals, the imaging results acquired with the Fe 3 O 4 -RGD nanoprobe and the Fe 3 O 4 mother nanoparticles, respectively, are carefully compared. In addition, an RGD blocking experiment is also carried out to support the excellent binding specificity of the Fe 3 O 4 -RGD nanoprobe. Following the above experiments, cerebral ischemia-reperfusion studies show the collateral dynamics upon reperfusion, which is very important for the prognosis of various revascularization therapies in the clinic. The current study has, for the first time, enabled the direct observation of collaterals in a quasi-real time fashion and further disclosed that the antegrade flow upon reperfusion dominates the blood supply of primary ischemic tissue during the early stage of infarction, which is significantly meaningful for clinical treatment of stroke. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chandra Observation of Luminous and Ultraluminous X-ray Binaries in M101
NASA Technical Reports Server (NTRS)
Mukai, K.; Pence, W. D.; Snowden, S. L.; Kuntz, K. D.; White, Nicholas E. (Technical Monitor)
2002-01-01
X-ray binaries in the Milky Way are among the brightest objects on the X-ray sky. With the increasing sensitivity of recent missions, it is now possible to study X-ray binaries in nearby galaxies. We present data on six ultraluminous binaries in the nearby spiral galaxy, M101, obtained with Chandra ACIS-S. Of these, five appear to be similar to ultraluminous sources in other galaxies, while the brightest source, P098, shows some unique characteristics. We present our interpretation of the data in terms of an optically thick outflow, and discuss implications.
NASA Astrophysics Data System (ADS)
Meadors, Grant David; Krishnan, Badri; Papa, Maria Alessandra; Whelan, John T.; Zhang, Yuanhao
2018-02-01
Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20 × faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10 × unoptimized cost could reach respectively 2.83 × and 2.75 × median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2 × improved detectors.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.;
2012-01-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-04-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
Liu, Su; Wang, Yu; Xu, Wei; Leng, Xueqi; Wang, Hongzhi; Guo, Yuna; Huang, Jiadong
2017-02-15
In this paper, a novel sandwich-type electrochemical aptasensor has been fabricated and applied for sensitive and selective detection of antibiotic oxytetracycline (OTC). This sensor was based on graphene-three dimensional nanostructure gold nanocomposite (GR-3D Au) and aptamer-AuNPs-horseradish peroxidase (aptamer-AuNPs-HRP) nanoprobes as signal amplification. Firstly, GR-3D Au film was modified on glassy carbon electrode only by one-step electrochemical coreduction with graphite oxide (GO) and HAuCl 4 at cathodic potentials, which enhanced the electron transfer and loading capacity of biomolecules. Then the aptamer and HRP modified Au nanoparticles provide high affinity and ultrasensitive electrochemical probe with excellent specificity for OTC. Under the optimized conditions, the peak current was linearly proportional to the concentration of OTC in the range of 5×10 -10 -2×10 -3 gL -1 , with a detection limit of 4.98×10 -10 gL -1 . Additionally, this aptasensor had the advantages in high sensitivity, superb specificity and showed good recovery in synthetic samples. Hence, the developed sandwich-type electrochemical aptasensor might provide a useful and practical tool for OTC determination and related food safety analysis and clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Hui; Zhang, Songjin; Tian, Xiumei; Liu, Chufeng; Zhang, Lei; Hu, Wenyong; Shao, Yuanzhi; Li, Li
2016-10-01
Nanoprobes for combined optical and magnetic resonance imaging have tremendous potential in early cancer diagnosis. Gold nanoparticles (AuNPs) co-doped with Gd2O3 mesoporous silica nanocomposite (Au/Gd@MCM-41) can produce pronounced contrast enhancement for T1 weighted image in magnetic resonance imaging (MRI). Here, we show the remarkably high sensitivity of Au/Gd@MCM-41 to the human poorly differentiated nasopharyngeal carcinoma (NPC) cell line (CNE-2) using fluorescence lifetime imaging (FLIM). The upconversion luminescences from CNE-2 and the normal nasopharyngeal (NP) cells (NP69) after uptake of Au/Gd@MCM-41 show the characteristic of two-photon-induced-radiative recombination of the AuNPs. The presence of the Gd3+ ion induces a much shorter luminescence lifetime in CNE-2 cells. The interaction between AuNPs and Gd3+ ion clearly enhances the optical sensitivity of Au/Gd@MCM-41 to CNE-2. Furthermore, the difference in the autofluorescence between CNE-2 and NP69 cells can be efficiently demonstrated by the emission lifetimes of Au/Gd@MCM-41 through the Forster energy transfers from the endogenous fluorophores to AuNPs. The results suggest that Au/Gd@MCM-41 may impart high optical resolution for the FLIM imaging that differentiates normal and high-grade precancers.
Binary CMOS image sensor with a gate/body-tied MOSFET-type photodetector for high-speed operation
NASA Astrophysics Data System (ADS)
Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Kim, Sang-Hwan; Shin, Jang-Kyoo
2016-05-01
In this paper, a binary complementary metal oxide semiconductor (CMOS) image sensor with a gate/body-tied (GBT) metal oxide semiconductor field effect transistor (MOSFET)-type photodetector is presented. The sensitivity of the GBT MOSFET-type photodetector, which was fabricated using the standard CMOS 0.35-μm process, is higher than the sensitivity of the p-n junction photodiode, because the output signal of the photodetector is amplified by the MOSFET. A binary image sensor becomes more efficient when using this photodetector. Lower power consumptions and higher speeds of operation are possible, compared to the conventional image sensors using multi-bit analog to digital converters (ADCs). The frame rate of the proposed image sensor is over 2000 frames per second, which is higher than those of the conventional CMOS image sensors. The output signal of an active pixel sensor is applied to a comparator and compared with a reference level. The 1-bit output data of the binary process is determined by this level. To obtain a video signal, the 1-bit output data is stored in the memory and is read out by horizontal scanning. The proposed chip is composed of a GBT pixel array (144 × 100), binary-process circuit, vertical scanner, horizontal scanner, and readout circuit. The operation mode can be selected from between binary mode and multi-bit mode.
NASA Astrophysics Data System (ADS)
Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.
2013-01-01
Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.
Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy
NASA Astrophysics Data System (ADS)
Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris
2018-04-01
We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.
Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy.
Gabbard, Hunter; Williams, Michael; Hayes, Fergus; Messenger, Chris
2018-04-06
We report on the construction of a deep convolutional neural network that can reproduce the sensitivity of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened time series of measured gravitational-wave strain as an input, and we train and test on simulated binary black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that our network can classify signal from noise with a performance that emulates that of match filtering applied to the same data sets when considering the sensitivity defined by receiver-operator characteristics.
NASA Astrophysics Data System (ADS)
Chen, Jiji; Wang, Chungang; Irudayaraj, Joseph
2009-07-01
A one-step rapid and ultrasensitive immunoassay capable of detecting proteins in blood serum is developed using gold nanoprobes and fluorescence correlation spectroscopy (FCS). In this approach we take advantage of the inherent photoluminescence property of gold nanoparticles (GNPs) to develop a fluorophore-free assay to observe binding entities by monitoring the diffusion of bound versus unbound molecules in a limited confocal volume. 40-nm GNPs conjugated separately with rabbit anti-IgG (Fc) and goat anti-IgG (Fab) when incubated in blood serum containing IgG forms a sandwich structure constituting dimers and oligomers that can be differentiated by to detect IgG in blood serum at a limit of detection (LOD) of 5 pg/ml. The novelty of integrating GNPs with FCS to develop a sensitive blood immunoassay brings single molecule methods one step closer to the clinic.
A value-added exopolysaccharide as a coating agent for MRI nanoprobes
NASA Astrophysics Data System (ADS)
Palma, Susana I. C. J.; Rodrigues, Carlos A. V.; Carvalho, Alexandra; Morales, Maria Del Puerto; Freitas, Filomena; Fernandes, Alexandra R.; Cabral, Joaquim M. S.; Roque, Ana C. A.
2015-08-01
Fucopol, a fucose-containing exopolysaccharide (EPS) produced by the bacterium Enterobacter A47 DSM 23139 using glycerol as a carbon source, was employed as a new coating material for iron oxide magnetic nanoparticles (MNPs). The coated particles were assessed as nanoprobes for cell labeling by Magnetic Resonance Imaging (MRI). The MNPs were synthesized by a thermal decomposition method and transferred to an aqueous medium by a ligand-exchange reaction with meso-2,3-dimercaptosuccinic acid (DMSA). Covalent binding of EPS to DMSA-stabilized nanoparticles (MNP-DMSA) resulted in a hybrid magnetic-biopolymeric nanosystem (MNP-DMSA-EPS) with a hydrodynamic size of 170 nm, a negative surface charge under physiological conditions and transverse to longitudinal relaxivity ratio, r2/r1, of 148. In vitro studies with two human cell lines (colorectal carcinoma - HCT116 - and neural stem/progenitor cells - ReNcell VM) showed that EPS promotes internalization of nanoparticles in both cell lines. In vitro MRI cell phantoms showed a superior performance of MNP-DMSA-EPS in ReNcell VM, for which the iron dose-dependent MRI signal drop was obtained at relatively low iron concentrations (12-20 μg Fe per ml) and short incubation times. Furthermore, ReNcell VM multipotency was not affected by culture in the presence of MNP-DMSA or MNP-DMSA-EPS for 14 days. Our study suggests that Fucopol-coated MNPs represent useful cell labeling nanoprobes for MRI.Fucopol, a fucose-containing exopolysaccharide (EPS) produced by the bacterium Enterobacter A47 DSM 23139 using glycerol as a carbon source, was employed as a new coating material for iron oxide magnetic nanoparticles (MNPs). The coated particles were assessed as nanoprobes for cell labeling by Magnetic Resonance Imaging (MRI). The MNPs were synthesized by a thermal decomposition method and transferred to an aqueous medium by a ligand-exchange reaction with meso-2,3-dimercaptosuccinic acid (DMSA). Covalent binding of EPS to DMSA-stabilized nanoparticles (MNP-DMSA) resulted in a hybrid magnetic-biopolymeric nanosystem (MNP-DMSA-EPS) with a hydrodynamic size of 170 nm, a negative surface charge under physiological conditions and transverse to longitudinal relaxivity ratio, r2/r1, of 148. In vitro studies with two human cell lines (colorectal carcinoma - HCT116 - and neural stem/progenitor cells - ReNcell VM) showed that EPS promotes internalization of nanoparticles in both cell lines. In vitro MRI cell phantoms showed a superior performance of MNP-DMSA-EPS in ReNcell VM, for which the iron dose-dependent MRI signal drop was obtained at relatively low iron concentrations (12-20 μg Fe per ml) and short incubation times. Furthermore, ReNcell VM multipotency was not affected by culture in the presence of MNP-DMSA or MNP-DMSA-EPS for 14 days. Our study suggests that Fucopol-coated MNPs represent useful cell labeling nanoprobes for MRI. Electronic supplementary information (ESI) available: Fig. S1-S3. See DOI: 10.1039/c5nr01979f
Gravitational Waves from Coalescing Binary Black Holes: Theoretical and Experimental Challenges
Damour, Thibault
2018-05-22
A network of ground-based interferometric gravitational wave detectors (LIGO/VIRGO/GEO/...) is currently taking data near its planned sensitivity. Coalescing black hole binaries are among the most promising, and most exciting, gravitational wave sources for these detectors. The talk will review the theoretical and experimental challenges that must be met in order to successfully detect gravitational waves from coalescing black hole binaries, and to be able to reliably measure the physical parameters of the source (masses, spins, ...).
Clearance Pathways and Tumor Targeting of Imaging Nanoparticles
Yu, Mengxiao; Zheng, Jie
2016-01-01
A basic understanding of how imaging nanoparticles are removed from the normal organs/tissues but retained in the tumors is important for their future clinical applications in early cancer diagnosis and therapy. In this review, we discuss current understandings of clearance pathways and tumor targeting of small-molecule- and inorganic-nanoparticle-based imaging probes with an emphasis on molecular nanoprobes, a class of inorganic nanoprobes that can escape reticuloendothelial system (RES) uptake and be rapidly eliminated from the normal tissues/organs via kidneys but can still passively target the tumor with high efficiency through the enhanced permeability permeability and retention (EPR) effect. The impact of nanoparticle design (size, shape, and surface chemistry) on their excretion, pharmacokinetics, and passive tumor targeting were quantitatively discussed. Synergetic integration of effective renal clearance and EPR effect offers a promising pathway to design low-toxicity and high-contrast-enhancement imaging nanoparticles that could meet with the clinical translational requirements of regulatory agencies. PMID:26149184
van der Waals interaction between a moving nano-cylinder and a liquid thin film.
Ledesma-Alonso, René; Raphaël, Elie; Salez, Thomas; Tordjeman, Philippe; Legendre, Dominique
2017-05-24
We study the static and dynamic interaction between a horizontal cylindrical nano-probe and a thin liquid film. The effects of the physical and geometrical parameters, with a special focus on the film thickness, the probe speed, and the distance between the probe and the free surface are analyzed. Deformation profiles have been computed numerically from a Reynolds lubrication equation, coupled to a modified Young-Laplace equation, which takes into account the probe/liquid and the liquid/substrate non-retarded van der Waals interactions. We have found that the film thickness and the probe speed have a significant effect on the threshold separation distance below which the jump-to-contact instability is triggered. These results encourage the use of horizontal cylindrical nano-probes to scan thin liquid films, in order to determine either the physical or geometrical properties of the latter, through the measurement of interaction forces.
2011-01-01
Nanoscaled materials are attractive building blocks for hierarchical assembly of functional nanodevices, which exhibit diverse performances and simultaneous functions. We innovatively fabricated semiconductor nano-probes of tapered ZnS nanowires through melting and solidifying by electro-thermal process; and then, as-prepared nano-probes can manipulate nanomaterials including semiconductor/metal nanowires and nanoparticles through sufficiently electrostatic force to the desired location without structurally and functionally damage. With some advantages of high precision and large domain, we can move and position and interconnect individual nanowires for contracting nanodevices. Interestingly, by the manipulating technique, the nanodevice made of three vertically interconnecting nanowires, i.e., diode, was realized and showed an excellent electrical property. This technique may be useful to fabricate electronic devices based on the nanowires' moving, positioning, and interconnecting and may overcome fundamental limitations of conventional mechanical fabrication. PMID:21794151
Nazaretski, E.; Yan, H.; Lauer, K.; ...
2017-10-05
A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less
de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.
2014-01-01
X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992
Erogbogbo, Folarin; Yong, Ken-Tye; Hu, Rui; Law, Wing-Cheung; Ding, Hong; Chang, Ching-Wen; Prasad, Paras N; Swihart, Mark T
2010-09-28
Luminescent silicon quantum dots (SiQDs) are gaining momentum in bioimaging applications, based on their unique combination of optical properties and biocompatibility. Here, we report the development of a multimodal probe that combines the optical properties of silicon quantum dots with the superparamagnetic properties of iron oxide nanoparticles to create biocompatible magnetofluorescent nanoprobes. Multiple nanoparticles of each type are coencapsulated within the hydrophobic core of biocompatible phospholipid-polyethyleneglycol (DSPE-PEG) micelles. The size distribution and composition of the magnetofluorescent nanoprobes were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Enhanced cellular uptake of these probes in the presence of a magnetic field was demonstrated in vitro. Their luminescence stability in a prostate cancer tumor model microenvironment was demonstrated in vivo. This paves the way for multimodal silicon quantum-dot-based nanoplatforms for a variety of imaging and delivery applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaretski, E.; Yan, H.; Lauer, K.
A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Liqin; Crew, Elizabeth; Yan, Hong
The ability to detect and intervene in DNA assembly, disassembly, and enzyme cutting processes in a solution phase requires effective signal transduction and stimulus response. This report demonstrates a novel bifunctional strategy for the creation of this ability using gold- and silver-coated MnZn ferrite nanoparticles (MZF@Au or MZF@Ag) that impart magnetic and surfaceenhanced Raman scattering (SERS) functionalities to these processes. The double-stranded DNA linkage of labeled gold nanoparticles with MZF@Au (or MZF@Ag) produces interparticle "hot-spots" for real-time SERS monitoring of the DNA assembly, disassembly, or enzyme cutting processes, during which the magnetic component provides an effective means for intervention inmore » the solution. The unique combination of the nanoprobes functionalities serves a new paradigm for the design of functional nanoprobes in biomolecular recognition and intervention.« less
Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction.
Feng, Peijian; Chen, Yulei; Zhang, Lei; Qian, Cheng-Gen; Xiao, Xuanzhong; Han, Xu; Shen, Qun-Dong
2018-02-07
Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.
Uematsu, Masahiro; Ito, Makiko; Hama, Yukihiro; Inomata, Takayuki; Fujii, Masahiro; Nishio, Teiji; Nakamura, Naoki; Nakagawa, Keiichi
2012-01-01
In this paper, we suggest a new method for verifying the motion of a binary multileaf collimator (MLC) in helical tomotherapy. For this we used a combination of a cylindrical scintillator and a general‐purpose camcorder. The camcorder records the light from the scintillator following photon irradiation, which we use to track the motion of the binary MLC. The purpose of this study is to demonstrate the feasibility of this method as a binary MLC quality assurance (QA) tool. First, the verification was performed using a simple binary MLC pattern with a constant leaf open time; secondly, verification using the binary MLC pattern used in a clinical setting was also performed. Sinograms of simple binary MLC patterns, in which leaves that were open were detected as “open” from the measured light, define the sensitivity which, in this case, was 1.000. On the other hand, the specificity, which gives the fraction of closed leaves detected as “closed”, was 0.919. The leaf open error identified by our method was −1.3±7.5%. The 68.6% of observed leaves were performed within ± 3% relative error. The leaf open error was expressed by the relative errors calculated on the sinogram. In the clinical binary MLC pattern, the sensitivity and specificity were 0.994 and 0.997, respectively. The measurement could be performed with −3.4±8.0% leaf open error. The 77.5% of observed leaves were performed within ± 3% relative error. With this method, we can easily verify the motion of the binary MLC, and the measurement unit developed was found to be an effective QA tool. PACS numbers: 87.56.Fc, 87.56.nk PMID:22231222
Adarsh, Nagappanpillai; Ramya, Adukkadan N; Maiti, Kaustabh Kumar; Ramaiah, Danaboyina
2017-10-12
The development of new Raman reporters has attracted immense attention in diagnostic research based on surface enhanced Raman scattering (SERS) techniques, which is a well established method for ultrasensitive detection through molecular fingerprinting and imaging. Herein, for the first time, we report the unique and efficient Raman active features of the selected aza-BODIPY dyes 1-6. These distinctive attributes could be extended at the molecular level to allow detection through SERS upon adsorption onto nano-roughened gold surface. Among the newly revealed Raman reporters, the amino substituted derivative 4 showed high signal intensity at very low concentrations (ca. 0.4 μm for 4-Au). Interestingly, an efficient nanoprobe has been constructed by using gold nanoparticles as SERS substrate, and 4 as the Raman reporter (4-Au@PEG), which unexpectedly showed efficient recognition of three human cancer cells (lung: A549, cervical: HeLa, Fibrosarcoma: HT-1080) without any specific surface marker. We observed well reflected and resolved Raman mapping and characteristic signature peaks whereas, such recognition was not observed in normal fibroblast (3T3L1) cells. To confirm these findings, a SERS nanoprobe was conjugated with a specific tumour targeting marker, EGFR (Epidermal Growth Factor Receptor), a well known targeted agent for Human Fibrosarcoma (HT1080). This nanoprobe efficiently targeted the surface marker of HT1080 cells, threreby demonstrating its use as an ultrasensitive Raman probe for detection and targeted imaging, leaving normal cells unaffected. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A general method for handling missing binary outcome data in randomized controlled trials
Jackson, Dan; White, Ian R; Mason, Dan; Sutton, Stephen
2014-01-01
Aims The analysis of randomized controlled trials with incomplete binary outcome data is challenging. We develop a general method for exploring the impact of missing data in such trials, with a focus on abstinence outcomes. Design We propose a sensitivity analysis where standard analyses, which could include ‘missing = smoking’ and ‘last observation carried forward’, are embedded in a wider class of models. Setting We apply our general method to data from two smoking cessation trials. Participants A total of 489 and 1758 participants from two smoking cessation trials. Measurements The abstinence outcomes were obtained using telephone interviews. Findings The estimated intervention effects from both trials depend on the sensitivity parameters used. The findings differ considerably in magnitude and statistical significance under quite extreme assumptions about the missing data, but are reasonably consistent under more moderate assumptions. Conclusions A new method for undertaking sensitivity analyses when handling missing data in trials with binary outcomes allows a wide range of assumptions about the missing data to be assessed. In two smoking cessation trials the results were insensitive to all but extreme assumptions. PMID:25171441
Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy
NASA Astrophysics Data System (ADS)
Martynov, D. V.; Hall, E. D.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, R. A.; Anderson, S. B.; Arai, K.; Arain, M. A.; Aston, S. M.; Austin, L.; Ballmer, S. W.; Barbet, M.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Batch, J. C.; Bell, A. S.; Belopolski, I.; Bergman, J.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Black, E.; Blair, C. D.; Bogan, C.; Bork, R.; Bridges, D. O.; Brooks, A. F.; Celerier, C.; Ciani, G.; Clara, F.; Cook, D.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Damjanic, M.; Dannenberg, R.; Danzmann, K.; Costa, C. F. Da Silva; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Feldbaum, D.; Fisher, R. P.; Foley, S.; Frede, M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galdi, V.; Giaime, J. A.; Giardina, K. D.; Gleason, J. R.; Goetz, R.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Grote, H.; Guido, C. J.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heefner, J.; Heintze, M. C.; Heptonstall, A. W.; Hoak, D.; Hough, J.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kells, W.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kokeyama, K.; Korth, W. Z.; Kuehn, G.; Kwee, P.; Landry, M.; Lantz, B.; Le Roux, A.; Levine, B. M.; Lewis, J. B.; Lhuillier, V.; Lockerbie, N. A.; Lormand, M.; Lubinski, M. J.; Lundgren, A. P.; MacDonald, T.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Merilh, E. L.; Meyer, M. S.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, C. L.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; O'Dell, J.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Osthelder, C.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Patrick, Z.; Pele, A.; Penn, S.; Phelps, M.; Pickenpack, M.; Pierro, V.; Pinto, I.; Poeld, J.; Principe, M.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Ramet, C. R.; Reed, C. M.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Sannibale, V.; Savage, R. L.; Schofield, R. M. S.; Schultz, B.; Schwinberg, P.; Sellers, D.; Sevigny, A.; Shaddock, D. A.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith-Lefebvre, N. D.; Sorazu, B.; Staley, A.; Stein, A. J.; Stochino, A.; Strain, K. A.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vargas, M.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Waldman, S. J.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Welborn, T.; Weßels, P.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.
2016-06-01
The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10-23/√{Hz } was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30 M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914.
Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni
2014-12-04
In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture.
NASA Astrophysics Data System (ADS)
Baker, Paul T.; Caudill, Sarah; Hodge, Kari A.; Talukder, Dipongkar; Capano, Collin; Cornish, Neil J.
2015-03-01
Searches for gravitational waves produced by coalescing black hole binaries with total masses ≳25 M⊙ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass (≳25 M⊙ ) parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown of binary black holes with total mass between 25 M⊙ and 100 M⊙ , we find sensitive volume improvements as high as 70±13%-109±11% when compared to the previously used ranking statistic. For a ringdown-only search which is sensitive to gravitational waves from the resultant perturbed intermediate mass black hole with mass roughly between 10 M⊙ and 600 M⊙ , we find sensitive volume improvements as high as 61±4%-241±12% when compared to the previously used ranking statistic. We also report how sensitivity improvements can differ depending on mass regime, mass ratio, and available data quality information. Finally, we describe the techniques used to tune and train the random forest classifier that can be generalized to its use in other searches for gravitational waves.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Aoudia, S.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Beker, M. G.; Belczynski, K.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Blomberg, A.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Corda, C.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J. P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dari, A.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Degallaix, J.; del Prete, M.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Devanka, P.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J. C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J. D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; MacInnis, M.; Mackowski, J. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Morioka, T.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; MowLowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabaste, O.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rogstad, S.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2010-09-01
We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr-1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr-1 MWEG-1 to 1000 Myr-1 MWEG-1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO-Virgo interferometers, with a plausible range between 2 × 10-4 and 0.2 per year. The likely binary neutron-star detection rate for the Advanced LIGO-Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.
NASA Astrophysics Data System (ADS)
Bala, Rajni; Mittal, Sherry; Sharma, Rohit K.; Wangoo, Nishima
2018-05-01
In the present study, we report a highly sensitive, rapid and low cost colorimetric monitoring of malathion (an organophosphate insecticide) employing a basic hexapeptide, malathion specific aptamer (oligonucleotide) and silver nanoparticles (AgNPs) as a nanoprobe. AgNPs are made to interact with the aptamer and peptide to give different optical responses depending upon the presence or absence of malathion. The nanoparticles remain yellow in color in the absence of malathion owing to the binding of aptamer with peptide which otherwise tends to aggregate the particles because of charge based interactions. In the presence of malathion, the agglomeration of the particles occurs which turns the solution orange. Furthermore, the developed aptasensor was successfully applied to detect malathion in various water samples and apple. The detection offered high recoveries in the range of 89-120% with the relative standard deviation within 2.98-4.78%. The proposed methodology exhibited excellent selectivity and a very low limit of detection i.e. 0.5 pM was achieved. The developed facile, rapid and low cost silver nanoprobe based on aptamer and peptide proved to be potentially applicable for highly selective and sensitive colorimetric sensing of trace levels of malathion in complex environmental samples. Figure S2. HPLC Chromatogram of KKKRRR. Figure S3. UV- Visible spectra of AgNPs in the presence of increasing peptide concentrations. Inset shows respective color changes of AgNPs with peptide concentrations ranging from 0.1 mM to 100 mM (a to e). Figure S4. UV- Visible spectra of AgNPs in the presence 10 mM peptide and varying aptamer concentrations. Inset shows the corresponding color changes. a to e shows aptamer concentrations ranging from 10 nM to 1000 nM. Figure S5. Interference Studies. Ratio of A520 nm/390 nm of AgNPs in the presence of 10 mM peptide, 500 nM aptamer, 0.5 nM malathion and 0.5 mM interfering components i.e. sodium, potassium, calcium, alanine, arginine, aspartic acid, ascorbic acid (AA) and glucose. Figure S6. (A) Absorbance spectra of AgNPs with increasing malathion concentrations. (B) Calibration plot for spiked lake water. Inset shows their respective images where a to g represents malathion concentrations from 0.01 nM to 0.75 nM. Each point represents an average of three individual measurements and error bars indicate standard deviation. Figure S7. (A) Absorbance spectra of AgNPs with increasing malathion concentrations in spiked tap water samples. (B) Calibration plot for the biosensor. Inset represents the color changes. a to g represents varying malathion concentrations from 0.01 nM to 0.75 nM. Each point represents an average of three individual measurements and error bars indicate standard deviation. Figure S8. (A) Absorbance spectra of AgNPs in the presence of different malathion concentrations in spiked apple samples. (B) Calibration plot for spiked apple. Inset displays the corresponding color changes. a to g shows the color of solutions having malathion concentrations from 0.01 nM to 0.75 nM. Each point represents an average of three individual measurements and error bars indicate standard deviation.
Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde.
Akshath, Uchangi Satyaprasad; Bhatt, Praveena
2018-02-15
Supramolecular nanoparticle hybrids for biosensing of analytes have been a major focus due to their tunable optical and surface properties. Quantum dots-Gold nanoparticle (QDs-GNP) based FRET probes involving turn on/off principles have gained immense interest due to their specificity and sensitivity. Recent focus is on applying these supramolecular hybrids for enzyme operated biosensors that can specifically turn-on fluorescence induced by co-factor or product formed from enzymatic reaction. The present study focuses on locking and unlocking the interaction between QD-GNP pair leading to differential fluorescent properties. Cationic GNPs efficiently quenched the anionic QD fluorescence by forming nanoparticle hybrid. Quenching interaction between QD-GNP pair was unlocked by NADH leading to QD fluorescence turn-on. This phenomenon was applied for the successful detection of formaldehyde using NAD + dependent formaldehyde dehydrogenase. The proposed nano-sniffer could successfully detect formaldehyde from 0.001 to 100000ng/mL (R 2 = 0.9339) by the turn off-turn on principle. It could also detect formaldehyde in fruit juice and wine samples indicating its stability and sensitivity in real samples. The proposed nanoprobe can have wide applications in developing enzyme biosensors in future. Copyright © 2017 Elsevier B.V. All rights reserved.
