Sample records for sensitive pcr method

  1. A Nested PCR Assay to Avoid False Positive Detection of the Microsporidian Enterocytozoon hepatopenaei (EHP) in Environmental Samples in Shrimp Farms

    PubMed Central

    Jaroenlak, Pattana; Sanguanrut, Piyachat; Williams, Bryony A. P.; Stentiford, Grant D.; Flegel, Timothy W.; Sritunyalucksana, Kallaya

    2016-01-01

    Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers. PMID:27832178

  2. A Nested PCR Assay to Avoid False Positive Detection of the Microsporidian Enterocytozoon hepatopenaei (EHP) in Environmental Samples in Shrimp Farms.

    PubMed

    Jaroenlak, Pattana; Sanguanrut, Piyachat; Williams, Bryony A P; Stentiford, Grant D; Flegel, Timothy W; Sritunyalucksana, Kallaya; Itsathitphaisarn, Ornchuma

    2016-01-01

    Hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP) is an important disease of cultivated shrimp. Heavy infections may lead to retarded growth and unprofitable harvests. Existing PCR detection methods target the EHP small subunit ribosomal RNA (SSU rRNA) gene (SSU-PCR). However, we discovered that they can give false positive test results due to cross reactivity of the SSU-PCR primers with DNA from closely related microsporidia that infect other aquatic organisms. This is problematic for investigating and monitoring EHP infection pathways. To overcome this problem, a sensitive and specific nested PCR method was developed for detection of the spore wall protein (SWP) gene of EHP (SWP-PCR). The new SWP-PCR method did not produce false positive results from closely related microsporidia. The first PCR step of the SWP-PCR method was 100 times (104 plasmid copies per reaction vial) more sensitive than that of the existing SSU-PCR method (106 copies) but sensitivity was equal for both in the nested step (10 copies). Since the hepatopancreas of cultivated shrimp is not currently known to be infected with microsporidia other than EHP, the SSU-PCR methods are still valid for analyzing hepatopancreatic samples despite the lower sensitivity than the SWP-PCR method. However, due to its greater specificity and sensitivity, we recommend that the SWP-PCR method be used to screen for EHP in feces, feed and environmental samples for potential EHP carriers.

  3. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  4. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags.

    PubMed

    Wee, Eugene J H; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research.

  5. Application of immuno-PCR assay for the detection of serum IgE specific to Bermuda allergen.

    PubMed

    Rahmatpour, Samine; Khan, Amjad Hayat; Nasiri Kalmarzi, Rasoul; Rajabibazl, Masoumeh; Tavoosidana, Gholamreza; Motevaseli, Elahe; Zarghami, Nosratollah; Sadroddiny, Esmaeil

    2017-04-01

    In vivo and in vitro tests are the two major ways of identifying the triggering allergens in sensitized individuals with allergic symptoms. Both methods are equally significant in terms of sensitivity and specificity. However, in certain circumstances, in vitro methods are highly preferred because they circumvent the use of sensitizing drugs in patients. In current study, we described a highly sensitive immuno-PCR (iPCR) assay for serum IgE specific to Bermuda allergens. Using oligonucleotide-labelled antibody, we used iPCR for the sensitive detection of serum IgE. The nucleotide sequence was amplified using conventional PCR and the bands were visualized on 2.5% agarose gel. Results demonstrated a 100-fold enhancement in sensitivity of iPCR over commercially available enzyme-linked immunosorbent assay (ELISA) kit. Our iPCR method was highly sensitive for Bermuda-specific serum IgE and could be beneficial in allergy clinics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Immuno-PCR: Achievements and Perspectives.

    PubMed

    Ryazantsev, D Y; Voronina, D V; Zavriev, S K

    2016-12-01

    The immuno-PCR (iPCR) method combines advantages of enzyme-linked immunosorbent assay and polymerase chain reaction, which is used in iPCR as a method of "visualization" of antigen-antibody interaction. The use of iPCR provides classical PCR sensitivity to objects traditionally detected by ELISA. This method could be very sensitive and allow for detection of quantities of femtograms/ml order. However, iPCR is still not widely used. The aim of this review is to highlight the special features of the iPCR method and to show the main aspects of its development and application in recent years.

  7. Nested PCR detection of malaria directly using blood filter paper samples from epidemiological surveys.

    PubMed

    Li, Peipei; Zhao, Zhenjun; Wang, Ying; Xing, Hua; Parker, Daniel M; Yang, Zhaoqing; Baum, Elizabeth; Li, Wenli; Sattabongkot, Jetsumon; Sirichaisinthop, Jeeraphat; Li, Shuying; Yan, Guiyun; Cui, Liwang; Fan, Qi

    2014-05-08

    Nested PCR is considered a sensitive and specific method for detecting malaria parasites and is especially useful in epidemiological surveys. However, the preparation of DNA templates for PCR is often time-consuming and costly. A simplified PCR method was developed to directly use a small blood filter paper square (2 × 2 mm) as the DNA template after treatment with saponin. This filter paper-based nested PCR method (FP-PCR) was compared to microscopy and standard nested PCR with DNA extracted by using a Qiagen DNA mini kit from filter paper blood spots of 204 febrile cases. The FP-PCR technique was further applied to evaluate malaria infections in 1,708 participants from cross-sectional epidemiological surveys conducted in Myanmar and Thailand. The FP-PCR method had a detection limit of ~0.2 parasites/μL blood, estimated using cultured Plasmodium falciparum parasites. With 204 field samples, the sensitivity of the FP-PCR method was comparable to that of the standard nested PCR method, which was significantly higher than that of microscopy. Application of the FP-PCR method in large cross-sectional studies conducted in Myanmar and Thailand detected 1.9% (12/638) and 6.2% (66/1,070) asymptomatic Plasmodium infections, respectively, as compared to the detection rates of 1.3% (8/638) and 0.04% (4/1,070) by microscopy. This FP-PCR method was much more sensitive than microscopy in detecting Plasmodium infections. It drastically increased the detection sensitivity of asymptomatic infections in cross-sectional surveys conducted in Thailand and Myanmar, suggesting that this FP-PCR method has a potential for future applications in malaria epidemiology studies.

  8. [Optimized application of nested PCR method for detection of malaria].

    PubMed

    Yao-Guang, Z; Li, J; Zhen-Yu, W; Li, C

    2017-04-28

    Objective To optimize the application of the nested PCR method for the detection of malaria according to the working practice, so as to improve the efficiency of malaria detection. Methods Premixing solution of PCR, internal primers for further amplification and new designed primers that aimed at two Plasmodium ovale subspecies were employed to optimize the reaction system, reaction condition and specific primers of P . ovale on basis of routine nested PCR. Then the specificity and the sensitivity of the optimized method were analyzed. The positive blood samples and examination samples of malaria were detected by the routine nested PCR and the optimized method simultaneously, and the detection results were compared and analyzed. Results The optimized method showed good specificity, and its sensitivity could reach the pg to fg level. The two methods were used to detect the same positive malarial blood samples simultaneously, the results indicated that the PCR products of the two methods had no significant difference, but the non-specific amplification reduced obviously and the detection rates of P . ovale subspecies improved, as well as the total specificity also increased through the use of the optimized method. The actual detection results of 111 cases of malarial blood samples showed that the sensitivity and specificity of the routine nested PCR were 94.57% and 86.96%, respectively, and those of the optimized method were both 93.48%, and there was no statistically significant difference between the two methods in the sensitivity ( P > 0.05), but there was a statistically significant difference between the two methods in the specificity ( P < 0.05). Conclusion The optimized PCR can improve the specificity without reducing the sensitivity on the basis of the routine nested PCR, it also can save the cost and increase the efficiency of malaria detection as less experiment links.

  9. Comparison of Nested Polymerase Chain Reaction and Real-Time Polymerase Chain Reaction with Parasitological Methods for Detection of Strongyloides stercoralis in Human Fecal Samples

    PubMed Central

    Sharifdini, Meysam; Mirhendi, Hossein; Ashrafi, Keyhan; Hosseini, Mostafa; Mohebali, Mehdi; Khodadadi, Hossein; Kia, Eshrat Beigom

    2015-01-01

    This study was performed to evaluate nested polymerase chain reaction (PCR) and real-time PCR methods for detection of Strongyloides stercoralis in fecal samples compared with parasitological methods. A total of 466 stool samples were examined by conventional parasitological methods (formalin ether concentration [FEC] and agar plate culture [APC]). DNA was extracted using an in-house method, and mitochondrial cytochrome c oxidase subunit 1 and 18S ribosomal genes were amplified by nested PCR and real-time PCR, respectively. Among 466 samples, 12.7% and 18.2% were found infected with S. stercoralis by FEC and APC, respectively. DNA of S. stercoralis was detected in 18.9% and 25.1% of samples by real-time PCR and nested PCR, respectively. Considering parasitological methods as the diagnostic gold standard, the sensitivity and specificity of nested PCR were 100% and 91.6%, respectively, and that of real-time PCR were 84.7% and 95.8%, respectively. However, considering sequence analyzes of the selected nested PCR products, the specificity of nested PCR is increased. In general, molecular methods were superior to parasitological methods. They were more sensitive and more reliable in detection of S. stercoralis in comparison with parasitological methods. Between the two molecular methods, the sensitivity of nested PCR was higher than real-time PCR. PMID:26350449

  10. [Sensitivity and specificity of nested PCR pyrosequencing in hepatitis B virus drug resistance gene testing].

    PubMed

    Sun, Shumei; Zhou, Hao; Zhou, Bin; Hu, Ziyou; Hou, Jinlin; Sun, Jian

    2012-05-01

    To evaluate the sensitivity and specificity of nested PCR combined with pyrosequencing in the detection of HBV drug-resistance gene. RtM204I (ATT) mutant and rtM204 (ATG) nonmutant plasmids mixed at different ratios were detected for mutations using nested-PCR combined with pyrosequencing, and the results were compared with those by conventional PCR pyrosequencing to analyze the linearity and consistency of the two methods. Clinical specimens with different viral loads were examined for drug-resistant mutations using nested PCR pyrosequencing and nested PCR combined with dideoxy sequencing (Sanger) for comparison of the detection sensitivity and specificity. The fitting curves demonstrated good linearity of both conventional PCR pyrosequencing and nested PCR pyrosequencing (R(2)>0.99, P<0.05). Nested PCR showed a better consistency with the predicted value than conventional PCR, and was superior to conventional PCR for detection of samples containing 90% mutant plasmid. In the detection of clinical specimens, Sanger sequencing had a significantly lower sensitivity than nested PCR pyrosequencing (92% vs 100%, P<0.01). The detection sensitivity of Sanger sequencing varied with the viral loads, especially in samples with low viral copies (HBV DNA ≤3log10 copies/ml), where the sensitivity was 78%, significantly lower than that of pyrosequencing (100%, P<0.01). Neither of the two methods yielded positive results for the negative control samples, suggesting their good specificity. Compared with nested PCR and Sanger sequencing method, nested PCR pyrosequencing has a higher sensitivity especially in clinical specimens with low viral copies, which can be important for early detection of HBV mutant strains and hence more effective clinical management.

  11. A multiplex PCR method for detection of Aspergillus spp. and Mycobacterium tuberculosis in BAL specimens.

    PubMed

    Amini, F; Kachuei, R; Noorbakhsh, F; Imani Fooladi, A A

    2015-06-01

    The aim of this study was the detection of Aspergillus species and Mycobacterium tuberculosis together in bronchoalveolar lavage (BAL) using of multiplex PCR. In this study, from September 2012 until June 2013, 100 bronchoalveolar lavage (BAL) specimens were collected from patients suspected of tuberculosis (TB). After the direct and culture test, multiplex PCR were utilized in order to diagnose Aspergillus species and M. tuberculosis. Phenol-chloroform manual method was used in order to extract DNA from these microorganisms. Aspergillus specific primers, M. tuberculosis designed primers and beta actin primers were used for multiplex PCR. In this study, by multiplex PCR method, Aspergillus species were identified in 12 samples (12%), positive samples in direct and culture test were respectively 11% and 10%. Sensitivity and specificity of this method in comparison to direct test were respectively 100% and 98.8%, also sensitivity and specificity of this method in comparison to culture test were respectively 100% and 97.7%. In this assay, M. tuberculosis was identified in 8 samples (8%). Mycobacterium-positive samples in molecular method, direct and culture test were respectively 6%, 5% and 7%. Sensitivity and specificity of PCR method in comparison to direct test were 80% and 97.8% also sensitivity and specificity of this method in comparison to culture test was 71.4% and 98.9%. In the present study, multiplex PCR method had higher sensitivity than direct and culture test in order to identify and detect Aspergillus, also this method had lower sensitivity for identification of M. tuberculosis, suggesting that the method of DNA extraction was not suitable. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. [Multiplex real-time PCR method for rapid detection of Marburg virus and Ebola virus].

    PubMed

    Yang, Yu; Bai, Lin; Hu, Kong-Xin; Yang, Zhi-Hong; Hu, Jian-Ping; Wang, Jing

    2012-08-01

    Marburg virus and Ebola virus are acute infections with high case fatality rates. A rapid, sensitive detection method was established to detect Marburg virus and Ebola virus by multiplex real-time fluorescence quantitative PCR. Designing primers and Taqman probes from highly conserved sequences of Marburg virus and Ebola virus through whole genome sequences alignment, Taqman probes labeled by FAM and Texas Red, the sensitivity of the multiplex real-time quantitative PCR assay was optimized by evaluating the different concentrations of primers and Probes. We have developed a real-time PCR method with the sensitivity of 30.5 copies/microl for Marburg virus positive plasmid and 28.6 copies/microl for Ebola virus positive plasmids, Japanese encephalitis virus, Yellow fever virus, Dengue virus were using to examine the specificity. The Multiplex real-time PCR assays provide a sensitive, reliable and efficient method to detect Marburg virus and Ebola virus simultaneously.

  13. Development of duplex real-time PCR for the detection of WSSV and PstDV1 in cultivated shrimp.

    PubMed

    Leal, Carlos A G; Carvalho, Alex F; Leite, Rômulo C; Figueiredo, Henrique C P

    2014-07-05

    The White spot syndrome virus (WSSV) and Penaeus stylirostris penstyldensovirus 1 (previously named Infectious hypodermal and hematopoietic necrosis virus-IHHNV) are two of the most important viral pathogens of penaeid shrimp. Different methods have been applied for diagnosis of these viruses, including Real-time PCR (qPCR) assays. A duplex qPCR method allows the simultaneous detection of two viruses in the same sample, which is more cost-effective than assaying for each virus separately. Currently, an assay for the simultaneous detection of the WSSV and the PstDV1 in shrimp is unavailable. The aim of this study was to develop and standardize a duplex qPCR assay for the simultaneous detection of the WSSV and the PstDV1 in clinical samples of diseased L. vannamei. In addition, to evaluate the performance of two qPCR master mixes with regard to the clinical sensitivity of the qPCR assay, as well as, different methods for qPCR results evaluation. The duplex qPCR assay for detecting WSSV and PstDV1 in clinical samples was successfully standardized. No difference in the amplification of the standard curves was observed between the duplex and singleplex assays. Specificities and sensitivities similar to those of the singleplex assays were obtained using the optimized duplex qPCR. The analytical sensitivities of duplex qPCR were two copies of WSSV control plasmid and 20 copies of PstDV1 control plasmid. The standardized duplex qPCR confirmed the presence of viral DNA in 28 from 43 samples tested. There was no difference for WSSV detection using the two kits and the distinct methods for qPCR results evaluation. High clinical sensitivity for PstDV1 was obtained with TaqMan Universal Master Mix associated with relative threshold evaluation. Three cases of simultaneous infection by the WSSV and the PstDV1 were identified with duplex qPCR. The standardized duplex qPCR was shown to be a robust, highly sensitive, and feasible diagnostic tool for the simultaneous detection of the WSSV and the PstDV1 in whiteleg shrimp. The use of the TaqMan Universal Master Mix and the relative threshold method of data analysis in our duplex qPCR method provided optimal levels of sensitivity and specificity.

  14. PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines

    USGS Publications Warehouse

    Jarvi, Susan I.; Schultz, Jeffrey J.; Atkinson, Carter T.

    2002-01-01

    Several polymerase chain reaction (PCR)-based methods have recently been developed for diagnosing malarial infections in both birds and reptiles, but a critical evaluation of their sensitivity in experimentally-infected hosts has not been done. This study compares the sensitivity of several PCR-based methods for diagnosing avian malaria (Plasmodium relictum) in captive Hawaiian honeycreepers using microscopy and a recently developed immunoblotting technique. Sequential blood samples were collected over periods of up to 4.4 yr after experimental infection and rechallenge to determine both the duration and detectability of chronic infections. Two new nested PCR approaches for detecting circulating parasites based on P. relictum 18S rRNA genes and the thrombospondin-related anonymous protein (TRAP) gene are described. The blood smear and the PCR tests were less sensitive than serological methods for detecting chronic malarial infections. Individually, none of the diagnostic methods was 100% accurate in detecting subpatent infections, although serological methods were significantly more sensitive (97%) than either nested PCR (61–84%) or microscopy (27%). Circulating parasites in chronically infected birds either disappear completely from circulation or to drop to intensities below detectability by nested PCR. Thus, the use of PCR as a sole means of detection of circulating parasites may significantly underestimate true prevalence.

  15. Evaluation of a sensitive reverse transcription PCR-enzymelinked immunosorbent assay for detection of hepatitis A virus in oysters (Saccostrea glomerata) on the east coast of the Gulf of Thailand.

    PubMed

    Intamaso, Uraiwan; Ketkhunthod, Sitthisak

    2014-05-01

    Hepatitis A virus (HAV) contamination in food can lead to major health problems. We developed a combination reverse transcription (RT) PCR method plus enzyme-linked immunosorbent assay (ELISA) to detect HAV in fresh oysters harvested along the east coast of the Gulf of Thailand. Viral nucleic acid was extracted via the glycine-arginine-polyethylene glycol method followed by RT-PCR amplification with specifically designed primers against HAV and an ELISA to detect the digoxigenin-labeled RT-PCR products. The ELISA in concert with the RT-PCR protocol further increased the detection sensitivity by 100-fold for the HAV genome and 10-fold in artificially contaminated oysters. The overall sensitivity of the RT-PCR in combination with the ELISA was 31.88 pg and 16 PFU/g, respectively. The ELISA increases the specificity of the RT-PCR assay for detecting naturally occurring HAV in oysters. This combined RT-PCR-ELISA approach is a practical and sensitive method for HAV detection and can be utilized in routine screening for HAV in shellfish.

  16. Application of COLD-PCR for improved detection of KRAS mutations in clinical samples.

    PubMed

    Zuo, Zhuang; Chen, Su S; Chandra, Pranil K; Galbincea, John M; Soape, Matthew; Doan, Steven; Barkoh, Bedia A; Koeppen, Hartmut; Medeiros, L Jeffrey; Luthra, Rajyalakshmi

    2009-08-01

    KRAS mutations have been detected in approximately 30% of all human tumors, and have been shown to predict response to some targeted therapies. The most common KRAS mutation-detection strategy consists of conventional PCR and direct sequencing. This approach has a 10-20% detection sensitivity depending on whether pyrosequencing or Sanger sequencing is used. To improve detection sensitivity, we compared our conventional method with the recently described co-amplification-at-lower denaturation-temperature PCR (COLD-PCR) method, which selectively amplifies minority alleles. In COLD-PCR, the critical denaturation temperature is lowered to 80 degrees C (vs 94 degrees C in conventional PCR). The sensitivity of COLD-PCR was determined by assessing serial dilutions. Fifty clinical samples were used, including 20 fresh bone-marrow aspirate specimens and the formalin-fixed paraffin-embedded (FFPE) tissue of 30 solid tumors. Implementation of COLD-PCR was straightforward and required no additional cost for reagents or instruments. The method was specific and reproducible. COLD-PCR successfully detected mutations in all samples that were positive by conventional PCR, and enhanced the mutant-to-wild-type ratio by >4.74-fold, increasing the mutation detection sensitivity to 1.5%. The enhancement of mutation detection by COLD-PCR inversely correlated with the tumor-cell percentage in a sample. In conclusion, we validated the utility and superior sensitivity of COLD-PCR for detecting KRAS mutations in a variety of hematopoietic and solid tumors using either fresh or fixed, paraffin-embedded tissue.

  17. [Detection of KRAS mutation in colorectal cancer patients' cfDNA with droplet digital PCR].

    PubMed

    Luo, Yuwen; Li, Yao

    2018-03-25

    This study aims to develop a new method for the detection of KRAS mutations related to colorectal cancer in cfDNA, and to evaluate the sensitivity and accuracy of the detection. We designed a method of cfDNA based KRAS detection by droplets digital PCR (ddPCR). The theoretical performance of the method is evaluated by reference standard and compared to the ARMS PCR method. Two methods, ddPCR and qPCR, were successfully established to detect KRAS wild type and 7 mutants. Both methods were validated using plasmid standards and actual samples. The results were evaluated by false positive rate, linearity, and limit of detection. Finally, 52 plasma cfDNA samples from patients and 20 samples from healthy people were tested, the clinical sensitivity is 97.64%, clinical specificity is 81.43%. ddPCR method shows higher performance than qPCR. The LOD of ddPCR method reached single digits of cfDNA copies, it can detect as low as 0.01% to 0.04% mutation abundance.

  18. Evaluation of serological and molecular tests used to identify Toxoplasma gondii infection in pregnant women attended in a public health service in São Paulo state, Brazil.

    PubMed

    Murata, Fernando Henrique Antunes; Ferreira, Marina Neves; Pereira-Chioccola, Vera Lucia; Spegiorin, Lígia Cosentino Junqueira Franco; Meira-Strejevitch, Cristina da Silva; Gava, Ricardo; Silveira-Carvalho, Aparecida Perpétuo; de Mattos, Luiz Carlos; Brandão de Mattos, Cinara Cássia

    2017-09-01

    Toxoplasmosis during pregnancy can have severe consequences. The use of sensitive and specific serological and molecular methods is extremely important for the correct diagnosis of the disease. We compared the ELISA and ELFA serological methods, conventional PCR (cPCR), Nested PCR and quantitative PCR (qPCR) in the diagnosis of Toxoplasma gondii infection in pregnant women without clinical suspicion of toxoplasmosis (G1=94) and with clinical suspicion of toxoplasmosis (G2=53). The results were compared using the Kappa index, and the sensitivity, specificity, positive predictive value and negative predictive value were calculated. The results of the serological methods showed concordance between the ELISA and ELFA methods even though ELFA identified more positive cases than ELISA. Molecular methods were discrepant with cPCR using B22/23 primers having greater sensitivity and lower specificity compared to the other molecular methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Evaluation of ALK gene rearrangement in central nervous system metastases of non-small-cell lung cancer using two-step RT-PCR technique.

