An automated pressure data acquisition system for evaluation of pressure sensitive paint chemistries
NASA Technical Reports Server (NTRS)
Sealey, Bradley S.; Mitchell, Michael; Burkett, Cecil G.; Oglesby, Donald M.
1993-01-01
An automated pressure data acquisition system for testing of pressure sensitive phosphorescent paints was designed, assembled, and tested. The purpose of the calibration system is the evaluation and selection of pressure sensitive paint chemistries that could be used to obtain global aerodynamic pressure distribution measurements. The test apparatus and setup used for pressure sensitive paint characterizations is described. The pressure calibrations, thermal sensitivity effects, and photodegradation properties are discussed.
Pressure and Temperature Sensitive Paint Field System
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Faulcon, Nettie D.; Carmine, Michael T.; Burkett, Cecil G.; Pritchard, Daniel W.; Oglesby, Donald M.
2004-01-01
This report documents the Pressure and Temperature Sensitive Paint Field System that is used to provide global surface pressure and temperature measurements on models tested in Langley wind tunnels. The system was developed and is maintained by Global Surface Measurements Team personnel of the Data Acquisition and Information Management Branch in the Research Facilities Services Competency. Descriptions of the system hardware and software are presented and operational procedures are detailed.
Application of the pressure sensitive paint technique to steady and unsteady flow
NASA Technical Reports Server (NTRS)
Shimbo, Y.; Mehta, R.; Cantwell, B.
1996-01-01
Pressure sensitive paint is a newly-developed optical measurement technique with which one can get a continuous pressure distribution in much shorter time and lower cost than a conventional pressure tap measurement. However, most of the current pressure sensitive paint applications are restricted to steady pressure measurement at high speeds because of the small signal-to-noise ratio at low speed and a slow response to pressure changes. In the present study, three phases of work have been completed to extend the application of the pressure sensitive paint technique to low-speed testing and to investigate the applicability of the paint technique to unsteady flow. First the measurement system using a commercially available PtOEP/GP-197 pressure sensitive paint was established and applied to impinging jet measurements. An in-situ calibration using only five pressure tap data points was applied and the results showed good repeatability and good agreement with conventional pressure tap measurements on the whole painted area. The overall measurement accuracy in these experiments was found to be within 0.1 psi. The pressure sensitive paint technique was then applied to low-speed wind tunnel tests using a 60 deg delta wing model with leading edge blowing slots. The technical problems encountered in low-speed testing were resolved by using a high grade CCD camera and applying corrections to improve the measurement accuracy. Even at 35 m/s, the paint data not only agreed well with conventional pressure tap measurements but also clearly showed the suction region generated by the leading edge vortices. The vortex breakdown was also detected at alpha=30 deg. It was found that a pressure difference of 0.2 psi was required for a quantitative pressure measurement in this experiment and that temperature control or a parallel temperature measurement is necessary if thermal uniformity does not hold on the model. Finally, the pressure sensitive paint was applied to a periodically changing pressure field with a 12.8s time period. A simple first-order pole model was applied to deal with the phase lag of the paint. The unsteady pressure estimated from the time-changing pressure sensitive paint data agreed well with the pressure transducer data in regions of higher pressure and showed the possibility of extending the technique to unsteady pressure measurements. However, the model still needs further refinement based on the physics of the oxygen diffusion into the paint layer and the oxygen quenching on the paint luminescence.
Langley 16- Ft. Transonic Tunnel Pressure Sensitive Paint System
NASA Technical Reports Server (NTRS)
Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Leighty, Bradley D.; Carmine, Michael T.; Sealey, Bradley S.; Burkett, Cecil G.
2001-01-01
This report describes the NASA Langley 16-Ft. Transonic Tunnel Pressure Sensitive Paint (PSP) System and presents results of a test conducted June 22-23, 2000 in the tunnel to validate the PSP system. The PSP system provides global surface pressure measurements on wind tunnel models. The system was developed and installed by PSP Team personnel of the Instrumentation Systems Development Branch and the Advanced Measurement and Diagnostics Branch. A discussion of the results of the validation test follows a description of the system and a description of the test.
Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences
NASA Technical Reports Server (NTRS)
Oglesby, Donald M.; Upchurch, Billy T.; Sealey, Bradley S.; Leighty, Bradley D.; Burkett, Cecil G., Jr.; Jalali, Amir
1997-01-01
Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Buck, Gregory M.; Leighty, Bradley D.; Lipford, William E.; Oglesby, Donald M.
2008-01-01
Pressure Sensitive Paint (PSP) and Temperature Sensitive Paint (TSP) were used to visualize and quantify the surface interactions of reaction control system (RCS) jets on the aft body of capsule reentry vehicle shapes. The first model tested was an Apollo-like configuration and was used to focus primarily on the effects of the forward facing roll and yaw jets. The second model tested was an early Orion Crew Module configuration blowing only out of its forward-most yaw jet, which was expected to have the most intense aerodynamic heating augmentation on the model surface. This paper will present the results from the experiments, which show that with proper system design, both PSP and TSP are effective tools for studying these types of interaction in hypersonic testing environments.
Development of a Pressure Sensitive Paint System with Correction for Temperature Variation
NASA Technical Reports Server (NTRS)
Simmons, Kantis A.
1995-01-01
Pressure Sensitive Paint (PSP) is known to provide a global image of pressure over a model surface. However, improvements in its accuracy and reliability are needed. Several factors contribute to the inaccuracy of PSP. One major factor is that luminescence is temperature dependent. To correct the luminescence of the pressure sensing component for changes in temperature, a temperature sensitive luminophore incorporated in the paint allows the user to measure both pressure and temperature simultaneously on the surface of a model. Magnesium Octaethylporphine (MgOEP) was used as a temperature sensing luminophore, with the pressure sensing luminophore, Platinum Octaethylporphine (PtOEP), to correct for temperature variations in model surface pressure measurements.
NASA Technical Reports Server (NTRS)
Liu, Tianshu; Bencic, T.; Sullivan, J. P.
1999-01-01
This article reviews new advances and applications of pressure sensitive paints in aerodynamic testing. Emphasis is placed on important technical aspects of pressure sensitive paint including instrumentation, data processing, and uncertainty analysis.
Unified Model Deformation and Flow Transition Measurements
NASA Technical Reports Server (NTRS)
Burner, Alpheus W.; Liu, Tianshu; Garg, Sanjay; Bell, James H.; Morgan, Daniel G.
1999-01-01
The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.
Lo, Kin Hing; Kontis, Konstantinos
2016-01-01
An experimental study has been conducted to investigate the static and wind-on performance of two in-house-developed polymer-based pressure-sensitive paints. Platinum tetrakis (pentafluorophenyl) porphyrin and tris-bathophenanthroline ruthenium II are used as the luminophores of these two polymer-based pressure-sensitive paints. The pressure and temperature sensitivity and the photo-degradation rate of these two pressure-sensitive paints have been investigated. In the wind tunnel test, it was observed that the normalised intensity ratio of both polymer-based pressure-sensitive paints being studied decreases with increasing the number of wind tunnel runs. The exact reason that leads to the occurrence of this phenomenon is unclear, but it is deduced that the luminophore is either removed or deactivated by the incoming flow during a wind tunnel test. PMID:27128913
Residue detection for real-time removal of paint from metallic surfaces
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Bao, Xiaoqi; Dolgin, Benjamin; Marzwell, Neville
2001-01-01
Paint stripping from large steel ships and other metallic surfaces is a major issue in the maintenance and refurbishing of structures, and environmental concerns are greatly limiting the possible options. As a result, waterjet with water recycling has become the leading form of paint stripping and robotic manipulators with scanning bridges were constructed by various manufacturers to address this need. The application of such scanning bridges is slow and their access is constrained by the complex shape of the ship hull and various features on the surface. To overcome these limitations, a robotic system that is called Ultrastrip (UltraStrip Systems, Inc., Stuart, FL) is developed. This system uses magnetic wheels to attach the stripper to the structure and travel on it while performing paint stripping. To assure efficient paint stripping feedback data is required to control the travel speed by monitoring the paint thickness before and during the stripping process. Efforts at JPL are currently underway to develop the required feedback capability to assure effective paint stripping. Various possible sensors were considered and issues that can affect the sensitivity, reliability and applicability of the sensors are being investigated with emphasis on measuring the initial conditions of the paint. Issues that affect the sensory data in dynamic conditions are addressed while providing real-time real feedback for the control of the paint stripper speed of travel.
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Wong, Oliver D.; Oglesby, Donald M.; Ingram, JoAnne L.
2007-01-01
This paper will describe the results from a proof of concept test to examine the feasibility of using Pressure Sensitive Paint (PSP) to measure global surface pressures on rotorcraft blades in hover. The test was performed using the U.S. Army 2-meter Rotor Test Stand (2MRTS) and 15% scale swept rotor blades. Data were collected from five blades using both the intensity- and lifetime-based approaches. This paper will also outline several modifications and improvements that are underway to develop a system capable of measuring pressure distributions on up to four blades simultaneously at hover and forward flight conditions.
Frequency Response of Pressure Sensitive Paints
NASA Technical Reports Server (NTRS)
Winslow, Neal A.; Carroll, Bruce F.; Setzer, Fred M.
1996-01-01
An experimental method for measuring the frequency response of Pressure Sensitive Paints (PSP) is presented. These results lead to the development of a dynamic correction technique for PSP measurements which is of great importance to the advancement of PSP as a measurement technique. The ability to design such a dynamic corrector is most easily formed from the frequency response of the given system. An example of this correction technique is shown. In addition to the experimental data, an analytical model for the frequency response is developed from the one dimensional mass diffusion equation.
Applying Pressure Sensitive Paint Technology to Rotor Blades
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Goodman, Kyle Z.; Crafton, Jim; Gregory, James W.
2014-01-01
This report will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on rotorcrtaft blades in simulated forward flight at the 14- by 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The basics of the PSP method will be discussed and the modifications that were needed to extend this technology for use on rotor blades. Results from a series of tests will also be presented as well as several areas of improvement that have been identified and are currently being developed for future testing.
pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors
NASA Technical Reports Server (NTRS)
Li, Wenyan; Calle, Luz M.
2006-01-01
A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint show visible color changes at induced corrosion sites and improvement of corrosion protection. Further investigation of the performance of the coating using electrochemical techniques and long term exposure are currently underway.
NASA Astrophysics Data System (ADS)
Egusa, Shigenori; Iwasawa, Naozumi
1998-08-01
Piezoelectric paints have a potential to change a conventional structural material into an intelligent material system with health-monitoring capabilities such as vibration sensing and damage detection. Such paints were prepared using lead zirconate titanate (PZT) ceramic powder as a pigment and epoxy resin as a binder. The obtained paints were coated on aluminum test specimens, and were cured at room temperature or at 150 0964-1726/7/4/002/img5, thus forming the paint films having different thicknesses of 25-300 0964-1726/7/4/002/img6. These films were then poled at room temperature, and were evaluated with regard to the sensitivities as vibration and acoustic emission sensors in the frequency ranges of 0-250 Hz and 0-1.0 MHz, respectively. This paper mainly describes the effects of the film thickness and the cure temperature on the poling behavior of the PZT/epoxy paint film. This paper describes also the application of the paint film as a vibration modal sensor integrated into a structural material.
Pressure- and Temperature-Sensitive Paint at 0.3-m Transonic Cryogenic Tunnel
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Goodman, Kyle Z.
2015-01-01
Recently both Pressure- and Temperature-Sensitive Paint experiments were conducted at cryogenic conditions in the 0.3-m Transonic Cryogenic Tunnel at NASA Langley Research Center. This represented a re-introduction of the techniques to the facility after more than a decade, and provided a means to upgrade the measurements using newer technology as well as demonstrate that the techniques were still viable in the facility. Temperature-Sensitive Paint was employed on a laminar airfoil for transition detection and Pressure-Sensitive Paint was employed on a supercritical airfoil. This report will detail the techniques and their unique challenges that need to be overcome in cryogenic environments. In addition, several optimization strategies will also be discussed.
Using Temperature Sensitive Paint Technology
NASA Technical Reports Server (NTRS)
Hamner, M. P.; Popernack, T. G., Jr.; Owens, L. R.; Wahls, R. A.
2002-01-01
New facilities and test techniques afford research aerodynamicists many opportunities to investigate complex aerodynamic phenomena. For example, NASA Langley Research Center's National Transonic Facility (NTF) can hold Mach number, Reynolds number, dynamic pressure, stagnation temperature and stagnation pressure constant during testing. This is important because the wing twist associated with model construction may mask important Reynolds number effects associated with the flight vehicle. Beyond this, the NTF's ability to vary Reynolds number allows for important research into the study of boundary layer transition. The capabilities of facilities such as the NTF coupled with test techniques such as temperature sensitive paint yield data that can be applied not only to vehicle design but also to validation of computational methods. Development of Luminescent Paint Technology for acquiring pressure and temperature measurements began in the mid-1980s. While pressure sensitive luminescent paints (PSP) were being developed to acquire data for aerodynamic performance and loads, temperature sensitive luminescent paints (TSP) have been used for a much broader range of applications. For example, TSP has been used to acquire surface temperature data to determine the heating due to rotating parts in various types of mechanical systems. It has been used to determine the heating pattern(s) on circuit boards. And, it has been used in boundary layer analysis and applied to the validation of full-scale flight performance predictions. That is, data acquired on the same model can be used to develop trends from off design to full scale flight Reynolds number, e.g. to show the progression of boundary layer transition. A discussion of issues related to successfully setting-up TSP tests and using TSP systems for boundary layer studies is included in this paper, as well as results from a variety of TSP tests. TSP images included in this paper are all grey-scale so that similar to pictures from sublimating chemical tests areas of laminar flow appear "lighter," or white, and areas of turbulent flow appear "darker."
Development of electroluminescence based pressure-sensitive paint system.
Iijima, Yoshimi; Sakaue, Hirotaka
2011-01-01
We introduce a pressure-sensitive paint (PSP) measurement system based on an electroluminescence (EL) as a surface illumination. This consists of an inorganic EL as the illumination, a short-pass filter, and a platinum-porphyrin based PSP. The short-pass filter, which passes below 500 nm, was used to separate an overlay of the EL illumination and the PSP emission. The EL shows an opposite temperature dependency to that of the PSP. It gives a uniform illumination compared to that of a point illumination source such as a xenon lamp. Under atmospheric conditions, the resultant EL-PSP system reduces the temperature dependency by 54% compared to that of a conventional PSP system. An application of the EL-PSP system to a sonic jet impingement shows that the system demonstrated its reduction of the temperature dependency by 75% in a pressure measurement and reduces an image misalignment error.
Water-Based Pressure-Sensitive Paints
NASA Technical Reports Server (NTRS)
Jordan, Jeffrey D.; Watkins, A. Neal; Oglesby, Donald M.; Ingram, JoAnne L.
2006-01-01
Water-based pressure-sensitive paints (PSPs) have been invented as alternatives to conventional organic-solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic-solvent-based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The waterbased PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints (low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).
1991-06-01
of this laser system to remove paint from metals, including aluminum, and from carbon fiber reinforced composites cleanly and without damage to the...The tests perpendicular to fiber direction in the unidirectional composite were selected as most sensitive indicators of damage. Flexural tests on the... Composite Flexural Strength Tests 10 2.2.11 Composite Compressive Strength Tests 11 2.2.12 Turbine Blade Cleaning 11 2.2.13 Residual Carbon 11 2.2.14
Dual-Use Applications of Infrared Sensitive Materials
1993-06-01
only limit to MCT-based detectors’ market potential is in price. Specialty systems for subsurface imaging (such as buried storage tanks, toxic wastes...and assessment of automotive paint damaged by rust or stone impacts. Since automotive paint is a multi-layered coating, it lends itself to subsurface ... imaging , as well as aerospace aluminum and epoxy composites. Another family of non-destructive evaluation techniques which could use infrared detectors
Documenting the light sensitivity of Spanish Levantine rock art paintings
NASA Astrophysics Data System (ADS)
del Hoyo-Meléndez, J. M.; Lerma, J. L.; López-Montalvo, E.; Villaverde, V.
2015-08-01
A case study to evaluate the use of microfading spectrometry (MFS) for the study of colored systems found in prehistoric rock art paintings was conducted in the Cova Remígia rock-shelter, Castellón (Spain). This rock shelter is part of the rock art sites of the Mediterranean basin on the Iberian Peninsula included in UNESCO's World Heritage List. Some of the paintings belonging to this group are exposed to environmental factors including natural daylight, wind and rain, depending on the time of the day and the season of the year. Therefore, their preservation is a major concern to stakeholders and researchers responsible for protecting and studying these prehistoric paintings. The experimental work in Cova Remigia focused on measuring the reflectance curves (400-700 nm) and determining the photostability of various areas containing red and black pigments on the rock art paintings. The preliminary results indicate that MFS is a suitable technique for studying the response to light of rock/pigment systems found in rock art sites. The advantages and limitations of the technique are discussed.
Pressure-Sensitive Paint: Effect of Substrate
Quinn, Mark Kenneth; Yang, Leichao; Kontis, Konstantinos
2011-01-01
There are numerous ways in which pressure-sensitive paint can be applied to a surface. The choice of substrate and application method can greatly affect the results obtained. The current study examines the different methods of applying pressure-sensitive paint to a surface. One polymer-based and two porous substrates (anodized aluminum and thin-layer chromatography plates) are investigated and compared for luminescent output, pressure sensitivity, temperature sensitivity and photodegradation. Two luminophores [tris-Bathophenanthroline Ruthenium(II) Perchlorate and Platinum-tetrakis (pentafluorophenyl) Porphyrin] will also be compared in all three of the substrates. The results show the applicability of the different substrates and luminophores to different testing environments. PMID:22247685
Legato: Personal Computer Software for Analyzing Pressure-Sensitive Paint Data
NASA Technical Reports Server (NTRS)
Schairer, Edward T.
2001-01-01
'Legato' is personal computer software for analyzing radiometric pressure-sensitive paint (PSP) data. The software is written in the C programming language and executes under Windows 95/98/NT operating systems. It includes all operations normally required to convert pressure-paint image intensities to normalized pressure distributions mapped to physical coordinates of the test article. The program can analyze data from both single- and bi-luminophore paints and provides for both in situ and a priori paint calibration. In addition, there are functions for determining paint calibration coefficients from calibration-chamber data. The software is designed as a self-contained, interactive research tool that requires as input only the bare minimum of information needed to accomplish each function, e.g., images, model geometry, and paint calibration coefficients (for a priori calibration) or pressure-tap data (for in situ calibration). The program includes functions that can be used to generate needed model geometry files for simple model geometries (e.g., airfoils, trapezoidal wings, rotor blades) based on the model planform and airfoil section. All data files except images are in ASCII format and thus are easily created, read, and edited. The program does not use database files. This simplifies setup but makes the program inappropriate for analyzing massive amounts of data from production wind tunnels. Program output consists of Cartesian plots, false-colored real and virtual images, pressure distributions mapped to the surface of the model, assorted ASCII data files, and a text file of tabulated results. Graphical output is displayed on the computer screen and can be saved as publication-quality (PostScript) files.
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Oglesby, Donald M.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.; Massey, Edward A.
2009-01-01
The Pressure Sensitive Paint (PSP) method was used to measure global surface pressures on a model at full-scale flight Reynolds numbers. In order to achieve these conditions, the test was carried out at the National Transonic Facility (NTF) operating under cryogenic conditions in a nitrogen environment. The upper surface of a wing on a full-span 0.027 scale commercial transport was painted with a porous PSP formulation and tested at 120K. Data was acquired at Mach 0.8 with a total pressure of 200 kPa, resulting in a Reynolds number of 65 x 106/m. Oxygen, which is required for PSP operation, was injected using dry air so that the oxygen concentration in the flow was approximately 1535 ppm. Results show qualitative agreement with expected results. This preliminary test is the first time that PSP has been successfully deployed to measure global surface pressures at cryogenic condition in the NTF. This paper will describe the system as installed, the results obtained from the test, as well as proposed upgrades and future tests.
Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop
Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An
2016-01-01
Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors—together with their interfaces in the transponder—are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated. PMID:27490546
Intensity Biased PSP Measurement
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.
2000-01-01
The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub 0)/I) and pressure ratio (P/P(sub 0)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and c quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an in- situ intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP)) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.
Intensity Biased PSP Measurement
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.; Amer, Tahani R.; Oglesby, Donald M.; Burkett, Cecil G., Jr.
2000-01-01
The current pressure sensitive paint (PSP) technique assumes a linear relationship (Stern-Volmer Equation) between intensity ratio (I(sub o)/I) and pressure ratio (P/P(sub o)) over a wide range of pressures (vacuum to ambient or higher). Although this may be valid for some PSPs, in most PSPs the relationship is nonlinear, particularly at low pressures (less than 0.2 psia when the oxygen level is low). This non-linearity can be attributed to variations in the oxygen quenching (de-activation) rates (which otherwise is assumed constant) at these pressures. Other studies suggest that some paints also have non-linear calibrations at high pressures; because of heterogeneous (non-uniform) oxygen diffusion and quenching. Moreover, pressure sensitive paints require correction for the output intensity due to light intensity variation, paint coating variation, model dynamics, wind-off reference pressure variation, and temperature sensitivity. Therefore to minimize the measurement uncertainties due to these causes, an insitu intensity correction method was developed. A non-oxygen quenched paint (which provides a constant intensity at all pressures, called non-pressure sensitive paint, NPSP) was used for the reference intensity (I(sub NPSP) with respect to which all the PSP intensities (I) were measured. The results of this study show that in order to fully reap the benefits of this technique, a totally oxygen impermeable NPSP must be available.
Application of Pressure Sensitive Paint in Hypersonic Flows
NASA Technical Reports Server (NTRS)
Jules, Kenol; Carbonaro, Mario; Zemsch, Stephan
1995-01-01
It is well known in the aerodynamic field that pressure distribution measurement over the surface of an aircraft model is a problem in experimental aerodynamics. For one thing, a continuous pressure map can not be obtained with the current experimental methods since they are discrete. Therefore, interpolation or CFD methods must be used for a more complete picture of the phenomenon under study. For this study, a new technique was investigated which would provide a continuous pressure distribution over the surface under consideration. The new method is pressure sensitive paint. When pressure sensitive paint is applied to an aerodynamic surface and placed in an operating wind-tunnel under appropriate lighting, the molecules luminesce as a function of the local pressure of oxygen over the surface of interest during aerodynamic flow. The resulting image will be brightest in the areas of low pressure (low oxygen concentration), and less intense in the areas of high pressure (where oxygen is most abundant on the surface). The objective of this investigation was to use pressure sensitive paint samples from McDonnell Douglas (MDD) for calibration purpose in order to assess the response of the paint under appropriate lighting and to use the samples over a flat plate/conical fin mounted at 75 degrees from the center of the plate in order to study the shock/boundary layer interaction at Mach 6 in the Von Karman wind-tunnel. From the result obtained it was concluded that temperature significantly affects the response of the paint and should be given the uppermost attention in the case of hypersonic flows. Also, it was found that past a certain temperature threshold, the paint intensity degradation became irreversible. The comparison between the pressure tap measurement and the pressure sensitive paint showed the right trend. However, there exists a shift when it comes to the actual value. Therefore, further investigation is under way to find the cause of the shift.
Competition between skin-sensitizing chemicals in the mouse
Wallington, T. B.; Jones, J. Verrier
1974-01-01
The skin contact sensitivity responses to picryl chloride in CBA mice can be reduced by prior sensitization with oxazolone. Initial experiments showed this reduction to be significant when the interval between skin paintings was 7 days. In further experiments to study the time course of this effect, the depression was found to be maximal when the interval between skin paintings was between 3 and 7 days. Prior painting with a non-immunogenic chemical irritant, oil of turpentine, did not depress responses to picryl chloride. The relation of this phenomenon to antigenic competition in antibody production is discussed. PMID:4851120
NASA Astrophysics Data System (ADS)
Weiss, Armin; Geisler, Reinhard; Schwermer, Till; Yorita, Daisuke; Henne, Ulrich; Klein, Christian; Raffel, Markus
2017-09-01
A pressure-sensitive paint (PSP) system is presented to measure global surface pressures on fast rotating blades. It is dedicated to solve the problem of blurred image data employing the single-shot lifetime method. The efficient blur reduction capability of an optimized double-shutter imaging technique is demonstrated omitting error-prone post-processing or laborious de-rotation setups. The system is applied on Mach-scaled DSA-9A helicopter blades in climb at various collective pitch settings and blade tip Mach and chord Reynolds numbers (M_{ {tip}} = 0.29-0.57; Re_{ {tip}} = 4.63-9.26 × 10^5). Temperature effects in the PSP are corrected by a theoretical approximation validated against measured temperatures using temperature-sensitive paint (TSP) on a separate blade. Ensemble-averaged PSP results are comparable to pressure-tap data on the same blade to within 250 Pa. Resulting pressure maps on the blade suction side reveal spatially high resolved flow features such as the leading edge suction peak, footprints of blade-tip vortices and evidence of laminar-turbulent boundary-layer (BL) transition. The findings are validated by a separately conducted BL transition measurement by means of TSP and numerical simulations using a 2D coupled Euler/boundary-layer code. Moreover, the principal ability of the single-shot technique to capture unsteady flow phenomena is stressed revealing three-dimensional pressure fluctuations at stall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willneff, E. A.; Ormsby, B. A.; Stevens, J. S.
Works of art prepared with acrylic emulsion paints became commercially available in the 1960s. It is increasingly necessary to undertake and optimise cleaning and preventative conservation treatments to ensure their longevity. Model artists' acrylic paint films covered with artificial soiling were thus prepared on a canvas support and exposed to a variety of wet cleaning treatments based on aqueous or hydrocarbon solvent systems. This included some with additives such as chelating agents and/or surfactants, and microemulsion systems made specifically for conservation practice. The impact of cleaning (soiling removal) on the paint film surface was examined visually and correlated with resultsmore » of attenuated total reflection Fourier transform infrared, XPS and near-edge X-ray absorption fine structure analyses – three spectroscopic techniques with increasing surface sensitivity ranging from approximately $-$ 1000, 10 and 5 nm, respectively. Visual analysis established the relative cleaning efficacy of the wet cleaning treatments in line with previous results. X-ray spectroscopy analysis provided significant additional findings, including evidence for (i) surfactant extraction following aqueous swabbing, (ii) modifications to pigment following cleaning and (iii) cleaning system residues.« less
Willneff, E. A.; Ormsby, B. A.; Stevens, J. S.; ...
2014-02-17
Works of art prepared with acrylic emulsion paints became commercially available in the 1960s. It is increasingly necessary to undertake and optimise cleaning and preventative conservation treatments to ensure their longevity. Model artists' acrylic paint films covered with artificial soiling were thus prepared on a canvas support and exposed to a variety of wet cleaning treatments based on aqueous or hydrocarbon solvent systems. This included some with additives such as chelating agents and/or surfactants, and microemulsion systems made specifically for conservation practice. The impact of cleaning (soiling removal) on the paint film surface was examined visually and correlated with resultsmore » of attenuated total reflection Fourier transform infrared, XPS and near-edge X-ray absorption fine structure analyses – three spectroscopic techniques with increasing surface sensitivity ranging from approximately $-$ 1000, 10 and 5 nm, respectively. Visual analysis established the relative cleaning efficacy of the wet cleaning treatments in line with previous results. X-ray spectroscopy analysis provided significant additional findings, including evidence for (i) surfactant extraction following aqueous swabbing, (ii) modifications to pigment following cleaning and (iii) cleaning system residues.« less
Foulds, I S; Koh, D
1992-02-01
5 production operators from 2 factories manufacturing thermosetting coating paint developed work-related skin disorders within 12 months of the introduction of a new powdered paint product. All 5 workers were found to have allergic contact dermatitis from 2 epoxy resin hardeners, both of which were commercial preparations of triglycidyl isocyanurate (TGIC). 2 of the workers had concomitant sensitization to epoxy resin in the standard series and several of the epoxy resin preparations at the workplace. TGIC has been reported as a contact sensitizer both in persons producing the chemical and among end-users of TGIC-containing products. These 5 reported cases document allergic contact dermatitis from commercial TGIC among exposed workers during an intermediate process of powdered paint manufacture. The possibility of substituting this epoxy resin hardener with less sensitizing alternatives should be explored.
Amsler, Emmanuelle; Aerts, Olivier; Raison-Peyron, Nadia; Debons, Michèle; Milpied, Brigitte; Giordano-Labadie, Françoise; Waton, Julie; Ferrier-Le Bouëdec, Marie C; Lartigau, Isabelle; Pecquet, Catherine; Assier, Haudrey; Avenel-Audran, Martine; Bernier, Claire; Castelain, Florence; Collet, Evelyne; Crépy, Marie-Noëlle; Genillier, Nathalie; Girardin, Pascal; Pralong, Pauline; Tetart, Florence; Vital-Durand, Dominique; Soria, Angele; Barbaud, Annick
2017-09-01
Airborne allergic contact dermatitis caused by paints containing isothiazolinones has been recognized as a health hazard. To collect epidemiological, clinical and patch test data on airborne allergic contact dermatitis caused by isothiazolinone-containing paints in France and Belgium. A descriptive, retrospective study was initiated by the Dermatology and Allergy Group of the French Society of Dermatology, including methylchloroisothiazolinone (MCI)/methylisothiazolinone (MI)- and/or MI-sensitized patients who developed airborne allergic contact dermatitis following exposure to isothiazolinone-containing paint. Forty-four cases were identified, with mostly non-occupational exposure (79.5%). Of the patients, 22.5% of also had mucosal symptoms. In several cases, the dermatitis required systemic corticosteroids (27.3%), hospitalization (9.1%), and/or sick leave (20.5%). A median delay of 5.5 weeks was necessary to enable patients to enter a freshly painted room without a flare-up of their dermatitis. Approximately one-fifth of the patients knew that they were allergic to MI and/or MCI/MI before the exposure to paints occurred. Our series confirms that airborne allergic contact dermatitis caused by paints containing isothiazolinones is not rare, and may be severe and long-lasting. Better regulation of isothiazolinone concentrations in paints, and their adequate labelling, is urgently needed. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Quinn, Mark Kenneth; Spinosa, Emanuele; Roberts, David A
2017-07-25
Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.
Spinosa, Emanuele; Roberts, David A.
2017-01-01
Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access. PMID:28757553
Low-Speed Pressure Sensitive Paint Studies
NASA Technical Reports Server (NTRS)
Owen, Brown; Mehta, Rabindra; Nixon, David (Technical Monitor)
1998-01-01
A series of low speed (M less than 0.2) experiments using University of Washington Fib-07 Pressure Sensitive Paint (PSP) have been conducted at NASA Ames on a NACA 0012 airfoil. Significant improvements in results have been shown: PSP calibration errors of the improved data (with pressure taps as a reference) now agree with theoretical error limits. Additional measurements on the 0012 airfoil using Temperature Sensitive Paint have been made. These TSP measurements now fully quantify the impact of temporal temperature changes on model surfaces on PSP measurements. Finally, simultaneous PSP - TSP measurements have been performed, allowing in-situ temperature correction of PSP data with good results.
Permanent-Change Thermal Paints for Hypersonic Flight-Test
2010-09-24
thermochromic liquid crystals (Ireland et al. 1999, Ireland & Jones 2000), and temperature sensitive paints (Liu & Sullivan 2005), thermal paints are...surfaces and fin-fuselage junctions, shock boundary layer interactions, scramjet combustion chambers and around control thrusters. Thermal paints can...use of discrete wired sensors may also not practical on some locations on a hypersonic vehicle. Thermochromic liquid crystals Coatings of
PSP Measurement of Stator Vane Surface Pressures in a High Speed Fan
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
1998-01-01
This paper presents measurements of static pressures on the stator vane suction side of a high-speed single stage fan using the technique of pressure sensitive paint (PSP). The paper illustrates development in application of the relatively new experimental technique to the complex environment of internal flows in turbomachines. First, there is a short explanation of the physics of the PSP technique and a discussion of calibration methods for pressure sensitive paint in the turbomachinery environment. A description of the image conversion process follows. The recorded image of the stator vane pressure field is skewed due to the limited optical access and must be converted to the meridional plane projection for comparison with analytical predictions. The experimental results for seven operating conditions along an off-design rotational speed line are shown in a concise form, including performance map points, mindspan static tap pressure distributions, and vane suction side pressure fields. Then, a comparison between static tap and pressure sensitive paint data is discussed. Finally, the paper lists shortcomings of the pressure sensitive paint technology and lessons learned in this high-speed fan application.
NASA Technical Reports Server (NTRS)
McLachlan, B. G.; Bell, J. H.; Park, H.; Kennelly, R. A.; Schreiner, J. A.; Smith, S. C.; Strong, J. M.; Gallery, J.; Gouterman, M.
1995-01-01
The pressure-sensitive paint method was used in the test of a high-sweep oblique wing model, conducted in the NASA Ames 9- by 7-ft Supersonic Wind Tunnel. Surface pressure data was acquired from both the luminescent paint and conventional pressure taps at Mach numbers between M = 1.6 and 2.0. In addition, schlieren photographs of the outer flow were used to determine the location of shock waves impinging on the model. The results show that the luminescent pressure-sensitive paint can capture both global and fine features of the static surface pressure field. Comparison with conventional pressure tap data shows good agreement between the two techniques, and that the luminescent paint data can be used to make quantitative measurements of the pressure changes over the model surface. The experiment also demonstrates the practical considerations and limitations that arise in the application of this technique under supersonic flow conditions in large-scale facilities, as well as the directions in which future research is necessary in order to make this technique a more practical wind-tunnel testing tool.
Time-Resolved Photoluminescence Microscopy for the Analysis of Semiconductor-Based Paint Layers
Mosca, Sara; Gonzalez, Victor; Eveno, Myriam
2017-01-01
In conservation, science semiconductors occur as the constituent matter of the so-called semiconductor pigments, produced following the Industrial Revolution and extensively used by modern painters. With recent research highlighting the occurrence of various degradation phenomena in semiconductor paints, it is clear that their detection by conventional optical fluorescence imaging and microscopy is limited by the complexity of historical painting materials. Here, we illustrate and prove the capabilities of time-resolved photoluminescence (TRPL) microscopy, equipped with both spectral and lifetime sensitivity at timescales ranging from nanoseconds to hundreds of microseconds, for the analysis of cross-sections of paint layers made of luminescent semiconductor pigments. The method is sensitive to heterogeneities within micro-samples and provides valuable information for the interpretation of the nature of the emissions in samples. A case study is presented on micro samples from a painting by Henri Matisse and serves to demonstrate how TRPL can be used to identify the semiconductor pigments zinc white and cadmium yellow, and to inform future investigations of the degradation of a cadmium yellow paint. PMID:29160862
NASA Technical Reports Server (NTRS)
Watkins, Anthony Neal; Leighty, Bradley D.; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, James; Forlines, Alan; Goss, Larry; Gregory, James W.; Juliano, Thomas J.
2011-01-01
This report will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. This report will also detail possible improvements to the system.
Study on the Fabrication of Paint-Type Si Quantum Dot-Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Seo, Hyunwoong; Son, Min-Kyu; Kim, Hee-Je; Wang, Yuting; Uchida, Giichiro; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu
2013-10-01
Quantum dots (QDs) have attracted much attention with their quantum characteristics in the research field of photochemical solar cells. Si QD was introduced as one of alternatives to conventional QD materials. However, their large particles could not penetrate inside TiO2 layer. Therefore, this work proposed the paint-type Si QD-sensitized solar cell. Its heat durability was suitable for the fabrication of paint-type solar cell. Si QDs were fabricated by multihollow discharge plasma chemical vapor deposition and characterized. The paste type, sintering temperature, and Si ratio were controlled and analyzed for better performance. Finally, its performance was enhanced by ZnS surface modification and the whole process was much simplified without sensitizing process.
Pressure Sensitive Paint Measurements on 15% Scale Rotor Blades in Hover
NASA Technical Reports Server (NTRS)
Wong, Oliver D.; Watkins, Anthony Neal; Ingram, JoAnne L.
2005-01-01
This paper describes a proof of concept test to examine the feasibility of using pressure sensitive paint (PSP) to measure the pressure distributions on a rotor in hover. The test apparatus consisted of the US Army 2-meter Rotor Test Stand (2MRTS) and 15% scale swept tip rotor blades. Two camera/rotor separations were examined: 0.76 and 1.35 radii. The outer 15% of each blade was painted with PSP. Intensity and lifetime based PSP measurement techniques were attempted. Data were collected from all blades at thrust coefficients ranging from 0.004 to 0.009.
Emission rate modeling and risk assessment at an automobile plant from painting operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, A.; Shrivastava, A.; Kulkarni, A.
Pollution from automobile plants from painting operations has been addressed in the Clean Act Amendments (1990). The estimation of pollutant emissions from automobile painting operation were done mostly by approximate procedures than by actual calculations. The purpose of this study was to develop a methodology for calculating the emissions of the pollutants from painting operation in an automobile plant. Five scenarios involving an automobile painting operation, located in Columbus (Ohio), were studied for pollutant emission and concomitant risk associated with that. In the study of risk, a sensitivity analysis was done using Crystal Ball{reg{underscore}sign} on the parameters involved in risk.more » This software uses the Monte Carlo principle. The most sensitive factor in the risk analysis was the ground level concentration of the pollutants. All scenarios studied met the safety goal (a risk value of 1 x 10{sup {minus}6}) with different confidence levels. The highest level of confidence in meeting the safety goal was displayed by Scenario 1 (Alpha Industries). The results from the scenarios suggest that risk is associated with the quantity of released toxic pollutants. The sensitivity analysis of the various parameter shows that average spray rate of paint is the most important parameter in the estimation of pollutants from the painting operations. The entire study is a complete module that can be used by the environmental pollution control agencies for estimation of pollution levels and estimation of associated risk. The study can be further extended to other operations in an automobile industry or to different industries.« less
INITIAL ASSESSMENT OF SURFACE PRESSURE CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS
NASA Technical Reports Server (NTRS)
Jones, Henry E.; Wong, Oliver D.; Watkins, A. Neal; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.; Ingram, Joanne L.
2006-01-01
This paper presents results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of fixed system pressure coefficient response to changes in configuration attitude and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect the magnitude of the response. Pressure coefficients were measured using both conventional pressure taps and via pressure sensitive paint. Comparisons between the two methods are presented and demonstrate that the pressure sensitive paint is a promising method; however, further work on the technique is required.
Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix
NASA Astrophysics Data System (ADS)
Zemlicka, J.; Jakubek, J.; Kroupa, M.; Hradil, D.; Hradilova, J.; Mislerova, H.
2011-01-01
Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19th century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field of cultural heritage.
Laser Scanning System for Pressure and Temperature Paints
NASA Technical Reports Server (NTRS)
Sullivan, John
1997-01-01
Acquiring pressure maps of aerodynamic surfaces is very important for improving and validating the performance of aerospace vehicles. Traditional pressure measurements are taken with pressure taps embedded in the model surface that are connected to transducers. While pressure taps allow highly accurate measurements to be acquired, they do have several drawbacks. Pressure taps do not give good spatial resolution due to the need for individual pressure tubes, compounded by limited space available inside models. Also, building a model proves very costly if taps are needed because of the large amount of labor necessary to drill, connect and test each one. The typical cost to install one tap is about $200. Recently, a new method for measuring pressure on aerodynamic surfaces has been developed utilizing a technology known as pressure sensitive paints (PSP). Using PSP, pressure distributions can be acquired optically with high spatial resolution and simple model preparation. Flow structures can be easily visualized using PSP, but are missed using low spatial resolution arrays of pressure taps. PSP even allows pressure distributions to be found on rotating machinery where previously this has been extremely difficult or even impossible. The goal of this research is to develop a laser scanning system for use with pressure sensitive paints that allows accurate pressure measurements to be obtained on various aerodynamic surfaces ranging from wind tunnel models to high speed jet engine compressor blades.
Stewart Air National Guard Base, NY, C-5M Painting Refurbishment Assessment
2012-12-06
is asthma due to sensitization. After sensitization, any exposure , even to levels below the occupational exposure limit, can produce an asthmatic...Consultative Services Division provide a comprehensive exposure and risk assessment of the corrosion control process conducted on the C-5M in Building...101 at Stewart Air National Guard Base, NY. This facility was previously a fuels systems maintenance facility. At the time of this assessment, the
Blade Tip Pressure Measurements Using Pressure Sensitive Paint
NASA Technical Reports Server (NTRS)
Wong, Oliver D.; Watkins, Anthony Neal; Goodman, Kyle Z.; Crafton, James; Forlines, Alan; Goss, Larry; Gregory, James W.; Juliano, Thomas J.
2012-01-01
This paper discusses the application of pressure sensitive paint using laser-based excitation for measurement of the upper surface pressure distribution on the tips of rotor blades in hover and simulated forward flight. The testing was conducted in the Rotor Test Cell and the 14- by 22-ft Subsonic Tunnel at the NASA Langley Research Center on the General Rotor Model System (GRMS) test stand. The Mach-scaled rotor contained three chordwise rows of dynamic pressure transducers for comparison with PSP measurements. The rotor had an 11 ft 1 in. diameter, 5.45 in. main chord and a swept, tapered tip. Three thrust conditions were examined in hover, C(sub T) = 0.004, 0.006 and 0.008. In forward flight, an additional thrust condition, C(sub T) = 0.010 was also examined. All four thrust conditions in forward flight were conducted at an advance ratio of 0.35.
Exposure to cyclic anhydrides in welding: a new allergen-chlorendic anhydride.
Pfäffli, Pirkko; Hämeilä, Mervi; Keskinen, Helena; Wirmoila, Ritva
2002-11-01
Respiratory effects associated with welding fumes have been manifested in welders as occupational asthma. Previous studies have concerned mainly the effects of metal fume exposure, although it has also been suggested that asthma may develop as a result of exposure to contaminants generated from painted metals. To determine whether welding fumes contain irritating and sensitizing anhydrides, air samples were collected during the repair welding of forest harvesters, which were painted with chlorinated polyester paint. Samples were collected with an assembly of a spiral glass trap inserted between a filter holder with a Teflon filter and a Tenax sampling tube. Sample analyses were with GC-MS and GC-ECD. Sensitizing anhydrides released from the paint into the air were primarily chlorendic anhydride (<2-44 microg/m(3)) and phthalic anhydride (11-21 microg/m(3)). Hydrogen chloride (HCl) and hexachlorocyclopentadiene were also found. Airborne HCl was measured with Dräger tubes. Since paint films are electrical insulators, the film around the welding seam was removed before arc welding. Removal of paint with an abrasive wheel caused the least exposure to HCl (<0.5 ppm) in contrast to burning with a gas fuel torch, (HCl approximately 5 ppm). HCl exposure was the highest (<0.5-20 ppm) during welding. It is recommended that dry paint coating be removed from an area around the seam with an abrasive wheel, not by burning, before welding.
Characteristics of Pressure Sensitive Paint Intrusiveness Effects on Aerodynamic Data
NASA Technical Reports Server (NTRS)
Amer, Tahani R.; Liu, Tianshu; Oglesby, Donald M.
2001-01-01
One effect of using pressure sensitive paint (PSP) is the potential intrusiveness to the aerodynamic characteristics of the model. The paint thickness and roughness may affect the pressure distribution, and therefore, the forces and moments on the wind tunnel model. A study of these potential intrusive effects was carried out at NASA Langley Research Center where a series of wind tunnel tests were conducted using the Modem Design of Experiments (MDOE) test approach. The PSP effects on the integrated forces were measured on two different models at different test conditions in both the Low Turbulence Pressure Tunnel (LTPT) and the Unitary Plan Wind Tunnel (UPWT) at Langley. The paint effect was found to be very small over a range of Reynolds numbers, Mach numbers and angles of attack. This is due to the very low surface roughness of the painted surface. The surface roughness, after applying the NASA Langley developed PSP, was lower than that of the clean wing. However, the PSP coating had a localized effects on the pressure taps, which leads to an appreciable decrease in the pressure tap reading.
Detection Angle Calibration of Pressure-Sensitive Paints
NASA Technical Reports Server (NTRS)
Bencic, Timothy J.
2000-01-01
Uses of the pressure-sensitive paint (PSP) techniques in areas other than external aerodynamics continue to expand. The NASA Glenn Research Center has become a leader in the application of the global technique to non-conventional aeropropulsion applications including turbomachinery testing. The use of the global PSP technique in turbomachinery applications often requires detection of the luminescent paint in confined areas. With the limited viewing usually available, highly oblique illumination and detection angles are common in the confined areas in these applications. This paper will describe the results of pressure, viewing and excitation angle dependence calibrations using three popular PSP formulations to get a better understanding of the errors associated with these non-traditional views.
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Leighty, Bradley; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, Jim; Forlines, Alan; Goss, Larry P.; Gregory, James W.; Juliano, Thomas J.
2012-01-01
This paper will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. Preliminary results show that the PSP agrees both qualitatively and quantitatively with both the expected results as well as with the pressure taps. Several areas of improvement have been indentified and are currently being developed.