Gamma-ray-burst beaming and gravitational-wave observations.
Chen, Hsin-Yu; Holz, Daniel E
2013-11-01
Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.
Galactic binary science with the new LISA design
NASA Astrophysics Data System (ADS)
Cornish, Neil; Robson, Travis
2017-05-01
Building on the great success of the LISA Pathfinder mission, the outlines of a new LISA mission design were laid out at the 11th International LISA Symposium in Zurich. The revised design calls for three identical spacecraft forming an equilateral triangle with 2.5 million kilometer sides, and two laser links per side delivering full polarization sensitivity. With the demonstrated Pathfinder performance for the disturbance reduction system, and a well studied design for the laser metrology, it is anticipated that the new mission will have a sensitivity very close to the original LISA design. This implies that the mid-band performance, between 0.5 mHz and 3 mHz, will be limited by unresolved signals from compact binaries in our galaxy. Here we use the new LISA design to compute updated estimates for the galactic confusion noise, the number of resolvable galactic binaries, and the accuracy to which key parameters of these systems can be measured.
Reliable binary cell-fate decisions based on oscillations
NASA Astrophysics Data System (ADS)
Pfeuty, B.; Kaneko, K.
2014-02-01
Biological systems have often to perform binary decisions under highly dynamic and noisy environments, such as during cell-fate determination. These decisions can be implemented by two main bifurcation mechanisms based on the transitions from either monostability or oscillation to bistability. We compare these two mechanisms by using stochastic models with time-varying fields and by establishing asymptotic formulas for the choice probabilities. Different scaling laws for decision sensitivity with respect to noise strength and signal timescale are obtained, supporting a role for oscillatory dynamics in performing noise-robust and temporally tunable binary decision-making. This result provides a rationale for recent experimental evidences showing that oscillatory expression of proteins often precedes binary cell-fate decisions.
Deficit of Wide Binaries in the η Chamaeleontis Young Cluster
NASA Astrophysics Data System (ADS)
Brandeker, Alexis; Jayawardhana, Ray; Khavari, Parandis; Haisch, Karl E., Jr.; Mardones, Diego
2006-12-01
We have carried out a sensitive high-resolution imaging survey of stars in the young (6-8 Myr), nearby (97 pc) compact cluster around η Chamaeleontis to search for stellar and substellar companions. Our data were obtained using the NACO adaptive optics system on the ESO Very Large Telescope (VLT). Given its youth and proximity, any substellar companions are expected to be luminous, especially in the near-infrared, and thus easier to detect next to their parent stars. Here, we present VLT NACO adaptive optics imaging with companion detection limits for 17 η Cha cluster members, and follow-up VLT ISAAC near-infrared spectroscopy for companion candidates. The widest binary detected is ~0.2", corresponding to the projected separation 20 AU, despite our survey being sensitive down to substellar companions outside 0.3", and planetary-mass objects outside 0.5". This implies that the stellar companion probability outside 0.3" and the brown dwarf companion probability outside 0.5" are less than 0.16 with 95% confidence. We compare the wide binary frequency of η Cha to that of the similarly aged TW Hydrae association and estimate the statistical likelihood that the wide binary probability is equal in both groups to be less than 2×10-4. Even though the η Cha cluster is relatively dense, stellar encounters in its present configuration cannot account for the relative deficit of wide binaries. We thus conclude that the difference in wide binary probability in these two groups provides strong evidence for multiplicity properties being dependent on environment. In two appendices we derive the projected separation probability distribution for binaries, used to constrain physical separations from observed projected separations, and summarize statistical tools useful for multiplicity studies.
NASA Astrophysics Data System (ADS)
Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman
2018-05-01
Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.
Gravitational wave probes of parity violation in compact binary coalescences
NASA Astrophysics Data System (ADS)
Alexander, Stephon H.; Yunes, Nicolás
2018-03-01
Is gravity parity violating? Given the recent observations of gravitational waves from coalescing compact binaries, we develop a strategy to find an answer with current and future detectors. We identify the key signatures of parity violation in gravitational waves: amplitude birefringence in their propagation and a modified chirping rate in their generation. We then determine the optimal binaries to test the existence of parity violation in gravity, and prioritize the research in modeling that will be required to carry out such tests before detectors reach their design sensitivity.
A Next-Generation Hard X-Ray Nanoprobe Beamline for In Situ Studies of Energy Materials and Devices
NASA Astrophysics Data System (ADS)
Maser, Jörg; Lai, Barry; Buonassisi, Tonio; Cai, Zhonghou; Chen, Si; Finney, Lydia; Gleber, Sophie-Charlotte; Jacobsen, Chris; Preissner, Curt; Roehrig, Chris; Rose, Volker; Shu, Deming; Vine, David; Vogt, Stefan
2014-01-01
The Advanced Photon Source is developing a suite of new X-ray beamlines to study materials and devices across many length scales and under real conditions. One of the flagship beamlines of the APS upgrade is the In Situ Nanoprobe (ISN) beamline, which will provide in situ and operando characterization of advanced energy materials and devices under varying temperatures, gas ambients, and applied fields, at previously unavailable spatial resolution and throughput. Examples of materials systems include inorganic and organic photovoltaic systems, advanced battery systems, fuel cell components, nanoelectronic devices, advanced building materials and other scientifically and technologically relevant systems. To characterize these systems at very high spatial resolution and trace sensitivity, the ISN will use both nanofocusing mirrors and diffractive optics to achieve spots sizes as small as 20 nm. Nanofocusing mirrors in Kirkpatrick-Baez geometry will provide several orders of magnitude increase in photon flux at a spatial resolution of 50 nm. Diffractive optics such as zone plates and/or multilayer Laue lenses will provide a highest spatial resolution of 20 nm. Coherent diffraction methods will be used to study even small specimen features with sub-10 nm relevant length scale. A high-throughput data acquisition system will be employed to significantly increase operations efficiency and usability of the instrument. The ISN will provide full spectroscopy capabilities to study the chemical state of most materials in the periodic table, and enable X-ray fluorescence tomography. In situ electrical characterization will enable operando studies of energy and electronic devices such as photovoltaic systems and batteries. We describe the optical concept for the ISN beamline, the technical design, and the approach for enabling a broad variety of in situ studies. We furthermore discuss the application of hard X-ray microscopy to study defects in multi-crystalline solar cells, one of the lines of inquiries for which the ISN is being developed.
Tidal disruption of inclined or eccentric binaries by massive black holes
NASA Astrophysics Data System (ADS)
Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em
2018-07-01
Binary stars that are on close orbits around massive black holes (MBHs) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such an MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented towards the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20 per cent when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation, and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by an MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.
Tidal Disruption of Inclined or Eccentric Binaries by Massive Black Holes
NASA Astrophysics Data System (ADS)
Brown, Harriet; Kobayashi, Shiho; Rossi, Elena M.; Sari, Re'em
2018-04-01
Binary stars that are on close orbits around massive black holes (MBH) such as Sgr A* in the centre of the Milky Way are liable to undergo tidal disruption and eject a hypervelocity star. We study the interaction between such a MBH and circular binaries for general binary orientations and penetration depths (i.e. binaries penetrate into the tidal radius around the BH). We show that for very deep penetrators, almost all binaries are disrupted when the binary rotation axis is roughly oriented toward the BH or it is in the opposite direction. The surviving chance becomes significant when the angle between the binary rotation axis and the BH direction is between 0.15π and 0.85π. The surviving chance is as high as ˜20% when the binary rotation axis is perpendicular to the BH direction. However, for shallow penetrators, the highest disruption chance is found in such a perpendicular case, especially in the prograde case. This is because the dynamics of shallow penetrators is more sensitive to the relative orientation of the binary and orbital angular momenta. We provide numerical fits to the disruption probability and energy gain at the the BH encounter as a function of the penetration depth. The latter can be simply rescaled in terms of binary masses, their initial separation and the binary-to-BH mass ratio to evaluate the ejection velocity of a binary members in various systems. We also investigate the disruption of coplanar, eccentric binaries by a MBH. It is shown that for highly eccentric binaries retrograde orbits have a significantly increased disruption probability and ejection velocities compared to the circular binaries.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Mandel, Ilya; Ramirez-Ruiz, Enrico
2013-06-01
The detection of an electromagnetic transient which may originate from a binary neutron star merger can increase the probability that a given segment of data from the LIGO-Virgo ground-based gravitational-wave detector network contains a signal from a binary coalescence. Additional information contained in the electromagnetic signal, such as the sky location or distance to the source, can help rule out false alarms and thus lower the necessary threshold for a detection. Here, we develop a framework for determining how much sensitivity is added to a gravitational-wave search by triggering on an electromagnetic transient. We apply this framework to a variety of relevant electromagnetic transients, from short gamma-ray bursts (GRBs) to signatures of r-process heating to optical and radio orphan afterglows. We compute the expected rates of multimessenger observations in the advanced detector era and find that searches triggered on short GRBs—with current high-energy instruments, such as Fermi—and nucleosynthetic “kilonovae”—with future optical surveys, like the Large Synoptic Survey Telescope—can boost the number of multimessenger detections by 15% and 40%, respectively, for a binary neutron star progenitor model. Short GRB triggers offer precise merger timing but suffer from detection rates decreased by beaming and the high a priori probability that the source is outside the LIGO-Virgo sensitive volume. Isotropic kilonovae, on the other hand, could be commonly observed within the LIGO-Virgo sensitive volume with an instrument roughly an order of magnitude more sensitive than current optical surveys. We propose that the most productive strategy for making multimessenger gravitational-wave observations is using triggers from future deep, optical all-sky surveys, with characteristics comparable to the Large Synoptic Survey Telescope, which could make as many as ten such coincident observations a year.
Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes
NASA Astrophysics Data System (ADS)
Liu, Chunyan; Qi, Yifei; Qiao, Ruirui; Hou, Yi; Chan, Kaying; Li, Ziqian; Huang, Jiayi; Jing, Lihong; Du, Jun; Gao, Mingyuan
2016-06-01
Early detection and diagnosis of cancers is extremely beneficial for improving the survival rate of cancer patients and molecular imaging techniques are believed to be relevant for offering clinical solutions. Towards early cancer detection, we developed a primary animal colorectal cancer model and constructed a tumor-specific imaging probe by using biocompatible NaGdF4:Yb,Er@NaGdF4 upconversion luminescent NPs for establishing a sensitive early tumor imaging method. The primary animal tumor model, which can better mimic the human colorectal cancer, was built upon continual administration of 1,2-dimethylhydrazine in Kunming mice and the tumor development was carefully monitored through histopathological and immunohistochemical analyses to reveal the pathophysiological processes and molecular features of the cancer microenvironment. The upconversion imaging probe was constructed through covalent coupling of PEGylated core-shell NPs with folic acid whose receptor is highly expressed in the primary tumors. Upon 980 nm laser excitation, the primary colorectal tumors in the complex abdominal environment were sensitively imaged owing to the ultralow background of the upconversion luminescence and the high tumor-targeting specificity of the nanoprobe. We believe that the current studies provide a highly effective and potential approach for early colorectal cancer diagnosis and tumor surgical navigation.Early detection and diagnosis of cancers is extremely beneficial for improving the survival rate of cancer patients and molecular imaging techniques are believed to be relevant for offering clinical solutions. Towards early cancer detection, we developed a primary animal colorectal cancer model and constructed a tumor-specific imaging probe by using biocompatible NaGdF4:Yb,Er@NaGdF4 upconversion luminescent NPs for establishing a sensitive early tumor imaging method. The primary animal tumor model, which can better mimic the human colorectal cancer, was built upon continual administration of 1,2-dimethylhydrazine in Kunming mice and the tumor development was carefully monitored through histopathological and immunohistochemical analyses to reveal the pathophysiological processes and molecular features of the cancer microenvironment. The upconversion imaging probe was constructed through covalent coupling of PEGylated core-shell NPs with folic acid whose receptor is highly expressed in the primary tumors. Upon 980 nm laser excitation, the primary colorectal tumors in the complex abdominal environment were sensitively imaged owing to the ultralow background of the upconversion luminescence and the high tumor-targeting specificity of the nanoprobe. We believe that the current studies provide a highly effective and potential approach for early colorectal cancer diagnosis and tumor surgical navigation. Electronic supplementary information (ESI) available: (1) Molecular structure of Jeffamine-modified FA; (2) immunohistochemical analysis of FR expression in the colorectal tissue derived from mice treated with NaCl at different weeks; (3) biodistributions of probes of NP-FA and NP-IgG in the main organs of mice. See DOI: 10.1039/c5nr07858j
Santibáñez, M; Saavedra, R; Vásquez, M; Malano, F; Pérez, P; Valente, M; Figueroa, R G
2017-11-01
The present work is devoted to optimizing the sensitivity-doses relationship of a bench-top EDXRF system, with the aim of achieving a detection limit of 0.010mg/ml of gold nanoparticles in tumor tissue (clinical values expected), for doses below 10mGy (value fixed for in vivo application). Tumor phantoms of 0.3cm 3 made of a suspension of gold nanoparticles (15nm AurovistTM, Nanoprobes Inc.) were studied at depths of 0-4mm in a tissue equivalent cylindrical phantom. The optimization process was implemented configuring several tube voltages and aluminum filters, to obtain non-symmetrical narrow spectra with fixed FWHM of 5keV and centered among the 11.2-20.3keV. The used statistical figure of merit was the obtained sensitivity (with each spectrum at each depth) weighted by the delivered surface doses. The detection limit of the system was determined measuring several gold nanoparticles concentrations ranging from 0.0010 to 5.0mg/ml and a blank sample into tumor phantoms, considering a statistical fluctuation within 95% of confidence. The results show the possibility of obtaining a detection limit for gold nanoparticles concentrations around 0.010mg/ml for surface tumor phantoms requiring doses around 2mGy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lin, Donghai; Qin, Tianqi; Wang, Yunqing; Sun, Xiuyan; Chen, Lingxin
2014-01-22
As novel optical nanoprobes, surface-enhanced Raman scattering (SERS) tags have drawn growing interests in the application of biomedical imaging and phototherapies. Herein, we demonstrated a novel in situ synthesis strategy for GO wrapped gold nanocluster SERS tags by using a tris(2,2'-bipyridyl)ruthenium(II) chloride (Rubpy)/GO nanohybrid as a complex Raman reporter, inspired by the role of GO as an artificial receptor for various dyes. The introduction of GO in the synthesis procedure provided systematic solutions for controlling several key parameters of SERS tags, including reproducibility, sensitivity, and colloidal and signal stability. An additional interesting thermal-sensitive SERS property (SERS intensity decreased upon increasing the temperature) was also achieved due to the heat-induced release/redistribution of reporter molecules adsorbed on GO. Combining the synergic effect of these features, we further fabricated multifunctional, aldehyde group conjugated Au@Rubpy/GO SERS tags for optical labeling and photothermal ablation of bacteria. Sensitive Raman imaging of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria could be realized, and satisfactory photothermal killing efficacy for both bacteria was achieved. Our results also demonstrated the correlation among the SERS intensity decrease ratio, bacteria survival rate, and the terminal temperature of the tag-bacteria suspension, showing the possibility to use SERS assay to measure antibacterial response during the photothermal process using this tag.
Investigation of e-beam sensitive negative-tone chemically amplified resists for binary mask making
NASA Astrophysics Data System (ADS)
Irmscher, Mathias; Berger, Lothar; Beyer, Dirk; Butschke, Joerg; Dress, Peter; Hoffmann, Thomas; Hudek, Peter; Koepernik, Corinna; Tschinkl, Martin; Voehringer, Peter
2003-08-01
Negative-tone chemically amplified resists MES-EN1G (JSR), FEN-270 (Fujifilm ARCH), EN-024M (TOK) and NEB-22 (Sumitomo) were evaluated for binary mask making. The investigations were performed on an advanced tool set comprising a 50kV e-beam writer Leica SB350, a Steag Hamatech hot/cool plate module APB5000, a Steag Hamatech developer ASP5000, an UNAXIS MASK ETCHER III and a SEM LEO1560 with integrated CD measurement option. We investigated and compared the evaluated resists in terms of resolution, e-beam sensitivity, resist profile, post exposure bake sensitivity, CD-uniformity, line edge roughness, pattern fidelity and etch resistance. Furthermore, the influence of post coating delay and post exposure delay in vacuum and air was determined.
NASA Astrophysics Data System (ADS)
Lawson, Latevi S.; Chan, James W.; Huser, Thomas
2014-06-01
Chemical sensing on the nanoscale has been breaking new ground since the discovery of surface enhanced Raman scattering (SERS). For nanoparticles, controlled particle aggregation is necessary to achieve the largest SERS enhancements. Therefore, aggregating agents such as salts or linker molecules are used in conjunction with chemically sensitive reporters in order to develop robust environmentally sensitive SERS probes. While salt-induced colloidal nanosphere aggregates have produced robust SERS signals, their variability in aggregate size contributes significantly to poor SERS signal reproducibility, which can complicate their use in in vitro cellular studies. Such systems often also lack reproducibility in spectral measurements between different nanoparticle clusters. Preaggregation of colloids via linkers followed by surface functionalization with reporter molecules results in the linker occupying valuable SERS hotspot volume which could otherwise be utilized by additional reporter molecules. Ideally, both functionalities should be obtained from a single molecule. Here, we report the use of 3,5-dimercaptobenzoic acid, a single multifunctional molecule that creates SERS hotspots via the controlled aggregation of nanoparticles, and also reports pH values. We show that 3,5-dimercaptobenzoic acid bound to Au nanospheres results in an excellent pH nanoprobe, producing very robust, and highly reproducible SERS signals that can report pH across the entire physiological range with excellent pH resolution. To demonstrate the efficacy of our novel pH reporters, these probes were also used to image both the particle and pH distribution in the cytoplasm of human induced pluripotent stem cells (hiPSCs).Chemical sensing on the nanoscale has been breaking new ground since the discovery of surface enhanced Raman scattering (SERS). For nanoparticles, controlled particle aggregation is necessary to achieve the largest SERS enhancements. Therefore, aggregating agents such as salts or linker molecules are used in conjunction with chemically sensitive reporters in order to develop robust environmentally sensitive SERS probes. While salt-induced colloidal nanosphere aggregates have produced robust SERS signals, their variability in aggregate size contributes significantly to poor SERS signal reproducibility, which can complicate their use in in vitro cellular studies. Such systems often also lack reproducibility in spectral measurements between different nanoparticle clusters. Preaggregation of colloids via linkers followed by surface functionalization with reporter molecules results in the linker occupying valuable SERS hotspot volume which could otherwise be utilized by additional reporter molecules. Ideally, both functionalities should be obtained from a single molecule. Here, we report the use of 3,5-dimercaptobenzoic acid, a single multifunctional molecule that creates SERS hotspots via the controlled aggregation of nanoparticles, and also reports pH values. We show that 3,5-dimercaptobenzoic acid bound to Au nanospheres results in an excellent pH nanoprobe, producing very robust, and highly reproducible SERS signals that can report pH across the entire physiological range with excellent pH resolution. To demonstrate the efficacy of our novel pH reporters, these probes were also used to image both the particle and pH distribution in the cytoplasm of human induced pluripotent stem cells (hiPSCs). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06277e
Yang, Limin; Chen, Yuanyuan; Yu, Zhengze; Pan, Wei; Wang, Hongyu; Li, Na; Tang, Bo
2017-08-23
Autophagy and apoptosis are closely associated with various pathological and physiological processes in cell cycles. Investigating the dynamic changes of intracellular active molecules in autophagy and apoptosis is of great significance for clarifying their inter-relationship and regulating mechanism in many diseases. In this study, we develop a dual-ratiometric fluorescent nanoprobe for quantitatively differentiating the dynamic process of superoxide anion (O 2 •- ) and pH changes in autophagy and apoptosis in HeLa cells. A rhodamine B-loaded mesoporous silica core was used as the reference, and fluorescence probes for pH and O 2 •- measurement were doped in the outer layer shell of SiO 2 . Then, chitosan and triphenylphosphonium were modified on the surface of SiO 2 . The experimental results showed that the nanoprobe is able to simultaneously and precisely visualize the changes of mitochondrial O 2 •- and pH in HeLa cells. The kinetics data revealed that the changes of pH and O 2 •- during autophagy and apoptosis in HeLa cells were significantly different. The pH value was decreased at the early stage of apoptosis and autophagy, whereas the O 2 •- level was enhanced at the early stage of apoptosis and almost unchanged at the initial stage of autophagy. At the late stage of apoptosis and autophagy, the concentration of O 2 •- was increased, whereas the pH was decreased at the late stage of autophagy and almost unchanged at the late stage of apoptosis. We hope that the present results provide useful information for studying the effects of O 2 •- and pH in autophagy and apoptosis in various pathological conditions and diseases.
Wang, Jie; Zhang, Ying; Xia, Jing; Cai, Tingting; Du, Jiawei; Chen, Jinpeng; Li, Ping; Shen, Yuqing; Zhang, Aifeng; Fu, Bo; Gao, Xueren; Miao, Fenqin; Zhang, Jianqiong; Teng, Gaojun
2018-01-29
Ischemic stroke is a complex disease with multiple etiologies and clinical manifestations. Paired immunoglobulin-like receptor B (PirB), which is originally thought to function exclusively in the immune system, is now also known to be expressed by neurons. A growing number of studies indicate that PirB can inhibit neurite outgrowth and restrict neuronal plasticity. The aim of the study is to investigate whether PirB can be an attractive theranostic target for ischemic stroke. First, we investigated the spatial-temporal expression of PirB in multiple ischemic stroke models, including transient middle cerebral artery occlusion, photothrombotic cerebral cortex ischemia, and the neuronal oxygen glucose deprivation model. Then, anti-PirB immunoliposome nanoprobe was developed by thin-film hydration method and investigated its specific targeting in vitro and in vivo. Finally, soluble PirB ectodomain (sPirB) protein delivered by polyethylene glycol-modified nanoliposome was used as a therapeutic reagent for ischemic stroke by blocking PirB binding to its endogenous ligands. These results showed that PirB was significantly upregulated after cerebral ischemic injury in ischemic stroke models. Anti-PirB immunoliposome nanoprobe was successfully developed and specifically bound to PirB in vitro. There was accumulation of anti-PirB immunoliposome nanoprobe in the ischemic hemisphere in vivo. Soluble PirB ectodomains remarkably improved ischemic stroke model recovery by liposomal delivery system. These data indicated that PirB was a significant element in the pathological process of cerebral ischemia. Therefore, PirB may act as a novel theranostic target for ischemic stroke. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
NASA Astrophysics Data System (ADS)
Nabiev, Igor
2017-01-01
An ideal single-photon (1P) or multiphoton fluorescent nanoprobe should combine a nanocrystal with the largest possible 1P or two-photon (2P) absorption cross section and the smallest possible highly specific recognition molecules conjugated with the nanoparticle in an oriented manner. However, the conditions used for conjugation of typical recognition molecules (conventional antibodies, Abs) with nanoparticles often provoke their unfolding and/or yield nanoprobes with irregular orientation of Abs on the nanoparticle surface. Conjugation of smaller Ab fragments, such as single-domain antibodies (sdAbs), with quantum dots (QDs) in an oriented manner can be considered as an attractive approach to engineering of ultrasmall diagnostic nanoprobes. QDs conjugated to 13-kDa sdAbs derived from camelid IgG or streptavidin have been used as efficient 1P or 2P excitation probes for imaging of cancer markers. The 2P absorption cross sections (TPACSs) for some conjugates are higher than 49,000 GM (Goeppert-Mayer units), which is close to the theoretical value calculated for CdSe QDs and considerably exceeds that of organic dyes. A further step in advanced QD-based cancer diagnostics has been made through implementation of efficient FRET-based imaging with 2P excitation, which has been demonstrated for double immunostaining complexes formed on the surface of cancer cells from sdAb-QD conjugates (donor) and a combination of monoclonal Abs and secondary antibodies labeled with the AlexaFluor dye (acceptor). The proposed approach permits obtaining an exceptional contrast of 2P imaging of cancer biomarkers without any contribution of cell and tissue autofluorescence in the recorded images.
Zhang, Jing-Jing; Cheng, Fang-Fang; Zheng, Ting-Ting; Zhu, Jun-Jie
2017-03-15
Quantifying the glycan expression status on cell surfaces is of vital importance for insight into the glycan function in biological processes and related diseases. Here we developed a versatile aptasensor for electrochemical quantification of cell surface glycan by taking advantage of the cell-specific aptamer, and the lectin-functionalized gold nanoparticles acting as both a glycan recognition unit and a signal amplification probe. To construct the aptasensor, amine-functionalized mucin 1 protein (MUC1) aptamer was first covalently conjugated to carboxylated-magnetic beads (MBs) using the succinimide coupling (EDC-NHS) method. On the basis of the specific recognition between aptamer and MUC1 protein that overexpressed on the surface of MCF-7 cells, the aptamer conjugated MBs showed a predominant capability for cell capture with high selectivity. Moreover, a lectin-based nanoprobe was designed by noncovalent assembly of concanavalin A (ConA) on gold nanoparticles (AuNPs). This nanoprobe incorporated the abilities of both the specific carbohydrate recognition and the signal amplification based on the gold-promoted reduction of silver ions. By coupling with electrochemical stripping analysis, the proposed sandwich-type cytosensor showed an excellent analytical performance for the ultrasensitive detection of MCF-7 cells and quantification of cell surface glycan. More importantly, taking advantage of Con A-gold nanoprobe catalyzed silver enhancement, the proposed method was further used for naked-eye tracking glycolytic inhibition in living cells. This aptasensor holds great promise as a new point-of-care diagnostic tool for analyzing glycan expression on living cells and further helps cancer diagnosis and treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of the Cepheid® Xpert®C. difficile binary toxin (BT) diagnostic assay.
McGovern, Alan M; Androga, Grace O; Moono, Peter; Collins, Deirdre A; Foster, Niki F; Chang, Barbara J; Riley, Thomas V
2018-06-01
Strains of Clostridium difficile producing only binary toxin (CDT) are found commonly in animals but not humans. However, human diagnostic tests rarely look for CDT. The Cepheid Xpert C. difficile BT assay detects CDT with equal sensitivity (≥92%) in human and animal faecal samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
MnO2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA.
Ou, Min; Huang, Jin; Yang, Xiaohai; Quan, Ke; Yang, Yanjing; Xie, Nuli; Wang, Kemin
2017-01-01
The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO 2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn 2+ ions by intracellular GSH. The results indicated that the MnO 2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO 2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.
A general method for handling missing binary outcome data in randomized controlled trials.
Jackson, Dan; White, Ian R; Mason, Dan; Sutton, Stephen
2014-12-01
The analysis of randomized controlled trials with incomplete binary outcome data is challenging. We develop a general method for exploring the impact of missing data in such trials, with a focus on abstinence outcomes. We propose a sensitivity analysis where standard analyses, which could include 'missing = smoking' and 'last observation carried forward', are embedded in a wider class of models. We apply our general method to data from two smoking cessation trials. A total of 489 and 1758 participants from two smoking cessation trials. The abstinence outcomes were obtained using telephone interviews. The estimated intervention effects from both trials depend on the sensitivity parameters used. The findings differ considerably in magnitude and statistical significance under quite extreme assumptions about the missing data, but are reasonably consistent under more moderate assumptions. A new method for undertaking sensitivity analyses when handling missing data in trials with binary outcomes allows a wide range of assumptions about the missing data to be assessed. In two smoking cessation trials the results were insensitive to all but extreme assumptions. © 2014 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.