    PubMed

    Nicoś, M; Krawczyk, P; Wojas-Krawczyk, K; Bożyk, A; Jarosz, B; Sawicki, M; Trojanowski, T; Milanowski, J

    2017-12-01

    RT-PCR technique has showed a promising value as pre-screening method for detection of mRNA containing abnormal ALK sequences, but its sensitivity and specificity is still discussable. Previously, we determined the incidence of ALK rearrangement in CNS metastases of NSCLC using IHC and FISH methods. We evaluated ALK gene rearrangement using two-step RT-PCR method with EML4-ALK Fusion Gene Detection Kit (Entrogen, USA). The studied group included 145 patients (45 females, 100 males) with CNS metastases of NSCLC and was heterogeneous in terms of histology and smoking status. 21% of CNS metastases of NSCLC (30/145) showed presence of mRNA containing abnormal ALK sequences. FISH and IHC tests confirmed the presence of ALK gene rearrangement and expression of ALK abnormal protein in seven patients with positive result of RT-PCR analysis (4.8% of all patients, 20% of RT-PCR positive patients). RT-PCR method compared to FISH analysis achieved 100% of sensitivity and only 82.7% of specificity. IHC method compared to FISH method indicated 100% of sensitivity and 97.8% of specificity. In comparison to IHC, RT-PCR showed identical sensitivity with high number of false positive results. Utility of RT-PCR technique in screening of ALK abnormalities and in qualification patients for molecularly targeted therapies needs further validation.

  20. Establishment of a nested-ASP-PCR method to determine the clarithromycin resistance of Helicobacter pylori

    PubMed Central

    Luo, Xiao-Feng; Jiao, Jian-Hua; Zhang, Wen-Yue; Pu, Han-Ming; Qu, Bao-Jin; Yang, Bing-Ya; Hou, Min; Ji, Min-Jun

    2016-01-01

    AIM: To investigate clarithromycin resistance positions 2142, 2143 and 2144 of the 23SrRNA gene in Helicobacter pylori (H. pylori) by nested-allele specific primer-polymerase chain reaction (nested-ASP-PCR). METHODS: The gastric tissue and saliva samples from 99 patients with positive results of the rapid urease test (RUT) were collected. The nested-ASP-PCR method was carried out with the external primers and inner allele-specific primers corresponding to the reference strain and clinical strains. Thirty gastric tissue and saliva samples were tested to determine the sensitivity of nested-ASP-PCR and ASP-PCR methods. Then, clarithromycin resistance was detected for 99 clinical samples by using different methods, including nested-ASP-PCR, bacterial culture and disk diffusion. RESULTS: The nested-ASP-PCR method was successfully established to test the resistance mutation points 2142, 2143 and 2144 of the 23SrRNA gene of H. pylori. Among 30 samples of gastric tissue and saliva, the H. pylori detection rate of nested-ASP-PCR was 90% and 83.33%, while the detection rate of ASP-PCR was just 63% and 56.67%. Especially in the saliva samples, nested-ASP-PCR showed much higher sensitivity in H. pylori detection and resistance mutation rates than ASP-PCR. In the 99 RUT-positive gastric tissue and saliva samples, the H. pylori-positive detection rate by nested-ASP-PCR was 87 (87.88%) and 67 (67.68%), in which there were 30 wild-type and 57 mutated strains in gastric tissue and 22 wild-type and 45 mutated strains in saliva. Genotype analysis showed that three-points mixed mutations were quite common, but different resistant strains were present in gastric mucosa and saliva. Compared to the high sensitivity shown by nested-ASP-PCR, the positive detection of bacterial culture with gastric tissue samples was 50 cases, in which only 26 drug-resistant strains were found through analyzing minimum inhibitory zone of clarithromycin. CONCLUSION: The nested-ASP-PCR assay showed higher detection sensitivity than ASP-PCR and drug sensitivity testing, which could be performed to evaluate clarithromycin resistance of H. pylori. PMID:27433095

  1. Rapid and sensitive detection of mink circovirus by recombinase polymerase amplification.

    PubMed

    Ge, Junwei; Shi, Yunjia; Cui, Xingyang; Gu, Shanshan; Zhao, Lili; Chen, Hongyan

    2018-06-01

    To date, the pathogenic role of mink circovirus (MiCV) remains unclear, and its prevalence and economic importance are unknown. Therefore, a rapid and sensitive molecular diagnosis is necessary for disease management and epidemiological surveillance. However, only PCR methods can identify MiCV infection at present. In this study, we developed a nested PCR and established a novel recombinase polymerase amplification (RPA) assay for MiCV detection. Sensitivity analysis showed that the detection limit of nested PCR and RPA assay was 10 1 copies/reaction, and these methods were more sensitive than conventional PCR, which has a detection limit of 10 5 copies/reaction. The RPA assay had no cross-reactivity with other related viral pathogens, and amplification was completed in less than 20 min with a simple device. Further assessment of clinical samples showed that the two assays were accurate in identifying positive and negative conventional PCR samples. The detection rate of MiCV by the RPA assay in clinical samples was 38.09%, which was 97% consistent with that by the nested PCR. The developed nested PCR is a highly sensitive tool for practical use, and the RPA assay is a simple, sensitive, and potential alternative method for rapid and accurate MiCV diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Evaluation of PCR for cutaneous leishmaniasis diagnosis and species identification using filter paper samples in Panama, Central America.

    PubMed

    Miranda, A; Saldaña, A; González, K; Paz, H; Santamaría, G; Samudio, F; Calzada, J E

    2012-09-01

    Cutaneous leishmaniasis (CL) is a major vectorborne disease in Panama. In this study, the diagnostic performance and usefulness of two DNA extraction procedures from skin scraping samples collected on FTA filter paper for subsequent PCR diagnosis of CL was evaluated. A positive CL laboratory diagnosis was based on a positive parasitological test (Giemsa-stained smears or in vitro culture) and/or positive PCR test performed from skin scrapings collected in TE buffer (PCR-TE). Of 100 patients with skin lesions suggestive of CL, 82 (82%) were confirmed as CL positive. The sensitivity was calculated for each of the PCR approaches from samples collected on filter paper. The highest sensitivity was achieved by PCR-FTA processed by Chelex 100 (PCR-Chelex) (0.94). PCR-FTA extracted using the FTA purification reagent presented a lower sensitivity (0.60). Good concordance between routine PCR-TE and PCR-Chelex was observed (percent agreement=0.88, κ index=0.65). In conclusion, use of FTA filter paper for skin scraping collection combined with PCR is a reliable and convenient method for CL diagnosis in Panama, with comparable performance to the routine PCR method and with improved sensitivity compared with those of conventional parasitological methods. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  3. A Novel High-Throughput Method for Molecular Detection of Human Pathogenic Viruses Using a Nanofluidic Real-Time PCR System

    PubMed Central

    Coudray-Meunier, Coralie; Fraisse, Audrey; Martin-Latil, Sandra; Delannoy, Sabine; Fach, Patrick; Perelle, Sylvie

    2016-01-01

    Human enteric viruses are recognized as the main causes of food- and waterborne diseases worldwide. Sensitive and quantitative detection of human enteric viruses is typically achieved through quantitative RT-PCR (RT-qPCR). A nanofluidic real-time PCR system was used to develop novel high-throughput methods for qualitative molecular detection (RT-qPCR array) and quantification of human pathogenic viruses by digital RT-PCR (RT-dPCR). The performance of high-throughput PCR methods was investigated for detecting 19 human pathogenic viruses and two main process controls used in food virology. The conventional real-time PCR system was compared to the RT-dPCR and RT-qPCR array. Based on the number of genome copies calculated by spectrophotometry, sensitivity was found to be slightly better with RT-qPCR than with RT-dPCR for 14 viruses by a factor range of from 0.3 to 1.6 log10. Conversely, sensitivity was better with RT-dPCR than with RT-qPCR for seven viruses by a factor range of from 0.10 to 1.40 log10. Interestingly, the number of genome copies determined by RT-dPCR was always from 1 to 2 log10 lower than the expected copy number calculated by RT-qPCR standard curve. The sensitivity of the RT-qPCR and RT-qPCR array assays was found to be similar for two viruses, and better with RT-qPCR than with RT-qPCR array for eighteen viruses by a factor range of from 0.7 to 3.0 log10. Conversely, sensitivity was only 0.30 log10 better with the RT-qPCR array than with conventional RT-qPCR assays for norovirus GIV detection. Finally, the RT-qPCR array and RT-dPCR assays were successfully used together to screen clinical samples and quantify pathogenic viruses. Additionally, this method made it possible to identify co-infection in clinical samples. In conclusion, given the rapidity and potential for large numbers of viral targets, this nanofluidic RT-qPCR assay should have a major impact on human pathogenic virus surveillance and outbreak investigations and is likely to be of benefit to public health. PMID:26824897

  4. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    PubMed

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.

  5. An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need.

    PubMed

    Wilkes, Rebecca P; Lee, Pei-Yu A; Tsai, Yun-Long; Tsai, Chuan-Fu; Chang, Hsiu-Hui; Chang, Hsiao-Fen G; Wang, Hwa-Tang T

    2015-08-01

    Canine parvovirus type 2 (CPV-2), including subtypes 2a, 2b and 2c, causes an acute enteric disease in both domestic and wild animals. Rapid and sensitive diagnosis aids effective disease management at points of need (PON). A commercially available, field-deployable and user-friendly system, designed with insulated isothermal PCR (iiPCR) technology, displays excellent sensitivity and specificity for nucleic acid detection. An iiPCR method was developed for on-site detection of all circulating CPV-2 strains. Limit of detection was determined using plasmid DNA. CPV-2a, 2b and 2c strains, a feline panleukopenia virus (FPV) strain, and nine canine pathogens were tested to evaluate assay specificity. Reaction sensitivity and performance were compared with an in-house real-time PCR using serial dilutions of a CPV-2b strain and 100 canine fecal clinical samples collected from 2010 to 2014, respectively. The 95% limit of detection of the iiPCR method was 13 copies of standard DNA and detection limits for CPV-2b DNA were equivalent for iiPCR and real-time PCR. The iiPCR reaction detected CPV-2a, 2b and 2c and FPV. Non-targeted pathogens were not detected. Test results of real-time PCR and iiPCR from 99 fecal samples agreed with each other, while one real-time PCR-positive sample tested negative by iiPCR. Therefore, excellent agreement (k = 0.98) with sensitivity of 98.41% and specificity of 100% in detecting CPV-2 in feces was found between the two methods. In conclusion, the iiPCR system has potential to serve as a useful tool for rapid and accurate PON, molecular detection of CPV-2. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Establishment of a nested-ASP-PCR method to determine the clarithromycin resistance of Helicobacter pylori.

    PubMed

    Luo, Xiao-Feng; Jiao, Jian-Hua; Zhang, Wen-Yue; Pu, Han-Ming; Qu, Bao-Jin; Yang, Bing-Ya; Hou, Min; Ji, Min-Jun

    2016-07-07

    To investigate clarithromycin resistance positions 2142, 2143 and 2144 of the 23SrRNA gene in Helicobacter pylori (H. pylori) by nested-allele specific primer-polymerase chain reaction (nested-ASP-PCR). The gastric tissue and saliva samples from 99 patients with positive results of the rapid urease test (RUT) were collected. The nested-ASP-PCR method was carried out with the external primers and inner allele-specific primers corresponding to the reference strain and clinical strains. Thirty gastric tissue and saliva samples were tested to determine the sensitivity of nested-ASP-PCR and ASP-PCR methods. Then, clarithromycin resistance was detected for 99 clinical samples by using different methods, including nested-ASP-PCR, bacterial culture and disk diffusion. The nested-ASP-PCR method was successfully established to test the resistance mutation points 2142, 2143 and 2144 of the 23SrRNA gene of H. pylori. Among 30 samples of gastric tissue and saliva, the H. pylori detection rate of nested-ASP-PCR was 90% and 83.33%, while the detection rate of ASP-PCR was just 63% and 56.67%. Especially in the saliva samples, nested-ASP-PCR showed much higher sensitivity in H. pylori detection and resistance mutation rates than ASP-PCR. In the 99 RUT-positive gastric tissue and saliva samples, the H. pylori-positive detection rate by nested-ASP-PCR was 87 (87.88%) and 67 (67.68%), in which there were 30 wild-type and 57 mutated strains in gastric tissue and 22 wild-type and 45 mutated strains in saliva. Genotype analysis showed that three-points mixed mutations were quite common, but different resistant strains were present in gastric mucosa and saliva. Compared to the high sensitivity shown by nested-ASP-PCR, the positive detection of bacterial culture with gastric tissue samples was 50 cases, in which only 26 drug-resistant strains were found through analyzing minimum inhibitory zone of clarithromycin. The nested-ASP-PCR assay showed higher detection sensitivity than ASP-PCR and drug sensitivity testing, which could be performed to evaluate clarithromycin resistance of H. pylori.

  7. Rapid screening of toxigenic vibrio cholerae O1 strains from south Iran by PCR-ELISA.

    PubMed

    Mousavi, Seyed Latif; Nazarian, Shahram; Amani, Jafar; Rahgerdi, Ahmad Karimi

    2008-01-01

    The ability to sensitively detect Vibrio cholera with PCR-ELISA method represents a considerable advancement over alternative more time-consuming methods for detection of this pathogen. The aim of this research is to evaluate the suitability of a PCR-enzyme-linked immunosorbent assay for sensitive and rapid detection of V. cholera O1. The 398-bp sequence of a gene that codes for the cholera toxin B subunit was amplified by PCR. The digoxigenin-labeled amplified products were coated on microplates and detected by ELISA. The PCR product was also hybridized with biotin labelled probe and detected by ELISA using streptavidin. The specificity of the PCR was determined using 10 bacterial strains and 50 samples from south Iran. The detection limit was 0.5 pg of the genomic DNA and five bacterial cells. Adaptation of PCR into PCR-ELISA assay format facilitates specific and sensitive detection and diagnosis of human cholera disease. We conclude that this PCR-ELISA is a diagnostic method that specifically detects toxin genes in V. cholera O1 strains. It is more rapid and less cumbersome than other diagnostic methods for detection of toxicity in these strains.

  8. [Evaluation of the usefulness of various PCR method variations and nucleic acid hybridization for CMV infection in immunosuppressed patients].

    PubMed

    Siennicka, J; Trzcińska, A; Litwińska, B; Durlik, M; Seferyńska, I; Pałynyczko, G; Kańtoch, M

    2000-01-01

    In diagnosis of CMV infection various laboratory methods are used. The methods based on detection of viral nucleic acids have been introduced routinely in many laboratories. The aim of this study was to compare nucleic acid hybridisation method and various variants of PCR methods with respect to their ability to detect CMV DNA. The studied material comprised 60 blood samples from 19 patients including 13 renal transplant recipients and 6 with acute leukaemia. The samples were subjected to hybridisation (Murex Hybrid Capture System CMV DNA) and PCR carried out in 3 variants: with one pair of primers (single PCR), nested PCR and Digene SHARP System with detection of PCR product using a genetic probe in ELISA system. The sensitivity of the variants ranged from 10(0) particles of viral DNA in nested PCR to 10(2) in single PCR. The producer claimed the sensitivity of the hybridisation test to be 3 x 10(5) and it seems to be sufficient for detection of CMV infection. The obtained results show that sensitivity of hybridisation was comparable to that of single PCR and the possibility of obtaining quantitative results makes it superior, on efficacy of antiviral therapy, especially in monitoring CMV infection in immunossuppressed patients and in following the efficacy of antiviral treatment.

  9. Overcoming the errors of in-house PCR used in the clinical laboratory for the diagnosis of extrapulmonary tuberculosis.

    PubMed

    Kunakorn, M; Raksakai, K; Pracharktam, R; Sattaudom, C

    1999-03-01

    Our experiences from 1993 to 1997 in the development and use of IS6110 base PCR for the diagnosis of extrapulmonary tuberculosis in a routine clinical setting revealed that error-correcting processes can improve existing diagnostic methodology. The reamplification method initially used had a sensitivity of 90.91% and a specificity of 93.75%. The concern was focused on the false positive results of this method caused by product-carryover contamination. This method was changed to single round PCR with carryover prevention by uracil DNA glycosylase (UDG), resulting in a 100% specificity but only 63% sensitivity. Dot blot hybridization was added after the single round PCR, increasing the sensitivity to 87.50%. However, false positivity resulted from the nonspecific dot blot hybridization signal, reducing the specificity to 89.47%. The hybridization of PCR was changed to a Southern blot with a new oligonucleotide probe giving the sensitivity of 85.71% and raising the specificity to 99.52%. We conclude that the PCR protocol for routine clinical use should include UDG for carryover prevention and hybridization with specific probes to optimize diagnostic sensitivity and specificity in extrapulmonary tuberculosis testing.

  10. Sensitivity of different Trypanosoma vivax specific primers for the diagnosis of livestock trypanosomosis using different DNA extraction methods.

    PubMed

    Gonzales, J L; Loza, A; Chacon, E

    2006-03-15

    There are several T. vivax specific primers developed for PCR diagnosis. Most of these primers were validated under different DNA extraction methods and study designs leading to heterogeneity of results. The objective of the present study was to validate PCR as a diagnostic test for T. vivax trypanosomosis by means of determining the test sensitivity of different published specific primers with different sample preparations. Four different DNA extraction methods were used to test the sensitivity of PCR with four different primer sets. DNA was extracted directly from whole blood samples, blood dried on filter papers or blood dried on FTA cards. The results showed that the sensitivity of PCR with each primer set was highly dependant of the sample preparation and DNA extraction method. The highest sensitivities for all the primers tested were determined using DNA extracted from whole blood samples, while the lowest sensitivities were obtained when DNA was extracted from filter paper preparations. To conclude, the obtained results are discussed and a protocol for diagnosis and surveillance for T. vivax trypanosomosis is recommended.

  11. Detection of shigella in lettuce by the use of a rapid molecular assay with increased sensitivity

    PubMed Central

    Jiménez, Kenia Barrantes; McCoy², Clyde B.; Achí, Rosario

    2010-01-01

    A Multiplex Polymerase Chain Reaction (PCR) assay to be used as an alternative to the conventional culture method in detecting Shigella and enteroinvasive Escherichia coli (EIEC) virulence genes ipaH and ial in lettuce was developed. Efficacy and rapidity of the molecular method were determined as compared to the conventional culture. Lettuce samples were inoculated with different Shigella flexneri concentrations (from 10 CFU/ml to 107 CFU/ml). DNA was extracted directly from lettuce after inoculation (direct-PCR) and after an enrichment step (enrichment PCR). Multiplex PCR detection limit was 104CFU/ml, diagnostic sensitivity and specificity were 100% accurate. An internal amplification control (IAC) of 100 bp was used in order to avoid false negative results. This method produced results in 1 to 2 days while the conventional culture method required 5 to 6 days. Also, the culture method detection limit was 106 CFU/ml, diagnostic sensitivity was 53% and diagnostic specificity was 100%. In this study a Multiplex PCR method for detection of virulence genes in Shigella and EIEC was shown to be effective in terms of diagnostic sensitivity, detection limit and amount of time as compared to Shigella conventional culture. PMID:24031579

  12. A simple, rapid, cost-effective and sensitive method for detection of Salmonella in environmental and pecan samples.

    PubMed

    Dobhal, S; Zhang, G; Rohla, C; Smith, M W; Ma, L M

    2014-10-01

    PCR is widely used in the routine detection of foodborne human pathogens; however, challenges remain in overcoming PCR inhibitors present in some sample matrices. The objective of this study was to develop a simple, sensitive, cost-effective and rapid method for processing large numbers of environmental and pecan samples for Salmonella detection. This study was also aimed at validation of a new protocol for the detection of Salmonella from in-shell pecans. Different DNA template preparation methods, including direct boiling, prespin, multiple washing and commercial DNA extraction kits, were evaluated with pure cultures of Salmonella Typhimurium and with enriched soil, cattle feces and in-shell pecan each spiked individually with Salmonella Typhimurium. PCR detection of Salmonella was conducted using invA and 16S rRNA gene (internal amplification control) specific primers. The effect of amplification facilitators, including bovine serum albumin (BSA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin on PCR sensitivity, was also evaluated. Conducting a prespin of sample matrices in combination with the addition of 0·4% (w/v) BSA and 1% (w/v) PVP in PCR mix was the simplest, most rapid, cost-effective and sensitive method for PCR detection of Salmonella, with up to 40 CFU Salmonella per reaction detectable in the presence of over 10(9 ) CFU ml(-1) of background micro-organisms from enriched feces soil or pecan samples. The developed method is rapid, cost-effective and sensitive for detection of Salmonella from different matrices. This study provides a method with broad applicability for PCR detection of Salmonella in complex sample matrices. This method has a potential for its application in different research arenas and diagnostic laboratories. © 2014 The Society for Applied Microbiology.

  13. A Novel Extraction Method Combining Plasma with a Whole-Blood Fraction Shows Excellent Sensitivity and Reproducibility for Patients at High Risk for Invasive Aspergillosis

    PubMed Central

    Springer, Jan; Schloßnagel, Hannes; Heinz, Werner; Doedt, Thomas; Soeller, Rainer; Einsele, Hermann

    2012-01-01

    Diagnosis of invasive aspergillosis (IA) is still a major problem in routine clinical practice. Early diagnosis is essential for a good patient prognosis. PCR is a highly sensitive method for the detection of nucleic acids and could play an important role in improving the diagnosis of fungal infections. Therefore, a novel DNA extraction method, ultraclean production (UCP), was developed allowing purification of both cellular and cell-free circulating fungal DNA. In this prospective study we evaluated the commercially available UCP extraction system and compared it to an in-house system. Sixty-three patients at high risk for IA were screened twice weekly, and DNA extracted by both methods was cross-analyzed, in triplicate, by two different real-time PCR assays. The negative predictive values were high for all methods (94.3 to 100%), qualifying them as screening methods, but the sensitivity and diagnostic odds ratios were higher using the UCP extraction method. Sensitivity ranged from 33.3 to 66.7% using the in-house extracts to 100% using the UCP extraction method. Most of the unclassified patients showed no positive PCR results; however, single-positive PCR replicates were observed in some cases. These can bear clinical relevance but should be interpreted with additional clinical and laboratory data. The PCR assays from the UCP extracts showed greater reproducibility than the in-house method for probable IA patients. The standardized UCP extraction method yielded superior results, with regard to sensitivity and reproducibility, than the in-house method. This was independent of the PCR assay used to detect fungal DNA in the sample extracts. PMID:22593600

  14. Microfluidics-based digital quantitative PCR for single-cell small RNA quantification.

    PubMed

    Yu, Tian; Tang, Chong; Zhang, Ying; Zhang, Ruirui; Yan, Wei

    2017-09-01

    Quantitative analyses of small RNAs at the single-cell level have been challenging because of limited sensitivity and specificity of conventional real-time quantitative PCR methods. A digital quantitative PCR (dqPCR) method for miRNA quantification has been developed, but it requires the use of proprietary stem-loop primers and only applies to miRNA quantification. Here, we report a microfluidics-based dqPCR (mdqPCR) method, which takes advantage of the Fluidigm BioMark HD system for both template partition and the subsequent high-throughput dqPCR. Our mdqPCR method demonstrated excellent sensitivity and reproducibility suitable for quantitative analyses of not only miRNAs but also all other small RNA species at the single-cell level. Using this method, we discovered that each sperm has a unique miRNA profile. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    PubMed Central

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  16. Digital PCR: A Sensitive and Precise Method for KIT D816V Quantification in Mastocytosis.