Differences in reactions to paintings by male and female college students.
Polzella, D J
2000-08-01
38 male and 55 female college students rated digitized color facsimiles of 40 paintings that varied in artistic period (Renaissance, Rococo, Impressionist, Post-Impressionist, 20th Century) and subject matter (portrait, landscape, still life, behavior depiction) on 12 7-point semantic differential scales, e.g., simple-complex. Women judged the content of Rococo and Impressionist paintings as more pleasing than did men and Impressionist paintings evoked greater feelings of pleasure and relaxation among women than among men. In addition, paintings that depicted behaviors evoked more pleasure and alertness among women than among men. The results were interpreted in terms of underlying differences between men and women in perceptual style and emotional sensitivity.
Application of micro-Fourier transform infrared spectroscopy to the examination of paint samples
NASA Astrophysics Data System (ADS)
Zięba-Palus, J.
1999-11-01
The examination and identification of automobile paints is an important problem in road accidents investigations. Since the real sample available is very small, only sensitive microtechniques can be applied. The methods of optical microscopy and micro-Fourier transform infrared spectroscopy (MK-FTIR) supported by scanning electron microscopy together with X-ray microanalysis (SEM-EDX) allow one to carry out the examination of each paint layer without any separation procedure. In this paper an attempt is made to discriminate between different automobile paints of the same colour by the use of these methods for criminalistic investigations.
Pressure and Temperature Sensitive Paint Measurements on Rotors
NASA Technical Reports Server (NTRS)
Sullivan, John
1999-01-01
Luminescent molecular probes imbedded in a polymer binder form a temperature or pressure paint. On excitation by light of the proper wavelength, the luminescence, which is quenched either thermally or by oxygen, is detected by a camera or photodetector. From the detected luminescent intensity, temperature and pressure can be determined. The basic photophysics, calibration, accuracy and time response of luminescent paints is described followed by applications in wind tunnels and in rotating machinery.
NASA Technical Reports Server (NTRS)
1990-01-01
Vadeko International, Inc., Mississauga, Ontario developed for the Canadian National Railways (CN) the Robotic Paint Application System. The robotic paint shop has two parallel paint booths, allowing simultaneous painting of two hopper cars. Each booth has three robots, two that move along wall-mounted rails to spray-paint the exterior, a third that is lowered through a hatch in the railcar's top to paint the interior. A fully computerized system controls the movement of the robots and the painting process. The robots can do in four hours a job that formerly took 32 hours. The robotic system applies a more thorough coating and CN expects that will double the useful life of its hoppers and improve cost efficiency. Human painters no longer have to handle the difficult and hazardous job. CN paint shop employees have been retrained to operate the computer system that controls the robots. In addition to large scale robotic systems, Vadeko International is engaged in such other areas of technology as flexible automation, nuclear maintenance, underwater vehicles, thin film deposition and wide band monitoring.
2013-11-04
coated with enamel paint containing black, blue, red, and yellow pigment. The chemical compositions of the pigments are not known, but they show... enamel paint containing black pigment. VSFS signal intensities, ISFG,, has been normalized to constant incident laser power for each spectra. RDX...surface that has been coated with a 1 mm thick layer of enamel paint containing blue pigment. VSFS signal intensities, ISFG,, has been normalized to
Thermal-leak analyzer for vacuum-jacketed lines
NASA Technical Reports Server (NTRS)
Heisman, R. M.; Iceland, W. F.; Ruppe, E. P.
1978-01-01
Technique involves coating suspected area with water-soluble black paint that gives even, infrared emission. Painted area is warmed with heat gun; an infrared scanner is used to detect cooled spot on jacket exterior. Introduction of atmospheric pressure into jacket intensifies leak jet and improves test sensitivity.
Accelerated bridge paint test program.
DOT National Transportation Integrated Search
2011-07-06
The accelerated bridge paint (AB-Paint) program evaluated a new Sherwin-Williams two-coat, : fast-curing paint system. The system is comprised of an organic zinc-rich primer (SW Corothane I : Galvapac One-Pack Zinc-Rich Primer B65 G11) and a polyurea...
NASA Astrophysics Data System (ADS)
Zhan, L.; Wang, Z.; Zhao, X.; Liu, Z.; Liu, G.
2017-08-01
The painting is one of the most decorative elements of ancient Chinese architecture and it is sensitive to the natural environment. The outdoor painting is very easily to be affected by the natural environment and its color is easily to decay. In order to study the relationship between the painting decay and the physical environment, the two paintings on both east and west inner eaves of Jilan Pavilion beside the Kunming Lake in Summer Palace are taken as the research objects, because these two paintings are painted at the same period but their decay degrees are greatly different. Since 2013, the research group regularly monitors the color decay of these two paintings. Meanwhile, the physical environment around these two paintings has been monitored. Based on the analysis of the monitor data, it can be seen that the illumination is the major factor that causes the decay of the painting. Meanwhile, by using the ECOTECT software to stimulate the light environment around the Jilan Pavilion, it can be seen that it is the mirror reflection of the lake that causes the result that the illumination of the west eave (face east) is stronger than that of the east eave (face west).
NASA Astrophysics Data System (ADS)
Omar, N. M.; Ahmad, A. Hanom
2009-06-01
The coating resistance of the Dammar-based paint system was determined by using Electrochemical Impedance Spectroscopy (EIS), whereas, the corrosion potential analysis was determined by using potential time measurement (PTM) method. Carotenoid pigment obtained from Capsicum Annum (dried chili pepper) was added into the mixture of dammar and acrylic polyol resin and the paint systems were proofed on Aluminium steel Q-panels as a substrate. Result shows that the paint system with a composition of 35% dammar (CD35%) possessed the higher corrosion resistance after 30 days of exposure in 3% NaCl solution for electrochemical impedance spectroscopy and also can withstand the longest time for delimitation protection in PTM analysis. The results prove that the developed organic paint system can improve the electrochemical and corrosion protection properties of a paint system.
Pressure-Sensitive Paint Measurements on Surfaces with Non-Uniform Temperature
NASA Technical Reports Server (NTRS)
Bencic, Timothy J.
1999-01-01
Pressure-sensitive paint (PSP) has become a useful tool to augment conventional pressure taps in measuring the surface pressure distribution of aerodynamic components in wind tunnel testing. While the PSP offers the advantage of a non-intrusive global mapping of the surface pressure, one prominent drawback to the accuracy of this technique is the inherent temperature sensitivity of the coating's luminescent intensity. A typical aerodynamic surface PSP test has relied on the coated surface to be both spatially and temporally isothermal, along with conventional instrumentation for an in situ calibration to generate the highest accuracy pressure mappings. In some tests however, spatial and temporal thermal gradients are generated by the nature of the test as in a blowing jet impinging on a surface. In these cases, the temperature variations on the painted surface must be accounted for in order to yield high accuracy and reliable data. A new temperature correction technique was developed at NASA Lewis to collapse a "family" of PSP calibration curves to a single intensity ratio versus pressure curve. This correction allows a streamlined procedure to be followed whether or not temperature information is used in the data reduction of the PSP. This paper explores the use of conventional instrumentation such as thermocouples and pressure taps along with temperature-sensitive paint (TSP) to correct for the thermal gradients that exist in aeropropulsion PSP tests. Temperature corrected PSP measurements for both a supersonic mixer ejector and jet cavity interaction tests are presented.
Microencapsulation of Corrosion Indicators for Smart Coatings
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.
2011-01-01
A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint
ERIC Educational Resources Information Center
Gardner, Howard E.
Harvard Project Zero provides a series of technical research reports which study artistic creation and comprehension as a means toward better art education. The emphasis of the research is to improve art education through a better psychological understanding of symbol systems and media of art and through better understanding of the perceptual,…
Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krimi, Soufiene; Beigang, René; Klier, Jens
2016-07-11
In this contribution, we present a highly accurate approach for thickness measurements of multi-layered automotive paints using terahertz time domain spectroscopy in reflection geometry. The proposed method combines the benefits of a model-based material parameters extraction method to calibrate the paint coatings, a generalized Rouard's method to simulate the terahertz radiation behavior within arbitrary thin films, and the robustness of a powerful evolutionary optimization algorithm to increase the sensitivity of the minimum thickness measurement limit. Within the framework of this work, a self-calibration model is introduced, which takes into consideration the real industrial challenges such as the effect of wet-on-wetmore » spray in the painting process.« less
NASA Astrophysics Data System (ADS)
Park, Il-Seok; Tiwari, Rashi; Kim, Kwang J.
2008-03-01
In this paper we are reporting a newely developed IPMC fabrication method, "IPMC Paint", which can be directly sprayed onto any complex surface. In order to fabricate the IPMC paint, liquid Nafion TM was used for the ionic conducting polymer instead of the typical film/sheet type Nafion TM. The viscosity of liquid Nafion TM was adjusted by adding Polyvinylpyrrolidone (PVP) to perform spray painting. Modified Nafion was sprayed onto the conducting substrate, Polyfoil TM which acts as base electrode layer. After three times spraying, ionic polymer layer has 45 μm thickness and 10 μm of surface roughness. Sensing tests show that IPMC paint sensor has more sensitivity (+/- 0.06 of producing voltage) than that of the typical IPMC (+/- 0.005 of producing voltage) when dynamic bending with 10 Hz frequency and 1.3 cm of displacement is applied to.
van Faassen, A; Borm, P J
1991-01-01
Water-based construction paints may have beneficial effects toward man's occupational and general environment when compared to traditional paints that contain large amounts of organic solvents. The aim of this study was to describe the health hazards of the application of these alternative paints. The composition of these paints was obtained by a questionnaire survey among the main producers and importers in The Netherlands. Physicochemical parameters and toxicity data of the constituents were used to estimate occupational and environmental health hazards. Mucous membrane of skin irritation and sensitization are predicted to be the most frequently occurring health hazards after contact with these paints during professional or do-it-yourself application. Health hazards from environmental pollution may be irritation of the mucous membranes when the indoor environment is painted and fish mortality due to slowly degradable polyacrylate binders. The health hazards can be reduced by replacing some toxic compounds with less toxic ones and by hygienic (ventilation, skincare, no cleaning of application materials under the tap) measures. PMID:1935844
Overview of paint removal methods
NASA Astrophysics Data System (ADS)
Foster, Terry
1995-04-01
With the introduction of strict environmental regulations governing the use and disposal of methylene chloride and phenols, major components of chemical paint strippers, there have been many new environmentally safe and effective methods of paint removal developed. The new methods developed for removing coatings from aircraft and aircraft components include: mechanical methods using abrasive media such as plastic, wheat starch, walnut shells, ice and dry ice, environmentally safe chemical strippers and paint softeners, and optical methods such as lasers and flash lamps. Each method has its advantages and disadvantages, and some have unique applications. For example, mechanical and abrasive methods can damage sensitive surfaces such as composite materials and strict control of blast parameters and conditions are required. Optical methods can be slow, leaving paint residues, and chemical methods may not remove all of the coating or require special coating formulations to be effective. As an introduction to environmentally safe and effective methods of paint removal, this paper is an overview of the various methods available. The purpose of this overview is to introduce the various paint removal methods available.
Jason, Naveen N; Wang, Stephen J; Bhanushali, Sushrut; Cheng, Wenlong
2016-09-22
This work demonstrates a facile "paint-on" approach to fabricate highly stretchable and highly sensitive strain sensors by combining one-dimensional copper nanowire networks with two-dimensional graphite microflakes. This paint-on approach allows for the fabrication of electronic skin (e-skin) patches which can directly replicate with high fidelity the human skin surface they are on, regardless of the topological complexity. This leads to high accuracy for detecting biometric signals for applications in personalised wearable sensors. The copper nanowires contribute to high stretchability and the graphite flakes offer high sensitivity, and their hybrid coating offers the advantages of both. To understand the topological effects on the sensing performance, we utilized fractal shaped elastomeric substrates and systematically compared their stretchability and sensitivity. We could achieve a high stretchability of up to 600% and a maximum gauge factor of 3000. Our simple yet efficient paint-on approach enabled facile fine-tuning of sensitivity/stretchability simply by adjusting ratios of 1D vs. 2D materials in the hybrid coating, and the topological structural designs. This capability leads to a wide range of biomedical sensors demonstrated here, including pulse sensors, prosthetic hands, and a wireless ankle motion sensor.
Applications of optical coherence tomography in the non-contact assessment of automotive paints
NASA Astrophysics Data System (ADS)
Lawman, Samuel; Zhang, Jinke; Williams, Bryan M.; Zheng, Yalin; Shen, Yao-Chun
2017-06-01
The multiple layer paint systems on modern cars serve two end purposes, they firstly protect against corrosion and secondly give the desired visual appearance. To ensure consistent corrosion protection and appearance, suitable Quality Assurance (QA) measures on the final product are required. Various (layer thickness and consistency, layer composition, flake statistics, surface profile and layer dryness) parameters are of importance, each with specific techniques that can measure one or some of them but no technique that can measure all or most of them. Optical Coherence Tomography (OCT) is a 3D imaging technique with micrometre resolution. Since 2016, OCT measurements of layer thickness and consistency, layer composition fingerprint and flake statistics have been reported. In this paper we demonstrate two more novel applications of OCT to automotive paints. Firstly, we use OCT to quantify unwanted surface texture, which leads to an "orange peel" visual defect. This was done by measuring the surface profiles of automotive paints, with an unoptimised precision of 37 nm over lateral range of 7 mm, to quantify texture of less than 500 nm. Secondly, we demonstrate that OCT can measure how dry a coating layer is by measuring how fast it is still shrinking quasiinstantaneously, using Fourier phase sensitivity.
Art Expertise Reduces Influence of Visual Salience on Fixation in Viewing Abstract-Paintings
Koide, Naoko; Kubo, Takatomi; Nishida, Satoshi; Shibata, Tomohiro; Ikeda, Kazushi
2015-01-01
When viewing a painting, artists perceive more information from the painting on the basis of their experience and knowledge than art novices do. This difference can be reflected in eye scan paths during viewing of paintings. Distributions of scan paths of artists are different from those of novices even when the paintings contain no figurative object (i.e. abstract paintings). There are two possible explanations for this difference of scan paths. One is that artists have high sensitivity to high-level features such as textures and composition of colors and therefore their fixations are more driven by such features compared with novices. The other is that fixations of artists are more attracted by salient features than those of novices and the fixations are driven by low-level features. To test these, we measured eye fixations of artists and novices during the free viewing of various abstract paintings and compared the distribution of their fixations for each painting with a topological attentional map that quantifies the conspicuity of low-level features in the painting (i.e. saliency map). We found that the fixation distribution of artists was more distinguishable from the saliency map than that of novices. This difference indicates that fixations of artists are less driven by low-level features than those of novices. Our result suggests that artists may extract visual information from paintings based on high-level features. This ability of artists may be associated with artists’ deep aesthetic appreciation of paintings. PMID:25658327
Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L
2013-08-21
Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.
Investigating the Photocatalytic Degradation of Oil Paint using ATR-IR and AFM-IR.
Morsch, Suzanne; van Driel, Birgit A; van den Berg, Klaas Jan; Dik, Joris
2017-03-22
As linseed oil has a longstanding and continuing history of use as a binder in artistic paints, developing an understanding of its degradation mechanism is critical to conservation efforts. At present, little can be done to detect the early stages of oil paint deterioration due to the complex chemical composition of degrading paints. In this work, we use advanced infrared analysis techniques to investigate the UV-induced deterioration of model linseed oil paints in detail. Subdiffraction limit infrared analysis (AFM-IR) is applied to identify and map accelerated degradation in the presence of two different grades of titanium white pigment particles (rutile or anatase TiO 2 ). Differentiation between the degradation of these two formulations demonstrates the sensitivity of this approach. The identification of characteristic peaks and transient species residing at the paint surface allows infrared absorbance peaks related to degradation deeper in the film to be extricated from conventional ATR-FTIR spectra, potentially opening up a new approach to degradation monitoring.
Instability and Transition on the HIFiRE-5 in a Mach-6 Quiet Tunnel
2010-08-01
sensitive paint images were recorded on Tek- tronix oscilloscopes in Hi-Res mode. When an oscilloscope is set to Hi-Res mode, it samples at its highest rate...insulators. The profilometer found root- mean-square surface finishes of 0.17–0.42 µm for the final TSP application on the HIFiRE-5. All TSP images reported...of final TSP application on spray-paint insulator 49 Instead, the decision was made to paint only the aluminum frustum (and its in- serts), leaving
Optical measurements of paintings and the creation of an artwork database for authenticity
Hwang, Seonhee; Song, Hyerin; Cho, Soon-Woo; Kim, Chang Eun; Kim, Chang-Seok; Kim, Kyujung
2017-01-01
Paintings have high cultural and commercial value, so that needs to be preserved. Many techniques have been attempted to analyze properties of paintings, including X-ray analysis and optical coherence tomography (OCT) methods, and enable conservation of paintings from forgeries. In this paper, we suggest a simple and accurate optical analysis system to protect them from counterfeit which is comprised of fiber optics reflectance spectroscopy (FORS) and line laser-based topographic analysis. The system is designed to fully cover the whole area of paintings regardless of its size for the accurate analysis. For additional assessments, a line laser-based high resolved OCT was utilized. Some forgeries were created by the experts from the three different styles of genuine paintings for the experiments. After measuring surface properties of paintings, we could observe the results from the genuine works and the forgeries have the distinctive characteristics. The forgeries could be distinguished maximally 76.5% with obtained RGB spectra by FORS and 100% by topographic analysis. Through the several executions, the reliability of the system was confirmed. We could verify that the measurement system is worthwhile for the conservation of the valuable paintings. To store the surface information of the paintings in micron scale, we created a numerical database. Consequently, we secured the databases of three different famous Korean paintings for accurate authenticity. PMID:28151981
Optical measurements of paintings and the creation of an artwork database for authenticity.
Hwang, Seonhee; Song, Hyerin; Cho, Soon-Woo; Kim, Chang Eun; Kim, Chang-Seok; Kim, Kyujung
2017-01-01
Paintings have high cultural and commercial value, so that needs to be preserved. Many techniques have been attempted to analyze properties of paintings, including X-ray analysis and optical coherence tomography (OCT) methods, and enable conservation of paintings from forgeries. In this paper, we suggest a simple and accurate optical analysis system to protect them from counterfeit which is comprised of fiber optics reflectance spectroscopy (FORS) and line laser-based topographic analysis. The system is designed to fully cover the whole area of paintings regardless of its size for the accurate analysis. For additional assessments, a line laser-based high resolved OCT was utilized. Some forgeries were created by the experts from the three different styles of genuine paintings for the experiments. After measuring surface properties of paintings, we could observe the results from the genuine works and the forgeries have the distinctive characteristics. The forgeries could be distinguished maximally 76.5% with obtained RGB spectra by FORS and 100% by topographic analysis. Through the several executions, the reliability of the system was confirmed. We could verify that the measurement system is worthwhile for the conservation of the valuable paintings. To store the surface information of the paintings in micron scale, we created a numerical database. Consequently, we secured the databases of three different famous Korean paintings for accurate authenticity.
Anti-Icing Chitin Coating System Development
1990-10-30
medium. Second, antifouling paints must inhibit barnacles, algae and fungi destruction. Current paints contain TBT , cuprous oxide, mercury, water-soluble... TBT ) copolymer (Intersmooth SPC) erodes slowly but requires expensive hull preparation. Courtauld, Jotun, Kansai Paint and Chugoku Marine Paint...manufacturer TBT -free ablative paints. These paints, however, contain cuprous oxide, mercury, water-soluble acrylic organotin polymer or polysiloxane
46 CFR 132.310 - Fixed fire-extinguishing systems for paint lockers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Fixed fire-extinguishing systems for paint lockers. 132... lockers. (a) Except as provided by paragraph (b) of this section, a fixed gaseous fire-extinguishing system or another approved fixed fire-extinguishing system must be installed in each paint locker. (b) No...
46 CFR 132.310 - Fixed fire-extinguishing systems for paint lockers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fixed fire-extinguishing systems for paint lockers. 132... lockers. (a) Except as provided by paragraph (b) of this section, a fixed gaseous fire-extinguishing system or another approved fixed fire-extinguishing system must be installed in each paint locker. (b) No...
46 CFR 132.310 - Fixed fire-extinguishing systems for paint lockers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Fixed fire-extinguishing systems for paint lockers. 132... lockers. (a) Except as provided by paragraph (b) of this section, a fixed gaseous fire-extinguishing system or another approved fixed fire-extinguishing system must be installed in each paint locker. (b) No...
46 CFR 132.310 - Fixed fire-extinguishing systems for paint lockers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Fixed fire-extinguishing systems for paint lockers. 132... lockers. (a) Except as provided by paragraph (b) of this section, a fixed gaseous fire-extinguishing system or another approved fixed fire-extinguishing system must be installed in each paint locker. (b) No...
46 CFR 132.310 - Fixed fire-extinguishing systems for paint lockers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Fixed fire-extinguishing systems for paint lockers. 132... lockers. (a) Except as provided by paragraph (b) of this section, a fixed gaseous fire-extinguishing system or another approved fixed fire-extinguishing system must be installed in each paint locker. (b) No...
Defensive Physiological Reactions to Rejection
Gyurak, Anett; Ayduk, Özlem
2014-01-01
We examined the hypothesis that rejection automatically elicits defensive physiological reactions in people with low self-esteem (SE) but that attentional control moderates this effect. Undergraduates (N = 67) completed questionnaire measures of SE and attentional control. Their eye-blink responses to startle probes were measured while they viewed paintings related to rejection and acceptance themes. The stimuli also included positive-, negative-, and neutral-valence control paintings unrelated to rejection. As predicted, compared with people high in SE, those low in SE showed stronger startle eye-blink responses to paintings related to rejection, but not to negative paintings. Paintings related to acceptance did not attenuate their physiological reactivity. Furthermore, attentional control moderated their sensitivity to rejection, such that low SE was related to greater eye-blink responses to rejection only among individuals who were low in attentional control. Implications of the role of attentional control as a top-down process regulating emotional reactivity in people with low SE are discussed. PMID:17894606
Development of Bend Sensor for Catheter Tip
NASA Astrophysics Data System (ADS)
Nagano, Yoshitaka; Sano, Akihito; Fujimoto, Hideo
Recently, a minimally invasive surgery which makes the best use of the catheter has been becoming more popular. In endovascular coil embolization for a cerebral aneurysm, the observation of the catheter's painting phenomenon is very important to execute the appropriate manipulation of the delivery wire and the catheter. In this study, the internal bend sensor which consists of at least two bending enhanced plastic optical fibers was developed in order to measure the curvature of the catheter tip. Consequently, the painting could be more sensitively detected in the neighborhood of the aneurysm. In this paper, the basic characteristics of the developed sensor system are described and its usefulness is confirmed from the comparison of the insertion force of delivery wire and the curvature of catheter tip in the experiment of coil embolization.
Using activity-based monitoring systems to detect dairy cows in oestrus: a field evaluation.
Dela Rue, B T; Kamphuis, C; Burke, C R; Jago, J G
2014-03-01
To assess the use and performance of activity-based oestrus detection systems (ODS) on two commercial dairy farms using a gold standard based on profiles of concentrations of progesterone in milk, artificial insemination (AI) records and pregnancy diagnosis results. Two activity-based ODS were evaluated in mature cows on two large pasture-grazed dairy farms (>500 cows) over the first 3 weeks of AI. Farm 1 (n=286 cows) used a leg-mounted device and cows were drafted automatically based on activity alerts. Decisions regarding AI were then made based on tail-paint and cow history for these cows. Farm 2 (n=345 cows) used a collar-mounted device and activity alerts were used in conjunction with other information, before the farmer manually selected cows for AI. The gold standard to define the timing of oestrus was based on profiles of concentrations of progesterone in milk measured twice-weekly, used in conjunction with AI records and pregnancy diagnosis results. Sensitivity and positive predictive value (PPV) were calculated for the activity-based ODS data only, and then for AI decisions, against the gold standard. Farm 1 had 195 confirmed oestrus events and 209 activity alerts were generated. The sensitivity of the activity-based ODS was 89.2% with a PPV of 83.3%. Using tail-paint and cow history to confirm activity-based alerts 175 cows were inseminated, resulting in a sensitivity of 89.2% and an improved PPV of 99.4%. Farm 2 had 343 confirmed oestrus events, and 726 alerts were generated by the activity-based ODS, giving a sensitivity of 69.7% with a PPV of 32.9%. A total of 386 cows had AI records, giving a sensitivity of 81.3% and PPV of 72.3%. The two activity-based ODS were used differently on-farm; one automatically selecting cows and the other supporting the manual selection of cows in oestrus. Only one achieved a performance level suggested to be acceptable as a stand-alone ODS. Use of additional tools, such as observation of tail paint to confirm activity-based oestrus alerts before AI, substantially improved the PPV. A well performing activity-based ODS can be a valuable tool in identifying cows in oestrus prior to visual confirmation of oestrus status. However the performance of these ODS technologies varies considerably.
NASA Astrophysics Data System (ADS)
Lash, E. Lara; Schmisseur, John
2017-11-01
Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.
Water-Based Pressure Sensitive Paint
NASA Technical Reports Server (NTRS)
Oglesby, Donald M.; Ingram, JoAnne L.; Jordan, Jeffrey D.; Watkins, A. Neal; Leighty, Bradley D.
2004-01-01
Preparation and performance of a water-based pressure sensitive paint (PSP) is described. A water emulsion of an oxygen permeable polymer and a platinum porphyrin type luminescent compound were dispersed in a water matrix to produce a PSP that performs well without the use of volatile, toxic solvents. The primary advantages of this PSP are reduced contamination of wind tunnels in which it is used, lower health risk to its users, and easier cleanup and disposal. This also represents a cost reduction by eliminating the need for elaborate ventilation and user protection during application. The water-based PSP described has all the characteristics associated with water-based paints (low toxicity, very low volatile organic chemicals, and easy water cleanup) but also has high performance as a global pressure sensor for PSP measurements in wind tunnels. The use of a water-based PSP virtually eliminates the toxic fumes associated with the application of PSPs to a model in wind tunnels.
2010-12-09
A T34-C aircraft reflects the large multi-paned windows on the Hangar doors. When NASA GRC obtained this T-34C from the Navy it was painted in ‚Äúthrowback‚Äù paint schemes from an earlier time in celebration of the 100th birthday of Naval Aviation. NASA kept it in the original paint job for posterity. This T-34C airplane will be GRCs surrogate aircraft for Unmanned Aircraft Systems in the National Airspace System aeronautics initiative. A T34-C aircraft reflects the large multi-paned windows on the Hangar doors. When NASA GRC obtained this T-34C from the Navy it was painted in “throwback” paint schemes from an earlier time in celebration of the 100th birthday of Naval Aviation. NASA kept it in the original paint job for posterity. This T-34C airplane will be GRCs surrogate aircraft for Unmanned Aircraft Systems in the National Airspace System aeronautics initiative.
Automated thermal mapping techniques using chromatic image analysis
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
1989-01-01
Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.
2011-01-01
This report will serve to present results of a test of the pressure sensitive paint (PSP) technique on the Common Research Model (CRM). This test was conducted at the National Transonic Facility (NTF) at NASA Langley Research Center. PSP data was collected on several surfaces with the tunnel operating in both cryogenic mode and standard air mode. This report will also outline lessons learned from the test as well as possible approaches to challenges faced in the test that can be applied to later entries.
Replacement of chromates in paints and corrosion protection systems [Stage 1
DOT National Transportation Integrated Search
2004-05-01
This technical report presents the first stage results of a multi-year project to develop chromate-free paints and corrosion protection systems. Chromate coatings and chromate-containing paints are very effective in providing corrosion resistance and...
Replacement of chromates in paints and corrosion protection systems [Stage 2
DOT National Transportation Integrated Search
2004-05-01
This technical report presents the second stage results of a multi-year project to develop chromate-free paints and corrosion protection systems. Chromate-containing coatings and paints are very effective in providing corrosion resistance and are wid...
Corrosion-Indicating Pigment And Probes
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Bugga, Ratnakumar V.; Attia, Alan I.
1993-01-01
Proposed hydrogen-sensitive paint for metal structures changes color at onset of corrosion, involving emission of hydrogen as result of electrochemical reactions. Pigment of suitable paint includes rhodium compound RhCl(PPh3)3, known as Wilkinson's catalyst. As coating on critical parts of such structures as bridges and aircraft, paint gives early warning of corrosion, and parts thus repaired or replaced before failing catastrophically. Reveals corrosion before it becomes visible to eye. Inspection for changes in color not ordinarily necessitate removal of structure from service, and costs less than inspection by x-ray or thermal neutron radiography, ultrasonic, eddy-current, or acoustic-emission techniques.
Robotic Laser Coating Removal System
2008-07-01
Materiel Command IRR Internal Rate of Return JTP Joint Test Protocol JTR Joint Test Report LARPS Large Area Robotic Paint Stripping LASER Light...use of laser paint stripping systems is applicable to depainting activities on large off-aircraft components and weapons systems for the Air Force...The use of laser paint stripping systems is applicable to depainting activities on large off-aircraft components and weapons systems for the Air
Paint for detection of corrosion and warning of chemical and radiological attack
Farmer, Joseph C [Tracy, CA
2010-08-24
A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.
Nanoparticles in paints: A new strategy to protect façades and surfaces?
NASA Astrophysics Data System (ADS)
Kaiser, J.-P.; Diener, L.; Wick, P.
2013-04-01
The paint and lacquer industries consider the use of nanosilver, photocatalytic active nanotitanium dioxide or nanosilica dioxide as additives for the protection of surfaces, against microbial, physical and chemical deterioration, as alternative to conventional organic based additives. Nowadays it is not clear, if nanoparticles in paints will achieve the proposed effects, since there are no long time studies available. Another fact is that the potential risks of nanoparticles for the environment and the human health is still controversial discussed. The most sensitive entry port for nanomaterials is the lung. However other human organs/systems may also be affected by nanoparticles. Therefore the aim of the study was to assess the potential hazard effects of the three most interesting particles for paints on the gastro-intestinal tract and the immune system in vitro. In our study we could show that: i) Nanosilver (TEM size 25 nm) was far less toxic than silver ions of comparable concentrations tested with cells representing the gastro-intestinal tract (CaCo-2) and immune cells (Jurkat, T-lymphocytes). A significant amount of necrotic cells could be observed after exposure of CaCo-2 cells to 27 μg/ml nanosilver for 48 h. ii) Nanotitanium dioxide can adsorb UV-light and in the presence of water hydroxyl radicals are generated photocatalytically. The exposure of CaCo-2 cells and Jurkat cells to photocatalytically active nanotitanium dioxide (Hombikat UV 100, TEM-size 15 nm) under dark conditions, didn't affected the cells significantly. However, the cells were able to incorporate nanotitanium dioxide, especially when cells were exposed to higher concentrations. iii) Nanosilica dioxide improves the properties of the paints by increasing the water repellence. When cells were exposed to 243 μg/ml nanosilica dioxide (TEM-size 19 nm) for up to 48 h no cytotoxic effect could be observed.
Farmer, Joseph C [Tracy, CA
2012-03-13
A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.
Surface with two paint strips for detection and warning of chemical warfare and radiological agents
Farmer, Joseph C.
2013-04-02
A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.
Electronic leaf wetness duration sensor: why it should be painted.
Sentelhas, P C; Monteiro, J E B A; Gillespie, T J
2004-05-01
The purpose of this study was to compare and evaluate the performance of electronic leaf wetness duration (LWD) sensors in measuring LWD in a cotton crop canopy when unpainted and painted sensors were used. LWD was measured with flat, printed-circuit wetness sensors, and the data were divided into two periods of 24 days: from 18 December 2001 to 10 January 2002, when the sensors were unpainted, and from 20 January to 13 February 2002, when the sensors were painted with white latex paint (two coats of paint). The data analysis included evaluating the coefficient of variation (CV%) among the six sensors for each day, and the relationship between the measured LWD (mean for the six sensors) and the number of hours with dew point depression under 2 degrees C, used as an indicator of dew presence. The results showed that the painting markedly reduced the CV% values. For the unpainted sensors the CV% was on average 67% against 9% for painted sensors. For the days without rainfall this reduction was greater. Comparing the sensor measurements to another estimator of LWD, in this case the number of hours with dew point depression under 2 degrees C, it was also observed that painting improved not only the precision of the sensors but also their sensitivity, because it increases the ability of the sensor to detect and measure the wetness promoted by small water droplets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soko, W.A.; Biaecka, B.
1998-12-31
In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of thesemore » tests are presented in the paper.« less
Measurement of unsteady surface pressure on rotor blades of fans by pressure-sensitive paint
NASA Astrophysics Data System (ADS)
Yokoyama, Hiroshi; Miura, Kouhei; Iida, Akiyoshi
2017-01-01
To clarify the unsteady pressure distributions on the rotor blades of an axial fan, a pressure-sensitive paint (PSP) technique was used. To capture the image of the rotating fan as a static image, an optical derotator method with a dove prism was adopted. It was confirmed by preliminary experiments with a resonator and a speaker that the pressure fluctuations with 347 Hz can be measured by the present PSP. The measured mean pressure distributions were compared with the predicted results based on large-eddy simulations. The measured instantaneous surface pressure is instrumental to identify acoustic source of fan noise in the design stage.
Self-Expression or Teacher Influence: The Shaw System of Finger-Painting.
ERIC Educational Resources Information Center
Stankiewicz, Mary Ann
1984-01-01
Finger painting is often regarded as the epitome of free expression for children. However, a careful review of the history of Ruth Shaw's finger-painting system reveals that it was dominated by specific techniques and stylistic conventions taught without a critical understanding of art history or appreciation. (IS)
Automated Laser Paint Stripping (ALPS) update
NASA Astrophysics Data System (ADS)
Lovoi, Paul
1993-03-01
To date, the DoD has played a major role in funding a number of paint stripping programs. Some technologies have proven less effective than contemplated. Others are still in the validation phase. Paint stripping is one of the hottest issues being addressed by the finishing industry since the Environmental Protection Agency (EPA) has mandated that chemical stripping using methylene chloride/phenolic type strippers be stopped. The DoD and commercial aircraft companies are hard-pressed to find an alternative. Automated laser paint stripping has been identified as a technique for removing coatings from aircraft surfaces. International Technical Associates (InTA) was awarded a Navy contract for an automated laser paint stripping system (ALPS) that will remove paint from metallic and composite substrates. For the program, which will validate laser paint stripping, InTA will design, build, test, and install a system for fighter-sized aircraft at both the Norfolk and North Island (San Diego) Aviation Depots.
NASA Astrophysics Data System (ADS)
Melis, Marcello; Miccoli, Matteo; Quarta, Donato
2013-05-01
A couple of years ago we proposed, in this same session, an extension to the standard colorimetry (CIE '31) that we called Hypercolorimetry. It was based on an even sampling of the 300-1000nm wavelength range, with the definition of 7 hypercolor matching functions optimally shaped to minimize the methamerism. Since then we consolidated the approach through a large number of multispectral analysis and specialized the system to the non invasive diagnosis for paintings and frescos. In this paper we describe the whole process, from the multispectral image acquisition to the final 7 bands computation and we show the results on paintings from Masters of the colour. We describe and propose in this paper a systematic approach to the non invasive diagnosis that is able to change a subjective analysis into a repeatable measure indipendent from the specific lighting conditions and from the specific acquisition system. Along with the Hypercolorimetry and its consolidation in the field of non invasive diagnosis, we developed also a standard spectral reflectance database of pure pigments and pigments painted with different bindings. As we will see, this database could be compared to the reflectances of the painting to help the diagnostician in identifing the proper matter. We used a Nikon D800FR (Full Range) camera. This is a 36megapixel reflex camera modified under a Nikon/Profilocolore common project, to achieve a 300-1000nm range sensitivity. The large amount of data allowed us to perform very accurate pixels comparisions, based on their spectral reflectance. All the original pigments and their binding have been provided by the Opificio delle Pietre Dure, Firenze, Italy, while the analyzed masterpieces belong to the collection of the Pinacoteca Nazionale of Bologna, Italy.
48 CFR 1436.570 - Prohibition against use of lead-based paint.
Code of Federal Regulations, 2012 CFR
2012-10-01
... lead-based paint. 1436.570 Section 1436.570 Federal Acquisition Regulations System DEPARTMENT OF THE... 1436.570 Prohibition against use of lead-based paint. (a) Definitions. As used in this section... of Lead-Based Paint, in solicitations and contracts when construction of residential structures or...
48 CFR 1436.570 - Prohibition against use of lead-based paint.
Code of Federal Regulations, 2014 CFR
2014-10-01
... lead-based paint. 1436.570 Section 1436.570 Federal Acquisition Regulations System DEPARTMENT OF THE... 1436.570 Prohibition against use of lead-based paint. (a) Definitions. As used in this section... of Lead-Based Paint, in solicitations and contracts when construction of residential structures or...
48 CFR 1436.570 - Prohibition against use of lead-based paint.
Code of Federal Regulations, 2013 CFR
2013-10-01
... lead-based paint. 1436.570 Section 1436.570 Federal Acquisition Regulations System DEPARTMENT OF THE... 1436.570 Prohibition against use of lead-based paint. (a) Definitions. As used in this section... of Lead-Based Paint, in solicitations and contracts when construction of residential structures or...
48 CFR 1436.570 - Prohibition against use of lead-based paint.
Code of Federal Regulations, 2011 CFR
2011-10-01
... lead-based paint. 1436.570 Section 1436.570 Federal Acquisition Regulations System DEPARTMENT OF THE... 1436.570 Prohibition against use of lead-based paint. (a) Definitions. As used in this section... of Lead-Based Paint, in solicitations and contracts when construction of residential structures or...
Recent studies of laser science in paintings conservation and research.
Pouli, Paraskevi; Selimis, Alexandros; Georgiou, Savas; Fotakis, Costas
2010-06-15
The removal of aged and deteriorated molecular overlayers from the surface of paintings is a delicate and critical intervention in Cultural Heritage (CH) conservation. This irreversible action gets particularly complicated given the multitude of materials that may be present within a painted work of art (often in ultrathin layers or traces), as well as the exceptional sensitivity of the original surfaces to environmental conditions such as heat, light, and so on. Lasers hold an important role among the available cleaning methodologies, as they enable high control and accuracy, material selectivity, and immediate feedback. Still, prior to their implementation, it is imperative to optimize the cleaning parameters, so to ensure that any potential implications to the remaining materials are minimal and well understood. Toward this aim, research at IESL-FORTH is focused on both refining and continuously updating the laser-cleaning protocols (by introducing novel laser technologies into the field, i.e., ultrashort laser pulses), as well as on investigating and studying the nature and extent of laser-induced physicochemical alterations to the involved materials. In this Account, extended work for the understanding of ultraviolet (UV) laser ablation of polymers is presented. Emphasis is placed on the use of model systems (polymers doped with chromophores of known photochemistry) to examine the in-depth laser-induced modifications at the processed surfaces and thus to illustrate the dependence of their nature and extent on laser parameters and material properties. Furthermore, studies for the potential use of femtosecond UV pulses to overcome certain limitations involved with the nanosecond ablation of molecular overlayers from CH surfaces are highlighted. In particular, it is demonstrated that in the femtosecond regime any chemical modifications are, qualitatively and quantitatively, highly defined, limited and nearly independent of the material properties, such as the absorptivity and the degree of polymerization/molecular weight. Thus, they can be highly potent in the treatment of molecular substrates, enabling new material processing schemes that have not been possible with nanosecond laser technology, as for example, processing of ultrathin varnish layers. Finally, a sensitive indicator is introduced to elucidate the extent of any photochemical or structural modification induced at the substrate on the process of the laser-assisted removal of overpaints. A realistic scenario of an overlayered modern painting is simulated by a sensitive polymer film covered with acrylic paint. The indicator is doped with photosensitizers of known photochemistry and strong fluorescence emission, which allow the employment of laser induced fluorescence (LIF) for the detection of any chemical modifications generated into the substrate during laser cleaning. In addition, nonlinear microscopy techniques are successfully employed to examine the extent of these modifications. The suggested methodology is proven to reliably and accurately detect potential changes, and thus, it can serve as a monitoring tool to fine-tune the cleaning protocol and safeguard the original painting.
Surface Protection Study for Navy Projectiles,
1997-01-01
an aluniinized-phenolic, an inorganic zinc, a two-part epoxy, a silicon-oxide, and an alkyd paint system as control. The main purpose was to...polyester, nylon, metallic-ceramic, aluminized-phenolic, inorganic zinc, silicon-oxide, alkyd paint system , corrosion resistance, abrasion resistance...environmental exposure. Acrylics and epoxies are commonly used paint binder systems which can be made water soluble for E-Coat applications. An epoxy E-Coat
Colombani, Juliette; Chauvet, Elodie; Amat, Sandrine; Dupuy, Nathalie; Gigmes, Didier
2017-04-01
The effects of radiation on polymeric materials are a topic of concern in a wide range of industries including the sterilization, and the nuclear power industry. While much work has concentrated on systems like polyolefins that are radiation sterilized, some work has been done on epoxy systems. The epoxy system studied is an epoxy/amine paint which is representative of the paint that covers the inner surfaces of the French nuclear reactor containment buildings. In case of a severe accident on a Nuclear Power Plant, fission products can be released from the nuclear fuel to the reactor containment building. Among them, volatile iodine (I 2 ) can be produced and can interact with the epoxy-paint. This paint is also subjected to gamma radiation damages (due to the high dose in the containment coming from radionuclides released from the fuel). So the epoxy-paint studied was exposed to gamma radiation under air atmosphere after being loaded with I 2 or not. The aim of this study is to characterize by FTIR spectroscopy the iodine-paint interactions, then to identify the radiation damages on the epoxy-paint, and to check their effects on these iodine-paint interactions. This work shows the potential of multi-block analysis method (ANOVA-PCA and COMDIM = AComDim) for such a study as it allows to identify the nature of iodine/epoxy-paint interactions and to characterize the gamma radiation damages on the epoxy-paint. AComDim method conduces to the extraction of Common Components to different tables and highlights factors of influence and their interactions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Tong; Zhu, Yufang; Fienko, Udo; Yuanhua, Xie; Kuo, Zhang
2017-01-01
A multilevel contact oxidation system was applied in a pilot-scale experiment to treat the automobile painting wastewater, which had poor biodegradability and contained high concentration of Chemical Oxygen Demand (COD). The wastewater used for this experiment study was the actual painting wastewater which had been pre-treated by the physic-chemical process, and its Biological Oxygen Demand (BOD5)/COD was less than 0.1,COD concentration was 800∼1500mg/L. The results showed that the multilevel contact oxidation system could efficiently degrade the COD of the painting wastewater. When the experimental system kept stable operation, the total removal rate of COD and suspended solid (SS) were 84% and 82.5% respectively with the Hydraulic Retention Time (HRT) of 8 hours. Meanwhile, this system had a strong ability to resist the impact of COD concentration change. The COD concentration of final treated wastewater was less than 500 mg/L, which could reach the factory discharge requirement for the paint shop. Besides, this system with simple structure was able to reduce the excess sludge production greatly, which would reduce much cost for the treatment of painting wastewater.
Laboratory evaluation of a prospective remediation method for PCB-contaminated paint
2014-01-01
Background Paint laden with polychlorinated biphenyls (PCBs) often acts as a point source for environmental contamination. It is advantageous to address contaminated paint before the PCBs transport to surrounding media; however, current disposal methods of painted material introduce a variety of complications. Previous work demonstrates that PCBs can be broken down at ambient temperatures and pressures through a degradation process involving magnesium metal and acidified ethanol. This report is an extension of that work by describing the development of a delivery system for said reaction in preparation for a field test. Two treatment options including the Activated Metal Treatment System (AMTS) and the Non-Metal Treatment System (NMTS) remove and degrade PCBs from painted surfaces. Findings AMTS decreased the Aroclor® concentration of a solution by more than 97% within 120 minutes and the Aroclor® concentration of industrial paint chips by up to 98% over three weeks. After removing up to 76% of PCBs on a painted surface after seven days, NMTS also removed trace amounts of PCBs in the paint’s concrete substrate. The evaporation rate of the solvent (ethanol) from the treatment system was reduced when the application area was increased. The solvent system’s ability to remove more than 90% of PCBs was maintained after losing 36% of its mass to solvent evaporation. Conclusions The delivery systems, AMTS and NMTS, are able to support the hydrodechlorination reaction necessary for PCB degradation and are therefore attractive options for further studies regarding the remediation of contaminated painted surfaces. PMID:24602329
NASA Astrophysics Data System (ADS)
Valenzuela, Victor Hugo
Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify variability of the PREDICTED to OBSERVED ozone concentrations of both BASELINE model and simulations with modified emissions assessed by the sensitivity analysis. All simulations were found to vary within acceptable ranges of these two criteria variables. Simulation results indicate ozone formation in the PdN region is VOC-limited. Under VOC-limited conditions, modifications to NOx emissions do not produce a marked increase or decrease in ozone concentrations. Modifications to VOC emissions generated the highest variability in ozone concentrations. Increasing VOC emissions by 75% produced results which minimized model bias and error when comparing PREDICTED and OBSERVED ozone concentrations. Increasing VOC emissions by 75% either alone or in combination with a 75% increase in NOx emissions generated PREDICTED ozone concentrations very near to OBSERVED ozone. By evaluating the changes in ambient ozone concentrations through photochemical modeling, air quality planners may identify the most efficient or effective VOC emissions control strategies for area sources. Among the strategies to achieve emissions reductions are installation of gasoline vapor recovery systems, replacing high-pressure low-volume surface coating paint spray guns with high-volume low-pressure spray paint guns, requiring emissions control booths for surface coating operations as well as undertaking solvent management practices, requiring the sale of low VOC paint solvents in the surface-coating industry, and requiring low-VOC solvents in the dry cleaning industry. Other strategies to reduce VOC emissions include initiating Eco-Driving strategies to reduce fuel consumption from mobile sources and minimize vehicle idling at the international ports of entry by reducing bridge wait times. This dissertation depicts a tool for evaluating impacts of emissions on regional air quality by addressing the highly unresolved fugitive emissions in the Paso del Norte region. It provides a protocol for decision makers to assess the effects of various emission control strategies in the region. Impacts of specific source categories such as the international ports of entry, gasoline stations, paint body shops, truck stops, and military installations on the regional air quality can be easily and systematically addressed in a timely manner in the future.