Dréau, Didier; Moore, Laura Jeffords; Alvarez-Berrios, Merlis P; Tarannum, Mubin; Mukherjee, Pinku; Vivero-Escoto, Juan L
2016-12-01
Mucin-1 (MUC1), a transmembrane glycoprotein is aberrantly expressed on ~90% of breast cancer and is an excellent target for nanoparticulate targeted imaging. In this study, the development of a dye-doped NIR emitting mesoporous silica nanoparticles platform conjugated to tumor-specific MUC1 antibody (ab-tMUC1-NIR-MSN) for in vivo optical detection of breast adenocarcinoma tissue is reported. The structural properties, the in vitro and in vivo performance of this nanoparticle-based probe were evaluated. In vitro studies showed that the MSN-based optical imaging nanoprobe is non-cytotoxic and targets efficiently mammary cancer cells overexpressing human tMUC1 protein. In vivo experiments with female C57BL/6 mice indicated that this platform accumulates mainly in the liver and did not induce short-term toxicity. In addition, we demonstrated that the ab-tMUC1-NIR-MSN nanoprobe specifically detects mammary gland tumors overexpressing human tMUC1 in a human MUC1 transgenic mouse model.
Hu, Keke; Wang, Yixian; Cai, Huijing; Mirkin, Michael V; Gao, Yang; Friedman, Gary; Gogotsi, Yury
2014-09-16
Nanometer-sized glass and quartz pipettes have been widely used as a core of chemical sensors, patch clamps, and scanning probe microscope tips. Many of those applications require the control of the surface charge and chemical state of the inner pipette wall. Both objectives can be attained by coating the inner wall of a quartz pipette with a nanometer-thick layer of carbon. In this letter, we demonstrate the possibility of using open carbon nanopipettes (CNP) produced by chemical vapor deposition as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. By applying a potential to the carbon layer, one can change the surface charge and electrical double-layer at the pipette wall, which, in turn, affect the ion current rectification and adsorption/desorption processes essential for resistive-pulse sensors. CNPs can also be used as versatile electrochemical probes such as asymmetric bipolar nanoelectrodes and dual electrodes based on simultaneous recording of the ion current through the pipette and the current produced by oxidation/reduction of molecules at the carbon nanoring.
Zhang, Yan; Das, Gautom Kumar; Vijayaragavan, Vimalan; Xu, Qing Chi; Padmanabhan, Parasuraman; Bhakoo, Kishore K; Selvan, Subramanian Tamil; Tan, Timothy Thatt Yang
2014-11-07
The current work reports a type of "smart" lanthanide-based theranostic nanoprobe, NaDyF4:Yb(3+)/NaGdF4:Yb(3+),Er(3+), which is able to circumvent the up-converting poisoning effect of Dy(3+) ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.
Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging
Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru
2008-01-01
Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788
Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.
Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A S; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H; Choyke, Peter L; Urano, Yasuteru
2007-11-01
Current contrast agents generally have one function and can only be imaged in monochrome; therefore, the majority of imaging methods can only impart uniparametric information. A single nanoparticle has the potential to be loaded with multiple payloads. Such multimodality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multicolor in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near-infrared emission. To this end, we synthesized nanoprobes with multimodal and multicolor potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and five-color near-infrared optical lymphatic imaging using a multiple-excitation spectrally resolved fluorescence imaging technique.
Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior
NASA Astrophysics Data System (ADS)
Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.
2018-03-01
Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.
Integrated Sensing and Processing in Missile Systems
2004-03-31
Nanoprobes: The Geometry of Processing and Sensing," H. A. Schmitt, et al., 5th Asian Control Conference, Melbourne, Australia, 2004, accepted. 17. [CR...Computers, Special session on "Signal Processing for Agile Sensors, Pacific Grove, CA, 7-10 November 2004, accepted. 20. [CI] "Computational Origami for
Observing gravitational-wave transient GW150914 with minimal assumptions
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chatterji, S.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clark, M.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Haas, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinder, I.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Laguna, P.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Page, J.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-06-01
The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of ˜600 Mpc . In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass of ˜30 M⊙ and a total mass before merger of ˜70 M⊙ in the detector frame.
Gravitational waves from binary supermassive black holes missing in pulsar observations.
Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J
2015-09-25
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. Copyright © 2015, American Association for the Advancement of Science.
An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy
ERIC Educational Resources Information Center
Russo, D.; Fagan, R. D.; Hesjedal, T.
2011-01-01
The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…
Low-mass X-ray binaries from black hole retaining globular clusters
NASA Astrophysics Data System (ADS)
Giesler, Matthew; Clausen, Drew; Ott, Christian D.
2018-06-01
Recent studies suggest that globular clusters (GCs) may retain a substantial population of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable proxy for elusive single BHs, produced from a representative group of Milky Way GCs with variable BH populations. We simulate the formation of BH binaries in GCs through exchange interactions between binary and single stars in the company of tens to hundreds of BHs. Additionally, we consider the impact of the BH population on the rate of compact binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB population and binary properties are sensitive to the GCs structural parameters as well as its unobservable BH population. We find that GCs retaining ˜1000 BHs produce a galactic population of ˜150 ejected BH-LMXBs, whereas GCs retaining only ˜20 BHs produce zero ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known BH-LMXBs might have originated in GCs and identify five candidate systems.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O’Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; O’Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018-03-01
The first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr.
A VLA radio continuum survey of active late-type giants in binary systems - Preliminary results
NASA Technical Reports Server (NTRS)
Drake, S. A.; Simon, T.; Linsky, J. L.
1985-01-01
Preliminary results of a 6 cm continuum survey using the NRAO VLA of binary systems with 10-100 day orbital period containing an 'active' giant component are reported. The results show that strong radio continuum emission at centimeter wavelengths is a common but not universal property of this class of stars. Possible correlations between radio luminosity and other properties, such as X-ray luminosity, rotational period, and type of companion are discussed. Several binary systems which have been detected for the first time as radio sources are reported, and sensitive upper limits are presented for five other systems, including Capella.
Bhatnagar, Deepika; Kaur, Inderpreet; Kumar, Ashok
2017-02-01
An ultrasensitive cardiac troponin I antibody conjugated with graphene quantum dots (GQD) and polyamidoamine (PAMAM) nanohybrid modified gold electrode based sensor was developed for the rapid detection of heart attack (myocardial infarction) in human. Screen printed gold (Au) electrode was decorated with 4-aminothiophenol for amine functionalization of the Au surface. These amino groups were further coupled with carboxyl functionalities of GQD with EDC-NHS reaction. In order to enhance the sensitivity of the sensor, PAMAM dendrimer was successively embedded on GQD through carbodiimide coupling to provide ultra-high surface area for antibody immobilization. The activated cardiac troponin I (cTnI) monoclonal antibody was immobilized on PAMAM to form nanoprobe for sensing specific heart attack marker cTnI. Various concentrations of cardiac marker, cTnI were electrochemically measured using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in human blood serum. The modifications on sensor surface were characterized by FTIR and AFM techniques. The sensor is highly specific to cTnI and showed negligible response to non-specific antigens. The sensitivity of the sensor was 109.23μAcm -2 μg -1 and lower limit of detection of cTnI was found 20fgmL -1 . Copyright © 2016 Elsevier B.V. All rights reserved.
How would GW150914 look with future gravitational wave detector networks?
NASA Astrophysics Data System (ADS)
Gaebel, S. M.; Veitch, J.
2017-09-01
The first detected gravitational wave signal, GW150914 (Abbott et al 2016 Phys. Rev. Lett. 116 061102), was produced by the coalescence of a stellar-mass binary black hole. Along with the subsequent detection of GW151226, GW170104 and the candidate event LVT151012, this gives us evidence for a population of black hole binaries with component masses in the tens of solar masses (Abbott et al 2016 Phys. Rev. X 6 041015). As detector sensitivity improves, this type of source is expected to make a large contribution to the overall number of detections, but has received little attention compared to binary neutron star systems in studies of projected network performance. We simulate the observation of a system like GW150914 with different proposed network configurations, and study the precision of parameter estimates, particularly source location, orientation and masses. We find that the improvements to low frequency sensitivity that are expected with continued commissioning (Abbott et al 2016 Living Rev. Relativ. 19 1) will improve the precision of chirp mass estimates by an order of magnitude, whereas the improvements in sky location and orientation are driven by the expanded network configuration. This demonstrates that both sensitivity and number of detectors will be important factors in the scientific potential of second generation detector networks.
Xiong, Wei; Zhu, Qijian; Gong, Yanjun; Wang, Chen; Che, Yanke; Zhao, Jincai
2018-04-03
In this work, we develop a sequential self-assembly approach to fabricate interpenetrated binary supramolecular nanofibers consisting of carbazole oligomer 1-cobalt(II) (1-Co 2+ ) coordination nanofibers and oligomer 2 nanofibers for the sensitive detection of six classes of explosives. When exposed to peroxide explosives (e.g., H 2 O 2 ), Co 2+ in 1-Co 2+ coordination nanofibers can be reduced to Co + that can transfer an electron to the excited 2 nanofibers and thereby quench their fluorescence. On the other hand, when exposed to the other five classes of explosives, the excited 2 nanofibers can transfer an electron to explosives to quench their fluorescence. On the basis of the distinct fluorescence quenching mechanisms, six classes of explosives can be sensitively detected. Herein, we provide a new strategy to design broad-band fluorescence sensors for a rich identification of threats.
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou
2018-01-01
After first reviewing the gravitational wave (GW) spectral classification. we discuss the sensitivities of GW detection in space aimed at low frequency band (100 nHz-100 mHz) and middle frequency band (100 mHz-10 Hz). The science goals are to detect GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries; (v) Stellar-Size Black Hole Binaries; and (vi) Relic GW Background. The detector proposals have arm length ranging from 100 km to 1.35×109 km (9 AU) including (a) Solar orbiting detectors and (b) Earth orbiting detectors. We discuss especially the sensitivities in the frequency band 0.1-10 μHz and the middle frequency band (0.1 Hz-10 Hz). We propose and discuss AMIGO as an Astrodynamical Middlefrequency Interferometric GW Observatory.
Directed searches for continuous gravitational waves from spinning neutron stars in binary systems
NASA Astrophysics Data System (ADS)
Meadors, Grant David
2014-09-01
Gravitational wave detectors such as the Laser Interferometer Gravitational-wave Observatory (LIGO) seek to observe ripples in space predicted by General Relativity. Black holes, neutron stars, supernovae, the Big Bang and other sources can radiate gravitational waves. Original contributions to the LIGO effort are presented in this thesis: feedforward filtering, directed binary neutron star searches for continuous waves, and scientific outreach and education, as well as advances in quantum optical squeezing. Feedforward filtering removes extraneous noise from servo-controlled instruments. Filtering of the last science run, S6, improves LIGO's astrophysical range (+4.14% H1, +3.60% L1: +12% volume) after subtracting noise from auxiliary length control channels. This thesis shows how filtering enhances the scientific sensitivity of LIGO's data set during and after S6. Techniques for non-stationarity and verifying calibration and integrity may apply to Advanced LIGO. Squeezing is planned for future interferometers to exceed the standard quantum limit on noise from electromagnetic vacuum fluctuations; this thesis discusses the integration of a prototype squeezer at LIGO Hanford Observatory and impact on astrophysical sensitivity. Continuous gravitational waves may be emitted by neutron stars in low-mass X-ray binary systems such as Scorpius X-1. The TwoSpect directed binary search is designed to detect these waves. TwoSpect is the most sensitive of 4 methods in simulated data, projecting an upper limit of 4.23e-25 in strain, given a year-long data set at an Advanced LIGO design sensitivity of 4e-24 Hz. (-1/2). TwoSpect is also used on real S6 data to set 95% confidence upper limits (40 Hz to 2040 Hz) on strain from Scorpius X-1. A millisecond pulsar, X-ray transient J1751-305, is similarly considered. Search enhancements for Advanced LIGO are proposed. Advanced LIGO and fellow interferometers should detect gravitational waves in the coming decade. Methods in these thesis will benefit both the instrumental and analytical sides of observation.
Solvent effects on infrared spectra of progesterone in CHCl 3/ cyclo-C 6H 12 binary solvent systems
NASA Astrophysics Data System (ADS)
Liu, Qing; Wang, Xiao-yan; Zhang, Hui
2007-01-01
The infrared spectroscopy studies of the C 3 and C 20 carbonyl stretching vibrations ( υ(C dbnd O)) of progesterone in CHCl 3/ cyclo-C 6H 12 binary solvent systems were undertaken to investigate the solute-solvent interactions. With the mole fraction of CHC1 3 in the binary solvent mixtures increase, three types of C 3 and C 20 carbonyl stretching vibration band of progesterone are observed, respectively. The assignments of υ(C dbnd O) of progesterone are discussed in detail. In the CHCl 3-rich binary solvent systems or pure CHCl 3 solvent, two kinds of solute-solvent hydrogen bonding interactions coexist for C 20 C dbnd O. Comparisons are drawn for the solvent sensitivities of υ(C dbnd O) for acetophenone and 5α-androstan-3,17-dione, respectively.
Plasmonic gold nanostar for biomedical sensing
NASA Astrophysics Data System (ADS)
Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan
2014-03-01
Cancer has become one of most significant death reasons and causes approximately 7.9 million human deaths worldwide each year. The challenge to detect cancer at an early stage makes cancer-related biomarkers sensing attract more and more research interest and efforts. Surface-enhanced Raman scattering (SERS) provides a promising method for various biomarkers (DNA, RNA, protein, et al.) detection due to its high sensitivity, specificity and capability for multiple analytes detection. Raman spectroscopy is a non-destructive photon-scattering technique, which provides molecule-specific information on molecular vibrational energy levels. SERS takes advantage of plasmonic effects and can enhance Raman signal up to 1015 at "hot spots". Due to its excellent sensitivity, SERS has been capable of achieving single-molecule detection limit. Local pH environment has been identified to be a potential biomarker for cancer diagnosis since solid cancer contains highly acidic environments. A near-infrared (NIR) SERS nanoprobe based on gold nanostars for pH sensing is developed for future cancer detection. Near-infrared (NIR) light is more suitable for in vivo applications because of its low attenuation rate and tissue auto fluorescence. SERS spectrum of pH reporter under various pH environments is monitored and used for pH sensing. Furthermore, density functional theory (DFT) calculation is performed to investigate Raman spectra changes with pH at the molecular level. The study demonstrates that SERS is a sensitive tool to monitor minor molecular structural changes due to local pH environment for cancer detection.
Electrical properties of lightly Ga-doped ZnO nanowires
NASA Astrophysics Data System (ADS)
Alagha, S.; Heedt, S.; Vakulov, D.; Mohammadbeigi, F.; Senthil Kumar, E.; Schäpers, Th; Isheim, D.; Watkins, S. P.; Kavanagh, K. L.
2017-12-01
We investigated the growth, crystal structure, elemental composition and electrical transport characteristics of ZnO nanowires, a promising candidate for optoelectronic applications in the UV-range. Nominally-undoped and Ga-doped ZnO nanowires were grown by metal-organic chemical vapor deposition. Photoluminescence measurements confirmed the incorporation of Ga via donor-bound exciton emission. With atom-probe tomography we estimated an upper limit of the Ga impurity concentration ({10}18 {{cm}}-3). We studied the electrical transport characteristics of these nanowires with a W-nanoprobe technique inside a scanning electron microscope and with lithographically-defined contacts allowing back-gated measurements. An increase in apparent resistivity by two orders of magnitude with decreasing radius was measured with both techniques with a much larger distribution width for the nanoprobe method. A drop in the effective carrier concentration and mobility was found with decreasing radius which can be attributed to carrier depletion and enhanced scattering due to surface states. Little evidence of a change in resistivity was observed with Ga doping, which indicates that the concentration of native or background dopants is higher than the Ga doping concentration.
Dréau, Didier; Moore, Laura Jeffords; Alvarez-Berrios, Merlis P.; Tarannum, Mubin; Mukherjee, Pinku; Vivero-Escoto, Juan L.
2017-01-01
Mucin-1 (MUC1), a transmembrane glycoprotein is aberrantly expressed on ~90% of breast cancer and is an excellent target for nanoparticulate targeted imaging. In this study, the development of a dye-doped NIR emitting mesoporous silica nanoparticles platform conjugated to tumor-specific MUC1 antibody (ab-tMUC1-NIR-MSN) for in vivo optical detection of breast adenocarcinoma tissue is reported. The structural properties, the in vitro and in vivo performance of this nanoparticle-based probe were evaluated. In vitro studies showed that the MSN-based optical imaging nanoprobe is non-cytotoxic and targets efficiently mammary cancer cells overexpressing human tMUC1 protein. In vivo experiments with female C57BL/6 mice indicated that this platform accumulates mainly in the liver and did not induce short-term toxicity. In addition, we demonstrated that the ab-tMUC1-NIR-MSN nanoprobe specifically detects mammary gland tumors overexpressing human tMUC1 in a human MUC1 transgenic mouse model. PMID:28522938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Gung-Chian, E-mail: gcyin@nsrrc.org.tw; Chang, Shi-Hung; Chen, Bo-Yi
2016-01-28
The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides multimodal X-ray detections, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing nested Montel mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The mirrors are symmetrically placed with a 45 degrees cut. The beamline optics is thus designed to take the advantage of the symmetry of mirrors such that a round focal spot is accomplished. The size and the divergence of the focus spot are simulated around 40 nm andmore » 6.29 mrad, respectively. The whole facility including the beamline and the stations will be operated under vacuum to preserve the photon coherence as well as to prevent the system from unnecessary environmental interference. A SEM in close cooperation with laser interferometers is equipped to precisely locate the position of the sample. This endstation is scheduled to be commissioned in the fall of 2016.« less
X-ray nanoprobe project at Taiwan Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Gung-Chian, E-mail: gcyin@nsrrc.org.tw; Chang, Shih-Hung; Chen, Bo-Yi
2016-07-27
The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides versatile X-ray analysis techniques, with tens of nanometer resolution, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing Montel KB mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The two silica-made Montel mirrors are 45 degree cut and placed in a V-shape to eliminate the gap loss and the deformation caused by gravity. The slope error of the KB mirror pair is less than 0.04 µrad accomplished by elasticmore » emission machining (EEM) method. For the beamline, a horizontal DCM and two-stage focusing in horizontal direction is applied. For the endstation, a combination of SEM for quickly positioning the sample, a fly scanning system with laser interferometers, a precise temperature control system, and a load lock transfer system will be implemented. In this presentation, the design and construction progress of the beamline and endstation is reported. The endstation is scheduled to be in commissioning phase in 2016.« less
Ma, Xingyi; Sim, Sang Jun
2013-03-21
Even though DNA-based nanosensors have been demonstrated for quantitative detection of analytes and diseases, hybridization events have never been numerically investigated for further understanding of DNA mediated interactions. Here, we developed a nanoscale platform with well-designed capture and detection gold nanoprobes to precisely evaluate the hybridization events. The capture gold nanoprobes were mono-laid on glass and the detection probes were fabricated via a novel competitive conjugation method. The two kinds of probes combined in a suitable orientation following the hybridization with the target. We found that hybridization efficiency was markedly dependent on electrostatic interactions between DNA strands, which can be tailored by adjusting the salt concentration of the incubation solution. Due to the much lower stability of the double helix formed by mismatches, the hybridization efficiencies of single mismatched (MMT) and perfectly matched DNA (PMT) were different. Therefore, we obtained an optimized salt concentration that allowed for discrimination of MMT from PMT without stringent control of temperature or pH. The results indicated this to be an ultrasensitive and precise nanosensor for the diagnosis of genetic diseases.
64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging.
Ma, Wenhui; Fu, Fanfan; Zhu, Jingyi; Huang, Rui; Zhu, Yizhou; Liu, Zhenwei; Wang, Jing; Conti, Peter S; Shi, Xiangyang; Chen, Kai
2018-03-29
We report the use of multifunctional folic acid (FA)-modified dendrimers as a platform to radiolabel with 64Cu for PET imaging of folate receptor (FR)-expressing tumors. In this study, amine-terminated generation 5 (G5) poly(amidoamine) dendrimers were sequentially modified with fluorescein isothiocyanate (FI), FA, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), followed by acetylation of the remaining dendrimer terminal amines. The as-formed multifunctional DOTA-FA-FI-G5·NHAc dendrimers were then radiolabeled with 64Cu via the DOTA chelation. We show that the FA modification renders the dendrimers with targeting specificity to cancer cells overexpressing FR in vitro. Importantly, the radiolabeled 64Cu-DOTA-FA-FI-G5·NHAc dendrimers can be used as a nanoprobe for specific targeting of FR-overexpressing cancer cells in vitro and targeted microPET imaging of the FR-expressing xenografted tumor model in vivo. The developed 64Cu-labeled multifunctional dendrimeric nanoprobe may hold great promise to be used for targeted PET imaging of different types of FR-expressing cancer.
Quantum dot nanoprobe-based quantitative analysis for prostate cancer (Conference Presentation)
NASA Astrophysics Data System (ADS)
Kang, Benedict J.; Jang, Gun Hyuk; Park, Sungwook; Lee, Kwan Hyi
2016-09-01
Prostate cancer causes one of the leading cancer-related deaths among the Caucasian adult males in Europe and the United State of America. However, it has a high recovery rate indicating when a proper treatment is delivered to a patient. There are cases of over- or under-treatments which exacerbate the disease states indicating the importance of proper therapeutic approach depending on stage of the disease. Recognition of the unmet needs has raised a need for stratification of the disease. There have been attempts to stratify based on biomarker expression patterns in the course of disease progression. To closely observe the biomarker expression patterns, we propose the use of quantitative imaging method by using fabricated quantum dot-based nanoprobe to quantify biomarker expression on the surface of prostate cancer cells. To characterize the cell line and analyze the biomarker levels, cluster of differentiation 44 (CD 44), prostate specific membrane antigen (PSMA), and epithelial cell adhesion molecule (EpCAM) are used. Each selected biomarker per cell line has been quantified from which we established a signature of biomarkers of a prostate cancer cell line.
NASA Astrophysics Data System (ADS)
Gondán, László; Kocsis, Bence; Raffai, Péter; Frei, Zsolt
2018-06-01
Mergers of binary black holes on eccentric orbits are among the targets for second-generation ground-based gravitational-wave detectors. These sources may commonly form in galactic nuclei due to gravitational-wave emission during close flyby events of single objects. We determine the distributions of initial orbital parameters for a population of these gravitational-wave sources. Our results show that the initial dimensionless pericenter distance systematically decreases with the binary component masses and the mass of the central supermassive black hole, and its distribution depends sensitively on the highest possible black hole mass in the nuclear star cluster. For a multi-mass black hole population with masses between 5 {M}ȯ and 80 {M}ȯ , we find that between ∼43–69% (68–94%) of 30 {M}ȯ –30 {M}ȯ (10 M ⊙–10 M ⊙) sources have an eccentricity greater than 0.1 when the gravitational-wave signal reaches 10 Hz, but less than ∼10% of the sources with binary component masses less than 30 {M}ȯ remain eccentric at this level near the last stable orbit (LSO). The eccentricity at LSO is typically between 0.005–0.05 for the lower-mass BHs, and 0.1–0.2 for the highest-mass BHs. Thus, due to the limited low-frequency sensitivity, the six currently known quasicircular LIGO/Virgo sources could still be compatible with this originally highly eccentric source population. However, at the design sensitivity of these instruments, the measurement of the eccentricity and mass distribution of merger events may be a useful diagnostic to identify the fraction of GW sources formed in this channel.
SOGRO (Superconducting Omni-directional Gravitational Radiation Observatory)
NASA Astrophysics Data System (ADS)
Paik, Ho Jung
2018-01-01
Detection of gravitational waves (GWs) from merging binary black holes (BHs) by Advanced LIGO has ushered in the new era of GW astronomy. Many conceivable sources such as intermediate-mass BH binaries and white dwarf binaries, as well as stellar-mass BH inspirals, would emit GWs below 10 Hz. It is highly desirable to open a new window for GW astronomy in the infrasound frequency band. A low-frequency tensor detector could be constructed by combining six magnetically levitated superconducting test masses. Such a detector would be equally sensitive to GWs coming from anywhere in the sky, and would be capable of resolving the source direction and wave polarization. I will present the design concept of a new terrestrial GW detector, named SOGRO, which could reach a strain sensitivity of 10-19-10-21 Hz-1/2 at 0.1-10 Hz. Seismic and Newtonian gravity noises are serious obstacles in constructing terrestrial GW detectors at frequencies below 10 Hz. I will explain how these noises are rejected in SOGRO. I will also report the progress made in designing the platform and modelling its thermal noise.
Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions
Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz
2014-01-01
We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-03-01
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω0<1.7 ×10-7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ˜33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2017-03-24
A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω_{0}<1.7×10^{-7} with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.
Estimating neighborhood variability with a binary comparison matrix.
Murphy, D.L.
1985-01-01
A technique which utilizes a binary comparison matrix has been developed to implement a neighborhood function for a raster format data base. The technique assigns an index value to the center pixel of 3- by 3-pixel neighborhoods. The binary comparison matrix provides additional information not found in two other neighborhood variability statistics; the function is sensitive to both the number of classes within the neighborhood and the frequency of pixel occurrence in each of the classes. Application of the function to a spatial data base from the Kenai National Wildlife Refuge, Alaska, demonstrates 1) the numerical distribution of the index values, and 2) the spatial patterns exhibited by the numerical values. -Author
NASA Astrophysics Data System (ADS)
Sanghavi, Foram; Agaian, Sos
2017-05-01
The goal of this paper is to (a) test the nuclei based Computer Aided Cancer Detection system using Human Visual based system on the histopathology images and (b) Compare the results of the proposed system with the Local Binary Pattern and modified Fibonacci -p pattern systems. The system performance is evaluated using different parameters such as accuracy, specificity, sensitivity, positive predictive value, and negative predictive value on 251 prostate histopathology images. The accuracy of 96.69% was observed for cancer detection using the proposed human visual based system compared to 87.42% and 94.70% observed for Local Binary patterns and the modified Fibonacci p patterns.
Nanoprobes, nanostructured materials and solid state materials
NASA Astrophysics Data System (ADS)
Yin, Houping
2005-07-01
Novel templates have been developed to prepare nanostructured porous materials through nonsurfactant templated pathway. And new applications of these materials, such as drug delivery and molecular imprinting, have been explored. The relationship between template content and pore structure has been investigated. The composition and pore structures were studied in detail using IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials have tunable diameters in the range of 2--12 nm. Due to the many advantages of this nonsurfactant templated pathway, such as environment friendly and biocompatibility, controlled release of antibiotics in the nanoporous materials were studied. The in vitro release properties were found to depend on the silica structures which were well tuned by varying the template content. A controlled long-term release pattern of vancomycin was achieved when the template content was 30 wt% or lower. Nanoscale electrochemical probes with dimensions as small as 50 nm in diameter and 1--2 mum in length were fabricated using electron beam deposition on the apex of conventional micron size electrodes. The electroactive region was limited to the extreme tip of the nanoprobe by coating with an insulating polymer and re-opening of the coating at the extreme tip. The novel nanoelectrodes thus prepared were employed to probe neurons in mouse brain slice and the results suggest that the nanoprobes were capable of recording neuronal excitatory postsynaptic potential signals. Interesting solid state chemistry was found in oxygenated iron phthalocyanine. Their Mossbauer spectra show the formation of four oxygenated species apart from the unoxygenated parent compound. The oxygen-bridged compounds formed in the solid matrix bear no resemblance to the one formed by solution chemistry. Tentative assignment of species has been made with the help of Mossbauer and IR spectroscopy. An effort to modify aniline trimer for potential nanoelectronics applications and to investigate the formation of "nano-pancake" shape aggregation was also reported.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Das, Gautom Kumar; Vijayaragavan, Vimalan; Xu, Qing Chi; Padmanabhan, Parasuraman; Bhakoo, Kishore K.; Tamil Selvan, Subramanian; Tan, Timothy Thatt Yang
2014-10-01
The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent.The current work reports a type of ``smart'' lanthanide-based theranostic nanoprobe, NaDyF4:Yb3+/NaGdF4:Yb3+,Er3+, which is able to circumvent the up-converting poisoning effect of Dy3+ ions to give efficient near infrared (980 nm) triggered up-conversion fluorescence, and offers not only excellent dark T2-weighted MR contrast but also tunable bright and T1-weighted MR contrast properties. Due to the efficient up-converted energy transfer from the nanocrystals to chlorin e6 (Ce6) photosensitizers loaded onto the nanocrystals, cytotoxic singlet oxygen was generated and photodynamic therapy was demonstrated. Therefore, the current multifunctional nanocrystals could be potentially useful in various image-guided diagnoses where bright or dark MRI contrast could be selectively tuned to optimize image quality, but also as an efficient and more penetrative near-infrared activated photodynamic therapy agent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01717j
NASA Astrophysics Data System (ADS)
Thebault, P.; Haghighipour, N.
Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.
On the gravitational wave background from black hole binaries after the first LIGO detections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cholis, Ilias, E-mail: icholis1@jhu.edu
The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years, we will principally detect local binary black hole mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density Ω{sub GW} (in units of the cosmic critical density)more » of the gravitational-wave background, we can search for the rare ∼ 100 M {sub ⊙} massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass ≳ 3 M {sub ⊙} form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then the total Ω{sub GW} spectrum may have features that with the future Einstein Telescope can be detected.« less
Exoplanet detection. A terrestrial planet in a ~1-AU orbit around one member of a ~15-AU binary.
Gould, A; Udalski, A; Shin, I-G; Porritt, I; Skowron, J; Han, C; Yee, J C; Kozłowski, S; Choi, J-Y; Poleski, R; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Mróz, P; Szymański, M K; Kubiak, M; Soszyński, I; Pietrzyński, G; Gaudi, B S; Christie, G W; Drummond, J; McCormick, J; Natusch, T; Ngan, H; Tan, T-G; Albrow, M; DePoy, D L; Hwang, K-H; Jung, Y K; Lee, C-U; Park, H; Pogge, R W; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Larsen, P; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Philpott, L; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Shvartzvald, Y; Maoz, D; Kaspi, S; Friedmann, M
2014-07-04
Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution. Copyright © 2014, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Littenberg, T. B.; Larson, S. L.; Nelemans, G.; Cornish, N. J.
2012-01-01
Space-based gravitational wave interferometers are sensitive to the galactic population of ultracompact binaries. An important subset of the ultracompact binary population are those stars that can be individually resolved by both gravitational wave interferometers and electromagnetic telescopes. The aim of this paper is to quantify the multimessenger potential of space-based interferometers with arm-lengths between 1 and 5 Gm. The Fisher information matrix is used to estimate the number of binaries from a model of the Milky Way which are localized on the sky by the gravitational wave detector to within 1 and 10 deg(exp 2) and bright enough to be detected by a magnitude-limited survey.We find, depending on the choice ofGW detector characteristics, limiting magnitude and observing strategy, that up to several hundred gravitational wave sources could be detected in electromagnetic follow-up observations.
Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale
Han, Lili; Meng, Qingping; Wang, Deli; Zhu, Yimei; Wang, Jie; Du, Xiwen; Stach, Eric A.; Xin, Huolin L.
2016-01-01
An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-induced chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. This work characterizes the pathways that can control the morphology in binary oxide materials. PMID:27928998
NASA Astrophysics Data System (ADS)
Liu, Jianzhong; Kern, Petra S.; Gerberick, G. Frank; Santos-Filho, Osvaldo A.; Esposito, Emilio X.; Hopfinger, Anton J.; Tseng, Yufeng J.
2008-06-01
In previous studies we have developed categorical QSAR models for predicting skin-sensitization potency based on 4D-fingerprint (4D-FP) descriptors and in vivo murine local lymph node assay (LLNA) measures. Only 4D-FP derived from the ground state (GMAX) structures of the molecules were used to build the QSAR models. In this study we have generated 4D-FP descriptors from the first excited state (EMAX) structures of the molecules. The GMAX, EMAX and the combined ground and excited state 4D-FP descriptors (GEMAX) were employed in building categorical QSAR models. Logistic regression (LR) and partial least square coupled logistic regression (PLS-CLR), found to be effective model building for the LLNA skin-sensitization measures in our previous studies, were used again in this study. This also permitted comparison of the prior ground state models to those involving first excited state 4D-FP descriptors. Three types of categorical QSAR models were constructed for each of the GMAX, EMAX and GEMAX datasets: a binary model (2-state), an ordinal model (3-state) and a binary-binary model (two-2-state). No significant differences exist among the LR 2-state model constructed for each of the three datasets. However, the PLS-CLR 3-state and 2-state models based on the EMAX and GEMAX datasets have higher predictivity than those constructed using only the GMAX dataset. These EMAX and GMAX categorical models are also more significant and predictive than corresponding models built in our previous QSAR studies of LLNA skin-sensitization measures.
Diagnosis of Tempromandibular Disorders Using Local Binary Patterns.
Haghnegahdar, A A; Kolahi, S; Khojastepour, L; Tajeripour, F
2018-03-01
Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment. CBCT images of 66 patients (132 joints) with TMD and 66 normal cases (132 joints) were collected and 2 coronal cut prepared from each condyle, although images were limited to head of mandibular condyle. In order to extract features of images, first we use LBP and then histogram of oriented gradients. To reduce dimensionality, the linear algebra Singular Value Decomposition (SVD) is applied to the feature vectors matrix of all images. For evaluation, we used K nearest neighbor (K-NN), Support Vector Machine, Naïve Bayesian and Random Forest classifiers. We used Receiver Operating Characteristic (ROC) to evaluate the hypothesis. K nearest neighbor classifier achieves a very good accuracy (0.9242), moreover, it has desirable sensitivity (0.9470) and specificity (0.9015) results, when other classifiers have lower accuracy, sensitivity and specificity. We proposed a fully automatic approach to detect TMD using image processing techniques based on local binary patterns and feature extraction. K-NN has been the best classifier for our experiments in detecting patients from healthy individuals, by 92.42% accuracy, 94.70% sensitivity and 90.15% specificity. The proposed method can help automatically diagnose TMD at its initial stages.
Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp
2014-08-01
We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less
NASA Astrophysics Data System (ADS)
Jaehnig, Karl; Bird, Jonathan C.; Stassun, Keivan G.; Da Rio, Nicola; Tan, Jonathan C.; Cotaar, Michiel; Somers, Garrett
2017-12-01
We study the occurrence of spectroscopic binaries in young star-forming regions using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS-III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC 2264, NGC 1333, IC 348, and the Pleiades have been carried out, yielding H-band spectra with a nominal resolution of R = 22,500 for sources with H < 12 mag. Radial velocity precisions of ˜0.3 {km} {{{s}}}-1 were achieved, which we use to identify radial velocity variations indicative of undetected companions. We use Monte Carlo simulations to assess the types of spectroscopic binaries to which we are sensitive, finding sensitivity to binaries with orbital periods ≲ {10}3.5 days, for stars with 2500 {{K}}≤slant {T}{eff}≤slant 6000 {{K}} and v \\sin i < 100 {km} {{{s}}}-1. Using Bayesian inference, we find evidence for a decline in the spectroscopic binary fraction, by a factor of 3-4, from the age of our pre-main-sequence (PMS) sample to the Pleiades age . The significance of this decline is weakened if spot-induced radial-velocity jitter is strong in the sample, and is only marginally significant when comparing any one of the PMS clusters against the Pleiades. However, the same decline in both sense and magnitude is found for each of the five PMS clusters, and the decline reaches a statistical significance of greater than 95% confidence when considering the PMS clusters jointly. Our results suggest that dynamical processes disrupt the widest spectroscopic binaries ({P}{orb}≈ {10}3{--}{10}4 days) as clusters age, indicating that this occurs early in the stars’ evolution, while they still reside within their nascent clusters.
Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.
Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D
2018-01-18
Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Duncan A.; Zimmerman, Peter J.
2010-01-15
Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo detectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO-Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses M{<=}35M{sub {center_dot},} to detect binaries with nonzero eccentricity. We model themore » gravitational waves from eccentric binaries using the x-model post-Newtonian formalism proposed by Hinder et al.[I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities (e{sub 0} < or approx. 0.05 at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass 2M{sub {center_dot}<}M<15M{sub {center_dot}.} For eccentricities e{sub 0} > or approx. 0.1, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.« less
Dynamical Formation Signatures of Black Hole Binaries in the First Detected Mergers by LIGO
NASA Astrophysics Data System (ADS)
O'Leary, Ryan M.; Meiron, Yohai; Kocsis, Bence
2016-06-01
The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions, particularly three-body binary formation, enhance the merger rate of black hole binaries with total mass M tot roughly as \\propto {M}{{tot}}β , with β ≳ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGO’s greater sensitivity to massive black hole binaries with M tot ≲ 80 {M}⊙ . We find that for power-law BH mass functions dN/dM ∝ M -α with α ≤ 2, LIGO is most likely to detect black hole binaries with a mass twice that of the maximum initial black hole mass and a mass ratio near one. Repeated mergers of black holes inside the cluster result in about ˜5% of mergers being observed between two and three times the maximum initial black hole mass. Using these relations, one may be able to invert the observed distribution to the initial mass function with multiple detections of merging black hole binaries.
Wu, Mixia; Shu, Yu; Li, Zhaohai; Liu, Aiyi
2016-01-01
A sequential design is proposed to test whether the accuracy of a binary diagnostic biomarker meets the minimal level of acceptance. The accuracy of a binary diagnostic biomarker is a linear combination of the marker’s sensitivity and specificity. The objective of the sequential method is to minimize the maximum expected sample size under the null hypothesis that the marker’s accuracy is below the minimal level of acceptance. The exact results of two-stage designs based on Youden’s index and efficiency indicate that the maximum expected sample sizes are smaller than the sample sizes of the fixed designs. Exact methods are also developed for estimation, confidence interval and p-value concerning the proposed accuracy index upon termination of the sequential testing. PMID:26947768
NASA Astrophysics Data System (ADS)
Hillenbrand, Lynne A.; Zhang, Celia; Riddle, Reed L.; Baranec, Christoph; Ziegler, Carl; Law, Nicholas M.; Stauffer, John
2018-02-01
We identify and roughly characterize 66 candidate binary star systems in the Pleiades, Praesepe, and NGC 2264 star clusters, based on robotic adaptive optics imaging data obtained using Robo-AO at the Palomar 60″ telescope. Only ∼10% of our imaged pairs were previously known. We detect companions at red optical wavelengths, with physical separations ranging from a few tens to a few thousands of au. A three-sigma contrast curve generated for each final image provides upper limits to the brightness ratios for any undetected putative companions. The observations are sensitive to companions with a maximum contrast of ∼6m at larger separations. At smaller separations, the mean (best) raw contrast at 2″ is 3.ͫ8 (6m), at 1″ is 3.ͫ0 (4.ͫ5), and at 0.″5 is 1.ͫ9 (3m). Point-spread function subtraction can recover nearly the full contrast in the closer separations. For detected candidate binary pairs, we report separations, position angles, and relative magnitudes. Theoretical isochrones appropriate to the Pleiades and Praesepe clusters are then used to determine the corresponding binary mass ratios, which range from 0.2 to 0.9 in q={m}2/{m}1. For our sample of roughly solar-mass (FGK type) stars in NGC 2264 and sub-solar-mass (K and early M-type) primaries in the Pleiades and Praesepe, the overall binary frequency is measured at ∼15.5% ± 2%. However, this value should be considered a lower limit to the true binary fraction within the specified separation and mass ratio ranges in these clusters, given that complex and uncertain corrections for sensitivity and completeness have not been applied.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
Chopper-stabilized phase detector
NASA Technical Reports Server (NTRS)
Hopkins, P. M.
1978-01-01
Phase-detector circuit for binary-tracking loops and other binary-data acquisition systems minimizes effects of drift, gain imbalance, and voltage offset in detector circuitry. Input signal passes simultaneously through two channels where it is mixed with early and late codes that are alternately switched between channels. Code switching is synchronized with polarity switching of detector output of each channel so that each channel uses each detector for half time. Net result is that dc offset errors are canceled, and effect of gain imbalance is simply change in sensitivity.
Pan, Xiaohong; Julian, Thomas; Augsburger, Larry
2006-02-10
Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) methods were developed for the quantitative analysis of the crystallinity of indomethacin (IMC) in IMC and silica gel (SG) binary system. The DSC calibration curve exhibited better linearity than that of XRPD. No phase transformation occurred in the IMC-SG mixtures during DSC measurement. The major sources of error in DSC measurements were inhomogeneous mixing and sampling. Analyzing the amount of IMC in the mixtures using high-performance liquid chromatography (HPLC) could reduce the sampling error. DSC demonstrated greater sensitivity and had less variation in measurement than XRPD in quantifying crystalline IMC in the IMC-SG binary system.
The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples
ERIC Educational Resources Information Center
Avetisyan, Marianna; Fox, Jean-Paul
2012-01-01
In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…
Specialized Binary Analysis for Vetting Android APPS Using GUI Logic
2016-04-01
the use of high- level reasoning based on the GUI design logic of an app to enable a security analyst to diagnose and triage the potentially sensitive...execution paths of an app. Levels of Inconsistency We have identified three- levels of logical inconsistencies: Event- level inconsistency A sensitive...operation (e.g., taking a picture) is not trigged by user action on a GUI component. Layout- level inconsistency A sensitive operation is triggered by
Wang, Peng; Zhang, Cheng; Liu, Hong-Wen; Xiong, Mengyi; Yin, Sheng-Yan; Yang, Yue; Hu, Xiao-Xiao; Yin, Xia; Zhang, Xiao-Bing; Tan, Weihong
2017-12-01
Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.
Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.
Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing
2018-01-25
The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.
Wang, Chao; Ye, Min; Cheng, Liang; Li, Rui; Zhu, Wenwen; Shi, Zhen; Fan, Chunhai; He, Jinkang; Liu, Jian; Liu, Zhuang
2015-06-01
The development of sensitive and convenient methods for detection, enrichment, and analysis of circulating tumor cells (CTCs), which serve as an importance diagnostic indicator for metastatic progression of cancer, has received tremendous attention in recent years. In this work, a new approach characteristic of simultaneous CTC capture and detection is developed by integrating a microfluidic silicon nanowire (SiNW) array with multifunctional magnetic upconversion nanoparticles (MUNPs). The MUNPs were conjugated with anti-EpCAM antibody, thus capable to specifically recognize tumor cells in the blood samples and pull them down under an external magnetic field. The capture efficiency of CTCs was further improved by the integration with a microfluidic SiNW array. Due to the autofluorescence free nature in upconversion luminescence (UCL) imaging, our approach allows for highly sensitive detection of small numbers of tumor cells, which afterward could be collected for further analysis and re-culturing. We have further demonstrated that this approach can be applied to detect CTCs in clinical blood samples from lung cancer patients, and obtained consistent results by analyzing the UCL signals and the clinical outcomes of lung cancer metastasis. Therefore our approach represents a promising platform in CTC capture and detection with potential clinical utilization in cancer diagnosis and prognosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gold Nanoparticles Doped with (199) Au Atoms and Their Use for Targeted Cancer Imaging by SPECT.
Zhao, Yongfeng; Pang, Bo; Luehmann, Hannah; Detering, Lisa; Yang, Xuan; Sultan, Deborah; Harpstrite, Scott; Sharma, Vijay; Cutler, Cathy S; Xia, Younan; Liu, Yongjian
2016-04-20
Gold nanoparticles have been labeled with various radionuclides and extensively explored for single photon emission computed tomography (SPECT) in the context of cancer diagnosis. The stability of most radiolabels, however, still needs to be improved for accurate detection of cancer biomarkers and thereby monitoring of tumor progression and metastasis. Here, the first synthesis of Au nanoparticles doped with (199)Au atoms for targeted SPECT tumor imaging in a mouse triple negative breast cancer (TNBC) model is reported. By directly incorporating (199)Au atoms into the crystal lattice of each Au nanoparticle, the stability of the radiolabel can be ensured. The synthetic procedure also allows for a precise control over both the radiochemistry and particle size. When conjugated with D-Ala1-peptide T-amide, the Au nanoparticles doped with (199)Au atoms can serve as a C-C chemokine receptor 5 (CCR5)-targeted nanoprobe for the sensitive and specific detection of both TNBC and its metastasis in a mouse tumor model. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-Illuminating 64Cu-Doped CdSe/ZnS Nanocrystals for in Vivo Tumor Imaging
2015-01-01
Construction of self-illuminating semiconducting nanocrystals, also called quantum dots (QDs), has attracted much attention recently due to their potential as highly sensitive optical probes for biological imaging applications. Here we prepared a self-illuminating QD system by doping positron-emitting radionuclide 64Cu into CdSe/ZnS core/shell QDs via a cation-exchange reaction. The 64Cu-doped CdSe/ZnS QDs exhibit efficient Cerenkov resonance energy transfer (CRET). The signal of 64Cu can accurately reflect the biodistribution of the QDs during circulation with no dissociation of 64Cu from the nanoparticles. We also explored this system for in vivo tumor imaging. This nanoprobe showed high tumor-targeting ability in a U87MG glioblastoma xenograft model (12.7% ID/g at 17 h time point) and feasibility for in vivo luminescence imaging of tumor in the absence of excitation light. The availability of these self-illuminating integrated QDs provides an accurate and convenient tool for in vivo tumor imaging and detection. PMID:24401138
Chen, Limei; Li, Haijuan; He, Haili; Wu, Haoxi; Jin, Yongdong
2015-07-07
Fast and accurate identification of cancer cells from healthy normal cells in a simple, generic way is very crucial for early cancer detection and treatment. Although functional nanoparticles, like fluorescent quantum dots and plasmonic Au nanoparticles (NPs), have been successfully applied for cancer cell imaging and photothermal therapy, they suffer from the main drawback of needing time-consuming targeting preparation for specific cancer cell detection and selective ablation. The lack of a generic and effective method therefore limits their potential high-throughput cancer cell preliminary screening and theranostic applications. We report herein a generic in vitro method for fast, targeting-free (avoiding time-consuming preparations of targeting moiety for specific cancer cells) visual screening and selective killing of cancer cells from normal cells, by using glucose-responsive/-sensitive glucose oxidase-modified Ag/Au nanoshells (Ag/Au-GOx NSs) as a smart plasmonic theranostic agent. The method is generic to some extent since it is based on the distinct localized surface plasmon resonance (LSPR) responses (and colors) of the smart nanoprobe with cancer cells (typically have a higher glucose uptake level) and normal cells.
Nanoparticles for Improving Cancer Diagnosis
Chen, Hongmin; Zhen, Zipeng; Todd, Trever; Chu, Paul K.; Xie, Jin
2013-01-01
Despite the progress in developing new therapeutic modalities, cancer remains one of the leading diseases causing human mortality. This is mainly attributed to the inability to diagnose tumors in their early stage. By the time the tumor is confirmed, the cancer may have already metastasized, thereby making therapies challenging or even impossible. It is therefore crucial to develop new or to improve existing diagnostic tools to enable diagnosis of cancer in its early or even pre-syndrome stage. The emergence of nanotechnology has provided such a possibility. Unique physical and physiochemical properties allow nanoparticles to be utilized as tags with excellent sensitivity. When coupled with the appropriate targeting molecules, nanoparticle-based probes can interact with a biological system and sense biological changes on the molecular level with unprecedented accuracy. In the past several years, much progress has been made in applying nanotechnology to clinical imaging and diagnostics, and interdisciplinary efforts have made an impact on clinical cancer management. This article aims to review the progress in this exciting area with emphases on the preparation and engineering techniques that have been developed to assemble “smart” nanoprobes. PMID:24068857
NASA Astrophysics Data System (ADS)
Park, Kyoung-Duck; Raschke, Markus B.
2018-05-01
Controlling the propagation and polarization vectors in linear and nonlinear optical spectroscopy enables to probe the anisotropy of optical responses providing structural symmetry selective contrast in optical imaging. Here we present a novel tilted antenna-tip approach to control the optical vector-field by breaking the axial symmetry of the nano-probe in tip-enhanced near-field microscopy. This gives rise to a localized plasmonic antenna effect with significantly enhanced optical field vectors with control of both \\textit{in-plane} and \\textit{out-of-plane} components. We use the resulting vector-field specificity in the symmetry selective nonlinear optical response of second-harmonic generation (SHG) for a generalized approach to optical nano-crystallography and -imaging. In tip-enhanced SHG imaging of monolayer MoS$_2$ films and single-crystalline ferroelectric YMnO$_3$, we reveal nano-crystallographic details of domain boundaries and domain topology with enhanced sensitivity and nanoscale spatial resolution. The approach is applicable to any anisotropic linear and nonlinear optical response, and provides for optical nano-crystallographic imaging of molecular or quantum materials.
Lawson, Latevi S; Chan, James W; Huser, Thomas
2014-07-21
Chemical sensing on the nanoscale has been breaking new ground since the discovery of surface enhanced Raman scattering (SERS). For nanoparticles, controlled particle aggregation is necessary to achieve the largest SERS enhancements. Therefore, aggregating agents such as salts or linker molecules are used in conjunction with chemically sensitive reporters in order to develop robust environmentally sensitive SERS probes. While salt-induced colloidal nanosphere aggregates have produced robust SERS signals, their variability in aggregate size contributes significantly to poor SERS signal reproducibility, which can complicate their use in in vitro cellular studies. Such systems often also lack reproducibility in spectral measurements between different nanoparticle clusters. Preaggregation of colloids via linkers followed by surface functionalization with reporter molecules results in the linker occupying valuable SERS hotspot volume which could otherwise be utilized by additional reporter molecules. Ideally, both functionalities should be obtained from a single molecule. Here, we report the use of 3,5-dimercaptobenzoic acid, a single multifunctional molecule that creates SERS hotspots via the controlled aggregation of nanoparticles, and also reports pH values. We show that 3,5-dimercaptobenzoic acid bound to Au nanospheres results in an excellent pH nanoprobe, producing very robust, and highly reproducible SERS signals that can report pH across the entire physiological range with excellent pH resolution. To demonstrate the efficacy of our novel pH reporters, these probes were also used to image both the particle and pH distribution in the cytoplasm of human induced pluripotent stem cells (hiPSCs).
Tang, Songsong; Gu, Yuan; Lu, Huiting; Dong, Haifeng; Zhang, Kai; Dai, Wenhao; Meng, Xiangdan; Yang, Fan; Zhang, Xueji
2018-04-03
Herein, a highly-sensitive microRNA (miRNA) detection strategy was developed by combining bio-bar-code assay (BBA) with catalytic hairpin assembly (CHA). In the proposed system, two nanoprobes of magnetic nanoparticles functionalized with DNA probes (MNPs-DNA) and gold nanoparticles with numerous barcode DNA (AuNPs-DNA) were designed. In the presence of target miRNA, the MNP-DNA and AuNP-DNA hybridized with target miRNA to form a "sandwich" structure. After "sandwich" structures were separated from the solution by the magnetic field and dehybridized by high temperature, the barcode DNA sequences were released by dissolving AuNPs. The released barcode DNA sequences triggered the toehold strand displacement assembly of two hairpin probes, leading to recycle of barcode DNA sequences and producing numerous fluorescent CHA products for miRNA detection. Under the optimal experimental conditions, the proposed two-stage amplification system could sensitively detect target miRNA ranging from 10 pM to 10 aM with a limit of detection (LOD) down to 97.9 zM. It displayed good capability to discriminate single base and three bases mismatch due to the unique sandwich structure. Notably, it presented good feasibility for selective multiplexed detection of various combinations of synthetic miRNA sequences and miRNAs extracted from different cell lysates, which were in agreement with the traditional polymerase chain reaction analysis. The two-stage amplification strategy may be significant implication in the biological detection and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew
Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this 'foreground noise' is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e.g., gravitational waves arising from stellar-mass objects inspiraling into massive black holes. In many previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength ofmore » the LISA signal. Since >99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to >6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number ({approx}11,300) of Galactic double WD binaries that will have a signal-to-noise ratio >5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patricelli, B.; Razzano, M.; Fidecaro, F.
The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binarymore » systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016–2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ∼ a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.« less
Be/X-Ray Pulsar Binary Science with LOFT
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2011-01-01
Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.
Tuning into Scorpius X-1: adapting a continuous gravitational-wave search for a known binary system
NASA Astrophysics Data System (ADS)
Meadors, Grant David; Goetz, Evan; Riles, Keith
2016-05-01
We describe how the TwoSpect data analysis method for continuous gravitational waves (GWs) has been tuned for directed sources such as the low-mass X-ray binary (LMXB), Scorpius X-1 (Sco X-1). A comparison of five search algorithms generated simulations of the orbital and GW parameters of Sco X-1. Whereas that comparison focused on relative performance, here the simulations help quantify the sensitivity enhancement and parameter estimation abilities of this directed method, derived from an all-sky search for unknown sources, using doubly Fourier-transformed data. Sensitivity is shown to be enhanced when the source sky location and period are known, because we can run a fully templated search, bypassing the all-sky hierarchical stage using an incoherent harmonic sum. The GW strain and frequency, as well as the projected semi-major axis of the binary system, are recovered and uncertainty estimated, for simulated signals that are detected. Upper limits for GW strain are set for undetected signals. Applications to future GW observatory data are discussed. Robust against spin-wandering and computationally tractable despite an unknown frequency, this directed search is an important new tool for finding gravitational signals from LMXBs.
Qian, Zhaosheng; Shan, Xiaoyue; Chai, Lujing; Chen, Jianrong; Feng, Hui
2014-12-01
Simultaneous detection of multiple DNA targets was achieved based on a biocompatible graphene quantum dots (GQDs) and carbon nanotubes (CNTs) platform through spontaneous assembly between dual-color GQD-based probes and CNTs and subsequently self-recognition between DNA probes and targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanobioprobe mediated DNA aptamers for explosive detection.
Priyanka; Shorie, Munish; Bhalla, Vijayender; Pathania, Preeti; Suri, C Raman
2014-02-04
Specific nucleic acid aptamers using the microtiter plate based modified SELEX method against explosive trinitrotoluene are reported. Efficient partitioning of dsDNA was carried out using streptavidin labeled gold nanoprobes for the selection of specific aptamers. The selected binders having an affinity of ~10(-7) M were used in the newly developed electrochemical aptasensor, exhibiting a detection limit of around 1 ppb for trinitrotoluene.
In pursuit of photo-induced magnetic and chiral microscopy
NASA Astrophysics Data System (ADS)
Zeng, Jinwei; Kamandi, Mohammad; Darvishzadeh-Varcheie, Mahsa; Albooyeh, Mohammad; Veysi, Mehdi; Guclu, Caner; Hanifeh, Mina; Rajaei, Mohsen; Potma, Eric O.; Wickramasinghe, H. Kumar; Capolino, Filippo
2018-06-01
Light-matter interactions enable the perception of specimen properties such as its shape and dimensions by measuring the subtle differences carried by an illuminating beam after interacting with the sample. However, major obstacles arise when the relevant properties of the specimen are weakly coupled to the incident beam, for example when measuring optical magnetism and chirality. To address this challenge we propose the idea of detecting such weakly-coupled properties of matter through the photo-induced force, aiming at developing photo-induced magnetic or chiral force microscopy. Here we review our pursuit consisting of the following steps: (1) Development of a theoretical blueprint of a magnetic nanoprobe to detect a magnetic dipole oscillating at an optical frequency when illuminated by an azimuthally polarized beam via the photo-induced magnetic force; (2) Conducting an experimental study using an azimuthally polarized beam to probe the near fields and axial magnetism of a Si disk magnetic nanoprobe, based on photo-induced force microscopy; (3) Extending the concept of force microscopy to probe chirality at the nanoscale, enabling enantiomeric detection of chiral molecules. Finally, we discuss difficulties and how they could be overcome, as well as our plans for future work. Invited Paper
Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots.
Huang, Xinglu; Zhang, Fan; Zhu, Lei; Choi, Ki Young; Guo, Ning; Guo, Jinxia; Tackett, Kenneth; Anilkumar, Parambath; Liu, Gang; Quan, Qimeng; Choi, Hak Soo; Niu, Gang; Sun, Ya-Ping; Lee, Seulki; Chen, Xiaoyuan
2013-07-23
The emergence of photoluminescent carbon-based nanomaterials has shown exciting potential in the development of benign nanoprobes. However, the in vivo kinetic behaviors of these particles that are necessary for clinical translation are poorly understood to date. In this study, fluorescent carbon dots (C-dots) were synthesized and the effect of three injection routes on their fate in vivo was explored by using both near-infrared fluorescence and positron emission tomography imaging techniques. We found that C-dots are efficiently and rapidly excreted from the body after all three injection routes. The clearance rate of C-dots is ranked as intravenous > intramuscular > subcutaneous. The particles had relatively low retention in the reticuloendothelial system and showed high tumor-to-background contrast. Furthermore, different injection routes also resulted in different blood clearance patterns and tumor uptakes of C-dots. These results satisfy the need for clinical translation and should promote efforts to further investigate the possibility of using carbon-based nanoprobes in a clinical setting. More broadly, we provide a testing blueprint for in vivo behavior of nanoplatforms under various injection routes, an important step forward toward safety and efficacy analysis of nanoparticles.