    PubMed

    Greiner, Georg; Gurbisz, Michael; Ratzinger, Franz; Witzeneder, Nadine; Simonitsch-Klupp, Ingrid; Mitterbauer-Hohendanner, Gerlinde; Mayerhofer, Matthias; Müllauer, Leonhard; Sperr, Wolfgang R; Valent, Peter; Hoermann, Gregor

    2018-03-01

    The analytically sensitive detection of KIT D816V in blood and bone marrow is important for diagnosing systemic mastocytosis (SM). Additionally, precise quantification of the KIT D816V variant allele fraction (VAF) is relevant clinically because it helps to predict multilineage involvement and prognosis in cases of advanced SM. Digital PCR (dPCR) is a promising new method for sensitive detection and accurate quantification of somatic mutations. We performed a validation study of dPCR for KIT D816V on 302 peripheral blood and bone marrow samples from 156 patients with mastocytosis for comparison with melting curve analysis after peptide nucleic acid-mediated PCR clamping (clamp-PCR) and allele-specific quantitative real-time PCR (qPCR). dPCR showed a limit of detection of 0.01% VAF with a mean CV of 8.5% and identified the mutation in 90% of patients compared with 70% for clamp-PCR ( P < 0.001). Moreover, dPCR for KIT D816V was highly concordant with qPCR without systematic deviation of results, and confirmed the clinical value of KIT D816V VAF measurements. Thus, patients with advanced SM showed a significantly higher KIT D816V VAF (median, 2.43%) compared with patients with indolent SM (median, 0.14%; P < 0.001). Moreover, dPCR confirmed the prognostic significance of a high KIT D816V VAF regarding survival ( P < 0.001). dPCR for KIT D816V provides a high degree of precision and sensitivity combined with the potential for interlaboratory standardization, which is crucial for the implementation of KIT D816V allele burden measurement. Thus, dPCR is suitable as a new method for KIT D816V testing in patients with mastocytosis. © 2017 American Association for Clinical Chemistry.

  17. Detection of Mycobacterium tuberculosis in extrapulmonary biopsy samples using PCR targeting IS6110, rpoB, and nested-rpoB PCR Cloning

    PubMed Central

    Meghdadi, Hossein; Khosravi, Azar D.; Ghadiri, Ata A.; Sina, Amir H.; Alami, Ameneh

    2015-01-01

    Present study was aimed to examine the diagnostic utility of polymerase chain reaction (PCR) and nested PCR techniques for the detection of Mycobacterium tuberculosis (MTB) DNA in samples from patients with extra pulmonary tuberculosis (EPTB). In total 80 formalin-fixed, paraffin-embedded (FFPE) samples comprising 70 samples with definite diagnosis of EPTB and 10 samples from known non- EPTB on the basis of histopathology examination, were included in the study. PCR amplification targeting IS6110, rpoB gene and nested PCR targeting the rpoB gene were performed on the extracted DNAs from 80 FFPE samples. The strong positive samples were directly sequenced. For negative samples and those with weak band in nested-rpoB PCR, TA cloning was performed by cloning the products into the plasmid vector with subsequent sequencing. The 95% confidence intervals (CI) for the estimates of sensitivity and specificity were calculated for each method. Fourteen (20%), 34 (48.6%), and 60 (85.7%) of the 70 positive samples confirmed by histopathology, were positive by rpoB-PCR, IS6110-PCR, and nested-rpoB PCR, respectively. By performing TA cloning on samples that yielded weak (n = 8) or negative results (n = 10) in the PCR methods, we were able to improve their quality for later sequencing. All samples with weak band and 7 out of 10 negative samples, showed strong positive results after cloning. So nested-rpoB PCR cloning revealed positivity in 67 out of 70 confirmed samples (95.7%). The sensitivity of these combination methods was calculated as 95.7% in comparison with histopathology examination. The CI for sensitivity of the PCR methods were calculated as 11.39–31.27% for rpoB-PCR, 36.44–60.83% for IS6110- PCR, 75.29–92.93% for nested-rpoB PCR, and 87.98–99.11% for nested-rpoB PCR cloning. The 10 true EPTB negative samples by histopathology, were negative by all tested methods including cloning and were used to calculate the specificity of the applied methods. The CI for 100% specificity of each PCR method were calculated as 69.15–100%. Our results indicated that nested-rpoB PCR combined with TA cloning and sequencing is a preferred method for the detection of MTB DNA in EPTB samples with high sensitivity and specificity which confirm the histopathology results. PMID:26191059

  18. Detection of Mycobacterium tuberculosis in extrapulmonary biopsy samples using PCR targeting IS6110, rpoB, and nested-rpoB PCR Cloning.

    PubMed

    Meghdadi, Hossein; Khosravi, Azar D; Ghadiri, Ata A; Sina, Amir H; Alami, Ameneh

    2015-01-01

    Present study was aimed to examine the diagnostic utility of polymerase chain reaction (PCR) and nested PCR techniques for the detection of Mycobacterium tuberculosis (MTB) DNA in samples from patients with extra pulmonary tuberculosis (EPTB). In total 80 formalin-fixed, paraffin-embedded (FFPE) samples comprising 70 samples with definite diagnosis of EPTB and 10 samples from known non- EPTB on the basis of histopathology examination, were included in the study. PCR amplification targeting IS6110, rpoB gene and nested PCR targeting the rpoB gene were performed on the extracted DNAs from 80 FFPE samples. The strong positive samples were directly sequenced. For negative samples and those with weak band in nested-rpoB PCR, TA cloning was performed by cloning the products into the plasmid vector with subsequent sequencing. The 95% confidence intervals (CI) for the estimates of sensitivity and specificity were calculated for each method. Fourteen (20%), 34 (48.6%), and 60 (85.7%) of the 70 positive samples confirmed by histopathology, were positive by rpoB-PCR, IS6110-PCR, and nested-rpoB PCR, respectively. By performing TA cloning on samples that yielded weak (n = 8) or negative results (n = 10) in the PCR methods, we were able to improve their quality for later sequencing. All samples with weak band and 7 out of 10 negative samples, showed strong positive results after cloning. So nested-rpoB PCR cloning revealed positivity in 67 out of 70 confirmed samples (95.7%). The sensitivity of these combination methods was calculated as 95.7% in comparison with histopathology examination. The CI for sensitivity of the PCR methods were calculated as 11.39-31.27% for rpoB-PCR, 36.44-60.83% for IS6110- PCR, 75.29-92.93% for nested-rpoB PCR, and 87.98-99.11% for nested-rpoB PCR cloning. The 10 true EPTB negative samples by histopathology, were negative by all tested methods including cloning and were used to calculate the specificity of the applied methods. The CI for 100% specificity of each PCR method were calculated as 69.15-100%. Our results indicated that nested-rpoB PCR combined with TA cloning and sequencing is a preferred method for the detection of MTB DNA in EPTB samples with high sensitivity and specificity which confirm the histopathology results.

  19. Development of a Highly Sensitive Nested-PCR Procedure Using a Single Closed Tube for Detection of Erwinia amylovora in Asymptomatic Plant Material

    PubMed Central

    Llop, Pablo; Bonaterra, Anna; Peñalver, Javier; López, María M.

    2000-01-01

    A novel method, which involves a nested PCR in a single closed tube, was developed for the sensitive detection of Erwinia amylovora in plant material. The external and internal primer pairs used had different annealing temperatures and directed the amplification of a specific DNA fragment from plasmid pEA29. The procedure involved two consecutive PCRs, the first of which was performed at a higher annealing temperature that allowed amplification only by the external primer pair. Using pure cultures of E. amylovora, the sensitivity of the nested PCR in one tube was similar to that of a standard nested PCR in two tubes. The specificity and sensitivity were greater than those of standard PCR procedures that used a single primer pair. The presence of inhibitors in plant material, very common in E. amylovora hosts, is overcome with this system in combination with a simple DNA extraction protocol because it eliminates many of the inhibitory compounds. In addition, it needs a very small sample volume (1 μl of DNA extracted). With 83 samples of naturally infected material, this method achieved better results than any other PCR technique: standard PCR detected 55% of positive samples, two-tube nested PCR detected 71% of positive samples, and nested PCR in a single closed tube detected 78% of positive samples. When analyzing asymptomatic plant material, the number of positive samples detected by the developed nested PCR was also the highest, compared with the PCR protocols indicated previously (17, 20, and 25% of 251 samples analyzed, respectively). This method is proposed for the detection of endophytic and epiphytic populations of E. amylovora in epidemiological studies and for routine use in quarantine surveys, due to its high sensitivity, specificity, speed, and simplicity. PMID:10788384

  20. Clinical evaluation of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Neisseria meningitidis in cerebrospinal fluid.

    PubMed

    Lee, DoKyung; Kim, Eun Jin; Kilgore, Paul E; Kim, Soon Ae; Takahashi, Hideyuki; Ohnishi, Makoto; Anh, Dang Duc; Dong, Bai Qing; Kim, Jung Soo; Tomono, Jun; Miyamoto, Shigehiko; Notomi, Tsugunori; Kim, Dong Wook; Seki, Mitsuko

    2015-01-01

    Neisseria meningitidis (Nm) is a leading causative agent of bacterial meningitis in humans. Traditionally, meningococcal meningitis has been diagnosed by bacterial culture. However, isolation of bacteria from patients' cerebrospinal fluid (CSF) is time consuming and sometimes yields negative results. Recently, polymerase chain reaction (PCR)-based diagnostic methods of detecting Nm have been considered the gold standard because of their superior sensitivity and specificity compared with culture. In this study, we developed a loop-mediated isothermal amplification (LAMP) method and evaluated its ability to detect Nm in cerebrospinal fluid (CSF). We developed a meningococcal LAMP assay (Nm LAMP) that targets the ctrA gene. The primer specificity was validated using 16 strains of N. meningitidis (serogroup A, B, C, D, 29-E, W-135, X, Y, and Z) and 19 non-N. meningitidis species. Within 60 min, the Nm LAMP detected down to ten copies per reaction with sensitivity 1000-fold more than that of conventional PCR. The LAMP assays were evaluated using a set of 1574 randomly selected CSF specimens from children with suspected meningitis collected between 1998 and 2002 in Vietnam, China, and Korea. The LAMP method was shown to be more sensitive than PCR methods for CSF samples (31 CSF samples were positive by LAMP vs. 25 by PCR). The detection rate of the LAMP method was substantially higher than that of the PCR method. In a comparative analysis of the PCR and LAMP assays, the clinical sensitivity, specificity, positive predictive value, and negative predictive value of the LAMP assay were 100%, 99.6%, 80.6%, and 100%, respectively. Compared to PCR, LAMP detected Nm with higher analytical and clinical sensitivity. This sensitive and specific LAMP method offers significant advantages for screening patients on a population basis and for diagnosis in clinical settings.

  1. Species-specific diagnostic assays for Bonamia ostreae and B. exitiosa in European flat oyster Ostrea edulis: conventional, real-time and multiplex PCR.

    PubMed

    Ramilo, Andrea; Navas, J Ignacio; Villalba, Antonio; Abollo, Elvira

    2013-05-27

    Bonamia ostreae and B. exitiosa have caused mass mortalities of various oyster species around the world and co-occur in some European areas. The World Organisation for Animal Health (OIE) has included infections with both species in the list of notifiable diseases. However, official methods for species-specific diagnosis of either parasite have certain limitations. In this study, new species-specific conventional PCR (cPCR) and real-time PCR techniques were developed to diagnose each parasite species. Moreover, a multiplex PCR method was designed to detect both parasites in a single assay. The analytical sensitivity and specificity of each new method were evaluated. These new procedures were compared with 2 OIE-recommended methods, viz. standard histology and PCR-RFLP. The new procedures showed higher sensitivity than the OIE recommended ones for the diagnosis of both species. The sensitivity of tests with the new primers was higher using oyster gills and gonad tissue, rather than gills alone. The lack of a 'gold standard' prevented accurate estimation of sensitivity and specificity of the new methods. The implementation of statistical tools (maximum likelihood method) for the comparison of the diagnostic tests showed the possibility of false positives with the new procedures, although the absence of a gold standard precluded certainty. Nevertheless, all procedures showed negative results when used for the analysis of oysters from a Bonamia-free area.

  2. Optimization of Trichomonas vaginalis Diagnosis during Pregnancy at a University Hospital, Argentina.

    PubMed

    Testardini, Pamela; Vaulet, María Lucía Gallo; Entrocassi, Andrea Carolina; Menghi, Claudia; Eliseht, Martha Cora; Gatta, Claudia; Losada, Mirta; Touzón, María Sol; Corominas, Ana; Vay, Carlos; Tatti, Silvio; Famiglietti, Angela; Fermepin, Marcelo Rodriguez; Perazzi, Beatriz

    2016-04-01

    The aim of this study was to evaluate different methods for Trichomonas vaginalis diagnosis during pregnancy in order to prevent maternal and perinatal complications. A total of 386 vaginal exudates from pregnant women were analyzed. T. vaginalis was investigated by 3 types of microscopic examinations direct wet mount with physiologic saline solution, prolonged May-Grunwald Giemsa (MGG) staining, and wet mount with sodium-acetate-formalin (SAF)/methylene blue method. PCR for 18S rRNA gene as well as culture in liquid medium were performed. The sensitivity and specificity of the microscopic examinations were evaluated considering the culture media positivity or the PCR techniques as gold standard. The frequency of T. vaginalis infection was 6.2% by culture and/or PCR, 5.2% by PCR, 4.7% by culture, 3.1% by SAF/methylene blue method and 2.8% by direct wet smear and prolonged MGG staining. The sensitivities were 83.3%, 75.0%, 50.0%, and 45.8% for PCR, culture, SAF/methylene blue method, and direct wet smear-prolonged MGG staining, respectively. The specificity was 100% for all the assessed methods. Microscopic examinations showed low sensitivity, mainly in asymptomatic pregnant patients. It is necessary to improve the detection of T. vaginalis using combined methods providing higher sensitivity, such as culture and PCR, mainly in asymptomatic pregnant patients, in order to prevent maternal and perinatal complications.

  3. Comparison of Conventional PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Arcobacter Species

    PubMed Central

    Wang, Xiaoyu; Seo, Dong Joo; Lee, Min Hwa

    2014-01-01

    This study aimed to develop a loop-mediated isothermal amplification (LAMP) method for the rapid detection of Arcobacter species. Specific primers targeting the 23S ribosomal RNA gene were used to detect Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii. The specificity of the LAMP primer set was assessed using DNA samples from a panel of Arcobacter and Campylobacter species, and the sensitivity was determined using serial dilutions of Arcobacter species cultures. LAMP showed a 10- to 1,000-fold-higher sensitivity than multiplex PCR, with a detection limit of 2 to 20 CFU per reaction in vitro. Whereas multiplex PCR showed cross-reactivity with Campylobacter species, the LAMP method developed in this study was more sensitive and reliable than conventional PCR or multiplex PCR for the detection of Arcobacter species. PMID:24478488

  4. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction.

    PubMed

    Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming

    2013-07-17

    A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Real-time PCR assay is superior to other methods for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran.

    PubMed

    Molla Kazemiha, Vahid; Bonakdar, Shahin; Amanzadeh, Amir; Azari, Shahram; Memarnejadian, Arash; Shahbazi, Shirin; Shokrgozar, Mohammad Ali; Mahdian, Reza

    2016-08-01

    Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.

  6. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation.

    PubMed

    Böttcher, S; Ritgen, M; Pott, C; Brüggemann, M; Raff, T; Stilgenbauer, S; Döhner, H; Dreger, P; Kneba, M

    2004-10-01

    The clinically most suitable method for minimal residual disease (MRD) detection in chronic lymphocytic leukemia is still controversial. We prospectively compared MRD assessment in 158 blood samples of 74 patients with CLL after stem cell transplantation (SCT) using four-color flow cytometry (MRD flow) in parallel with consensus IgH-PCR and ASO IgH real-time PCR (ASO IgH RQ-PCR). In 25 out of 106 samples (23.6%) with a polyclonal consensus IgH-PCR pattern, MRD flow still detected CLL cells, proving higher sensitivity of flow cytometry over PCR-genescanning with consensus IgH-primers. Of 92 samples, 14 (15.2%) analyzed in parallel by MRD flow and by ASO IgH RQ-PCR were negative by our flow cytometric assay but positive by PCR, thus demonstrating superior sensitivity of RQ-PCR with ASO primers. Quantitative MRD levels measured by both methods correlated well (r=0.93). MRD detection by flow and ASO IgH RQ-PCR were equally suitable to monitor MRD kinetics after allogeneic SCT, but the PCR method detected impending relapses after autologous SCT earlier. An analysis of factors that influence sensitivity and specificity of flow cytometry for MRD detection allowed to devise further improvements of this technique.

  7. Immunohistochemistry and Polymerase Chain Reaction for Detection Human Papilloma Virus in Warts: A Comparative Study

    PubMed Central

    Lee, Hong Sun; Lee, Ji Hyun; Choo, Ji Yoon; Byun, Hee Jin; Jun, Jin Hyun

    2016-01-01

    Background Immunohistochemistry and polymerase chain reaction (PCR) are the most widely used methods for the detection of viruses. PCR is known to be a more sensitive and specific method than the immunohistochemical method at this time, but PCR has the disadvantages of high cost and skilled work to use widely. With the progress of technology, the immunohistochemical methods used in these days has come to be highly sensitive and actively used in the diagnostic fields. Objective To evaluate and compare the usefulness of immunohistochemistry and PCR for detection human papilloma virus (HPV) in wart lesions. Methods Nine biopsy samples of verruca vulgaris and 10 of condyloma accuminatum were examined. Immunohistochemical staining using monoclonal antibody to HPV L1 capsid protein and PCR were done for the samples. DNA sequencing of the PCR products and HPV genotyping were also done. Results HPV detection rate was 78.9% (88.9% in verruca vulgaris, 70.0% in condyloma accuminatum) on immunohistochemistry and 100.0% for PCR. HPV-6 genotype showed a lower positivity rate on immunohistochemistry (50.0%) as compared to that of the other HPV genotypes. Conclusion Immunohistochemistry for HPV L1 capsid protein showed comparable sensitivity for detection HPV. Considering the high cost and great effort needed for the PCR methods, we can use immunohistochemistry for HPV L1 capsid protein with the advantage of lower cost and simple methods for HPV detection. PMID:27489431

  8. Detection of circulating Mycobacterium tuberculosis-specific DNA by droplet digital PCR for vaccine evaluation in challenged monkeys and TB diagnosis.

    PubMed

    Song, Neng; Tan, Yang; Zhang, Lingyun; Luo, Wei; Guan, Qing; Yan, Ming-Zhe; Zuo, Ruiqi; Liu, Weixiang; Luo, Feng-Ling; Zhang, Xiao-Lian

    2018-04-24

    Mycobacterium tuberculosis (M. tb) is emerging as a more serious pathogen due to the increased multidrug-resistant TB and co-infection of human immunodeficiency virus (HIV). The development of an effective and sensitive detection method is urgently needed for bacterial load evaluation in vaccine development, early TB diagnosis, and TB treatment. Droplet digital polymerase chain reaction (ddPCR) is a newly developed sensitive PCR method for the absolute quantification of nucleic acid concentrations. Here, we used ddPCR to quantify the circulating virulent M. tb-specific CFP10 (10-kDa culture filtrate protein, Rv3874) and Rv1768 DNA copy numbers in the blood samples from Bacille Calmette-Guerin (BCG)-vaccinated and/or virulent M. tb H37Rv-challenged rhesus monkeys. We found that ddPCR was more sensitive compared to real-time fluorescence quantitative PCR (qPCR), as the detection limits of CFP10 were 1.2 copies/μl for ddPCR, but 15.8 copies/μl for qPCR. We demonstrated that ddPCR could detect CFP10 and Rv1768 DNA after 3 weeks of infection and at least two weeks earlier than qPCR in M.tb H37Rv-challenged rhesus monkey models. DdPCR could also successfully quantify CFP10 and Rv1768 DNA copy numbers in clinical TB patients' blood samples (active pulmonary TB, extrapulmonary TB (EPTB), and infant TB). To our knowledge, this study is the first to demonstrate that ddPCR is an effective and sensitive method of measuring the circulating CFP10 and Rv1768 DNA for vaccine development, bacterial load evaluation in vivo, and early TB (including EPTB and infant TB) diagnosis as well.

  9. Rapid and sensitive detection of Zika virus by reverse transcription loop-mediated isothermal amplification.

    PubMed

    Wang, Xuan; Yin, Fenggui; Bi, Yuhai; Cheng, Gong; Li, Jing; Hou, Lidan; Li, Yunlong; Yang, Baozhi; Liu, Wenjun; Yang, Limin

    2016-12-01

    Zika virus (ZIKV) is an arbovirus that recently emerged and has expanded worldwide, causing a global threat and raising international concerns. Current molecular diagnostics, e.g., real-time PCR and reverse transcription PCR (RT-PCR), are time consuming, expensive, and can only be deployed in a laboratory instead of for field diagnostics. This study aimed to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) platform showing sensitivity, specificity, and more convenience than previous methods, being easily distributed and implemented. Specific primers were designed and screened to target the entire ZIKV genome. The analytical sensitivity and specificity of the assay were evaluated and compared with traditional PCR and quantitative real-time PCR. Three different simulated clinical sample quick preparation protocols were evaluated to establish a rapid and straightforward treatment procedure for clinical specimens in open field detection. The RT-LAMP assay for detection of ZIKV demonstrated superior specificity and sensitivity compared to traditional PCR at the optimum reaction temperature. For the ZIKV RNA standard, the limit of detection was 20 copies/test. For the simulated ZIKV clinical samples, the limit of detection was 0.02 pfu/test, which was one order of magnitude higher than RT-PCR and similar to real-time PCR. The detection limit of simulated ZIKV specimens prepared using a protease quick processing method was consistent with that of samples prepared using commercial nucleic acid extraction kits, indicating that our ZIKV detection method could be used in point-of-care testing. The RT-LAMP assay had excellent sensitivity and specificity for detecting ZIKV and can be deployed together with a rapid specimen processing method, offering the possibility for ZIKV diagnosis outside of the laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Sensitive, microliter PCR with consensus degenerate primers for Epstein Barr virus amplification

    PubMed Central

    Oh, Kyudam; Pak, Nikita; Saunders, D. Curtis; Conrardy, Christina; Landers, James P.; Tong, Suxiang; Forest, Craig R.