46 CFR 111.105-43 - Paint stowage or mixing spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Paint stowage or mixing spaces. 111.105-43 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-43 Paint stowage or mixing spaces. A space for the stowage or mixing of paint must not have any electric equipment, except: (a) Intrinsically...
46 CFR 111.105-43 - Paint stowage or mixing spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Paint stowage or mixing spaces. 111.105-43 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-43 Paint stowage or mixing spaces. A space for the stowage or mixing of paint must not have any electric equipment, except: (a) Intrinsically...
46 CFR 111.105-43 - Paint stowage or mixing spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Paint stowage or mixing spaces. 111.105-43 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-43 Paint stowage or mixing spaces. A space for the stowage or mixing of paint must not have any electric equipment, except: (a) Intrinsically...
46 CFR 111.105-43 - Paint stowage or mixing spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Paint stowage or mixing spaces. 111.105-43 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-43 Paint stowage or mixing spaces. A space for the stowage or mixing of paint must not have any electric equipment, except: (a) Intrinsically...
46 CFR 111.105-43 - Paint stowage or mixing spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Paint stowage or mixing spaces. 111.105-43 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-43 Paint stowage or mixing spaces. A space for the stowage or mixing of paint must not have any electric equipment, except: (a) Intrinsically...
48 CFR 1452.236-70 - Prohibition Against Use of Lead-based Paint.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Lead-based Paint. 1452.236-70 Section 1452.236-70 Federal Acquisition Regulations System DEPARTMENT OF... Clauses 1452.236-70 Prohibition Against Use of Lead-based Paint. As prescribed in 1436.570(b), insert the following clause: Prohibition Against Use of Lead-Based Paint—Department of the Interior (JUL 1996) Paint...
48 CFR 1452.236-70 - Prohibition Against Use of Lead-based Paint.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Lead-based Paint. 1452.236-70 Section 1452.236-70 Federal Acquisition Regulations System DEPARTMENT OF... Clauses 1452.236-70 Prohibition Against Use of Lead-based Paint. As prescribed in 1436.570(b), insert the following clause: Prohibition Against Use of Lead-Based Paint—Department of the Interior (JUL 1996) Paint...
48 CFR 1452.236-70 - Prohibition Against Use of Lead-based Paint.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Lead-based Paint. 1452.236-70 Section 1452.236-70 Federal Acquisition Regulations System DEPARTMENT OF... Clauses 1452.236-70 Prohibition Against Use of Lead-based Paint. As prescribed in 1436.570(b), insert the following clause: Prohibition Against Use of Lead-Based Paint—Department of the Interior (JUL 1996) Paint...
48 CFR 1452.236-70 - Prohibition Against Use of Lead-based Paint.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Lead-based Paint. 1452.236-70 Section 1452.236-70 Federal Acquisition Regulations System DEPARTMENT OF... Clauses 1452.236-70 Prohibition Against Use of Lead-based Paint. As prescribed in 1436.570(b), insert the following clause: Prohibition Against Use of Lead-Based Paint—Department of the Interior (JUL 1996) Paint...
Library Signage: Applications for the Apple Macintosh and MacPaint.
ERIC Educational Resources Information Center
Diskin, Jill A.; FitzGerald, Patricia
1984-01-01
Describes specific applications of the Macintosh computer at Carnegie-Mellon University Libraries, where MacPaint was used as a flexible, easy to use, and powerful tool to produce informational, instructional, and promotional signage. Profiles of system hardware and software, an evaluation of the computer program MacPaint, and MacPaint signage…
48 CFR 1452.236-70 - Prohibition Against Use of Lead-based Paint.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Lead-based Paint. 1452.236-70 Section 1452.236-70 Federal Acquisition Regulations System DEPARTMENT OF... Clauses 1452.236-70 Prohibition Against Use of Lead-based Paint. As prescribed in 1436.570(b), insert the following clause: Prohibition Against Use of Lead-Based Paint—Department of the Interior (JUL 1996) Paint...
Airborne Laser Systems Testing and Analysis (essals et analyse des systemes laser embarques)
2010-04-01
of Surface/ Paints Reflection Properties (PILASTER targets); • PILASTER Sensors Testing and Calibration; • LOAS Laser System Testing; and • Test...PILASTER targets candidate paints and materials), a Laser Scatter-meter (LSM) was built. To briefly summarise the fundamental concepts involved...Green Painted Target. 7.6.3 Laser Beam Misalignment with Respect to the Beam-Expander Support For measuring the beam misalignment, the beam expander
NASA Technical Reports Server (NTRS)
Bell, James H.; Burner, Alpheus W.
2004-01-01
As the benefit-to-cost ratio of advanced optical techniques for wind tunnel measurements such as Video Model Deformation (VMD), Pressure-Sensitive Paint (PSP), and others increases, these techniques are being used more and more often in large-scale production type facilities. Further benefits might be achieved if multiple optical techniques could be deployed in a wind tunnel test simultaneously. The present study discusses the problems and benefits of combining VMD and PSP systems. The desirable attributes of useful optical techniques for wind tunnels, including the ability to accommodate the myriad optical techniques available today, are discussed. The VMD and PSP techniques are briefly reviewed. Commonalties and differences between the two techniques are discussed. Recent wind tunnel experiences and problems when combining PSP and VMD are presented, as are suggestions for future developments in combined PSP and deformation measurements.
CARCINOGENIC EFFECTS IN A/J MICE OF PARTICULATE OF A COAL TAR PAINT USED IN POTABLE WATER SYSTEMS
Coal tar paints are among the products used as inside coatings for water pipes and storage tanks to retard corrosion in potable water supply systems. Four different formulations of these paints were tested in earlier work by this laboratory in the Ames mutagenesis and the mouse s...
The Sign System in Chinese Landscape Paintings
ERIC Educational Resources Information Center
McMahon, Cliff G.
2003-01-01
Paintings emerge from a culture field and must be interpreted in relation to the net of culture. A given culture will be implicated by the sign system used by the painter. Everyone agrees that in Chinese landscape paintings, the most important cultural bond is to ancient Chinese Taoism, and to a lesser degree, to Confucianism. Obviously, then, the…
ERIC Educational Resources Information Center
Noe, Alfred; And Others
1989-01-01
Four French language classroom activities are suggested, including an exercise sensitizing students to the structure of poetry, a group of games centering on the Eiffel Tower, a series of activities exploring attitudes toward the Eiffel Tower, and a vocabulary and cultural awareness development exercise using the terminology of painting. (MSE)
pH Responsive Microcapsules for Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Li, Wenyan; Muehlberg, Aaron; Boraas, Samuel; Webster, Dean; JohnstonGelling, Victoria; Croll, Stuart; Taylor, S Ray; Contu, Francesco
2008-01-01
The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by the presence of corrosion or mechanical damage. NASA has developed pH sensitive microcapsules (patent pending) that can release their core contents when corrosion starts. The objectives of the research presented here were to encapsulate non-toxic corrosion inhibitors, to incorporate the encapsulated inhibitors into paint formulations, and to test the ability of the paints to control corrosion. Results showed that the encapsulated corrosion inhibitors, specifically Ce(NO3)3 , are effective to control corrosion over long periods of time when incorporated at relatively high pigment volume concentrations into a paint formulation.
ERIC Educational Resources Information Center
Zheng, Jane
2010-01-01
This article examines the transition of Chinese painting from "literati painting", exclusive to the scholar-amateur or scholar elite--the backbone of the Chinese traditional culture--to a new genre, "guohua" (national or traditional Chinese painting). It studies the role of artistic institutions in this process, using the…
Enhanced multifunctional paint for detection of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Joseph C.; Moses, Edward Ira; Rubenchik, Alexander M.
An enhanced multifunctional paint apparatus, systems, and methods for detecting radiation on a surface include providing scintillation particles; providing an enhance neutron absorptive material; providing a binder; combining the scintillation particles, the enhance neutron absorptive material, and the binder creating a multifunctional paint; applying the multifunctional paint to the surface; and monitoring the surface for detecting radiation.
Use of Pressure Sensitive Paint for Diagnostics in Turbomachinery Flows With Shocks
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Bencic, Timothy J.
2001-01-01
The technology of pressure sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and "ghost" images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges were used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. A summary of shortcomings of the pressure sensitive paint technology for internal flow application and lessons learned are presented in the conclusion of the paper.
The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...
NASA Technical Reports Server (NTRS)
Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.
1991-01-01
Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.
Saitta, Erin K H; Gittings, Michael J; Novaes-Card, Simone; Quinn, Jacqueline; Clausen, Christian; O'Hara, Suzanne; Yestrebsky, Cherie L
2015-08-01
Restricted by federal regulations and limited remediation options, buildings contaminated with paint laden with polychlorinated biphenyls (PCBs) have high costs associated with the disposal of hazardous materials. As opposed to current remediation methods which are often destructive and a risk to the surrounding environment, this study suggests a non-metal treatment system (NMTS) and a bimetallic treatment system (BTS) as versatile remediation options for painted industrial structures including concrete buildings, and metal machine parts. In this field study, four areas of a discontinued Department of Defense site were treated and monitored over 3 weeks. PCB levels in paint and treatment system samples were analyzed through gas chromatography/electron capture detection (GC-ECD). PCB concentrations were reduced by 95 percent on painted concrete and by 60-97 percent on painted metal with the majority of the PCB removal occurring within the first week of application. Post treatment laboratory studies including the utilization of an activated metal treatment system (AMTS) further degraded PCBs in BTS and NMTS by up to 82 percent and 99 percent, respectively, indicating that a two-step remediation option is viable. These findings demonstrate that the NMTS and BTS can be an effective, nondestructive, remediation process for large painted structures, allowing for the reuse or sale of remediated materials that otherwise may have been disposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
A new bioassay for the inspection and identification of TBT-containing antifouling paint.
Gueuné, Hervé; Thouand, Gérald; Durand, Marie-José
2009-11-01
Since the 1960s tributyl (TBT)-based antifouling paints are widely applied to protect ship's hulls from biofouling. Due to its high toxicity to aquatic ecosystem most of the countries (28 nations in 2008) signed the AFS convention to control the use of harmful antifouling systems on ships. Nevertheless there is currently no simple method to control the presence of organotin in paint. In this study, we propose a bioassay based on the use of a recombinant bioluminescent bacteria to detect directly in paint the presence of TBT. We also propose a simple device as an inspection system to control the absence of organotin in the ship's hull paint. The presence of organotin could be revealed in less than three hours.
Quantitative X-ray diffraction and fluorescence analysis of paint pigment systems : final report.
DOT National Transportation Integrated Search
1978-01-01
This study attempted to correlate measured X-ray intensities with concentrations of each member of paint pigment systems, thereby establishing calibration curves for the quantitative analyses of such systems.
NASA Technical Reports Server (NTRS)
1996-01-01
NASA needed a way to safely strip old paint and thermal protection material from reusable components from the Space Shuttle; to meet this requirement, Marshall Space Flight Center teamed with United Technologies' USBI Company and developed a stripping system based on hydroblasting. United Technology spun off a new company, Waterjet Systems, to commercialize and market the technology. The resulting ARMS (Automated Robotic Maintenance Systems), employ waterblasts at 55,000 pounds per square inch controlled by target-sensitive robots. The systems are used on aircraft and engine parts, and the newest application is on ships, where it not only strips but catches the ensuing wastewater. This innovation results in faster, cheaper stripping with less clean-up and reduced environmental impact.
VOC Emission Reduction Study at the Hill Air Force Base Building 515 Painting Facility
1990-09-01
occurs during painting. A system for decreasing the flow to a downstream VOC emission control device can be designed that takes advantage of this...paint application process. A flow-reducing ventilation system that takes advantage of this operating characteristic can be designed in which the...flow from the second duct is vented to a VOC emission control device. The advantage of this system is that the flow rate to a VOC emission contro
Privacy Act System of Records: Federal Lead-Based Paint Program System of Records, EPA-54
Learn about the Federal Lead-Based Paint Program System of Records (FLPPSOR), including the security classification, individuals covered by the system, categories of records, routine uses of the records, and other security procedures.
Quantifying the Effect of Pressure Sensitive Paint On Aerodynamic Data
NASA Technical Reports Server (NTRS)
Amer, T. R.; Obara, C. J.; Liu, T.
2003-01-01
A thin pressure sensitive paint (PSP) coating can slightly modify the overall shape of a wind-tunnel model and produce surface roughness or smoothness that does not exist on the unpainted model. These undesirable changes in model geometry may alter flow over the model, and affect the pressure distribution and aerodynamic forces and moments on the model. This study quantifies the effects of PSP on three models in low-speed, transonic and supersonic flow regimes. At a 95% confidence level, the PSP effects on the integrated forces are insignificant for a slender arrow-wing-fuselage model and delta wing model with two different paints at Mach 0.2, 1.8, and 2.16 relative to the total balance accuracy limit. The data displayed a repeatability of 2.5 drag counts, while the balance accuracy limit was about 5.5 drag counts. At transonic speeds, the paint has a localized effect at high angles of attack and has a resolvable effect on the normal force, which is significant relative to the balance accuracy limit. For low speeds, the PSP coating has a localized effect on the pressure tap measurements, which leads to an appreciable decrease in the pressure tap reading. Moreover, the force and moment measurements had a poor precision, which precluded the ability to measure the PSP effect for this particular test.
Inhibition of coral fertilisation and larval metamorphosis by tributyltin and copper.
Negri, A P; Heyward, A J
2001-02-01
Fertilisation and larval metamorphosis of reef-building corals are important life history events leading to recruitment of juvenile corals to reef populations. Little is known of the sensitivity of these early life phases to pollution, or their relative susceptibility to certain toxicants compared with established coral colonies. Inhibition of fertilisation and larval metamorphosis of the coral Acropora millepora (Ehrenberg, 1834) was assessed in response to solutions of the antifoulants tributyltin (TBT) and copper (Cu) using laboratory-based bioassays. Nominal concentrations that inhibited 50% fertilisation and metamorphosis (IC50) were calculated from 4 h fertilisation and 24 h metamorphosis assays and were based on introduced dose. Cu was most potent towards fertilisation with an IC50 of 17.4 micrograms/l. TBT however, proved more toxic to larval metamorphosis having an IC50 of 2.0 micrograms/l. Inert surfaces coated with either Cu- or TBT-based antifouling paint also inhibited fertilisation and metamorphosis. The degree of inhibition was correlated with surface area of the paint coating. These results indicate fertilisation and metamorphosis of coral can be sensitive to active components of antifouling paints.
Allergic contact hobby dermatitis from turpentine.
Barchino-Ortiz, L; Cabeza-Martínez, R; Leis-Dosil, V M; Suárez-Fernández, R M; Lázaro-Ochaita, P
2008-01-01
Turpentine is an oleoresin obtained from various species of pine. It contains a volatile oil (oil of turpentine) which is responsible for its properties and this is the form generally used. Opportunity for contact with turpentine is widespread. It is universally used as a solvent to dissolve and thin lacquers, varnishes and paints. It is also an ingredient in many liniments and cold remedies. Turpentine is regarded as both a local irritant and a sensitizer. Cases of allergic contact dermatitis in painters, mechanics, shoe repairers and home decorators have been reported. We report a case of a non-professional painter who developed a contact allergic dermatitis due to his exposure to turpentine while doing oil-painting as a hobby. Dermatitis is one of the biggest dangers of working with art materials and occupational contact dermatitis is often detected on the hands of the painters. Solvents are indispensable and turpentine is the most important and the traditional one used in oil-painting. Contact allergy to oil of turpentine was reported to have become rare in Europe but over the last few years, increased rates of turpentine sensitization have been reported.
Lavine, Barry K; White, Collin G; Allen, Matthew D; Weakley, Andrew
2017-03-01
Multilayered automotive paint fragments, which are one of the most complex materials encountered in the forensic science laboratory, provide crucial links in criminal investigations and prosecutions. To determine the origin of these paint fragments, forensic automotive paint examiners have turned to the paint data query (PDQ) database, which allows the forensic examiner to compare the layer sequence and color, texture, and composition of the sample to paint systems of the original equipment manufacturer (OEM). However, modern automotive paints have a thin color coat and this layer on a microscopic fragment is often too thin to obtain accurate chemical and topcoat color information. A search engine has been developed for the infrared (IR) spectral libraries of the PDQ database in an effort to improve discrimination capability and permit quantification of discrimination power for OEM automotive paint comparisons. The similarity of IR spectra of the corresponding layers of various records for original finishes in the PDQ database often results in poor discrimination using commercial library search algorithms. A pattern recognition approach employing pre-filters and a cross-correlation library search algorithm that performs both a forward and backward search has been used to significantly improve the discrimination of IR spectra in the PDQ database and thus improve the accuracy of the search. This improvement permits inter-comparison of OEM automotive paint layer systems using the IR spectra alone. Such information can serve to quantify the discrimination power of the original automotive paint encountered in casework and further efforts to succinctly communicate trace evidence to the courts.
An environmentally safe and effective paint removal process for aircraft
NASA Astrophysics Data System (ADS)
Kozol, Joseph
2001-03-01
To reduce hazardous waste from fleet and depot aircraft paint stripping and to conform to regulations banning toxic chemical paint strippers, the U.S. Naval Air Systems Team (materials division, depots, and head-quarters) teamed with the U.S. Air Force at Warner Robins Air Logistics Center for concept development, characterization, and demonstration of a mature, advanced paint-removal system, the Boeing xenon/flashlamp CO2 (Flashjet®) process. Extensive metallic and composite-materials testing was conducted. This paper describes the development and characterization program leading to authorization of the process for use on fixed-wing navy aircraft.
NASA Technical Reports Server (NTRS)
Kurits, Inna; Lewis, M. J.; Hamner, M. P.; Norris, Joseph D.
2007-01-01
Heat transfer rates are an extremely important consideration in the design of hypersonic vehicles such as atmospheric reentry vehicles. This paper describes the development of a data reduction methodology to evaluate global heat transfer rates using surface temperature-time histories measured with the temperature sensitive paint (TSP) system at AEDC Hypervelocity Wind Tunnel 9. As a part of this development effort, a scale model of the NASA Crew Exploration Vehicle (CEV) was painted with TSP and multiple sequences of high resolution images were acquired during a five run test program. Heat transfer calculation from TSP data in Tunnel 9 is challenging due to relatively long run times, high Reynolds number environment and the desire to utilize typical stainless steel wind tunnel models used for force and moment testing. An approach to reduce TSP data into convective heat flux was developed, taking into consideration the conditions listed above. Surface temperatures from high quality quantitative global temperature maps acquired with the TSP system were then used as an input into the algorithm. Preliminary comparison of the heat flux calculated using the TSP surface temperature data with the value calculated using the standard thermocouple data is reported.
Goodall, Rosemary A; Hall, Jay; Sharer, Robert J; Traxler, Loa; Rintoul, Llew; Fredericks, Peter M
2008-01-01
Fourier transform infrared (FT-IR) attenuated total reflection (ATR) imaging has been successfully used to identify individual mineral components of ancient Maya paint. The high spatial resolution of a micro FT-IR-ATR system in combination with a focal plane array detector has allowed individual particles in the paint to be resolved and identified from their spectra. This system has been used in combination with micro-Raman spectroscopy to characterize the paint, which was found to be a mixture of hematite and silicate particles with minor amounts of calcite, carbon, and magnetite particles in a sub-micrometer hematite and calcite matrix. The underlying stucco was also investigated and found to be a combination of calcite with fine carbon particles, making a dark sub-ground for the paint.
Automated full-3D digitization system for documentation of paintings
NASA Astrophysics Data System (ADS)
Karaszewski, Maciej; Adamczyk, Marcin; Sitnik, Robert; Michoński, Jakub; Załuski, Wojciech; Bunsch, Eryk; Bolewicki, Paweł
2013-05-01
In this paper, a fully automated 3D digitization system for documentation of paintings is presented. It consists of a specially designed frame system for secure fixing of painting, a custom designed, structured light-based, high-resolution measurement head with no IR and UV emission. This device is automatically positioned in two axes (parallel to the surface of digitized painting) with additional manual positioning in third, perpendicular axis. Manual change of observation angle is also possible around two axes to re-measure even partially shadowed areas. The whole system is built in a way which provides full protection of digitized object (moving elements cannot reach its vicinity) and is driven by computer-controlled, highly precise servomechanisms. It can be used for automatic (without any user attention) and fast measurement of the paintings with some limitation to their properties: maximum size of the picture is 2000mm x 2000mm (with deviation of flatness smaller than 20mm) Measurement head is automatically calibrated by the system and its possible working volume starts from 50mm x 50mm x 20mm (10000 points per square mm) and ends at 120mm x 80mm x 60mm (2500 points per square mm). The directional measurements obtained with this system are automatically initially aligned due to the measurement head's position coordinates known from servomechanisms. After the whole painting is digitized, the measurements are fine-aligned with color-based ICP algorithm to remove any influence of possible inaccuracy of positioning devices. We present exemplary digitization results along with the discussion about the opportunities of analysis which appear for such high-resolution, 3D computer models of paintings.
A Painter's View of the Cosmos In the Twenty-first Century
NASA Astrophysics Data System (ADS)
Cro-Ken, K.
2016-01-01
I am an ecosystem artist who uses paint to bring nature's “invisible forces” into view. My eco-sensitive palette recreates the push-pull forces that shape and mold all things. As a result, I create microscopic and telescopic views of earth and places scattered throughout our universe. Self-similarity led me to realize that if I want my mind to wonder into the far reaches of the universe, I must draw closer to nature. I show how space looks and appears and, more importantly, how it moves. My speed element palette is a portal through which I peer into the universe at scales great and small using paint as my lens. Microscopes, telescopes, the Internet, and even eyeglasses are portals through which technology affords us the ability to see that which is unseen to the unaided eye. Rather than see the world and then paint, the opposite is true for me. My work is revelatory, not representational and, as such, seeks similar occurrences in nature. Just as a planet's surface is a visual record of past events, so too do speed element experiments reveal traces of the past. It would be more accurate to call a painting that comes to rest a “painted.” It is video that captures images that eluded capture by the canvas and could more accurately be called a “painting. ” Simply put, I manipulate space, time, and matter—and the matter is never just paint.
An innovative permanent total enclosure for blast cleaning and painting ships in drydock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, C.; Lukey, M.
1997-12-31
This paper describes a new innovative Permanent Total Enclosure, or CAPE system, which encloses and captures emissions from blast cleaning and painting ship hulls in drydock. A description of the modular enclosure towers with unique seals is shown with several figures. The support barge with its environmental control equipment which includes a dust collector, VOC thermal oxidizer, dehumidifier, boiler, heating coils, air flow fans and, system controls is also described. Data measurements from the first two applications rate this system at 100 percent capture efficiency, 99 percent VOC destruction efficiency and 99.9 percent dust collection efficiency. Ships can be blastmore » cleaned and painted using noncompliant paints and meet all state and federal standards for air emissions.« less
Kaiser, Jean-Pierre; Roesslein, Matthias; Diener, Liliane; Wick, Peter
2013-01-01
Microorganisms growing on painted surfaces are not only an aesthetic problem, but also actively contribute to the weathering and deterioration of materials. A widely used strategy to combat microbial colonization is the addition of biocides to the paint. However, ecotoxic, non-degradable biocides with a broad protection range are now prohibited in Europe, so the paint industry is considering engineered nanoparticles (ENPs) as an alternative biocide. There is concern that ENPs in paint might be released in run-off water and subsequently consumed by animals and/or humans, potentially coming into contact with cells of the gastrointestinal tract and affecting the immune system. Therefore, in the present study we evaluated the cytotoxic effects of three ENPs (nanosilver, nanotitanium dioxide and nanosilicon dioxide) that have a realistic potential for use in paints in the near future. When exposed to nanotitanium dioxide and nanosilicon dioxide in concentrations up to 243 µg/mL for 48 h, neither the gastrointestinal cells (CaCo-2) nor immune system cells (Jurkat) were significantly affected. However, when exposed to nanosilver, several cell parameters were affected, but far less than by silver ions used as a control. No differences in cytotoxicity were observed when cells were exposed to ENP-containing paint particles, compared with the same paint particles without ENPs. Paint particles containing ENPs did not affect cell morphology, the release of reactive oxygen species or cytokines, cell activity or cell death in a different manner to the same paint particles without ENPs. The results suggest that paints doped with ENPs do not pose an additional acute health hazard for humans. PMID:24358264
Decorating surfaces with bidirectional texture functions.
Zhou, Kun; Du, Peng; Wang, Lifeng; Matsushita, Yasuyuki; Shi, Jiaoying; Guo, Baining; Shum, Heung-Yeung
2005-01-01
We present a system for decorating arbitrary surfaces with bidirectional texture functions (BTF). Our system generates BTFs in two steps. First, we automatically synthesize a BTF over the target surface from a given BTF sample. Then, we let the user interactively paint BTF patches onto the surface such that the painted patches seamlessly integrate with the background patterns. Our system is based on a patch-based texture synthesis approach known as quilting. We present a graphcut algorithm for BTF synthesis on surfaces and the algorithm works well for a wide variety of BTF samples, including those which present problems for existing algorithms. We also describe a graphcut texture painting algorithm for creating new surface imperfections (e.g., dirt, cracks, scratches) from existing imperfections found in input BTF samples. Using these algorithms, we can decorate surfaces with real-world textures that have spatially-variant reflectance, fine-scale geometry details, and surfaces imperfections. A particularly attractive feature of BTF painting is that it allows us to capture imperfections of real materials and paint them onto geometry models. We demonstrate the effectiveness of our system with examples.
NASA Astrophysics Data System (ADS)
Pelosi, Claudia; Capobianco, Giuseppe; Agresti, Giorgia; Bonifazi, Giuseppe; Morresi, Fabio; Rossi, Sara; Santamaria, Ulderico; Serranti, Silvia
2018-06-01
The aim of this work is to investigate the stability to simulated solar radiation of some paintings samples through a new methodological approach adopting non-invasive spectroscopic techniques. In particular, commercial watercolours and iron oxide based pigments were used, these last ones being prepared for the experimental by gum Arabic in order to propose a possible substitute for traditional reintegration materials. Reflectance spectrophotometry in the visible range and Hyperspectral Imaging in the short wave infrared were chosen as non-invasive techniques for evaluation the stability to irradiation of the chosen pigments. These were studied before and after artificial ageing procedure performed in Solar Box chamber under controlled conditions. Data were treated and elaborated in order to evaluate the sensitivity of the chosen techniques in identifying the variations on paint layers, induced by photo-degradation, before they could be observed by eye. Furthermore a supervised classification method for monitoring the painted surface changes adopting a multivariate approach was successfully applied.
Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji
2005-12-01
The purpose of this study was to investigate the effect of radiation light characteristics--of different types of clinical light-curing unit--on polymerization efficiency, as determined by the surface hardness of light-cured paint-on resins. Four shades of paint-on resin for shade modification of restorative resins were used. Materials were cured using one laboratory and three clinical light-curing units with different light sources, namely tungsten-halogen, LED, plasma arc, and xenon flash lamps. Knoop hardness measurements were taken at both the top and bottom surfaces of the specimens to assess the mechanical properties and degree of polymerization. Both LED and plasma arc light units caused significantly poorer surface hardness than the halogen and laboratory xenon lights. In addition, the transparent shade was more sensitive to surface hardness than other chromatic shades. Our results indicated that the polymerization efficiency of paint-on resin was significantly influenced by the radiation light characteristics of clinical light-curing units.
Baij, Lambert; Hermans, Joen J; Keune, Katrien; Iedema, Piet
2018-06-18
The formation of metal soaps (metal complexes of saturated fatty acids) is a serious problem affecting the appearance and structural integrity of many oil paintings. Tailored model systems for aged oil paint and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to study the diffusion of palmitic acid and subsequent metal soap crystallization. The simultaneous presence of free saturated fatty acids and polymer-bound metal carboxylates leads to rapid metal soap crystallization, following a complex mechanism that involves both acid and metal diffusion. Solvent flow, water, and pigments all enhance metal soap crystallization in the model systems. These results contribute to the development of paint cleaning strategies, a better understanding of oil paint degradation, and highlight the potential of time-dependent ATR-FTIR spectroscopy for studying dynamic processes in polymer films. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Ryland, S; Bishea, G; Brun-Conti, L; Eyring, M; Flanagan, B; Jergovich, T; MacDougall, D; Suzuki, E
2001-01-01
The 1990s saw the introduction of significantly new types of paint binder chemistries into the automotive finish coat market. Considering the pronounced changes in the binders that can now be found in automotive paints and their potential use in a wide variety of finishes worldwide, the Paint Subgroup of the Scientific Working Group for Materials (SWGMAT) initiated a validation study to investigate the ability of commonly accepted methods of forensic paint examination to differentiate between these newer types of paints. Nine automotive paint systems typical of original equipment applications were acquired from General Motors Corporation in 1992. They consisted of steel panels coated with typical electrocoat primers and/or primer surfacers followed by a black nonmetallic base coat and clear coat. The primary purpose of this study was to evaluate the discrimination power of common forensic techniques when applied to the newer generation original automotive finishes. The second purpose was to evaluate interlaboratory reproducibility of automotive paint spectra collected on a variety of Fourier transform infrared (FT-IR) spectrometers and accessories normally used for forensic paint examinations. The results demonstrate that infrared spectroscopy is an effective tool for discriminating between the major automotive paint manufacturers' formulation types which are currently used in original finishes. Furthermore, and equally important, the results illustrate that the mid-infrared spectra of these finishes are generally quite reproducible even when comparing data from different laboratories, commercial FT-IR instruments, and accessories in a "real world," mostly uncontrolled, environment.
Cell painting with an engineered EPCR to augment the protein C system.
Bouwens, Eveline A M; Stavenuiter, Fabian; Mosnier, Laurent O
2015-11-25
The protein C (PC) system conveys beneficial anticoagulant and cytoprotective effects in numerous in vivo disease models. The endothelial protein C receptor (EPCR) plays a central role in these pathways as cofactor for PC activation and by enhancing activated protein C (APC)-mediated protease-activated receptor (PAR) activation. During inflammatory disease, expression of EPCR on cell membranes is often diminished thereby limiting PC activation and APC's effects on cells. Here a caveolae-targeting glycosylphosphatidylinositol (GPI)-anchored EPCR (EPCR-GPI) was engineered to restore EPCR's bioavailability via "cell painting." The painting efficiency of EPCR-GPI on EPCR-depleted endothelial cells was time- and dose-dependent. The EPCR-GPI bioavailability after painting was long lasting since EPCR surface levels reached 400 % of wild-type cells after 2 hours and remained > 200 % for 24 hours. EPCR-GPI painting conveyed APC binding to EPCR-depleted endothelial cells where EPCR was lost due to shedding or shRNA. EPCR painting normalised PC activation on EPCR-depleted cells indicating that EPCR-GPI is functional active on painted cells. Caveolin-1 lipid rafts were enriched in EPCR after painting due to the GPI-anchor targeting caveolae. Accordingly, EPCR painting supported PAR1 and PAR3 cleavage by APC and augmented PAR1-dependent Akt phosphorylation by APC. Thus, EPCR-GPI painting achieved physiological relevant surface levels on endothelial cells, restored APC binding to EPCR-depleted cells, supported PC activation, and enhanced APC-mediated PAR cleavage and cytoprotective signalling. Therefore, EPCR-GPI provides a novel tool to restore the bioavailability and functionality of EPCR on EPCR- depleted and -deficient cells.
Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems
Young Park, So; Uk Lee, Hyun; Lee, Young-Chul; Choi, Saehae; Hyun Cho, Dae; Sik Kim, Hee; Bang, Sunghee; Seo, Soonjoo; Chang Lee, Soon; Won, Jonghan; Son, Byung-Chul; Yang, Mino; Lee, Jouhahn
2015-01-01
Fluorescent carbon nanomaterials, especially zero-dimensional (0D) carbon nanodots (CDs), are widely used in broad biological and optoelectronic applications. CDs have unique characteristics such as strong fluorescence, biocompatibility, sun-light response, and capability of mass-production. Beyond the previous green CD obtained from harmful natural substances, we report a new type of fluid-based fluorescent CD paints (C-paints) derived from polyethylene glycol (PEG; via simple ultrasound irradiation at room temperatures) and produced in quantum yields of up to ~14%. Additionally, C-paints possess a strong, UV- and visible-light-responsive photoluminescent (PL) property. Most especially, C-paints, by incorporation into a photocatalytic system, show additional roles in the emission of fluorescent light for activation of TiO2 nanoparticles (NPs) and the resultant detoxification of most organic dyes, thus further enabling embarkation in advanced water purification. PMID:26201431
Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems.
Park, So Young; Lee, Hyun Uk; Lee, Young-Chul; Choi, Saehae; Cho, Dae Hyun; Kim, Hee Sik; Bang, Sunghee; Seo, Soonjoo; Lee, Soon Chang; Won, Jonghan; Son, Byung-Chul; Yang, Mino; Lee, Jouhahn
2015-07-23
Fluorescent carbon nanomaterials, especially zero-dimensional (0D) carbon nanodots (CDs), are widely used in broad biological and optoelectronic applications. CDs have unique characteristics such as strong fluorescence, biocompatibility, sun-light response, and capability of mass-production. Beyond the previous green CD obtained from harmful natural substances, we report a new type of fluid-based fluorescent CD paints (C-paints) derived from polyethylene glycol (PEG; via simple ultrasound irradiation at room temperatures) and produced in quantum yields of up to ~14%. Additionally, C-paints possess a strong, UV- and visible-light-responsive photoluminescent (PL) property. Most especially, C-paints, by incorporation into a photocatalytic system, show additional roles in the emission of fluorescent light for activation of TiO2 nanoparticles (NPs) and the resultant detoxification of most organic dyes, thus further enabling embarkation in advanced water purification.
41 CFR 101-42.1102-7 - Lead-containing paint and items bearing lead-containing paint.
Code of Federal Regulations, 2012 CFR
2012-07-01
... toxic heavy metal which, in humans, exerts its effects on the renal, hematopoietic, and nervous systems... Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS...
41 CFR 101-42.1102-7 - Lead-containing paint and items bearing lead-containing paint.
Code of Federal Regulations, 2014 CFR
2014-07-01
... toxic heavy metal which, in humans, exerts its effects on the renal, hematopoietic, and nervous systems... Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION...
41 CFR 101-42.1102-7 - Lead-containing paint and items bearing lead-containing paint.
Code of Federal Regulations, 2013 CFR
2013-07-01
... toxic heavy metal which, in humans, exerts its effects on the renal, hematopoietic, and nervous systems... Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION...
41 CFR 101-42.1102-7 - Lead-containing paint and items bearing lead-containing paint.
Code of Federal Regulations, 2010 CFR
2010-07-01
... toxic heavy metal which, in humans, exerts its effects on the renal, hematopoietic, and nervous systems... Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION...
41 CFR 101-42.1102-7 - Lead-containing paint and items bearing lead-containing paint.
Code of Federal Regulations, 2011 CFR
2011-07-01
... toxic heavy metal which, in humans, exerts its effects on the renal, hematopoietic, and nervous systems... Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION...
The simulation of the half-dry stroke based on the force feedback technology
NASA Astrophysics Data System (ADS)
Guo, Chao; Hou, Zeng-xuan; Zheng, Shuan-zhu; Yang, Guang-qing
2017-02-01
A novel stroke simulation method of the Half-dry style of Chinese calligraphy based on the force feedback technology is proposed for the virtual painting. Firstly, according to the deformation of the brush when the force is exerted on it, the brush footprint between the brush and paper is calculated. The complete brush stroke is obtained by superimposing brush footprints along the painting direction, and the dynamic painting of the brush stroke is implemented. Then, we establish the half-dry texture databases and propose the concept of half-dry value by researching the main factors that affect the effects of the half-dry stroke. In the virtual painting, the half-dry texture is mapped into the stroke in real time according to the half-dry value and painting technique. A technique of texture blending based on the KM model is applied to avoid the seams while texture mapping. The proposed method has been successfully applied to the virtual painting system based on the force feedback technology. In this system, users can implement the painting in real time with a Phantom Desktop haptic device, which can effectively enhance reality to users.
Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint.
Hermans, Joen; Osmond, Gillian; van Loon, Annelies; Iedema, Piet; Chapman, Robyn; Drennan, John; Jack, Kevin; Rasch, Ronald; Morgan, Garry; Zhang, Zhi; Monteiro, Michael; Keune, Katrien
2018-06-04
Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.
Efficient TEA CO II-laser-based coating removal system
NASA Astrophysics Data System (ADS)
Prinsloo, F. J.; van Heerden, S. P.; Ronander, E.; Botha, L. R.
2007-05-01
A high power 1kW pulsed transversely excited atmospheric CO II laser that has been developed for the paint stripping of missiles was used to test paint stripping on several metallic and composite aircraft panels to determine the rate at which this laser could remove paint from aircraft.
NASA Technical Reports Server (NTRS)
Bell, James H.
2011-01-01
The luminescence lifetime technique was used to make pressure-sensitive paint (PSP) measurements on a 2.7% Common Research Model in the NASA Ames 11ft Transonic Wind Tunnel. PSP data were obtained on the upper and lower surfaces of the wing and horizontal tail, as well as one side of the fuselage. Data were taken for several model attitudes of interest at Mach numbers between 0.70 and 0.87. Image data were mapped onto a three-dimensional surface grid suitable both for comparison with CFD and for integration of pressures to determine loads. Luminescence lifetime measurements were made using strobed LED (light-emitting diode) lamps to illuminate the PSP and fast-framing interline transfer cameras to acquire the PSP emission.
Industrial 2-kW TEA CO2 laser for paint stripping of aircraft
NASA Astrophysics Data System (ADS)
Schweizer, Gerhard; Werner, L.
1995-03-01
Paint stripping of aircraft with pulsed laser radiation has several advantages compared to traditional methods of depainting: selective removal of individual layers possible, suitable for sensitive surfaces, workpiece ready for immediate repainting, and considerable reduction of contaminated waste. For paint stripping of large aircraft pulsed lasers with average power of at least 2 kW are required. Amongst the various types of pulsed lasers technical and economical considerations clearly favor TEA CO2 lasers for this application. The first commercially available TEA CO2 laser with an average power in excess of 2 kW, especially designed for depainting, has been developed by Urenco. The key data of this laser are: pulse energy up to 9 J, repetition rate up to 330 Hz, and beam quality: `flat top'.
Cell painting with an engineered EPCR to augment the protein C system
Bouwens, Eveline A. M.; Stavenuiter, Fabian; Mosnier, Laurent O.
2016-01-01
The protein C (PC) system conveys beneficial anticoagulant and cytoprotective effects in numerous in vivo disease models. The endothelial protein C receptor (EPCR) plays a central role in these pathways as cofactor for PC activation and by enhancing activated protein C (APC)-mediated protease-activated receptor (PAR) activation. During inflammatory disease, expression of EPCR on cell membranes is often diminished thereby limiting PC activation and APC’s effects on cells. Here a caveolae-targeting glycosylphosphatidylinositol (GPI)-anchored EPCR (EPCR-GPI) was engineered to restore EPCR’s bioavailability via “cell painting.” The painting efficiency of EPCR-GPI on EPCR-depleted endothelial cells was time- and dose-dependent. The EPCR-GPI bioavailability after painting was long lasting since EPCR surface levels reached 400% of wild-type cells after 2 hours and remained >200% for 24 hours. EPCR-GPI painting conveyed APC binding to EPCR-depleted endothelial cells where EPCR was lost due to shedding or shRNA. EPCR painting normalized PC activation on EPCR-depleted cells indicating that EPCR-GPI is functional active on painted cells. Caveolin-1 lipid rafts were enriched in EPCR after painting due to the GPI-anchor targeting caveolae. Accordingly, EPCR painting supported PAR1 and PAR3 cleavage by APC and augmented PAR1-dependent Akt phosphorylation by APC. Thus, EPCR-GPI painting achieved physiological relevant surface levels on endothelial cells, restored APC binding to EPCR-depleted cells, supported PC activation, and enhanced APC-mediated PAR cleavage and cytoprotective signaling. Therefore, EPCR-GPI provides a novel tool to restore the bioavailability and functionality of EPCR on EPCR-depleted and deficient cells. PMID:26272345
Order-fractal transitions in abstract paintings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calleja, E.M. de la, E-mail: elsama79@gmail.com; Cervantes, F.; Calleja, J. de la
2016-08-15
In this study, we determined the degree of order for 22 Jackson Pollock paintings using the Hausdorff–Besicovitch fractal dimension. Based on the maximum value of each multi-fractal spectrum, the artworks were classified according to the year in which they were painted. It has been reported that Pollock’s paintings are fractal and that this feature was more evident in his later works. However, our results show that the fractal dimension of these paintings ranges among values close to two. We characterize this behavior as a fractal-order transition. Based on the study of disorder-order transition in physical systems, we interpreted the fractal-ordermore » transition via the dark paint strokes in Pollock’s paintings as structured lines that follow a power law measured by the fractal dimension. We determined self-similarity in specific paintings, thereby demonstrating an important dependence on the scale of observations. We also characterized the fractal spectrum for the painting entitled Teri’s Find. We obtained similar spectra for Teri’s Find and Number 5, thereby suggesting that the fractal dimension cannot be rejected completely as a quantitative parameter for authenticating these artworks. -- Highlights: •We determined the degree of order in Jackson Pollock paintings using the Hausdorff–Besicovitch dimension. •We detected a fractal-order transition from Pollock’s paintings between 1947 and 1951. •We suggest that Jackson Pollock could have painted Teri’s Find.« less
Binary pressure-sensitive paint measurements using miniaturised, colour, machine vision cameras
NASA Astrophysics Data System (ADS)
Quinn, Mark Kenneth
2018-05-01
Recent advances in machine vision technology and capability have led to machine vision cameras becoming applicable for scientific imaging. This study aims to demonstrate the applicability of machine vision colour cameras for the measurement of dual-component pressure-sensitive paint (PSP). The presence of a second luminophore component in the PSP mixture significantly reduces its inherent temperature sensitivity, increasing its applicability at low speeds. All of the devices tested are smaller than the cooled CCD cameras traditionally used and most are of significantly lower cost, thereby increasing the accessibility of such technology and techniques. Comparisons between three machine vision cameras, a three CCD camera, and a commercially available specialist PSP camera are made on a range of parameters, and a detailed PSP calibration is conducted in a static calibration chamber. The findings demonstrate that colour machine vision cameras can be used for quantitative, dual-component, pressure measurements. These results give rise to the possibility of performing on-board dual-component PSP measurements in wind tunnels or on real flight/road vehicles.
Silver-Teflon coating improvement
NASA Technical Reports Server (NTRS)
Reed, M. W.
1976-01-01
Approximately forty adhesives were subjected to laboratory screening. Seven candidate adhesives were selected from the screening tests and evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on epoxide, polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint-on or spray-on adhesives. The panels were tested in a space environmental simulation laboratory chamber during the July 9-20, 1973 time span.
Microencapsulation Technology for Corrosion Mitigation by Smart Coatings
NASA Technical Reports Server (NTRS)
Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.
2011-01-01
A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain
Fiber Bragg grating sensor to monitor stress kinetics in drying process of commercial latex paints.
de Lourenço, Ivo; Possetti, Gustavo R C; Muller, Marcia; Fabris, José L
2010-01-01
In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings.
Fiber Bragg Grating Sensor to Monitor Stress Kinetics in Drying Process of Commercial Latex Paints
de Lourenço, Ivo; Possetti, Gustavo R. C.; Muller, Marcia; Fabris, José L.