Tunable coating of gold nanostars: tailoring robust SERS labels for cell imaging
NASA Astrophysics Data System (ADS)
Bassi, B.; Taglietti, A.; Galinetto, P.; Marchesi, N.; Pascale, A.; Cabrini, E.; Pallavicini, P.; Dacarro, G.
2016-07-01
Surface modification of noble metal nanoparticles with mixed molecular monolayers is one of the most powerful tools in nanotechnology, and is used to impart and tune new complex surface properties. In imaging techniques based on surface enhanced Raman spectroscopy (SERS), precise and controllable surface modifications are needed to carefully design reproducible, robust and adjustable SERS nanoprobes. We report here the attainment of SERS labels based on gold nanostars (GNSs) coated with a mixed monolayer composed of a poly ethylene glycol (PEG) thiol (neutral or negatively charged) that ensure stability in biological environments, and of a signalling unit 7-Mercapto-4-methylcoumarin as a Raman reporter molecule. The composition of the coating mixture is precisely controlled using an original method, allowing the modulation of the SERS intensity and ensuring overall nanoprobe stability. The further addition of a positively charged layer of poly (allylamine hydrocloride) on the surface of negatively charged SERS labels does not change the SERS response, but it promotes the penetration of GNSs in SH-SY5Y neuroblastoma cells. As an example of an application of such an approach, we demonstrate here the internalization of these new labels by means of visualization of cell morphology obtained with SERS mapping.
NASA Astrophysics Data System (ADS)
Li, Chao; Ji, Yang; Wang, Can; Liang, Shujing; Pan, Fei; Zhang, Chunlei; Chen, Feng; Fu, Hualin; Wang, Kan; Cui, Daxiang
2014-05-01
Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early gastric cancer is a great challenge. Herein, we choose the CdSe/ZnS (core-shell) quantum dots (QDs) as prototypical materials, synthesized one kind of a new amphiphilic polymer including dentate-like alkyl chains and multiple carboxyl groups, and then used the prepared amphiphilic polymer to modify QDs. The resultant amphiphilic polymer engineered QDs (PQDs) were conjugated with BRCAA1 and Her2 monoclonal antibody, and prepared BRCAA1 antibody- and Her2 antibody-conjugated QDs were used for in vitro MGC803 cell labeling and in vivo targeted imaging of gastric cancer cells. Results showed that the PQDs exhibited good water solubility, strong photoluminescence (PL) intensity, and good biocompatibility. BRCAA1 antibody- and Her2 antibody-conjugated QD nanoprobes successfully realized targeted imaging of in vivo gastric cancer MGC803 cells. In conclusion, BRCAA1 antibody- and Her2 antibody-conjugated PQDs have great potential in applications such as single cell labeling and in vivo tracking, and targeted imaging and therapeutic effects' evaluation of in vivo early gastric cancer cells in the near future.
Dahlstrom, Kristina R; Anderson, Karen S; Field, Matthew S; Chowell, Diego; Ning, Jing; Li, Nan; Wei, Qingyi; Li, Guojun; Sturgis, Erich M
2017-12-15
Because of the current epidemic of human papillomavirus (HPV)-related oropharyngeal cancer (OPC), a screening strategy is urgently needed. The presence of serum antibodies to HPV-16 early (E) antigens is associated with an increased risk for OPC. The purpose of this study was to evaluate the diagnostic accuracy of antibodies to a panel of HPV-16 E antigens in screening for OPC. This case-control study included 378 patients with OPC, 153 patients with nonoropharyngeal head and neck cancer (non-OPC), and 782 healthy control subjects. The tumor HPV status was determined with p16 immunohistochemistry and HPV in situ hybridization. HPV-16 E antibody levels in serum were identified with an enzyme-linked immunosorbent assay. A trained binary logistic regression model based on the combination of all E antigens was predefined and applied to the data set. The sensitivity and specificity of the assay for distinguishing HPV-related OPC from controls were calculated. Logistic regression analysis was used to calculate odds ratios with 95% confidence intervals for the association of head and neck cancer with the antibody status. Of the 378 patients with OPC, 348 had p16-positive OPC. HPV-16 E antibody levels were significantly higher among patients with p16-positive OPC but not among patients with non-OPC or among controls. Serology showed high sensitivity and specificity for HPV-related OPC (binary classifier: 83% sensitivity and 99% specificity for p16-positive OPC). A trained binary classification algorithm that incorporates information about multiple E antibodies has high sensitivity and specificity and may be advantageous for risk stratification in future screening trials. Cancer 2017;123:4886-94. © 2017 American Cancer Society. © 2017 American Cancer Society.
1987-09-01
accuracy. The data aquisition system combines a position- sensitive X-ray detector with a 65 kilobyte microcomputer capable of operating as a...The rapid X-ray diffraction system measures intensity versus 20 patterns by placing the detector with its sensitivity axis positioned parallel to the...plane of the diffractometer (see Figure 2). As shown in Figure 2, the detector sensitivity axis z is coplanar with both the incident beam and the
Diagnosis of Tempromandibular Disorders Using Local Binary Patterns
Haghnegahdar, A.A.; Kolahi, S.; Khojastepour, L.; Tajeripour, F.
2018-01-01
Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment. Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal cases (132 joints) were collected and 2 coronal cut prepared from each condyle, although images were limited to head of mandibular condyle. In order to extract features of images, first we use LBP and then histogram of oriented gradients. To reduce dimensionality, the linear algebra Singular Value Decomposition (SVD) is applied to the feature vectors matrix of all images. For evaluation, we used K nearest neighbor (K-NN), Support Vector Machine, Naïve Bayesian and Random Forest classifiers. We used Receiver Operating Characteristic (ROC) to evaluate the hypothesis. Results: K nearest neighbor classifier achieves a very good accuracy (0.9242), moreover, it has desirable sensitivity (0.9470) and specificity (0.9015) results, when other classifiers have lower accuracy, sensitivity and specificity. Conclusion: We proposed a fully automatic approach to detect TMD using image processing techniques based on local binary patterns and feature extraction. K-NN has been the best classifier for our experiments in detecting patients from healthy individuals, by 92.42% accuracy, 94.70% sensitivity and 90.15% specificity. The proposed method can help automatically diagnose TMD at its initial stages. PMID:29732343
Simultaneous observation of the gamma-ray binary LS I+61 303 with GLAST and Suzaku
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Takuya; Fukazawa, Yasushi; Mizuno, Tsunefumi
2007-07-12
The gamma-ray binary LS I+61 303 is a bright gamma-ray source, and thus an attracting object for GLAST. We proposed to observe this object with the X-ray satellite Suzaku (AO-2), simultaneously with GLAST, radio wave, and optical spectro-polarimetry, in order to probe the geometrical state of the binary system emitting the gamma-ray radiation, as a function of the binary orbital phase for the first time. This is essential to understand the mechanism of jet production and gamma-ray emission. The idea is not only to measure the multi-band overall continuum shape, but also to make use of continuous monitoring capability ofmore » GLAST, wide X-ray band of Suzaku, and good accessibility of the Kanata optical/NIR telescope (Hiroshima University) with the sensitive optical spectro-polarimetry. Further collaboration with TeV gamma-ray telescopes is also hoped to constrain the jet constitution.« less
Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale
Han, Lili; Meng, Qingping; Wang, Deli; ...
2016-12-08
An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-inducedmore » chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. As a result, this work characterizes the pathways that can control the morphology in binary oxide materials.« less
What Can Simbol-X Do for Gamma-ray Binaries?
NASA Astrophysics Data System (ADS)
Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.
2009-05-01
Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.
NASA Astrophysics Data System (ADS)
Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong
2016-07-01
The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02878k
The PyCBC search for compact binary mergers in the second run of Advanced LIGO
NASA Astrophysics Data System (ADS)
Dal Canton, Tito; PyCBC Team
2017-01-01
The PyCBC software implements a matched-filter search for gravitational-wave signals associated with mergers of compact binaries. During the first observing run of Advanced LIGO, it played a fundamental role in the discovery of the binary-black-hole merger signals GW150914, GW151226 and LVT151012. In preparation for Advanced LIGO's second run, PyCBC has been modified with the goal of increasing the sensitivity of the search, reducing its computational cost and expanding the explored parameter space. The ability to report signals with a latency of tens of seconds and to perform inference on the parameters of the detected signals has also been introduced. I will give an overview of PyCBC and present the new features and their impact.
Matter effects on LIGO/Virgo searches for gravitational waves from merging neutron stars
NASA Astrophysics Data System (ADS)
Cullen, Torrey; Harry, Ian; Read, Jocelyn; Flynn, Eric
2017-12-01
Gravitational waves from merging neutron stars are expected to be observed in the next five years. We explore the potential impact of matter effects on gravitational waves from merging double neutron-star binaries. If neutron star binaries exist with chirp masses less than roughly one solar mass and typical neutron-star radii are larger than roughly 14 km, or if neutron-star radii are larger than 15-16 km for the chirp masses of galactic neutron-star binaries, then matter will have a significant impact on the effectiveness of a point-particle-based search at Advanced LIGO design sensitivity (roughly 5% additional loss of signals). In a configuration typical of LIGO’s first observing run, extreme matter effects lead to up to 10% potential loss in the most extreme cases.
Accreting Double White Dwarf Binaries: Implications for LISA
NASA Astrophysics Data System (ADS)
Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki
2017-09-01
We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna (LISA) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ˜2700 of these systems will be observable with a negative chirp of 0.1 yr-2 by a space-based GW detector like LISA. We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.
An optimal algorithm for reconstructing images from binary measurements
NASA Astrophysics Data System (ADS)
Yang, Feng; Lu, Yue M.; Sbaiz, Luciano; Vetterli, Martin
2010-01-01
We have studied a camera with a very large number of binary pixels referred to as the gigavision camera [1] or the gigapixel digital film camera [2, 3]. Potential advantages of this new camera design include improved dynamic range, thanks to its logarithmic sensor response curve, and reduced exposure time in low light conditions, due to its highly sensitive photon detection mechanism. We use maximum likelihood estimator (MLE) to reconstruct a high quality conventional image from the binary sensor measurements of the gigavision camera. We prove that when the threshold T is "1", the negative loglikelihood function is a convex function. Therefore, optimal solution can be achieved using convex optimization. Base on filter bank techniques, fast algorithms are given for computing the gradient and the multiplication of a vector and Hessian matrix of the negative log-likelihood function. We show that with a minor change, our algorithm also works for estimating conventional images from multiple binary images. Numerical experiments with synthetic 1-D signals and images verify the effectiveness and quality of the proposed algorithm. Experimental results also show that estimation performance can be improved by increasing the oversampling factor or the number of binary images.
Gravitational-wave astronomy: delivering on the promises
NASA Astrophysics Data System (ADS)
Schutz, B. F.
2018-05-01
Now that LIGO and Virgo have begun to detect gravitational-wave events with regularity, the field of gravitational-wave astronomy is beginning to realize its promise. Binary black holes and, very recently, binary neutron stars have been observed, and we are already learning much from them. The future, with improved sensitivity, more detectors and detectors like LISA in different frequency bands, has even more promise to open a completely hidden side of the Universe to our exploration. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.
Planet Formation in Stellar Binaries: How Disk Gravity Can Lower theFragmentation Barrier
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Rafikov, Roman R.
2014-11-01
Binary star systems present a challenge to current theories of planet formation. Perturbations from the companion star dynamically excite the protoplanetary disk, which can lead to destructive collisions between planetesimals, and prevent growth from 1 km to 100 km sized planetesimals. Despite this apparent barrier to coagulation, planets have been discovered within several small-separation (<20 AU), eccentric (eb 0.4) binaries, such as alpha Cen and gamma Cep. We address this problem by analytically exploring planetesimal dynamics under the simultaneous action of (1) binary perturbation, (2) gas drag (which tends to align planetesimal orbits), and (3), the gravity of an eccentric protoplanetary disk. We then use our dynamical solutions to assess the outcomes of planetesimal collisions (growth, destruction, erosion) for a variety of disk models. We find that planets in small-separation binaries can form at their present locations if the primordial protoplanetary disks were massive (>0.01M⊙) and not very eccentric (eccentricity of order several per cent at the location of planet). This constraint on the disk mass is compatible with the high masses of the giant planets in known gamma Cep-like binaries, which require a large mass reservoir for their formation. We show that for these massive disks, disk gravity is dominant over the gravity of the binary companion at the location of the observed planets. Therefore, planetesimal growth is highly sensitive to disk properties. The requirement of low disk eccentricity is in line with the recent hydrodynamic simulations that tend to show gaseous disks in eccentric binaries developing very low eccentricity, at the level of a few percent. A massive purely axisymmetric disk makes for a friendlier environment for planetesimal growth by driving rapid apsidal precession of planetesimals, and averaging out the eccentricity excitation from the binary companion. When the protoplanetary disk is eccentric we find that the most favorable conditions for planetesimal growth emerge when the disk is non-precessing and is apsidally aligned with the orbit of the binary.
Magnetically Responsive Optical Nanoprobes (MagRONs) and Systems
2004-02-28
5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER The regents of the University of...research. MagMOON Architechtures I Controlled deposition of magnetic materials onto any nanosensor Prism coated nanoparticles Electric field sensors...into a predefined pattern has been the focus of many investigations.[7-11] For example, strawberry-like composite materials using organic -inorganic
Savaliya, Priten; Dhawan, Anuj
2016-10-01
Employing finite difference time domain simulations, we demonstrate that electromagnetic field enhancement is substantially greater for tapered optical fibers with plasmonic nanostructures present on their tips as compared with non-tapered optical fibers having those plasmonic nanostructures, or with tapered optical fibers without the plasmonic nanostructures. We also carried out fabrication of plasmonic nanostructures on optical fiber tips.
The formation of protostellar binaries in primordial minihalos
NASA Astrophysics Data System (ADS)
Riaz, R.; Bovino, S.; Vanaverbeke, S.; Schleicher, D. R. G.
2018-06-01
The first stars are known to form in primordial gas, either in minihalos with about 106 M⊙ or so-called atomic cooling halos of about 108 M⊙. Simulations have shown that gravitational collapse and disk formation in primordial gas yield dense stellar clusters. In this paper, we focus particularly on the formation of protostellar binary systems, and aim to quantify their properties during the early stage of their evolution. For this purpose, we combine the smoothed particle hydrodynamics code GRADSPH with the astrochemistry package KROME. The GRADSPH-KROME framework is employed to investigate the collapse of primordial clouds in the high-density regime, exploring the fragmentation process and the formation of binary systems. We observe a strong dependence of fragmentation on the strength of the turbulent Mach number M and the rotational support parameter β. Rotating clouds show significant fragmentation, and have produced several Pop. III proto-binary systems. We report maximum and minimum mass accretion rates of 2.31 × 10-1 M⊙ yr-1 and 2.18 × 10-4 M⊙ yr-1. The mass spectrum of the individual Pop III proto-binary components ranges from 0.88 M⊙ to 31.96 M⊙ and has a sensitive dependence on the Mach number M as well as on the rotational parameter β. We also report a range from ˜0.01 to ˜1 for the mass ratio of our proto-binary systems.
NASA Technical Reports Server (NTRS)
Dal Canton, Tito; Harry, Ian W.
2017-01-01
We describe the methodology and novel techniques used to construct a set of waveforms, or template bank, applicable to searches for compact binary coalescences in Advanced LIGO's second observing run. This template bank is suitable for observing systems composed of two neutron stars, two black holes, or a neutron star and a black hole. The Post-Newtonian formulation is used to model waveforms with total mass less than 4 Solar Mass and the most recent effective-one-body model, calibrated to numerical relativity to include the merger and ringdown, is used for total masses greater than 4 Solar Mass. The effects of spin precession, matter, orbital eccentricity and radiation modes beyond the quadrupole are neglected. In contrast to the template bank used to search for compact binary mergers in Advanced LIGO's first observing run, here we are including binary-black-hole systems with total mass up to several hundreds of solar masses, thereby improving the ability to observe such systems. We introduce a technique to vary the starting frequency of waveform filters so that our bank can simultaneously contain binary-neutron-star and high-mass binary-black hole waveforms. We also introduce a lower-bound on the filter waveform length, to exclude very short-duration, high-mass templates whose sensitivity is strongly reduced by the characteristics and performance of the interferometers.
Bayesian inference for unidirectional misclassification of a binary response trait.
Xia, Michelle; Gustafson, Paul
2018-03-15
When assessing association between a binary trait and some covariates, the binary response may be subject to unidirectional misclassification. Unidirectional misclassification can occur when revealing a particular level of the trait is associated with a type of cost, such as a social desirability or financial cost. The feasibility of addressing misclassification is commonly obscured by model identification issues. The current paper attempts to study the efficacy of inference when the binary response variable is subject to unidirectional misclassification. From a theoretical perspective, we demonstrate that the key model parameters possess identifiability, except for the case with a single binary covariate. From a practical standpoint, the logistic model with quantitative covariates can be weakly identified, in the sense that the Fisher information matrix may be near singular. This can make learning some parameters difficult under certain parameter settings, even with quite large samples. In other cases, the stronger identification enables the model to provide more effective adjustment for unidirectional misclassification. An extension to the Poisson approximation of the binomial model reveals the identifiability of the Poisson and zero-inflated Poisson models. For fully identified models, the proposed method adjusts for misclassification based on learning from data. For binary models where there is difficulty in identification, the method is useful for sensitivity analyses on the potential impact from unidirectional misclassification. Copyright © 2017 John Wiley & Sons, Ltd.
Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey
NASA Astrophysics Data System (ADS)
Knispel, B.; Eatough, R. P.; Kim, H.; Keane, E. F.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Crawford, F.; Eggenstein, H.-B.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; Miller, R. B.; Papa, M. A.; Rastawicki, D.; Sarkissian, J.; Siemens, X.; Stappers, B. W.
2013-09-01
We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop s-1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (≈420 pc cm-3). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.
Adaptive controller for volumetric display of neuroimaging studies
NASA Astrophysics Data System (ADS)
Bleiberg, Ben; Senseney, Justin; Caban, Jesus
2014-03-01
Volumetric display of medical images is an increasingly relevant method for examining an imaging acquisition as the prevalence of thin-slice imaging increases in clinical studies. Current mouse and keyboard implementations for volumetric control provide neither the sensitivity nor specificity required to manipulate a volumetric display for efficient reading in a clinical setting. Solutions to efficient volumetric manipulation provide more sensitivity by removing the binary nature of actions controlled by keyboard clicks, but specificity is lost because a single action may change display in several directions. When specificity is then further addressed by re-implementing hardware binary functions through the introduction of mode control, the result is a cumbersome interface that fails to achieve the revolutionary benefit required for adoption of a new technology. We address the specificity versus sensitivity problem of volumetric interfaces by providing adaptive positional awareness to the volumetric control device by manipulating communication between hardware driver and existing software methods for volumetric display of medical images. This creates a tethered effect for volumetric display, providing a smooth interface that improves on existing hardware approaches to volumetric scene manipulation.
Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector
NASA Astrophysics Data System (ADS)
Michimura, Yuta; Komori, Kentaro; Nishizawa, Atsushi; Takeda, Hiroki; Nagano, Koji; Enomoto, Yutaro; Hayama, Kazuhiro; Somiya, Kentaro; Ando, Masaki
2018-06-01
Cryogenic cooling of the test masses of interferometric gravitational wave detectors is a promising way to reduce thermal noise. However, cryogenic cooling limits the incident power to the test masses, which limits the freedom of shaping the quantum noise. Cryogenic cooling also requires short and thick suspension fibers to extract heat, which could result in the worsening of thermal noise. Therefore, careful tuning of multiple parameters is necessary in designing the sensitivity of cryogenic gravitational wave detectors. Here, we propose the use of particle swarm optimization to optimize the parameters of these detectors. We apply it for designing the sensitivity of the KAGRA detector, and show that binary neutron star inspiral range can be improved by 10%, just by retuning seven parameters of existing components. We also show that the sky localization of GW170817-like binaries can be further improved by a factor of 1.6 averaged across the sky. Our results show that particle swarm optimization is useful for designing future gravitational wave detectors with higher dimensionality in the parameter space.
Direct Exoplanet Detection with Binary Differential Imaging
NASA Astrophysics Data System (ADS)
Rodigas, Timothy J.; Weinberger, Alycia; Mamajek, Eric E.; Males, Jared R.; Close, Laird M.; Morzinski, Katie; Hinz, Philip M.; Kaib, Nathan
2015-10-01
Binaries are typically excluded from direct imaging exoplanet surveys. However, the recent findings of Kepler and radial velocity programs show that planets can and do form in binary systems. Here, we suggest that visual binaries offer unique advantages for direct imaging. We show that Binary Differential Imaging (BDI), whereby two stars are imaged simultaneously at the same wavelength within the isoplanatic patch at a high Strehl ratio, offers improved point spread function (PSF) subtraction that can result in increased sensitivity to planets close to each star. We demonstrate this by observing a young visual binary separated by 4″ with MagAO/Clio-2 at 3.9 μm, where the Strehl ratio is high, the isoplanatic patch is large, and giant planets are bright. Comparing BDI to angular differential imaging (ADI), we find that BDI’s 5σ contrast is ˜0.5 mag better than ADI’s within ˜1″ for the particular binary we observed. Because planets typically reside close to their host stars, BDI is a promising technique for discovering exoplanets in stellar systems that are often ignored. BDI is also 2-4× more efficient than ADI and classical reference PSF subtraction, since planets can be detected around both the target and PSF reference simultaneously. We are currently exploiting this technique in a new MagAO survey for giant planets in 140 young nearby visual binaries. BDI on a space-based telescope would not be limited by isoplanatism effects and would therefore be an even more powerful tool for imaging and discovering planets. This paper includes data obtained at the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Searches for millisecond pulsations in low-mass X-ray binaries
NASA Technical Reports Server (NTRS)
Wood, K. S.; Hertz, P.; Norris, J. P.; Vaughan, B. A.; Michelson, P. F.; Mitsuda, K.; Lewin, W. H. G.; Van Paradijs, J.; Penninx, W.; Van Der Klis, M.
1991-01-01
High-sensitivity search techniques for millisecond periods are presented and applied to data from the Japanese satellite Ginga and HEAO 1. The search is optimized for pulsed signals whose period, drift rate, and amplitude conform with what is expected for low-class X-ray binary (LMXB) sources. Consideration is given to how the current understanding of LMXBs guides the search strategy and sets these parameter limits. An optimized one-parameter coherence recovery technique (CRT) developed for recovery of phase coherence is presented. This technique provides a large increase in sensitivity over the method of incoherent summation of Fourier power spectra. The range of spin periods expected from LMXB phenomenology is discussed, the necessary constraints on the application of CRT are described in terms of integration time and orbital parameters, and the residual power unrecovered by the quadratic approximation for realistic cases is estimated.
Spectroscopic observations of X-ray selected late type stars
NASA Technical Reports Server (NTRS)
Takalo, L. O.
1988-01-01
A spectroscopic survey of nine X-ray selected late type stars was conducted. These stars are serendipitously discovered EINSTEIN X-ray sources, selected from two large x-ray surveys: the Columbia Astrophysical Laboratory survey (five stars) and the CFA Medium Sensitivity survey (four stars). Four of the Columbia survey stars were found to be short period binaries. The fifth was found to be an active single G dwarf. None of the Medium Sensitivity survey stars were found to be either binaries or active stars. Activity was measured by comparing the H-alpha and the CaII infrared triplet (8498, 8542) lines in these stars to the lines in inactive stars of similar spectral type. A correlation was found between the excess H-alpha lime emission and V sin(i) and between the excess H-alpha line emission and X-ray luminosity. No correlation was found between the infrared line emission and any other measured quantity.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-01-01
We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20)M⊙ coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M⊙ of 3.3×10-7 mergers Mpc-3yr-1.
A learning framework for age rank estimation based on face images with scattering transform.
Chang, Kuang-Yu; Chen, Chu-Song
2015-03-01
This paper presents a cost-sensitive ordinal hyperplanes ranking algorithm for human age estimation based on face images. The proposed approach exploits relative-order information among the age labels for rank prediction. In our approach, the age rank is obtained by aggregating a series of binary classification results, where cost sensitivities among the labels are introduced to improve the aggregating performance. In addition, we give a theoretical analysis on designing the cost of individual binary classifier so that the misranking cost can be bounded by the total misclassification costs. An efficient descriptor, scattering transform, which scatters the Gabor coefficients and pooled with Gaussian smoothing in multiple layers, is evaluated for facial feature extraction. We show that this descriptor is a generalization of conventional bioinspired features and is more effective for face-based age inference. Experimental results demonstrate that our method outperforms the state-of-the-art age estimation approaches.
Pred-Skin: A Fast and Reliable Web Application to Assess Skin Sensitization Effect of Chemicals.
Braga, Rodolpho C; Alves, Vinicius M; Muratov, Eugene N; Strickland, Judy; Kleinstreuer, Nicole; Trospsha, Alexander; Andrade, Carolina Horta
2017-05-22
Chemically induced skin sensitization is a complex immunological disease with a profound impact on quality of life and working ability. Despite some progress in developing alternative methods for assessing the skin sensitization potential of chemical substances, there is no in vitro test that correlates well with human data. Computational QSAR models provide a rapid screening approach and contribute valuable information for the assessment of chemical toxicity. We describe the development of a freely accessible web-based and mobile application for the identification of potential skin sensitizers. The application is based on previously developed binary QSAR models of skin sensitization potential from human (109 compounds) and murine local lymph node assay (LLNA, 515 compounds) data with good external correct classification rate (0.70-0.81 and 0.72-0.84, respectively). We also included a multiclass skin sensitization potency model based on LLNA data (accuracy ranging between 0.73 and 0.76). When a user evaluates a compound in the web app, the outputs are (i) binary predictions of human and murine skin sensitization potential; (ii) multiclass prediction of murine skin sensitization; and (iii) probability maps illustrating the predicted contribution of chemical fragments. The app is the first tool available that incorporates quantitative structure-activity relationship (QSAR) models based on human data as well as multiclass models for LLNA. The Pred-Skin web app version 1.0 is freely available for the web, iOS, and Android (in development) at the LabMol web portal ( http://labmol.com.br/predskin/ ), in the Apple Store, and on Google Play, respectively. We will continuously update the app as new skin sensitization data and respective models become available.
NASA Astrophysics Data System (ADS)
Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.
2016-04-01
The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers in the local Universe will have originated in a globular cluster, but we also explore the sensitivity of this result to different assumptions for binary stellar evolution. If black holes were born with significant natal kicks, comparable to those of neutron stars, then the merger rate of binary black holes from globular clusters would be comparable to that from the field, with approximately 1 /2 of mergers originating in clusters. Finally we point out that population synthesis results for the field may also be modified by dynamical interactions of binaries taking place in dense star clusters which, unlike globular clusters, dissolved before the present day.
Accreting Double White Dwarf Binaries: Implications for LISA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.
We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna ( LISA ) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr{sup −2} by a space-based GW detector like LISAmore » . We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.« less
NASA Astrophysics Data System (ADS)
Tupa, Peter R.; Quirin, S.; DeLeo, G. G.; McCluskey, G. E., Jr.
2007-12-01
We present a modified Fourier transform approach to determine the orbital parameters of detached visual binary stars. Originally inspired by Monet (ApJ 234, 275, 1979), this new method utilizes an iterative routine of refining higher order Fourier terms in a manner consistent with Keplerian motion. In most cases, this approach is not sensitive to the starting orbital parameters in the iterative loop. In many cases we have determined orbital elements even with small fragments of orbits and noisy data, although some systems show computational instabilities. The algorithm was constructed using the MAPLE mathematical software code and tested on artificially created orbits and many real binary systems, including Gliese 22 AC, Tau 51, and BU 738. This work was supported at Lehigh University by NSF-REU grant PHY-9820301.
X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra
NASA Technical Reports Server (NTRS)
Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar
2006-01-01
We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.