    2016-01-01

    Sensitive identification of the etiology of viral diseases is key to implementing appropriate prevention and treatment. The gold standard for virus identification is the polymerase chain reaction (PCR), a technique that allows for highly specific and sensitive detection of pathogens by exponentially amplifying a specific region of DNA from as little as a single copy through thermocycling a biochemical cocktail. Today, molecular biology laboratories use commercial instruments that operate in 0.5–2 h/analysis using reaction volumes of 5–50 μL contained within polymer tubes or chambers. Towards reducing this volume and maintaining performance, we present a semi-quantitative, systematic experimental study of how PCR yield is affected by tube/chamber substrate, surface-area-to-volume ratio (SA:V), and passivation methods. We perform PCR experiments using traditional PCR tubes as well as using disposable polymer microchips with 1 μL reaction volumes thermocycled using water baths. We report the first oil encapsulation microfluidic PCR method without fluid flow and its application to the first microfluidic amplification of Epstein Barr virus using consensus degenerate primers, a powerful and broad PCR method to screen for both known and novel members of a viral family. The limit of detection is measured as 140 starting copies of DNA from a starting concentration of 3×105 copies/mL, regarded as an accepted sensitivity threshold for diagnostic purposes, and reaction specificity was improved as compared to conventional methods. Also notable, these experiments were conducted with conventional reagent concentrations, rather than commonly spiked enzyme and/or template mixtures. This experimental study of the effects of substrate, SA:V, and passivation, together with sensitive and specific microfluidic PCR with consensus degenerate primers represent advances towards lower cost and higher throughput pathogen screening. PMID:23080522

  11. Molecular diagnosis of canine visceral leishmaniasis: a comparative study of three methods using skin and spleen from dogs with natural Leishmania infantum infection.

    PubMed

    Reis, Levi Eduardo Soares; Coura-Vital, Wendel; Roatt, Bruno Mendes; Bouillet, Leoneide Érica Maduro; Ker, Henrique Gama; Fortes de Brito, Rory Cristiane; Resende, Daniela de Melo; Carneiro, Mariângela; Giunchetti, Rodolfo Cordeiro; Marques, Marcos José; Carneiro, Cláudia Martins; Reis, Alexandre Barbosa

    2013-11-08

    Polymerase chain reaction (PCR) and its variations represent highly sensitive and specific methods for Leishmania DNA detection and subsequent canine visceral leishmaniasis (CVL) diagnosis. The aim of this work was to compare three different molecular diagnosis techniques (conventional PCR [cPCR], seminested PCR [snPCR], and quantitative PCR [qPCR]) in samples of skin and spleen from 60 seropositive dogs by immunofluorescence antibody test and enzyme-linked immunosorbent assay. Parasitological analysis was conducted by culture of bone marrow aspirate and optical microscopic assessment of ear skin and spleen samples stained with Giemsa, the standard tests for CVL diagnosis. The primers L150/L152 and LINR4/LIN17/LIN19 were used to amplify the conserved region of the Leishmania kDNA minicircle in the cPCR, and snPCR and qPCR were performed using the DNA polymerase gene (DNA pol α) primers from Leishmania infantum. The parasitological analysis revealed parasites in 61.7% of the samples. Sensitivities were 89.2%, 86.5%, and 97.3% in the skin and 81.1%, 94.6%, and 100.0% in spleen samples used for cPCR, snPCR, and qPCR, respectively. We demonstrated that the qPCR method was the best technique to detect L. infantum in both skin and spleen samples. However, we recommend the use of skin due to the high sensitivity and sampling being less invasive. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.

    2015-01-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872

  13. A rapid method for determining salinomycin and monensin sensitivity in Eimeria tenella.

    PubMed

    Jenkins, M C; O'Brien, C N; Fuller, L; Mathis, G F; Fetterer, R

    2014-12-15

    Standard methods of determining the ionophore sensitivity of Eimeria rely on infecting chickens with an isolate or a mixture of Eimeria spp. oocysts in the presence of different anti-coccidial drugs. The purpose of this study was to develop a rapid in vitro method for assessing salinomycin and monensin sensitivity in Eimeria tenella. Cultures of MDBK cells were grown to 85% confluency, and then inoculated with excysted E. tenella laboratory strain (APU-1) sporozoites in the presence of different concentrations of salinomycin or monensin. At various timepoints, the monolayers were fixed for counting intraceullar sporozoites, or were subjected to DNA extraction, followed by molecular analysis using quantitative (qPCR) or semi-quantitative PCR (sqPCR). Preliminary experiments showed that 24h was the optimum time for harvesting the E. tenella-infected cell cultures. The average number of E. tenella sporozoites relative to untreated controls displayed a linear decrease between 0.3 and 33.0 μg/ml salinomycin and between 0.3 and 3.3 μg/ml monensin. A similar pattern was observed in the relative amount of E. tenella DNA as measured by sqPCR. A linear decrease in the relative amount of E. tenella DNA was observed over the entire range of salinomycin and monensin concentrations as measured by qPCR possibly reflecting the greater sensitivity of this assay. Comparison of sporozoite counting, sqPCR, and qPCR signals using a criterion of 50% inhibition in sporozoite numbers or level of PCR amplification product showed good agreement between the three assays. E. tenella field isolates (FS-1 and FS-2) displaying resistance to salinomycin and monensin were evaluated in the in vitro assay using qPCR and sqPCR. Compared to E. tenella APU-1, the E. tenella FS-1 and FS-2 isolates showed higher levels of E. tenella DNA at 24h by both qPCR and sqPCR. This in vitro assay represents a significant advance in developing rapid, cost-effective methods for assessing ionophore sensitivity in E. tenella. Published by Elsevier B.V.

  14. Diagnosis of Cetacean morbillivirus: A sensitive one step real time RT fast-PCR method based on SYBR(®) Green.

    PubMed

    Sacristán, Carlos; Carballo, Matilde; Muñoz, María Jesús; Bellière, Edwige Nina; Neves, Elena; Nogal, Verónica; Esperón, Fernando

    2015-12-15

    Cetacean morbillivirus (CeMV) (family Paramyxoviridae, genus Morbillivirus) is considered the most pathogenic virus of cetaceans. It was first implicated in the bottlenose dolphin (Tursiops truncatus) mass stranding episode along the Northwestern Atlantic coast in the late 1980s, and in several more recent worldwide epizootics in different Odontoceti species. This study describes a new one step real-time reverse transcription fast polymerase chain reaction (real-time RT-fast PCR) method based on SYBR(®) Green to detect a fragment of the CeMV fusion protein gene. This primer set also works for conventional RT-PCR diagnosis. This method detected and identified all three well-characterized strains of CeMV: porpoise morbillivirus (PMV), dolphin morbillivirus (DMV) and pilot whale morbillivirus (PWMV). Relative sensitivity was measured by comparing the results obtained from 10-fold dilution series of PMV and DMV positive controls and a PWMV field sample, to those obtained by the previously described conventional phosphoprotein gene based RT-PCR method. Both the conventional and real-time RT-PCR methods involving the fusion protein gene were 100- to 1000-fold more sensitive than the previously described conventional RT-PCR method. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    PubMed

    Sergueev, Kirill V; He, Yunxiu; Borschel, Richard H; Nikolich, Mikeljon P; Filippov, Andrey A

    2010-06-28

    Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  16. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved.

  17. [The establishment of a novel method of nano-immunomagnetic separation and Real-time PCR for detecting Vibrio cholerae from seafood].

    PubMed

    Cheng, Jinxia; Zeng, Jing; Liu, Li; Wei, Haiyan; Zhao, Xiaojuan; Zhang, Ximeng; Zhang, Lei; Zhang, Haiyu

    2014-02-01

    A novel method of Nano-Immunomagnetic Separation (Nano-IMS) plus Real-time PCR was established for detecting Vibrio cholerae. The Nano-Immunomagnetic Beads were created by using the monoclonal antibody of Vibrio cholerae, which was named Nano-IMB-Vc. Nano-IMB-Vc has specific adsorption of Vibrio cholerae, combined with Real-time PCR technology, a method for rapid detection of Vibrio cholerae was established. The capture specificity of Nano-IMB-Vc was tested by using 15 bacteria strains. The specificity of Real-time PCR method was tested by using 102 targets and 101 non-targets bacteria strains. The sensitivity of Nano-IMS plus Real-time PCR were tested in pure culture and in artificial samples and compared with NMKL No.156. The capture ratio of Nano-IMB-Vc was reached 70.2% at the level of 10(3) CFU/ml. In pure culture, the sensitivity of Nano-IMS plus Real-time PCR was reached at 5.4×10(2) CFU/ml. The specific of Real-time PCR method was tested by using 102 targets and 101 non-targets bacteria. The results showed that 102 strains of Vibrio cholerae test results were all positive, and the rest of the 101 strains of non-target bacteria test results were negative. No cross-reaction was founded. Add 1 CFU vibrio cholerae per 25 g sample, it could be detect with Nano-IMS plus Real-time PCR method after 8 hours enrichment. The Nano-IMS plus Real-time PCR method of Vibrio cholerae established in this study has good specificity and sensitivity, which could be applied to the rapid detection of Vibrio cholerae.

  18. Sensitivity of diagnostic methods for Mansonella ozzardi microfilariae detection in the Brazilian Amazon Region

    PubMed Central

    Medeiros, Jansen Fernandes; Fontes, Gilberto; do Nascimento, Vilma Lopes; Rodrigues, Moreno; Cohen, Jacob; de Andrade, Edmar Vaz; Pessoa, Felipe Arley Costa; Martins, Marilaine

    2018-01-01

    BACKGROUND The human filarial worm Mansonella ozzardi is highly endemic in the large tributaries of the Amazon River. This infection is still highly neglected and can be falsely negative when microfilariae levels are low. OBJECTIVES This study investigated the frequency of individuals with M. ozzardi in riverine communities in Coari municipality, Brazilian Amazon. METHODS Different diagnostic methods including polymerase chain reaction (PCR), blood polycarbonate membrane filtration (PCMF), Knott's method (Knott), digital thick blood smears (DTBS) and venous thick blood smears (VTBS) were used to compare sensitivity and specificity among the methods. Data were analysed using PCMF and Bayesian latent class models (BLCM) as the gold standard. We used BLCM to calculate the prevalence of mansonelliasis based on the results of five diagnostic methods. FINDINGS The prevalence of mansonelliasis was 35.4% by PCMF and 30.1% by BLCM. PCR and Knott methods both possessed high sensitivity. Sensitivity relative to PCMF was 98.5% [95% confidence interval (CI): 92.0 - 99.7] for PCR and 83.5% (95% CI: 72.9 - 90.5) for Knott. Sensitivity derived by BLCM was 100% (95% CI 93.7 - 100) for PCMF, 100% (95% CI: 93.7 - 100) for PCR and 98.3% (95% CI: 90.6 - 99.9) for Knott. The odds ratio of being diagnosed as microfilaremic increased with age but did not differ between genders. Microfilariae loads were higher in subjects aged 30 - 45 and 45 - 60 years. MAIN CONCLUSIONS PCMF and PCR were the best methods to assess the prevalence of mansonelliasis in our samples. As such, using these methods could lead to higher prevalence of mansonelliasis in this region than the most commonly used method (i.e., thick blood smears). PMID:29412356

  19. Application of Reverse Transcriptase -PCR (RT-PCR) for rapid detection of viable Escherichia coli in drinking water samples.

    PubMed

    Molaee, Neda; Abtahi, Hamid; Ghannadzadeh, Mohammad Javad; Karimi, Masoude; Ghaznavi-Rad, Ehsanollah

    2015-01-01

    Polymerase chain reaction (PCR) is preferred to other methods for detecting Escherichia coli (E. coli) in water in terms of speed, accuracy and efficiency. False positive result is considered as the major disadvantages of PCR. For this reason, reverse transcriptase-polymerase chain reaction (RT-PCR) can be used to solve this problem. The aim of present study was to determine the efficiency of RT-PCR for rapid detection of viable Escherichia coli in drinking water samples and enhance its sensitivity through application of different filter membranes. Specific primers were designed for 16S rRNA and elongation Factor II genes. Different concentrations of bacteria were passed through FHLP and HAWP filters. Then, RT-PCR was performed using 16srRNA and EF -Tu primers. Contamination of 10 wells was determined by RT-PCR in Arak city. To evaluate RT-PCR efficiency, the results were compared with most probable number (MPN) method. RT-PCR is able to detect bacteria in different concentrations. Application of EF II primers reduced false positive results compared to 16S rRNA primers. The FHLP hydrophobic filters have higher ability to absorb bacteria compared with HAWB hydrophilic filters. So the use of hydrophobic filters will increase the sensitivity of RT-PCR. RT-PCR shows a higher sensitivity compared to conventional water contamination detection method. Unlike PCR, RT-PCR does not lead to false positive results. The use of EF-Tu primers can reduce the incidence of false positive results. Furthermore, hydrophobic filters have a higher ability to absorb bacteria compared to hydrophilic filters.

  20. Highly Sensitive Detection of Low-Abundance White Spot Syndrome Virus by a Pre-Amplification PCR Method.

    PubMed

    Pan, Xiaoming; Zhang, Yanfang; Sha, Xuejiao; Wang, Jing; Li, Jing; Dong, Ping; Liang, Xingguo

    2017-03-28

    White spot syndrome virus (WSSV) is a major threat to the shrimp farming industry and so far there is no effective therapy for it, and thus early diagnostic of WSSV is of great importance. However, at the early stage of infection, the extremely low-abundance of WSSV DNA challenges the detection sensitivity and accuracy of PCR. To effectively detect low-abundance WSSV, here we developed a pre-amplification PCR (pre-amp PCR) method to amplify trace amounts of WSSV DNA from massive background genomic DNA. Combining with normal specific PCR, 10 copies of target WSSV genes were detected from ~10 10 magnitude of backgrounds. In particular, multiple target genes were able to be balanced amplified with similar efficiency due to the usage of the universal primer. The efficiency of the pre-amp PCR was validated by nested-PCR and quantitative PCR, and pre-amp PCR showed higher efficiency than nested-PCR when multiple targets were detected. The developed method is particularly suitable for the super early diagnosis of WSSV, and has potential to be applied in other low-abundance sample detection cases.

  1. FlindersTechnology Associates (FTA) filter paper-based DNA extraction with polymerase chain reaction (PCR) for detection of Pneumocystis jirovecii from respiratory specimens of immunocompromised patients.

    PubMed

    Nuchprayoon, Surang; Saksirisampant, Wilai; Jaijakul, Siraya; Nuchprayoon, Issarang

    2007-01-01

    We evaluated the diagnostic value of Flinders Technology Associates (FTA) filter paper together with polymerase chain reaction (PCR) for detection of Pneumocystis jirovecii (carinii) from induced sputum (IS) and bronchoalveolar lavage fluid (BALF) samples. The study involved 162 patients with clinical diagnosis of pneumocystis pneumonia (PcP) of human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) patients and other immunocompromised patients. P. jirovecii cysts or trophozoites were detected in IS and BALF by cytological method. The mitochondrial 5S ribosomal ribonucleic acid (rRNA) gene of P. jirovecii was amplified from these samples by using FTA filters together with a one-step PCR method (FTA-PCR). With the FTA-PCR method, the sensitivity and specificity of the test compared to microscopic examination were 67% and 90% for IS, while they were 67% and 91% for BALF, respectively. The sensitivity and specificity of the FTA-PCR test was also comparable to PCR with the conventional deoxyribonucleic acid (DNA) extraction method. We concluded that FTA-PCR is useful to detect P. jirovecii in noninvasive IS.

  2. [Identification of hepatitis B virus YMDD point mutation using peptide nucleic acid clamping PCR].

    PubMed

    Zhang, Yingying; He, Haitang; Yang, Jie; Hou, Jinlin

    2013-06-01

    To establish a peptide nucleic acid clamping PCR assay for detecting hepatitis B virus (HBV) drug resistance mutation. RtM204I (ATT) mutant, rtM204V (GTG) mutant and rtM204 (ATG) wild-type plasmids mixed at different ratios were detected for mutations by PNA clamping PCR assay and direct sequencing, and the sensitivity and specificity of the two methods were compared. Serum samples from 85 patients with chronic HBV infection were detected for drug resistance using the two methods. The sensitivity of PNA-PCR assay was 0.001% in a 10(5)-fold excess of wild-type HBV DNA with a detection limit of 10(1) copies. The sensitivity of direct sequencing was 10% with a detection limit of 10(4) copies. Mutants were detected in 73 of the 85 serum samples (85.9%), including YIDD in 40 samples, YVDD in 23 samples, and YIDD+YVDD in 10 samples. The agreement of PNA-PCR assay with direct sequencing was only 40% (34/85, YIDD in 21 samples, YVDD in 11 samples, and YIDD+YVDD in 2 samples). Neither of the two methods yielded positive results for the negative control samples, suggesting their good specificity. PNA-PCR assay appears to be a more sensitive and rapid assay for detection of HBV genotypic resistance.

  3. Sensitivity of diagnostic methods for Mansonella ozzardi microfilariae detection in the Brazilian Amazon Region.

    PubMed

    Medeiros, Jansen Fernandes; Fontes, Gilberto; Nascimento, Vilma Lopes do; Rodrigues, Moreno; Cohen, Jacob; Andrade, Edmar Vaz de; Pessoa, Felipe Arley Costa; Martins, Marilaine

    2018-03-01

    The human filarial worm Mansonella ozzardi is highly endemic in the large tributaries of the Amazon River. This infection is still highly neglected and can be falsely negative when microfilariae levels are low. This study investigated the frequency of individuals with M. ozzardi in riverine communities in Coari municipality, Brazilian Amazon. Different diagnostic methods including polymerase chain reaction (PCR), blood polycarbonate membrane filtration (PCMF), Knott's method (Knott), digital thick blood smears (DTBS) and venous thick blood smears (VTBS) were used to compare sensitivity and specificity among the methods. Data were analysed using PCMF and Bayesian latent class models (BLCM) as the gold standard. We used BLCM to calculate the prevalence of mansonelliasis based on the results of five diagnostic methods. The prevalence of mansonelliasis was 35.4% by PCMF and 30.1% by BLCM. PCR and Knott methods both possessed high sensitivity. Sensitivity relative to PCMF was 98.5% [95% confidence interval (CI): 92.0 - 99.7] for PCR and 83.5% (95% CI: 72.9 - 90.5) for Knott. Sensitivity derived by BLCM was 100% (95% CI 93.7 - 100) for PCMF, 100% (95% CI: 93.7 - 100) for PCR and 98.3% (95% CI: 90.6 - 99.9) for Knott. The odds ratio of being diagnosed as microfilaremic increased with age but did not differ between genders. Microfilariae loads were higher in subjects aged 30 - 45 and 45 - 60 years. PCMF and PCR were the best methods to assess the prevalence of mansonelliasis in our samples. As such, using these methods could lead to higher prevalence of mansonelliasis in this region than the most commonly used method (i.e., thick blood smears).

  4. Evaluation of multiplex tandem real-time PCR for detection of Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis in clinical stool samples.

    PubMed

    Stark, D; Al-Qassab, S E; Barratt, J L N; Stanley, K; Roberts, T; Marriott, D; Harkness, J; Ellis, J T

    2011-01-01

    The aim of this study was to describe the first development and evaluation of a multiplex tandem PCR (MT-PCR) assay for the detection and identification of 4 common pathogenic protozoan parasites, Cryptosporidium spp., Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis, from human clinical samples. A total of 472 fecal samples submitted to the Department of Microbiology at St. Vincent's Hospital were included in the study. The MT-PCR assay was compared to four real-time PCR (RT-PCR) assays and microscopy by a traditional modified iron hematoxylin stain. The MT-PCR detected 28 G. intestinalis, 26 D. fragilis, 11 E. histolytica, and 9 Cryptosporidium sp. isolates. Detection and identification of the fecal protozoa by MT-PCR demonstrated 100% correlation with the RT-PCR results, and compared to RT-PCR, MT-PCR exhibited 100% sensitivity and specificity, while traditional microscopy of stained fixed fecal smears exhibited sensitivities and specificities of 56% and 100% for Cryptosporidium spp., 38% and 99% for D. fragilis, 47% and 97% for E. histolytica, and 50% and 100% for G. intestinalis. No cross-reactivity was detected in 100 stool samples containing various other bacterial, viral, and protozoan species. The MT-PCR assay was able to provide rapid, sensitive, and specific simultaneous detection and identification of the four most important diarrhea-causing protozoan parasites that infect humans. This study also highlights the lack of sensitivity demonstrated by microscopy, and thus, molecular methods such as MT-PCR must be considered the diagnostic methods of choice for enteric protozoan parasites.

  5. Use of the polymerase chain reaction to directly detect malaria parasites in blood samples from the Venezuelan Amazon.

    PubMed

    Laserson, K F; Petralanda, I; Hamlin, D M; Almera, R; Fuentes, M; Carrasquel, A; Barker, R H

    1994-02-01

    We have examined the reproducibility, sensitivity, and specificity of detecting Plasmodium falciparum using the polymerase chain reaction (PCR) and the species-specific probe pPF14 under field conditions in the Venezuelan Amazon. Up to eight samples were field collected from each of 48 consenting Amerindians presenting with symptoms of malaria. Sample processing and analysis was performed at the Centro Amazonico para la Investigacion y Control de Enfermedades Tropicales Simon Bolivar. A total of 229 samples from 48 patients were analyzed by PCR methods using four different P. falciparum-specific probes. One P. vivax-specific probe and by conventional microscopy. Samples in which results from PCR and microscopy differed were reanalyzed at a higher sensitivity by microscopy. Results suggest that microscopy-negative, PCR-positive samples are true positives, and that microscopy-positive and PCR-negative samples are true negatives. The sensitivity of the DNA probe/PCR method was 78% and its specificity was 97%. The positive predictive value of the PCR method was 88%, and the negative predictive value was 95%. Through the analysis of multiple blood samples from each individual, the DNA probe/PCR methodology was found to have an inherent reproducibility that was highly statistically significant.

  6. Indel analysis by droplet digital PCR: a sensitive method for DNA mixture detection and chimerism analysis.

    PubMed

    Santurtún, Ana; Riancho, José A; Arozamena, Jana; López-Duarte, Mónica; Zarrabeitia, María T

    2017-01-01

    Several methods have been developed to determinate genetic profiles from a mixed samples and chimerism analysis in transplanted patients. The aim of this study was to explore the effectiveness of using the droplet digital PCR (ddPCR) for mixed chimerism detection (a mixture of genetic profiles resulting after allogeneic hematopoietic stem cell transplantation (HSCT)). We analyzed 25 DNA samples from patients who had undergone HSCT and compared the performance of ddPCR and two established methods for chimerism detection, based upon the Indel and STRs analysis, respectively. Additionally, eight artificial mixture DNA samples were created to evaluate the sensibility of ddPCR. Our results show that the chimerism percentages estimated by the analysis of a single Indel using ddPCR were very similar to those calculated by the amplification of 15 STRs (r 2  = 0.970) and with the results obtained by the amplification of 38 Indels (r 2  = 0.975). Moreover, the amplification of a single Indel by ddPCR was sensitive enough to detect a minor DNA contributor comprising down to 0.5 % of the sample. We conclude that ddPCR can be a powerful tool for the determination of a genetic profile of forensic mixtures and clinical chimerism analysis when traditional techniques are not sensitive enough.