2010-01-01
In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings. PMID:22399906
Development of a large color range for a paint company
NASA Astrophysics Data System (ADS)
McGinley, Peter
2002-06-01
Experience with the Master Palette system of 6000 colors lead to a specification for a new color range where the primary design feature is the control of the paint tint formula. This design approach met a market-derived requirement for sample pots and fractional-strength colors. The layout process employed was able to display the color capability of the paint system and generate an array of colors with controlled spacing similar to Master Palette. Updated pigment selections and the introduction of additional colored bases completed the system specification of improved opacity and every color being exterior durable.
NASA Technical Reports Server (NTRS)
Karu, Z. S.
1979-01-01
The results and outcome of thermal tests conducted to evaluate the performance of the protective coat of paint on the solid rocket booster (SRB) thermal protection system are discussed. A problem was uncovered during a series of tests on the SRB instrumentation islands in AEDC Tunnel C on 13 January 1979. The white protective paint or the Turco coating on the thermal protection system panels began to flow soon after the panels were exposed to the flow. This presented a serious problem especially since the critical pressure sensing, parachute opening baroswitches located on the frustum of the SRB were most likely to be contaminated by the paint flowing down the sides of the SRB nose cone. Because the first two flight articles were already completed, it was necessary to find a solution to the existing paint problem. It was found that all the coatings tested, except the Hypalon, had similar undesirable flow characteristics. Also even the Hypalon, which did not flow, would bubble up and disintegrate when it was applied on top of the new Turco. Recently, the Turco coating was removed from an MSA-:11 panel by dissolving the paint with a certain agent. This was done in two ways, by dissolving and removing almost all of the paint on one side of the panel and dissolving and removing about 50% of the paint on the other. The panel was then coated with Hypalon and tested as before in the Hot Gas Facility. No evidence of any paint flow nor any adverse performance of MSA was observed.
NASA Technical Reports Server (NTRS)
1983-01-01
Under a grant from California Institute of Technology, Jet Propulsion Laboratory (JPL) and LACMA (Los Angeles County Museum of Art) used image enhancement techniques to separate x-ray images of paintings when one had been painted on top of another. The technique is derived from computer processing of spacecraft-acquired imagery, and will allow earlier paintings, some of which have been covered for centuries, to be evaluated. JPL developed the program for "subtracting" the top painting and enhancing the bottom one, and believes an even more advanced system is possible.
Keune, Katrien; Mass, Jennifer; Mehta, Apurva; ...
2016-04-21
Yellow orpiment (As 2S 3) and red–orange realgar (As 4S 4) photo-degrade and the nineteenth-century pigment emerald green (Cu(C 2H 3O 2) 2·3Cu(AsO 2) 2) degrades into arsenic oxides. Because of their solubility in water, arsenic oxides readily migrate and are found throughout the multi-layered paint system. The widespread arsenic migration has consequences for conservation, and this paper provides better insight into the extent of the problem. Five paint samples containing orpiment, realgar or emerald green pigments deriving from paintings by De Heem (17th C), Van Gogh (19th C), Rousseau (19th C), an unknown 17th C northern European artist andmore » an Austrian painted cupboard (19th C) were investigated using SEM/EDX, imaging ATR-FTIR and arsenic (As) K–edge μ-XANES to obtain the spatial distribution and chemical speciation of arsenic in the paint system. In all of the samples investigated arsenic had migrated throughout the multi-layered paint structure of the art object, from support to varnish. Furthermore, As 5+-species were found throughout the entire paint sample. We hypothesize that arsenic trioxide is first formed, dissolves in water, further oxidizes to arsenic pentaoxide, and then reacts with lead, calcium and other ions and is deposited in the paint system as insoluble arsenates. Since the degradation of arsenic pigments such as orpiment, realgar and emerald green occurs through a highly mobile intermediate stage, it not only affects the regions rich in arsenic pigments, but also the entire object, including substrate and top varnish layers. Furthermore, because of this widespread potential for damage, preventing degradation of arsenic pigments should be prioritized and conservators should minimize exposure of objects containing arsenic pigments to strong light, large fluctuations in relative humidity and water-based cleaning agents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keune, Katrien; Mass, Jennifer; Mehta, Apurva
Yellow orpiment (As 2S 3) and red–orange realgar (As 4S 4) photo-degrade and the nineteenth-century pigment emerald green (Cu(C 2H 3O 2) 2·3Cu(AsO 2) 2) degrades into arsenic oxides. Because of their solubility in water, arsenic oxides readily migrate and are found throughout the multi-layered paint system. The widespread arsenic migration has consequences for conservation, and this paper provides better insight into the extent of the problem. Five paint samples containing orpiment, realgar or emerald green pigments deriving from paintings by De Heem (17th C), Van Gogh (19th C), Rousseau (19th C), an unknown 17th C northern European artist andmore » an Austrian painted cupboard (19th C) were investigated using SEM/EDX, imaging ATR-FTIR and arsenic (As) K–edge μ-XANES to obtain the spatial distribution and chemical speciation of arsenic in the paint system. In all of the samples investigated arsenic had migrated throughout the multi-layered paint structure of the art object, from support to varnish. Furthermore, As 5+-species were found throughout the entire paint sample. We hypothesize that arsenic trioxide is first formed, dissolves in water, further oxidizes to arsenic pentaoxide, and then reacts with lead, calcium and other ions and is deposited in the paint system as insoluble arsenates. Since the degradation of arsenic pigments such as orpiment, realgar and emerald green occurs through a highly mobile intermediate stage, it not only affects the regions rich in arsenic pigments, but also the entire object, including substrate and top varnish layers. Furthermore, because of this widespread potential for damage, preventing degradation of arsenic pigments should be prioritized and conservators should minimize exposure of objects containing arsenic pigments to strong light, large fluctuations in relative humidity and water-based cleaning agents.« less
Formula for the Removal and Remediation of Polychlorinated Biphenyls in Painted Structures
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Loftin, Kathleen; Geiger, Cherie
2010-01-01
An activated metal treatment system (AMTS) removes and destroys polychlorinated biphenyls (PCBs) found in painted structures or within the binding or caulking material on structures. It may be applied using a "paint-on and wipe-off" process that leaves the structure PCB-free and virtually unaltered in physical form. AMTS is used in conjunction with a solvent solution capable of donating hydrogen atoms. AMTS as a treatment technology has two functions: first, to extract PCBs from the material, and second, to degrade the extracted PCBs. The process for removing PCBs from structures is accomplished as an independent step to the degradation process. The goal is to extract the PCBs out of the paint, without destroying the paint, and to partition the PCBs into an environmentally friendly solvent. The research to date indicates this can be accomplished within the first 24 hours of AMTS contact with the paint. PCBs are extremely hydrophobic and prefer to be in the AMTS over the hardened paint or binder material. The solvent selected must be used to open, but not to destroy, the paint s polymeric lattice structure, allowing pathways for PCB movement out of the paint and into the solvent. A number of solvent systems were tested and are available for use within the AMTS. The second process of the AMTS is the degradation or dehalogenation of the PCBs. The solvent selection for this process is limited to solvents that are capable of donating a hydrogen atom to the PCB structure. Additional AMTS formulation properties that must be addressed for each site-specific application include viscosity and stability. The AMTS must be thick enough to remain where it is applied. Several thickening agents have been tested. Adding a stabilizing agent ensures that the AMTS will not evaporate and leave unprotected, activated metal exposed. During AMTS formulation testing, a number of reagents were evaluated to ensure the rate of dehalogenation was not inhibited by its addition to the system.
Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor.
Vanderberg-Twary, L; Steenhoudt, K; Travis, B J; Hanners, J L; Foreman, T M; Brainard, J R
1997-07-05
Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.
Privacy Impact Assessment for the Lead-based Paint System of Records
The Lead-based Paint System of Records collects personally identifiable information, test scores, and submitted fees. Learn how this data is collected, how it will be used, access to the data, the purpose of data collection, and record retention policies.
This Standard Operating Procedure (SOP) describes a new, rapid, and relatively inexpensive one step procedure which grinds the paint samples removed from the substrate and simultaneously quantitatively extracts the Pb from the paint in only one step in preparation for quantitativ...
Development of 6-DOF painting robot control system
NASA Astrophysics Data System (ADS)
Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang
2017-01-01
With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.
Laminar-turbulent transition tripped by step on transonic compressor profile
NASA Astrophysics Data System (ADS)
Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr
2018-02-01
The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.
Effects of Various Fillet Shapes on a 76/40 Double Delta Wing from Mach 0.18 to 0.7
NASA Technical Reports Server (NTRS)
Erickson, Gary E.; Bell, James H.; Gonzalez, Hugo A.; McLachlan, Blair G.
2003-01-01
The effects of linear, diamond, and parabolic fillets on a double delta wing were investigated in the NASA Langley 7 x 10 ft High Speed Tunnel from Mach 0.18 to 0.7 and angles of attack from 4 deg. to 42 deg. Force and moment, pneumatic pressures, pressure sensitive paint, and vapor screen flow visualization measurements were used to characterize the flow field and to determine longitudinal forces and moments. The fillets increased lift coefficient and reduced induced drag without significantly affecting pitching moment. Pressure sensitive paint showed the increase in lift is caused by an increase in suction and broadening of the vortex suction footprint. Vapor screen results showed the mixing and coalescing of the strake fillet and wing vortices causes the footprint to broaden.
Photogrammetry Applied to Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.
2000-01-01
In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.
Pelosi, Claudia; Capobianco, Giuseppe; Agresti, Giorgia; Bonifazi, Giuseppe; Morresi, Fabio; Rossi, Sara; Santamaria, Ulderico; Serranti, Silvia
2018-06-05
The aim of this work is to investigate the stability to simulated solar radiation of some paintings samples through a new methodological approach adopting non-invasive spectroscopic techniques. In particular, commercial watercolours and iron oxide based pigments were used, these last ones being prepared for the experimental by gum Arabic in order to propose a possible substitute for traditional reintegration materials. Reflectance spectrophotometry in the visible range and Hyperspectral Imaging in the short wave infrared were chosen as non-invasive techniques for evaluation the stability to irradiation of the chosen pigments. These were studied before and after artificial ageing procedure performed in Solar Box chamber under controlled conditions. Data were treated and elaborated in order to evaluate the sensitivity of the chosen techniques in identifying the variations on paint layers, induced by photo-degradation, before they could be observed by eye. Furthermore a supervised classification method for monitoring the painted surface changes adopting a multivariate approach was successfully applied. Copyright © 2018 Elsevier B.V. All rights reserved.
Statistical regularities of art images and natural scenes: spectra, sparseness and nonlinearities.
Graham, Daniel J; Field, David J
2007-01-01
Paintings are the product of a process that begins with ordinary vision in the natural world and ends with manipulation of pigments on canvas. Because artists must produce images that can be seen by a visual system that is thought to take advantage of statistical regularities in natural scenes, artists are likely to replicate many of these regularities in their painted art. We have tested this notion by computing basic statistical properties and modeled cell response properties for a large set of digitized paintings and natural scenes. We find that both representational and non-representational (abstract) paintings from our sample (124 images) show basic similarities to a sample of natural scenes in terms of their spatial frequency amplitude spectra, but the paintings and natural scenes show significantly different mean amplitude spectrum slopes. We also find that the intensity distributions of paintings show a lower skewness and sparseness than natural scenes. We account for this by considering the range of luminances found in the environment compared to the range available in the medium of paint. A painting's range is limited by the reflective properties of its materials. We argue that artists do not simply scale the intensity range down but use a compressive nonlinearity. In our studies, modeled retinal and cortical filter responses to the images were less sparse for the paintings than for the natural scenes. But when a compressive nonlinearity was applied to the images, both the paintings' sparseness and the modeled responses to the paintings showed the same or greater sparseness compared to the natural scenes. This suggests that artists achieve some degree of nonlinear compression in their paintings. Because paintings have captivated humans for millennia, finding basic statistical regularities in paintings' spatial structure could grant insights into the range of spatial patterns that humans find compelling.
REMOVAL AND CONTAINMENT OF LEAD-BASED PAINT VIA NEEDLE SCALERS
This report describes a comparative technical and economic evaluation of using a dustless needlegun system versus a conventional abrasive grit blasting system in the removal of lead-based paint from steel structures. The objective of the study was to comparatively analyze the ope...
Shimizu, Akihiko; Nakashima, Syozi; Nikaido, Toru; Sugawara, Toyotaro; Yamamoto, Takatsugu; Momoi, Yasuko
2013-01-01
We previously discovered that when a cone-shaped indenter coated with paint was pressed into an object, the paint disappeared in accordance with the depth of the indentation. Based on this fact, we developed the Cariotester, a portable system for measuring the Knoop hardness (KHN) of carious dentin. The Cariotester is composed of a handpiece with an indenter, a microscope, and a computer. In this system, the painted indenter is forced into the material with a 150-gf load, and the indentation depth (CT depth) is obtained from the paint disappearance. The CT depth by the Cariotester and the KHN by a microhardness tester were determined at 14 dentin regions. From the data, a program was created to convert the CT depth of the carious dentin into the KHN. As a result, if the CT depth is measured with this system, the KHN of carious dentin can be displayed in real time.
NASA Astrophysics Data System (ADS)
Eklund, Britta
2017-08-01
A growth inhibition test has been developed based on two clones of the red macroalga Ceramium tenuicorne, one originating from 7 PSU and the other from 20 PSU. The species can be adapted to different salinities and the test can be carried out between 4 and 32 PSU. This test became an ISO standard in 2010 (ISO 107 10) for testing of chemicals and water effluents. In this study new and published data has been compiled on toxicity of single substances, waste waters from pulp mills, leachates from antifouling paints, harbour sediments and soil used for maintenance of leisure boats. The results show that the alga is sensitive to both metals and organic compounds and to biocides used in antifouling paints. By testing leachates from antifouling paints these could be ranked according to their toxicity. Similarly, the toxicity of waste waters from pulp mills was determined and the efficiency of secondary treatment evaluated. Further, the test method proved useful to test the toxicity in sediment samples. Sediments from small town harbours and ship lanes were shown to be harmful and compounds originating from antifouling paints were responsible for a large part of the inhibiting effect. The alga proved to be sensitive to contaminants leaking from boat yard soil. The growth inhibition test is a robust test that has high repeatability and reproducibility and easily can be applied on water, soil and sediment samples without being too costly. The species is found worl-wide in temperate waters, which makes the results relevant for large areas. In the Baltic Sea C. tenuicorne is the most common red alga species and is thus particularly relevant for this area. The overall results show that contaminants from boat activities and the use of antifouling paints in particular pose a threat to the environment.
Comparison of the bidirectional reflectance distribution function of various surfaces
NASA Astrophysics Data System (ADS)
Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.
1989-04-01
This paper describes the development and use of a system to measure the bidirectional reflectance distribution function (BRDF) of various surfaces. The BRDF measurements are to be used in the analysis and design of optical measurement systems such as laser anemometers. An Ar-ion laser (514 nm) was the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand-blasted Al, unworked Al, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests.
Use of a Garment as an Alternative to Body Painting in Equine Musculoskeletal Anatomy Teaching.
Sattin, Mariana M; Silva, Vickitoriana K A; Leandro, Rafael M; Foz Filho, Roberto P P; De Silvio, Mauricio M
Living anatomy is gaining increasing popularity as an alternative to the use of preserved cadaver specimens in musculoskeletal anatomy teaching. This article describes the development of a garment painted with musculoskeletal structures as an alternative to body painting. Garments offer some advantages over traditional body painting in anatomy teaching. The technique can be used across different disciplines, enhances students' ability to identify anatomic structures in living bodies, and provides insights into the topography of one or more body systems at the same time. The fact that garments are amenable to palpation by large groups of students with no damage to the painting favors repeated use in hands-on wet labs. Garments such as the one described in this article introduce a novel approach to interdisciplinary teaching and learning, which can be combined with traditional anatomy teaching methods. The first garment produced depicts part of the equine musculoskeletal system. Steps in garment construction are highlighted and indications, advantages, and limitations of the method discussed.
Satuito, Cyril Glenn Perez; Katsuyama, Ichiro; Ando, Hirotomo; Seki, Yasuyuki; Senda, Tetsuya
2016-01-01
A laboratory test with a flow-through system was designed and its applicability for testing antifouling paints of varying efficacies was investigated. Six different formulations of antifouling paints were prepared to have increasing contents (0 to 40 wt.%) of Cu2O, which is the most commonly used antifouling substance, and each formulation of paint was coated on just one surface of every test plate. The test plates were aged for 45 days by rotating them at a speed of 10 knots inside a cylinder drum. A behavioral test was then conducted using five mussels (Mytilus galloprovincialis) that were pasted onto the coated surface of each aged test plate. The number of the byssus threads produced by each mussel generally decreased with increasing Cu2O content of the paint. The newly designed method was considered valid owing to the high consistency of its results with observations from the field experiment. PMID:27959916
Paintability of two Hawaii-grown woods...first progress report
R. Sidney Boone
1966-01-01
In a test of simulated vertical house siding, robusta eucalyptus and Australian toon panels appear to hold paint as adequately as redwood and Douglas-fir panels after 1-year exposure. The addition of anti-mildew agents to paints seems advisable-particularly in higher rainfall areas. Of the four systems of paint being tested, the self-primed latex appears to be the best...
NASA Astrophysics Data System (ADS)
García-Bucio, María Angélica; Casanova-González, Edgar; Ruvalcaba-Sil, José Luis; Arroyo-Lemus, Elsa; Mitrani-Viggiano, Alejandro
2016-12-01
Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings. This article is part of the themed issue "Raman spectroscopy in art and archaeology".
NASA Glenn 1-by 1-Foot Supersonic Wind Tunnel User Manual
NASA Technical Reports Server (NTRS)
Seablom, Kirk D.; Soeder, Ronald H.; Stark, David E.; Leone, John F. X.; Henry, Michael W.
1999-01-01
This manual describes the NASA Glenn Research Center's 1 - by 1 -Foot Supersonic Wind Tunnel and provides information for customers who wish to conduct experiments in this facility. Tunnel performance envelopes of total pressure, total temperature, and dynamic pressure as a function of test section Mach number are presented. For each Mach number, maps are presented of Reynolds number per foot as a function of the total air temperature at the test section inlet for constant total air pressure at the inlet. General support systems-such as the service air, combustion air, altitude exhaust system, auxiliary bleed system, model hydraulic system, schlieren system, model pressure-sensitive paint, and laser sheet system are discussed. In addition, instrumentation and data processing, acquisition systems are described, pretest meeting formats and schedules are outlined, and customer responsibilities and personnel safety are addressed.
NASA Technical Reports Server (NTRS)
Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal
2016-01-01
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
Goodman, Kyle Z; Lipford, William E; Watkins, Anthony Neal
2016-12-03
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal
2016-01-01
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method. PMID:27918493
DOT National Transportation Integrated Search
1997-01-01
As part of efforts to identify effective and durable anodes for use in cathodic protection (CP) of reinforced concrete members, a water-based, electrically conductive paint was evaluated for use as the secondary anode in CP systems for protecting inl...
Texton-based analysis of paintings
NASA Astrophysics Data System (ADS)
van der Maaten, Laurens J. P.; Postma, Eric O.
2010-08-01
The visual examination of paintings is traditionally performed by skilled art historians using their eyes. Recent advances in intelligent systems may support art historians in determining the authenticity or date of creation of paintings. In this paper, we propose a technique for the examination of brushstroke structure that views the wildly overlapping brushstrokes as texture. The analysis of the painting texture is performed with the help of a texton codebook, i.e., a codebook of small prototypical textural patches. The texton codebook can be learned from a collection of paintings. Our textural analysis technique represents paintings in terms of histograms that measure the frequency by which the textons in the codebook occur in the painting (so-called texton histograms). We present experiments that show the validity and effectiveness of our technique for textural analysis on a collection of digitized high-resolution reproductions of paintings by Van Gogh and his contemporaries. As texton histograms cannot be easily be interpreted by art experts, the paper proposes to approaches to visualize the results on the textural analysis. The first approach visualizes the similarities between the histogram representations of paintings by employing a recently proposed dimensionality reduction technique, called t-SNE. We show that t-SNE reveals a clear separation of paintings created by Van Gogh and those created by other painters. In addition, the period of creation is faithfully reflected in the t-SNE visualizations. The second approach visualizes the similarities and differences between paintings by highlighting regions in a painting in which the textural structure of the painting is unusual. We illustrate the validity of this approach by means of an experiment in which we highlight regions in a painting by Monet that are not very "Van Gogh-like". Taken together, we believe the tools developed in this study are well capable of assisting for art historians in support of their study of paintings.
NASA Astrophysics Data System (ADS)
Steger, Simon; Stege, Heike; Bretz, Simone; Hahn, Oliver
2018-04-01
A non-invasive method has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings "Zwei Frauen am Tisch" (1920-22), "Bäume" (1946) (both by Heinrich Campendonk), "Lofoten" (1933) (Edith Campendonk-van Leckwyck) and "Ohne Titel" (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra from the paintings with spectra from pure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts. We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings.
Single-shot lifetime-based PSP and TSP measurements on turbocharger compressor blades
NASA Astrophysics Data System (ADS)
Peng, Di; Jiao, Lingrui; Yu, Yuelong; Liu, Yingzheng; Oshio, Tetsuya; Kawakubo, Tomoki; Yakushiji, Akimitsu
2017-09-01
Fast-responding pressure-sensitive paint (Fast PSP) and temperature-sensitive paint (TSP) measurements were conducted on two turbocharger compressors using a single-shot lifetime-based technique. The fast PSP and TSP were applied on separate blades of one compressor, and both paints were excited by a pulsed 532 nm Nd:YAG laser. The luminescent decay signals following the laser pulse were recorded by a CCD camera in a double-exposure mode. Instantaneous pressure and temperature fields on compressor blades were obtained simultaneously, for rotation speeds up to 150,000 rpm. The variations in pressure and temperature fields with rotation speed, flow rate and runtime were clearly visualized, showing the advantage of high spatial resolution. Severe image blurring problems and significant temperature-induced errors in the PSP results were found at high rotation speeds. The first issue was addressed by incorporating a deconvolution-based deblurring algorithm to recover the clear image from the blurred image using the combination of luminescent lifetime and rotation speed. The second issue was resolved by applying a pixel-by-pixel temperature correction based on the TSP results. The current technique has shown great capabilities in flow diagnostics of turbomachinery and can serve as a powerful tool for CFD validations and design optimizations.
Effects of wall temperature on skin-friction measurements by oil-film interferometry
NASA Astrophysics Data System (ADS)
Bottini, H.; Kurita, M.; Iijima, H.; Fukagata, K.
2015-10-01
Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity-temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques.
NASA Astrophysics Data System (ADS)
Shu, Shi; Morrison, Glenn C.
2012-02-01
Low volatility terpenoids emitted from consumer products can react with ozone on surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products in indoor air. We measured the reaction probability and a second-order surface-specific reaction rate for the ozonation of dihydromyrcenol, a representative indoor terpenoid, adsorbed onto polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability ranged from (0.06-8.97) × 10 -5 and was very sensitive to humidity, substrate and mass adsorbed. The average surface reaction probability is about 10 times greater than that for the gas-phase reaction. The second-order surface-specific rate coefficient ranged from (0.32-7.05) × 10 -15 cm 4 s -1 molecule -1and was much less sensitive to humidity, substrate, or mass adsorbed. We also measured the ozone deposition velocity due to adsorbed dihydromyrcenol on painted drywall in a room-sized chamber, Based on that, we calculated the rate coefficient ((0.42-1.6) × 10 -15 cm 4 molecule -1 s -1), which was consistent with that derived from bench-scale experiments for the latex paint under similar conditions. We predict that more than 95% of dihydromyrcenol oxidation takes place on indoor surfaces, rather than in building air.
Glass composition development for stabilization of lead based paints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.C.
1996-10-01
Exposure to lead can lead to adverse health affects including permanent damage to the central nervous system. Common means of exposure to lead are from ingestion of lead paint chips or breathing of dust from deteriorating painted surfaces. The U.S. Army has over 101 million square feet of buildings dating to World War II or earlier. Many of these structures were built before the 1978 ban on lead based paints. The U.S. Army Corps of Engineers CERL is developing technologies to remove and stabilize lead containing organic coatings. Promising results have been achieved using a patented flame spray process thatmore » utilizes a glass frit to stabilize the hazardous constituents. When the glass frit is sprayed onto the paint containing substrate, differences in thermal expansion coefficients between the frit and the paint results in spalling of the paint from the substrate surface. The removed fragments are then collected and remelted to stabilize the hazardous constituents and allow for disposal as non-hazardous waste. Similar successful results using a patented process involving microwave technology for paint removal have also been achieved. In this process, the painted surface is coated with a microwave coupling compound that when exposed to microwave energy results in the spalling of the hazardous paint from the surface. The fragments can again be accumulated and remelted for stabilization and disposal.« less
Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John
2012-04-01
The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.
Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.
2005-01-01
A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.
NASA Astrophysics Data System (ADS)
Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Kaczynski, Piotr; Piotrowicz, Michal
2015-11-01
The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to investigate the flow structure on the suction side of a profile, a design of a generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. Near the sidewalls the suction slots are applied for the corner flow structure control. It allows to control the Axial Velocity Density Ratio (AVDR), important parameter for compressor cascade investigations. Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization, schlieren and Pressure Sensitive Paint. Boundary layer transition location is detected by Temperature Sensitive Paint.
Psychological reality of cross-media artistic styles.
Hasenfus, N; Martindale, C; Birnbaum, D
1983-12-01
The sensitivity of artistically naive people to cross-media styles (baroque, neoclassic, and romantic) and to period styles (works composed by artists born during the same epoch) in four media (painting, poetry, music, and architecture) was assessed. In two studies, adult subjects tended spontaneously to sort stimuli according to both cross-media styles and period styles. In a third study, nursery school children were shown to be able to sort pictures of paintings and architectural facades on the basis of cross-media styles. Other experiments using rating scales again demonstrated that artistically naive adults are sensitive to both cross-media styles and period styles even when they are not implicitly urged to disregard medium. These and other studies using rating scales suggested that the bases for discrimination of both cross-media styles and period styles are the dimensions of realistic versus unrealistic and of overall arousal potential.
Supplier Perspective: Paints & Finishes for Corrosion Protection of Military Vehicles
2010-06-15
Systems , Oshkosh Truck, General Dynamics, AM General. Automotive approvals include Honda , Toyota , General Motors, Ford, Chrysler, BMW, Subaru, Nissan...Military Compliance EXAMPLE OF AN INFERIOR PROCESS MIL-DTL-5541 Aluminum pretreatment conveyor system using a trivalent chrome pretreatment...Automotive has become a leader in corrosion prevention. Vehicles last much longer due to improved paint systems . Much of this is attributed to
Orion EM-1 Booster Preps - Aft Skirt Preps/Painting
2016-10-28
A paint technician with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, uses an air gun to apply paint to the right hand aft skirt for NASA’s SLS rocket inside a support building at the Hangar AF facility at Cape Canaveral Air Force Station. The space shuttle-era aft skirt, was inspected and resurfaced to prepare it for primer and paint. The aft skirt will be used on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.
Comparison of the bidirectional reflectance distribution function of various surfaces
NASA Technical Reports Server (NTRS)
Fernandez, Rene; Seasholtz, Richard G.; Oberle, Lawrence G.; Kadambi, Jaikrishnan R.
1988-01-01
Described is the development and use of a system to measure the Bidirectional Reflectance Distribution Function (BRDF) of various surfaces. The BRDF measurements are used in the analysis and design of optical measurement systems, such as laser anemometers. An argon ion laser (514 nm) is the light source. Preliminary results are presented for eight samples: two glossy black paints, two flat black paints, black glass, sand blasted aluminum, unworked aluminum, and a white paint. A BaSO4 white reflectance standard was used as the reference sample throughout the tests. The reflectance characteristics of these surfaces are compared.
NASA Technical Reports Server (NTRS)
2000-01-01
UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.
An Animal Model of Trichloroethylene-Induced Skin Sensitization in BALB/c Mice.
Wang, Hui; Zhang, Jia-xiang; Li, Shu-long; Wang, Feng; Zha, Wan-sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-xing
2015-01-01
Trichloroethylene (TCE) is a major occupational hazard and environmental contaminant that can cause multisystem disorders in the form of occupational medicamentosa-like dermatitis. Development of dermatitis involves several proinflammatory cytokines, but their role in TCE-mediated dermatitis has not been examined in a well-defined experimental model. In addition, few animal models of TCE sensitization are available, and the current guinea pig model has apparent limitations. This study aimed to establish a model of TCE-induced skin sensitization in BALB/c mice and to examine the role of several key inflammatory cytokines on TCE sensitization. The sensitization rate of dorsal painted group was 38.3%. Skin edema and erythema occurred in TCE-sensitized groups, as seen in 2,4-dinitrochlorobenzene (DNCB) positive control. Trichloroethylene sensitization-positive (dermatitis [+]) group exhibited increased thickness of epidermis, inflammatory cell infiltration, swelling, and necrosis in dermis and around hair follicle, but ear painted group did not show these histological changes. The concentrations of serum proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-2 were significantly increased in 24, 48, and 72 hours dermatitis [+] groups treated with TCE and peaked at 72 hours. Deposition of TNF-α, IFN-γ, and IL-2 into the skin tissue was also revealed by immunohistochemistry. We have established a new animal model of skin sensitization induced by repeated TCE stimulations, and we provide the first evidence that key proinflammatory cytokines including TNF-α, IFN-γ, and IL-2 play an important role in the process of TCE sensitization. © The Author(s) 2015.
Valenzuela, Nicole
2009-07-01
Painted turtles (Chrysemys picta) are representatives of a vertebrate clade whose biology and phylogenetic position hold a key to our understanding of fundamental aspects of vertebrate evolution. These features make them an ideal emerging model system. Extensive ecological and physiological research provide the context in which to place new research advances in evolutionary genetics, genomics, evolutionary developmental biology, and ecological developmental biology which are enabled by current resources, such as a bacterial artificial chromosome (BAC) library of C. picta, and the imminent development of additional ones such as genome sequences and cDNA and expressed sequence tag (EST) libraries. This integrative approach will allow the research community to continue making advances to provide functional and evolutionary explanations for the lability of biological traits found not only among reptiles but vertebrates in general. Moreover, because humans and reptiles share a common ancestor, and given the ease of using nonplacental vertebrates in experimental biology compared with mammalian embryos, painted turtles are also an emerging model system for biomedical research. For example, painted turtles have been studied to understand many biological responses to overwintering and anoxia, as potential sentinels for environmental xenobiotics, and as a model to decipher the ecology and evolution of sexual development and reproduction. Thus, painted turtles are an excellent reptilian model system for studies with human health, environmental, ecological, and evolutionary significance.
Worldwide Environmental Compliance Assessment and Management Program (ECAMP)
1991-01-01
shop is derived as follows: 1. The paint shop has many enviromnntal concerns: -wi - - emissions from painting activities -proper storae of flammable and...stripping compounds, and paint solids into the storm or sanitary systems. Protocols tit apply are: -Air Emissions M en n -Haarous Materials Mr~nn...in Air Emissions an ~enr spray painiM or surface coating operations questions - in Hazarious Materials Mas enx storage of flanmble/combustible
Development of Encapsulated Dye for Surface Impact Damage Indicator System.
1987-09-01
GROUP SUB-GROUP Composites Ultrasonics Dye Impact Microcapsules 11 04 NDE polyurethane 11 1 0Encapsulation Paint 19. ABSTRACT (Continue on reverse if...encapsulation, microencapsule incorporation into the USAF polyurethane paint, dnd initial correlation study of impact damage to impact coating indication. It is...project were to: 1. Refine the microcapsule formulation to be compatible with MIL-C-83286 paint. 2. Fabricate composite panels from isotropic graphite
Nuclear Weapon Yield Determination through Nano Indentation of Thermally Degraded Automobile Paint
2011-03-01
function of the layer. When less complicated paint systems were used, the primer filled the role of surfacer. As each layer of paint became more...majority of the property changes caused by the irradiation would be near the surface. Unfortunately, surface effects are complicated , difficult...are two values recorded in the bubble and whitening rows under the Highest Temperature not Observed because the experiment that yielded the
Steger, Simon; Stege, Heike; Bretz, Simone; Hahn, Oliver
2018-04-15
A non-invasive method has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings "Zwei Frauen am Tisch" (1920-22), "Bäume" (1946) (both by Heinrich Campendonk), "Lofoten" (1933) (Edith Campendonk-van Leckwyck) and "Ohne Titel" (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra from the paintings with spectra from pure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts. We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings. Copyright © 2018 Elsevier B.V. All rights reserved.
2016-01-01
Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799434
Sensitivity-Based VOC Reactivity Calculation
Volatile Organic Compound (VOC) reactivity scales are used to compare the ozone-forming potentials of various compounds. The comparison allows for substitution of compounds to lessen formation of ozone from paints, solvents, and other products. Current reactivity scales for VOC c...
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
2008-03-29
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
UNICOAT. Development Laboratory Characterization and Field Evaluation
1990-03-30
flexibility of the coatlig system and prevent cracking of the paint, especially around fasteners. Although the current paint system performs well, the...topcoat formulation that non-lead, non-chroaate, corrosion preventive coatings for aluminum can be develped. Currently, there are two military...specifications, Mil-P-52995 and Mil-P-53030, for lead and chrome free corrogion preventive primers for ferrous and non-ferrous substrates. The pigment system
Prevention Guidance for Isocyanate-Induced Asthma Using Occupational Surveillance Data
Reeb-Whitaker, Carolyn; Anderson, Naomi J.; Bonauto, David K.
2013-01-01
Data from Washington State's work-related asthma surveillance system were used to characterize isocyanate-induced asthma cases occurring from 1999 through 2010. Injured worker interviews and medical records were used to describe the industry, job title, work process, workers’ compensation cost, and exposure trends associated with 27 cases of isocyanate-induced asthma. The majority (81%) of cases were classified within the surveillance system as new-onset asthma while 19% were classified as work-aggravated asthma. The workers’ compensation cost for isocyanate-induced asthma cases was $1.7 million; this was 14% of the total claims cost for all claims in the asthma surveillance system. The majority of cases (48%) occurred from paint processes, followed by foam application or foam manufacturing (22%). Nine of the asthma cases associated with spray application occurred during application to large or awkward-shaped objects. Six workers who did not directly handle isocyanates (indirect exposure) developed new-onset asthma. Two cases suggest that skin contact and processes secondary to the isocyanate spray application, such as cleanup, contributed to immune sensitization. Surveillance data provide insight for the prevention of isocyanate-induced respiratory disease. Key observations are made regarding the development of work-related asthma in association with a) paint application on large objects difficult to ventilate, b) indirect exposure to isocyanates, c) exposure during secondary or cleanup processes, and d) reports of dermal exposure. PMID:24116665
Prevention guidance for isocyanate-induced asthma using occupational surveillance data.
Reeb-Whitaker, Carolyn; Anderson, Naomi J; Bonauto, David K
2013-01-01
Data from Washington State's work-related asthma surveillance system were used to characterize isocyanate-induced asthma cases occurring from 1999 through 2010. Injured worker interviews and medical records were used to describe the industry, job title, work process, workers' compensation cost, and exposure trends associated with 27 cases of isocyanate-induced asthma. The majority (81%) of cases were classified within the surveillance system as new-onset asthma while 19% were classified as work-aggravated asthma. The workers' compensation cost for isocyanate-induced asthma cases was $1.7 million; this was 14% of the total claims cost for all claims in the asthma surveillance system. The majority of cases (48%) occurred from paint processes, followed by foam application or foam manufacturing (22%). Nine of the asthma cases associated with spray application occurred during application to large or awkward-shaped objects. Six workers who did not directly handle isocyanates (indirect exposure) developed new-onset asthma. Two cases suggest that skin contact and processes secondary to the isocyanate spray application, such as cleanup, contributed to immune sensitization. Surveillance data provide insight for the prevention of isocyanate-induced respiratory disease. Key observations are made regarding the development of work-related asthma in association with a) paint application on large objects difficult to ventilate, b) indirect exposure to isocyanates, c) exposure during secondary or cleanup processes, and d) reports of dermal exposure.
IRIS: a novel spectral imaging system for the analysis of cultural heritage objects
NASA Astrophysics Data System (ADS)
Papadakis, V. M.; Orphanos, Y.; Kogou, S.; Melessanaki, K.; Pouli, P.; Fotakis, C.
2011-06-01
A new portable spectral imaging system is herein presented capable of acquiring images of high resolution (2MPixels) ranging from 380 nm up to 950 nm. The system consists of a digital color CCD camera, 15 interference filters covering all the sensitivity range of the detector and a robust filter changing system. The acquisition software has been developed in "LabView" programming language allowing easy handling and modification by end-users. The system has been tested and evaluated on a series of objects of Cultural Heritage (CH) value including paintings, encrusted stonework, ceramics etc. This paper aims to present the system, as well as, its application and advantages in the analysis of artworks with emphasis on the detailed compositional and structural information of layered surfaces based on reflection & fluorescence spectroscopy. Specific examples will be presented and discussed on the basis of system improvements.
33 CFR 277.8 - Procedures for apportionment of costs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... betterments. The cost of such items will be borne by the bridge owner. (i) Access roads. (ii) Concrete or... paint, and exotic paint systems. (xiv) Brass pipe and high alloy steel conduits. (xv) Floodlights and...
The paper describes a full-scale demonstration program in which several paint booths were modified for recirculation ventilation; the booth exhaust streams are vented to an innovative volatile organic compound (VOC) emission control system having extremely low operating costs. ...
Design for Corrosion Control of Aviation Fuel Storage and Distribution Systems
1975-06-01
may be painted, or oiled. The paint usually used is an asphalt varnish applied in one coat in accor- dance with Federal Specification TT-V-51A...Fluorocarbon plastics -- Plastics based on resins made by the polymeri- zation of monomers composed of fluorine and carbon only. Film thickness -- Depth...natural or synthetic, contained in varnishes , lacquers and paints; the film former. -- A solid, semisolid, or pseudosolid organic material which has an
NASA Technical Reports Server (NTRS)
Henry, Michael
2000-01-01
During a test at the NASA Glenn Research Center's 1 x 1 Supersonic Wing Tunnel, it was discovered that particles entrained in the air flow were damaging the pressure sensitive paint on a test article. An investigation found the source of the entrained particles to be rust on the internal surfaces of the air supply piping. To remedy the situation, the air supply line components made from carbon steel were either refurbished or replaced with new stainless steel components. The refurbishment process included various combinations of chemical cleaning, bead blasting, painting and plating.
Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies
Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M
2014-01-01
To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanoski, G.; Billings, C.; Levine, M.
1979-05-01
The four major paint shops (light aircraft, small parts, Colar anticorrosive primer, and the Alodine epoxy/phenolic resin paint shop) employing 30 workers at Gulfstream American Corporation, Savannah, Georgia were the primary focus of a walk-through on July 12 and 13, 1978. The company's record-keeping system, medical program, and industrial-hygiene program were examined. The authors recommend that the light aircraft paint shop be included in an industrial hygiene study since the workload is fairly steady, types of paints and peripheral exposures are easily documented, and current control measures result in relatively low exposures of personnel to paint constituents. An epidemiological studymore » is not recommended because the facility is new and the number of painters and the duration of exposures are limited. The authors suggest that this factory be considered during the final selection of aircraft manufacturing facilities for medical studies because of the degree of potential exposure to polyurethane paint.« less
ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse.
Voras, Zachary E; deGhetaldi, Kristin; Wiggins, Marcie B; Buckley, Barbara; Baade, Brian; Mass, Jennifer L; Beebe, Thomas P
2015-11-01
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers.
ToF-SIMS imaging of molecular-level alteration mechanisms in Le Bonheur de vivre by Henri Matisse
NASA Astrophysics Data System (ADS)
Voras, Zachary E.; deGhetaldi, Kristin; Wiggins, Marcie B.; Buckley, Barbara; Baade, Brian; Mass, Jennifer L.; Beebe, Thomas P.
2015-11-01
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has recently been shown to be a valuable tool for cultural heritage studies, especially when used in conjunction with established analytical techniques in the field. The ability of ToF-SIMS to simultaneously image inorganic and organic species within a paint cross section at micrometer-level spatial resolution makes it a uniquely qualified analytical technique to aid in further understanding the processes of pigment and binder alteration, as well as pigment-binder interactions. In this study, ToF-SIMS was used to detect and image both molecular and elemental species related to CdS pigment and binding medium alteration on the painting Le Bonheur de vivre (1905-1906, The Barnes Foundation) by Henri Matisse. Three categories of inorganic and organic components were found throughout Le Bonheur de vivre and co-localized in cross-sectional samples using high spatial resolution ToF-SIMS analysis: (1) species relating to the preparation and photo-induced oxidation of CdS yellow pigments (2) varying amounts of long-chain fatty acids present in both the paint and primary ground layer and (3) specific amino acid fragments, possibly relating to the painting's complex restoration history. ToF-SIMS's ability to discern both organic and inorganic species via cross-sectional imaging was used to compare samples collected from Le Bonheur de vivre to artificially aged reference paints in an effort to gather mechanistic information relating to alteration processes that have been previously explored using μXANES, SR-μXRF, SEM-EDX, and SR-FTIR. The relatively high sensitivity offered by ToF-SIMS imaging coupled to the high spatial resolution allowed for the positive identification of degradation products (such as cadmium oxalate) in specific paint regions that have before been unobserved. The imaging of organic materials has provided an insight into the extent of destruction of the original binding medium, as well as identifying unexpected organic materials in specific paint layers.
Caharel, Stéphanie; Leleu, Arnaud; Bernard, Christian; Viggiano, Maria-Pia; Lalonde, Robert; Rebaï, Mohamed
2013-11-01
The properties of the face-sensitive N170 component of the event-related brain potential (ERP) were explored through an orientation discrimination task using natural faces, objects, and Arcimboldo paintings presented upright or inverted. Because Arcimboldo paintings are composed of non-face objects but have a global face configuration, they provide great control to disentangle high-level face-like or object-like visual processes at the level of the N170, and may help to examine the implication of each hemisphere in the global/holistic processing of face formats. For upright position, N170 amplitudes in the right occipito-temporal region did not differ between natural faces and Arcimboldo paintings but were larger for both of these categories than for objects, supporting the view that as early as the N170 time-window, the right hemisphere is involved in holistic perceptual processing of face-like configurations irrespective of their features. Conversely, in the left hemisphere, N170 amplitudes differed between Arcimboldo portraits and natural faces, suggesting that this hemisphere processes local facial features. For upside-down orientation in both hemispheres, N170 amplitudes did not differ between Arcimboldo paintings and objects, but were reduced for both categories compared to natural faces, indicating that the disruption of holistic processing with inversion leads to an object-like processing of Arcimboldo paintings due to the lack of local facial features. Overall, these results provide evidence that global/holistic perceptual processing of faces and face-like formats involves the right hemisphere as early as the N170 time-window, and that the local processing of face features is rather implemented in the left hemisphere. © 2013.
Paint study : progress report No. 1 : Louisiana highway research.
DOT National Transportation Integrated Search
1965-03-01
The principle objectives of this study are arrive at the most economical atmospheric paint system for structural steel and to correlate weatherometer exposure with atmospheric exposure. Three sites in Louisiana have been selected - they are Baton Rou...
Paint removal activities in Canada
NASA Astrophysics Data System (ADS)
Foster, Terry
1993-03-01
Paint removal activities currently under way in Canada include: research and development of laser paint stripping; development and commercialization of a new blasting medium based on wheat starch; commercialization of a new blasting medium and process using crystalline ice blasting for paint removal and surface cleaning; and the development of automated and robotic systems for paint stripping applications. A specification for plastic media blasting (PMB) of aircraft and aircraft components is currently being drafted by NDHQ for use by the Canadian Armed Forces (CAF) and contractors involved in coating removal for the CAF. Defense Research Establishment Pacific (DREP) is studying the effects of various blast media on coating removal rates, and minimizing the possibility of damage to substrates other than aluminum such as graphite epoxy composite and Kevlar. The effects of plastic media blasting on liquid penetrant detection of fatigue cracks is also under investigation.
Beqa, Lule; Singh, Anant Kumar; Khan, Sadia Afrin; Senapati, Dulal; Arumugam, Sri Ranjini; Ray, Paresh Chandra
2011-03-01
Pb (II) is a common water pollutant with high toxicity. According to the CDC, about 310,000 U.S. children of ages 1-5 have high levels of lead in their blood that it is due to the exposure to lead from plastic toys and other products. As a result, the development of ultrasensitive assays for the real-time detection of Pb(II) from plastic toys and paints is very important for water controlling, clinical toxicology and industrial processes. Driven by the need to detect trace amounts of Pb(II) from water samples, we report a label-free, highly selective and ultra sensitive glutathione modified gold nanoparticle based dynamic light scattering (DLS) probe for Pb(II) recognition in 100 ppt level from aqueous solution with excellent discrimination against other heavy metals. The sensitivity of our assay to detect Pb(II) level in water is almost 2 orders of magnitude higher than the EPA standard limit. We have also demonstrated that our DLS assay is capable of measuring the amount of Pb(II) in paint, plastic toys, and water from MS river. A possible mechanism and operating principles of our DLS assay have been discussed. Ultimately, this nanotechnology driven assay could have enormous potential applications in rapid, on-site monitoring of Pb(II) from day-to-day sample.