Looking for Interacting Binaries in Old Open Clusters
NASA Technical Reports Server (NTRS)
Grindley, Jonathan
2005-01-01
We requested a 12 ks observation of the old open cluster NGC7142 with the aim to investigate the population of interacting binaries, and compare the properties with those of interacting binaries in other old open clusters. Unfortunately, the observation suffered from long periods of background flaring, and as a result the effective exposure time was shortened to only approximately 25% of the planned exposure. The sensitivity to detect sources in the cluster was therefore much reduced, hampering a useful comparison with other clusters observed with Chandra and XMM. We detect 5 sources (all less than 300 counts) in the full field of view of the detectors; based on the large separations from the cluster center, we expect that at least 3-4 are not associated with the cluster. A brief paper that reports the results is in preparation.
Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon.
Hanni, Matti; Lantto, Perttu; Vaara, Juha
2009-04-14
Nuclear magnetic resonance (NMR) of atomic (129/131)Xe is used as a versatile probe of the structure and dynamics of various host materials, due to the sensitivity of the Xe NMR parameters to intermolecular interactions. The principles governing this sensitivity can be investigated using the prototypic system of interacting Xe atoms. In the pairwise additive approximation (PAA), the binary NMR chemical shift, nuclear quadrupole coupling (NQC), and spin-rotation (SR) curves for the xenon dimer are utilized for fast and efficient evaluation of the corresponding NMR tensors in small xenon clusters Xe(n) (n = 2-12). If accurate, the preparametrized PAA enables the analysis of the NMR properties of xenon clusters, condensed xenon phases, and xenon gas without having to resort to electronic structure calculations of instantaneous configurations for n > 2. The binary parameters for Xe(2) at different internuclear distances were obtained at the nonrelativistic Hartree-Fock level of theory. Quantum-chemical (QC) calculations at the corresponding level were used to obtain the NMR parameters of the Xe(n) (n = 2-12) clusters at the equilibrium geometries. Comparison of PAA and QC data indicates that the direct use of the binary property curves of Xe(2) can be expected to be well-suited for the analysis of Xe NMR in the gaseous phase dominated by binary collisions. For use in condensed phases where many-body effects should be considered, effective binary property functions were fitted using the principal components of QC tensors from Xe(n) clusters. Particularly, the chemical shift in Xe(n) is strikingly well-described by the effective PAA. The coordination number Z of the Xe site is found to be the most important factor determining the chemical shift, with the largest shifts being found for high-symmetry sites with the largest Z. This is rationalized in terms of the density of virtual electronic states available for response to magnetic perturbations.
Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra
NASA Astrophysics Data System (ADS)
El-Badry, Kareem; Ting, Yuan-Sen; Rix, Hans-Walter; Quataert, Eliot; Weisz, Daniel R.; Cargile, Phillip; Conroy, Charlie; Hogg, David W.; Bergemann, Maria; Liu, Chao
2018-05-01
We develop a data-driven spectral model for identifying and characterizing spatially unresolved multiple-star systems and apply it to APOGEE DR13 spectra of main-sequence stars. Binaries and triples are identified as targets whose spectra can be significantly better fit by a superposition of two or three model spectra, drawn from the same isochrone, than any single-star model. From an initial sample of ˜20 000 main-sequence targets, we identify ˜2500 binaries in which both the primary and secondary stars contribute detectably to the spectrum, simultaneously fitting for the velocities and stellar parameters of both components. We additionally identify and fit ˜200 triple systems, as well as ˜700 velocity-variable systems in which the secondary does not contribute detectably to the spectrum. Our model simplifies the process of simultaneously fitting single- or multi-epoch spectra with composite models and does not depend on a velocity offset between the two components of a binary, making it sensitive to traditionally undetectable systems with periods of hundreds or thousands of years. In agreement with conventional expectations, almost all the spectrally identified binaries with measured parallaxes fall above the main sequence in the colour-magnitude diagram. We find excellent agreement between spectrally and dynamically inferred mass ratios for the ˜600 binaries in which a dynamical mass ratio can be measured from multi-epoch radial velocities. We obtain full orbital solutions for 64 systems, including 14 close binaries within hierarchical triples. We make available catalogues of stellar parameters, abundances, mass ratios, and orbital parameters.
Tang, Yongqiang
2018-04-30
The controlled imputation method refers to a class of pattern mixture models that have been commonly used as sensitivity analyses of longitudinal clinical trials with nonignorable dropout in recent years. These pattern mixture models assume that participants in the experimental arm after dropout have similar response profiles to the control participants or have worse outcomes than otherwise similar participants who remain on the experimental treatment. In spite of its popularity, the controlled imputation has not been formally developed for longitudinal binary and ordinal outcomes partially due to the lack of a natural multivariate distribution for such endpoints. In this paper, we propose 2 approaches for implementing the controlled imputation for binary and ordinal data based respectively on the sequential logistic regression and the multivariate probit model. Efficient Markov chain Monte Carlo algorithms are developed for missing data imputation by using the monotone data augmentation technique for the sequential logistic regression and a parameter-expanded monotone data augmentation scheme for the multivariate probit model. We assess the performance of the proposed procedures by simulation and the analysis of a schizophrenia clinical trial and compare them with the fully conditional specification, last observation carried forward, and baseline observation carried forward imputation methods. Copyright © 2018 John Wiley & Sons, Ltd.
Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard
2016-06-23
The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.
NASA Astrophysics Data System (ADS)
Belczynski, Krzysztof; Holz, Daniel E.; Bulik, Tomasz; O'Shaughnessy, Richard
2016-06-01
The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors—massive, low-metallicity binary stars—with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.
Lebedev, Artem Y.; Marchi, Enrico; Yuan, Min; Esipova, Tatiana V.; Bergamini, Giacomo; Wilson, David F.
2013-01-01
Biological oxygen measurements by phosphorescence quenching make use of exogenous phosphorescent probes, which are introduced directly into the medium of interest (e.g. blood or interstitial fluid) where they serve as molecular sensors for oxygen. The byproduct of the quenching reaction is singlet oxygen, a highly reactive species capable of damaging biological tissue. Consequently, potential probe phototoxicity is a concern for biological applications. Herein, we compared the ability of polyethyleneglycol (PEG)-coated Pd tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes of three successive generations to sensitize singlet oxygen. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. This unexpected result is due to the fact that the lifetime of the PdTBP triplet state in the absence of oxygen increases with dendritic generation, thus compensating for the concomitant decrease in the rate of quenching. Nevertheless, in spite of their ability to sensitize singlet oxygen, the phosphorescent probes were found to be non-phototoxic when compared with the commonly used photodynamic drug Photofrin in a standard cell-survival assay. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. In contrast, conventional photosensitizers bind to cell components and act by generating singlet oxygen inside or in the immediate vicinity of cellular organelles. Therefore, PEGylated dendritic probes are safe to use for tissue oxygen measurements as long as the light doses are less than or equal to those commonly employed in photodynamic therapy. PMID:21409208
Kong, Weiheng; Wu, Di; Xia, Lian; Chen, Xuefeng; Li, Guoliang; Qiu, Nannan; Chen, Guang; Sun, Zhiwei; You, Jinmao; Wu, Yongning
2017-06-22
Recently, α-glucosidase inhibitor has been widely used in clinic for diabetic therapy. In the present study, a facile and sensitive fluorescent assay based on enzyme activated inner filter effect (IFE) on nitrogen-doped carbon dots (CDs) was first developed for the detection of α-glucosidase. The N-doped CDs with green emission were prepared by a one-step hydrothermal synthesis and gave the fluorescence quantum yield of 30%, which were used as the signal output. Through α-glucosidase catalysis, 4-nitrophenol was released from 4-nitrophenyl-α-d-glucopyranoside (NGP). Interestingly, the absorption of 4-nitrophenol and the excitation of CDs were completely overlapping. Due to its great molar absorptivity, 4-nitrophenol was capable of acting as a powerful absorber to affect the fluorescent signal of CDs (i.e. IFE). By converting the absorption signals into fluorescence signals, the facile fluorescence assay strategy could be realized for α-glucosidase activity sensing, which effectively avoided the complex modification of the surface of CDs or construction of the nanoprobes. The established IFE-based sensing platform offered a low detection limit of 0.01 U/mL (S/N = 3). This proposed sensing approach has also been expanded to the inhibitor screening and showed excellent applicability. As a typical α-glucosidase inhibitor, acarbose was investigated with a low detection limit of 10 -8 M. This developed method enjoyed many merits including simplicity, lost cost, high sensitivity, good reproducibility and excellent selectivity, which also provided a new insight on the application of CDs to develop the facile and sensitive biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Biorecognition Element Design and Characterization for Human Performance Biomarkers Sensing
2015-07-16
immobilize aptamers and peptides on the AuNP surface. The parameters optimized in this work included reaction times, ligand ratio (PEG-OH vs PEG- COOH...instructions for performing peptides and aptamers surface immobilization were provided to collaborators in order to create nanoprobes that were integrated...with sequences made of less than 20 amino acids) and DNA aptamers (via on-off structural switching properties) are appealing BREs for new sensors
2009-09-14
the otherwise difficult to deposit Alq3 using a p(VDF-TrFE) carrier. The Alq3 retains its ability to fluoresce after deposition. (h) SEM of the...aluminum tris(8-hydroxyquinoline) ( Alq3 ) ∼0.9 P(VDF-TrFE) 1 zinc diethyldithiocarbamate ∼1.2 P(VDF-TrFE) 1 CdSe-ZnS core-shell 2-4 PE 1 dodecanethiol
Luo, Jingyi; Jiang, Danfeng; Liu, Tao; Peng, Jingmeng; Chu, Zhenyu; Jin, Wanqin
2018-05-01
In this work, a novel sandwich-type aptasensor was designed for the ultrasensitive recognition of trace mercury ions in water. Numerous oriented platinum nanotube arrays (PtNAs) were in-situ crystallized on a flexible electrode as a sensing interface, while thionine labelled Fe 3 O 4 /rGO nanocomposites as signal amplifiers. Both PtNAs/CF and nanocomposites were synthesized by easy hydrothermal processes. With their large surface area, it was favorable for electrochemical performance and immobilization of capture DNAs (cDNA) and report DNAs (rDNA). Upon the existence of Hg 2+ , partial linker DNAs were tightly bound with cDNAs through thymine-Hg 2+ -thymine pairing (T-Hg 2+ -T). Then rDNAs attached Fe 3 O 4 /rGO nanoprobes were fixed on the electrode through the match of remaining linker DNAs and rDNAs. Under the optimal conditions, the Hg 2+ aptasensor showed a synergistic amplification performance with a wide linear range from 0.1nM to 100nM, as well as a low detection limit of 30pM. Moreover, the as-prepared aptasensor also exhibited reliable performance for assay in real lake water samples. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhang, Ruo-Yun; Wang, Zhao-Yang; Yang, Xiao-Quan; Xuan, Yang; Cheng, Kai; Li, Cheng; Song, Xian-Lin; An, Jie; Hou, Xiao-Lin; Zhao, Yuan-Di
2018-02-01
In this study, an oil-soluble Ag2S quantum dot (QD) was synthesized through thermal decomposition using the single-source precursor method, and Pluronic F127 (PF127), a triblock copolymer functionalized with folic acid (FA), was deposited on the surface of the QD, then a water-soluble PF127-FA@Ag2S nanoprobe with targeting ability was fabricated. The as-prepared PF127-FA@Ag2S exhibited spheroidal morphology and high dispersibility, with average diameters of 115 ± 20.7 nm (as observed by transmission electron microscopy). No obvious toxicity of the PF127-FA@Ag2S nanoprobe was found in standard 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and colony-formation assay, indicating good biocompatibility and safety. The resulting PF127-FA@Ag2S exhibited excellent stability between 4 °C-40 °C. Additionally, the capacity of the tumor cell-targeting high contrast enhanced photoacoustic imaging of PF127-FA@Ag2S was verified in comparison with A547 and HeLa cells. In other words, the excellent properties of PF127-FA@Ag2S show great potential in further research for targeting and photoacoustic imaging.
Li, Jiong; Wang, Xuandong; Zheng, Dongye; Lin, Xinyi; Wei, Zuwu; Zhang, Da; Li, Zhuanfang; Zhang, Yun; Wu, Ming; Liu, Xiaolong
2018-05-22
Theranostic nanoprobes integrated with dual-modal imaging and therapeutic functions, such as photodynamic therapy (PDT), have exhibited significant potency in cancer treatments due to their high imaging accuracy and non-invasive advantages for cancer elimination. However, biocompatibility and highly efficient accumulation of these nanoprobes in tumor are still unsatisfactory for clinical application. In this study, a photosensitizer -loaded magnetic nanobead with surface further coated with a layer of cancer cell membrane (SSAP-Ce6@CCM) was designed to improve the biocompatibility and cellular uptake and ultimately achieve enhanced MR/NIR fluorescence imaging and PDT efficacy. Compared with similar nanobeads without CCM coating, SSAP-Ce6@CCM showed significantly enhanced cellular uptake, as evidenced by Prussian blue staining, confocal laser scanning microscopy (CLSM) and flow cytometric analysis. Consequently, SSAP-Ce6@CCM displayed a more distinct MR/NIR imaging ability and more obvious photo-cytotoxicity towards cancer cells under 670 nm laser irradiation. Furthermore, the enhanced PDT effect benefited from the surface coating of cancer cell membrane was demonstrated in SMMC-7721 tumor-bearing mice through tumor growth observation and tumor tissue pathological examination. Therefore, this CCM-disguised nanobead that integrated the abilities of MR/NIR fluorescence dual-modal imaging and photodynamic therapy might be a promising theranostic platform for tumor treatment.
Electrostatic Switching in Vertically Oriented Nanotubes for Nonvolatile Memory Applications
NASA Technical Reports Server (NTRS)
Kaul, Anupama B.; Khan, Paul; Jennings, Andrew T.; Greer, Julia R.; Megerian, Krikor G.; Allmen, Paul von
2009-01-01
We have demonstrated electrostatic switching in vertically oriented nanotubes or nanofibers, where a nanoprobe was used as the actuating electrode inside an SEM. When the nanoprobe was manipulated to be in close proximity to a single tube, switching voltages between 10 V - 40 V were observed, depending on the geometrical parameters. The turn-on transitions appeared to be much sharper than the turn-off transitions which were limited by the tube-to-probe contact resistances. In many cases, stiction forces at these dimensions were dominant, since the tube appeared stuck to the probe even after the voltage returned to 0 V, suggesting that such structures are promising for nonvolatile memory applications. The stiction effects, to some extent, can be adjusted by engineering the switch geometry appropriately. Nanoscale mechanical measurements were also conducted on the tubes using a custom-built anoindentor inside an SEM, from which preliminary material parameters, such as the elastic modulus, were extracted. The mechanical measurements also revealed that the tubes appear to be well adhered to the substrate. The material parameters gathered from the mechanical measurements were then used in developing an electrostatic model of the switch using a commercially available finite-element simulator. The calculated pull-in voltages appeared to be in agreement to the experimentally obtained switching voltages to first order.
Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems
Kaur, Randeep; Badea, Ildiko
2013-01-01
Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans. PMID:23326195
Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.
Kaur, Randeep; Badea, Ildiko
2013-01-01
Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.
In vivo cation exchange in quantum dots for tumor-specific imaging.
Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N
2017-08-24
In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.
Liu, Yaoyao; Liu, Jing-Min; Zhang, Dongdong; Ge, Kun; Wang, Peihua; Liu, Huilin; Fang, Guozhen; Wang, Shuo
2017-09-20
Probiotics has attracted great attention in food nutrition and safety research field, but thus far there are limited analytical techniques for visualized and real-time monitoring of the probiotics when they are ingested in vivo. Herein, the optical bioimaging technique has been introduced for investigation of foodborne probiotics biodistribution in vivo, employing the near-infrared (NIR) emitting persistent luminescence nanophosphors (PLNPs) of Cr 3+ -doped zinc gallogermanate (ZGGO) as the contrast nanoprobes. The ultrabrightness, super long afterglow, polydispersed size, low toxicity, and excellent photostability and biocompatibility of PLNPs were demonstrated to be qualified as a tracer for labeling probiotics via antibody (anti-Gram positive bacteria LTA antibody) recognition as well as contrast agent for long-term bioimaging the probiotics. In vivo optical bioimaging assay showed that the LTA antibody functionalized ZGGO nanoprobes that could be efficiently tagged to the probiobics were successfully applied for real-time monitoring and nondamaged probing of the biodistribution of probiotics inside the living body after oral administration. This work presents a proof-of-concept that exploited the bioimaging methodology for real-time and nondamaged researching the foodborne probiotics behaviors in vivo, which would open up a novel way of food safety detection and nutrition investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, C.; Jaski, Y.; Powers, T.
2007-01-19
A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam.The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits' accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, C.; Jaski, Y.; Maser, J.
2007-01-01
A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a cleanmore » cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.« less
Gravitational-wave astronomy: delivering on the promises.
Schutz, B F
2018-05-28
Now that LIGO and Virgo have begun to detect gravitational-wave events with regularity, the field of gravitational-wave astronomy is beginning to realize its promise. Binary black holes and, very recently, binary neutron stars have been observed, and we are already learning much from them. The future, with improved sensitivity, more detectors and detectors like LISA in different frequency bands, has even more promise to open a completely hidden side of the Universe to our exploration.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).
Classification of skin cancer images using local binary pattern and SVM classifier
NASA Astrophysics Data System (ADS)
Adjed, Faouzi; Faye, Ibrahima; Ababsa, Fakhreddine; Gardezi, Syed Jamal; Dass, Sarat Chandra
2016-11-01
In this paper, a classification method for melanoma and non-melanoma skin cancer images has been presented using the local binary patterns (LBP). The LBP computes the local texture information from the skin cancer images, which is later used to compute some statistical features that have capability to discriminate the melanoma and non-melanoma skin tissues. Support vector machine (SVM) is applied on the feature matrix for classification into two skin image classes (malignant and benign). The method achieves good classification accuracy of 76.1% with sensitivity of 75.6% and specificity of 76.7%.
How Simbol-X Will Reveal the Most Obscured High Energy Sources of our Galaxy
NASA Astrophysics Data System (ADS)
Chaty, S.
2009-05-01
The INTEGRAL satellite has revealed a major population of supergiant High Mass X-ray Binaries in our Galaxy, revolutionizing our understanding of binary systems and their evolution. This population, constituted of a compact object orbiting around a supergiant star, have unusual properties, either being extremely absorbed, or exhibiting very short flares. I will first describe the characteristics of these sources, that only intensive multi-wavelength observations have led us to disentangle, before showing that Simbol-X, thanks to its energy range and sensitivity, will allow us to go further in the understanding of these supergiant HMXBs.
Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON
NASA Astrophysics Data System (ADS)
Xia, Junqi; Li, Zhengxuan; Li, Yingchun; Xu, Tingting; Chen, Jian; Song, Yingxiong; Wang, Min
2018-03-01
We investigate and compare the requirements of FFE/DFE based adaptive equalization techniques for NRZ and Duo-binary based 25-Gb/s transmission, which are two of the most promising schemes for 25G-EPON. A 25-Gb/s transmission system based on 10G optical transceivers is demonstrated and the performance of only FFE and combination of FFE and DFE with different number of taps are compared with two modulation formats. The FFE/DFE based Duo-binary receiver shows better performance than NRZ receiver. For Duo-binary receiver, only 13-tap FFE is needed for BtB case and the combination of 17-tap FFE and 5-tap DFE can achieve a sensitivity of -23.45 dBm in 25 km transmission case, which is ∼0.6 dB better than the best performance of NRZ equalization. In addition, the requirements of training sequence length for FFE/DFE based adaptive equalization is verified. Experimental results show that 400 symbols training length is optimal for the two modulations, which shows a small packet preamble in up-stream burst-mode transmission.
Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2017-07-01
During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M⊙ , with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.
Multi-messenger studies of compact binary mergers in the in the ngVLA era
NASA Astrophysics Data System (ADS)
Corsi, Alessandra
2018-01-01
We explore some of the scientific opportunities that the next generation Very Large Array (ngVLA) will open in the field of multi-messenger time-domain astronomy. We focus on compact binary mergers, golden astrophysical targets of ground-based gravitational wave (GW) detectors such as advanced LIGO. A decade from now, a large number of these mergers is likely to be discovered by a world-wide network of GW detectors. We discuss how a radio array with 10 times the sensitivity of the current Karl G. Jansky VLA and 10 times the resolution, would enable resolved radio continuum studies of binary merger hosts, probing regions of the galaxy undergoing star formation (which can be heavily obscured by dust and gas), AGN components, and mapping the offset distribution of the mergers with respect to the host galaxy light. For compact binary mergers containing at least one neutron star (NS), from which electromagnetic counterparts are expected to exist, we show how the ngVLA would enable direct size measurements of the relativistic merger ejecta and probe, for the first time directly, their dynamics.
Searching Planets Around Some Selected Eclipsing Close Binary Stars Systems
NASA Astrophysics Data System (ADS)
Nasiroglu, Ilham; Slowikowska, Agnieszka; Krzeszowski, Krzysztof; Zejmo, M. Michal; Er, Hüseyin; Goździewski, Krzysztof; Zola, Stanislaw; Koziel-Wierzbowska, Dorota; Debski, Bartholomew; Ogloza, Waldemar; Drozdz, Marek
2016-07-01
We present updated O-C diagrams of selected short period eclipsing binaries observed since 2009 with the T100 Telescope at the TUBITAK National Observatory (Antalya, Turkey), the T60 Telescope at the Adiyaman University Observatory (Adiyaman, Turkey), the 60cm at the Mt. Suhora Observatory of the Pedagogical University (Poland) and the 50cm Cassegrain telescope at the Fort Skala Astronomical Observatory of the Jagiellonian University in Krakow, Poland. All four telescopes are equipped with sensitive, back-illuminated CCD cameras and sets of wide band filters. One of the targets in our sample is a post-common envelope eclipsing binary NSVS 14256825. We collected more than 50 new eclipses for this system that together with the literature data gives more than 120 eclipse timings over the time span of 8.5 years. The obtained O-C diagram shows quasi-periodic variations that can be well explained by the existence of the third body on Jupiter-like orbit. We also present new results indicating a possible light time travel effect inferred from the O-C diagrams of two other binary systems: HU Aqr and V470 Cam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafikov, Roman R., E-mail: rrr@astro.princeton.edu
2014-10-10
We explore secular dynamics of a recently discovered hierarchical triple system consisting of the radio pulsar PSR J0337+1715 and two white dwarfs (WDs). We show that three-body interactions endow the inner binary with a large forced eccentricity and suppress its apsidal precession, to about 24% of the rate due to the general relativity. However, precession rate is still quite sensitive to the non-Newtonian effects and may be used to constrain gravity theories if measured accurately. A small value of the free eccentricity of the inner binary e{sub i}{sup free}≈2.6×10{sup −5} and vanishing forced eccentricity of the outer, relatively eccentric binarymore » naturally result in their apsidal near-alignment. In addition, this triple system provides a unique opportunity to explore excitation of both eccentricity and inclination in neutron star-WD binaries, e.g., due to random torques caused by convective eddies in the WD progenitor. We show this process to be highly anisotropic and more effective at driving eccentricity rather than inclination. The outer binary eccentricity and e{sub i}{sup free} exceed by more than an order of magnitude the predictions of the eccentricity-period relation of Phinney, which is not uncommon. We also argue that the non-zero mutual inclination of the two binaries emerges at the end of the Roche lobe overflow of the outer (rather than the inner) binary.« less
EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knispel, B.; Kim, H.; Allen, B.
2013-09-10
We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channelsmore » and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.« less
NASA Astrophysics Data System (ADS)
Cai, K.; Durisen, R. H.; Deliyannis, C. P.
2003-05-01
Binary stars in Galactic open clusters are difficult to detect without spectroscopic observations. However, from theoretical isochrones, we find that binary stars with different primary masses M1 and mass ratios q = M2/M1 have measurably different behaviors in various UBVRI color-magnitude and color-color diagrams. By using appropriate Yonsei-Yale Isochrones, in the best cases we can evaluate M1 and q to within about +/- 0.1Msun and +/- 0.1, respectively, for individual proper-motion members that have multiple WOCS UBVRI measurements of high quality. The cluster metallicity, reddening, and distance modulus and best-fit isochrones are determined self-consistently from the same WOCS data. This technique allows us to detect binaries and determine their mass ratios in open clusters without time-consuming spectrocopy, which is only sensitive to a limited range of binary separations. We will report results from this photometric technique for WOCS cluster M35 for M1 in the range of 1 to 4 Msun. For the lower main sequence, we used the empirical colors to reduce the error introduced by the problematic color transformations of Y2 Isochrones. In addition to other sources of uncertainty, we have considered effects of rapid rotation and pulsational instability. We plan to apply our method to other WOCS clusters in the future and explore differences in binary fractions and/or mass ratio distributions as a function of cluster age, metallicity, and other parameters.
Massive Black-Hole Binary Mergers: Dynamics, Environments & Expected Detections
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan
2018-05-01
This thesis studies the populations and dynamics of massive black-hole binaries and their mergers, and explores the implications for electromagnetic and gravitational-wave signals that will be detected in the near future. Massive black-holes (MBH) reside in the centers of galaxies, and when galaxies merge, their MBH interact and often pair together. We base our study on the populations of MBH and galaxies from the `Illustris' cosmological hydrodynamic simulations. The bulk of the binary merger dynamics, however, are unresolved in cosmological simulations. We implement a suite of comprehensive physical models for the merger process, like dynamical friction and gravitational wave emission, which are added in post-processing. Contrary to many previous studies, we find that the most massive binaries with near equal-mass companions are the most efficient at coalescing; though the process still typically takes gigayears.From the data produced by these MBH binary populations and their dynamics, we calculate the expected gravitational wave (GW) signals: both the stochastic, GW background of countless unresolved sources, and the GW foreground of individually resolvable binaries which resound above the noise. Ongoing experiments, called pulsar timing arrays, are sensitive to both of these types of signals. We find that, while the current lack of detections is unsurprising, both the background and foreground will plausibly be detected in the next decade. Unlike previous studies which have predicted the foreground to be significantly harder to detect than the background, we find their typical amplitudes are comparable.With traditional electromagnetic observations, there has also been a dearth of confirmed detections of MBH binary systems. We use our binaries, combined with models of emission from accreting MBH systems, to make predictions for the occurrence rate of systems observable using photometric, periodic-variability surveys. These variables should be detectable in current surveys, and indeed, we expect many candidates recently identified to be true binaries - though a significant fraction are likely false positives. Overall, this thesis finds the science of MBH binaries at an exciting cusp: just before incredible breakthroughs in observations, both electromagnetically and in the new age of gravitational wave astrophysics.
MS 1603.6 + 2600, an unusual X-ray selected binary system at high Galactic latitude
NASA Technical Reports Server (NTRS)
Morris, Simon L.; Liebert, James; Stocke, John T.; Gioia, Isabella M.; Schild, Rudy E.
1990-01-01
The discovery of an eclipsing binary system at Galactic latitude 47 deg, found as a serendipitous X-ray source in the Einstein Extended Medium Sensitivity Survey, is described. The object has X-ray flux 1.1 x 10 to the -12th ergs/sq cm s (0.3-3.5 keV) and mean magnitude R = 19.4. An orbital period of 111 minutes is found. The problem discussed is whether the system has a white dwarf or neutron star primary, in the end preferring the neutron star primary model. If the system has either optical or X-ray luminosities typical of low mass X-ray binaries (LMXB), it must be at a very large distance (30-80 kpc). Blueshifted He I absorption is seen, indicating cool outflowing material, similar to that seen in the LMXB AC 211 in the globular cluster M15.
Knijnenburg, Theo A.; Klau, Gunnar W.; Iorio, Francesco; Garnett, Mathew J.; McDermott, Ultan; Shmulevich, Ilya; Wessels, Lodewyk F. A.
2016-01-01
Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present ‘Logic Optimization for Binary Input to Continuous Output’ (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models. PMID:27876821
Knijnenburg, Theo A; Klau, Gunnar W; Iorio, Francesco; Garnett, Mathew J; McDermott, Ultan; Shmulevich, Ilya; Wessels, Lodewyk F A
2016-11-23
Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present 'Logic Optimization for Binary Input to Continuous Output' (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models.