  7. Evaluation by latent class analysis of a magnetic capture based DNA extraction followed by real-time qPCR as a new diagnostic method for detection of Echinococcus multilocularis in definitive hosts.

    PubMed

    Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke

    2016-10-30

    A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    PubMed

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Comparison of methods for identifying causative bacterial microorganisms in presumed acute endophthalmitis: conventional culture, blood culture, and PCR.

    PubMed

    Pongsachareonnont, Pear; Honglertnapakul, Worawalun; Chatsuwan, Tanittha

    2017-02-21

    Identification of bacterial pathogens in endophthalmitis is important to inform antibiotic selection and treatment decisions. Hemoculture bottles and polymerase chain reaction (PCR) analysis have been proposed to offer good detection sensitivity. This study compared the sensitivity and accuracy of a blood culture system, a PCR approach, and conventional culture methods for identification of causative bacteria in cases of acute endophthalmitis. Twenty-nine patients with a diagnosis of presumed acute bacterial endophthalmitis who underwent vitreous specimen collection at King Chulalongkorn Memorial Hospital were enrolled in this study. Forty-one specimens were collected. Each specimen was divided into three parts, and each part was analyzed using one of three microbial identification techniques: conventional plate culture, blood culture, and polymerase chain reaction and sequencing. The results of the three methods were then compared. Bacteria were identified in 15 of the 41 specimens (36.5%). Five (12.2%) specimens were positive by conventional culture methods, 11 (26.8%) were positive by hemoculture, and 11 (26.8%) were positive by PCR. Cohen's kappa analysis revealed p-values for conventional methods vs. hemoculture, conventional methods vs. PCR, and hemoculture vs. PCR of 0.057, 0.33, and 0.009, respectively. Higher detection rates of Enterococcus faecalis were observed for hemoculture and PCR than for conventional methods. Blood culture bottles and PCR detection may facilitate bacterial identification in cases of presumed acute endophthalmitis. These techniques should be used in addition to conventional plate culture methods because they provide a greater degree of sensitivity than conventional plate culture alone for the detection of specific microorganisms such as E. faecalis. Thai Clinical Trial Register No. TCTR20110000024 .

  10. Monitoring and improving the sensitivity of dengue nested RT-PCR used in longitudinal surveillance in Thailand.

    PubMed

    Klungthong, Chonticha; Manasatienkij, Wudtichai; Phonpakobsin, Thipwipha; Chinnawirotpisan, Piyawan; Rodpradit, Prinyada; Hussem, Kittinun; Thaisomboonsuk, Butsaya; Ong-ajchaowlerd, Prapapun; Nisalak, Ananda; Kalayanarooj, Siripen; Buddhari, Darunee; Gibbons, Robert V; Jarman, Richard G; Yoon, In-Kyu; Fernandez, Stefan

    2015-02-01

    AFRIMS longitudinal dengue surveillance in Thailand depends on the nested RT-PCR and the dengue IgM/IgG ELISA. To examine and improve the sensitivity of the nested RT-PCR using a panel of archived samples collected during dengue surveillance. A retrospective analysis of 16,454 dengue IgM/IgG ELISA positive cases collected between 2000 and 2013 was done to investigate the sensitivity of the nested RT-PCR. From these cases, 318 acute serum specimens or extracted RNA, previously found to be negative by the nested RT-PCR, were tested using TaqMan real-time RT-PCR (TaqMan rRT-PCR). To improve the sensitivity of nested RT-PCR, we designed a new primer based on nucleotide sequences from contemporary strains found to be positive by the TaqMan rRT-PCR. Sensitivity of the new nested PCR was calculated using a panel of 87 samples collected during 2011-2013. The percentage of dengue IgM/IgG ELISA positive cases that were negative by the nested RT-PCR varied from 17% to 42% for all serotypes depending on the year. Using TaqMan rRT-PCR, dengue RNA was detected in 194 (61%) of the 318 acute sera or extracted RNA previously found to be negative by the nested RT-PCR. The newly designed DENV-1 specific primer increased the sensitivity of DENV-1 detection by the nested RT-PCR from 48% to 88%, and of all 4 serotypes from 73% to 87%. These findings demonstrate the impact of genetic diversity and signal erosion on the sensitivity of PCR-based methods. Published by Elsevier B.V.

  11. Comparison of PCR-Based Diagnosis with Centrifuged-Based Enrichment Method for Detection of Borrelia persica in Animal Blood Samples.

    PubMed

    Naddaf, S R; Kishdehi, M; Siavashi, Mr

    2011-01-01

    The mainstay of diagnosis of relapsing fever (RF) is demonstration of the spirochetes in Giemsa-stained thick blood smears, but during non fever periods the bacteria are very scanty and rarely detected in blood smears by microscopy. This study is aimed to evaluate the sensitivity of different methods developed for detection of low-grade spirochetemia. Animal blood samples with low degrees of spirochetemia were tested with two PCRs and a nested PCR targeting flaB, GlpQ, and rrs genes. Also, a centrifuged-based enrichment method and Giemsa staining were performed on blood samples with various degrees of spirochetemia. The flaB-PCR and nested rrs-PCR turned positive with various degrees of spirochetemia including the blood samples that turned negative with dark-field microscopy. The GlpQ-PCR was positive as far as at least one spirochete was seen in 5-10 microscopic fields. The sensitivity of GlpQ-PCR increased when DNA from Buffy Coat Layer (BCL) was used as template. The centrifuged-based enrichment method turned positive with as low concentration as 50 bacteria/ml blood, while Giemsa thick staining detected bacteria with concentrations ≥ 25000 bacteria/ml. Centrifuged-based enrichment method appeared as much as 500-fold more sensitive than thick smears, which makes it even superior to some PCR assays. Due to simplicity and minimal laboratory requirements, this method can be considered a valuable tool for diagnosis of RF in rural health centers.

  12. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus.

    PubMed

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-10-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium , has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium . The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.

  13. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    PubMed Central

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  14. Comparison of the genexpert enterovirus assay (GXEA) with real-time one step RT-PCR for the detection of enteroviral RNA in the cerebrospinal fluid of patients with meningitis.

    PubMed

    Hong, JiYoung; Kim, Ahyoun; Hwang, Seoyeon; Cheon, Doo-Sung; Kim, Jong-Hyen; Lee, June-Woo; Park, Jae-Hak; Kang, Byunghak

    2015-02-13

    Enteroviruses (EVs) are the leading cause of aseptic meningitis worldwide. Detection of enteroviral RNA in clinical specimens has been demonstrated to improve the management of patient care, especially that of neonates and young children. To establish a sensitive and reliable assay for routine laboratory diagnosis, we compared the sensitivity and specificity of the GeneXpert Enterovirus Assay (GXEA) with that of the reverse transcription polymerase chain reaction (RT-PCR) based assay referred to as real-time one step RT-PCR (RTo-PCR). The sensitivity/specificity produced by GXEA and RTo-PCR were 100%/100% and 65%/100%, respectively. Both methods evaluated in this article can be used for detection of enterovirus in clinical specimens and these nucleic acid amplification methods are useful assays for the diagnosis of enteroviral infection.

  15. Methods for Integrated Air Sampling and DNA Analysis for Detection of Airborne Fungal Spores

    PubMed Central

    Williams, Roger H.; Ward, Elaine; McCartney, H. Alastair

    2001-01-01

    Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting. PMID:11375150

  16. Evaluation of a Commercial Multiplex PCR for Rapid Detection of Multi Drug Resistant Gram Negative Infections

    PubMed Central

    Chavada, Ruchir; Maley, Michael

    2015-01-01

    Introduction: Community and healthcare associated infections caused by multi-drug resistant gram negative organisms (MDR GN) represent a worldwide threat. Nucleic Acid Detection tests are becoming more common for their detection; however they can be expensive requiring specialised equipment and local expertise. This study was done to evaluate the utility of a commercial multiplex tandem (MT) PCR for detection of MDR GN. Methods: The study was done on stored laboratory MDR GN isolates from sterile and non-sterile specimens (n=126, out of stored 567 organisms). Laboratory validation of the MT PCR was done to evaluate sensitivity, specificity and agreement with the current phenotypic methods used in the laboratory. Amplicon sequencing was also done on selected isolates for assessing performance characteristics. Workflow and cost implications of the MT PCR were evaluated. Results: The sensitivity and specificity of the MT PCR were calculated to be 95% and 96.7% respectively. Agreement with the phenotypic methods was 80%. Major lack of agreement was seen in detection of AmpC beta lactamase in enterobacteriaceae and carbapenemase in non-fermenters. Agreement of the MT PCR with another multiplex PCR was found to be 87%. Amplicon sequencing confirmed the genotype detected by MT PCR in 94.2 % of cases tested. Time to result was faster for the MT PCR but cost per test was higher. Conclusion: This study shows that with carefully chosen targets for detection of resistance genes in MDR GN, rapid and efficient identification is possible. MT PCR was sensitive and specific and likely more accurate than phenotypic methods. PMID:26464612

  17. Adaptation of red blood cell lysis represents a fundamental breakthrough that improves the sensitivity of Salmonella detection in blood

    PubMed Central

    Boyd, MA; Tennant, SM; Melendez, JH; Toema, D; Galen, JE; Geddes, CD; Levine, MM

    2015-01-01

    Aims Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocytes. The objective of this study was to evaluate various blood treatment methods that could be used prior to PCR, real-time PCR or MAMEF to increase sensitivity of detection of Salmonella. Methods and Results We tested ammonium chloride and erythrocyte lysis buffer, water, Lymphocyte Separation Medium, BD Vacutainer® CPT™ Tubes and dextran. Erythrocyte lysis buffer was the best isolation method as it is fast, inexpensive and works with either fresh or stored blood. The sensitivity of PCR- and real-time PCR detection of Salmonella in spiked blood was improved when whole blood was first lysed using erythrocyte lysis buffer prior to DNA extraction. Removal of erythrocytes and clotting factors also enabled reproducible lysis of Salmonella and fragmentation of DNA, which are necessary for MAMEF sensing. Conclusions Use of the erythrocyte lysis procedure prior to DNA extraction has enabled improved sensitivity of Salmonella detection by PCR and real-time PCR and has allowed lysis and fragmentation of Salmonella using microwave radiation (for future detection by MAMEF). Significance and Impact of the Study Adaptation of the blood lysis method represents a fundamental breakthrough that improves the sensitivity of DNA-based detection of Salmonella in blood. PMID:25630831

  18. Micro-droplet Digital Polymerase Chain Reaction and Real-Time Quantitative Polymerase Chain Reaction Technologies Provide Highly Sensitive and Accurate Detection of Zika Virus.

    PubMed

    Hui, Yuan; Wu, Zhiming; Qin, Zhiran; Zhu, Li; Liang, Junhe; Li, Xujuan; Fu, Hanmin; Feng, Shiyu; Yu, Jianhai; He, Xiaoen; Lu, Weizhi; Xiao, Weiwei; Wu, Qinghua; Zhang, Bao; Zhao, Wei

    2018-06-01

    The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus (ZIKV) and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital polymerase chain reaction (ddPCR) and real-time quantitative PCR (RT-qPCR) protocols for the detection of ZIKV based on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold (Ct) value was linear from 10 1 to 10 8  copy/μL, with a standard curve R 2 of 0.999 and amplification efficiency of 92.203%; however, a concentration as low as 1 copy/μL could not be detected. In comparison with RT-qPCR, the ddPCR method resulted in a linear range of 10 1 -10 4  copy/μL and was able to detect concentrations as low as 1 copy/μL. Thus, for detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples (above 10 1  copy/μL), while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.

  19. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya.

  20. Evaluation of a Rapid Fecal PCR Test for Detection of Mycobacterium avium subsp. paratuberculosis in Dairy Cattle▿

    PubMed Central

    Wells, Scott J.; Collins, Michael T.; Faaberg, Kay S.; Wees, Carrie; Tavornpanich, Saraya; Petrini, Kristine R.; Collins, James E.; Cernicchiaro, Natalia; Whitlock, Robert H.

    2006-01-01

    A high-throughput TaqMan PCR assay for detection of bovine paratuberculosis was evaluated by using fecal samples from 1,808 dairy cattle in seven naturally infected herds and 347 dairy cattle in seven herds considered free of paratuberculosis. Fecal, blood, and milk samples were submitted to laboratories where the PCR-based assay, three different fecal culture procedures for Mycobacterium avium subsp. paratuberculosis (centrifugation, sedimentation, and the BACTEC filter concentration method), two serologic enzyme-linked immunosorbent assays (ELISAs), and one milk ELISA were performed. Results from testing of dairy cattle in herds free of M. avium subsp. paratuberculosis showed that the PCR assay's specificity was 99.7%. Twenty-three percent of the dairy cows that were fecal culture positive by at least one of the three methods were positive by the PCR assay. By Bayesian non-“gold standard” analysis methods, the TaqMan PCR assay had a higher specificity than the serum ELISAs (99.3%; 95% confidence interval [CI] = 98.6 to 99.7%) and a test sensitivity similar to that of the serum ELISAs (29%; 95% CI = 24 to 35%). By classical methods, the estimated relative sensitivity of the fecal PCR assay was 4% for light and moderate fecal shedders (compared to 12 to 13% for the ELISAs) and 76% for heavy fecal shedders (compared to 67% for the milk ELISA). The PCR assay has higher sensitivity for detection of heavy fecal shedders than the evaluated milk ELISA but lower sensitivity than a serum or milk ELISA for detection of light and moderate fecal shedders. This assay can be used as a quick test for detection of cattle with heavy fecal shedding, those cattle with the highest risk of transmitting infection to susceptible cattle. PMID:16928884

  1. Detection of bacterial pathogens in Mongolia meningitis surveillance with a new real-time PCR assay to detect Haemophilus influenzae.

    PubMed

    Wang, Xin; Mair, Raydel; Hatcher, Cynthia; Theodore, M Jordan; Edmond, Karen; Wu, Henry M; Harcourt, Brian H; Carvalho, Maria da Gloria S; Pimenta, Fabiana; Nymadawa, Pagbajab; Altantsetseg, Dorjpurev; Kirsch, Mariah; Satola, Sarah W; Cohn, Amanda; Messonnier, Nancy E; Mayer, Leonard W

    2011-04-01

    Since the implementation of Haemophilus influenzae (Hi) serotype b vaccine, other serotypes and non-typeable strains have taken on greater importance as a cause of Hi diseases. A rapid and accurate method is needed to detect all Hi regardless of the encapsulation status. We developed 2 real-time PCR (rt-PCR) assays to detect specific regions of the protein D gene (hpd). Both hpd assays are very specific and sensitive for detection of Hi. Of the 63 non-Hi isolates representing 21 bacterial species, none was detected by the hpd #1 assay, and only one of 2 H. aphrophilus isolates was detected by the hpd #3 assay. The hpd #1 and #3 assays detected 97% (229/237) and 99% (234/237) of Hi isolates, respectively, and were superior for detection of both typeable and non-typeable Hi isolates, as compared to previously developed rt-PCR targeting ompP2 or bexA. The diagnostic sensitivity and specificity of these rt-PCR assays were assessed on cerebrospinal fluid specimens collected as part of meningitis surveillance in Ulaanbaatar, Mongolia. The etiology (Neisseria meningitidis, Hi, and Streptococcus pneumoniae) of 111 suspected meningitis cases was determined by conventional methods (culture and latex agglutination), previously developed rt-PCR assays, and the new hpd assays. The rt-PCR assays were more sensitive for detection of meningitis pathogens than other classical methods and improved detection from 50% (56/111) to 75% (83/111). The hpd #3 assay identified a non-b Hi that was missed by the bexA assay and other methods. A sensitive rt-PCR assay to detect both typeable and non-typeable Hi is a useful tool for improving Hi disease surveillance especially after Hib vaccine introduction. Published by Elsevier GmbH.

  2. PCR-based detection of Toxoplasma gondii DNA in blood and ocular samples for diagnosis of ocular toxoplasmosis.

    PubMed

    Bourdin, C; Busse, A; Kouamou, E; Touafek, F; Bodaghi, B; Le Hoang, P; Mazier, D; Paris, L; Fekkar, A

    2014-11-01

    PCR detection of Toxoplasma gondii in blood has been suggested as a possibly efficient method for the diagnosis of ocular toxoplasmosis (OT) and furthermore for genotyping the strain involved in the disease. To assess this hypothesis, we performed PCR with 121 peripheral blood samples from 104 patients showing clinical and/or biological evidence of ocular toxoplasmosis and from 284 (258 patients) controls. We tested 2 different extraction protocols, using either 200 μl (small volume) or 2 ml (large volume) of whole blood. Sensitivity was poor, i.e., 4.1% and 25% for the small- and large-volume extractions, respectively. In comparison, PCR with ocular samples yielded 35.9% sensitivity, while immunoblotting and calculation of the Goldmann-Witmer coefficient yielded 47.6% and 72.3% sensitivities, respectively. Performing these three methods together provided 89.4% sensitivity. Whatever the origin of the sample (ocular or blood), PCR provided higher sensitivity for immunocompromised patients than for their immunocompetent counterparts. Consequently, PCR detection of Toxoplasma gondii in blood samples cannot currently be considered a sufficient tool for the diagnosis of OT, and ocular sampling remains necessary for the biological diagnosis of OT. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Detection of Echinococcus multilocularis by MC-PCR: evaluation of diagnostic sensitivity and specificity without gold standard

    PubMed Central

    Wahlström, Helene; Comin, Arianna; Isaksson, Mats; Deplazes, Peter

    2016-01-01

    Introduction A semi-automated magnetic capture probe-based DNA extraction and real-time PCR method (MC-PCR), allowing for a more efficient large-scale surveillance of Echinococcus multilocularis occurrence, has been developed. The test sensitivity has previously been evaluated using the sedimentation and counting technique (SCT) as a gold standard. However, as the sensitivity of the SCT is not 1, test characteristics of the MC-PCR was also evaluated using latent class analysis, a methodology not requiring a gold standard. Materials and methods Test results, MC-PCR and SCT, from a previous evaluation of the MC-PCR using 177 foxes shot in the spring (n=108) and autumn 2012 (n=69) in high prevalence areas in Switzerland were used. Latent class analysis was used to estimate the test characteristics of the MC-PCR. Although it is not the primary aim of this study, estimates of the test characteristics of the SCT were also obtained. Results and discussion This study showed that the sensitivity of the MC-PCR was 0.88 [95% posterior credible interval (PCI) 0.80–0.93], which was not significantly different than the SCT, 0.83 (95% PCI 0.76–0.88), which is currently considered as the gold standard. The specificity of both tests was high, 0.98 (95% PCI 0.94–0.99) for the MC-PCR and 0.99 (95% PCI 0.99–1) for the SCT. In a previous study, using fox scats from a low prevalence area, the specificity of the MC-PCR was higher, 0.999% (95% PCI 0.997–1). One reason for the lower estimate of the specificity in this study could be that the MC-PCR detects DNA from infected but non-infectious rodents eaten by foxes. When using MC-PCR in low prevalence areas or areas free from the parasite, a positive result in the MC-PCR should be regarded as a true positive. Conclusion The sensitivity of the MC-PCR (0.88) was comparable to the sensitivity of SCT (0.83). PMID:26968153

  4. Novel approach based on one-tube nested PCR and a lateral flow strip for highly sensitive diagnosis of tuberculous meningitis.

    PubMed

    Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui; Hu, Guohua

    2017-01-01

    Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation.

  5. Quantification of M13 and T7 bacteriophages by TaqMan and SYBR green qPCR.

    PubMed

    Peng, Xiujuan; Nguyen, Alex; Ghosh, Debadyuti

    2018-02-01

    TaqMan and SYBR Green quantitative PCR (qPCR) methods were developed as DNA-based approaches to reproducibly enumerate M13 and T7 phages from phage display selection experiments individually and simultaneously. The genome copies of M13 and T7 phages were quantified by TaqMan or SYBR Green qPCR referenced against M13 and T7 DNA standard curves of known concentrations. TaqMan qPCR was capable of quantifying M13 and T7 phage DNA simultaneously with a detection range of 2.75*10 1 -2.75*10 8 genome copies(gc)/μL and 2.66*10 1 -2.66*10 8 genome copies(gc)/μL respectively. TaqMan qPCR demonstrated an efficient amplification efficiency (E s ) of 0.97 and 0.90 for M13 and T7 phage DNA, respectively. SYBR Green qPCR was ten-fold more sensitive than TaqMan qPCR, able to quantify 2.75-2.75*10 7 gc/μL and 2.66*10 1 -2.66*10 7 gc/μL of M13 and T7 phage DNA, with an amplification efficiency E s of 1.06 and 0.78, respectively. Due to its superior sensitivity, SYBR Green qPCR was used to enumerate M13 and T7 phage display clones selected against a cell line, and quantified titers demonstrated accuracy comparable to titers from traditional double-layer plaque assay. Compared to enzyme linked immunosorbent assay, both qPCR methods exhibited increased detection sensitivity and reproducibility. These qPCR methods are reproducible, sensitive, and time-saving to determine their titers and to quantify a large number of phage samples individually or simultaneously, thus avoiding the need for time-intensive double-layer plaque assay. These findings highlight the attractiveness of qPCR for phage enumeration for applications ranging from selection to next-generation sequencing (NGS). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Detection of canine distemper virus (CDV) through one step RT-PCR combined with nested PCR.

    PubMed

    Kim, Y H; Cho, K W; Youn, H Y; Yoo, H S; Han, H R

    2001-04-01

    A one step reverse transcription PCR (RT-PCR) combined nested PCR was set up to increase efficiency in the diagnosis of canine distemper virus (CDV) infection after developement of nested PCR. Two PCR primer sets were designed based on the sequence of nucleocapsid gene of CDV Onderstepoort strain. One-step RT-PCR with the outer primer pair was revealed to detect 10(2) PFU/ml. The sensitivity was increased hundredfold using the one-step RT-PCR combined with the nested PCR. Specificity of the PCR was also confirmed using other related canine virus and peripheral blood mononuclear cells (PBMC) and body secretes of healthy dogs. Of the 51 blood samples from dogs clinically suspected of CD, 45 samples were revealed as positive by one-step RT-PCR combined with nested PCR. However, only 15 samples were identified as positive with a single one step RT-PCR. Therefore approximately 60% increase in the efficiency of the diagnosis was observed by the combined method. These results suggested that one step RT-PCR combined with nested PCR could be a sensitive, specific, and practical method for diagnosis of CDV infection.