Monitoring steel bridge renovation using lead isotopic tracing.
Salome, Fred; Gulson, Brian; Chiaradia, Massimo; Davis, Jeffrey; Morris, Howard
2017-05-01
Monitoring removal of lead (Pb) paint from steel structures usually involves analysis of environmental samples for total lead and determination of blood Pb levels of employees involved in the Pb paint removal. We used high precision Pb isotopic tracing for a bridge undergoing Pb paint removal to determine if Pb in the environmental and blood samples originated from the bridge paint. The paint system on the bridge consisted of an anti-corrosive red Pb primer top-coated with a Micaceous Iron Oxide (MIO) alkyd. Analysis of the red Pb primer gave uniform isotopic ratios indicative of Pb from the geologically-ancient Broken Hill mines in western New South Wales, Australia. Likewise waste abrasive material, as anticipated, had the same isotopic composition as the paint. The isotopic ratios for other samples lay on 2 separate linear arrays on a 207 Pb/ 204 Pb versus 206 Pb/ 204 Pb diagram, one largely defined by gasoline and the majority of the ambient air data, and the other by data for one sample each of gasoline and ambient air and underwater sediments. Isotopic ratios in background ambient air samples for the project were characteristic of leaded gasoline. Air sampling during paint removal showed a contribution of paint Pb ranging from about 20 to 40%. Isotopic ratios in the blood of 8 employees prior to the commencement of work showed that 6 of these had been previously exposed to the Broken Hill Pb possibly from earlier bridge paint removal projects. One subject appeared to have increased exposure to Pb probably from the paint renovations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Color image processing and vision system for an automated laser paint-stripping system
NASA Astrophysics Data System (ADS)
Hickey, John M., III; Hise, Lawson
1994-10-01
Color image processing in machine vision systems has not gained general acceptance. Most machine vision systems use images that are shades of gray. The Laser Automated Decoating System (LADS) required a vision system which could discriminate between substrates of various colors and textures and paints ranging from semi-gloss grays to high gloss red, white and blue (Air Force Thunderbirds). The changing lighting levels produced by the pulsed CO2 laser mandated a vision system that did not require a constant color temperature lighting for reliable image analysis.
Karol, M H; Hauth, B A
1982-01-01
Hypersensitivity to hexamethylene diisocyanate (HDI) has been reported following occupational exposure. Diagnosis of sensitivity is usually made from clinical evaluation of symptomatology. An in vitro serologic assay for HDI sensitivity was developed by immunizing guinea pigs with HDI and with hexyl isocyanate (HMI). Animals injected intradermally with HMI produced hapten-specific antibodies whereas guinea pigs injected with HDI produced antibodies specific for larger determinants which included the HDI hapten. The larger determinants were assumed to be composed of portions of "self" molecules which reacted in vivo with HDI. Serum albumin appeared to be one such molecule. No cross reactions were noted between antibodies to HDI and another widely used industrial isocyanate, toluene diisocyanate (TDI). Antigens effective in detecting antibodies to HDI or HMI were tested for ability to detect reaginic antibodies in a worker with clinical "HDI" asthma. Using a radioimmunoassay (RAST), antibodies reacted with conjugates containing either HDI or HMI as haptens. In addition, the prevalance of HDI polyisocyanates (Desmodur N) in spray paints prompted its use as a hapten. Antibodies reacted with Desmodur N antigen conjugates in RAST. RAST inhibition further indicated that Desmodur N antigen reacted more readily with the patient's antibodies than did HDI or HMI antigens. These results suggest that the patient may have been exposed to HDI polyisocyanates in spray paint application. Use of Rast inhibition for diagnosis of sensitivity may indicate the precise sensitizing agent within a mixture.
Microscopy and the Mystery of Pablo Picasso's Paints
NASA Astrophysics Data System (ADS)
Rose, Volker
A deep connection to our past and shared cultural heritage must be preserved to foster a balanced society where all humanity can thrive. This talk will describe analysis of paint materials used by Pablo Picasso at the nanoscale, as only possible at the brightest synchrotron sources. It will highlight how new imaging techniques can reveal the invisible, bringing to light underlying compositions of old masters' paintings. This in turn enables the writing of new art history and provides important material clues that can assist with attribution and authentication. We will explain how the use of new technology can lead to new discoveries, which, in turn, can change the public's and the specialists' perception of great works of art. ∖In collaboration with scientists from The Art Institute of Chicago we have teamed up to study the chemical make up of zinc oxide pigments used in artworks by Pablo Picasso. We will show how highly focused X-ray beams with nanoscale spatial resolution and trace element sensitivity have helped to determine that Picasso has used conventional house paint in some of his paintings. Surprisingly, the study gives also new insights into the pigment material zinc oxide, which has also great potential in a variety of applications such as in spintronics or as transparent electrodes in solar panels. Work at the Advanced Photon Source and the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DEAC02-06CH11357.
Robots for Aircraft Maintenance
NASA Technical Reports Server (NTRS)
1993-01-01
Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.
Centrifugal accelerator, system and method for removing unwanted layers from a surface
Foster, Christopher A.; Fisher, Paul W.
1995-01-01
A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.
Short-pulse laser removal of organic coatings
NASA Astrophysics Data System (ADS)
Walters, Craig T.
2000-08-01
A major problem in the regular maintenance of aerospace systems is the removal of paint and other protective coatings from surfaces without polluting the atmosphere or endangering workers. Recent research has demonstrated that many organic coatings can be removed from surfaces efficiently using short laser pulses without the use of any chemical agents. The lasers employed in this study were repetitively-pulsed neodymium YAG devices operating at 1064 nm (15 - 30 ns, 10 - 20 Hz). The efficiency of removal can be cast in terms of an effective heat of ablation, Q* (kJ of laser energy incident per g of paint removed), although, for short pulses, the mechanism of removal is believed to be dominated more by thermo- mechanical or shock effects than by photo-ablation. Q* data were collected as a function of pulse fluence for several paint types. For many paint types, there was a fairly sharp threshold fluence per pulse near 1 J/cm2, above which Q* values dropped to levels which were a factor of four lower than those observed for long- pulse or continuous laser ablation of paint. In this regime, the coating is removed in fairly large particles or, in the case of one paint, the entire thickness of the coating was removed over the exposed area in one pulse. Hardware for implementing short-pulse laser paint stripping in the field is under development and will be highlighted in the presentation. Practical paint stripping rates achieved using the prototype hardware are presented for several paint types.
Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy
2018-01-01
Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958
Pen-Based Interface Using Hand Motions in the Air
NASA Astrophysics Data System (ADS)
Suzuki, Yu; Misue, Kazuo; Tanaka, Jiro
A system which employs a stylus as an input device is suitable for creative activities like writing and painting. However, such a system does not always provide the user with a GUI that is easy to operate using the stylus. In addition, system usability is diminished because the stylus is not always integrated into the system in a way that takes into consideration the features of a pen. The purpose of our research is to improve the usability of a system which uses a stylus as an input device. We propose shortcut actions, which are interaction techniques for operation with a stylus that are controlled through a user's hand motions made in the air. We developed the Context Sensitive Stylus as a device to implement the shortcut actions. The Context Sensitive Stylus consists of an accelerometer and a conventional stylus. We also developed application programs to which we applied the shortcut actions; e.g., a drawing tool, a scroll supporting tool, and so on. Results from our evaluation of the shortcut actions indicate that users can concentrate better on their work when using the shortcut actions than when using conventional menu operations.
Effect analysis of oil paint on the space optical contamination
NASA Astrophysics Data System (ADS)
Lu, Chun-lian; Lv, He; Han, Chun-xu; Wei, Hai-Bin
2013-08-01
The space contamination of spacecraft surface is a hot topic in the spacecraft environment project and environment safeguard for spacecraft. Since the 20th century, many American satellites have had malfunction for space contamination. The space optical systems are usually exposed to the external space environment. The particulate contamination of optical systems will degrade the detection ability. We call the optical damage. It also has a bad influence on the spectral imaging quality of the whole system. In this paper, effects of contamination on spectral imaging were discussed. The experiment was designed to observe the effect value. We used numeral curve fitting to analyze the relationship between the optical damage factor (Transmittance decay factor) and the contamination degree of the optical system. We gave the results of six specific wavelengths from 450 to 700nm and obtained the function of between the optical damage factor and contamination degree. We chose three colors of oil paint to be compared. Through the numeral curve fitting and processing data, we could get the mass thickness for different colors of oil paint when transmittance decreased to 50% and 30%. Some comparisons and research conclusions were given. From the comparisons and researches, we could draw the conclusions about contamination effects of oil paint on the spectral imaging system.
Chromatic perception of non-invasive lighting of cave paintings
NASA Astrophysics Data System (ADS)
Zoido, Jesús; Vazquez, Daniel; Álvarez, Antonio; Bernabeu, Eusebio; García, Ángel; Herraez, Juán A.; del Egido, Marian
2009-08-01
This work is intended to deal with the problems which arise when illuminanting Paleolithic cave paintings. We have carried out the spectral and colorimetric characterization of some paintings located in the Murcielagos (bats) cave (Zuheros, Córdoba, Spain). From this characterization, the chromatic changes produced under different lighting conditions are analysed. The damage function is also computed for the different illuminants used. From the results obtained, it is proposed an illuminant whose spectral distribution diminishes the damage by minimizing the absorption of radiation and optimises the color perception of the paintings in this cave. The procedure followed in this study can be applied to optimise the lighting systems used when illuminating any other art work
Temperature Distribution Measurement of The Wing Surface under Icing Conditions
NASA Astrophysics Data System (ADS)
Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm
2016-11-01
De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.
Code of Federal Regulations, 2014 CFR
2014-04-01
...: (a) Sign means an outdoor sign, light, display, device, figure, painting, drawing, message, placard... lanes of the highway, exclusive of frontage roads, auxiliary lanes, and ramps. (c) Interstate System....S.C. (e) Erect means to construct, build, raise, assemble, place, affix, attach, create, paint, draw...
Code of Federal Regulations, 2010 CFR
2010-04-01
...: (a) Sign means an outdoor sign, light, display, device, figure, painting, drawing, message, placard... lanes of the highway, exclusive of frontage roads, auxiliary lanes, and ramps. (c) Interstate System....S.C. (e) Erect means to construct, build, raise, assemble, place, affix, attach, create, paint, draw...
Code of Federal Regulations, 2011 CFR
2011-04-01
...: (a) Sign means an outdoor sign, light, display, device, figure, painting, drawing, message, placard... lanes of the highway, exclusive of frontage roads, auxiliary lanes, and ramps. (c) Interstate System....S.C. (e) Erect means to construct, build, raise, assemble, place, affix, attach, create, paint, draw...
Code of Federal Regulations, 2013 CFR
2013-04-01
...: (a) Sign means an outdoor sign, light, display, device, figure, painting, drawing, message, placard... lanes of the highway, exclusive of frontage roads, auxiliary lanes, and ramps. (c) Interstate System....S.C. (e) Erect means to construct, build, raise, assemble, place, affix, attach, create, paint, draw...
Code of Federal Regulations, 2012 CFR
2012-04-01
...: (a) Sign means an outdoor sign, light, display, device, figure, painting, drawing, message, placard... lanes of the highway, exclusive of frontage roads, auxiliary lanes, and ramps. (c) Interstate System....S.C. (e) Erect means to construct, build, raise, assemble, place, affix, attach, create, paint, draw...
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: PAINT OVERSPRAY ARRESTOR, ATI OSM 200 SYSTEM
Paint overspray arrestors (POAs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the particle filtration efficiency as a function of size for particles smaller than...
NASA Technical Reports Server (NTRS)
Panda, J.; Roozeboom, N. H.; Ross, J. C.
2016-01-01
The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2010-01-01
Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2008-01-01
Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).
Measuring Global Surface Pressures on a Circulation Control Concept Using Pressure Sensitive Paint
NASA Technical Reports Server (NTRS)
Watkins, Anthony N.; Lipford, William E.; Leighty, Bradley D.; Goodman, Kyle Z.; Goad, William K.
2012-01-01
This report will present the results obtained from the Pressure Sensitive Paint (PSP) technique on a circulation control concept model. This test was conducted at the National Transonic Facility (NTF) at the NASA Langley Research Center. PSP was collected on the upper wing surface while the facility was operating in cryogenic mode at 227 K (-50 oF). The test envelope for the PSP portion included Mach numbers from 0.7 to 0.8 with angle of attack varying between 0 and 8 degrees and a total pressure of approximately 168 kPa (24.4 psi), resulting in a chord Reynolds number of approximately 15 million. While the PSP results did exhibit high levels of noise in certain conditions (where the oxygen content of the flow was very small), some conditions provided good correlation between the PSP and pressure taps, showing the ability of the PSP technique. This work also served as a risk reduction opportunity for future testing in cryogenic conditions at the NTF.
3D surface pressure measurement with single light-field camera and pressure-sensitive paint
NASA Astrophysics Data System (ADS)
Shi, Shengxian; Xu, Shengming; Zhao, Zhou; Niu, Xiaofu; Quinn, Mark Kenneth
2018-05-01
A novel technique that simultaneously measures three-dimensional model geometry, as well as surface pressure distribution, with single camera is demonstrated in this study. The technique takes the advantage of light-field photography which can capture three-dimensional information with single light-field camera, and combines it with the intensity-based pressure-sensitive paint method. The proposed single camera light-field three-dimensional pressure measurement technique (LF-3DPSP) utilises a similar hardware setup to the traditional two-dimensional pressure measurement technique, with exception that the wind-on, wind-off and model geometry images are captured via an in-house-constructed light-field camera. The proposed LF-3DPSP technique was validated with a Mach 5 flared cone model test. Results show that the technique is capable of measuring three-dimensional geometry with high accuracy for relatively large curvature models, and the pressure results compare well with the Schlieren tests, analytical calculations, and numerical simulations.
Thermal spray for commercial shipbuilding
NASA Astrophysics Data System (ADS)
Rogers, F. S.
1997-09-01
Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.
Highly compressible fluorescent particles for pressure sensing in liquids
NASA Astrophysics Data System (ADS)
Cellini, F.; Peterson, S. D.; Porfiri, M.
2017-05-01
Pressure sensing in liquids is important for engineering applications ranging from industrial processing to naval architecture. Here, we propose a pressure sensor based on highly compressible polydimethylsiloxane foam particles embedding fluorescent Nile Red molecules. The particles display pressure sensitivities as low as 0.0018 kPa-1, which are on the same order of magnitude of sensitivities reported in commercial pressure-sensitive paints for air flows. We envision the application of the proposed sensor in particle image velocimetry toward an improved understanding of flow kinetics in liquids.
Air pollution control system research: An iterative approach to developing affordable systems
NASA Technical Reports Server (NTRS)
Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.
1995-01-01
This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.
Nondestructive analysis of automotive paints with spectral domain optical coherence tomography.
Dong, Yue; Lawman, Samuel; Zheng, Yalin; Williams, Dominic; Zhang, Jinke; Shen, Yao-Chun
2016-05-01
We have demonstrated for the first time, to our knowledge, the use of optical coherence tomography (OCT) as an analytical tool for nondestructively characterizing the individual paint layer thickness of multiple layered automotive paints. A graph-based segmentation method was used for automatic analysis of the thickness distribution for the top layers of solid color paints. The thicknesses measured with OCT were in good agreement with the optical microscope and ultrasonic techniques that are the current standard in the automobile industry. Because of its high axial resolution (5.5 μm), the OCT technique was shown to be able to resolve the thickness of individual paint layers down to 11 μm. With its high lateral resolution (12.4 μm), the OCT system was also able to measure the cross-sectional area of the aluminum flakes in a metallic automotive paint. The range of values measured was 300-1850 μm2. In summary, the proposed OCT is a noncontact, high-resolution technique that has the potential for inclusion as part of the quality assurance process in automobile coating.
Car painting process scheduling with harmony search algorithm
NASA Astrophysics Data System (ADS)
Syahputra, M. F.; Maiyasya, A.; Purnamawati, S.; Abdullah, D.; Albra, W.; Heikal, M.; Abdurrahman, A.; Khaddafi, M.
2018-02-01
Automotive painting program in the process of painting the car body by using robot power, making efficiency in the production system. Production system will be more efficient if pay attention to scheduling of car order which will be done by considering painting body shape of car. Flow shop scheduling is a scheduling model in which the job-job to be processed entirely flows in the same product direction / path. Scheduling problems often arise if there are n jobs to be processed on the machine, which must be specified which must be done first and how to allocate jobs on the machine to obtain a scheduled production process. Harmony Search Algorithm is a metaheuristic optimization algorithm based on music. The algorithm is inspired by observations that lead to music in search of perfect harmony. This musical harmony is in line to find optimal in the optimization process. Based on the tests that have been done, obtained the optimal car sequence with minimum makespan value.
Evaluation of Needle Gun and Abrasive Blasting Technologies in Bridge Paint Removal Practices.
Randall, Paul M; Kranz, Paul B; Sonntag, Mary L; Stadelmaier, James E
1998-03-01
This paper reviews the results of a U.S. Environmental Protection Agency (EPA) study that assessed needle gun technology as an alternative to conventional abrasive blasting technology to remove lead-based paint from steel bridges in western New York State. The study analyzed the operational and logistical aspects as they relate to worker health and safety, environmental protection, hazardous waste generation, and costs as compared to those arising from conventional abrasive blasting. In this 1992 EPA study, the costs and the product quality aspects favored conventional abrasive blasting over the needle gun technology for removing lead paint. However, abrasive blasting exposed workers to airborne lead levels that exceeded Permissible Exposure Limits (PELs) as established by the Occupational Safety and Health Administration (OSHA), as well as emitting high levels of lead-contaminated dusts and debris into the environment. It was estimated that more than 500 lbs of lead-contaminated spent abrasives and paint waste were released into the environment during paint removal operations. The needle gun system reduced (up to 97.5%) the generation of hazardous waste and the airborne concentrations (up to 99%) of respirable dusts and lead-containing particulates generated during paint removal operations. However, labor costs for the needle gun were three times higher than those for abrasive blasting primarily because of slower production rates that necessitated more operating personnel. The higher labor costs of the needle gun are partially offset by the increased costs associated with the expendable abrasive blast media and hazardous waste disposal. In the EPA study, the productivity of the needle gun system was 12.2 ft 2 /hr vs. 147.5 ft 2 /hr for abrasive blasting. A post blast was needed for the needle gun system to meet surface preparation specifications. When factoring in the costs of full containment structures to meet OSHA's 1993 Lead Exposure in Construction regulation, the needle gun system has the potential to be economically competitive with conventional abrasive blasting.
Lin, Chitsan; Liou, Naiwei; Sun, Endy
2008-06-01
An open-path Fourier transform infrared spectroscopy (OP-FTIR) system was set up for 3-day continuous line-averaged volatile organic compound (VOC) monitoring in a paint manufacturing plant. Seven VOCs (toluene, m-xylene, p-xylene, styrene, methanol, acetone, and 2-butanone) were identified in the ambient environment. Daytime-only batch operation mode was well explained by the time-series concentration plots. Major sources of methanol, m-xylene, acetone, and 2-butanone were identified in the southeast direction where paint solvent manufacturing processes are located. However, an attempt to uncover sources of styrene was not successful because the method detection limit (MDL) of the OP-FTIR system was not sensitive enough to produce conclusive data. In the second scenario, the OP-FTIR system was set up in an industrial complex to distinguish the origins of several VOCs. Eight major VOCs were identified in the ambient environment. The pollutant detected wind-rose percentage plots that clearly showed that ethylene, propylene, 2-butanone, and toluene mainly originated from the tank storage area, whereas the source of n-butane was mainly from the butadiene manufacturing processes of the refinery plant, and ammonia was identified as an accompanying reduction product in the gasoline desulfuration process. Advantages of OP-FTIR include its ability to simultaneously and continuously analyze many compounds, and its long path length monitoring has also shown advantages in obtaining more comprehensive data than the traditional multiple, single-point monitoring methods.
NASA Astrophysics Data System (ADS)
Batishche, Sergei; Englezis, Apostolis; Gorovets, Tatiana; Kouzmouk, Andrei; Pilipenka, Uladzimir; Pouli, Paraskevi; Tatur, Hennady; Totou, Garyfallia; Ukhau, Viktar
2005-07-01
In the present study, a newly developed one-beam IR-UV laser cleaning system is presented. This system may be used for different applications in diverse fields, such as outdoors stonework conservation and canvas paintings restoration. The simultaneous use of the fundamental radiation of a Q-switched Nd:YAG laser at 1064 nm and its third harmonic at 355 nm was found appropriate to clean pollution crusts, while ensuring that no discoloration ("yellowing") would occur. The optimum ratio of UV to IR wavelengths in the final cleaning beam was investigated. In parallel, the same system was tested in diverse applications, such as the removal of bonding glues from duplicated canvases. The optimum laser parameters were investigated both on technical samples as well as on original paintings.
Pérez, Alberto J; González-Peña, Rolando J; Braga, Roberto; Perles, Ángel; Pérez-Marín, Eva; García-Diego, Fernando J
2018-01-11
Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation.
Using digital images to measure and discriminate small particles in cotton
NASA Astrophysics Data System (ADS)
Taylor, Robert A.; Godbey, Luther C.
1991-02-01
Inages from conventional video systems are being digitized in coraputers for the analysis of small trash particles in cotton. The method has been developed to automate particle counting and area measurements for bales of cotton prepared for market. Because the video output is linearly proportional to the amount of light reflected the best spectral band for optimum particle discrimination should be centered at the wavelength of maximum difference between particles and their surroundings. However due to the spectral distribution of the illumination energy and the detector sensitivity peak image performance bands were altered. Reflectance from seven mechanically cleaned cotton lint samples and trash removed were examined for spectral contrast in the wavelength range of camera sensitivity. Pixel intensity histograms from the video systent are reported for simulated trashmeter area reference samples (painted dots on panels) and for cotton containing trash to demonstrate the particle discrimination mechanism. 2.
General view, looking SE during repainting, restoration, and rebuilding of ...
General view, looking SE during repainting, restoration, and rebuilding of roadway and bridge truss system. Scaffolding designed to minimize environmental damage from paint chips, paint vapors, and dirt. - Schenley Park Bridge over Panther Hollow, Spanning Panther Hollow at Panther Hollow Road, Pittsburgh, Allegheny County, PA
Application of Structured Light System Technique for Authentication of Wooden Panel Paintings.
Buchón-Moragues, Fernando; Bravo, José María; Ferri, Marcelino; Redondo, Javier; Sánchez-Pérez, Juan Vicente
2016-06-14
This paper presents a new application of photogrammetric techniques for protecting cultural heritage. The accuracy of the method and the fact that it can be used to carry out different tests without contact between the sample and the instruments can make this technique very useful for authenticating and cataloging artworks. The application focuses on the field of pictorial artworks, and wooden panel paintings in particular. In these works, the orography formed by the brushstrokes can be easily digitalized using a photogrammetric technique, called Structured Light System, with submillimeter accuracy. Thus, some of the physical characteristics of the brushstrokes, like minimum and maximum heights or slopes become a fingerprint of the painting. We explain in detail the general principles of the Structured Light System Technique and the specific characteristics of the commercial set-up used in this work. Some experiments are carried out on a sample painted by us to check the accuracy limits of the technique and to propose some tests that can help to stablish a methodology for authentication purposes. Finally, some preliminary results obtained on a real pictorial artwork are presented, providing geometrical information of its metric features as an example of the possibilities of this application.
Application of Structured Light System Technique for Authentication of Wooden Panel Paintings
Buchón-Moragues, Fernando; Bravo, José María; Ferri, Marcelino; Redondo, Javier; Sánchez-Pérez, Juan Vicente
2016-01-01
This paper presents a new application of photogrammetric techniques for protecting cultural heritage. The accuracy of the method and the fact that it can be used to carry out different tests without contact between the sample and the instruments can make this technique very useful for authenticating and cataloging artworks. The application focuses on the field of pictorial artworks, and wooden panel paintings in particular. In these works, the orography formed by the brushstrokes can be easily digitalized using a photogrammetric technique, called Structured Light System, with submillimeter accuracy. Thus, some of the physical characteristics of the brushstrokes, like minimum and maximum heights or slopes become a fingerprint of the painting. We explain in detail the general principles of the Structured Light System Technique and the specific characteristics of the commercial set-up used in this work. Some experiments are carried out on a sample painted by us to check the accuracy limits of the technique and to propose some tests that can help to stablish a methodology for authentication purposes. Finally, some preliminary results obtained on a real pictorial artwork are presented, providing geometrical information of its metric features as an example of the possibilities of this application. PMID:27314353
Optimization of a LSO-Based Detector Module for Time-of-Flight PET
NASA Astrophysics Data System (ADS)
Moses, W. W.; Janecek, M.; Spurrier, M. A.; Szupryczynski, P.; Choong, W.-S.; Melcher, C. L.; Andreaco, M.
2010-06-01
We have explored methods for optimizing the timing resolution of an LSO-based detector module for a single-ring, “demonstration” time-of-flight PET camera. By maximizing the area that couples the scintillator to the PMT and minimizing the average path length that the scintillation photons travel, a single detector timing resolution of 218 ps fwhm is measured, which is considerably better than the 385 ps fwhm obtained by commercial LSO or LYSO TOF detector modules. We explored different surface treatments (saw-cut, mechanically polished, and chemically etched) and reflector materials (Teflon tape, ESR, Lumirror, Melinex, white epoxy, and white paint), and found that for our geometry, a chemically etched surface had 5% better timing resolution than the saw-cut or mechanically polished surfaces, and while there was little dependence on the timing resolution between the various reflectors, white paint and white epoxy were a few percent better. Adding co-dopants to LSO shortened the decay time from 40 ns to 30 ns but maintained the same or higher total light output. This increased the initial photoelectron rate and so improved the timing resolution by 15%. Using photomultiplier tubes with higher quantum efficiency (blue sensitivity index of 13.5 rather than 12) improved the timing resolution by an additional 5%. By choosing the optimum surface treatment (chemically etched), reflector (white paint), LSO composition (co-doped), and PMT (13.5 blue sensitivity index), the coincidence timing resolution of our detector module was reduced from 309 ps to 220 ps fwhm.
Workplace protection of air-fed visors used in paint spraying operations.
Bolsover, J; Rajan-Sithamparanadarajah, B; Vaughan, N
2006-04-01
Air-fed visors are commonly used for protection against exposure to airborne isocyanates during paint spraying. Protection levels for this class of equipment are theoretically adequate, yet isocyanate sensitization in this occupation still occurs. The work reported here set out to establish the level of respiratory protection that is achieved during real paint spraying activities when air-fed visors are used. The work also examined the effects of reduced air supply flow rates on this type of respiratory protection. The workplace study highlighted common problems that occur when attempting to measure protection factors, and process and interpret the collected data. Many of the environments included in this study did not exhibit challenge concentrations high enough to reliably measure the workplace protection factor of this class of device. When detection limits are taken into consideration, the remaining field data suggest that an assigned protection factor in the region of 40 may be appropriate. When well maintained and used in accordance with the manufacturer's instructions, air-fed visors are capable of providing a good level of respiratory protection. The protection given by air-fed visors is strongly dependent on the air flow supplied to them. Laboratory measurements demonstrate that protection falls as the air supply falls. This is a gradual process and does not suddenly occur at any particular air supply flow. Observations made during the field tests indicate that there may be other activities associated with the spraying process that need to be taken into consideration when looking for sources of respiratory sensitization.
Orion EM-1 Booster Preps - Aft Skirt Preps/Painting
2016-10-28
Technicians with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, prepare the right hand aft skirt for NASA’s SLS rocket for primer and painting inside a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt, was inspected and resurfaced and will be primed and painted for use on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.
Orion EM-1 Booster Preps - Aft Skirt Preps/Painting
2016-10-28
Technicians with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, prepare a paint mixture for the right hand aft skirt for NASA’s SLS in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt, was inspected and resurfaced, and will be primed and painted for use on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the Journey to Mars.
NASA Astrophysics Data System (ADS)
Zaki, Farzana; Hou, Isabella; Huang, Qiongdan; Cooper, Denver; Patel, Divya; Liu, Xuan; Yang, Yi
2017-02-01
Optical coherence tomography (OCT) has great potential for the examination of oil paintings, particularly for celebrated masterpieces by great artists in history. We developed an OCT system for large field of view (FOV), high definition (HD) imaging of oil paintings. To achieve large FOV, we translated the sample using a pair of high-precision linear motors and performed sequential volumetric imaging on adjacent, non-overlapping regions. Through 3D OCT imaging, the surface terrain and subsurface microarchitecture of the paintings have been characterized and visualized.
Experimental Measurement of RCS Jet Interaction Effects on a Capsule Entry Vehicle
NASA Technical Reports Server (NTRS)
Buck, Gregory M.; Watkins, A. Neal; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Dyakonov, Artem A.
2008-01-01
An investigation was made in NASA Langley Research Center s 31-Inch Mach 10 Tunnel to determine the effects of reaction-control system (RCS) jet interactions on the aft-body of a capsule entry vehicle. The test focused on demonstrating and improving advanced measurement techniques that would aid in the rapid measurement and visualization of jet interaction effects for the Orion Crew Exploration Vehicle while providing data useful for developing engineering models or validation of computational tools used to assess actual flight environments. Measurements included global surface imaging with pressure and temperature sensitive paints and three-dimensional flow visualization with a scanning planar laser induced fluorescence technique. The wind tunnel model was fabricated with interchangeable parts for two different aft-body configurations. The first, an Apollo-like configuration, was used to focus primarily on the forward facing roll and yaw jet interactions which are known to have significant aft-body heating augmentation. The second, an early Orion Crew Module configuration (4-cluster jets), was tested blowing only out of the most windward yaw jet, which was expected to have the maximum heating augmentation for that configuration. Jet chamber pressures and tunnel flow conditions were chosen to approximate early Apollo wind tunnel test conditions. Maximum heating augmentation values measured for the Apollo-like configuration (>10 for forward facing roll jet and 4 for yaw jet) using temperature sensitive paint were shown to be similar to earlier experimental results (Jones and Hunt, 1965) using a phase change paint technique, but were acquired with much higher surface resolution. Heating results for the windward yaw jet on the Orion configuration had similar augmentation levels, but affected much less surface area. Numerical modeling for the Apollo-like yaw jet configuration with laminar flow and uniform jet outflow conditions showed similar heating patterns, qualitatively, but also showed significant variation with jet exit divergence angle, with as much as 25 percent variation in heat flux intensity for a 10 degree divergence angle versus parallel outflow. These results along with the fabrication methods and advanced measurement techniques developed will be used in the next phase of testing and evaluation for the updated Orion RCS configuration.
Standard Operating Procedure for the Turbidimetric Determination of Lead in Paint Extracts
Exposure to lead (Pb) may adversely impact children's brains, nervous systems and many organs. An estimated 310,000 US children ages 1 to 5 have elevated blood leads. In the United States, the major exposure pathway for children to Pb is from deteriorated Pb-based paint (LBP), ...
PAINT ADHESION AND CORROSION PERFORMANCE OF CHROMIUM-FREE PRETREATMENTS OF 55% AL-ZN-COATED STEEL
The adhesion and corrosion performances for several pretreatments of 55% Al-Zn-coated steels which were coil-coated with polyester paint systems were determined. The objective of this study was to evaluate new, silane-based metal pretreatments and to compare their performance wit...
SORREL, CLOAKED IN HER HAZEGRAY PAINT SCHEME, UNDERWAY DURING WORLD ...
SORREL, CLOAKED IN HER HAZE-GRAY PAINT SCHEME, UNDERWAY DURING WORLD WAR II. A "MOUSETRAP" ANTI-SUBMARINE WEAPON SYSTEM IS CLEARLY VISIBLE ON THE BOW. VISIBLE ON THE STERN QUARTER IS THE OUTBOARD PORTION OF A DEPTH CHARGE LAUNCHER - U.S. Coast Guard Cutter SORREL, New York County, NY
A Multicultural Service Sensitivity Exercise for Marketing Students
ERIC Educational Resources Information Center
Rosenbaum, Mark S.; Moraru, Ioana; Labrecque, Lauren I.
2013-01-01
Services marketing and retailing courses place service quality at the heart of the curriculum, painting service providers as defenders of their customers' welfare and thwarters of service failures by ushering in recovery solutions. Yet academic literature and the popular press provide evidence that in some cases, service providers act as…
Occupational skin hazards from synthetic plastics.
Tosti, A; Guerra, L; Vincenzi, C; Peluso, A M
1993-01-01
Epoxy and acrylic resins have numerous industrial applications but are also widely used in the household environment. These compounds are presently one of the most important sources of occupational contact dermatitis. Contact sensitization to epoxy resins is usually caused by the resin itself but hardeners or other additives, such as reactive diluents, plasticizers, fillers and pigments, can occasionally be responsible. Since completely cured epoxy resins are not sensitizers, epoxy resin sensitization is always due to the presence, in the final polymer, of uncured allergenic low molecular weight oligomers. Acrylates are now considered the fourth most common cause of contact sensitization due to resins. Unpolymerized monomers of acrylic compounds are known to be responsible for the contact allergy. Accelerators, inhibitors and catalysts, which are usually added to the acrylates to promote the polymerization process, can also sensitize. Both allergic and irritant contact dermatitis may be caused by exposure to epoxy or acrylic resins and their additives. Contact urticaria, allergic or irritant airborne contact dermatitis caused by volatile compounds, onychia and paronychia can also occur. From January of 1984 to May of 1992 we detected 39 cases of occupational allergic contact dermatitis to epoxy resin system substances and 11 cases of occupational contact sensitization to acrylic compounds. In our experience, the electronics industry as well as paint and glue related activities were the most important sources of epoxy sensitization. Dental materials and anaerobic sealants were found to be the most frequent acrylate sensitizers.
Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin
1998-01-01
Smoke damage, as a result of a fire, can be difficult to remove from some types of painting media without causing swelling, leaching or pigment movement or removal. A non-contact technique has been developed which can remove soot from the surface of a painting by use of a gently flowing gas containing atomic oxygen. The atomic oxygen chemically reacts with the soot on the surface creating gasses such as carbon monoxide and carbon dioxide which can be removed through the use of an exhaust system. The reaction is limited to the surface so that the process can be timed to stop when the paint layer is reached. Atomic oxygen is a primary component of the low Earth orbital environment, but can be generated on Earth through various methods. This paper will discuss the results of atomic oxygen treatment of soot exposed acrylic gesso, ink on paper, and a varnished oil painting. Reflectance measurements were used to characterize the surfaces before and after treatment.
Conductive paint-filled cement paste sensor for accelerated percolation
NASA Astrophysics Data System (ADS)
Laflamme, Simon; Pinto, Irvin; Saleem, Hussam S.; Elkashef, Mohamed; Wang, Kejin; Cochran, Eric
2015-04-01
Cementitious-based strain sensors can be used as robust monitoring systems for civil engineering applications, such as road pavements and historic structures. To enable large-scale deployments, the fillers used in creating a conductive material must be inexpensive and easy to mix homogeneously. Carbon black (CB) particles constitute a promising filler due to their low cost and ease of dispersion. However, a relatively high quantity of these particles needs to be mixed with cement in order to reach the percolation threshold. Such level may influence the physical properties of the cementitious material itself, such as compressive and tensile strengths. In this paper, we investigate the possibility of utilizing a polymer to create conductive chains of CB more quickly than in a cementitious-only medium. This way, while the resulting material would have a higher conductivity, the percolation threshold would be reached with fewer CB particles. Building on the principle that the percolation threshold provides great sensing sensitivity, it would be possible to fabricate sensors using less conducting particles. We present results from a preliminary investigation comparing the utilization of a conductive paint fabricated from a poly-Styrene-co-Ethylene-co-Butylene-co-Styrene (SEBS) polymer matrix and CB, and CB-only as fillers to create cementitious sensors. Preliminary results show that the percolation threshold can be attained with significantly less CB using the SEBS+CB mix. Also, the study of the strain sensing properties indicates that the SEBS+CB sensor has a strain sensitivity comparable to the one of a CB-only cementitious sensor when comparing specimens fabricated at their respective percolation thresholds.
NASA Technical Reports Server (NTRS)
2004-01-01
Two-dimensional data matrix symbols, which contain encoded letters and numbers, are permanently etched on items for identification. They can store up to 100 times more information than traditional bar codes. While the symbols provide several advantages over bar codes, once they are covered by paint they can no longer be read by optical scanners. Since most products are painted eventually, this presents a problem for industries relying on the symbols for identification and tracking. In 1987, NASA s Marshall Space Flight Center began studying direct parts marking with matrix symbols in order to track millions of Space Shuttle parts. Advances in the technology proved that by incorporating magnetic properties into the paints, inks, and pastes used to apply the matrix symbols, the codes could be read by a magnetic scanner even after being covered with paint or other coatings. NASA received a patent for such a scanner in 1998, but the system it used for development was not portable and was too costly. A prototype was needed as a lead-in to a production model. In the summer of 2000, NASA began seeking companies to build a hand-held scanner that would detect the Read Through Paint data matrix identification marks containing magnetic materials through coatings.
NASA Astrophysics Data System (ADS)
Sabatini, Francesca; Lluveras-Tenorio, Anna; Degano, Ilaria; Kuckova, Stepanka; Krizova, Iva; Colombini, Maria Perla
2016-11-01
This study deals with the identification of anthraquinoid molecular markers in standard dyes, reference lakes, and paint model systems using a micro-invasive and nondestructive technique such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-ToF-MS). Red anthraquinoid lakes, such as madder lake, carmine lake, and Indian lac, have been the most widely used for painting purposes since ancient times. From an analytical point of view, identifying lakes in paint samples is challenging and developing methods that maximize the information achievable minimizing the amount of sample needed is of paramount importance. The employed method was tested on less than 0.5 mg of reference samples and required a minimal sample preparation, entailing a hydrofluoric acid extraction. The method is fast and versatile because of the possibility to re-analyze the same sample (once it has been spotted on the steel plate), testing both positive and negative modes in a few minutes. The MALDI mass spectra collected in the two analysis modes were studied and compared with LDI and simulated mass spectra in order to highlight the peculiar behavior of the anthraquinones in the MALDI process. Both ionization modes were assessed for each species. The effect of the different paint binders on dye identification was also evaluated through the analyses of paint model systems. In the end, the method was successful in detecting madder lake in archeological samples from Greek wall paintings and on an Italian funerary clay vessel, demonstrating its capabilities to identify dyes in small amount of highly degraded samples.
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M.
2003-01-01
An apparatus to catch paint overspray has been proposed. Overspray is an unavoidable parasitic component of spray that occurs because the flow of air or other gas in the spray must turn at the sprayed surface. Very small droplets are carried away in this turning flow, and some land on adjacent surfaces not meant to be painted. The basic principle of the paint-spray catcher is to divert the overspray into a suction system at the boundary of the area to be painted. The paint-spray catcher (see figure) would include a toroidal plenum connected through narrow throat to a nozzle that would face toward the center of the torus, which would be positioned over the center of the area to be spray-painted. The plenum would be supported by four tubes that would also serve as suction exhaust ducts. The downstream ends of the tubes (not shown in the figure) would be connected to a filter on a suction pump. The pump would be rated to provide a suction mass flow somewhat greater than that of the directed spray gas stream, so that the nozzle would take in a small excess of surrounding gas and catch nearly all of the overspray. A small raised lip at the bottom edge of the nozzle would catch paint that landed inside the nozzle. Even if the paint is directly piston pumped, the droplets entrain an air flow by time they approach the wall, so there is always a gas stream to carry the excess droplets to the side. For long-duration spraying operations, it could be desirable to include a suction-drain apparatus to prevent overflowing and dripping of paint from inside the lip. A version without an external contraction and with the throat angled downward would be a more compact version of catcher, although it might be slightly less efficient.
Zickler, Claudia; Halder, Sebastian; Kleih, Sonja C; Herbert, Cornelia; Kübler, Andrea
2013-10-01
For many years the reestablishment of communication for people with severe motor paralysis has been in the focus of brain-computer interface (BCI) research. Recently applications for entertainment have also been developed. Brain Painting allows the user creative expression through painting pictures. The second, revised prototype of the BCI Brain Painting application was evaluated in its target function - free painting - and compared to the P300 spelling application by four end users with severe disabilities. According to the International Organization for Standardization (ISO), usability was evaluated in terms of effectiveness (accuracy), efficiency (information transfer rate (ITR)), utility metric, subjective workload (National Aeronautics and Space Administration Task Load Index (NASA TLX)) and user satisfaction (Quebec User Evaluation of Satisfaction with assistive Technology (QUEST) 2.0 and Assistive Technology Device Predisposition Assessment (ATD PA), Device Form). The results revealed high performance levels (M≥80% accuracy) in the free painting and the copy painting conditions, ITRs (4.47-6.65bits/min) comparable to other P300 applications and only low to moderate workload levels (5-49 of 100), thereby proving that the complex task of free painting did neither impair performance nor impose insurmountable workload. Users were satisfied with the BCI Brain Painting application. Main obstacles for use in daily life were the system operability and the EEG cap, particularly the need of extensive support for adjustment. The P300 Brain Painting application can be operated with high effectiveness and efficiency. End users with severe motor paralysis would like to use the application in daily life. User-friendliness, specifically ease of use, is a mandatory necessity when bringing BCI to end users. Early and active involvement of users and iterative user-centered evaluation enable developers to work toward this goal. Copyright © 2013 Elsevier B.V. All rights reserved.
Inspection method for the identification of TBT-containing antifouling paints.
Senda, Tetsuya; Miyata, Osamu; Kihara, Takeshi; Yamada, Yasujiro
2003-04-01
In order to ensure the effectiveness of the international convention which will prohibit the use of organotin compounds in antifouling paints applied to ships, it is essential to establish an inspection system to determine the presence of the prohibited compounds in the paint. In the present study, a method for the identification of organotin containing antifouling paints using a two-stage analysis process is investigated. Firstly, X-ray fluorescence analysis (XRF) is utilized, which could be used at the place of ship surveys or port state control. Using a portable XRF instrument customized for ship inspection, analysis is automatically executed and determines whether tin is present or not. If the presence of tin is confirmed by XRF, the sample is subsequently examined at an analytical laboratory using more rigorous analytical techniques, such as gas chromatograph mass spectrometry (GC-MS). A sampling device has been designed. It is a disc of approximately 10 mm diameter and has abrasive paper pasted to one of its flat surfaces. The device is pressed onto and then slid along a ship hull to lightly scrape off fragments of paint onto the abrasive paper. Preliminary field tests have revealed that sampling from a ship in dock yields successful collection of the paint for XRD analysis and that the resultant damage caused to the antifouling paint surface by the sampling technique was found to be negligible.
NASA Astrophysics Data System (ADS)
Desilva, L. A.; Bandara, T. M. W. J.; Hettiarachchi, B. H.; Kumara, G. R. A.; Perera, A. G. U.; Rajapaksa, R. M. G.; Tennakone, K.
Dye-sensitized and perovskite solar cells and other nanostructured heterojunction electronic devices require securing intimate electronic contact between nanostructured surfaces. Generally, the strategy is solution phase coating of a hole -collector over a nano-crystalline high-band gap n-type oxide semiconductor film painted with a thin layer of the light harvesting material. The nano-crystallites of the hole - collector fills the pores of the painted oxide surface. Most ills of these devices are associated with imperfect contact and high resistance of the hole conducting layer constituted of nano-crystallites. Denaturing of the delicate light harvesting material forbid sintering at elevated temperatures to reduce the grain boundary resistance. It is found that the interfacial and grain boundary resistance can be significantly reduced via incorporation of redox species into the interfaces to form ultra-thin layers. Suitable redox moieties, preferably bonded to the surface, act as electron transfer relays greatly reducing the film resistance offerring a promising method of enhancing the effective hole mobility of nano-crystalline hole-collectors and developing hole conductor paints for application in nanostructured devices.
Ah, That New Car Smell: NASA Technology Protects Spacecraft from Outgassed Molecular Contaminants
2017-12-08
Goddard technologist Nithin Abraham, a member of the team that has developed a low-cost, low-mass technique for protecting sensitive spacecraft components from outgassed contaminants, studies a paint sample in her laboratory. To read this story go to: www.nasa.gov/topics/technology/features/outgas-tech.html Credit: NASA/Pat Izzo NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
All Things Considered: Still Life with Glass and Lemon
ERIC Educational Resources Information Center
School Arts: The Art Education Magazine for Teachers, 2004
2004-01-01
This brief article presents describes Pablo Picasso's oil on canvas painting, "Still Life with Glass and Lemon, 1910." Composed of abstract, monochromatic shapes, this painting's original subject is surprisingly a glass and lemon. The artist, Pablo Picasso, developed this unique system of breaking down objects into their basic geometric parts with…
Ink and Wash Painting for Children with Visual Impairment
ERIC Educational Resources Information Center
Shih, Chih-Ming; Chao, Hsin-Yi
2010-01-01
Five children with visual impairments received instruction in drawing, using ink and wash painting and calligraphy techniques. A special system developed by a blind Taiwanese Chinese calligrapher, Tsann-Cherng Liaw, was used to help the children orient and refine their work. Children's performance on simple drawing tasks was compared before and…
Field Turbidity Methods for the Determination of Lead in Acid Extracts of Dried Paint
Lead, which can be found in old paint, soil, and dust, has been clearly shown to have adverse health effects on the neurological systems of both children and adults. As part of an ongoing effort to reduce childhood lead poisoning, the U.S. Environmental Protection Agency promulga...