Neutron Star Spin Measurements and Dense Matter with LOFT
NASA Technical Reports Server (NTRS)
Strohmayer, Tod
2011-01-01
Observations over the last decade with RXTE have begun to reveal the X-ray binary progenitors of the fastest spinning neutron stars presently known. Detection and study of the spin rates of binary neutron stars has important implications for constraining the nature of dense matter present in neutron star interiors, as both the maximum spin rate and mass for neutron stars is set by the equation of state. Precision pulse timing of accreting neutron star binaries can enable mass constraints. Particularly promIsing is the combination of the pulse and eclipse timing, as for example, in systems like Swift 11749.4-2807. With its greater sensitivity, LOFT will enable deeper searches for the spin periods of the neutron stars, both during persistent outburst intervals and thermonuclear X-ray bursts, and enable more precise modeling of detected pulsations. I will explore the anticipated impact of LOFT on spin measurements and its potential for constraining dense matter in neutron stars
The SUrvey for Pulsars and Extragalactic Radio Bursts - I. Survey description and overview
NASA Astrophysics Data System (ADS)
Keane, E. F.; Barr, E. D.; Jameson, A.; Morello, V.; Caleb, M.; Bhandari, S.; Petroff, E.; Possenti, A.; Burgay, M.; Tiburzi, C.; Bailes, M.; Bhat, N. D. R.; Burke-Spolaor, S.; Eatough, R. P.; Flynn, C.; Jankowski, F.; Johnston, S.; Kramer, M.; Levin, L.; Ng, C.; van Straten, W.; Krishnan, V. Venkatraman
2018-01-01
We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational set-up, data analysis, multiwavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR J1306-40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR J1421-4407 is another binary millisecond pulsar; its orbital period is 30.7 d. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of 10-5.
Bao, Zhi Yong; Liu, Xin; Chen, Y; Wu, Yucheng; Chan, Helen L W; Dai, Jiyan; Lei, Dang Yuan
2014-09-15
This paper reports a simple label-free high-sensitive method for detecting low-concentration persistent organic pollutants and explosive materials. The proposed method combines surface-enhanced Raman spectroscopy (SERS) and magnetomotive enrichment of the target molecules on the surface of Ag nanoparticles (NPs). This structure can be achieved through self-assembling integration of Ag NPs with ferromagnetic Fe3O4 microspheres, forming a hybrid SERS nanoprobe with both optical and magnetic properties. Moreover, the magnetic response of ferromagnetic Fe3O4 microspheres can be used to dynamically modulate the optical property of Ag NPs through controlling their geometric arrangement on the substrate by applying an external magnetic field. It is also demonstrated from the full-wave numerical simulation results that the maximum electromagnetic field enhancement can be greatly increased by shortening the distance of neighboring Ag NPs and therefore resulting in an improved SERS detecting limit. More importantly, by using the prepared substrate, the SERS signals from organic pollution substances, i.e. aromatic polychlorinated biphenyl-77 and 2,4,6-trinitrotoluene, were quantitatively analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.
Deng, Keqin; Liu, Xinyan; Li, Chunxiang; Huang, Haowen
2018-05-31
The loading capacity of thionin (Thi) on shortened multi-walled carbon nanotubes (S-MWCNTs) and acidified multi-walled carbon nanotubes (A-MWCNTs) was compared. Two DNA probe fragments were designed for hybridization with microRNA-21 (miR-21), the microRNAs (miRNAs) model analyte. DNA probe 1 (P1) was assembled on Au nanoparticles (AuNPs) modified electrode. MiR-21 was captured by the pre-immobilized P1. A signal nanoprobe was synthesized by loading large amount of Thi on S-MWCNTs with covalently bonded probe 2 (P2). Owing to the large effective surface area of MWCNTs, fast electron shuttle of MWCNTs, high-loaded Thi on S-MWCNTs, and the increased conductivity from AuNPs, after signal probe hybridized with miR-21, it gave rise to a magnified current response on electrode. The increased electrochemical current enabled us to quantitatively detect miR-21. Expensive bioreagents and labeled target/detection DNA or miRNAs were avoided in this strategy. The operation complexity and assay cost were also reduced. Copyright © 2018 Elsevier B.V. All rights reserved.
Microwave Frequency Comb from a Semiconductor in a Scanning Tunneling Microscope.
Hagmann, Mark J; Yarotski, Dmitry A; Mousa, Marwan S
2017-04-01
Quasi-periodic excitation of the tunneling junction in a scanning tunneling microscope, by a mode-locked ultrafast laser, superimposes a regular sequence of 15 fs pulses on the DC tunneling current. In the frequency domain, this is a frequency comb with harmonics at integer multiples of the laser pulse repetition frequency. With a gold sample the 200th harmonic at 14.85 GHz has a signal-to-noise ratio of 25 dB, and the power at each harmonic varies inversely with the square of the frequency. Now we report the first measurements with a semiconductor where the laser photon energy must be less than the bandgap energy of the semiconductor; the microwave frequency comb must be measured within 200 μm of the tunneling junction; and the microwave power is 25 dB below that with a metal sample and falls off more rapidly at the higher harmonics. Our results suggest that the measured attenuation of the microwave harmonics is sensitive to the semiconductor spreading resistance within 1 nm of the tunneling junction. This approach may enable sub-nanometer carrier profiling of semiconductors without requiring the diamond nanoprobes in scanning spreading resistance microscopy.
Serrano, María Dolores; Han, Xiumei; Cascales, Concepción; Cantero, Marta; Montoliu, Lluís; Arza, Elvira; Caiolfa, Valeria R.; Zamai, Moreno
2017-01-01
Yb and Er codoped NaT(XO4)2 (T = Y, La, Gd, Lu and X = Mo, W) disordered oxides show a green (Er3+ related) up-conversion (UC) efficiency comparable to that of Yb:Er:β-NaYF4 compound and unless 3 times larger UC ratiometric thermal sensitivity. The similar UC efficiency of Yb:Er doped NaT(XO4)2 and β-NaYF4 compounds allowed testing equal subcutaneous depths of ex-vivo chicken tissue in both cases. This extraordinary behavior for NaT(XO4)2 oxides with large cutoff phonon energy (ħω≈ 920 cm-1) is ascribed to 4F9/2 electron population recycling to higher energy 4G11/2 level by a phonon assisted transition. Crystalline nanoparticles of Yb:Er:NaLu(MoO4)2 have been synthesized by sol-gel with sizes most commonly in the 50–80 nm range, showing a relatively small reduction of the UC efficiency with regards to bulk materials. Fluorescence lifetime and multiphoton imaging microscopies show that these nanoparticles can be efficiently distributed to all body organs of a perfused mouse. PMID:28542327
Babamiri, Bahareh; Hallaj, Rahman; Salimi, Abdollah
2018-06-20
In the present study, we constructed an ultrasensitive solid surface fluorescence-immunosensor based on highly luminescent CdTe@CdS-PAMAM structures as nanoprobe for determination of HBsAg by monitoring fluorescence intensity. This strategy was achieved by using PAMAM as a signal amplifier; the PAMAM dendrimer with the many functional amine groups can amplify the fluorescence signal of QDs by covalent attachment of CdTe@CdS on PAMAM and hence, improve the sensitivity of the proposed method significantly. A sandwich type immunosensor was formed after the addition of HBsAg and the PAMAM-QD-Ab 2 , respectively. Under optimal conditions, the designed immunosensor demonstrates a good analytical performance for the HBsAg detection in an excellent linear range from 5 fg ml -1 to 0.15 ng ml -1 with the detection limit (LOD) of 0.6 fg ml -1 at a S/N ratio of 3. In addition, the analysis of human serum samples shows that the fluorescent immunoassay has the great potential for early diagnosis of hepatitis B and can be used for the detection of other tumor markers in clinical applications.
Sakadžić, Sava; Yaseen, Mohammad A; Jaswal, Rajeshwer; Roussakis, Emmanuel; Dale, Anders M; Buxton, Richard B; Vinogradov, Sergei A; Boas, David A; Devor, Anna
2016-10-01
The cerebral metabolic rate of oxygen ([Formula: see text]) is an essential parameter for evaluating brain function and pathophysiology. However, the currently available approaches for quantifying [Formula: see text] rely on complex multimodal imaging and mathematical modeling. Here, we introduce a method that allows estimation of [Formula: see text] based on a single measurement modality-two-photon imaging of the partial pressure of oxygen ([Formula: see text]) in cortical tissue. We employed two-photon phosphorescence lifetime microscopy (2PLM) and the oxygen-sensitive nanoprobe PtP-C343 to map the tissue [Formula: see text] distribution around cortical penetrating arterioles. [Formula: see text] is subsequently estimated by fitting the changes of tissue [Formula: see text] around arterioles with the Krogh cylinder model of oxygen diffusion. We measured the baseline [Formula: see text] in anesthetized rats and modulated tissue [Formula: see text] levels by manipulating the depth of anesthesia. This method provides [Formula: see text] measurements localized within [Formula: see text] and it may provide oxygen consumption measurements in individual cortical layers or within confined cortical regions, such as in ischemic penumbra and the foci of functional activation.
Zhang, Yuanyuan; Jiang, Hui; Wang, Xuemei
2015-04-22
In this study, we have developed a label-free, dual functional detection strategy for highly selective and sensitive determination of aqueous Ag(+) and Hg(2+) by using cytidine stabilized Au NCs and AuAg NCs as fluorescent turn-on and turn off probes, respectively. The Au NCs and AuAg NCs showed a remarkably rapid response and high selectivity for Ag(+) and Hg(2+) over other metal ions, and relevant detection limit of Ag(+) and Hg(2+) is ca. 10 nM and 30 nM, respectively. Importantly, the fluorescence enhanced Au NCs by doping Ag(+) can be conveniently reusable for the detection of Hg(2+) based on the corresponding fluorescence quenching. The sensing mechanism was based on the high-affinity metallophilic Hg(2+)-Ag(+) interaction, which effectively quenched the fluorescence of AuAg NCs. Furthermore, these fluorescent nanoprobes could be readily applied to Ag(+) and Hg(2+) detection in environmental water samples, indicating their possibility to be utilized as a convenient, dual functional, rapid response, and label-free fluorescence sensor for related environmental and health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts
NASA Astrophysics Data System (ADS)
Fialkov, Anastasia; Loeb, Abraham
2017-11-01
Tidal disruption events (TDEs) of stars by single or binary supermassive black holes (SMBHs) brighten galactic nuclei and reveal a population of otherwise dormant black holes. Adopting event rates from the literature, we aim to establish general trends in the redshift evolution of the TDE number counts and their observable signals. We pay particular attention to (I) jetted TDEs whose luminosity is boosted by relativistic beaming and (II) TDEs around binary black holes. We show that the brightest (jetted) TDEs are expected to be produced by massive black hole binaries if the occupancy of intermediate mass black holes (IMBHs) in low-mass galaxies is high. The same binary population will also provide gravitational wave sources for the evolved Laser Interferometer Space Antenna. In addition, we find that the shape of the X-ray luminosity function of TDEs strongly depends on the occupancy of IMBHs and could be used to constrain scenarios of SMBH formation. Finally, we make predictions for the expected number of TDEs observed by future X-ray telescopes finding that a 50 times more sensitive instrument than the Burst Alert Telescope (BAT) on board the Swift satellite is expected to trigger ˜10 times more events than BAT, while 6-20 TDEs are expected in each deep field observed by a telescope 50 times more sensitive than the Chandra X-ray Observatory if the occupation fraction of IMBHs is high. Because of their long decay times, high-redshift TDEs can be mistaken for fixed point sources in deep field surveys and targeted observations of the same deep field with year-long intervals could reveal TDEs.
Yu, Xiuxia; He, Yi; Jiang, Jie; Cui, Hua
2014-02-17
Chloramphenicol (CHL) as a broad-spectrum antibiotic has a broad action spectrum against Gram-positive and Gram-negative bacteria, as well as anaerobes. The use of CHL is strictly restricted in poultry because of its toxic effect. However, CHL is still illegally used in animal farming because of its accessibility and low cost. Therefore, sensitive methods are highly desired for the determination of CHL in foodstuffs. The immunoassays based on labeling as an important tool have been reported for the detection of CHL residues in food-producing animals. However, most of the labeling procedures require multi-step reactions and purifications and thus they are complicated and time-consuming. Recently, in our previous work, luminol functionalized silver nanoparticles have been successfully synthesized, which exhibits higher CL efficiency than luminol functionalized gold nanoparticles. In this work, the new luminol functionalized silver nanoparticles have been used for the labeling of small molecules CHL for the first time and a competitive chemiluminescent immunoassay has been developed for the detection of CHL. Owing to the amplification of silver nanoparticles, high sensitivity for CHL could be achieved with a low detection limit of 7.6×10(-9) g mL(-1) and a wide linear dynamic range of 1.0×10(-8)-1.0×10(-6) g mL(-1). This method has also been successfully applied to determine CHL in milk and honey samples with a good recoveries (92% and 102%, 99% and 107% respectively), indicating that the method is feasible for the determination of CHL in real milk and honey samples. The labeling procedure is simple, convenient and fast, superior to previously reported labeling procedures. The immunoassay is also simple, fast, sensitive and selective. It is of application potential for the determination of CHL in foodstuffs. Copyright © 2014 Elsevier B.V. All rights reserved.
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen
2008-02-01
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.
NASA Astrophysics Data System (ADS)
Tiwari, Vaibhav
2018-07-01
The population analysis and estimation of merger rates of compact binaries is one of the important topics in gravitational wave astronomy. The primary ingredient in these analyses is the population-averaged sensitive volume. Typically, sensitive volume, of a given search to a given simulated source population, is estimated by drawing signals from the population model and adding them to the detector data as injections. Subsequently injections, which are simulated gravitational waveforms, are searched for by the search pipelines and their signal-to-noise ratio (SNR) is determined. Sensitive volume is estimated, by using Monte-Carlo (MC) integration, from the total number of injections added to the data, the number of injections that cross a chosen threshold on SNR and the astrophysical volume in which the injections are placed. So far, only fixed population models have been used in the estimation of binary black holes (BBH) merger rates. However, as the scope of population analysis broaden in terms of the methodologies and source properties considered, due to an increase in the number of observed gravitational wave (GW) signals, the procedure will need to be repeated multiple times at a large computational cost. In this letter we address the problem by performing a weighted MC integration. We show how a single set of generic injections can be weighted to estimate the sensitive volume for multiple population models; thereby greatly reducing the computational cost. The weights in this MC integral are the ratios of the output probabilities, determined by the population model and standard cosmology, and the injection probability, determined by the distribution function of the generic injections. Unlike analytical/semi-analytical methods, which usually estimate sensitive volume using single detector sensitivity, the method is accurate within statistical errors, comes at no added cost and requires minimal computational resources.
Sizing up the population of gamma-ray binaries
NASA Astrophysics Data System (ADS)
Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick
2017-12-01
Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto
2011-09-01
We present the results of a systematic search in {approx}14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listedmore » in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the {approx}3.9 day orbital period of LMC X-1 and the {approx}3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.« less
PAM-4 Signaling over VCSELs with 0.13µm CMOS Chip Technology
NASA Astrophysics Data System (ADS)
Cunningham, J. E.; Beckman, D.; Zheng, Xuezhe; Huang, Dawei; Sze, T.; Krishnamoorthy, A. V.
2006-12-01
We present results for VCSEL based links operating PAM-4 signaling using a commercial 0.13µm CMOS technology. We perform a complete link analysis of the Bit Error Rate, Q factor, random and deterministic jitter by measuring waterfall curves versus margins in time and amplitude. We demonstrate that VCSEL based PAM 4 can match or even improve performance over binary signaling under conditions of a bandwidth limited, 100meter multi-mode optical link at 5Gbps. We present the first sensitivity measurements for optical PAM-4 and compare it with binary signaling. Measured benefits are reconciled with information theory predictions.
PAM-4 Signaling over VCSELs with 0.13microm CMOS Chip Technology.
Cunningham, J E; Beckman, D; Zheng, Xuezhe; Huang, Dawei; Sze, T; Krishnamoorthy, A V
2006-12-11
We present results for VCSEL based links operating PAM-4 signaling using a commercial 0.13microm CMOS technology. We perform a complete link analysis of the Bit Error Rate, Q factor, random and deterministic jitter by measuring waterfall curves versus margins in time and amplitude. We demonstrate that VCSEL based PAM-4 can match or even improve performance over binary signaling under conditions of a bandwidth limited, 100meter multi-mode optical link at 5Gbps. We present the first sensitivity measurements for optical PAM-4 and compare it with binary signaling. Measured benefits are reconciled with information theory predictions.
Fundamental studies in X-ray astrophysics
NASA Technical Reports Server (NTRS)
Lamb, D. Q.; Lightman, A. P.
1982-01-01
An analytical model calculation of the ionization structure of matter accreting onto a degenerate dwarf was carried out. Self-consistent values of the various parameters are used. The possibility of nuclear burning of the accreting matter is included. We find the blackbody radiation emitted from the stellar surface keeps hydrogen and helium ionized out to distances much larger than a typical binary separation. Except for low mass stars or high accretion rates, the assumption of complete ionization of the elements heavier than helium is a good first approximation. For low mass stars or high accretion rates the validity of assuming complete ionization depends sensitivity on the distribution of matter in the binary system.
Recent searches for continuous gravitational waves
NASA Astrophysics Data System (ADS)
Riles, Keith
2017-12-01
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.
Currency arbitrage detection using a binary integer programming model
NASA Astrophysics Data System (ADS)
Soon, Wanmei; Ye, Heng-Qing
2011-04-01
In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this work, students can learn to link several types of basic optimization models, namely linear programming, integer programming and network models, and apply the well-known sensitivity analysis procedure to accommodate realistic changes in the exchange rates. Beginning with a BIP model, we discuss how it can be reduced to an equivalent but considerably simpler model, where an efficient algorithm can be applied to find the arbitrages and incorporate the sensitivity analysis procedure. A simple comparison is then made with a different arbitrage detection model. This exercise helps students learn to apply basic Operations Research concepts to a practical real-life example, and provides insights into the processes involved in Operations Research model formulations.
Rekaya, Romdhane; Smith, Shannon; Hay, El Hamidi; Farhat, Nourhene; Aggrey, Samuel E
2016-01-01
Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS). A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case-control) were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs) and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the proposed method. Additionally, truly misclassified binary records were identified with high probability using the proposed method. The superiority of the proposed method was maintained across different simulation parameters (misclassification rates and odds ratios) attesting to its robustness.
Xie, Jinfu; Horton, Melanie; Zorman, Julie; Antonello, Joseph M.; Zhang, Yuhua; Arnold, Beth A.; Secore, Susan; Xoconostle, Rachel; Miezeiewski, Matthew; Wang, Su; Price, Colleen E.; Thiriot, David; Goerke, Aaron; Gentile, Marie-Pierre; Skinner, Julie M.
2014-01-01
Clostridium difficile strains producing binary toxin, in addition to toxin A (TcdA) and toxin B (TcdB), have been associated with more severe disease and increased recurrence of C. difficile infection in recent outbreaks. Binary toxin comprises two subunits (CDTa and CDTb) and catalyzes the ADP-ribosylation of globular actin (G-actin), which leads to the depolymerization of filamentous actin (F-actin) filaments. A robust assay is highly desirable for detecting the cytotoxic effect of the toxin and the presence of neutralizing antibodies in animal and human sera to evaluate vaccine efficacy. We describe here the optimization, using design-of-experiment (DOE) methodology, of a high-throughput assay to measure the toxin potency and neutralizing antibodies (NAb) against binary toxin. Vero cells were chosen from a panel of cells screened for sensitivity and specificity. We have successfully optimized the CDTa-to-CDTb molar ratio, toxin concentration, cell-seeding density, and sera-toxin preincubation time in the NAb assay using DOE methodology. This assay is robust, produces linear results across serial dilutions of hyperimmune serum, and can be used to quantify neutralizing antibodies in sera from hamsters and monkeys immunized with C. difficile binary toxin-containing vaccines. The assay will be useful for C. difficile diagnosis, for epidemiology studies, and for selecting and optimizing vaccine candidates. PMID:24623624
First all-sky search for continuous gravitational waves from unknown sources in binary systems
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2014-09-01
We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ˜2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ˜0.6×10-3 ls to ˜6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.
NASA Astrophysics Data System (ADS)
Ghosh, Abhirup; Johnson-McDaniel, Nathan K.; Ghosh, Archisman; Kant Mishra, Chandra; Ajith, Parameswaran; Del Pozzo, Walter; Berry, Christopher P. L.; Nielsen, Alex B.; London, Lionel
2018-01-01
Advanced LIGO’s recent observations of gravitational waves (GWs) from merging binary black holes have opened up a unique laboratory to test general relativity (GR) in the highly relativistic regime. One of the tests used to establish the consistency of the first LIGO event with a binary black hole merger predicted by GR was the inspiral-merger-ringdown consistency test. This involves inferring the mass and spin of the remnant black hole from the inspiral (low-frequency) part of the observed signal and checking for the consistency of the inferred parameters with the same estimated from the post-inspiral (high-frequency) part of the signal. Based on the observed rate of binary black hole mergers, we expect the advanced GW observatories to observe hundreds of binary black hole mergers every year when operating at their design sensitivities, most of them with modest signal to noise ratios (SNRs). Anticipating such observations, this paper shows how constraints from a large number of events with modest SNRs can be combined to produce strong constraints on deviations from GR. Using kludge modified GR waveforms, we demonstrate how this test could identify certain types of deviations from GR if such deviations are present in the signal waveforms. We also study the robustness of this test against reasonable variations of a variety of different analysis parameters.
Pearson, Matthew R; Bravo, Adrian J; Kirouac, Megan; Witkiewitz, Katie
2017-02-01
To examine whether a clinically meaningful alcohol consumption cutoff can be created for clinical samples, we used receiver operator characteristic (ROC) curves to derive gender-specific consumption cutoffs that maximized sensitivity and specificity in the prediction of a wide range of negative consequences from drinking. We conducted secondary data analyses using data from two large clinical trials targeting alcohol use disorders: Project MATCH (n=1726) and COMBINE (n=1383). In both studies, we found that the ideal cutoff for men and women that maximized sensitivity/specificity varied substantially both across different alcohol consumption variables and alcohol consequence outcomes. Further, the levels of sensitivity/specificity were poor across all consequences. These results fail to provide support for a clinically meaningful alcohol consumption cutoff and suggest that binary classification of levels of alcohol consumption is a poor proxy for maximizing sensitivity/specificity in the prediction of negative consequences from drinking. Future research examining consumption-consequence associations should take advantage of continuous measures of alcohol consumption and alternative approaches for assessing the link between levels of consumption and consequences (e.g., ecological momentary assessment). Clinical researchers should consider focusing more directly on the consequences they aim to reduce instead of relying on consumption as a proxy for more clinically meaningful outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Pearson, Matthew R.; Bravo, Adrian J.; Kirouac, Megan; Witkiewitz, Katie
2017-01-01
Background To examine whether a clinically meaningful alcohol consumption cutoff can be created for clinical samples, we used receiver operator characteristic (ROC) curves to derive gender-specific consumption cutoffs that maximized sensitivity and specificity in the prediction of a wide range of negative consequences from drinking. Methods We conducted secondary data analyses using data from two large clinical trials targeting alcohol use disorders: Project MATCH (n = 1,726) and COMBINE (n = 1,383). Results In both studies, we found that the ideal cutoff for men and women that maximized sensitivity/specificity varied substantially both across different alcohol consumption variables and alcohol consequence outcomes. Further, the levels of sensitivity/specificity were poor across all consequences. Conclusions These results fail to provide support for a clinically meaningful alcohol consumption cutoff and suggest that binary classification of levels of alcohol consumption is a poor proxy for maximizing sensitivity/specificity in the prediction of negative consequences from drinking. Future research examining consumption-consequence associations should take advantage of continuous measures of alcohol consumption and alternative approaches for assessing the link between levels of consumption and consequences (e.g., ecological momentary assessment). Clinical researchers should consider focusing more directly on the consequences they aim to reduce instead of relying on consumption as a proxy for more clinically meaningful outcomes. PMID:28038361
Duan, Lingyan; D'hooge, Dagmar R; Spoerk, Martin; Cornillie, Pieter; Cardon, Ludwig
2018-05-29
Highly sensitive conductive polymer composites (CPCs) are designed, employing a facile and low-cost extrusion manufacturing process for both low and high strain sensing in the field of e.g. structural health/damage monitoring and human body movement tracking. Focus is on the morphology control for extrusion processed carbon black (CB)-filled CPCs, utilizing binary and ternary composites based on thermoplastic polyurethane (TPU) and olefin block copolymer (OBC). The relevance of the correct CB amount, kinetic control through a variation of the compounding sequence, and thermodynamic control induced by annealing is highlighted, considering a wide range of experimental (e.g. static and dynamic resistance/SEM/rheological measurements) and theoretical analyses. High CB mass fractions (20 m%) are needed for OBC (or TPU)-CB binary composites but only lead to an intermediate sensitivity as their conductive network is fully-packed and therefore difficult to be truly destructed. Annealing is needed to enable a monotonic increase of the relative resistance with respect to strain. With ternary composites a much higher sensitivity with a clearer monotonic increase results provided that a low CB mass fraction (10-16 m%) is used and annealing is applied. In particular, with CB first dispersed in OBC and annealing a less compact, hence, brittle conductive network (10-12 m% CB) is obtained, allowing high performance sensing.
NASA Astrophysics Data System (ADS)
Yang, Yu; Xiang, Kun; Yang, Yi-Xin; Wang, Yan-Wen; Zhang, Xin; Cui, Yangdong; Wang, Haifang; Zhu, Qing-Qing; Fan, Liqiang; Liu, Yuanfang; Cao, Aoneng
2013-10-01
A prerequisite for in vivo fluorescence imaging is the safety of fluorescent probes. Among all fluorescent probes, fluorescent proteins (FPs) might be the safest ones, which have been widely used in biological sciences at the gene level. But FPs have not been used in vivo in the purified form yet due to the instability of proteins. Here, we individually coat near-infrared (NIR) FPs (NIRFPs) with a silica nanoshell, resulting in NIRFP@silica, one of the safest and brightest NIR fluorescent nanoprobes with a quantum yield of 0.33 for in vivo imaging. The silica shell not only protects NIRFPs from denaturation and metabolic digestion, but also enhances the quantum yield and photostability of the coated NIRFPs. When injected via the tail vein, NIRFP@silica NPs can distribute all over the mouse body, and then can be efficiently eliminated through urine in 24 h, demonstrating its potential applications as a safe and robust NIR fluorescence probe for whole body imaging.A prerequisite for in vivo fluorescence imaging is the safety of fluorescent probes. Among all fluorescent probes, fluorescent proteins (FPs) might be the safest ones, which have been widely used in biological sciences at the gene level. But FPs have not been used in vivo in the purified form yet due to the instability of proteins. Here, we individually coat near-infrared (NIR) FPs (NIRFPs) with a silica nanoshell, resulting in NIRFP@silica, one of the safest and brightest NIR fluorescent nanoprobes with a quantum yield of 0.33 for in vivo imaging. The silica shell not only protects NIRFPs from denaturation and metabolic digestion, but also enhances the quantum yield and photostability of the coated NIRFPs. When injected via the tail vein, NIRFP@silica NPs can distribute all over the mouse body, and then can be efficiently eliminated through urine in 24 h, demonstrating its potential applications as a safe and robust NIR fluorescence probe for whole body imaging. Electronic supplementary information (ESI) available: A chromatogram of APTS-NIRFP, a TEM image of 40 nm NIRFP@silica, dispersion stability of NIRFP@silica, more whole body fluorescent images, serum biochemical parameters, and optical images of HE stained organ slices. See DOI: 10.1039/c3nr02508j
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldoretta, E. J.; Gies, D. R.; Henry, T. J.
2015-01-01
We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additionalmore » targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.« less
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof
2018-07-01
Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin-up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90 per cent of mergers in massive galaxies and of 40-60 per cent in dwarfs (range mostly sensitive to the natal kicks) are expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broad-band luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲50°.
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof
2018-03-01
Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90% of mergers in massive galaxies and of 40-60% in dwarfs (range mostly sensitive to the natal kicks) is expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broadband luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲ 50°.