  7. Diagnosis of Caprine Arthritis Encephalitis Virus infection in dairy goats by ELISA, PCR and Viral Culture.

    PubMed

    Panneum, S; Rukkwamsuk, T

    2017-03-01

    For preventive and control strategies of Caprine Arthritis Encephalitis Virus (CAEV) infection in dairy goats, performance of the available diagnostic tests was described as one of the most important and necessary aspects. The study aimed at evaluating the diagnostic test performance, including PCR, ELISA and viral culture, for CAEV infection in dairy goats in Thailand. Blood samples of 29 dairy goats from five low- to medium-prevalence herds and one very low-prevalence herd were collected for PCR and ELISA methods. The performance of these two diagnostic methods was evaluated by comparing with cytopathic effects (CPE) in the co-cultivation of CAEV and primary synovial cells. Results indicated that sensitivity, specificity were, respectively, 69.6%, 100%, for PCR; and 95.7%, 83.3% for ELISA. The PCR assay tended to have lower sensitivity and higher specificity than ELISA. When multiple tests were applied, parallel testing provided sensitivity and specificity of 98.7% and 83.3%, while series testing showed sensitivity and specificity of 66.6% and 100% respectively. These results indicated that combination of ELISA and PCR provided some advantages and possibly offered optimal methods to detect CAEV-infected goats. Kappa value of the agreement between PCR and ELISA test was 0.34, indicating fair agreement. Regarding the possibility of antigenic variation between CAEV strains used in both PCR and ELISA assays, the actual circulating CAEV strain should be reviewed in order to develop and enhance the diagnostic tests using the CAE viral antigens derived from specific local strains of Thailand.

  8. Diagnosis of Bubonic Plague by PCR in Madagascar under Field Conditions

    PubMed Central

    Rahalison, L.; Vololonirina, E.; Ratsitorahina, M.; Chanteau, S.

    2000-01-01

    The diagnostic value of a PCR assay that amplifies a 501-bp fragment of the Yersinia pestis caf1 gene has been determined in a reference laboratory with 218 bubo aspirates collected from patients with clinically suspected plague managed in a regional hospital in Madagascar. The culture of Y. pestis and the detection of the F1 antigen (Ag) by enzyme-linked immunosorbent assay (ELISA) were used as reference diagnostic methods. The sensitivity of PCR was 89% (57 of 64) for the Y. pestis-positive patients, and 80.7% (63 of 78) for the F1 Ag-positive patients. The specificity of PCR for the culture-, F1 Ag-, and antibody-negative patients (n = 105) was 100%. Because in Madagascar most patients with plague are managed and their clinical samples are collected in remote villages, the usefulness of PCR was evaluated for routine diagnostic use in the operational conditions of the control program. The sensitivity of PCR was 50% (25 of 50) relative to the results of culture and 35.2% (19 of 54) relative to the results of the F1 Ag immunocapture ELISA. The specificity of PCR under these conditions was 96%. In conclusion, the PCR method was found to be very specific but not as sensitive as culture or the F1 Ag detection method. The limitation in sensitivity may have been due to suboptimal field conditions and the small volumes of samples used for DNA extraction. This technique is not recommended as a routine diagnostic test for plague in Madagascar. PMID:10618097

  9. Development and first evaluation of a novel multiplex real-time PCR on whole blood samples for rapid pathogen identification in critically ill patients with sepsis.

    PubMed

    van de Groep, Kirsten; Bos, Martine P; Savelkoul, Paul H M; Rubenjan, Anna; Gazenbeek, Christel; Melchers, Willem J G; van der Poll, Tom; Juffermans, Nicole P; Ong, David S Y; Bonten, Marc J M; Cremer, Olaf L

    2018-04-26

    Molecular tests may enable early adjustment of antimicrobial therapy and be complementary to blood culture (BC) which has imperfect sensitivity in critically ill patients. We evaluated a novel multiplex real-time PCR assay to diagnose bloodstream pathogens directly in whole blood samples (BSI-PCR). BSI-PCR included 11 species- and four genus-specific PCRs, a molecular Gram-stain PCR, and two antibiotic resistance markers. We collected 5 mL blood from critically ill patients simultaneously with clinically indicated BC. Microbial DNA was isolated using the Polaris method followed by automated DNA extraction. Sensitivity and specificity were calculated using BC as reference. BSI-PCR was evaluated in 347 BC-positive samples (representing up to 50 instances of each pathogen covered by the test) and 200 BC-negative samples. Bacterial species-specific PCR sensitivities ranged from 65 to 100%. Sensitivity was 26% for the Gram-positive PCR, 32% for the Gram-negative PCR, and ranged 0 to 7% for yeast PCRs. Yeast detection was improved to 40% in a smaller set-up. There was no overall association between BSI-PCR sensitivity and time-to-positivity of BC (which was highly variable), yet Ct-values were lower for true-positive versus false-positive PCR results. False-positive results were observed in 84 (4%) of the 2200 species-specific PCRs in 200 culture-negative samples, and ranged from 0 to 6% for generic PCRs. Sensitivity of BSI-PCR was promising for individual bacterial pathogens, but still insufficient for yeasts and generic PCRs. Further development of BSI-PCR will focus on improving sensitivity by increasing input volumes and on subsequent implementation as a bedside test.

  10. Sample pooling for real-time PCR detection and virulence determination of the footrot pathogen Dichelobacter nodosus.

    PubMed

    Frosth, Sara; König, Ulrika; Nyman, Ann-Kristin; Aspán, Anna

    2017-09-01

    Dichelobacter nodosus is the principal cause of ovine footrot and strain virulence is an important factor in disease severity. Therefore, detection and virulence determination of D. nodosus is important for proper diagnosis of the disease. Today this is possible by real-time PCR analysis. Analysis of large numbers of samples is costly and laborious; therefore, pooling of individual samples is common in surveillance programs. However, pooling can reduce the sensitivity of the method. The aim of this study was to develop a pooling method for real-time PCR analysis that would allow sensitive detection and simultaneous virulence determination of D. nodosus. A total of 225 sheep from 17 flocks were sampled using ESwabs within the Swedish Footrot Control Program in 2014. Samples were first analysed individually and then in pools of five by real-time PCR assays targeting the 16S rRNA and aprV2/B2 genes of D. nodosus. Each pool consisted of four negative and one positive D. nodosus samples with varying amounts of the bacterium. In the individual analysis, 61 (27.1%) samples were positive in the 16S rRNA and the aprV2/B2 PCR assays and 164 (72.9%) samples were negative. All samples positive in the aprV2/B2 PCR-assay were of aprB2 variant. The pooled analysis showed that all 41 pools were also positive for D. nodosus 16S rRNA and the aprB2 variant. The diagnostic sensitivity for pooled and individual samples was therefore similar. Our method includes concentration of the bacteria before DNA-extraction. This may account for the maintenance of diagnostic sensitivity. Diagnostic sensitivity in the real-time PCR assays of the pooled samples were comparable to the sensitivity obtained for individually analysed samples. Even sub-clinical infections were able to be detected in the pooled PCR samples which is important for control of the disease. This method may therefore be implemented in footrot control programs where it can replace analysis of individual samples.

  11. Real-time PCR detection of Plasmodium directly from whole blood and filter paper samples

    PubMed Central

    2011-01-01

    Background Real-time PCR is a sensitive and specific method for the analysis of Plasmodium DNA. However, prior purification of genomic DNA from blood is necessary since PCR inhibitors and quenching of fluorophores from blood prevent efficient amplification and detection of PCR products. Methods Reagents designed to specifically overcome PCR inhibition and quenching of fluorescence were evaluated for real-time PCR amplification of Plasmodium DNA directly from blood. Whole blood from clinical samples and dried blood spots collected in the field in Colombia were tested. Results Amplification and fluorescence detection by real-time PCR were optimal with 40× SYBR® Green dye and 5% blood volume in the PCR reaction. Plasmodium DNA was detected directly from both whole blood and dried blood spots from clinical samples. The sensitivity and specificity ranged from 93-100% compared with PCR performed on purified Plasmodium DNA. Conclusions The methodology described facilitates high-throughput testing of blood samples collected in the field by fluorescence-based real-time PCR. This method can be applied to a broad range of clinical studies with the advantages of immediate sample testing, lower experimental costs and time-savings. PMID:21851640

  12. Identification of Pseudallescheria and Scedosporium species by three molecular methods.

    PubMed

    Lu, Qiaoyun; Gerrits van den Ende, A H G; Bakkers, J M J E; Sun, Jiufeng; Lackner, M; Najafzadeh, M J; Melchers, W J G; Li, Ruoyu; de Hoog, G S

    2011-03-01

    The major clinically relevant species in Scedosporium (teleomorph Pseudallescheria) are Pseudallescheria boydii, Scedosporium aurantiacum, Scedosporium apiospermum, and Scedosporium prolificans, while Pseudallescheria minutispora, Petriellopsis desertorum, and Scedosporium dehoogii are exceptional agents of disease. Three molecular methods targeting the partial β-tubulin gene were developed and evaluated to identify six closely related species of the S. apiospermum complex using quantitative real-time PCR (qPCR), PCR-based reverse line blot (PCR-RLB), and loop-mediated isothermal amplification (LAMP). qPCR was not specific enough for the identification of all species but had the highest sensitivity. The PCR-RLB assay was efficient for the identification of five species. LAMP distinguished all six species unambiguously. The analytical sensitivities of qPCR, PCR-RLB, and LAMP combined with MagNAPure, CTAB (cetyltrimethylammonium bromide), and FTA filter (Whatman) extraction were 50, 5 × 10(3), and 5 × 10(2) cells/μl, respectively. When LAMP was combined with a simplified DNA extraction method using an FTA filter, identification to the species level was achieved within 2 h, including DNA extraction. The FTA-LAMP assay is therefore recommended as a cost-effective, simple, and rapid method for the identification of Scedosporium species.

  13. The diagnosis of microorganism involved in infective endocarditis (IE) by polymerase chain reaction (PCR) and real-time PCR: A systematic review.

    PubMed

    Faraji, Reza; Behjati-Ardakani, Mostafa; Moshtaghioun, Seyed Mohammad; Kalantar, Seyed Mehdi; Namayandeh, Seyedeh Mahdieh; Soltani, Mohammadhossien; Emami, Mahmood; Zandi, Hengameh; Firoozabadi, Ali Dehghani; Kazeminasab, Mahmood; Ahmadi, Nastaran; Sarebanhassanabadi, Mohammadtaghi

    2018-02-01

    Broad-range bacterial rDNA polymerase chain reaction (PCR) followed by sequencing may be identified as the etiology of infective endocarditis (IE) from surgically removed valve tissue; therefore, we reviewed the value of molecular testing in identifying organisms' DNA in the studies conducted until 2016. We searched Google Scholar, Scopus, ScienceDirect, Cochrane, PubMed, and Medline electronic databases without any time limitations up to December 2016 for English studies reporting microorganisms involved in infective endocarditis microbiology using PCR and real-time PCR. Most studies were prospective. Eleven out of 12 studies used valve tissue samples and blood cultures while only 1 study used whole blood. Also, 10 studies used the molecular method of PCR while 2 studies used real-time PCR. Most studies used 16S rDNA gene as the target gene. The bacteria were identified as the most common microorganisms involved in infective endocarditis. Streptococcus spp. and Staphylococcus spp. were, by far, the most predominant bacteria detected. In all studies, PCR and real-time PCR identified more pathogens than blood and tissue cultures; moreover, the sensitivity and specificity of PCR and real-time PCR were more than cultures in most of the studies. The highest sensitivity and specificity were 96% and 100%, respectively. The gram positive bacteria were the most frequent cause of infective endocarditis. The molecular methods enjoy a greater sensitivity compared to the conventional blood culture methods; yet, they are applicable only to the valve tissue of the patients undergoing cardiac valve surgery. Copyright © 2017. Published by Elsevier Taiwan.

  14. Evaluation of a nested-PCR for mycobacterium tuberculosis detection in blood and urine samples.

    PubMed

    da Cruz, Heidi Lacerda Alves; de Albuquerque Montenegro, Rosana; de Araújo Lima, Juliana Falcão; da Rocha Poroca, Diogo; da Costa Lima, Juliana Figueirêdo; Maria Lapa Montenegro, Lílian; Crovella, Sergio; Charifker Schindler, Haiana

    2011-01-01

    The polymerase chain reaction (PCR) and its variations, such as the nested-PCR, have been described as promising techniques for rapid diagnosis of tuberculosis (TB). With the aim of evaluating the usefulness of a nested-PCR method on samples of blood and urine of patients suspected of tuberculosis we analyzed 192 clinical samples, using as a molecular target the insertion element IS6110 specific of M. tuberculosis genome. Nested-PCR method showed higher sensitivity in patients with extrapulmonary tuberculosis (47.8% and 52% in blood and urine) when compared to patients with the pulmonary form of the disease (sensitivity of 29% and 26.9% in blood and urine), regardless of the type of biological sample used. The nested-PCR is a rapid technique that, even if not showing a good sensitivity, should be considered as a helpful tool especially in the extrapulmonary cases or in cases where confirmatory diagnosis is quite difficult to be achieved by routine methods. The performance of PCR-based techniques should be considered and tested in future works on other types of biological specimens besides sputum, like blood and urine, readily obtainable in most cases. The improving of M. tuberculosis nested-PCR detection in TB affected patients will give the possibility of an earlier detection of bacilli thus interrupting the transmission chain of the disease.

  15. Detection of adenoviruses in shellfish by means of conventional-PCR, nested-PCR, and integrated cell culture PCR (ICC/PCR).

    PubMed

    Rigotto, C; Sincero, T C M; Simões, C M O; Barardi, C R M

    2005-01-01

    We tested three PCR based methodologies to detect adenoviruses associated with cultivated oysters. Conventional-PCR, nested-PCR, and integrated cell culture-PCR (ICC/PCR) were first optimized using oysters seeded with know amounts of Adenovirus serotype 5 (Ad5). The maximum sensitivity for Ad5 detection was determined for each method, and then used to detect natural adenovirus contamination in oysters from three aquiculture farms in Florianopolis, Santa Catarina State, Brazil, over a period of 6 months. The results showed that the nested-PCR was more sensitive (limit of detection: 1.2 PFU/g of tissue) than conventional-PCR and ICC-PCR (limit of detection for both: 1.2 x 10(2)PFU/g of tissue) for detection of Ad5 in oyster extracts. Nested-PCR was able to detect 90% of Ad5 contamination in harvested oyster samples, while conventional-PCR was unable to detect Ad5 in any of the samples. The present work suggests that detection of human adenoviruses can be used as a tool to monitor the presence of human viruses in marine environments where shellfish grow, and that nested-PCR is the method of choice.

  16. Field evaluation of the photo-induced electron transfer fluorogenic primers (PET) real-time PCR for the detection of Plasmodium falciparum in Tanzania

    PubMed Central

    2014-01-01

    Background Accurate diagnosis of malaria infections remains challenging, especially in the identification of submicroscopic infections. New molecular diagnostic tools that are inexpensive, sensitive enough to detect low-level infections and suitable in laboratory settings of resource-limited countries are required for malaria control and elimination programmes. Here the diagnostic potential of a recently developed photo-induced electron transfer fluorogenic primer (PET) real-time polymerase chain reaction (PCR) called PET-PCR was investigated. This study aimed to (i) evaluate the use of this assay as a method for the detection of both Plasmodium falciparum and other Plasmodium species infections in a developing country’s diagnostic laboratory; and, (ii) determine the assay’s sensitivity and specificity compared to a nested 18S rRNA PCR. Methods Samples used in this study were obtained from a previous study conducted in the region of Iringa, Tanzania. A total of 303 samples from eight health facilities in Tanzania were utilized for this evaluation. All samples were screened using the multiplex PET-PCR assay designed to detect Plasmodium genus and P. falciparum initially in laboratory in Tanzania and then repeated at a reference laboratory at the CDC in the USA. Microscopy data was available for all the 303 samples. A subset of the samples were tested in a blinded fashion to find the sensitivity and specificity of the PET-PCR compared to the nested 18S rRNA PCR. Results Compared to microscopy, the PET-PCR assay was 59% more sensitive in detecting P. falciparum infections. The observed sensitivity and specificity were 100% (95% confidence interval (CI0.95) = 94-100%) and (CI0.95 = 96-100%), respectively, for the PET-PCR assay when compared to nested 18S rRNA PCR. When compared to 18S rRNA PCR, microscopy had a low sensitivity of 40% (CI0.95 = 23-61%) and specificity of 100% (CI0.95 = 96-100%). The PET-PCR results performed in the field laboratory in Tanzania were in 100% concordance with the results obtained at the reference laboratory in the USA. Conclusion The PET-PCR is a new molecular diagnostic tool with similar performance characteristics as commonly used PCR methods that is less expensive, easy to use, and amiable to large scale-surveillance studies in developing country settings. PMID:24467985

  17. Evaluation of Different PCR-Based Assays and LAMP Method for Rapid Detection of Phytophthora infestans by Targeting the Ypt1 Gene

    PubMed Central

    Khan, Mehran; Li, Benjin; Jiang, Yue; Weng, Qiyong; Chen, Qinghe

    2017-01-01

    Late blight, caused by the oomycete Phytophthora infestans, is one of the most devastating diseases affecting potato and tomato worldwide. Early diagnosis of the P. infestans pathogen causing late blight should be the top priority for addressing disease epidemics and management. In this study, we performed a loop-mediated isothermal amplification (LAMP) assay, conventional polymerase chain reaction (PCR), nested PCR, and real-time PCR to verify and compare the sensitivity and specificity of the reaction based on the Ypt1 (Ras-related protein) gene of P. infestans. In comparison with the PCR-based assays, the LAMP technique led to higher specificity and sensitivity, using uncomplicated equipment with an equivalent time frame. All 43 P. infestans isolates, yielded positive detection results using LAMP assay showing no cross reaction with other Phytophthora spp., oomycetes or fungal pathogens. The LAMP assay yielded the lowest detectable DNA concentration (1.28 × 10-4 ng μL-1), being 10 times more sensitive than nested PCR (1.28 × 10-3 ng μL-1), 100 times more sensitive than real-time PCR (1.28 × 10-2 ng μL-1) and 103 times more sensitive than the conventional PCR assay (1.28 × 10-1 ng μL-1). In the field experiment, the LAMP assay outperformed the other tests by amplifying only diseased tissues (leaf and stem), and showing no positive reaction in healthy tissues. Overall, the LAMP assay developed in this study provides a specific, sensitive, simple, and effective visual method for detection of the P. infestans pathogen, and is therefore suitable for application in early prediction of the disease to reduce the risk of epidemics. PMID:29051751

  18. Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis.

    PubMed

    Bhagchandani, Sharda P; Kubade, Sushant; Nikhare, Priyanka P; Manke, Sonali; Chandak, Nitin H; Kabra, Dinesh; Baheti, Neeraj N; Agrawal, Vijay S; Sarda, Pankaj; Mahajan, Parikshit; Ganjre, Ashish; Purohit, Hemant J; Singh, Lokendra; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-02-01

    Bacterial meningitis is a dreadful infectious disease with a high mortality and morbidity if remained undiagnosed. Traditional diagnostic methods for bacterial meningitis pose a challenge in accurate identification of pathogen, making prognosis difficult. The present study is therefore aimed to design and evaluate a specific and sensitive nested 16S rDNA genus-based polymerase chain reaction (PCR) assay using clinical cerebrospinal fluid (CSF) for rapid diagnosis of eight pathogens causing the disease. The present work was dedicated to development of an in-house genus specific 16S rDNA nested PCR covering pathogens of eight genera responsible for causing bacterial meningitis using newly designed as well as literature based primers for respective genus. A total 150 suspected meningitis CSF obtained from the patients admitted to Central India Institute of Medical Sciences (CIIMS), India during the period from August 2011 to May 2014, were used to evaluate clinical sensitivity and clinical specificity of optimized PCR assays. The analytical sensitivity and specificity of our newly designed genus-specific 16S rDNA PCR were found to be ≥92%. With such a high sensitivity and specificity, our in-house nested PCR was able to give 100% sensitivity in clinically confirmed positive cases and 100% specificity in clinically confirmed negative cases indicating its applicability in clinical diagnosis. Our in-house nested PCR system therefore can diagnose the accurate pathogen causing bacterial meningitis and therefore be useful in selecting a specific treatment line to minimize morbidity. Results are obtained within 24 h and high sensitivity makes this nested PCR assay a rapid and accurate diagnostic tool compared to traditional culture-based methods.

  19. Evaluation of Different PCR-Based Assays and LAMP Method for Rapid Detection of Phytophthora infestans by Targeting the Ypt1 Gene.

    PubMed

    Khan, Mehran; Li, Benjin; Jiang, Yue; Weng, Qiyong; Chen, Qinghe

    2017-01-01

    Late blight, caused by the oomycete Phytophthora infestans , is one of the most devastating diseases affecting potato and tomato worldwide. Early diagnosis of the P. infestans pathogen causing late blight should be the top priority for addressing disease epidemics and management. In this study, we performed a loop-mediated isothermal amplification (LAMP) assay, conventional polymerase chain reaction (PCR), nested PCR, and real-time PCR to verify and compare the sensitivity and specificity of the reaction based on the Ypt1 (Ras-related protein) gene of P. infestans. In comparison with the PCR-based assays, the LAMP technique led to higher specificity and sensitivity, using uncomplicated equipment with an equivalent time frame. All 43 P. infestans isolates, yielded positive detection results using LAMP assay showing no cross reaction with other Phytophthora spp., oomycetes or fungal pathogens. The LAMP assay yielded the lowest detectable DNA concentration (1.28 × 10 -4 ng μL -1 ), being 10 times more sensitive than nested PCR (1.28 × 10 -3 ng μL -1 ), 100 times more sensitive than real-time PCR (1.28 × 10 -2 ng μL -1 ) and 10 3 times more sensitive than the conventional PCR assay (1.28 × 10 -1 ng μL -1 ). In the field experiment, the LAMP assay outperformed the other tests by amplifying only diseased tissues (leaf and stem), and showing no positive reaction in healthy tissues. Overall, the LAMP assay developed in this study provides a specific, sensitive, simple, and effective visual method for detection of the P. infestans pathogen, and is therefore suitable for application in early prediction of the disease to reduce the risk of epidemics.

  20. [Analytical performances of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine].

    PubMed

    De Monte, Anne; Cannavo, Isabelle; Caramella, Anne; Ollier, Laurence; Giordanengo, Valérie

    2016-01-01

    Congenital cytomegalovirus (CMV) infection is the leading cause of sensoneurinal disability due to infectious congenital disease. The diagnosis of congenital CMV infection is based on the search of CMV in the urine within the first two weeks of life. Viral culture of urine is the gold standard. However, the PCR is highly sensitive and faster. It is becoming an alternative choice. The objective of this study is the validation of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine. Repeatability, reproducibility, detection limit and inter-sample contamination were evaluated. Urine samples from patients (n=141) were collected and analyzed simultaneously in culture and PCR in order to assess the correlation of these two methods. The sensitivity and specificity of PCR were also calculated. The Abbott RealTime CMV PCR in urine is an automated and sensitive method (detection limit 200 UI/mL). Fidelity is very good (standard deviation of repeatability: 0.08 to 0.15 LogUI/mL and reproducibility 0.18 LogUI/mL). We can note a good correlation between culture and Abbott RealTime CMV PCR (kappa 96%). When considering rapid culture as reference, real-time PCR was highly sensitive (100%) and specific (98.2%). The real-time PCR by Abbott RealTime CMV with m2000 is optimal for CMV detection in urine.