1988-07-01
quantity of air which requires processing. Recirculation systems were designed for two of the painting facilities included in this study. In designing the...BACKGROUND AND PURPOSE .... ................ .... 57 B. DESIGN CONSIDERATIONS .... ............... .... 58 1. Safety Standards .......... ............... 58...65 5. Conceptual Design .... ................ ... 68 V CONCLUSIONS AND RECOMMENDATIONS ............... .. 72 A. CONCLUSIONS
Method for producing pellets for use in a cryoblasting process
Foster, Christopher A.; Fisher, Paul W.
1997-01-01
A cryoblasting process having a centrifugal accelerator for accelerating frozen pellets of argon or carbon dioxide toward a target area utilizes an accelerator throw wheel designed to induce, during operation, the creation of a low-friction gas bearing within internal passages of the wheel which would otherwise retard acceleration of the pellets as they move through the passages. An associated system and method for removing paint from a surface with cryoblasting techniques involves the treating, such as a preheating, of the painted surface to soften the paint prior to the impacting of frozen pellets thereagainst to increase the rate of paint removal. A system and method for producing large quantities of frozen pellets from a liquid material, such as liquid argon or carbon dioxide, for use in a cryoblasting process utilizes a chamber into which the liquid material is introduced in the form of a jet which disintegrates into droplets. A non-condensible gas, such as inert helium or air, is injected into the chamber at a controlled rate so that the droplets freeze into bodies of relatively high density.
Fisher, M S; Menter, J M; Willis, I
1989-03-01
Contact hypersensitivity (CHS) in mice can be induced by cutaneous sensitization followed by elicitation via ear-painting with trinitrochlorobenzene (TNCB). This CHS reaction is systemic and can be suppressed by exposure of mice to suberythemogenic doses of 280-315 nm radiation. In this study, we investigated whether a commercially available water-resistant sunscreen, either SPF-6 or SPF-15, containing Padimate O (UVB absorber) and oxybenzone (UVA absorber), was effective in preventing systemic suppression of CHS induced by either FS36 sunlamp exposure or solar simulating radiation. We observed that these two sunscreen preparations were totally incapable of preventing the immunologic suppression of contact hypersensitivity by UV radiation. These results indicate that application of sunscreen does not retard the development of suppression of CHS following repeated UV exposure under conditions where erythema is not clinically observed. Thus, erythema may not be a good end point for assessing systemic immune suppression and its consequences.
2009-08-01
event of a fire. The mesh prevents cracking to the steel substrate, which would reduce the insulating properties of the char. The procedure is as...Top Coats: MPI #9, Exterior Alkyd Enamel , Gloss, MPI Gloss Level 6 (i.e., a semi-gloss) • System 2: o Primer: MPI #23, Surface Tolerant Metal...Metal Primer X X MPI Paint #9 Exterior Alkyd Enamel , Gloss X MPI Paint #94 Exterior Alkyd
Orion EM-1 Booster Preps - Aft Skirt Preps/Painting
2016-10-29
The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been painted and is in a drying cell in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of NASA's Space Launch System rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.
Guerra, I; Cardell, C
2015-10-01
The novel Structural Chemical Analyser (hyphenated Raman spectroscopy and scanning electron microscopy equipped with an X-ray detector) is gaining popularity since it allows 3-D morphological studies and elemental, molecular, structural and electronic analyses of a single complex micro-sized sample without transfer between instruments. However, its full potential remains unexploited in painting heritage where simultaneous identification of inorganic and organic materials in paintings is critically yet unresolved. Despite benefits and drawbacks shown in literature, new challenges have to be faced analysing multifaceted paint specimens. SEM-Structural Chemical Analyser systems differ since they are fabricated ad hoc by request. As configuration influences the procedure to optimize analyses, likewise analytical protocols have to be designed ad hoc. This paper deals with the optimization of the analytical procedure of a Variable Pressure Field Emission scanning electron microscopy equipped with an X-ray detector Raman spectroscopy system to analyse historical paint samples. We address essential parameters, technical challenges and limitations raised from analysing paint stratigraphies, archaeological samples and loose pigments. We show that accurate data interpretation requires comprehensive knowledge of factors affecting Raman spectra. We tackled: (i) the in-FESEM-Raman spectroscopy analytical sequence, (ii) correlations between FESEM and Structural Chemical Analyser/laser analytical position, (iii) Raman signal intensity under different VP-FESEM vacuum modes, (iv) carbon deposition on samples under FESEM low-vacuum mode, (v) crystal nature and morphology, (vi) depth of focus and (vii) surface-enhanced Raman scattering effect. We recommend careful planning of analysis strategies prior to research which, although time consuming, guarantees reliable results. The ultimate goal of this paper is to help to guide future users of a FESEM-Structural Chemical Analyser system in order to increase applications. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Košařová, Veronika; Hradil, David; Hradilová, Janka; Čermáková, Zdeňka; Němec, Ivan; Schreiner, Manfred
2016-03-01
Twenty one mock-up samples containing inorganic pigments primarily used at the turn of the 19th and 20th century were selected for comparative study and measured by micro-Raman and portable Raman spectrometers. They included pure grounds (chalk-based, earth-based and lithopone-based), grounds covered by resin-based varnish, and different paint layers containing mixtures of white, yellow, orange, red, green, blue and black pigments, usually in combination with white pigments (titanium, zinc and barium whites or chalk). In addition, ten micro-samples obtained from seven paintings of two world-famous modern painters Edvard Munch and František Kupka have been investigated. Infrared reflection spectroscopy (FTIR), portable X-ray fluorescence (XRF) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) were used as supplementary methods. The measurements showed that blue pigments (ultramarine, Prussian blue and azurite), vermilion and ivory black in mixture with whites provided characteristic Raman spectra, while Co-, Cd- and Cr- pigments' bands were suppressed by fluorescence. The best success rate of micro-Raman spectroscopy has been achieved using the 780 nm excitation, however, the sensitivity of this excitation laser in a portable Raman instrument significantly decreased. The analyses of micro-samples of paintings by E. Munch and F. Kupka showed that micro-Raman spectroscopy identified pigments which would remain unidentified if analyzed only by SEM-EDS (zinc yellow, Prussian blue). On the other hand, chromium oxide green and ultramarine were not detected together in a sample due to overlap of their main bands. In those cases, it is always necessary to complement Raman analysis with other analytical methods.
77 FR 66841 - The Sherwin-Williams Company; Analysis of Proposed Consent Order To Aid Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
... include any sensitive personal information, like anyone's Social Security number, date of birth, driver's... make final the agreement's proposed order. This matter involves Sherwin-Williams's marketing and sale... and practices in the future. Part I addresses the marketing of zero VOC paints. It prohibits Sherwin...
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2004-01-01
A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the vortex-induced surface static pressures on a slender, faceted missile model at subsonic and transonic speeds. Global PSP calibrations were obtained using an in-situ method featuring the simultaneous electronically-scanned pressures (ESP) measurements. Both techniques revealed the significant influence leading-edge vortices on the surface pressure distributions. The mean error in the PSP measurements relative to the ESP data was approximately 0.6 percent at M(sub infinity)=0.70 and 2.6 percent at M(sub infinity)=0.90 and 1.20. The vortex surface pressure signatures obtained from the PSP and ESP techniques were correlated with the off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The on-surface and off-surface techniques were complementary, since each provided details of the vortex-dominated flow that were not clear or apparent in the other.
Looking at Art in the IR and UV
NASA Astrophysics Data System (ADS)
Falco, Charles
2013-03-01
Starting with the very earliest cave paintings art has been created to be viewed by the unaided eye and, until very recently, it wasn't even possible to see it at wavelengths outside the visible spectrum. However, it is now possible to view paintings, sculptures, manuscripts, and other cultural artifacts at wavelengths from the x-ray, through the ultraviolet (UV), to well into the infrared (IR). Further, thanks to recent advances in technology, this is becoming possible with hand-held instruments that can be used in locations that were previously inaccessible to anything but laboratory-scale image capture equipment. But, what can be learned from such ``non-visible'' images? In this talk I will briefly describe the characteristics of high resolution UV and IR imaging systems I developed for this purpose by modifying high resolution digital cameras. The sensitivity of the IR camera makes it possible to obtain images of art ``in situ'' with standard museum lighting, resolving features finer than 0.35 mm on a 1.0x0.67 m painting. I also have used both it and the UV camera in remote locations with battery-powered illumination sources. I will illustrate their capabilities with images of various examples of Western, Asian, and Islamic art in museums on three continents, describing how these images have revealed important new information about the working practices of artists as famous as Jan van Eyck. I also will describe what will be possible for this type of work with new capabilities that could be developed within the next few years. This work is based on a collaboration with David Hockney, and benefitted from image analys research supported by ARO grant W911NF-06-1-0359-P00001.
In-situ phosphatizing coatings for aerospace, OEM and coil coating applications
NASA Astrophysics Data System (ADS)
Neuder, Heather Aurelia
The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is dispersed into an ISPC and the performance of the final coating formulation is evaluated. Successful ISPCs formulated for multiple coating systems exhibited excellent adhesion, hardness and gloss, which supports their suitability as a chrome-free, single-step alternative for aerospace, original equipment manufacturing (OEM) and coil coating applications.
ERIC Educational Resources Information Center
Taylor, J. Eric T.; Witt, Jessica K.; Grimaldi, Phillip J.
2012-01-01
Observed actions are covertly and involuntarily simulated within the observer's motor system. It has been argued that simulation is involved in processing abstract, gestural paintings, as the artist's movements can be simulated by observing static brushstrokes. Though this argument is grounded in theory, empirical research has yet to examine the…
A new chromosome was born: comparative chromosome painting in Boechera.
Koch, Marcus A
2015-09-01
Comparative chromosome painting is a powerful tool to study the evolution of chromosomes and genomes. Analyzing karyotype evolution in cruciferous plants highlights the origin of aberrant chromosomes in apomictic Boechera and further establishes the cruciferous plants as important model system for our understanding of plant chromosome and genome evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sabatini, Francesca; Lluveras-Tenorio, Anna; Degano, Ilaria; Kuckova, Stepanka; Krizova, Iva; Colombini, Maria Perla
2016-11-01
This study deals with the identification of anthraquinoid molecular markers in standard dyes, reference lakes, and paint model systems using a micro-invasive and nondestructive technique such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-ToF-MS). Red anthraquinoid lakes, such as madder lake, carmine lake, and Indian lac, have been the most widely used for painting purposes since ancient times. From an analytical point of view, identifying lakes in paint samples is challenging and developing methods that maximize the information achievable minimizing the amount of sample needed is of paramount importance. The employed method was tested on less than 0.5 mg of reference samples and required a minimal sample preparation, entailing a hydrofluoric acid extraction. The method is fast and versatile because of the possibility to re-analyze the same sample (once it has been spotted on the steel plate), testing both positive and negative modes in a few minutes. The MALDI mass spectra collected in the two analysis modes were studied and compared with LDI and simulated mass spectra in order to highlight the peculiar behavior of the anthraquinones in the MALDI process. Both ionization modes were assessed for each species. The effect of the different paint binders on dye identification was also evaluated through the analyses of paint model systems. In the end, the method was successful in detecting madder lake in archeological samples from Greek wall paintings and on an Italian funerary clay vessel, demonstrating its capabilities to identify dyes in small amount of highly degraded samples. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Mallets, T.
1983-12-01
The Laser Paint Stripper program is a three phase effort which includes: feasibility demonstration; prototype optimization; and implementation at our Air Logistic Centers (depots) by FY88. Major technical areas that make up the automated system include: (1) laser device with power and uptime to handle the number and size of aircraft (F-16 vs C-5A); (2) the beam transport and manipulation system; (3) controls for beam/aircraft safety, alignment, and surface condition sensors; (4) integration software; and (5) cleanup of residue products.
Reproducing oil paint gloss in print for the purpose of creating reproductions of Old Masters
NASA Astrophysics Data System (ADS)
Elkhuizen, Willemijn S.; Lenseigne, Boris A. J.; Baar, Teun; Verhofstad, Wim; Tempelman, Erik; Geraedts, Jo M. P.; Dik, Joris
2015-03-01
In the field of Fine Art reproduction, 3D scanning plus 3D printing, combined with dedicated software, now allows to capture and reproduce the color and texture of oil paintings. However, for life-like reproduction of the material appearance of such paintings, the typical gloss and translucency must also be included, which is currently not the case. The aim of this paper is to elaborate on the challenges and results of capturing and reproducing oil paint gloss (next to texture and color) using a scanning and printing system. A sample was hand-made using oil paint and acrylic varnish, and its gloss was then reproduced. A gloss map of the painted sample was acquired using a high end DLSR camera and a simple acquisition protocol. Next, Océ High Resolution 3D printing technology was used to create samples with spatially varying gloss. For this, two different strategies were combined: (1) multilevel half-toning of the colors was used to reproduce matte color layers, and (2) varnish was half-toned on top in increasing coverage to recreate increasing gloss levels. This paper presents an overview of the state-of-the-art literature in gloss reproduction and perception, our process of reproduction as well as the visual evaluation of the quality of the created reproduction.
Lavine, Barry K; White, Collin G; Ding, Tao
2018-03-01
Pattern recognition techniques have been applied to the infrared (IR) spectral libraries of the Paint Data Query (PDQ) database to differentiate between nonidentical but similar IR spectra of automotive paints. To tackle the problem of library searching, search prefilters were developed to identify the vehicle make from IR spectra of the clear coat, surfacer-primer, and e-coat layers. To develop these search prefilters with the appropriate degree of accuracy, IR spectra from the PDQ database were preprocessed using the discrete wavelet transform to enhance subtle but significant features in the IR spectral data. Wavelet coefficients characteristic of vehicle make were identified using a genetic algorithm for pattern recognition and feature selection. Search prefilters to identify automotive manufacturer through IR spectra obtained from a paint chip recovered at a crime scene were developed using 1596 original manufacturer's paint systems spanning six makes (General Motors, Chrysler, Ford, Honda, Nissan, and Toyota) within a limited production year range (2000-2006). Search prefilters for vehicle manufacturer that were developed as part of this study were successfully validated using IR spectra obtained directly from the PDQ database. Information obtained from these search prefilters can serve to quantify the discrimination power of original automotive paint encountered in casework and further efforts to succinctly communicate trace evidential significance to the courts.
Milne, Bruce S; Hoather, Tess; O'Brien, Patricia C M; Yang, Fengtang; Ferguson-Smith, Malcolm A; Dobson, Jane; Sargan, David
2004-01-01
Many canine tumour types represent useful models for tumours also found in humans. Studies of chromosomal abnormalities in canine tumours have been impeded by the complexity of the canine karyotype (2n = 78), which has made accurate identification of rearranged chromosomes difficult and laborious. To overcome this difficulty we have developed a seven-colour paint system for canine chromosomes, with six sets of chromosome paints covering all chromosomes except Y. Several pairs of canine autosomes co-locate in the flow karyotype. To distinguish these autosomes from each other, paint sets were supplemented with chromosomes of red fox and Japanese raccoon dog. Paints were used in fluorescence in-situ hybridization to analyse karyotypes in fourteen canine soft tissue sarcomas. Rearranged karyotypes were observed in seven tumours, but there was evidence for loss of rearrangement during tissue culture. Five tumours had rearrangements involving four chromosomes or fewer; one, a chondrosarcoma, had lost seven chromosomes whilst the last, a spindle cell sarcoma, had rearrangements involving eighteen chromosome pairs. The paint sets described here facilitate the complete cytogenetic analysis of balanced translocations and other inter-chromosomal rearrangements in canine tumours. We believe that this is the first canine tumour series to be subjected to this level of analysis.
NASA Astrophysics Data System (ADS)
Bártová, H.; Trojek, T.; Čechák, T.; Šefců, R.; Chlumská, Š.
2017-10-01
The presence of heavy chemical elements in old pigments is possible to identify in historical paintings using X-ray fluorescence analysis (XRF). This is a non-destructive analytical method frequently used in examination of objects that require in situ analysis, where it is necessary to avoid damaging the object by taking samples. Different modalities are available, such as microanalysis, scanning selected areas, or depth profiling techniques. Surface scanning is particularly profitable since 2D element distribution maps are much more understandable than the results of individual analyses. Information on the layered structure of the painting can be also obtained by handheld portable systems. Results presented in our paper combine 2D element distribution maps obtained by scanning analysis, and depth profiling using conventional XRF. The latter is very suitable for objects of art, as it can be evaluated from data measured with portable XRF device. Depth profiling by conventional XRF is based on the differences in X-ray absorption in paint layers. The XRF technique was applied for analysis of panel paintings of the Master of the St George Altarpiece who was active in Prague in the 1470s and 1480s. The results were evaluated by taking micro-samples and performing a material analysis.
Corticomotor Excitability during Observation and Imagination of a Work of Art
Battaglia, Fortunato; Lisanby, Sarah H.; Freedberg, David
2011-01-01
We examine the effects of the artistic representation – here exemplified by Michelangelo's Expulsion from Paradise – of an action on the motor system. Using single and paired- pulse transcranial magnetic stimulation we analyze corticomotor excitability during observation of an action in the painting, during imagery of the painting, and during observation of a photograph of the same pose. We also analyze the effects of observation of two further paintings, one showing the same muscles at rest, and in the other in a more overtly emotional context. Both observation of the Expulsion and of imagery of the painting increased cortical excitability. Neither the relaxed pose of Michelangelo's Creation nor the flexed posture in the highly emotional context of Bellini's Dead Christ increased cortical excitability. Observation of a photograph of the same extended pose did not increase cortical excitability either. Moreover, intracortical inhibition was reduced during imagery of the painting. Our results offer clear motor correlates of the relationship between the esthetic quality of a work and the perception of implied movement within it. PMID:21897813
Defeyt, C; Van Pevenage, J; Moens, L; Strivay, D; Vandenabeele, P
2013-11-01
In art analysis, copper phthalocyanine (CuPc) is often identified as an important pigment (PB15) in 20th century artworks. Raman spectroscopy is a very valuable technique for the detection of this pigment in paint systems. However, PB15 is used in different polymorphic forms and identification of the polymorph could retrieve information on the production process of the pigment at the moment. Raman spectroscopy, being a molecular spectroscopic method of analysis, is able to discriminate between polymorphs of crystals. However, in the case of PB15, spectral interpretation is not straightforward, and Raman data treatment requires some improvements concerning the PB15 polymorphic discrimination in paints. Here, Raman spectroscopy is combined with chemometrical analysis in order to develop a procedure allowing us to identify the PB15 crystalline structure in painted layers and in artworks. The results obtained by Linear Discriminant Analysis (LDA), using intensity ratios as variables, demonstrate the ability of this procedure to predict the crystalline structure of a PB15 pigment in unknown paint samples. Copyright © 2013 Elsevier B.V. All rights reserved.
O'Cleireachain, Marc R; Macias, Luis H; Richey, Karen J; Pressman, Melissa A; Shirah, Gina R; Caruso, Daniel M; Foster, Kevin N; Matthews, Marc R
2014-01-01
Muriatic acid (hydrochloric acid), a common cleaning and resurfacing agent for concrete pools, can cause significant burn injuries. When coating a pool with chlorinated rubber-based paint, the pool surface is initially cleansed using 31.45% muriatic acid. Here we report a 50-year-old Hispanic male pool worker who, during the process of a pool resurfacing, experienced significant contact exposure to a combination of muriatic acid and blue chlorinated rubber-based paint. Confounding the clinical situation was the inability to efficiently remove the chemical secondary to the rubber-based nature of the paint. Additionally, vigorous attempts were made to remove the rubber paint using a variety of agents, including bacitracin, chlorhexidine soap, GOOP adhesive, and Johnson's baby oil. Resultant injuries were devastating fourth-degree burns requiring an immediate operative excision and amputation. Despite aggressive operative intervention and resuscitation, he continued to have severe metabolic derangements and ultimately succumbed to his injuries. We present our attempts at debridement and the system in place to manage patients with complex chemical burns.
Pérez, Alberto J.; Braga, Roberto; Perles, Ángel; Pérez–Marín, Eva; García-Diego, Fernando J.
2018-01-01
Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation. PMID:29324692
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, P.M.; Walberg, J.A.; Bradlow, H.L.
1988-03-01
A single exposure to 254 nm ultraviolet irradiation (UV) can systemically suppress experimental sensitization to the simple allergen 2,4-dinitro, 1-chlorobenzene (DNCB) in the mouse. We show here that topical application at the site of irradiation of the 21-oic acid methyl ester derivative of the synthetic glucocorticoid triamcinolone acetonide (TAme) prevents UV suppression of sensitization. That is, mice painted with TAme at the site of UV exposure developed normal contact hypersensitivity (CH); mice exposed to UV only, like mice treated with the parent compound triamcinolone acetonide (TA), failed to be sensitized by DNCB applied to a distal site. TAme is inactivatedmore » rapidly by plasma esterases, so its effect is thought to be confined to the skin. Apparently, TAme blocked the cutaneous signal(s) for systemic suppression of CH. Histologically, irradiated skin exhibited mild inflammation and hyperproliferation, but these effects were greatly exaggerated and prolonged in the UV + TAme-treated skin, independent of sensitization at the distal site. The infiltrate consisted mostly of neutrophils and lacked the round cells characteristic of cell-mediated immunity. Apparently, normal immune suppression by UV prevented this vigorous reaction to irradiated skin. Applied together with DNCB. TAme blocked sensitization. It also prevented response to challenge by DNCB in previously sensitized animals. However, unlike the parent compound triamcinolone acetonide (TA), Budesonide or Beclomethasone diproprionate, each of which can penetrate the epidermis in active form, TAme had no effect on sensitization when applied at a distal site. Likewise, TAme did not affect plasma B (17-desoxycortisol) levels, whereas the other three compounds reduced plasma B tenfold, as expected of compounds causing adrenal-pituitary suppression.« less
Portable X-ray powder diffractometer for the analysis of art and archaeological materials
NASA Astrophysics Data System (ADS)
Nakai, Izumi; Abe, Yoshinari
2012-02-01
Phase identification based on nondestructive analytical techniques using portable equipment is ideal for the analysis of art and archaeological objects. Portable(p)-XRF and p-Raman are very widely used for this purpose, yet p-XRD is relatively rare despite its importance for the analysis of crystalline materials. This paper overviews 6 types of p-XRD systems developed for analysis of art and archaeological materials. The characteristics of each system are compared. One of the p-XRD systems developed by the authors was brought to many museums as well as many archeological sites in Egypt and Syria to characterize the cultural heritage artifacts, e.g., amulet made of Egyptian blue, blue painted pottery, and Islamic pottery from Egypt, jade from China, variscite from Syria, a Japanese classic painting drawn by Korin Ogata, and oil paintings drawn by Taro Okamoto. Practical application data are shown to demonstrate the potential ability of the method for analysis of various art and archaeological materials.
Retrieval Experience as a Modifier of Future Encoding: Another Test Effect
ERIC Educational Resources Information Center
Bjork, Elizabeth Ligon; Storm, Benjamin C.
2011-01-01
Research on how individuals monitor their level of comprehension during study paints a picture of learners as being insensitive to many of the factors or conditions of learning that can enhance long-term retention and transfer. In previous research, however, deWinstanley and Bjork (2004) demonstrated that learners--if made sensitive to the…
Anthony S. Bova; Matthew B. Dickinson
2008-01-01
The maximum temperatures of thermocouples, temperature-sensitive paints, and calorimeters exposed to flames in wildland fires are often called "fire temperatures" but are determined as much by the properties and deployment of the measurement devices as by the fires themselves. Rather than report device temperatures that are not generally comparable among...
Continental United States Military Housing Inspections Southeast
2015-09-24
and safety, including focus on mold, asbestos , radon, lead-based paint, drinking water quality, and pest management. We conducted this inspection in...electrical system safety inspections. In addition, we inspected to EPA standards governing safe drinking water and toxic substances, radon, asbestos , and...inspections focused on mold, asbestos , radon, lead-based paint, drinking water quality, and pest management. We evaluated the associated plans and
Facilities Management Guide for Asbestos and Lead
2004-11-01
equipment such as HEPA filtered power tools, portable welding exhaust systems, and paint removal equipment when work disturbs lead. Do not dry sweep ...sampling and analysis of [______] paint bulk and wipe samples by atomic absorption spectrophotometry (AA) or anodic stripping voltametry (ASV...analysis. e. All bulk (destructive) collected for lead shall be analyzed by atomic absorption spectrophotometry (AA) or anodic stripping voltametry
Egyptian Symbols and Figures. Hieroglyphs [and] Scroll Paintings. [Lesson Plan].
ERIC Educational Resources Information Center
2002
This lesson introduces students to the writing, art, and religious beliefs of ancient Egypt through hieroglyphs, one of the oldest writing systems in the world, and through tomb paintings. Hieroglyphs consist of pictures of familiar objects that represent sounds and were used in ancient Egypt from about 3100 BC to 400 CE. In the first part of the…
Microkinetic modeling of the autoxidative curing of an alkyd and oil-based paint model system
NASA Astrophysics Data System (ADS)
Oakley, Lindsay H.; Casadio, Francesca; Shull, Kenneth R.; Broadbelt, Linda J.
2015-11-01
Elucidating the curing and aging mechanisms of alkyd and other oil-based paints is valuable for the fields of conservation and bio-based coatings. Recent research has demonstrated the limitations of artificial aging in predicting the actual properties of paints that are hundreds of years old. Kinetic modeling offers pathways to develop a realistic and dynamic description of the composition of these oil-based paint coatings and facilitates the exploration of the effects of various environmental conditions on their long-term chemical stability. This work presents the construction of a kinetic Monte Carlo framework from elementary steps for the cobalt-catalyzed autoxidative curing of an ethyl linoleate model system up to the formation of single cross-links. Kinetic correlations for reaction families of similar chemistry are employed to reduce the number of parameters required to calculate rate constants in Arrhenius form. The model, developed from mechanisms proposed in the literature, shows good agreement with experiment for the formation of primary products in the early stages of curing. The model has also revealed that the mechanisms proposed in the literature for the formation of secondary products, such as volatile aldehydes, are still not well established, and alternative routes are under evaluation.
Reducing Bits in Electrodeposition Process of Commercial Vehicle - A Case Study
NASA Astrophysics Data System (ADS)
Rahim, Nabiilah Ab; Hamedon, Zamzuri; Mohd Turan, Faiz; Iskandar, Ismed
2016-02-01
Painting process is critical in commercial vehicle manufacturing process for protection and decorative. The good quality on painted body is important to reduce repair cost and achieve customer satisfaction. In order to achieve the good quality, it is important to reduce the defect at the first process in painting process which is electrodeposition process. The Pareto graph and cause and effect diagram in the seven QC tools is utilized to reduce the electrodeposition defects. The main defects in the electrodeposition process in this case study are the bits. The 55% of the bits are iron filings. The iron filings which come from the metal assembly process at the body shop are minimised by controlling the spot welding parameter, defect control and standard body cleaning process. However the iron filings are still remained on the body and carry over to the paint shop. The remained iron filings on the body are settled inside the dipping tank and removed by filtration system and magnetic separation. The implementation of filtration system and magnetic separation improved 27% of bits and reduced 42% of sanding man hour with a total saving of RM38.00 per unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blystone, P.G.; Goltz, H.R.; Springer, J. Jr.
The reduction of volatile organic compound (VOC) emissions is a significant goal of the 1990 Clean Air Act. Industrial operations relating to surface preparation, surface coating and paint striping operations constitute one of the largest industrial sources of VOC emissions. This paper describes a new emission control system offered by Purus, Inc. which captures and recovers VOCs from paint stripping operations. The system is based on an on-site adsorption-desorption process which utilizes a specialized polymeric resin adsorbent. Adsorbent beds are regenerated through a computer controlled pressure-temperature swing process (PTSA). The adsorbent resin offers significant operational advantages over conventional activated carbonmore » adsorbents with respect to treating air laden with methyl ethyl ketone (MEK) vapors. Treatment of MEK with activated carbon can be problematic due to reactivity (degradation) and high heats of adsorption of ketones with carbon. The Purus process was successfully demonstrated at Tinker Air Force Base in or under the EPA`s Waste Reduction Evaluation at Federal Sites program. MEK emissions from a paint stripping booth vent were controlled at greater than 95% reduction levels. The recovered solvent was returned to depainting process and reused with no loss in paint stripping efficiency.« less
NASA Astrophysics Data System (ADS)
Saaid, Farish Irfal; Chan, Chin Han; Ong, Max Chong Hup; Winie, Tan; Harun, Mohamad Kamal
2015-08-01
The existing problem of oil and gas companies faced for on-site jobs of polymeric coatings on steel pipelines is that the quality of polymeric coatings varies from job to job for the same product brand from the same supplier or paint manufacturer. This can be due to the inherent problem of the reformulation of polymeric coatings or in other words adulterated polymeric coatings are supplied, where the quality of the coatings deviates from the submitted specifications for prequalification and tender purpose. Major oil and gas companies in Malaysia are calling for Coating Fingerprinting Certificate for the supply of polymeric coatings from local paint manufactures as quality assurance requirement of the coatings supplied. This will reduce the possibility of failures of the polymeric coatings, which lead to the corrosion of steel pipelines resulting in leakage of crude oil and gas to the environment. In this case, Fourier-transform infrared (FTIR) is a simple and reliable tool for coating fingerprinting. In this study, we conclude that, revelation of possible components of the 2-pack epoxy paints by carrying out extensive FTIR libraries search on FTIR spectra seems to be extremely challenging. Estimation of correlation of the sample spectrum to that of the reference spectrum using Compare function from one FTIR manufacturer, even the FTIR spectra are collected by different FTIR spectrometers from different FTIR manufacturers, can be made. The results of the correlation are reproducible.
The crystallization of metal soaps and fatty acids in oil paint model systems.
Hermans, Joen J; Keune, Katrien; van Loon, Annelies; Iedema, Piet D
2016-04-28
The formation and crystallization of metal soaps in oil paint layers is an important issue in the conservation of oil paintings. The chemical reactions and physical processes that are involved in releasing metal ions from pigments and fatty acids from the oil binder to form crystalline metal soap deposits have so far remained poorly understood. We have used a combination of differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) on model mixtures of palmitic acid, lead palmitate or zinc palmitate and linseed oil to study the transition from amorphous material to crystalline fatty acid or metal soap. This transition forms the final stage in the cascade of processes leading to metal soap-related oil paint degradation. Palmitic acid as well as the metal soaps showed nearly ideal solubility behavior. However, it was found that, near room temperature, both lead and zinc palmitate are practically insoluble in both liquid and partially polymerized linseed oil. Interestingly, the rate of metal soap and fatty acid crystallization decreased rapidly with the degree of linseed oil polymerization, possibly leading to systems where metal soaps are kinetically trapped in a semi-crystalline state. To explain the various morphologies of metal soap aggregates observed in oil paint layers, it is proposed that factors affecting the probability of crystal nucleation and the rate of crystal growth play a crucial role, like exposure to heat or cleaning solvents and the presence of microcracks.
Damage monitoring in historical murals by speckle interferometry
NASA Astrophysics Data System (ADS)
Hinsch, Klaus D.; Gulker, Gerd; Joost, Holger
2003-11-01
In the conservation of historical murals it is important to identify loose plaster sections that threaten to fall off. Electronic speckle interferometry in combination with acoustic excitation of the object has been employed to monitor loose areas. To avoid disadvantages of high sound irradiation of the complete building a novel directional audio-sound source based on nonlinear mixing of ultrasound has been introduced. The optical system was revised for optimum performance in the new environment. Emphasis is placed on noise suppression to increase sensitivity. Furthermore, amplitude and phase data of object response over the frequency-range inspected are employed to gain additional information on the state of the plaster or paint. Laboratory studies on sample specimen supplement field campaigns at historical sites.
INJECTION SYSTEM DESIGN FOR THE BSNS/RCS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WEI, J.; TANG, J.Y.; CHEN, Y.
2006-06-23
The BSNS injection system is designed to take one uninterrupted long drift in one of the four dispersion-free straight sections to host all the injection devices. Painting bumper magnets are used for both horizontal and vertical phase space painting. Closed-orbit bumper magnets are used for facilitating the installation of the injection septa and decreasing proton traversal in the stripping foil. Even with large beam emittance of about 300 {pi}mm.mrad used, BSNS/RCS still approaches the space charge limit during the injection/trapping phase for the accumulated particles of 1.9*10{sup 13} and at the low injection energy of 80 MeV. Uniform-like beam distributionmore » by well-designed painting scheme is then obtained to decrease the tune shift/spread. ORBIT code is used for the 3D simulations. Upgrading to higher injection energy has also been considered.« less
Accurate Measurements of Spectral Reflectance in Picasso's Guernica Painting.
de Luna, Javier Muñoz; Fernandez-Balbuena, Antonio Alvarez; Vázquez, Daniel; Melgosa, Manuel; Durán, Humberto; García, Jorge; Muro, Carmen
2016-01-01
The use of non-invasive spectral measurements to control the conservation status is a part of the preventive conservation of artworks which nowadays is becoming increasingly interesting. This paper describes how to use a spectral measuring device and an illumination system specifically designed for such a task in a very large dimension artwork painting (7.8 m wide × 3.5 m high). The system, controlled by a Cartesian robot, allows spectral measurements in a spectral range of 400-780 nm. The measured data array has a total of 2201 circular regions with 5.5 mm spot diameter placed on a square grid. Colorimetric calculations performed from these spectral measurements may be used to characterize color shifts related to reflectance changes in specific areas of the paint. A color shifting from the expected gray has been shown. © The Author(s) 2015.
Rewritable Painting Realized from Ambient-Sensitive Fluorescence of ZnO Nanoparticles
Liu, Kai-Kai; Shan, Chong-Xin; He, Gao-Hang; Wang, Ruo-Qiu; Dong, Lin; Shen, De-Zhen
2017-01-01
Paper, as one of the most important information carriers, has contributed to the development and transmission of human civilization greatly. Meanwhile, a serious problem of environmental sustainable development caused by the production and utilization of paper has been resulted to modern society. Therefore, a simple and green route is urgently demanded to realize rewritable painting on paper. Herein, a simple route to rewritable painting on copy paper has been demonstrated by using eco-friendly ZnO nanoparticles (NPs) as fluorescent ink, and vinegar and soda that are frequently used in kitchen as erasing and neutralizing agents. Words or patterns written using the ZnO NPs as ink can be erased by vinegar vapour within five seconds, and after a neutralizing process in the ambient of soda vapour, the paper can be used for writing again. It is worth noting that the resolution and precision of the patterns produced via the above route degrade little after ten rewriting cycles, and the quality of the patterns produced using the ZnO NPs as ink fades little after being storage for several months, which promises the versatile potential applications of the rewriting route proposed in this paper. PMID:28169344
Finelli, P; Stanyon, R; Plesker, R; Ferguson-Smith, M A; O'Brien, P C; Wienberg, J
1999-07-01
We used reciprocal chromosome painting with both African green monkey (C. aethiops) and human chromosome specific DNA probes to delineate homologous regions in the two species. Probes were derived by fluorescence-activated chromosome flow sorting and then were reciprocally hybridized to metaphase spreads of each species. Segments in the size range of a single chromosome band were identified, demonstrating the sensitivity of the approach when comparing species that diverged more than 20 million years ago. Outgroup analysis shows that the great difference in diploid numbers between the African green monkey (2n = 60) and humans (2n = 46) is mainly owing to fissions, and the direction of change is towards increasing diploid numbers. However, most break points apparently lie outside of the centromere regions, suggesting that the changes were not solely Robertsonian as has been previously assumed. No reciprocal translocations have occurred in the phylogenetic lines leading to humans or African green monkeys. The primate paints established here are a valuable tool to establish interspecies homology, to define rearrangements, and to determine the mechanisms of chromosomal evolution in primate species.
Methylisothiazolinone in selected consumer products in Belgium: Adding fuel to the fire?
Aerts, Olivier; Meert, Hans; Goossens, An; Janssens, Sighile; Lambert, Julien; Apers, Sandra
2015-09-01
Methylisothiazolinone (MI) contact allergy is severely affecting consumers with allergic contact dermatitis, owing to its presence in cosmetics, household detergents, and water-based paints, in particular. Data on the true isothiazolinone concentrations in these products are scarce, and labelling may be incorrect. To report on the MI concentrations in such products marketed in Belgium, in order to verify the accuracy of labelling (when applicable) and compliance with EU regulations. Thirty cosmetics (18 leave-on and 12 rinse-off), eight detergents and four paints were analysed for MI by the use of high-performance liquid chromatography with ultraviolet detection. The analysed leave-on, and to a lesser extent the rinse-off, cosmetics, contained MI at concentrations far exceeding the permitted 100 ppm use concentration. Household detergents contained high concentrations of MI, and mislabelling occurred for both cosmetics and detergents. The (limited) data on paints are in line with the existing literature. Cosmetics and detergents may facilitate contact sensitization because of a (too) high MI concentration, and mislabelling may make its avoidance extremely difficult. Safer use concentrations and correct labelling should be ensured by adequate quality control. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Conti, Claudia; Realini, Marco; Colombo, Chiara; Botteon, Alessandra; Bertasa, Moira; Striova, Jana; Barucci, Marco; Matousek, Pavel
2016-12-01
We present a method for estimating the thickness of thin turbid layers using defocusing micro-spatially offset Raman spectroscopy (micro-SORS). The approach, applicable to highly turbid systems, enables one to predict depths in excess of those accessible with conventional Raman microscopy. The technique can be used, for example, to establish the paint layer thickness on cultural heritage objects, such as panel canvases, mural paintings, painted statues and decorated objects. Other applications include analysis in polymer, biological and biomedical disciplines, catalytic and forensics sciences where highly turbid overlayers are often present and where invasive probing may not be possible or is undesirable. The method comprises two stages: (i) a calibration step for training the method on a well characterized sample set with a known thickness, and (ii) a prediction step where the prediction of layer thickness is carried out non-invasively on samples of unknown thickness of the same chemical and physical make up as the calibration set. An illustrative example of a practical deployment of this method is the analysis of larger areas of paintings. In this case, first, a calibration would be performed on a fragment of painting of a known thickness (e.g. derived from cross-sectional analysis) and subsequently the analysis of thickness across larger areas of painting could then be carried out non-invasively. The performance of the method is compared with that of the more established optical coherence tomography (OCT) technique on identical sample set. This article is part of the themed issue "Raman spectroscopy in art and archaeology".
Thomas, Hannah Mary; Kinahan, Paul E; Samuel, James Jebaseelan E; Bowen, Stephen R
2018-02-01
To quantitatively estimate the impact of different methods for both boost volume delineation and respiratory motion compensation of [18F] FDG PET/CT images on the fidelity of planned non-uniform 'dose painting' plans to the prescribed boost dose distribution. Six locally advanced non-small cell lung cancer (NSCLC) patients were retrospectively reviewed. To assess the impact of respiratory motion, time-averaged (3D AVG), respiratory phase-gated (4D GATED) and motion-encompassing (4D MIP) PET images were used. The boost volumes were defined using manual contour (MANUAL), fixed threshold (FIXED) and gradient search algorithm (GRADIENT). The dose painting prescription of 60 Gy base dose to the planning target volume and an integral dose of 14 Gy (total 74 Gy) was discretized into seven treatment planning substructures and linearly redistributed according to the relative SUV at every voxel in the boost volume. Fifty-four dose painting plan combinations were generated and conformity was evaluated using quality index VQ0.95-1.05, which represents the sum of planned dose voxels within 5% deviation from the prescribed dose. Trends in plan quality and magnitude of achievable dose escalation were recorded. Different segmentation techniques produced statistically significant variations in maximum planned dose (P < 0.02), as well as plan quality between segmentation methods for 4D GATED and 4D MIP PET images (P < 0.05). No statistically significant differences in plan quality and maximum dose were observed between motion-compensated PET-based plans (P > 0.75). Low variability in plan quality was observed for FIXED threshold plans, while MANUAL and GRADIENT plans achieved higher dose with lower plan quality indices. The dose painting plans were more sensitive to segmentation of boost volumes than PET motion compensation in this study sample. Careful consideration of boost target delineation and motion compensation strategies should guide the design of NSCLC dose painting trials. © 2017 The Royal Australian and New Zealand College of Radiologists.
2011-10-01
general terms the use of alternative paint strippers formulated with water, formic acids, benzyl alcohol, and peroxides . Facilities testing these...based on benzyl alcohol and peroxide .6 In this system the benzyl alcohol serves as a carrier to penetrate and soften the coating while the peroxide ...34 27. FTIR spectrum of the epoxy primer exposed to 20% benzyl alcohol in methylene chloride
Development of a Method to Measure Organotin Release Rates
1989-12-01
tributyltin per liter Pm Micrometers mm Millimeters NOSC Naval Ocean Systems Center RCW Relative confidence width TBT Tributyltin TBTCl Tributyltin ...organotin paint research is to develop a coating which controls fouling effec- tively with a minimum release of tributyltin ( TBT ). In addition to...DTNSRDC) are conducting a series of experiments in order to determine the tributyltin ( TBT ) release rates of various organotin antifouling paints. The
SU-F-J-59: Assessment of Dose Response Distribution in Individual Human Tumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, D; Chen, S; Krauss, D
Purpose: To fulfill precision radiotherapy via adaptive dose painting by number, voxel-by-voxel dose response or radio-sensitivity in individual human tumor needs to be determined in early treatment to guide treatment adaptation. In this study, multiple FDG PET images obtained pre- and weekly during the treatment course were utilized to determine the distribution/spectrum of dose response parameters in individual human tumors. Methods: FDG PET/CT images of 18 HN cancer patients were used in the study. Spatial parametric image of tumor metabolic ratio (dSUV) was created following voxel by voxel deformable image registration. Each voxel value in dSUV was a function ofmore » pre-treatment baseline SUV and treatment delivered dose, and used as a surrogate of tumor survival fraction (SF). Regression fitting with break points was performed using the LQ-model with tumor proliferation for the control and failure group of tumors separately. The distribution and spectrum of radiation sensitivity and growth in individual tumors were determined and evaluated. Results: Spectrum of tumor dose-sensitivity and proliferation in the controlled group was broad with α in tumor survival LQ-model from 0.17 to 0.8. It was proportional to the baseline SUV. Tlag was about 21∼25 days, and Tpot about 0.56∼1.67 days respectively. Commonly tumor voxels with high radio-sensitivity or larger α had small Tlag and Tpot. For the failure group, the radio-sensitivity α was low within 0.05 to 0.3, but did not show clear Tlag. In addition, tumor voxel radio-sensitivity could be estimated during the early treatment weeks. Conclusion: Dose response distribution with respect to radio-sensitivity and growth in individual human tumor can be determined using FDG PET imaging based tumor metabolic ratio measured in early treatment course. The discover is critical and provides a potential quantitative objective to implement tumor specific precision radiotherapy via adaptive dose painting by number.« less
ERIC Educational Resources Information Center
Tyau, Layton M.
This lesson, which is part of a high school course in auto body repair and painting, deals with selecting a reducer when doing overall paint jobs using enamel paints. Students are taught the general properties of different types of enamel paints and selection of the proper reducer for each type of paint, depending on the weather and the specific…
NASA Astrophysics Data System (ADS)
Kim, Gi-Woo; Kim, Ji-Sik
2014-01-01
This paper presents the result of a preliminary experimental study on the dynamic torsional response analysis of mechanoluminescent (ML) paint for potential development as a new type of non-contacting torque transducer. The torsional torque applied to a transmission shaft is measured by sensing the ML intensity emitting from an ML paint coating a transmission shaft. This study provides the fundamental knowledge for the development of new non-contacting torque sensing technology based on the ML intensity detection. The proposed measurement principle appears to offer potential applications in automotive torque measurement systems, even though the loading rate-dependent characteristics of the ML intensity needs to be examined further.
2012-04-01
although it is used as a base in most paints due to its light scattering ability. In general, a pure anatase TiO2 nanostructure is preferred over...solution, 0.1%, 0.5%, and 1% of pristine graphene was added to each solution. The solution was then stirred for 15 min and then sonicated for 20 min
Evaluation of a reflective coating for an organic scintillation detector
NASA Astrophysics Data System (ADS)
Tarancón, A.; Marin, E.; Tent, J.; Rauret, G.; Garcia, J. F.