Close encounters of the third-body kind. [intruding bodies in binary star systems
NASA Technical Reports Server (NTRS)
Davies, M. B.; Benz, W.; Hills, J. G.
1994-01-01
We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi-major axes much larger than either those of the original binaries or those of binaries produced in clean exchanges. Coupled with their lower kick velocities, received from the encounters, their larger size will enhance their cross section, shortening the waiting time to a subsequent encounter with another single star.
On hydrodynamic phase field models for binary fluid mixtures
NASA Astrophysics Data System (ADS)
Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi
2018-05-01
Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.
Higher-order differential phase shift keyed modulation
NASA Astrophysics Data System (ADS)
Vanalphen, Deborah K.; Lindsey, William C.
1994-02-01
Advanced modulation/demodulation techniques which are robust in the presence of phase and frequency uncertainties continue to be of interest to communication engineers. We are particularly interested in techniques which accommodate slow channel phase and frequency variations with minimal performance degradation and which alleviate the need for phase and frequency tracking loops in the receiver. We investigate the performance sensitivity to frequency offsets of a modulation technique known as binary Double Differential Phase Shift Keying (DDPSK) and compare it to that of classical binary Differential Phase Shift Keying (DPSK). We also generalize our analytical results to include n(sup -th) order, M-ary DPSK. The DDPSK (n = 2) technique was first introduced in the Russian literature circa 1972 and was studied more thoroughly in the late 1970's by Pent and Okunev. Here, we present an expression for the symbol error probability that is easy to derive and to evaluate numerically. We also present graphical results that establish when, as a function of signal energy-to-noise ratio and normalized frequency offset, binary DDPSK is preferable to binary DPSK with respect to performance in additive white Gaussian noise. Finally, we provide insight into the optimum receiver from a detection theory viewpoint.
A comparison of multiple imputation methods for incomplete longitudinal binary data.
Yamaguchi, Yusuke; Misumi, Toshihiro; Maruo, Kazushi
2018-01-01
Longitudinal binary data are commonly encountered in clinical trials. Multiple imputation is an approach for getting a valid estimation of treatment effects under an assumption of missing at random mechanism. Although there are a variety of multiple imputation methods for the longitudinal binary data, a limited number of researches have reported on relative performances of the methods. Moreover, when focusing on the treatment effect throughout a period that has often been used in clinical evaluations of specific disease areas, no definite investigations comparing the methods have been available. We conducted an extensive simulation study to examine comparative performances of six multiple imputation methods available in the SAS MI procedure for longitudinal binary data, where two endpoints of responder rates at a specified time point and throughout a period were assessed. The simulation study suggested that results from naive approaches of a single imputation with non-responders and a complete case analysis could be very sensitive against missing data. The multiple imputation methods using a monotone method and a full conditional specification with a logistic regression imputation model were recommended for obtaining unbiased and robust estimations of the treatment effect. The methods were illustrated with data from a mental health research.
Classifying elementary cellular automata using compressibility, diversity and sensitivity measures
NASA Astrophysics Data System (ADS)
Ninagawa, Shigeru; Adamatzky, Andrew
2014-10-01
An elementary cellular automaton (ECA) is a one-dimensional, synchronous, binary automaton, where each cell update depends on its own state and states of its two closest neighbors. We attempt to uncover correlations between the following measures of ECA behavior: compressibility, sensitivity and diversity. The compressibility of ECA configurations is calculated using the Lempel-Ziv (LZ) compression algorithm LZ78. The sensitivity of ECA rules to initial conditions and perturbations is evaluated using Derrida coefficients. The generative morphological diversity shows how many different neighborhood states are produced from a single nonquiescent cell. We found no significant correlation between sensitivity and compressibility. There is a substantial correlation between generative diversity and compressibility. Using sensitivity, compressibility and diversity, we uncover and characterize novel groupings of rules.
Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features.
Youji Feng; Lixin Fan; Yihong Wu
2016-01-01
The essence of image-based localization lies in matching 2D key points in the query image and 3D points in the database. State-of-the-art methods mostly employ sophisticated key point detectors and feature descriptors, e.g., Difference of Gaussian (DoG) and Scale Invariant Feature Transform (SIFT), to ensure robust matching. While a high registration rate is attained, the registration speed is impeded by the expensive key point detection and the descriptor extraction. In this paper, we propose to use efficient key point detectors along with binary feature descriptors, since the extraction of such binary features is extremely fast. The naive usage of binary features, however, does not lend itself to significant speedup of localization, since existing indexing approaches, such as hierarchical clustering trees and locality sensitive hashing, are not efficient enough in indexing binary features and matching binary features turns out to be much slower than matching SIFT features. To overcome this, we propose a much more efficient indexing approach for approximate nearest neighbor search of binary features. This approach resorts to randomized trees that are constructed in a supervised training process by exploiting the label information derived from that multiple features correspond to a common 3D point. In the tree construction process, node tests are selected in a way such that trees have uniform leaf sizes and low error rates, which are two desired properties for efficient approximate nearest neighbor search. To further improve the search efficiency, a probabilistic priority search strategy is adopted. Apart from the label information, this strategy also uses non-binary pixel intensity differences available in descriptor extraction. By using the proposed indexing approach, matching binary features is no longer much slower but slightly faster than matching SIFT features. Consequently, the overall localization speed is significantly improved due to the much faster key point detection and descriptor extraction. It is empirically demonstrated that the localization speed is improved by an order of magnitude as compared with state-of-the-art methods, while comparable registration rate and localization accuracy are still maintained.
High Speed Imaging using Nanoprobe Arrays
2010-06-23
Gotsmann and U. Dürig, Appl. Phys. Lett. 87, 194102 2005. 9 W. P. King, S. Saxena, B. A. Nelson, R. Pitchimani, and B. L. Weeks, Nano Lett. 6, 2145...microcantilevers with selective coatings has been applied as an artificial nose to recognize and characterize alcohol vapors either in a static mode...doped resistive heater. Fig. 4(c) shows a custom printed circuit board (PCB) to mount the array chip and a flexible ribbon cable for the electrical
Huang, Liwei; Luo, Yingping; Sun, Xian; Ju, Huangxian; Tian, Jiangwei; Yu, Bo-Yang
2017-06-15
Lysosomes are critical organelles for cellular homeostasis and can be used as potential targets to kill tumor cells from inside. Many photo-therapeutic methods have been developed to overproduce reactive oxygen species (ROS) to trigger lysosomal membrane permeabilization (LMP)-associated cell death pathway. However, these technologies rely on extra irradiation to activate the photosensitizers, which limits the applications in treating deep seated tumors and widespread metastatic lesions. This work reports a multifunctional nanocapsule to achieve targeted lysosomal tumor cell death without irradiation and real-time monitoring of drug effect through encapsulating artemisinin and dual protease light-up nanoprobe in a folate-functionalized liposome. The nanocapsule can be specifically uptaken by tumor cells via folate receptor-mediated endocytosis to enter lysosomes, in which artemisinin reacts with ferrous to generate ROS for LMP-associated cell death. By virtue of confocal fluorescence imaging, the artemisinin location in lysosome, ROS-triggered LMP and ultimate cell apoptosis can be visualized with the cathepsin B and caspase-3 activatable nanoprobe. Notably, the artemisinin-mediated ROS evolving for tumor therapy and real-time therapeutic monitoring were successfully implemented by living imaging in tumor-bearing mice, which broaden the nanocapsule for in vivo theranostics and may offer new opportunities for precise medicine. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH.
Schäferling, Michael
2016-05-01
Fluorescence imaging microscopy is an essential tool in biomedical research. Meanwhile, various fluorescent probes are available for the staining of cells, cell membranes, and organelles. Though, to monitor intracellular processes and dysfunctions, probes that respond to ubiquitous chemical parameters determining the cellular function such as pH, pO2 , and Ca(2+) are required. This review is focused on the progress in the design, fabrication, and application of photoluminescent nanoprobes for sensing and imaging of pH in living cells. The advantages of using nanoprobes carrying fluorescent pH indicators compared to single molecule probes are discussed as well as their limitations due to the mostly lysosomal uptake by cells. Particular attention is paid to ratiometric dual wavelength nanosensors that enable intrinsic referenced measurements. Referencing and proper calibration procedures are basic prerequisites to carry out reliable quantitative pH determinations in complex samples such as living cells. A variety of examples will be presented that highlight the diverseness of nanocarrier materials (polymers, micelles, silica, quantum dots, carbon dots, gold, photon upconversion nanocrystals, or bacteriophages), fluorescent pH indicators for the weak acidic range, and referenced sensing mechanisms, that have been applied intracellularly up to now. WIREs Nanomed Nanobiotechnol 2016, 8:378-413. doi: 10.1002/wnan.1366 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.
A Hydrogen and He Isotope Nanoprobe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, Barney L.; Van Deusen, Stuart B.
Materials that incorporate hydrogen and helium isotopes are of great interest at Sandia and throughout the NNSA and DOE. The Ion Beam Lab at SNL-NM has invented techniques using micron to mm-size MeV ion beams to recoil these light isotopes (Elastic Recoil Detection or ERD) that can very accurately make such measurements. However, there are many measurements that would benefit NW and DOE that require much better resolution, such as the distribution of H isotopes (and 3He) in individual grains of materials relevant to TPBARs, H and He-embrittlement of weapon components important to Tritium Sustainment Programs, issues with GTSs, batteries…more » Higher resolution would also benefit the field of materials science in general. To address these and many other issues, nm-scale lateral resolution is required. This LDRD demonstrated that neutral H atoms could be recoiled through a thin film by 70 keV electrons and detected with a Channeltron electron multiplier (CEM). The electrons were steered away from the CEM by strong permanent magnets. This proved the feasibility that the high energy electrons from a transmissionelectron- microscope-TEM can potentially be used to recoil and subsequently detect (e-ERD), quantify and map the concentration of H and He isotopes with nm resolution. This discovery could lead to a TEM-based H/He-isotope nanoprobe with 1000x higher resolution than currently available.« less
Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection
NASA Astrophysics Data System (ADS)
Wu, Yihang; Song, Mengjie; Xin, Zhuang; Zhang, Xiaoqing; Zhang, Yu; Wang, Chunyu; Li, Suyi; Gu, Ning
2011-06-01
Dimercaptosuccinic acid (DMSA) modified ultra-small particles of iron oxide (USPIO) were synthesized through a two-step process. The first step: oleic acid (OA) capped Fe3O4 (OA-USPIO) were synthesized by a novel oxidation coprecipitation method in H2O/DMSO mixing system, where DMSO acts as an oxidant simultaneously. The second step: OA was replaced by DMSA to obtain water-soluble nanoparticles. The as-synthesized nanoparticles were characterized by TEM, FTIR, TGA, VSM, DLS, EDS and UV-vis. Hydrodynamic sizes and Peroxidase-like catalytic activity of the nanoparticles were investigated. The hydrodynamic sizes of the nanoparticles (around 24.4 nm) were well suited to developing stable nanoprobes for bio-detection. The kinetic studies were performed to quantitatively evaluate the catalytic ability of the peroxidase-like nanoparticles. The calculated kinetic parameters indicated that the DMSA-USPIO possesses high catalytic activity. Based on the high activity, immunohistochemical experiments were established: using low-cost nanoparticles as the enzyme instead of expensive HRP, Nimotuzumab was conjugated onto the surface of the nanoparticles to construct a kind of ultra-small nanoprobe which was employed to detect epidermal growth factor receptor (EGFR) over-expressed on the membrane of esophageal cancer cell. The proper sizes of the probes and the result of membranous immunohistochemical staining suggest that the probes can be served as a useful diagnostic reagent for bio-detection.
Zhao, Huai-Xin; Yang, Cheng-Xiong; Yan, Xiu-Ping
2016-12-07
Persistent luminescent nanoparticles (PLNPs) show great potential in realizing precision imaging due to the absence of in situ excitation and no background interference. However, the current PLNP-based tumour imaging is usually achieved by single targeting or passive targeting strategies, and thus it lacks high specificity and affinity for efficient persistent luminescence imaging in vivo. Herein we report the bioconjugation of multiple targeting ligands on the surface of PLNPs for dual-targeted bioimaging to improve the specificity and affinity of the PLNP nanoprobe for in vitro and in vivo bioimaging. The PLNPs were prepared by co-doping Cr III and B III into ZnGa 2 O 4 via a hydrothermal-calcination method. While Cr III doped ZnGa 2 O 4 PLNPs possess excellent near-infrared luminescence along with long afterglow and red light renewable near-infrared luminescence, doping of B III into the PLNPs further improves the persistent luminescence. Conjugation of two targeting ligands, hyaluronic acid and folic acid, which have specificity toward the cluster determinant 44 receptor and folic acid receptor in tumour cells, respectively, provides synergistic targeting effects to enhance the specificity and affinity toward tumour cells. This work provides a dual-targeting strategy for fabricating PLNP-based nanoprobes to realize precision tumour-targeted bioimaging.
Liang, Lijia; Huang, Dianshuai; Wang, Hailong; Li, Haibo; Xu, Shuping; Chang, Yixin; Li, Hui; Yang, Ying-Wei; Liang, Chongyang; Xu, Weiqing
2015-02-17
Investigating the molecular changes of cancer cell nucleus with drugs treatment is crucial for the design of new anticancer drugs, the development of novel diagnostic strategies, and the advancement of cancer therapy efficiency. In order to better understand the action effects of drugs, accurate location and in situ acquisition of the molecular information of the cell nuclei are necessary. In this work, we report a microspectroscopic technique called dark-field and fluorescence coimaging assisted surface-enhanced Raman scattering (SERS) spectroscopy, combined with nuclear targeting nanoprobes, to in situ study Soma Gastric Cancer (SGC-7901) cell nuclei treated with two model drugs, e.g., DNA binder (Hoechst33342) and anticancer drug (doxorubicin, Dox) via spectral analysis at the molecular level. Nuclear targeting nanoprobes with an assembly structure of thiol-modified polyethylene glycol polymers (PEG) and nuclear localizing signal peptides (NLS) around gold nanorods (AuNRs) were prepared to achieve the amplified SERS signals of biomolecules in the cell nuclei. With the assistance of dark field/fluorescence imaging with simultaneous location, in situ SERS spectra in one cell nucleus were measured and analyzed to disclose the effects of Hoechst33342 and Dox on main biomolecules in the cell nuclei. The experimental results show that this method possesses great potential to investigate the targets of new anticancer drugs and the real-time monitoring of the dynamic changes of cells caused by exogenous molecules.
Binary sensitivity and specificity metrics are not adequate to describe the performance of quantitative microbial source tracking methods because the estimates depend on the amount of material tested and limit of detection. We introduce a new framework to compare the performance ...
Cacciatore, Luis Claudio; Kristoff, Gisela; Verrengia Guerrero, Noemí R; Cochón, Adriana C
2012-07-01
In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC(50) values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary combinations of AZM-oxon and CPF-oxon caused a synergistic effect on the ChE inhibition in P. corneus homogenates. The degree of synergism tended to increase as the ratio of AZM-oxon to CPF-oxon decreased. These results suggest that synergism is likely to occur in P. corneus snails exposed in vivo to binary mixtures of the OPs AZM and CPF. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Path to Gravitational Wave Detection
NASA Astrophysics Data System (ADS)
Barish, Barry
2017-01-01
Experimental efforts toward gravitational wave detection began with the innovative resonant bar experiments of Joseph Weber in the 1960s. This technique evolved, but was eventually replaced by the potentially more sensitive suspended mass interferometers. Large scale interferometers, GEO, LIGO and Virgo were funded in 1994. The 22 year history since that time will be discussed, tracing the key technical challenges and solutions that have enabled LIGO to reach the incredible sensitivities where gravitational waves from binary black hole mergers have been observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hyejin; Jeong, Sinyoung; Ko, Eunbyeol
2015-05-15
Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, wemore » analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.« less
TCP performance in ATM networks: ABR parameter tuning and ABR/UBR comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien Fang; Lin, A.
1996-02-27
This paper explores two issues on TOP performance over ATM networks: ABR parameter tuning and performance comparison of binary mode ABR with enhanced UBR services. Of the fifteen parameters defined for ABR, two parameters dominate binary mode ABR performance: Rate Increase Factor (RIF) and Rate Decrease Factor (RDF). Using simulations, we study the effects of these two parameters on TOP over ABR performance. We compare TOP performance with different ABR parameter settings in terms of through-puts and fairness. The effects of different buffer sizes and LAN/WAN distances are also examined. We then compare TOP performance with the best ABR parametermore » setting with corresponding UBR service enhanced with Early Packet Discard and also with a fair buffer allocation scheme. The results show that TOP performance over binary mode ABR is very sensitive to parameter value settings, and that a poor choice of parameters can result in ABR performance worse than that of the much less expensive UBR-EPD scheme.« less
Diffuse scattering measurements of static atomic displacements in crystalline binary solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ice, G.E.; Sparks, C.J.; Jiang, X.
1997-09-01
Diffuse x-ray scattering from crystalline solid solutions is sensitive to both local chemical order and local bond distances. In short-range ordered alloys, fluctuations of chemistry and bond distances break the long-range symmetry of the crystal within a local region and contribute to the total energy of the alloy. Recent use of tunable synchrotron radiation to change the x-ray scattering contrast between elements has greatly advanced the measurement of bond distances between the three kinds of atom pairs found in crystalline binary alloys. The estimated standard deviation on these recovered static displacements approaches {+-}0.001 {angstrom} (0.0001 nm) which is an ordermore » of magnitude more precise than obtained with EXAFS. In addition, both the radial and tangential displacements can be recovered to five near neighbors and beyond. These static displacement measurements provide new information which challenges the most advanced theoretical models of binary crystalline alloys. 29 refs., 8 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Wang, Zhaopeng; Cuntz, Manfred
2017-10-01
We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us to gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Zhaopeng; Cuntz, Manfred, E-mail: zhaopeng.wang@mavs.uta.edu, E-mail: cuntz@uta.edu
We derive fitting formulae for the quick determination of the existence of S-type and P-type habitable zones (HZs) in binary systems. Based on previous work, we consider the limits of the climatological HZ in binary systems (which sensitively depend on the system parameters) based on a joint constraint encompassing planetary orbital stability and a habitable region for a possible system planet. Additionally, we employ updated results on planetary climate models obtained by Kopparapu and collaborators. Our results are applied to four P-type systems (Kepler-34, Kepler-35, Kepler-413, and Kepler-1647) and two S-type systems (TrES-2 and KOI-1257). Our method allows us tomore » gauge the existence of climatological HZs for these systems in a straightforward manner with detailed consideration of the observational uncertainties. Further applications may include studies of other existing systems as well as systems to be identified through future observational campaigns.« less
No tension between assembly models of super massive black hole binaries and pulsar observations.
Middleton, Hannah; Chen, Siyuan; Del Pozzo, Walter; Sesana, Alberto; Vecchio, Alberto
2018-02-08
Pulsar timing arrays are presently the only means to search for the gravitational wave stochastic background from super massive black hole binary populations, considered to be within the grasp of current or near-future observations. The stringent upper limit from the Parkes Pulsar Timing Array has been interpreted as excluding (>90% confidence) the current paradigm of binary assembly through galaxy mergers and hardening via stellar interaction, suggesting evolution is accelerated or stalled. Using Bayesian hierarchical modelling we consider implications of this upper limit for a range of astrophysical scenarios, without invoking stalling, nor more exotic physical processes. All scenarios are fully consistent with the upper limit, but (weak) bounds on population parameters can be inferred. Recent upward revisions of the black hole-galaxy bulge mass relation are disfavoured at 1.6σ against lighter models. Once sensitivity improves by an order of magnitude, a non-detection will disfavour the most optimistic scenarios at 3.9σ.
Jarnevich, Catherine S.; Talbert, Marian; Morisette, Jeffrey T.; Aldridge, Cameron L.; Brown, Cynthia; Kumar, Sunil; Manier, Daniel; Talbert, Colin; Holcombe, Tracy R.
2017-01-01
Evaluating the conditions where a species can persist is an important question in ecology both to understand tolerances of organisms and to predict distributions across landscapes. Presence data combined with background or pseudo-absence locations are commonly used with species distribution modeling to develop these relationships. However, there is not a standard method to generate background or pseudo-absence locations, and method choice affects model outcomes. We evaluated combinations of both model algorithms (simple and complex generalized linear models, multivariate adaptive regression splines, Maxent, boosted regression trees, and random forest) and background methods (random, minimum convex polygon, and continuous and binary kernel density estimator (KDE)) to assess the sensitivity of model outcomes to choices made. We evaluated six questions related to model results, including five beyond the common comparison of model accuracy assessment metrics (biological interpretability of response curves, cross-validation robustness, independent data accuracy and robustness, and prediction consistency). For our case study with cheatgrass in the western US, random forest was least sensitive to background choice and the binary KDE method was least sensitive to model algorithm choice. While this outcome may not hold for other locations or species, the methods we used can be implemented to help determine appropriate methodologies for particular research questions.
Coherent observations of gravitational radiation with LISA and gLISA
NASA Astrophysics Data System (ADS)
Tinto, Massimo; de Araujo, José C. N.
2016-10-01
The geosynchronous Laser Interferometer Space Antenna (gLISA) is a space-based gravitational wave (GW) mission that, for the past 5 years, has been under joint study at the Jet Propulsion Laboratory; Stanford University; the National Institute for Space Research (I.N.P.E., Brazil); and Space Systems Loral. If flown at the same time as the LISA mission, the two arrays will deliver a joint sensitivity that accounts for the best performance of both missions in their respective parts of the millihertz band. This simultaneous operation will result in an optimally combined sensitivity curve that is "white" from about 3 ×10-3 Hz to 1 Hz, making the two antennas capable of detecting, with high signal-to-noise ratios (SNRs), coalescing black-hole binaries (BHBs) with masses in the range (10 -1 08)M⊙ . Their ability of jointly tracking, with enhanced SNR, signals similar to that observed by the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) on September 14, 2015 (the GW150914 event) will result in a larger number of observable small-mass binary black holes and an improved precision of the parameters characterizing these sources. Together, LISA, gLISA and aLIGO will cover, with good sensitivity, the (10-4-1 03) Hz frequency band.
CHARACTERIZATION OF SEVEN ULTRA-WIDE TRANS-NEPTUNIAN BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Alex H.; Kavelaars, J. J.; Petit, Jean-Marc
2011-12-10
The low-inclination component of the Classical Kuiper Belt is host to a population of extremely widely separated binaries. These systems are similar to other trans-Neptunian binaries (TNBs) in that the primary and secondary components of each system are of roughly equal size. We have performed an astrometric monitoring campaign of a sample of seven wide-separation, long-period TNBs and present the first-ever well-characterized mutual orbits for each system. The sample contains the most eccentric (2006 CH{sub 69}, e{sub m} = 0.9) and the most widely separated, weakly bound (2001 QW{sub 322}, a/R{sub H} {approx_equal} 0.22) binary minor planets known, and alsomore » contains the system with lowest-measured mass of any TNB (2000 CF{sub 105}, M{sub sys} {approx_equal} 1.85 Multiplication-Sign 10{sup 17} kg). Four systems orbit in a prograde sense, and three in a retrograde sense. They have a different mutual inclination distribution compared to all other TNBs, preferring low mutual-inclination orbits. These systems have geometric r-band albedos in the range of 0.09-0.3, consistent with radiometric albedo estimates for larger solitary low-inclination Classical Kuiper Belt objects, and we limit the plausible distribution of albedos in this region of the Kuiper Belt. We find that gravitational collapse binary formation models produce an orbital distribution similar to that currently observed, which along with a confluence of other factors supports formation of the cold Classical Kuiper Belt in situ through relatively rapid gravitational collapse rather than slow hierarchical accretion. We show that these binary systems are sensitive to disruption via collisions, and their existence suggests that the size distribution of TNOs at small sizes remains relatively shallow.« less
Gravitational Wave Detection of Compact Binaries Through Multivariate Analysis
NASA Astrophysics Data System (ADS)
Atallah, Dany Victor; Dorrington, Iain; Sutton, Patrick
2017-01-01
The first detection of gravitational waves (GW), GW150914, as produced by a binary black hole merger, has ushered in the era of GW astronomy. The detection technique used to find GW150914 considered only a fraction of the information available describing the candidate event: mainly the detector signal to noise ratios and chi-squared values. In hopes of greatly increasing detection rates, we want to take advantage of all the information available about candidate events. We employ a technique called Multivariate Analysis (MVA) to improve LIGO sensitivity to GW signals. MVA techniques are efficient ways to scan high dimensional data spaces for signal/noise classification. Our goal is to use MVA to classify compact-object binary coalescence (CBC) events composed of any combination of black holes and neutron stars. CBC waveforms are modeled through numerical relativity. Templates of the modeled waveforms are used to search for CBCs and quantify candidate events. Different MVA pipelines are under investigation to look for CBC signals and un-modelled signals, with promising results. One such MVA pipeline used for the un-modelled search can theoretically analyze far more data than the MVA pipelines currently explored for CBCs, potentially making a more powerful classifier. In principle, this extra information could improve the sensitivity to GW signals. We will present the results from our efforts to adapt an MVA pipeline used in the un-modelled search to classify candidate events from the CBC search.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.
2018-06-01
We calculate the properties, occurrence rates and detection prospects of individually resolvable `single sources' in the low-frequency gravitational wave (GW) spectrum. Our simulations use the population of galaxies and massive black hole binaries from the Illustris cosmological hydrodynamic simulations, coupled to comprehensive semi-analytic models of the binary merger process. Using mock pulsar timing arrays (PTA) with, for the first time, varying red-noise models, we calculate plausible detection prospects for GW single sources and the stochastic GW background (GWB). Contrary to previous results, we find that single sources are at least as detectable as the GW background. Using mock PTA, we find that these `foreground' sources (also `deterministic'/`continuous') are likely to be detected with ˜20 yr total observing baselines. Detection prospects, and indeed the overall properties of single sources, are only moderately sensitive to binary evolution parameters - namely eccentricity and environmental coupling, which can lead to differences of ˜5 yr in times to detection. Red noise has a stronger effect, roughly doubling the time to detection of the foreground between a white-noise only model (˜10-15 yr) and severe red noise (˜20-30 yr). The effect of red noise on the GWB is even stronger, suggesting that single source detections may be more robust. We find that typical signal-to-noise ratios for the foreground peak near f = 0.1 yr-1, and are much less sensitive to the continued addition of new pulsars to PTA.
RADIAL VELOCITY VARIABILITY OF FIELD BROWN DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prato, L.; Mace, G. N.; Rice, E. L.
2015-07-20
We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R ∼ 20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity (RV) precision of ∼2 km s{sup −1}, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties,more » and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1σ upper limit for very low mass binary frequency is 18%. Our targets included seven known, wide brown dwarf binary systems. No significant RV variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.« less
Compact binary merger rates: Comparison with LIGO/Virgo upper limits
Belczynski, Krzysztof; Repetto, Serena; Holz, Daniel E.; ...
2016-03-03
Here, we compare evolutionary predictions of double compact object merger rate densities with initial and forthcoming LIGO/Virgo upper limits. We find that: (i) Due to the cosmological reach of advanced detectors, current conversion methods of population synthesis predictions into merger rate densities are insufficient. (ii) Our optimistic models are a factor of 18 below the initial LIGO/Virgo upper limits for BH–BH systems, indicating that a modest increase in observational sensitivity (by a factor of ~2.5) may bring the first detections or first gravitational wave constraints on binary evolution. (iii) Stellar-origin massive BH–BH mergers should dominate event rates in advanced LIGO/Virgo and can be detected out to redshift z sime 2 with templates including inspiral, merger, and ringdown. Normal stars (more » $$\\lt 150\\;{M}_{\\odot }$$) can produce such mergers with total redshifted mass up to $${M}_{{\\rm{tot,z}}}\\simeq 400\\;{M}_{\\odot }$$. (iv) High black hole (BH) natal kicks can severely limit the formation of massive BH–BH systems (both in isolated binary and in dynamical dense cluster evolution), and thus would eliminate detection of these systems even at full advanced LIGO/Virgo sensitivity. We find that low and high BH natal kicks are allowed by current observational electromagnetic constraints. (v) The majority of our models yield detections of all types of mergers (NS–NS, BH–NS, BH–BH) with advanced detectors. Numerous massive BH–BH merger detections will indicate small (if any) natal kicks for massive BHs.« less