  1. Rapid and sensitive detection of canine distemper virus by one-tube reverse transcription-insulated isothermal polymerase chain reaction.

    PubMed

    Wilkes, Rebecca P; Tsai, Yun-Long; Lee, Pei-Yu; Lee, Fu-Chun; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2014-09-09

    Canine distemper virus (CDV) has been associated with outbreaks of canine infectious respiratory disease in shelters and boarding kennel environments. POCKITTM Nucleic Acid Analyzer is a field-deployable device capable of generating automatically interpreted insulated isothermal polymerase chain reaction (iiPCR) results from extracted nucleic acid within one hour. In this study, reverse transcription iiPCR (RT-iiPCR) was developed to facilitate point-of-need diagnosis of CDV infection. Analytical sensitivity (limit of detection 95%) of the established CDV RT-iiPCR was about 11 copies of in vitro transcribed RNA per reaction. CDV RT-iiPCR generated positive signals from CDV, but not Bordetella bronchiseptica, canine parvovirus, canine herpesvirus, canine adenovirus 2, canine influenza virus (subtype H3N8), canine parainfluenza virus, and canine respiratory coronavirus. To evaluate accuracy of the established reaction in canine distemper clinical diagnosis, 110 specimens from dogs, raccoons, and foxes suspected with CDV infection were tested simultaneously by CDV RT-iiPCR and real-time RT-PCR. CDV RT-iiPCR demonstrated excellent sensitivity (100%) and specificity (100%), compared to real-time RT-PCR. The results indicated an excellent correlation between RT-iiPCR and a reference real time RT-PCR method. Working in a lyophilized format, the established method has great potential to be used for point-of-care diagnosis of canine distemper in animals, especially in resource-limited facilities.

  2. Biotechnical use of polymerase chain reaction for microbiological analysis of biological samples.

    PubMed

    Lantz, P G; Abu al-Soud, W; Knutsson, R; Hahn-Hägerdal, B; Rådström, P

    2000-01-01

    Since its introduction in the mid-80s, polymerase chain reaction (PCR) technology has been recognised as a rapid, sensitive and specific molecular diagnostic tool for the analysis of micro-organisms in clinical, environmental and food samples. Although this technique can be extremely effective with pure solutions of nucleic acids, it's sensitivity may be reduced dramatically when applied directly to biological samples. This review describes PCR technology as a microbial detection method, PCR inhibitors in biological samples and various sample preparation techniques that can be used to facilitate PCR detection, by either separating the micro-organisms from PCR inhibitors and/or by concentrating the micro-organisms to detectable concentrations. Parts of this review are updated and based on a doctoral thesis by Lantz [1] and on a review discussing methods to overcome PCR inhibition in foods [2].

  3. Comparison of methods for in-house screening of HLA-B*57:01 to prevent abacavir hypersensitivity in HIV-1 care.

    PubMed

    De Spiegelaere, Ward; Philippé, Jan; Vervisch, Karen; Verhofstede, Chris; Malatinkova, Eva; Kiselinova, Maja; Trypsteen, Wim; Bonczkowski, Pawel; Vogelaers, Dirk; Callens, Steven; Ruelle, Jean; Kabeya, Kabamba; De Wit, Stephane; Van Acker, Petra; Van Sandt, Vicky; Emonds, Marie-Paule; Coucke, Paul; Sermijn, Erica; Vandekerckhove, Linos

    2015-01-01

    Abacavir is a nucleoside reverse transcriptase inhibitor used as part of combination antiretroviral therapy in HIV-1-infected patients. Because this drug can cause a hypersensitivity reaction that is correlated with the presence of the HLA-B*57:01 allotype, screening for the presence of HLA-B*57:01 is recommended before abacavir initiation. Different genetic assays have been developed for HLA-B*57:01 screening, each with specific sensitivity, turnaround time and assay costs. Here, a new real-time PCR (qPCR) based analysis is described and compared to sequence specific primer PCR with capillary electrophoresis (SSP PCR CE) on 149 patient-derived samples, using sequence specific oligonucleotide hybridization combined with high resolution SSP PCR as gold standard. In addition to these PCR based methods, a complementary approach was developed using flow cytometry with an HLA-B17 specific monoclonal antibody as a pre-screening assay to diminish the number of samples for genetic testing. All three assays had a maximum sensitivity of >99. However, differences in specificity were recorded, i.e. 84.3%, 97.2% and >99% for flow cytometry, qPCR and SSP PCR CE respectively. Our data indicate that the most specific and sensitive of the compared methods is the SSP PCR CE. Flow cytometry pre-screening can substantially decrease the number of genetic tests for HLA-B*57:01 typing in a clinical setting.

  4. Is "dried stool spots on filter paper method (DSSFP)" more sensitive and effective for detecting Blastocystis spp. and their subtypes by PCR and sequencing?

    PubMed

    Seyer, Ayse; Karasartova, Djursun; Ruh, Emrah; Güreser, Ayse Semra; Imir, Turgut; Taylan-Ozkan, Aysegul

    2016-12-01

    PCR and DNA sequencing are currently the diagnostic methods of choice for detection of Blastocystis spp. and their suptypes. Fresh or frozen stool samples have disadvantages in terms of several aspects such as transportation, storage, and existence of PCR inhibitors. Filter paper technology may provide a solution to these issues. The aim of the present study was to detect Blastocystis spp. and their subtypes by employing two different preservation methods: conventional frozen stool (FS) and dried stool spots on filter paper (DSSFP). Concentration and purity of DNA, sensitivity of PCR, and DNA sequencing results obtained from the two methods were also compared. A total of 230 fecal samples were included and separated into two parts: one part of the fecal samples were directly frozen and stored at -20 °C. The remaining portion of the specimens were homogenized with saline and spread onto the filter papers as thin layer with a diameter of approximately 3 cm. After air-dried, the filter papers were stored at room temperature. DSSFP samples were collected by scraping from the filter papers. DNA were extracted by EURx Stool DNA Extraction Kit from both samples. Concentration and purity were measured with Nano-Drop, then PCR and sequencing were conducted for detection of Blastocystis spp. and its genotypes. Pure DNA was obtained with a A260/A280 ratio of 1.7-2.2 in both methods. DNA yield from FS was 25-405 ng/μl and average DNA concentration was 151 ng/μl, while these were 7-339 and 122 ng/μl for DSSFP, respectively. No PCR inhibition was observed in two methods. DNA from DSSFP were found to be stable and PCR were reproducible for at least 1 year. FS-PCR- and DSSFP-PCR-positive samples were 49 (21.3 %) and 58 (25.3 %), respectively (p = 0.078). The 43 specimens were concordantly positive by both FS-PCR and DSSFP-PCR. When the microscopy was taken as the gold standard, sensitivity of DSSFP-PCR and FS-PCR was 95.5 and 86.4 %, while specificity of both tests was 99.4 and 98.3 %, respectively. DNA sequencing results of 19 microscopically confirmed cases were strictly identical (concordance 100 %) in both methods, and ST2:6, ST3:8, ST4:3, and ST6:2 were the detected subtypes. Among the 230 fecal samples, the most predominant subtypes were ST3, ST2, ST4, and ST1 by both FS and DSSFP methods. Concordance of DNA sequencing results obtained from the two methods was noted to be 90.7 %. To our knowledge, this is the first study that demonstrates DNA extraction from DSSFP is more sensitive and effective than the FS method for diagnosis of Blastocystis spp. and their subtypes by PCR and DNA sequencing.

  5. Microsatellite instability in prostate cancer by PCR or next-generation sequencing.

    PubMed

    Hempelmann, Jennifer A; Lockwood, Christina M; Konnick, Eric Q; Schweizer, Michael T; Antonarakis, Emmanuel S; Lotan, Tamara L; Montgomery, Bruce; Nelson, Peter S; Klemfuss, Nola; Salipante, Stephen J; Pritchard, Colin C

    2018-04-17

    Microsatellite instability (MSI) is now being used as a sole biomarker to guide immunotherapy treatment for men with advanced prostate cancer. Yet current molecular diagnostic tests for MSI have not been evaluated for use in prostate cancer. We evaluated two next-generation sequencing (NGS) MSI-detection methods, MSIplus (18 markers) and MSI by Large Panel NGS (> 60 markers), and compared the performance of each NGS method to the most widely used 5-marker MSI-PCR detection system. All methods were evaluated by comparison to targeted whole gene sequencing of DNA mismatch-repair genes, and immunohistochemistry for mismatch repair genes, where available. In a set of 91 prostate tumors with known mismatch repair status (29-deficient and 62-intact mismatch-repair) MSIplus had a sensitivity of 96.6% (28/29) and a specificity of 100% (62/62), MSI by Large Panel NGS had a sensitivity of 93.1% (27/29) and a specificity of 98.4% (61/62), and MSI-PCR had a sensitivity of 72.4% (21/29) and a specificity of 100% (62/62). We found that the widely used 5-marker MSI-PCR panel has inferior sensitivity when applied to prostate cancer and that NGS testing with an expanded panel of markers performs well. In addition, NGS methods offer advantages over MSI-PCR, including no requirement for matched non-tumor tissue and an automated analysis pipeline with quantitative interpretation of MSI-status.

  6. Comparison of four molecular assays for the detection of Tembusu virus.

    PubMed

    Tang, Yi; Yeh, Yin-Ting; Chen, Hao; Yu, Chunmei; Gao, Xuhui; Diao, Youxiang

    2015-10-01

    Tembusu virus (TMUV) belongs to the genus Flavivirus that may cause severe egg drop in ducks. In order to evaluate the most efficient TMUV detection method, the performances of a conventional RT-PCR (C-RT-PCR), a semi-nested PCR (SN-RT-PCR), a reverse-transcriptase real-time quantitative PCR (Q-RT-PCR), and a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) targeting the TMUV virus-specific NS5 gene were examined. In order to compare the sensitivity of these four techniques, two templates were used: (1) plasmid DNA that contained a partial region of the NS5 gene and (2) genomic RNA from TMUV-positive cell culture supernatants. The sensitivities using plasmid DNA detection by C-RT-PCR, SN-RT-PCR, Q-RT-PCR, and RT-LAMP were 2 × 10(4) copies/μL, 20 copies/μL, 2 copies/μL, and 20 copies/μL, respectively. The sensitivities using genomic RNA for the C-RT-PCR, SN-RT-PCR, Q-RT-PCR, and RT-LAMP were 100 pg/tube, 100, 10, and 100 fg/tube, respectively. All evaluated assays were specific for TMUV detection. The TMUV-specific RNA was detected in cloacal swabs from experimentally infected ducks using these four methods with different rates (52-92%), but not in the control (non-inoculated) samples. The sensitivities of RT-PCR, SN-RT-PCR, Q-RT-PCR, and RT-LAMP performed with cloacal swabs collected from suspected TMUV infected ducks within 2 weeks of severe egg-drop were 38/69 (55.1%), 52/69 (75.4%), 57/69 (82.6%), and 55/69 (79.7%), respectively. In conclusion, both RT-LAMP and Q-RT-PCR can provide a rapid diagnosis of TMUV infection, but RT-LAMP is more useful in TMUV field situations or poorly equipped laboratories.

  7. Use of amplicon sequencing to improve sensitivity in PCR-based detection of microbial pathogen in environmental samples.

    PubMed

    Saingam, Prakit; Li, Bo; Yan, Tao

    2018-06-01

    DNA-based molecular detection of microbial pathogens in complex environments is still plagued by sensitivity, specificity and robustness issues. We propose to address these issues by viewing them as inadvertent consequences of requiring specific and adequate amplification (SAA) of target DNA molecules by current PCR methods. Using the invA gene of Salmonella as the model system, we investigated if next generation sequencing (NGS) can be used to directly detect target sequences in false-negative PCR reaction (PCR-NGS) in order to remove the SAA requirement from PCR. False-negative PCR and qPCR reactions were first created using serial dilutions of laboratory-prepared Salmonella genomic DNA and then analyzed directly by NGS. Target invA sequences were detected in all false-negative PCR and qPCR reactions, which lowered the method detection limits near the theoretical minimum of single gene copy detection. The capability of the PCR-NGS approach in correcting false negativity was further tested and confirmed under more environmentally relevant conditions using Salmonella-spiked stream water and sediment samples. Finally, the PCR-NGS approach was applied to ten urban stream water samples and detected invA sequences in eight samples that would be otherwise deemed Salmonella negative. Analysis of the non-target sequences in the false-negative reactions helped to identify primer dime-like short sequences as the main cause of the false negativity. Together, the results demonstrated that the PCR-NGS approach can significantly improve method sensitivity, correct false-negative detections, and enable sequence-based analysis for failure diagnostics in complex environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Highly sensitive detection of the PIK3CA (H1047R) mutation in colorectal cancer using a novel PCR-RFLP method.

    PubMed

    Li, Wan-Ming; Hu, Ting-Ting; Zhou, Lin-Lin; Feng, Yi-Ming; Wang, Yun-Yi; Fang, Jin

    2016-07-12

    The PIK3CA (H1047R) mutation is considered to be a potential predictive biomarker for EGFR-targeted therapies. In this study, we developed a novel PCR-PFLP approach to detect the PIK3CA (H1047R) mutation in high effectiveness. A 126-bp fragment of PIK3CA exon-20 was amplified by PCR, digested with FspI restriction endonuclease and separated by 3 % agarose gel electrophoresis for the PCR-RFLP analysis. The mutant sequence of the PIK3CA (H1047R) was spiked into the corresponding wild-type sequence in decreasing ratios for sensitivity analysis. Eight-six cases of formalin-fixed paraffin-embedded colorectal cancer (CRC) specimens were subjected to PCR-RFLP to evaluate the applicability of the method. The PCR-RFLP method had a capability to detect as litter as 0.4 % of mutation, and revealed 16.3 % of the PIK3CA (H1047R) mutation in 86 CRC tissues, which was significantly higher than that discovered by DNA sequencing (9.3 %). A positive association between the PIK3CA (H1047R) mutation and the patients' age was first found, except for the negative relationship with the degree of tumor differentiation. In addition, the highly sensitive detection of a combinatorial mutation of PIK3CA, KRAS and BRAF was achieved using individual PCR-RFLP methods. We developed a sensitive, simple and rapid approach to detect the low-abundance PIK3CA (H1047R) mutation in real CRC specimens, providing an effective tool for guiding cancer targeted therapy.

  9. Detection of Pseudomonas savastanoi pv. savastanoi in olive plants by enrichment and PCR.

    PubMed

    Penyalver, R; García, A; Ferrer, A; Bertolini, E; López, M M

    2000-06-01

    The sequence of the gene iaaL of Pseudomonas savastanoi EW2009 was used to design primers for PCR amplification. The iaaL-derived primers directed the amplification of a 454-bp fragment from genomic DNA isolated from 70 strains of P. savastanoi, whereas genomic DNA from 93 non-P. savastanoi isolates did not yield this amplified product. A previous bacterial enrichment in the semiselective liquid medium PVF-1 improved the PCR sensitivity level, allowing detection of 10 to 100 CFU/ml of plant extract. P. savastanoi was detected by the developed enrichment-PCR method in knots from different varieties of inoculated and naturally infected olive trees. Moreover, P. savastanoi was detected in symptomless stem tissues from naturally infected olive plants. This enrichment-PCR method is more sensitive and less cumbersome than the conventional isolation methods for detection of P. savastanoi.

  10. [Application study of droplet digital PCR to detect maternal cell contamination in prenatal diagnosis].

    PubMed

    Geng, J; Liu, C; Zhou, X C; Ma, J; Du, L; Lu, J; Zhou, W N; Hu, T T; Lyu, L J; Yin, A H

    2017-02-25

    Objective: To develop a new method based on droplet digital PCR (DD-PCR) for detection and quantification of maternal cell contamination in prenatal diagnosis. Methods: Invasive prenatal samples from 40 couples of β(IVS-Ⅱ-654)/β(N) thalassemia gene carriers who accepted prenatal diagnosis in Affiliated Women and Children's Hospital of Guangzhou Medical University from October 2015 to December 2016 were analyzed retrospectively. Specific primers and probes were designed. The concentration gradient were 50%, 25%, 12.5%, 6.25%, 3.125%, 1.562 5%. There were 40 groups of prenatal diagnostic samples. Comparing DD-PCR with quantitative fluorescent-PCR (QF-PCR) based on the short tandem repeats for assement of the sensitivity and accuracy of maternal cell contamination, respectively. Results: DD-PCR could quantify the maternal cell contamination as low as 1.562 5%. The result was proportional to the dilution titers. In the 40 prenatal samples, 6 cases (15%, 6/40) of maternal cell contamination were detected by DD-PCR, while the QF-PCR based on short tandem repeat showed 3 cases (7.5%, 3/40) with maternal cell contamination, DD-PCR was more accurate ( P= 0.002) . Conclusion: DD-PCR is a precise and sensitive method in the detection of maternal cell contamintation. It could be useful in clinical application.

  11. Sensitive and specific miRNA detection method using SplintR Ligase

    PubMed Central

    Jin, Jingmin; Vaud, Sophie; Zhelkovsky, Alexander M.; Posfai, Janos; McReynolds, Larry A.

    2016-01-01

    We describe a simple, specific and sensitive microRNA (miRNA) detection method that utilizes Chlorella virus DNA ligase (SplintR® Ligase). This two-step method involves ligation of adjacent DNA oligonucleotides hybridized to a miRNA followed by real-time quantitative PCR (qPCR). SplintR Ligase is 100X faster than either T4 DNA Ligase or T4 RNA Ligase 2 for RNA splinted DNA ligation. Only a 4–6 bp overlap between a DNA probe and miRNA was required for efficient ligation by SplintR Ligase. This property allows more flexibility in designing miRNA-specific ligation probes than methods that use reverse transcriptase for cDNA synthesis of miRNA. The qPCR SplintR ligation assay is sensitive; it can detect a few thousand molecules of miR-122. For miR-122 detection the SplintR qPCR assay, using a FAM labeled double quenched DNA probe, was at least 40× more sensitive than the TaqMan assay. The SplintR method, when coupled with NextGen sequencing, allowed multiplex detection of miRNAs from brain, kidney, testis and liver. The SplintR qPCR assay is specific; individual let-7 miRNAs that differ by one nucleotide are detected. The rapid kinetics and ability to ligate DNA probes hybridized to RNA with short complementary sequences makes SplintR Ligase a useful enzyme for miRNA detection. PMID:27154271

  12. Convenient Detection of the Citrus Greening (Huanglongbing) Bacterium ‘Candidatus Liberibacter asiaticus’ by Direct PCR from the Midrib Extract

    PubMed Central

    Fujikawa, Takashi; Miyata, Shin-Ichi; Iwanami, Toru

    2013-01-01

    A phloem-limited bacterium, ‘Candidatus Liberibacter asiaticus’ (Las) is a major pathogen of citrus greening (huanglongbing), one of the most destructive citrus diseases worldwide. The rapid identification and culling of infected trees and budwoods in quarantine are the most important control measures. DNA amplification including conventional polymerase chain reaction (PCR) has commonly been used for rapid detection and identification. However, long and laborious procedures for DNA extraction have greatly reduced the applicability of this method. In this study, we found that the Las bacterial cells in the midribs of infected leaves were extracted rapidly and easily by pulverization and centrifugation with mini homogenization tubes. We also found that the Las bacterial cells in the midrib extract were suitable for highly sensitive direct PCR. The performance of direct PCR using this extraction method was not inferior to that of conventional PCR. Thus, the direct PCR method described herein is characterized by its simplicity, sensitivity, and robustness, and is applicable to quarantine testing. PMID:23437295

  13. Novel approach based on one-tube nested PCR and a lateral flow strip for highly sensitive diagnosis of tuberculous meningitis

    PubMed Central

    Sun, Yajuan; Chen, Jiajun; Li, Jia; Xu, Yawei; Jin, Hui; Xu, Na; Yin, Rui

    2017-01-01

    Rapid and sensitive detection of Mycobacterium tuberculosis (M. Tb) in cerebrospinal fluid is crucial in the diagnosis of tuberculous meningitis (TBM), but conventional diagnostic technologies have limited sensitivity and specificity or are time-consuming. In this work, a novel, highly sensitive molecular diagnostic method, one-tube nested PCR-lateral flow strip test (OTNPCR-LFST), was developed for detecting M. tuberculosis. This one-tube nested PCR maintains the sensitivity of conventional two-step nested PCR and reduces both the chance of cross-contamination and the time required for analysis. The PCR product was detected by a lateral flow strip assay, which provided a basis for migration of the test to a point-of-care (POC) microfluidic format. The developed assay had an improved sensitivity compared with traditional PCR, and the limit of detection was up to 1 fg DNA isolated from M. tuberculosis. The assay was also specific for M. tuberculosis, and no cross-reactions were found in other non-target bacteria. The application of this technique to clinical samples was successfully evaluated, and OTNPCR-LFST showed 89% overall sensitivity and 100% specificity for TBM patients. This one-tube nested PCR-lateral flow strip assay is useful for detecting M. tuberculosis in TBM due to its rapidity, high sensitivity and simple manipulation. PMID:29084241

  14. Four human Plasmodium species quantification using droplet digital PCR.

    PubMed

    Srisutham, Suttipat; Saralamba, Naowarat; Malleret, Benoit; Rénia, Laurent; Dondorp, Arjen M; Imwong, Mallika

    2017-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a partial PCR based on water-oil emulsion droplet technology. It is a highly sensitive method for detecting and delineating minor alleles from complex backgrounds and provides absolute quantification of DNA targets. The ddPCR technology has been applied for detection of many pathogens. Here the sensitive assay utilizing ddPCR for detection and quantification of Plasmodium species was investigated. The assay was developed for two levels of detection, genus specific for all Plasmodium species and for specific Plasmodium species detection. The ddPCR assay was developed based on primers and probes specific to the Plasmodium genus 18S rRNA gene. Using ddPCR for ultra-sensitive P. falciparum assessment, the lower level of detection from concentrated DNA obtained from a high volume (1 mL) blood sample was 11 parasites/mL. For species identification, in particular for samples with mixed infections, a duplex reaction was developed for detection and quantification P. falciparum/ P. vivax and P. malariae/ P. ovale. Amplification of each Plasmodium species in the duplex reaction showed equal sensitivity to singleplex single species detection. The duplex ddPCR assay had higher sensitivity to identify minor species in 32 subpatent parasitaemia samples from Cambodia, and performed better than real-time PCR. The ddPCR assay shows high sensitivity to assess very low parasitaemia of all human Plasmodium species. This provides a useful research tool for studying the role of the asymptomatic parasite reservoir for transmission in regions aiming for malaria elimination.