2012-05-01
A reflective coating based on white paint, black paint and varnish has been evaluated to determine its reflective capabilities and its potential use in radioactivity detectors based on organic scintillators. Three different white paints, all of which were based on TiO2, were also tested to determine the one with the best performance and lowest radioactivity content. In a first experiment, we evaluated the capability of the reflective coating by measuring 90Sr/90Y with PSm in a polyethylene vial partially painted with EJ510 (Eljen Technology) reflective paint, black paint and varnish. In a second experiment, we compared the performance of the EJ510 to that of other white paints used for artistic purposes (Vallejo and Rembrandt). The results showed that, when a vial was only partially painted with the white paints (keeping a window free of paint to allow photons to exit), the efficiency and spectral distribution of the painted vial was similar to that of a non-painted vial. This behavior showed the efficiency of the reflective coatings. In terms of reflection capabilities, all of the tested paints were equivalent; however, the background was higher for the EJ510 paint. Analyses using high-resolution gamma spectroscopy indicated the presence of natural radionuclides (40K, 226Ra and 228Ra) in the EJ510. On the basis of the results (high reflection capabilities and the absence of radioactive impurities) and its lower cost, the Vallejo paint was selected as the white reflective paint. The final structure of the reflective coating was composed of five white paint layers, a black paint (to avoid external light entrance) and a layer of varnish (to protect the paints).
49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...
49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...
49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...
49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...
49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...
Does antifouling paint select for antibiotic resistance?
Flach, Carl-Fredrik; Pal, Chandan; Svensson, Carl Johan; Kristiansson, Erik; Östman, Marcus; Bengtsson-Palme, Johan; Tysklind, Mats; Larsson, D G Joakim
2017-07-15
There is concern that heavy metals and biocides contribute to the development of antibiotic resistance via co-selection. Most antifouling paints contain high amounts of such substances, which risks turning painted ship hulls into highly mobile refuges and breeding grounds for antibiotic-resistant bacteria. The objectives of this study were to start investigate if heavy-metal based antifouling paints can pose a risk for co-selection of antibiotic-resistant bacteria and, if so, identify the underlying genetic basis. Plastic panels with one side painted with copper and zinc-containing antifouling paint were submerged in a Swedish marina and biofilms from both sides of the panels were harvested after 2.5-4weeks. DNA was isolated from the biofilms and subjected to metagenomic sequencing. Biofilm bacteria were cultured on marine agar supplemented with tetracycline, gentamicin, copper sulfate or zinc sulfate. Biofilm communities from painted surfaces displayed lower taxonomic diversity and enrichment of Gammaproteobacteria. Bacteria from these communities showed increased resistance to both heavy metals and tetracycline but not to gentamicin. Significantly higher abundance of metal and biocide resistance genes was observed, whereas mobile antibiotic resistance genes were not enriched in these communities. In contrast, we found an enrichment of chromosomal RND efflux system genes, including such with documented ability to confer decreased susceptibility to both antibiotics and biocides/heavy metals. This was paralleled by increased abundances of integron-associated integrase and ISCR transposase genes. The results show that the heavy metal-based antifouling paint exerts a strong selection pressure on marine bacterial communities and can co-select for certain antibiotic-resistant bacteria, likely by favoring species and strains carrying genes that provide cross-resistance. Although this does not indicate an immediate risk for promotion of mobile antibiotic resistance, the clear increase of genes involved in mobilizing DNA provides a foundation for increased opportunities for gene transfer in such communities, which might also involve yet unknown resistance mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Catalano, Jaclyn; Murphy, Anna; Yao, Yao; Zumbulyadis, Nicholas; Centeno, Silvia A; Dybowski, Cecil
2018-02-01
Many oil paintings, dating from the 15th century to the present, are affected by the formation of heavy-metal carboxylates (soaps) that alter the structural integrity and appearance of the works. Through transport phenomena not yet understood, free fatty acids formed from oils used as binders migrate through the paint film and react with heavy-metal ions that are constituents of pigments and/or driers, forming metal carboxylates. The local molecular dynamics of fatty acids and metal carboxylates are factors influencing material transport in these systems. We report temperature-dependent 2 H NMR spectra of palmitic acid and lead palmitate as pure materials, in cross-linked linseed oil films, and in a lead white linseed oil paint film as part of our broader research into metal soap formation. Local dynamics at the α carbon, at the terminal methyl group, and at the middle of the fatty acid chain were observed in specifically deuterated materials. Changes in the dynamic behavior with temperature were observed by the appearance of two species, a solid-like material and a liquid-like material. The relative amounts of the two phases and their deuterium NMR parameters indicate that the amount of liquid-like material and the local dynamics at that site increase with temperature. At the three locations along the chain and at all temperatures, there is a larger percentage of acyl chains of both palmitic acid and lead palmitate that are "mobile" or liquid-like in linseed oil films than there are in the pure materials. However, the percentage of liquid-like species is decreased in a lead white paint film, as compared to a linseed oil matrix. In addition, these experiments indicate that there is a larger percentage of liquid-like acyl chains of palmitic acid than of lead palmitate under identical conditions in these model paint systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Emergency and Continuous Exposure Limits for Selected Airborne Contaminants. Volume 1
1984-04-01
fuels, corn remover, drawing inks, fuel-system deicer, glue, nail-polish remover, paint-brush cleaners, paint and varnish removers, and china ,• ~ ~film...and fire hazards of butanone and acetone. Ind. Bull. (N.Y. State Dept. Labor) 23:173-176. Societa Italiana di Medicina del Lavoro. 1975. Associazione...Italiana di Medicina del Lavoro 1975. Associazione Italiana - -degli Igienisti Industriali. Valori Limite Ponderati degli Inquinanti Chimici e
Impact of Medium and Substrate on Growth of Pseudomonas Fluorescens Biofilms on Polyurethane Paint
2011-02-01
biofilm formation on polyurethane (PU) coatings, and to define how those parameters contribute to polyurethane biodegradation. We used a batch flow system...determine which factors best support the growth and persistence of Pseudomonas fluorescens biofilms . Factors that enhance biofilm formation and...AFRL-RX-WP-TP-2011-4131 IMPACT OF MEDIUM AND SUBSTRATE ON GROWTH OF PSEUDOMONAS FLUORESCENS BIOFILMS ON POLYURETHANE PAINT Wendy L. Goodson
Environmental Compliance Inspection Checklist for Shipbuilding Facilities
1992-04-01
regulations will most likely apply to the mixing and application of tributyltin ( TBT )-based and other anti-fouling paints, as well as routine...Pollution Discharge Elimination System Small Quantity Generator 94 TBT Tributyltin TCLP Toxicity Characteristic Leaching Procedure TPQ Threshold...of at the yard? If “YES,” continue. 8.1.2 Are pesticides applied by yard personnel? If “YES," describe the type(s) used ( TBT paint etc.) and where
A New Formulation for the Removal and Remediation of Polychlorinated Biphenyls in Painted Structures
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Brooks, Kathleen; Geiger, Cherie; Clausen, Christian
2009-01-01
This new technology report will describe the laboratory development of a new and innovative solution for the removal and destruction of PCBs found in painted structures or within the binding or caulking material on structures. The technology incorporates a Bimetallic Treatment System (BTS) that extracts and degrades only the PCBs found on the facilities, leaving in most cases the structure virtually unaltered.
Mercury (Hg) and lead (Pb) in interior and exterior New Orleans house paint films.
Mielke, Howard W; Gonzales, Chris
2008-06-01
Pre-1992, latex paint was formulated with mercury (Hg) as phenylmercuric acetate (PMA). Hg vaporizes reducing its content, and lead (Pb) is stable and remains unchanged. The objective of this study is to describe the content of Hg and Pb in existing paint coatings. Forty paint chip samples were collected from both interior and exterior surfaces of homes in metropolitan New Orleans and analyzed for Hg and Pb. The median Hg in exterior paints is 26.9 mg kg(-1) (0.8-214.0) compared with 7.1 mg kg(-1) (0.03-39.2) for interior paints. The median Pb content is 76603 mg kg(-1) (464-317151) and 416 mg kg(-1) (24-63313) respectively, for exterior and interior paints. The Spearman correlation coefficients for Hg and Pb are -0.312 (P=0.13) and -0.471 (P=0.07) respectively, in exterior and interior samples. Hg and Pb vary independently with each other in paint films. Median Hg in exterior paints is four times larger than for interior paints. Median Pb in exterior paints is 184 times larger than interior paints. The Pb and Hg content in exterior and interior paint chips are significantly different (Mann-Whitney Rank Sum Test, P0.001 and P=0.006, respectively). Only 1 of the 25 exterior paints contained less than the current 5000 mg kg(-1) US standard for Pb, the criteria for exemption from the power-sanding restrictions of the New Orleans Lead Ordinance. Prior to banning PMA in paint, Hg poisonings presented as acrodynia were reported for children living in homes freshly painted with latex paint. Because of the affinity of Hg and Pb for sulfur-containing amino acid proteins, their presence in paint coatings poses an increased hazard when released as dust.
Large Aircraft Robotic Paint Stripping (LARPS) system and the high pressure water process
NASA Astrophysics Data System (ADS)
See, David W.; Hofacker, Scott A.; Stone, M. Anthony; Harbaugh, Darcy
1993-03-01
The aircraft maintenance industry is beset by new Environmental Protection Agency (EPA) guidelines on air emissions, Occupational Safety and Health Administration (OSHA) standards, dwindling labor markets, Federal Aviation Administration (FAA) safety guidelines, and increased operating costs. In light of these factors, the USAF's Wright Laboratory Manufacturing Technology Directorate and the Aircraft Division of the Oklahoma City Air Logistics Center initiated a MANTECH/REPTECH effort to automate an alternate paint removal method and eliminate the current manual methylene chloride chemical stripping methods. This paper presents some of the background and history of the LARPS program, describes the LARPS system, documents the projected operational flow, quantifies some of the projected system benefits and describes the High Pressure Water Stripping Process. Certification of an alternative paint removal method to replace the current chemical process is being performed in two phases: Process Optimization and Process Validation. This paper also presents the results of the Process Optimization for metal substrates. Data on the coating removal rate, residual stresses, surface roughness, preliminary process envelopes, and technical plans for process Validation Testing will be discussed.
Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, J.; Kreutzer, C.; Jeffers, M.
Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loadsmore » during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation. Initial screening simulations using CoolCalc, NREL's rapid HVAC load estimation tool, showed promising air-conditioning load reductions due to paint color selection. Tests conducted at NREL's Vehicle Testing and Integration Facility using long-haul truck cab sections, 'test bucks,' showed a 31.1% of maximum possible reduction in rise over ambient temperature and a 20.8% reduction in daily electric air conditioning energy use by switching from black to white paint. Additionally, changing from blue to an advanced color-matched solar reflective blue paint resulted in a 7.3% reduction in daily electric air conditioning energy use for weather conditions tested in Colorado. National-level modeling results using weather data from major U.S. cities indicated that the increase in heating loads due to lighter paint colors is much smaller than the reduction in cooling loads.« less
Ossiboff, Robert J; Newton, Alisa L; Seimon, Tracie A; Moore, Robert P; McAloose, Denise
2015-05-01
A captive, juvenile, female northern map turtle (Graptemys geographica) was found dead following a brief period of weakness and nasal discharge. Postmortem examination identified pneumonia with necrosis and numerous epithelial, intranuclear viral inclusion bodies, consistent with herpesviral pneumonia. Similar intranuclear inclusions were also associated with foci of hepatocellular and splenic necrosis. Polymerase chain reaction (PCR) screening of fresh, frozen liver for the herpesviral DNA-dependent DNA polymerase gene yielded an amplicon with 99.2% similarity to recently described emydid herpesvirus 1 (EmyHV-1). Molecular screening of turtles housed in enclosures that shared a common circulation system with the affected map turtle identified 4 asymptomatic, EmyHV-1 PCR-positive painted turtles (Chrysemys picta) and 1 asymptomatic northern map turtle. Herpesvirus transmission between painted and map turtles has been previously suggested, and our report provides the molecular characterization of a herpesvirus in asymptomatic painted turtles that can cause fatal herpesvirus-associated disease in northern map turtles. © 2015 The Author(s).
Photocatalytic surface reactions on indoor wall paint.
Salthammer, T; Fuhrmann, F
2007-09-15
The reduction of indoor air pollutants by air cleaning systems has received considerable interest, and a number of techniques are now available. So far, the method of photocatalysis was mainly applied by use of titanium dioxide (TiO2) in flow reactors under UV light of high intensity. Nowadays, indoor wall paints are equipped with modified TiO2 to work as a catalyst under indoor daylight or artificial light. In chamber experiments carried out under indoor related conditions itwas shown thatthe method works for nitrogen dioxide with air exchange and for formaldehyde without air exchange at high concentrations. In further experiments with volatile organic compounds (VOCs), a small effect was found for terpenoids with high kOH rate constants. For other VOCs and carbon monoxide there was no degradation at all or the surface acted as a reversible sink. Secondary emissions from the reaction of paint constituents were observed on exposure to light. From the results it is concluded that recipes of photocatalytic wall paints need to be optimized for better efficiency under indoor conditions.
A High-Resolution Measurement of Ball IR Black Paint's Low-Temperature Emissivity
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Canavan, Ed; DiPirro, Mike; Li, Xiaoyi; Franck, Randy; Green, Dan
2011-01-01
High-emissivity paints are commonly used on thermal control system components. The total hemispheric emissivity values of such paints are typically high (nearly 1) at temperatures above about 100 Kelvin, but they drop off steeply at lower temperatures. A precise knowledge of this temperature-dependence is critical to designing passively-cooled components with low operating temperatures. Notable examples are the coatings on thermal radiators used to cool space-flight instruments to temperatures below 40 Kelvin. Past measurements of low-temperature paint emissivity have been challenging, often requiring large thermal chambers and typically producing data with high uncertainties below about 100 Kelvin. We describe a relatively inexpensive method of performing high-resolution emissivity measurements in a small cryostat. We present the results of such a measurement on Ball InfraRed BlackTM(BIRBTM), a proprietary surface coating produced by Ball Aerospace and Technologies Corp (BATC), which is used in spaceflight applications. We also describe a thermal model used in the error analysis.
Investigation of graphene-based nanoscale radiation sensitive materials
NASA Astrophysics Data System (ADS)
Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael
2012-06-01
Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.
40 CFR 745.233 - Lead-based paint activities requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) TOXIC SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.233 Lead-based paint activities requirements. Lead-based paint... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lead-based paint activities...
40 CFR 745.233 - Lead-based paint activities requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) TOXIC SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.233 Lead-based paint activities requirements. Lead-based paint... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lead-based paint activities...
40 CFR 745.233 - Lead-based paint activities requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) TOXIC SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.233 Lead-based paint activities requirements. Lead-based paint... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lead-based paint activities...
40 CFR 745.233 - Lead-based paint activities requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) TOXIC SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.233 Lead-based paint activities requirements. Lead-based paint... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lead-based paint activities...
40 CFR 745.233 - Lead-based paint activities requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) TOXIC SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.233 Lead-based paint activities requirements. Lead-based paint... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lead-based paint activities...
Demonstration and Field Test of airjacket technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulkner, D.; Fisk, W.J.; Gadgil, A.J.
1998-06-01
There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The differencemore » between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.« less
NASA Astrophysics Data System (ADS)
Pingitore, N. E.; Clague, J.; Amaya, M. A.
2006-12-01
Understanding the interplay of indoor and outdoor sources of lead in an urban setting is one foundation in establishing risk for lead exposure in children in our cities. A household may be the source for lead contamination due to the deterioration of interior lead-based paint, or a sink if lead particles are tracked or blown into the home from such potential ambient sources as yard soil or urban street dust. In addressing this issue, X-Ray Absorption Spectroscopy (XAS) presents the opportunity to directly and quantitatively speciate lead at low concentrations in bulk samples. We performed XAS analyses on dust wipes from window sills or floors from 8 houses that exceeded Federal standards for lead in dust. We entered these data into a Principal Components Analysis (PCA) that also included El Paso environmental samples: lead-based paints, soils, and airborne particulate matter. A simple two-component mixing system accounted for more than 95% of the variance of this data set. Paint and lead oxide appear to be the principal components, with all the samples falling in a compositional range from pure paint to 75% paint, 25% lead oxide. Note that several different lead compounds are possible constituents of a given lead-based paint. The paints spread from one end out along perhaps a fifth of the range of the compositional axis, followed closely, but not overlapped, by the soil samples, which covered the remainder of the compositional range. Two of the dust wipes plotted within the paint range, and the remaining 6 dust wipes plotted randomly through the soil range. Samples of airborne particulate matter plotted in both the paint and soil ranges. These observations suggest that the lead on most of the dust wipes originated outside the house, probably from deteriorated exterior lead-based paint deposited in adjacent yards. This paint mixed with lead oxide present in the soil and entered the houses by the airborne route. The probable source of the oxide in the soil is former airborne deposition of automobile exhaust from leaded gasoline (lead halides quickly react to form oxide). The dust wipes that fall within the compositional range of the paints may have originated from deterioration of interior paint. The XAS findings are consistent with our tests of several hundred houses in El Paso: most of the wipes that exceeded Federal lead standards came from houses in the oldest neighborhoods of the city, where lead paint is still present. X-Ray absorption spectroscopy experiments were conducted at the Stanford Synchrotron Radiation Laboratory on beam lines 7-3 and 10-2. Spectra were collected at the Pb L-III absorption edge in fluorescence mode using a 13-element or a 30-element Ge solid-state detector. This publication was made possible by grant numbers 1RO1-ES11367 and 1 S11 ES013339-01A1 from the National Institute of Environmental Health Sciences (NIEHS), NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIH.
Monet's Painting under the Microscope
NASA Astrophysics Data System (ADS)
Dredge, Paula; Wuhrer, Richard; Phillips, Matthew R.
2003-04-01
An oil painting by Claude Monet, Port-Goulphar, Belle-Ile 1887 (collection of the Art Gallery of New South Wales), was examined to determine both the identity of the pigments used by the artist in this painting and his technique of mixing colors and laying paint on the canvas. The extremely complex construction of the painting was revealed by optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), and X-ray mapping (XRM) analysis of cross sections of paint flakes excised from damaged regions of Port-Goulphar, Belle-Ile. Nine different pigments were found on the painting. Many of the identified colors were modern pigments that became available only late in the 19th century as a result of scientific advances in pigment chemistry. Although similar colors were available in a natural mineral form, they lacked the vivid color of their manufactured counterparts. The use of these new synthetic metallic oxide colors by Monet accounts for the brilliance of his paintings. In addition, a separation between successive paint layers was observed in some areas of paint chip cross sections, indicating that oil-based paint was applied to paint that had dried, and consequently, Port-Goulphar, Belle-Ile was painted over a long period of time. This observation is contrary to the general perception of Monet's technique of painting freely and quickly.
Monet's painting under the microscope.
Dredge, Paula; Wuhrer, Richard; Phillips, Matthew R
2003-04-01
An oil painting by Claude Monet, Port-Goulphar, Belle-Ile 1887 (collection of the Art Gallery of New South Wales), was examined to determine both the identity of the pigments used by the artist in this painting and his technique of mixing colors and laying paint on the canvas. The extremely complex construction of the painting was revealed by optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), and X-ray mapping (XRM) analysis of cross sections of paint flakes excised from damaged regions of Port-Goulphar, Belle-Ile. Nine different pigments were found on the painting. Many of the identified colors were modern pigments that became available only late in the 19th century as a result of scientific advances in pigment chemistry. Although similar colors were available in a natural mineral form, they lacked the vivid color of their manufactured counterparts. The use of these new synthetic metallic oxide colors by Monet accounts for the brilliance of his paintings. In addition, a separation between successive paint layers was observed in some areas of paint chip cross sections, indicating that oil-based paint was applied to paint that had dried, and consequently, Port-Goulphar, Belle-Ile was painted over a long period of time. This observation is contrary to the general perception of Monet's technique of painting freely and quickly.
Near field planar microwave probe sensor for nondestructive condition assessment of wood products
NASA Astrophysics Data System (ADS)
Tiwari, Nilesh Kumar; Singh, Surya Prakash; Akhtar, M. Jaleel
2018-06-01
In this work, the unified methodology based on the newly designed electrically small planar resonant microwave sensor to detect the subsurface defect in wood products is presented. The proposed planar sensor involves loading of the specially designed coupled microstrip line with a novel small resonating element at its end. The novel design topology of the proposed near field sensor substantially increases the overall resolution and sensitivity of the microwave scanning system due to the strong localization of the electric field in the electrically small sensing region. A detailed electromagnetic and quasi static analysis of the near field scanning mechanism is also described in this work, which helps to understand the physics involved in the proposed scanning mechanism. The prototype of the designed sensor is fabricated on a 0.8 mm Roger 5880 substrate, and accordingly, the scattering parameters of the sensor under both loaded and unloaded conditions are measured. The measured and simulated scattering parameters under the unloaded condition are compared to validate the fabricated sensor, and a closed match between the simulated and measured resonance frequencies is observed. The fabricated sensor is used here for two potential applications, viz., the dielectric sensing of various low permittivity contrast dielectric materials and subsurface imaging of wood products to trace concealed defects and moisture content under the thin paint layer. The proposed resonant sensor can potentially be used to develop the low profile, low cost, non-destructive, and non-invasive quality monitoring system for inspecting various types of wood products without peeling off the upper paint coating.
Terahertz analysis of an East Asian historical mural painting
NASA Astrophysics Data System (ADS)
Fukunaga, K.; Hosako, I.; Kohdzuma, Y.; Koezuka, T.; Kim, M.-J.; Ikari, T.; Du, X.
2010-05-01
Terahertz (THz) spectroscopy and THz and imaging techniques are expected to have great potential for the non-invasive analysis of artworks. We have applied THz imaging to analyse the historic mural painting of a Lamaism temple by using a transportable time-domain THz imaging system; such an attempt is the first in the world. The reflection image revealed that there are two orange colours in the painting, although they appear the same to the naked eye. THz imaging can also estimate the depth of cracks. The colours were examined by X-ray fluorescence and Raman spectroscopy, and the results were found to be in good agreement. This work proved that THz imaging can contribute to the non-invasive analysis of cultural heritage.
This SOP describes the preparation of stand-alone, lead paint films, prepared according to the old paint recipes. Further, this SOP describes the use of these paint films for the preparation of simulated old paints on a variety of substrates. Substrates used included wood, stee...
ERIC Educational Resources Information Center
Moula, Evangelia; Kabouropoulou, Mary
2014-01-01
The interdisciplinary project under discussion is suitable to be addressed to students of either primary or secondary education and it interweaves the art of painting with fairy tales. The aims of the project are: the deeper understanding of the complexity of human nature and the sensitization of students regarding gender roles and stereotypes. On…
On the Performance of Carbon Nanotubes in Extreme Conditions and in the Presence of Microwaves
2013-01-01
been considered for use as transparent conductors include: transparent conducting oxides (TCOs), intrinsically conducting polymers (ICPs), graphene ...optical transmission properties, but are extremely sensitive to environmental conditions (such as temperature and humidity). Graphene has recently...during the dicing procedure, silver paint was applied to the sample to serve as improvised contact/probe-landing points. Figure 1 shows the CNT thin
The impact of recirculating industrial air on aircraft painting operations.
LaPuma, P T; Bolch, W E
1999-10-01
The 1990 Clean Air Act Amendments resulted in new environmental regulations for hazardous air pollutants. Industries such as painting facilities may have to treat large volumes of air, which increases the cost of an air control system. Recirculating a portion of the air back into the facility is an option to reduce the amount of air to be treated. The authors of this study developed a computer model written in Microsoft Excel 97 to analyze the impact of recirculation on worker safety and compliance costs. The model has a chemical database with over 1300 chemicals. The model will predict indoor air concentrations using mass balance calculations and results are compared to occupational exposure limits. A case study is performed on a C-130 aircraft painting facility at Hill Air Force Base, Utah. The model predicts strontium chromate concentrations found in primer paints will reach 1000 times the exposure limit. Strontium chromate and other solid particulates are nearly unaffected by recirculation because the air is filtered during recirculation. The next highest chemical, hexamethylene diisocyanate, increases from 2.6 to 10.5 times the exposure limit at 0 percent and 75 percent recirculation, respectively. Due to the level of respiratory protection required for the strontium chromate, workers are well protected from the modest increases in concentrations caused by recirculating 75 percent of the air. The initial cost of an air control system is $4.5 million with no recirculation and $1.8 million at 75 percent recirculation. The model is an excellent tool to evaluate air control options with a focus on worker safety. In the case study, the model highlights strontium chromate primers as good candidates for substitution. The model shows that recirculating 75 percent of the air at the Hill painting facility has a negligible impact on safety and could save $2.7 million on the initial expenses of a thermal treatment system.
Light collection device for flame emission detectors
Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.
1990-01-01
A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.
Pesonen, Maria; Kuuliala, Outi; Suomela, Sari; Aalto-Korte, Kristiina
2016-12-01
Amines in epoxy hardeners are significant causes of occupational allergic contact dermatitis among workers who use epoxy resin systems. To describe a novel group of contact allergens: N-(2-phenylethyl) derivatives of the reactive amine 1,3-benzenedimethanamine (1,3-BDMA). We describe the clinical examinations and exposure of 6 patients with occupational contact allergy to derivatives of 1,3-BDMA. Of the 6 patients, 4 were spray painters who used epoxy paints, 1 was a floor layer who handled a variety of epoxy coatings, and 1 was a worker in epoxy hardener manufacture. We were able to confirm exposure to epoxy hardeners that contained derivatives of 1,3-BDMA in 5 of the 6 sensitized patients. Despite the close structural resemblance between derivatives of 1,3-BDMA and m-xylylenediamine (MXDA), only 3 patients reacted positively to MXDA. Concomitant contact allergy to diglycidyl ether of bisphenol A resin was seen in 2 of the 6 patients. Because of the lack of a commercially available patch test substance, the diagnosis of contact allergy to derivatives of 1,3-BDMA requires patch testing with either the epoxy hardener product or a hardener ingredient that contains the derivatives of 1,3-BDMA. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
da Silva, Nuno Pinho; Marques, Manuel; Carneiro, Gustavo; Costeira, João P.
2011-03-01
Painted tile panels (Azulejos) are one of the most representative Portuguese forms of art. Most of these panels are inspired on, and sometimes are literal copies of, famous paintings, or prints of those paintings. In order to study the Azulejos, art historians need to trace these roots. To do that they manually search art image databases, looking for images similar to the representation on the tile panel. This is an overwhelming task that should be automated as much as possible. Among several cues, the pose of humans and the general composition of people in a scene is quite discriminative. We build an image descriptor, combining the kinematic chain of each character, and contextual information about their composition, in the scene. Given a query image, our system computes its similarity profile over the database. Using nearest neighbors in the space of the descriptors, the proposed system retrieves the prints that most likely inspired the tiles' work.
A NASA technician paints NASA's first Orion full-scale abort flight test crew module.
2008-03-31
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
NASA Astrophysics Data System (ADS)
Karagiannis, Georgios Th.
2016-04-01
The development of non-destructive techniques is a reality in the field of conservation science. These techniques are usually not so accurate, as the analytical micro-sampling techniques, however, the proper development of soft-computing techniques can improve their accuracy. In this work, we propose a real-time fast acquisition spectroscopic mapping imaging system that operates from the ultraviolet to mid infrared (UV/Vis/nIR/mIR) area of the electromagnetic spectrum and it is supported by a set of soft-computing methods to identify the materials that exist in a stratigraphic structure of paint layers. Particularly, the system acquires spectra in diffuse-reflectance mode, scanning in a Region-Of-Interest (ROI), and having wavelength range from 200 up to 5000 nm. Also, a fuzzy c-means clustering algorithm, i.e., the particular soft-computing algorithm, produces the mapping images. The evaluation of the method was tested on a byzantine painted icon.
2008-04-01
A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.
NASA Astrophysics Data System (ADS)
Meybodi, M. K.; Dobrev, I.; Klausmeyer, P.; Harrington, E. J.; Furlong, C.
Quantitative techniques to characterize thermomechanical effects of light on canvas paintings are necessary in order to better understand the deleterious effects that light has on precious art collections in museum exhibitions. In this paper, we present advances in the development of a customized laser shearography system for temporal characterization of inplane displacements of canvas paintings when subjected to specific lighting conditions. The shearography system is synchronized with a thermal IR camera and concomitant measurements of derivatives of displacements along two orthogonal shearing directions as well as thermal fields are performed. Due to the nature of the measurements, we have developed real-time temporal phase unwrapping algorithms and high-resolution Fast Fourier Transform (FFT) methods to calibrate applied shearing levels. In addition, we are developing methods to isolate thermally-induced components from randomly-induced mechanical vibrations that occur in museum environments by application of IR imaging data. Representative examples are shown, which illustrate capabilities to measure, detect, and map crack propagation as a function of lighting conditions and time.
Butyltin Concentration Measurements in Pearl Harbor, Hawaii. Pearl Harbor Case Study
1989-04-01
and recreational vessel inputs of tributyltin in Hawaiian waters. Tributyltin ( TBT ) was measured in water during eight sampling periods in sediment and...8 v BACKGROUND In support of the Navy’s proposed implementation of tributyltin ( TBT ) anti- fouling paints, the Naval Ocean Systems Center (NOSC...lower) water tributyltin concentrations in ngL - TTl Point sources (i.e.. staticns with specific TBT AF-paint test ship present) not included in
Numerical Simulation of Galvanic Corrosion Caused by Shaft Grounding Systems in Steel Ship Hulls
2005-01-01
ship hull on paint holidays because of the substantial difference of the electric potentials between the steel ship hull and the nickel-aluminum...steel ship hull on paint holidays because of the substantial difference of the electric potentials between the steel ship hull and the nickel...substantial difference of the electric potentials between the steel ship hull and the nickel-aluminum bronze propellers. There are concerns on the
Graphene Nanowalls as Ingenious Material for Catalysts and Superconductors
2011-03-12
whole transferred graphene films by using ECOPIA Hall measurement system HMS-3000 with silver paint used as electrodes at the four corners of graphene ...introduced for 15 min during growth stage. On the right: (a) A picture of the transferred graphene on SiO2/Si wafer with silver paint as electrodes at...Final Report for AOARD Grant 104057 “ Graphene Nanowalls as Ingenious Material for Catalysts and Superconductors” March 12, 2011 Name of
[Occupational exposure to airborne chemical substances in paintings conservators].
Jezewska, Anna; Szewczyńska, Małgorzata; Woźnica, Agnieszka
2014-01-01
This paper presents the results of the quantitative study of the airborne chemical substances detected in the conservator's work environment. The quantitative tests were carried out in 6 museum easel paintings conservation studios. The air test samples were taken at various stages of restoration works, such as cleaning, doubling, impregnation, varnishing, retouching, just to name a few. The chemical substances in the sampled air were measured by the GC-FID (gas chromatography with flame ionization detector) test method. The study results demonstrated that concentrations of airborne substances, e.g., toluene, 1,4-dioxane, turpentine and white spirit in the work environment of paintings conservators exceeded the values allowed by hygiene standards. It was found that exposure levels to the same chemical agents, released during similar activities, varied for different paintings conservation studios. It is likely that this discrepancy resulted from the indoor air exchange system for a given studio (e.g. type of ventilation and its efficiency), the size of the object under maintenance, and also from the methodology and protection used by individual employees. The levels of organic solvent vapors, present in the workplace air in the course of painting conservation, were found to be well above the occupational exposure limits, thus posing a threat to the worker's health.
Anghelone, Marta; Jembrih-Simbürger, Dubravka; Schreiner, Manfred
2015-10-05
Copper phthalocyanine (CuPc) blues (PB15) are largely used in art and industry as pigments. In these fields mainly three different polymorphic modifications of PB15 are employed: alpha, beta and epsilon. Differentiating among these CuPc forms can give important information for developing conservation strategy and can help in relative dating, since each form was introduced in the market in different time periods. This study focuses on the classification of Raman spectra measured using 532 nm excitation wavelength on: (i) dry pigment powders, (ii) unaged mock-ups of self-made paints, (iii) unaged commercial paints, and (iv) paints subjected to accelerated UV ageing. The ratios among integrated Raman bands are taken in consideration as features to perform Random Forest (RF). Features selection based on Gini Contrast score was carried out on the measured dataset to determine the Raman bands ratios with higher predictive power. These were used as polymorphic markers, in order to establish an easy and accessible method for the identification. Three different ratios and the presence of a characteristic vibrational band allowed the identification of the crystal modification in pigments powder as well as in unaged and aged paint films. Copyright © 2015 Elsevier B.V. All rights reserved.
Mukai, Tadashi; Nakazumi, Hiroyuki; Kawabata, Shin-ichirou; Kusatani, Masaru; Nakai, Seita; Honda, Sadao
2008-01-01
Direct identification of copper phthalocyanine (CuPc) and chlorinated CuPcs in paints for discrimination between blue automobile paints by means of laser desorption mass spectrometry (LDMS) in the absence of a matrix is reported. The models consisted of eight commercially available CuPc pigments applied to a piece of plain white coating paper. The relationship between the peak intensity at m/z 575 of the CuPc, the number of pulsed laser shots, and laser power was compared to optimize laser abrasion. LDMS analysis of the model paints demonstrated that all characteristic components of the CuPc pigments in the paint films were in good agreement with those in the powder pigments. Further, the chlorinated CuPcs in the paint films could be distinguished. A quantity of 42 blue paint films, representing the paints used for painting Japanese domestic trucks, was examined by LDMS analysis. Results indicate that the paints can be classified into four categories based on the chlorinated CuPc components of the paints. Therefore, LDMS spectra of CuPc pigments would be useful for the identification of paints in forensic investigations. Herein, we report the successful identification of the CuPcs in a paint smear on the frame of a bicycle damaged in a hit-and-run accident, using the LDMS spectra.
Simulation of Energy Savings in Automotive Coatings Processes
NASA Astrophysics Data System (ADS)
Gerini Romagnoli, Marco
Recently, the automakers have become more and more aware of the environmental and economic impact of their manufacturing processes. The paint shop is the largest energy user in a vehicle manufacturing plant, and one way to reduce costs and energy usage is the optimization of this area. This project aims at providing a tool to model and simulate a paint shop, in order to run and analyze some scenarios and case studies, helping to take strategic decisions. Analytical computations and real data were merged to build a tool that can be used by FCA for their Sterling Heights plant. Convection and conduction heat losses were modeled for the dip processes and the ovens. Thermal balances were used to compute the consumptions of booths, decks and ovens, while pump and fan energy consumptions were modeled for each sub-process. The user acts on a calendar, scheduling a year of production, and the model predicts the energy consumption of the paint shop. Five scenarios were run to test different conditions and the influence of scheduling on the energy consumption. Two different sets of production schedules have been evaluated, the first one fulfilling the production requirement in one shift of 10 hours, at high rate, the second one using two 7-hour-long shifts at medium production rate. It was found that the unit cost was minimized in the warmest months of spring and fall, and system shutdown was a crucial factor to reduce energy consumption. A fifth hypothetical scenario was run, with a 4 month continuous production and an 8 month total shutdown, which reduced the energy consumption to a half of the best realistic scenario. When the plant was run in a two-shifts configuration, the cost to coat a vehicle was found to be 29 with weekend shutdown, and 39 without. In the one-shift configuration, the cost was slightly higher, but the difference was less than 5%. While the fifth scenario showed a consistent reduction of the unit cost, inventory and logistic expenses deriving from the production strategy make this scenario almost impossible to realize. A sensitivity analysis was run on several parameters influencing the energy consumption of the paint shop, and the booths set point temperature was found to be the most significant factor.
Schwensen, Jakob F; Menné, Torkil; Andersen, Klaus E; Sommerlund, Mette; Johansen, Jeanne D
2014-11-01
In recent years, the prevalence of contact allergy to isothiazolinones has reached epidemic levels. Few studies have presented data on occupations at risk of developing contact allergy to isothiazolinones. To present demographics and examine risk factors for sensitization to methylisothiazolinone (MI), methylchloroisothiazolinone (MCI) in combination with MI and benzisothiazolinone (BIT) in Danish dermatitis patients. A retrospective epidemiological analysis of data from three Danish hospitals departments was conducted. All patients consecutively patch tested with MI, MCI/MI and BIT between 2009 and 2013 were included. MI contact allergy showed a significantly increased trend in prevalence from 1.8% in 2009 to 4.2% in 2012 (p < 0.001). Females with facial dermatitis mainly drove the increase in 2012. Adjusted logistic regression analysis showed that MI sensitization was significantly associated with occupational exposures, hand and facial dermatitis, age > 40 years, and the occupational groups of tile setters/terrazzo workers, machine operators, and painters. MCI/MI contact allergy was significantly associated with the following high-risk occupations: painting, welding (blacksmiths), machine operating, and cosmetology. The occupational group of painting was frequent in the group of patients with BIT contact allergy. Several high-risk occupations for sensitization to isothiazolinones exist. Regulation on the allowed concentration of isothiazolinones, and especially MI, in both consumer products and industrial products is needed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J
2017-06-01
An ultraviolet germicidal irradiation (UVGI) generator (the TORCH, ClorDiSys Solutions, Inc.) was used to compare the disinfection of surface coupons (plastic from a bedrail, stainless steel, and chrome-plated light switch cover) in a hospital room with walls coated with ultraviolet (UV)-reflective paint (Lumacept) or standard paint. Each surface coupon was inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE), placed at 6 different sites within a hospital room coated with UV-reflective paint or standard paint, and treated by 10 min UVC exposure (UVC dose of 0-688 mJ/cm 2 between sites with standard paint and 0-553 mJ/cm 2 with UV-reflective paint) in 8 total trials. Aggregated MRSA concentrations on plastic bedrail surface coupons were reduced on average by 3.0 log 10 (1.8 log 10 Geometric Standard Deviation [GSD]) with standard paint and 4.3 log 10 (1.3 log 10 GSD) with UV-reflective paint (p = 0.0005) with no significant reduction differences between paints on stainless steel and chrome. Average VRE concentrations were reduced by ≥4.9 log 10 (<1.2 log 10 GSD) on all surface types with UV-reflective paint and ≤4.1 log 10 (<1.7 log 10 GSD) with standard paint (p < 0.05). At 5 aggregated sites directly exposed to UVC light, MRSA concentrations on average were reduced by 5.2 log 10 (1.4 log 10 GSD) with standard paint and 5.1 log 10 (1.2 log 10 GSD) with UV-reflective paint (p = 0.017) and VRE by 4.4 log 10 (1.4 log 10 GSD) with standard paint and 5.3 log 10 (1.1 log 10 GSD) with UV-reflective paint (p < 0.0001). At one indirectly exposed site on the opposite side of the hospital bed from the UVGI generator, MRSA concentrations on average were reduced by 1.3 log 10 (1.7 log 10 GSD) with standard paint and 4.7 log 10 (1.3 log 10 GSD) with UV-reflective paint (p < 0.0001) and VRE by 1.2 log 10 (1.5 log 10 GSD) with standard paint and 4.6 log 10 (1.1 log 10 GSD) with UV-reflective paint (p < 0.0001). Coating hospital room walls with UV-reflective paint enhanced UVGI disinfection of nosocomial bacteria on various surfaces compared to standard paint, particularly at a surface placement site indirectly exposed to UVC light.
Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel
NASA Technical Reports Server (NTRS)
Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo;
2012-01-01
This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.
Studies of organic paint binders by NMR spectroscopy
NASA Astrophysics Data System (ADS)
Spyros, A.; Anglos, D.
2006-06-01
Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.
Analysis of fresco by laser induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F.
2010-08-01
The laser-based techniques have been shown to be a very powerful tool for artworks characterization and are used in the field of cultural heritage for the offered advantages of minimum invasiveness, in situ applicability and high sensitivity. Laser induced breakdown spectroscopy, in particular, has been applied in this field to many different kinds of ancient materials with successful results. In this work, a fragment of a Roman wall painting from the archaeological area of Pompeii has been investigated by LIBS. The sample elemental composition resulting from LIBS measurements suggested the presence of certain pigments. The ratio of the intensities of different lines related to some characteristic elements is proposed as an indicator for pigment recognition. The depth profiling permitted to put in evidence the presence of successive paint layers with different compositions. A comparison with the results obtained by the microscopy inspection of the sample has been done.
Forensic collection of trace chemicals from diverse surfaces with strippable coatings.
Jakubowski, Michael J; Beltis, Kevin J; Drennan, Paul M; Pindzola, Bradford A
2013-11-07
Surface sampling for chemical analysis plays a vital role in environmental monitoring, industrial hygiene, homeland security and forensics. The standard surface sampling tool, a simple cotton gauze pad, is failing to meet the needs of the community as analytical techniques become more sensitive and the variety of analytes increases. In previous work, we demonstrated the efficacy of non-destructive, conformal, spray-on strippable coatings for chemical collection from simple glass surfaces. Here we expand that work by presenting chemical collection at a low spiking level (0.1 g m(-2)) from a diverse array of common surfaces - painted metal, engineering plastics, painted wallboard and concrete - using strippable coatings. The collection efficiency of the strippable coatings is compared to and far exceeds gauze pads. Collection from concrete, a particular challenge for wipes like gauze, averaged 73% over eight chemically diverse compounds for the strippable coatings whereas gauze averaged 10%.
A review on paint sludge from automotive industries: Generation, characteristics and management.
Salihoglu, Guray; Salihoglu, Nezih Kamil
2016-03-15
The automotive manufacturing process results in the consumption of several natural sources and the generation of various types of wastes. The primary source of hazardous wastes at an automotive manufacturing plant is the painting process, and the major waste fraction is paint sludge, which is classified with EU waste code of 080113* implying hazardous characteristics. The amount of the paint sludge generated increases every year with the worldwide increase in the car production. The characteristics of the paint sludge, which mainly designate the management route, are mainly determined by the type of the paint used, application technique employed, and the chemicals applied such as flocculants, detackifiers, pH boosters, antifoam agents, and biocides as well as the dewatering techniques preferred. Major routes for the disposal of the paint sludges are incineration as hazardous waste or combustion at cement kilns. Because of high dissolved organic carbon content of the paint, the paint sludge cannot be accepted by landfills according to European Union Legislations. More investigations are needed in the field of paint sludge recycling such as recycling it as a new paint or as other formulations, or making use of the sludge for the production of construction materials. Research on the applicability of the paint sludge in composting and biogasification can also be useful. Ongoing research is currently being conducted on new application techniques to increase the effectiveness of paint transfer, which helps to prevent the generation of paint sludge. Advancements in paint and coating chemistry such as the reduction in the coating layers with its thickness also help to decrease the level of paint sludge generation. Investigations on the effects of the chemicals on the recycling potential of paint sludges and consideration of these effects by the chemical manufacturer companies would be extremely important. This review presents the formation of paint sludge, the factors affecting its characteristics, common disposal routes, the findings of the field trips to automotive manufacturing plants in Turkey, and a summary of the characterization findings of the paint sludge samples from a plant in Turkey. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lletí, R; Sarabia, L A; Ortiz, M C; Todeschini, R; Colombini, M P
2003-03-01
Historically, three types of proteinaceous matter--casein, egg and animal glue--were used as binders for pigments or as adhesives in easel and wall painting. The relative percentage content of alanine, glycine, valine, leucine, isoleucine, serine, tyrosine, phenylalanine, aspartic acid, glutamic acid, lysine, methionine, proline and hydroxyproline, as determined by GC-MS, is used for binder identification. In this paper we analyse the viability of a multivariate modelling using Kohonen's neural network to characterise the wood adhesive in 16 old samples from Italian panel paintings of the 12-16th centuries. As a training set we use the amino acid composition of 141 samples contributed by the Opificio delle Pietre Dure of Florence (Cultural Heritage Ministry, Italy). Of the 141 samples, 113 were used to train the Kohonen neural network and the remaining 28 as the evaluation set. A specificity and sensitivity of 100% was achieved in training and 92-100% in prediction depending on the assignation criteria employed. The neural network thus trained and evaluated was applied to the old samples, achieving identification of all of them. In addition, the map obtained for each amino acid provides relevant information as to its importance in the characterisation of the sample.
A two-stage stochastic rule-based model to determine pre-assembly buffer content
NASA Astrophysics Data System (ADS)
Gunay, Elif Elcin; Kula, Ufuk
2018-01-01
This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decides the spare vehicle quantities, where the second stage model recovers the scrambled sequence respect to pre-defined rules. The problem is solved by sample average approximation (SAA) algorithm. We conduct a numerical study to compare the solutions of heuristic model with optimal ones and provide following insights: (i) as the mismatch between paint entrance and scheduled sequence decreases, the rule-based heuristic model recovers the scrambled sequence as good as the optimal resequencing model, (ii) the rule-based model is more sensitive to the mismatch between the paint entrance and scheduled sequences for recovering the scrambled sequence, (iii) as the defect rate increases, the difference in recovery effectiveness between rule-based heuristic and optimal solutions increases, (iv) as buffer capacity increases, the recovery effectiveness of the optimization model outperforms heuristic model, (v) as expected the rule-based model holds more inventory than the optimization model.
Sensory and analytical evaluations of paints with and without texanol.
Gallagher, Michelle; Dalton, Pamela; Sitvarin, Laura; Preti, George
2008-01-01
Perception of odor can figure prominently in complaints about indoor air,yet identification of the responsible compound(s) is often difficult. For example, paint emissions contain a variety of odorous volatile organic compounds (VOCs) which maytrigger reports of irritation and upper respiratory health effects. Texanol ester alcohol (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate), a paint coalescing agent, is frequently associated with the "persistent, characteristic odor" of water-based paint. To evaluate the sensory impact of Texanol, naive (unfamiliar with paint constituents) and experienced (familiar with paint constituents) subjects evaluated the odor properties of paints with and without Texanol. VOC emissions from neat paint and paint applied to gypsum wallboard were collected via solid-phase microextraction and analyzed by gas chromatography/ mass spectrometry and gas chromatography/olfactometry. Regardless of subjects' prior experience, aromatic hydrocarbons and oxygenated compounds, introduced from other paint additives and not Texanol, were most commonly associated with paint odor. However, quantitative sensory techniques demonstrated that addition of Texanol to paints led to an overall increase in the perceived intensity of the coating. The combined use of these techniques proved to be an effective methodology for analyzing the structure of paint volatiles and their sensory properties and holds promise for solving many odorous indoor air problems.
Lead paint removal with high-intensity light pulses.
Grapperhaus, Michael J; Schaefer, Raymond B
2006-12-15
This paper presents the results of an initial investigation into using high-intensity incoherent light pulses to strip paint. Measurements of light pulse characteristics, the reflectivity of different paints and initial experiments on the threshold for paint removal, and paint removal are presented, along with an approximate model consistent with experimental results. Paint removal tests include lead paint, the reduction of lead levels to below levels required for lead abatement, as well as air and light emissions measurements that are within regulatory guidelines.
Paint for detection of radiological or chemical agents
Farmer, Joseph C [Tracy, CA; Brunk, James L [Martinez, CA; Day, Sumner Daniel [Danville, CA
2010-08-24
A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.
2011-01-01
Background Paintings have been used in Medical Humanities modules in Nepal at Manipal College of Medical Sciences and KIST Medical College. Detailed participant feedback about the paintings used, the activities carried out, problems with using paintings and the role of paintings in future modules has not been previously done. Hence the present study was carried out. Methods The present module for first year medical students was conducted from February to August 2010 at KIST Medical College, Nepal. Paintings used were by Western artists and obtained from the Literature, Arts and Medicine database. The activities undertaken by the students include answering the questions 'What do you see' and 'What do you feel' about the painting, creating a story of 100 words about the scene depicted, and interpreting the painting using role plays and poems/songs. Feedback was not obtained about the last two activities. In August 2010 we obtained detailed feedback about the paintings used. Results Seventy-eight of the 100 students (78%) participated. Thirty-four students (43.6%) were male. The most common overall comments about the use of paintings were "they helped me feel what I saw" (12 respondents), "enjoyed the sessions" (12 respondents), "some paintings were hard to interpret" (10 respondents) and "were in tune with module objectives" (10 respondents). Forty-eight (61.5%) felt the use of western paintings was appropriate. Suggestions to make annotations about paintings more useful were to make them shorter and more precise, simplify the language and properly introduce the artist. Forty-one students (52.6%) had difficulty with the exercise 'what do you feel'. Seventy-four students (94.9%) wanted paintings from Nepal to be included. Conclusions Participant response was positive and they were satisfied with use of paintings in the module. Use of more paintings from Nepal and South Asia can be considered. Further studies may be required to understand whether use of paintings succeeded in fulfilling module objectives. PMID:21385427
NASA Technical Reports Server (NTRS)
Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.;
2016-01-01
This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production test environment for future launch vehicles. The results show that modifications to the current technique can improve the accuracy of buffet estimates. More importantly, the uPSP worked remarkably well and, with improvements to the frequency response, sensitivity, and productivity, will provide an enhanced method for measuring wind tunnel buffet forcing functions (BFFs).
Wang, Tingting; Mo, Lei; Vartanian, Oshin; Cant, Jonathan S; Cupchik, Gerald
2014-01-01
The present study was conducted to investigate whether the calming effect induced by viewing traditional Chinese landscape paintings would make disengagement from that mental state more difficult, as measured by performance on a cognitive control task. In Experiment 1 we examined the subjective experience of viewing traditional Chinese landscape paintings vs. realistic oil landscape paintings in a behavioral study. Our results confirmed that, as predicted, traditional Chinese landscape paintings induce greater levels of relaxation and mind wandering and lower levels of object-oriented absorption and recognition, compared to realistic oil landscape paintings. In Experiment 2 we used functional Magnetic Resonance Imaging to explore the behavioral and neural effects of viewing traditional Chinese landscape paintings on a task requiring cognitive control (i.e., the flanker task)-administered immediately following exposure to paintings. Contrary to our prediction, the behavioral data demonstrated that compared to realistic oil landscape paintings, exposure to traditional Chinese landscape paintings had no effect on performance on the flanker task. However, the neural data demonstrated an interaction effect such that there was greater activation in the inferior parietal cortex and the superior frontal gyrus on incongruent compared with congruent flanker trials when participants switched from viewing traditional Chinese landscape paintings to the flanker task than when they switched from realistic oil landscape paintings. These results suggest that switching from traditional Chinese landscape paintings placed greater demands on the brain's attention and working memory networks during the flanker task than did switching from realistic oil landscape paintings.
Pressure-Sensitive Paints Advance Rotorcraft Design Testing
NASA Technical Reports Server (NTRS)
2013-01-01
The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure tap. "Instead of having 100 or 200 pressure taps, you can have in theory several million, up to whatever the resolution of your camera is." Watkins explains that typical wind tunnel testing requires two models: one with very little instrumentation, and a pressure model with a significant amount of sensors applied. "If you can make all of your measurements on one model with PSP, you've decreased your model costs by at least a factor of two and preferably your testing costs by about that much," he says. PSP technology has been around for almost 20 years, but a PSP solution for gathering instantaneous dynamic pressure data from surfaces moving at high speeds, such as rotor blades, was not available until a NASA partnership led to a game-changing innovation.
R. Sam Williams; Steve Lacher; Jerrold E. Winandy; Corey Halpin; William C. Feist; Christopher White
2004-01-01
Western redcedar siding was "preweathered" by placing it outdoors for 1, 2, 4, 8, or 16 weeks prior to being painted. Panels were painted following the preweathering and tested for paint adhesion. The amount of time these panels were exposed (preweathered) directly affected paint adhesion. As much as 50% paint adhesion loss was shown for specimens...
AGOR 28 SIO Shipyard Representative Bi-Weekly Progress Report
2015-11-06
or MMR bilge tops, if any. • Anchor Windlass – The test of Armstrong’s port side anchor windlass failed while the third shot was being paid out...Certificate of Sanitation for Armstrong because the sewage discharge is ahead of the water maker suction. • Ride Anti-Fouling Paint – The anti...with seventeen. Spares are always welcome.) • HVAC- Vendor is on board grooming the system. • Engine Room – Bilges and deck plates painted
Investigation of Layer Structure of the Takamatsuzuka Mural Paintings by Terahertz Imaging Technique
NASA Astrophysics Data System (ADS)
Inuzuka, M.; Kouzuma, Y.; Sugioka, N.; Fukunaga, K.; Tateishi, T.
2017-04-01
Terahertz imaging can be a powerful tool in conservation science for cultural heritages. In this study, a new terahertz imaging system was applied to the Takamatsuzuka mural painting of a blue dragon, and the condition of the plaster layer was diagnosed. As a result, the locations where the plaster layer appears solid on the surface but in actuality may have peeled off the underlying tuff stone were revealed and viewed as two-dimensional images.
Orion EM-1 Booster Preps - Aft Skirt Preps/Painting
2016-10-31
The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been refurbished and painted and is in a drying cell in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of the SLS for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.
Changes in artistic style and behaviour in Parkinson's disease: dopamine and creativity.
Kulisevsky, Jaime; Pagonabarraga, Javier; Martinez-Corral, Mercè
2009-05-01
We present a PD patient in whom dopamine agonists awoke a hidden creativity that led to a gradual increase in painting productivity evolving to a disruptive impulsive behaviour that shared many features with punding. A dramatic change in painting style related to a more emotional experience during the process of creation developed after treatment onset. This case suggests that changes in creativity in PD seem to be related to dopaminergic imbalance in the limbic system.
Terahertz imaging for subsurface investigation of art paintings
NASA Astrophysics Data System (ADS)
Locquet, A.; Dong, J.; Melis, M.; Citrin, D. S.
2017-08-01
Terahertz (THz) reflective imaging is applied to the stratigraphic and subsurface investigation of oil paintings, with a focus on the mid-20th century Italian painting, `After Fishing', by Ausonio Tanda. THz frequency-wavelet domain deconvolution, which is an enhanced deconvolution technique combining frequency-domain filtering and stationary wavelet shrinkage, is utilized to resolve the optically thin paint layers or brush strokes. Based on the deconvolved terahertz data, the stratigraphy of the painting including the paint layers is reconstructed and subsurface features are clearly revealed. Specifically, THz C-scans and B-scans are analyzed based on different types of deconvolved signals to investigate the subsurface features of the painting, including the identification of regions with more than one paint layer, the refractive-index difference between paint layers, and the distribution of the paint-layer thickness. In addition, THz images are compared with X-ray images. The THz image of the thickness distribution of the paint exhibits a high degree of correlation with the X-ray transmission image, but THz images also reveal defects in the paperboard that cannot be identified in the X-ray image. Therefore, our results demonstrate that THz imaging can be considered as an effective tool for the stratigraphic and subsurface investigation of art paintings. They also open up the way for the use of non-ionizing THz imaging as a potential substitute for ionizing X-ray analysis in nondestructive evaluation of art paintings.
International forensic automotive paint database
NASA Astrophysics Data System (ADS)
Bishea, Gregory A.; Buckle, Joe L.; Ryland, Scott G.
1999-02-01
The Technical Working Group for Materials Analysis (TWGMAT) is supporting an international forensic automotive paint database. The Federal Bureau of Investigation and the Royal Canadian Mounted Police (RCMP) are collaborating on this effort through TWGMAT. This paper outlines the support and further development of the RCMP's Automotive Paint Database, `Paint Data Query'. This cooperative agreement augments and supports a current, validated, searchable, automotive paint database that is used to identify make(s), model(s), and year(s) of questioned paint samples in hit-and-run fatalities and other associated investigations involving automotive paint.
Bleaching of red lake paints in encaustic mummy portraits
NASA Astrophysics Data System (ADS)
Miliani, Costanza; Daveri, Alessia; Spaabaek, Lin; Romani, Aldo; Manuali, Valentina; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni
2010-09-01
The present paper reports on the study of the development of whitish opacity in pink paints in encaustic mummy portraits. Non-invasive measurements carried out on two encaustic portraits belonging to the Ny Carlsberg Glyptotek, Copenhagen, by reflectance FTIR and UV-vis fluorescence have shown that the areas prone to the bleaching phenomenon had been painted with melted beeswax and an anthraquinone vegetal lake mixed with calcium sulphate hemihydrate and dihydrate. The hypothesis that the bleaching disease was neither related to a degradation of the dyes nor to an alteration of the wax but rather to a dehydration-hydration reaction of the CaSO4-H2O system, has been corroborated by the analyses of two microsamples from the bleached areas and ascertained by accelerated ageing experiments on encaustic models.
Method for warning of radiological and chemical agents using detection paints on a vehicle surface
Farmer, Joseph C [Tracy, CA; Brunk, James L [Martinez, CA; Day, S Daniel [Danville, CA
2012-03-27
A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.
Pigeons' discrimination of paintings by Monet and Picasso
Watanabe, Shigeru; Sakamoto, Junko; Wakita, Masumi
1995-01-01
Pigeons successfully learned to discriminate color slides of paintings by Monet and Picasso. Following this training, they discriminated novel paintings by Monet and Picasso that had never been presented during the discrimination training. Furthermore, they showed generalization from Monet's to Cezanne's and Renoir's paintings or from Picasso's to Braque's and Matisse's paintings. These results suggest that pigeons' behavior can be controlled by complex visual stimuli in ways that suggest categorization. Upside-down images of Monet's paintings disrupted the discrimination, whereas inverted images of Picasso's did not. This result may indicate that the pigeons' behavior was controlled by objects depicted in impressionists' paintings but was not controlled by objects in cubists' paintings. PMID:16812755
Aerial vehicle with paint for detection of radiological and chemical warfare agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Joseph C.; Brunk, James L.; Day, S. Daniel
A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides anmore » indication of the radiological or chemical substances.« less
Process Waste Assessment - Paint Shop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, N.M.
1993-06-01
This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are mademore » for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.« less
Chromate content versus particle size for aircraft paints.
LaPuma, Peter T; Rhodes, Brian S
2002-12-01
Many industries rely on the corrosion inhibiting properties of chromate-containing primer paints to protect metal from oxidation. However, chromate contains hexavalent chromium (Cr(6+)), a known human carcinogen. The concentration of Cr(6+) as a function of paint particle size has important implications to worker health and environmental release from paint facilities. This research examines Cr(6+) content as a function of particle size for three types of aircraft primer paints: solvent-based epoxy-polyamide, water-based epoxy-polyamide, and solvent-based polyurethane. Cascade impactors were used to collect and separate paint particles based on their aerodynamic diameter, from 0.7 to 34.1 microm. The mass of the dry paint collected at each stage was determined and an atomic absorption spectrometer was used to analyze for Cr(6+) content. For all three paints, particles less than 7.0 microm contained disproportionately less Cr(6+) per mass of dry paint than larger particles, and the Cr(6+)concentration decreased substantially as particle size decreased. The smallest particles, 0.7 to 1.0 microm, contained approximately 10% of the Cr(6+) content, per mass of dry paint, compared to particles larger than 7.0 microm. The paint gun settings of air to paint ratio was found to have no influence on the Cr(6+) bias.
Reeb-Whitaker, Carolyn K; Schoonover, Todd M
2016-05-01
Isocyanate exposure is known to be hazardous when polyurethane paints are applied with a spray gun, but less is known of exposure when paint is applied with a paint brush and roller. Concentrations of 1,6-hexamethylene diisocyanate (HDI) monomer and three HDI polymers were assessed when two moisture-cure polyurethane paints containing 31-35% isocyanates were applied with a paint roller and brush. Short-term 15-min samples were taken during paint application in an indoor test environment with no ventilation (n= 12); in an outdoor test environment (n= 11); and in an outdoor in-situ assessment (n= 22). The outdoor in-situ assessment involved the painting of a bus shelter and light poles at a public transit station over two night shifts. All isocyanate samples were below analytical detection. The analytical limits of detection for HDI monomer, HDI biuret, HDI isocyanurate, and HDI uretdione were 0.005, 0.84, 0.87, and 0.88 µg, respectively. The finding that isocyanate concentrations were below detection is attributed to the use of paint roller and brush which minimize paint aerosolization and the paint formulation itself which contained <1% of volatile HDI monomer. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
120 DEG C Cure, Durable, Corrosion Protection Powder Coatings for Temperature Sensitive Substrates
2005-01-28
Extrudate was passed through water-cooled pinch-rolls and collected onto a stainless steel belt; from exit of the extruder, approximately 60 sec... stainless steel belt; from exit of the extruder, approximately 60 sec. was required to reach ambient temperature. Production scale processing at...inherently free from volatile organic compounds, chromates, and hazardous air pollutants. Relative to the incumbent solvent-borne urethane paint
Structural analysis of paintings based on brush strokes
NASA Astrophysics Data System (ADS)
Sablatnig, Robert; Kammerer, Paul; Zolda, Ernestine
1998-05-01
The origin of works of art can often not be attributed to a certain artist. Likewise it is difficult to say whether paintings or drawings are originals or forgeries. In various fields of art new technical methods are used to examine the age, the state of preservation and the origin of the materials used. For the examination of paintings, radiological methods like X-ray and infra-red diagnosis, digital radiography, computer-tomography, etc. and color analyzes are employed to authenticate art. But all these methods do not relate certain characteristics in art work to a specific artist -- the artist's personal style. In order to study this personal style of a painter, experts in art history and image processing try to examine the 'structural signature' based on brush strokes within paintings, in particular in portrait miniatures. A computer-aided classification and recognition system for portrait miniatures is developed, which enables a semi- automatic classification and forgery detection based on content, color, and brush strokes. A hierarchically structured classification scheme is introduced which separates the classification into three different levels of information: color, shape of region, and structure of brush strokes.
NASA Technical Reports Server (NTRS)
Kamenetzky, R. R.; Vaughn, J. A.; Finckenor, M. M.; Linton, R. C.
1995-01-01
Numerous thermal control and polymeric samples with potential International Space Station applications were evaluated for atomic oxygen and vacuum ultraviolet radiation effects in the Princeton Plasma Physics Laboratory 5 eV Neutral Atomic Oxygen Facility and in the MSFC Atomic Oxygen Drift Tube System. Included in this study were samples of various anodized aluminum samples, ceramic paints, polymeric materials, and beta cloth, a Teflon-impregnated fiberglass cloth. Aluminum anodizations tested were black duranodic, chromic acid anodize, and sulfuric acid anodize. Paint samples consisted of an inorganic glassy black paint and Z-93 white paint made with the original PS7 binder and the new K2130 binder. Polymeric samples evaluated included bulk Halar, bulk PEEK, and silverized FEP Teflon. Aluminized and nonaluminized Chemfab 250 beta cloth were also exposed. Samples were evaluated for changes in mass, thickness, solar absorptance, and infrared emittance. In addition to material effects, an investigation was made comparing diffuse reflectance/solar absorptance measurements made using a Beckman DK2 spectroreflectometer and like measurements made using an AZ Technology-developed laboratory portable spectroreflectometer.
Use of pressure-sensitive paint for diagnostics in turbomachinery flows with shocks
NASA Astrophysics Data System (ADS)
Lepicovsky, J.; Bencic, T. J.
2002-07-01
The technology of pressure-sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and 'ghost' images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges was used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map test points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. Lessons learned from this investigation and shortcomings of the PSP technology for internal flow application are presented in the conclusion of the paper.
Noise can affect acoustic communication and subsequent spawning success in fish.
de Jong, Karen; Amorim, M Clara P; Fonseca, Paulo J; Fox, Clive J; Heubel, Katja U
2018-06-01
There are substantial concerns that increasing levels of anthropogenic noise in the oceans may impact aquatic animals. Noise can affect animals physically, physiologically and behaviourally, but one of the most obvious effects is interference with acoustic communication. Acoustic communication often plays a crucial role in reproductive interactions and over 800 species of fish have been found to communicate acoustically. There is very little data on whether noise affects reproduction in aquatic animals, and none in relation to acoustic communication. In this study we tested the effect of continuous noise on courtship behaviour in two closely-related marine fishes: the two-spotted goby (Gobiusculus flavescens) and the painted goby (Pomatoschistus pictus) in aquarium experiments. Both species use visual and acoustic signals during courtship. In the two-spotted goby we used a repeated-measures design testing the same individuals in the noise and the control treatment, in alternating order. For the painted goby we allowed females to spawn, precluding a repeated-measures design, but permitting a test of the effect of noise on female spawning decisions. Males of both species reduced acoustic courtship, but only painted gobies also showed less visual courtship in the noise treatment compared to the control. Female painted gobies were less likely to spawn in the noise treatment. Thus, our results provide experimental evidence for negative effects of noise on acoustic communication and spawning success. Spawning is a crucial component of reproduction. Therefore, even though laboratory results should not be extrapolated directly to field populations, our results suggest that reproductive success may be sensitive to noise pollution, potentially reducing fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fujita, D S; Takeda, A M; Coutinho, R; Fernandes, F C
2015-11-01
We conducted a study about invertebrates on artificial substrates with different antifouling paints in order to answer the following questions 1) is there lower accumulation of organic matter on substrates with antifouling paints, 2) is invertebrate colonization influenced by the release of biocides from antifouling paints, 3) is the colonization of aquatic invertebrates positively influenced by the material accumulated upon the substrate surface and 4) is the assemblage composition of invertebrates similar among the different antifouling paints? To answer these questions, four structures were installed in the Baía River in February 1st, 2007. Each structure was composed of 7 wood boards: 5 boards painted with each type of antifouling paints (T1, T2, T3, T4 and T5), one painted only with the primer (Pr) and the other without any paint (Cn). After 365 days, we observed a greater accumulation of organic matter in the substrates with T2 and T3 paint coatings. Limnoperna fortunei was recorded in all tested paints, with higher densities in the control, primer, T2 and T3. The colonization of Chironomidae and Naididae on the substrate was positively influenced by L. fortunei density. The non-metric multidimensional scaling (NMDS) of the invertebrate community provided evidence of the clear distinction of invertebrate assemblages among the paints. Paints T2 and T3 were the most similar to the control and primer. Our results suggest that antifouling paints applied on substrates hinder invertebrate colonization by decreasing the density and richness of invertebrates.
Wang, Tingting; Mo, Lei; Vartanian, Oshin; Cant, Jonathan S.; Cupchik, Gerald
2015-01-01
The present study was conducted to investigate whether the calming effect induced by viewing traditional Chinese landscape paintings would make disengagement from that mental state more difficult, as measured by performance on a cognitive control task. In Experiment 1 we examined the subjective experience of viewing traditional Chinese landscape paintings vs. realistic oil landscape paintings in a behavioral study. Our results confirmed that, as predicted, traditional Chinese landscape paintings induce greater levels of relaxation and mind wandering and lower levels of object-oriented absorption and recognition, compared to realistic oil landscape paintings. In Experiment 2 we used functional Magnetic Resonance Imaging to explore the behavioral and neural effects of viewing traditional Chinese landscape paintings on a task requiring cognitive control (i.e., the flanker task)—administered immediately following exposure to paintings. Contrary to our prediction, the behavioral data demonstrated that compared to realistic oil landscape paintings, exposure to traditional Chinese landscape paintings had no effect on performance on the flanker task. However, the neural data demonstrated an interaction effect such that there was greater activation in the inferior parietal cortex and the superior frontal gyrus on incongruent compared with congruent flanker trials when participants switched from viewing traditional Chinese landscape paintings to the flanker task than when they switched from realistic oil landscape paintings. These results suggest that switching from traditional Chinese landscape paintings placed greater demands on the brain’s attention and working memory networks during the flanker task than did switching from realistic oil landscape paintings. PMID:25610386
Motorcycle helmets: What about their coating?
Schnegg, Michaël; Massonnet, Geneviève; Gueissaz, Line
2015-07-01
In traffic accidents involving motorcycles, paint traces can be transferred from the rider's helmet or smeared onto its surface. These traces are usually in the form of chips or smears and are frequently collected for comparison purposes. This research investigates the physical and chemical characteristics of the coatings found on motorcycles helmets. An evaluation of the similarities between helmet and automotive coating systems was also performed.Twenty-seven helmet coatings from 15 different brands and 22 models were considered. One sample per helmet was collected and observed using optical microscopy. FTIR spectroscopy was then used and seven replicate measurements per layer were carried out to study the variability of each coating system (intravariability). Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) were also performed on the infrared spectra of the clearcoats and basecoats of the data set. The most common systems were composed of two or three layers, consistently involving a clearcoat and basecoat. The coating systems of helmets with composite shells systematically contained a minimum of three layers. FTIR spectroscopy results showed that acrylic urethane and alkyd urethane were the most frequent binders used for clearcoats and basecoats. A high proportion of the coatings were differentiated (more than 95%) based on microscopic examinations. The chemical and physical characteristics of the coatings allowed the differentiation of all but one pair of helmets of the same brand, model and color. Chemometrics (PCA and HCA) corroborated classification based on visual comparisons of the spectra and allowed the study of the whole data set at once (i.e., all spectra of the same layer). Thus, the intravariability of each helmet and its proximity to the others (intervariability) could be more readily assessed. It was also possible to determine the most discriminative chemical variables based on the study of the PCA loadings. Chemometrics could therefore be used as a complementary decision-making tool when many spectra and replicates have to be taken into account. Similarities between automotive and helmet coating systems were highlighted, in particular with regard to automotive coating systems on plastic substrates (microscopy and FTIR). However, the primer layer of helmet coatings was shown to differ from the automotive primer. If the paint trace contains this layer, the risk of misclassification (i.e., helmet versus vehicle) is reduced. Nevertheless, a paint examiner should pay close attention to these similarities when analyzing paint traces, especially regarding smears or paint chips presenting an incomplete layer system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
24 CFR 35.90 - Opportunity to conduct an evaluation.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Disclosure of Known Lead-Based Paint and/or Lead-Based Paint Hazards Upon Sale or Lease of Residential... inspection for the presence of lead-based paint and/or lead-based paint hazards. (b) Notwithstanding...
An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Evaluation of interior and exterior latex paints : final report.
DOT National Transportation Integrated Search
1979-10-01
The wood panels that have only one coat of paint over bare wood and one coat of paint over primed wood are continuing to show sighs of deterioration. The wood panels that have two coats of paint over bare wood and two coats of paint over primed wood ...
24 CFR 965.701 - Lead-based paint poisoning prevention.
Code of Federal Regulations, 2010 CFR
2010-04-01
... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Lead-Based Paint Poisoning Prevention § 965.701 Lead-based paint poisoning prevention. The requirements of the Lead-Based Paint Poisoning... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Lead-based paint poisoning...
24 CFR 965.701 - Lead-based paint poisoning prevention.
Code of Federal Regulations, 2014 CFR
2014-04-01
... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Lead-Based Paint Poisoning Prevention § 965.701 Lead-based paint poisoning prevention. The requirements of the Lead-Based Paint Poisoning... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Lead-based paint poisoning...
24 CFR 965.701 - Lead-based paint poisoning prevention.
Code of Federal Regulations, 2012 CFR
2012-04-01
... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Lead-Based Paint Poisoning Prevention § 965.701 Lead-based paint poisoning prevention. The requirements of the Lead-Based Paint Poisoning... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Lead-based paint poisoning...
Code of Federal Regulations, 2012 CFR
2012-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.230 Work practice standards for conducting lead-based paint activities: public... lead-based paint activities: public and commercial buildings, bridges and superstructures. [Reserved...
24 CFR 35.135 - Use of paint containing lead.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES General Lead-Based Paint Requirements and Definitions for All Programs. § 35.135 Use of paint containing lead. (a... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Use of paint containing lead. 35...
24 CFR 35.135 - Use of paint containing lead.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES General Lead-Based Paint Requirements and Definitions for All Programs. § 35.135 Use of paint containing lead. (a... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Use of paint containing lead. 35...
24 CFR 35.135 - Use of paint containing lead.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES General Lead-Based Paint Requirements and Definitions for All Programs. § 35.135 Use of paint containing lead. (a... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Use of paint containing lead. 35...
Code of Federal Regulations, 2013 CFR
2013-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.230 Work practice standards for conducting lead-based paint activities: public... lead-based paint activities: public and commercial buildings, bridges and superstructures. [Reserved...
24 CFR 35.135 - Use of paint containing lead.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES General Lead-Based Paint Requirements and Definitions for All Programs. § 35.135 Use of paint containing lead. (a... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Use of paint containing lead. 35...
24 CFR 965.701 - Lead-based paint poisoning prevention.
Code of Federal Regulations, 2011 CFR
2011-04-01
... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Lead-Based Paint Poisoning Prevention § 965.701 Lead-based paint poisoning prevention. The requirements of the Lead-Based Paint Poisoning... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Lead-based paint poisoning...
24 CFR 965.701 - Lead-based paint poisoning prevention.
Code of Federal Regulations, 2013 CFR
2013-04-01
... URBAN DEVELOPMENT PHA-OWNED OR LEASED PROJECTS-GENERAL PROVISIONS Lead-Based Paint Poisoning Prevention § 965.701 Lead-based paint poisoning prevention. The requirements of the Lead-Based Paint Poisoning... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Lead-based paint poisoning...
24 CFR 35.135 - Use of paint containing lead.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES General Lead-Based Paint Requirements and Definitions for All Programs. § 35.135 Use of paint containing lead. (a... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Use of paint containing lead. 35...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.230 Work practice standards for conducting lead-based paint activities: public... lead-based paint activities: public and commercial buildings, bridges and superstructures. [Reserved...
24 CFR 598.408 - Lead-based paint requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Lead-based paint requirements. 598... DESIGNATIONS Post-Designation Requirements § 598.408 Lead-based paint requirements. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead-Based Paint Hazard Reduction Act of...
24 CFR 598.408 - Lead-based paint requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Lead-based paint requirements. 598... DESIGNATIONS Post-Designation Requirements § 598.408 Lead-based paint requirements. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead-Based Paint Hazard Reduction Act of...
24 CFR 598.408 - Lead-based paint requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Lead-based paint requirements. 598... DESIGNATIONS Post-Designation Requirements § 598.408 Lead-based paint requirements. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead-Based Paint Hazard Reduction Act of...
24 CFR 598.408 - Lead-based paint requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Lead-based paint requirements. 598... DESIGNATIONS Post-Designation Requirements § 598.408 Lead-based paint requirements. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead-Based Paint Hazard Reduction Act of...
24 CFR 598.408 - Lead-based paint requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Lead-based paint requirements. 598... DESIGNATIONS Post-Designation Requirements § 598.408 Lead-based paint requirements. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead-Based Paint Hazard Reduction Act of...
24 CFR 35.98 - Impact on State and local requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Disclosure of Known Lead-Based Paint and/or Lead-Based Paint Hazards Upon Sale or Lease of Residential... regulations governing notice or disclosure of known lead-based paint and/or lead-based paint hazards. Neither...
Difference in brain activations during appreciating paintings and photographic analogs
Mizokami, Yoshinori; Terao, Takeshi; Hatano, Koji; Hoaki, Nobuhiko; Kohno, Kentaro; Araki, Yasuo; Kodama, Kensuke; Makino, Mayu; Izumi, Toshihiko; Shimomura, Tsuyoshi; Fujiki, Minoru; Kochiyama, Takanori
2014-01-01
Several studies have investigated neural correlates of aesthetic appreciation for paintings but to date the findings have been heterogeneous. This heterogeneity may be attributed to previous studies’ measurement of aesthetic appreciation of not only the beauty of paintings but also the beauty of motifs of the paintings. In order to better elucidate the beauty of paintings, it seems necessary to compare aesthetic appreciation of paintings and photographic analogs which included corresponding real images. We prepared for famous painters’ pictures and their photographic analogs which were set up to resemble each painting in order to investigate the hypothesis that there exist specific neural correlates associated with the aesthetic appreciation for paintings. Forty-four subjects participated in functional magnetic resonance study which required comparisons of aesthetic appreciation of paintings of still life and landscape versus photographic analogs including corresponding real images of still life and landscape. Bilateral cuneus and the left lingual gyrus were activated in the comparison of aesthetic appreciation of paintings versus photographic analogs. In conclusion, the present findings suggest a possibility of the existence of specific neural correlates associated with the aesthetic appreciation for paintings and that bilateral cuneus and the left lingual gyrus may be involved. PMID:25071508
Nanoindentation and the micromechanics of Van Gogh oil paints
NASA Astrophysics Data System (ADS)
Salvant, Johanna; Barthel, Etienne; Menu, Michel
2011-08-01
Understanding the mechanical properties of ancient paintings is a major issue for conservation and restoration. One strategy is to measure the mechanical properties of reconstructed paints: however, the aging process is poorly known, so it is also desirable to measure mechanical properties directly on ancient paint samples. Using nanoindentation, we have characterized submillimetric samples recovered from restoration of two Van Gogh paintings and compared the results with reconstructed paint samples. We demonstrate that the reduced modulus and hardness of historical paints can be measured at a very local scale, even differentiating between each paint layer. Our reconstructed paint samples exhibit elastic moduli comparable to values of the literature, but the values measured on the two 19th century paint samples are found to be significantly larger. Similarly, the compositional dependence of the elastic modulus is consistent with literature results for our reconstructed samples while our preliminary results for ancient samples do not readily fall into the same pattern. These results all point out to a significant impact of long term aging, in a manner which is difficult to predict in our present state of understanding. They demonstrate that nanoindentation is a very adequate tool to improve our knowledge of art paint mechanics and aging.
NASA Astrophysics Data System (ADS)
Plachý, Jan; Vysoká, Jana; Vejmelka, Radek; Horský, Jan; Vacek, Vítězslav
2017-10-01
This paper is based on research dealing with defects that appear on concrete bridge decks with an insulating layer from asphalt strips on the interface between the asphalt strip and its basis. The durability and lifespan of the bearing structure of concrete bridge is determined by insulating layer that constitutes, together with the primary layer and a protective layer, the insulation system of the concrete bridge deck. Paints based on low viscosity epoxy resigns are one of the possibilities of primary layer implementation. These paints may be performed as anchoring-impregnation paints that usually represent single layer paint on the bridge deck surface. Sealing layer is another variant. Sealing layer is a multilayer consisting of anchoring- impregnation paint and sealing paint. The primary layers mainly provide vapour closing of the concrete surface, and partly, through roughening the surface, contribute to adhesion of bitumen (asphalt) insulation (waterproofing) layer. Application of the primary layer has been spreading in the Czech Republic since the 1990s. Now, after approximately 30 years of use defects in these epoxy based sealing layers at the interface between primary layer and waterproofing layer of reinforced bitumen sheets (RBS) are being solved in the Czech Republic. After performance of the first test focusing on breaking-strength, it was found that the strength between the asphalt and the primary belt layer in some types of low-viscosity resin-epoxy decreases and after a certain period of time again increases, depending on the time. Tensile strength test is carried out on a sample of asphalt strip, which is fused onto the substrate with a primer coat. It was therefore proceeded to test the shear adhesion. Testing of the shear adhesion is conducted on the entire concrete deck waterproofing system. It was supposed that the decrease of adhesion at this test become evident in higher extent. Adhesion tests in shear were performed on the primary layer consisting of an anchoring impregnation coating and sealing layer.
A new spherical scanning system for infrared reflectography of paintings
NASA Astrophysics Data System (ADS)
Gargano, M.; Cavaliere, F.; Viganò, D.; Galli, A.; Ludwig, N.
2017-03-01
Infrared reflectography is an imaging technique used to visualize the underdrawings of ancient paintings; it relies on the fact that most pigment layers are quite transparent to infrared radiation in the spectral band between 0.8 μm and 2.5 μm. InGaAs sensor cameras are nowadays the most used devices to visualize the underdrawings but due to the small size of the detectors, these cameras are usually mounted on scanning systems to record high resolution reflectograms. This work describes a portable scanning system prototype based on a peculiar spherical scanning system built through a light weight and low cost motorized head. The motorized head was built with the purpose of allowing the refocusing adjustment needed to compensate the variable camera-painting distance during the rotation of the camera. The prototype has been tested first in laboratory and then in-situ for the Giotto panel "God the Father with Angels" with a 256 pixel per inch resolution. The system performance is comparable with that of other reflectographic devices with the advantage of extending the scanned area up to 1 m × 1 m, with a 40 min scanning time. The present configuration can be easily modified to increase the resolution up to 560 pixels per inch or to extend the scanned area up to 2 m × 2 m.
A Novel Method for Remediation of PCBs in Weathered Coatings
NASA Technical Reports Server (NTRS)
Brooks, Kathleen B.; Quinn, Jacqueline W.; Clausen, Christian A.; Geiger, Cherie L.; Aitken, Brian S.; Captain, James; Devor, Robert W.
2006-01-01
Polychlorinated biphenyls (PCBs) are a group of synthetic aromatic compounds with the general formula C 12H1oCl that were historically used in industrial paints, caulking material and adhesives, as their properties enhanced structural integrity, reduced flammability and boosted antifungal properties. Although the United States Environmental Protection Agency (USEPA) has banned the manufacture of PCBs since 1979, they have been found in at least 500 of the 1,598 National Priorities List (Superfund) sites identified by the USEPA. Prior to the USEPA's ban on PCB production, PCBs were commonly used as additives in paints and asphalt-based adhesives that were subsequently applied to a variety of structures. Government facilities constructed as early as 1930 utilized PCB-containing binders or PCB-containing paints, which are now leaching into the environment and posing ecological and worker health concerns. To date, no definitive in situ, non-destructive method is available for the removal of PCBs found in weathered coatings or on painted structures/equipment. The research described in this paper involves the laboratory development and field-scale deployment of a new and innovative solution for the removal and destruction of PCBs found in painted structures or within the binding or caulking material on structures. The technology incorporates a Bimetallic Treatment System (BTS) that extracts and degrades only the PCBs found on the facilities, leaving the structure virtually unaltered.
2010-11-05
the Banana River to the West and mosquito control lagoons to the East. The building components that are to be treated are from inside the structure... peeling /removal) is given. Untreated areas of panel 3 and 4 were tested as a control, to determine the adhesion qualities of the paint prior to...similarly shows untreated panel 4. Both panels (untreated) were scored a 5, indicating no peeling or removal of the paint upon removal of the pressure
Orion EM-1 Booster Preps - Aft Skirt Preps/Painting
2016-10-28
A technician with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, preps a section of the right hand aft skirt for primer and paint in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of NASA's SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.
In Situ Determination of Butyltin Release Rates from Antifouling Coatings on Navy Test Ships
1985-07-01
formulations of antifouling paints containing tributyltin oxide. RESULTS 2Measured leach rates ranged from a high of 3.2 pg TBT /cm /days The SPC- 254... tributyltin in leachate determined by the hydride-AAS technique. DBT Total Sn Paint System/Ship or Panel MBT (percent) TBT (pg/L) ABC-2/MEYERKORD (Aug 84) NH...DDFR 43 4JNMwQWSfPM EXECUTIVE SUMMARY OBJECTIVE Determine in situ leach rates of tributyltin on the hulls of three Navy test ships coated with different
Phase change paint tests on Rockwell orbiter/tank and orbiter alone configurations (OH3A/OH3B)
NASA Technical Reports Server (NTRS)
Quan, M.; Craig, C.
1974-01-01
Wind tunnel tests were conducted on scale models of the space shuttle orbiter and external tank. The tests were designed to determine the basic heating rate and interference effects on the orbiter-tank configuration and to analyze the effectiveness of the thermal protective system on the reentry vehicle. The phase change paint techniques were used to determine areodynamic heating rates. Oil flow and schlieren photographs were used for flow visualization.
Comparison of the reflectance characteristics of polytetrafluoroethylene and barium sulfate paints
NASA Technical Reports Server (NTRS)
Butner, C. L.; Schutt, J. B.; Shai, M. C.
1984-01-01
Preliminary results are presented of the directional reflectance measurements taken on two tetrafluorethylene (TFE) paints formulated with silicone binders. Both paints are found to be more Lambertian than barium sulfate paint and pressed powder, although the pigment to binder ratios for barium sulfate and TFE paints are about 133 and 3.3 to 1, respectively. The TFE paints exhibit total visible reflectances above 90 percent and offer surfaces that are not significantly affected by water.
ERIC Educational Resources Information Center
Stanko-Kaczmarek, Maja; Kaczmarek, Lukasz D.
2016-01-01
Research has shown that creative performance, such as painting, influences affective and cognitive processes. Yet little is known about how tactile sensations experienced during painting determine what individuals feel and how they think while they create. Based on prior research, finger painting (compared to brush painting) was expected to…
On April 22, 2008, EPA issued the final Lead; Renovation, Repair, and Painting (RRP) Program Rule. The rule addresses lead-based paint hazards created by renovation, repair, and painting activities that disturb lead-based paint in target housing and child-occupied facilities. Und...
Code of Federal Regulations, 2014 CFR
2014-07-01
... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745...
Code of Federal Regulations, 2012 CFR
2012-07-01
... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745...
Code of Federal Regulations, 2010 CFR
2010-04-01
... POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Methods and Standards for Lead-Paint Hazard... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Lead-based paint inspections, paint testing, risk assessments, lead-hazard screens, and reevaluations. 35.1320 Section 35.1320 Housing and...
Code of Federal Regulations, 2014 CFR
2014-04-01
... POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Methods and Standards for Lead-Paint Hazard... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Lead-based paint inspections, paint testing, risk assessments, lead-hazard screens, and reevaluations. 35.1320 Section 35.1320 Housing and...
40 CFR 745.119 - Impact on State and local requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Disclosure of Known Lead-Based Paint and/or Lead-Based Paint Hazards Upon Sale or Lease of Residential Property § 745... governing notice or disclosure of known lead-based paint or lead-based paint hazards. Neither HUD nor EPA...
Code of Federal Regulations, 2013 CFR
2013-07-01
... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745...
40 CFR 745.110 - Opportunity to conduct an evaluation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Disclosure of Known Lead-Based Paint and/or Lead-Based Paint Hazards Upon Sale or Lease of Residential Property § 745... presence of lead-based paint and/or lead-based paint hazards. (b) Not withstanding paragraph (a) of this...
40 CFR 745.110 - Opportunity to conduct an evaluation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Disclosure of Known Lead-Based Paint and/or Lead-Based Paint Hazards Upon Sale or Lease of Residential Property § 745... presence of lead-based paint and/or lead-based paint hazards. (b) Not withstanding paragraph (a) of this...
Code of Federal Regulations, 2013 CFR
2013-04-01
... POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Methods and Standards for Lead-Paint Hazard... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Lead-based paint inspections, paint testing, risk assessments, lead-hazard screens, and reevaluations. 35.1320 Section 35.1320 Housing and...
40 CFR 745.110 - Opportunity to conduct an evaluation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Disclosure of Known Lead-Based Paint and/or Lead-Based Paint Hazards Upon Sale or Lease of Residential Property § 745... presence of lead-based paint and/or lead-based paint hazards. (b) Not withstanding paragraph (a) of this...
Code of Federal Regulations, 2012 CFR
2012-04-01
... POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Methods and Standards for Lead-Paint Hazard... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Lead-based paint inspections, paint testing, risk assessments, lead-hazard screens, and reevaluations. 35.1320 Section 35.1320 Housing and...
40 CFR 745.110 - Opportunity to conduct an evaluation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Disclosure of Known Lead-Based Paint and/or Lead-Based Paint Hazards Upon Sale or Lease of Residential Property § 745... presence of lead-based paint and/or lead-based paint hazards. (b) Not withstanding paragraph (a) of this...
Code of Federal Regulations, 2011 CFR
2011-04-01
... POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Methods and Standards for Lead-Paint Hazard... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Lead-based paint inspections, paint testing, risk assessments, lead-hazard screens, and reevaluations. 35.1320 Section 35.1320 Housing and...
40 CFR 745.119 - Impact on State and local requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Disclosure of Known Lead-Based Paint and/or Lead-Based Paint Hazards Upon Sale or Lease of Residential Property § 745... governing notice or disclosure of known lead-based paint or lead-based paint hazards. Neither HUD nor EPA...
40 CFR 745.119 - Impact on State and local requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Disclosure of Known Lead-Based Paint and/or Lead-Based Paint Hazards Upon Sale or Lease of Residential Property § 745... governing notice or disclosure of known lead-based paint or lead-based paint hazards. Neither HUD nor EPA...
40 CFR 745.110 - Opportunity to conduct an evaluation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SUBSTANCES CONTROL ACT LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Disclosure of Known Lead-Based Paint and/or Lead-Based Paint Hazards Upon Sale or Lease of Residential Property § 745... presence of lead-based paint and/or lead-based paint hazards. (b) Not withstanding paragraph (a) of this...
75 FR 23745 - Jo-Ann Stores, Inc., Provisional Acceptance of a Settlement Agreement and Order
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
..., therefore, are subject to the requirements of the Commission's Ban of Lead-Containing Paint and Certain Consumer Products Bearing Lead-Containing Paint, 16 CFR part 1303 (the ``Lead-Paint Ban''). Under the Lead-Paint Ban, toys and other children's articles must not bear or contain ``lead-containing paint...
24 CFR 574.635 - Lead-based paint.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Lead-based paint. 574.635 Section....635 Lead-based paint. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead-Based Paint Hazard Reduction Act of 1992 (42 U.S.C. 4851-4856), and implementing regulations...
24 CFR 200.800 - Lead-based paint.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Lead-based paint. 200.800 Section... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Lead-Based Paint Poisoning Prevention § 200.800 Lead-based paint. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead-Based...
24 CFR 200.800 - Lead-based paint.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Lead-based paint. 200.800 Section... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Lead-Based Paint Poisoning Prevention § 200.800 Lead-based paint. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead-Based...
24 CFR 511.15 - Lead-based paint.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Lead-based paint. 511.15 Section... Lead-based paint. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead-Based Paint Hazard Reduction Act of 1992 (42 U.S.C. 4851-4856), and implementing regulations at...
24 CFR 200.800 - Lead-based paint.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Lead-based paint. 200.800 Section... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Lead-Based Paint Poisoning Prevention § 200.800 Lead-based paint. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead-Based...