  15. PALATAL DYSMORPHOGENESIS: QUANTITATIVE RT-PCR

    EPA Science Inventory

    ABSTRACT

    Palatal Dysmorphogenesis : Quantitative RT-PCR

    Gary A. Held and Barbara D. Abbott

    Reverse transcription PCR (RT-PCR) is a very sensitive method for detecting mRNA in tissue samples. However, as it is usually performed it is does not yield quantitativ...

  16. Comparison between culture and a multiplex quantitative real-time polymerase chain reaction assay detecting Ureaplasma urealyticum and U. parvum.

    PubMed

    Frølund, Maria; Björnelius, Eva; Lidbrink, Peter; Ahrens, Peter; Jensen, Jørgen Skov

    2014-01-01

    A novel multiplex quantitative real-time polymerase chain reaction (qPCR) for simultaneous detection of U. urealyticum and U. parvum was developed and compared with quantitative culture in Shepard's 10 C medium for ureaplasmas in urethral swabs from 129 men and 66 women, and cervical swabs from 61 women. Using culture as the gold standard, the sensitivity of the qPCR was 96% and 95% for female urethral and cervical swabs, respectively. In male urethral swabs the sensitivity was 89%. The corresponding specificities were 100%, 87% and 99%. The qPCR showed a linear increasing DNA copy number with increasing colour-changing units. Although slightly less sensitive than culture, this multiplex qPCR assay detecting U. urealyticum and U. parvum constitutes a simple and fast alternative to the traditional methods for identification of ureaplasmas and allows simultaneous species differentiation and quantitation in clinical samples. Furthermore, specimens overgrown by other bacteria using the culture method can be evaluated in the qPCR.

  17. Non-radioactive detection of trinucleotide repeat size variability.

    PubMed

    Tomé, Stéphanie; Nicole, Annie; Gomes-Pereira, Mario; Gourdon, Genevieve

    2014-03-06

    Many human diseases are associated with the abnormal expansion of unstable trinucleotide repeat sequences. The mechanisms of trinucleotide repeat size mutation have not been fully dissected, and their understanding must be grounded on the detailed analysis of repeat size distributions in human tissues and animal models. Small-pool PCR (SP-PCR) is a robust, highly sensitive and efficient PCR-based approach to assess the levels of repeat size variation, providing both quantitative and qualitative data. The method relies on the amplification of a very low number of DNA molecules, through sucessive dilution of a stock genomic DNA solution. Radioactive Southern blot hybridization is sensitive enough to detect SP-PCR products derived from single template molecules, separated by agarose gel electrophoresis and transferred onto DNA membranes. We describe a variation of the detection method that uses digoxigenin-labelled locked nucleic acid probes. This protocol keeps the sensitivity of the original method, while eliminating the health risks associated with the manipulation of radiolabelled probes, and the burden associated with their regulation, manipulation and waste disposal.

  18. Ultra-Sensitive Detection of Plasmodium falciparum by Amplification of Multi-Copy Subtelomeric Targets

    PubMed Central

    Hofmann, Natalie; Mwingira, Felista; Shekalaghe, Seif; Robinson, Leanne J.; Mueller, Ivo; Felger, Ingrid

    2015-01-01

    Background Planning and evaluating malaria control strategies relies on accurate definition of parasite prevalence in the population. A large proportion of asymptomatic parasite infections can only be identified by surveillance with molecular methods, yet these infections also contribute to onward transmission to mosquitoes. The sensitivity of molecular detection by PCR is limited by the abundance of the target sequence in a DNA sample; thus, detection becomes imperfect at low densities. We aimed to increase PCR diagnostic sensitivity by targeting multi-copy genomic sequences for reliable detection of low-density infections, and investigated the impact of these PCR assays on community prevalence data. Methods and Findings Two quantitative PCR (qPCR) assays were developed for ultra-sensitive detection of Plasmodium falciparum, targeting the high-copy telomere-associated repetitive element 2 (TARE-2, ∼250 copies/genome) and the var gene acidic terminal sequence (varATS, 59 copies/genome). Our assays reached a limit of detection of 0.03 to 0.15 parasites/μl blood and were 10× more sensitive than standard 18S rRNA qPCR. In a population cross-sectional study in Tanzania, 295/498 samples tested positive using ultra-sensitive assays. Light microscopy missed 169 infections (57%). 18S rRNA qPCR failed to identify 48 infections (16%), of which 40% carried gametocytes detected by pfs25 quantitative reverse-transcription PCR. To judge the suitability of the TARE-2 and varATS assays for high-throughput screens, their performance was tested on sample pools. Both ultra-sensitive assays correctly detected all pools containing one low-density P. falciparum–positive sample, which went undetected by 18S rRNA qPCR, among nine negatives. TARE-2 and varATS qPCRs improve estimates of prevalence rates, yet other infections might still remain undetected when absent in the limited blood volume sampled. Conclusions Measured malaria prevalence in communities is largely determined by the sensitivity of the diagnostic tool used. Even when applying standard molecular diagnostics, prevalence in our study population was underestimated by 8% compared to the new assays. Our findings highlight the need for highly sensitive tools such as TARE-2 and varATS qPCR in community surveillance and for monitoring interventions to better describe malaria epidemiology and inform malaria elimination efforts. PMID:25734259

  19. Ultrafast, sensitive and large-volume on-chip real-time PCR for the molecular diagnosis of bacterial and viral infections.

    PubMed

    Houssin, Timothée; Cramer, Jérémy; Grojsman, Rébecca; Bellahsene, Lyes; Colas, Guillaume; Moulet, Hélène; Minnella, Walter; Pannetier, Christophe; Leberre, Maël; Plecis, Adrien; Chen, Yong

    2016-04-21

    To control future infectious disease outbreaks, like the 2014 Ebola epidemic, it is necessary to develop ultrafast molecular assays enabling rapid and sensitive diagnoses. To that end, several ultrafast real-time PCR systems have been previously developed, but they present issues that hinder their wide adoption, notably regarding their sensitivity and detection volume. An ultrafast, sensitive and large-volume real-time PCR system based on microfluidic thermalization is presented herein. The method is based on the circulation of pre-heated liquids in a microfluidic chip that thermalize the PCR chamber by diffusion and ultrafast flow switches. The system can achieve up to 30 real-time PCR cycles in around 2 minutes, which makes it the fastest PCR thermalization system for regular sample volume to the best of our knowledge. After biochemical optimization, anthrax and Ebola simulating agents could be respectively detected by a real-time PCR in 7 minutes and a reverse transcription real-time PCR in 7.5 minutes. These detections are respectively 6.4 and 7.2 times faster than with an off-the-shelf apparatus, while conserving real-time PCR sample volume, efficiency, selectivity and sensitivity. The high-speed thermalization also enabled us to perform sharp melting curve analyses in only 20 s and to discriminate amplicons of different lengths by rapid real-time PCR. This real-time PCR microfluidic thermalization system is cost-effective, versatile and can be then further developed for point-of-care, multiplexed, ultrafast and highly sensitive molecular diagnoses of bacterial and viral diseases.

  20. Evaluation and Comparison of Multiple Test Methods, Including Real-time PCR, for Legionella Detection in Clinical Specimens

    PubMed Central

    Peci, Adriana; Winter, Anne-Luise; Gubbay, Jonathan B.

    2016-01-01

    Legionella is a Gram-negative bacterium that can cause Pontiac fever, a mild upper respiratory infection and Legionnaire’s disease, a more severe illness. We aimed to compare the performance of urine antigen, culture, and polymerase chain reaction (PCR) test methods and to determine if sputum is an acceptable alternative to the use of more invasive bronchoalveolar lavage (BAL). Data for this study included specimens tested for Legionella at Public Health Ontario Laboratories from 1st January, 2010 to 30th April, 2014, as part of routine clinical testing. We found sensitivity of urinary antigen test (UAT) compared to culture to be 87%, specificity 94.7%, positive predictive value (PPV) 63.8%, and negative predictive value (NPV) 98.5%. Sensitivity of UAT compared to PCR was 74.7%, specificity 98.3%, PPV 77.7%, and NPV 98.1%. Out of 146 patients who had a Legionella-positive result by PCR, only 66 (45.2%) also had a positive result by culture. Sensitivity for culture was the same using either sputum or BAL (13.6%); sensitivity for PCR was 10.3% for sputum and 12.8% for BAL. Both sputum and BAL yield similar results regardless testing methods (Fisher Exact p-values = 1.0, for each test). In summary, all test methods have inherent weaknesses in identifying Legionella; therefore, more than one testing method should be used. Obtaining a single specimen type from patients with pneumonia limits the ability to diagnose Legionella, particularly when urine is the specimen type submitted. Given ease of collection and similar sensitivity to BAL, clinicians are encouraged to submit sputum in addition to urine when BAL submission is not practical from patients being tested for Legionella. PMID:27630979

  1. Field evaluation of the photo-induced electron transfer fluorogenic primers (PET) real-time PCR for the detection of Plasmodium falciparum in Tanzania.

    PubMed

    Talundzic, Eldin; Maganga, Mussa; Masanja, Irene M; Peterson, David S; Udhayakumar, Venkatachalam; Lucchi, Naomi W

    2014-01-27

    Accurate diagnosis of malaria infections remains challenging, especially in the identification of submicroscopic infections. New molecular diagnostic tools that are inexpensive, sensitive enough to detect low-level infections and suitable in laboratory settings of resource-limited countries are required for malaria control and elimination programmes. Here the diagnostic potential of a recently developed photo-induced electron transfer fluorogenic primer (PET) real-time polymerase chain reaction (PCR) called PET-PCR was investigated. This study aimed to (i) evaluate the use of this assay as a method for the detection of both Plasmodium falciparum and other Plasmodium species infections in a developing country's diagnostic laboratory; and, (ii) determine the assay's sensitivity and specificity compared to a nested 18S rRNA PCR. Samples used in this study were obtained from a previous study conducted in the region of Iringa, Tanzania. A total of 303 samples from eight health facilities in Tanzania were utilized for this evaluation. All samples were screened using the multiplex PET-PCR assay designed to detect Plasmodium genus and P. falciparum initially in laboratory in Tanzania and then repeated at a reference laboratory at the CDC in the USA. Microscopy data was available for all the 303 samples. A subset of the samples were tested in a blinded fashion to find the sensitivity and specificity of the PET-PCR compared to the nested 18S rRNA PCR. Compared to microscopy, the PET-PCR assay was 59% more sensitive in detecting P. falciparum infections. The observed sensitivity and specificity were 100% (95% confidence interval (CI0.95) = 94-100%) and (CI0.95 = 96-100%), respectively, for the PET-PCR assay when compared to nested 18S rRNA PCR. When compared to 18S rRNA PCR, microscopy had a low sensitivity of 40% (CI0.95 = 23-61%) and specificity of 100% (CI0.95 = 96-100%). The PET-PCR results performed in the field laboratory in Tanzania were in 100% concordance with the results obtained at the reference laboratory in the USA. The PET-PCR is a new molecular diagnostic tool with similar performance characteristics as commonly used PCR methods that is less expensive, easy to use, and amiable to large scale-surveillance studies in developing country settings.

  2. Highly Sensitive GMO Detection Using Real-Time PCR with a Large Amount of DNA Template: Single-Laboratory Validation.

    PubMed

    Mano, Junichi; Hatano, Shuko; Nagatomi, Yasuaki; Futo, Satoshi; Takabatake, Reona; Kitta, Kazumi

    2018-03-01

    Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.

  3. Parasite detection in patients with post kala-azar dermal leishmaniasis in India: a comparison between molecular and immunological methods

    PubMed Central

    Salotra, P; Sreenivas, G; Beena, K R; Mukherjee, A; Ramesh, V

    2003-01-01

    Aims: To evaluate the sensitivity and specificity of serological, immunohistochemical, and molecular methods in the diagnosis of post kala-azar dermal leishmaniasis (PKDL). Methods: Twenty five patients with confirmed PKDL and 25 controls were included in the study. G2D10, a monoclonal antibody against Leishmania, was used for the immunohistochemical (IHC) staining of lesion sections to visualise anti-Leishmania donovani antibodies. The diagnostic usefulness of IHC was compared with enzyme linked immunosorbent assay (ELISA) with a recombinant (rk39) antigen, and a species specific polymerase chain reaction (PCR) assay, amplifying a kinetoplast minicircle DNA sequence. Results: IHC detected 22 of 25 PKDL cases, giving a sensitivity of 88%. The diagnostic sensitivity of both the ELISA and PCR tests was higher (96%). All of the 25 controls examined were negative in PCR, indicating 100% specificity of the test, whereas ELISA showed 96% specificity. Conclusions: IHC with G2D10 significantly enhances the sensitivity of detection of PKDL over routine haematoxylin and eosin staining. ELISA with a recombinant antigen is an economical and practical assay. PCR is the most sensitive and specific diagnostic method for PKDL. The tests described would facilitate the recognition of patients with PKDL, enabling timely treatment, which would contribute greatly to the control of kala-azar. PMID:14600129

  4. Quantitative assessment of hematopoietic chimerism by quantitative real-time polymerase chain reaction of sequence polymorphism systems after hematopoietic stem cell transplantation.

    PubMed

    Qin, Xiao-ying; Li, Guo-xuan; Qin, Ya-zhen; Wang, Yu; Wang, Feng-rong; Liu, Dai-hong; Xu, Lan-ping; Chen, Huan; Han, Wei; Wang, Jing-zhi; Zhang, Xiao-hui; Li, Jin-lan; Li, Ling-di; Liu, Kai-yan; Huang, Xiao-jun

    2011-08-01

    Analysis of changes in recipient and donor hematopoietic cell origin is extremely useful to monitor the effect of hematopoietic stem cell transplantation (HSCT) and sequential adoptive immunotherapy by donor lymphocyte infusions. We developed a sensitive, reliable and rapid real-time PCR method based on sequence polymorphism systems to quantitatively assess the hematopoietic chimerism after HSCT. A panel of 29 selected sequence polymorphism (SP) markers was screened by real-time PCR in 101 HSCT patients with leukemia and other hematological diseases. The chimerism kinetics of bone marrow samples of 8 HSCT patients in remission and relapse situations were followed longitudinally. Recipient genotype discrimination was possible in 97.0% (98 of 101) with a mean number of 2.5 (1-7) informative markers per recipient/donor pair. Using serial dilutions of plasmids containing specific SP markers, the linear correlation (r) of 0.99, the slope between -3.2 and -3.7 and the sensitivity of 0.1% were proved reproducible. By this method, it was possible to very accurately detect autologous signals in the range from 0.1% to 30%. The accuracy of the method in the very important range of autologous signals below 5% was extraordinarily high (standard deviation <1.85%), which might significantly improve detection accuracy of changes in autologous signals early in the post-transplantation course of follow-up. The main advantage of the real-time PCR method over short tandem repeat PCR chimerism assays is the absence of PCR competition and plateau biases, with demonstrated greater sensitivity and linearity. Finally, we prospectively analyzed bone marrow samples of 8 patients who received allografts and presented the chimerism kinetics of remission and relapse situations that illustrated the sensitivity level and the promising clinical application of this method. This SP-based real-time PCR assay provides a rapid, sensitive, and accurate quantitative assessment of mixed chimerism that can be useful in predicting graft rejection and early relapse.

  5. Relative sensitivity of conventional and real-time PCR assays for detection of SFG Rickettsia in blood and tissue samples from laboratory animals.

    PubMed

    Zemtsova, Galina E; Montgomery, Merrill; Levin, Michael L

    2015-01-01

    Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87). The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays.

  6. Relative Sensitivity of Conventional and Real-Time PCR Assays for Detection of SFG Rickettsia in Blood and Tissue Samples from Laboratory Animals

    PubMed Central

    Zemtsova, Galina E.; Montgomery, Merrill; Levin, Michael L.

    2015-01-01

    Studies on the natural transmission cycles of zoonotic pathogens and the reservoir competence of vertebrate hosts require methods for reliable diagnosis of infection in wild and laboratory animals. Several PCR-based applications have been developed for detection of infections caused by Spotted Fever group Rickettsia spp. in a variety of animal tissues. These assays are being widely used by researchers, but they differ in their sensitivity and reliability. We compared the sensitivity of five previously published conventional PCR assays and one SYBR green-based real-time PCR assay for the detection of rickettsial DNA in blood and tissue samples from Rickettsia- infected laboratory animals (n = 87). The real-time PCR, which detected rickettsial DNA in 37.9% of samples, was the most sensitive. The next best were the semi-nested ompA assay and rpoB conventional PCR, which detected as positive 18.4% and 14.9% samples respectively. Conventional assays targeting ompB, gltA and hrtA genes have been the least sensitive. Therefore, we recommend the SYBR green-based real-time PCR as a tool for the detection of rickettsial DNA in animal samples due to its higher sensitivity when compared to more traditional assays. PMID:25607846

  7. Intracellular flow cytometry may be combined with good quality and high sensitivity RT-qPCR analysis.

    PubMed

    Sandstedt, Mikael; Jonsson, Marianne; Asp, Julia; Dellgren, Göran; Lindahl, Anders; Jeppsson, Anders; Sandstedt, Joakim

    2015-12-01

    Flow cytometry (FCM) has become a well-established method for analysis of both intracellular and cell-surface proteins, while quantitative RT-PCR (RT-qPCR) is used to determine gene expression with high sensitivity and specificity. Combining these two methods would be of great value. The effects of intracellular staining on RNA integrity and RT-qPCR sensitivity and quality have not, however, been fully examined. We, therefore, intended to assess these effects further. Cells from the human lung cancer cell line A549 were fixed, permeabilized and sorted by FCM. Sorted cells were analyzed using RT-qPCR. RNA integrity was determined by RNA quality indicator analysis. A549 cells were then mixed with cells of the mouse cardiomyocyte cell line HL-1. A549 cells were identified by the cell surface marker ABCG2, while HL-1 cells were identified by intracellular cTnT. Cells were sorted and analyzed by RT-qPCR. Finally, cell cultures from human atrial biopsies were used to evaluate the effects of fixation and permeabilization on RT-qPCR analysis of nonimmortalized cells stored prior to analysis by FCM. A large amount of RNA could be extracted even when cells had been fixed and permeabilized. Permeabilization resulted in increased RNA degradation and a moderate decrease in RT-qPCR sensitivity. Gene expression levels were also affected to a moderate extent. Sorted populations from the mixed A549 and HL-1 cell samples showed gene expression patterns that corresponded to FCM data. When samples were stored before FCM sorting, the RT-qPCR analysis could still be performed with high sensitivity and quality. In summary, our results show that intracellular FCM may be performed with only minor impairment of the RT-qPCR sensitivity and quality when analyzing sorted cells; however, these effects should be considered when comparing RT-qPCR data of not fixed samples with those of fixed and permeabilized samples. © 2015 International Society for Advancement of Cytometry.

  8. Cloning of the koi herpesvirus (KHV) gene encoding thymidine kinase and its use for a highly sensitive PCR based diagnosis

    PubMed Central

    Bercovier, Herve; Fishman, Yolanta; Nahary, Ronen; Sinai, Sharon; Zlotkin, Amir; Eyngor, Marina; Gilad, Oren; Eldar, Avi; Hedrick, Ronald P

    2005-01-01

    Background Outbreaks with mass mortality among common carp Cyprinus carpio carpio and koi Cyprinus carpio koi have occurred worldwide since 1998. The herpes-like virus isolated from diseased fish is different from Herpesvirus cyprini and channel catfish virus and was accordingly designated koi herpesvirus (KHV). Diagnosis of KHV infection based on viral isolation and current PCR assays has a limited sensitivity and therefore new tools for the diagnosis of KHV infections are necessary. Results A robust and sensitive PCR assay based on a defined gene sequence of KHV was developed to improve the diagnosis of KHV infection. From a KHV genomic library, a hypothetical thymidine kinase gene (TK) was identified, subcloned and expressed as a recombinant protein. Preliminary characterization of the recombinant TK showed that it has a kinase activity using dTTP but not dCTP as a substrate. A PCR assay based on primers selected from the defined DNA sequence of the TK gene was developed and resulted in a 409 bp amplified fragment. The TK based PCR assay did not amplify the DNAs of other fish herpesviruses such as Herpesvirus cyprini (CHV) and the channel catfish virus (CCV). The TK based PCR assay was specific for the detection of KHV and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions. The TK based PCR was compared to previously described PCR assays and to viral culture in diseased fish and was shown to be the most sensitive method of diagnosis of KHV infection. Conclusion The TK based PCR assay developed in this work was shown to be specific for the detection of KHV. The TK based PCR assay was more sensitive for the detection of KHV than previously described PCR assays; it was as sensitive as virus isolation which is the golden standard method for KHV diagnosis and was able to detect as little as 10 fentograms of KHV DNA corresponding to 30 virions. PMID:15774009

  9. Detection of epidermal growth factor receptor mutation in lung cancer by droplet digital polymerase chain reaction

    PubMed Central

    Xu, Qing; Zhu, Yazhen; Bai, Yali; Wei, Xiumin; Zheng, Xirun; Mao, Mao; Zheng, Guangjuan

    2015-01-01

    Background Two types of epidermal growth factor receptor (EGFR) mutations in exon 19 and exon 21 (ex19del and L858R) are prevalent in lung cancer patients and sensitive to targeted EGFR inhibition. A resistance mutation in exon 20 (T790M) has been found to accompany drug treatment when patients relapse. These three mutations are valuable companion diagnostic biomarkers for guiding personalized treatment. Quantitative polymerase chain reaction (qPCR)-based methods have been widely used in the clinic by physicians to guide treatment decisions. The aim of this study was to evaluate the technical and clinical sensitivity and specificity of the droplet digital polymerase chain reaction (ddPCR) method in detecting the three EGFR mutations in patients with lung cancer. Methods Genomic DNA from H1975 and PC-9 cells, as well as 92 normal human blood specimens, was used to determine the technical sensitivity and specificity of the ddPCR assays. Genomic DNA of formalin-fixed, paraffin-embedded specimens from 78 Chinese patients with lung adenocarcinoma were assayed using both qPCR and ddPCR. Results The three ddPCR assays had a limit of detection of 0.02% and a wide dynamic range from 1 to 20,000 copies measurement. The L858R and ex19del assays had a 0% background level in the technical and clinical settings. The T790M assay appeared to have a 0.03% technical background. The ddPCR assays were robust for correct determination of EGFR mutation status in patients, and the dynamic range appeared to be better than qPCR methods. The ddPCR assay for T790M could detect patient samples that the qPCR method failed to detect. About 49% of this patient cohort had EGFR mutations (L858R, 15.4%; ex19del, 29.5%; T790M, 6.4%). Two patients with the ex19del mutation also had a naïve T790M mutation. Conclusion These data suggest that the ddPCR method could be useful in the personalized treatment of patients with lung cancer. PMID:26124670

  10. A multiplex PCR assay for the rapid and sensitive detection of methicillin-resistant Staphylococcus aureus and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci.

    PubMed

    Xu, Benjin; Liu, Ling; Liu, Li; Li, Xinping; Li, Xiaofang; Wang, Xin

    2012-11-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a global health concern, which had been detected in food and food production animals. Conventional testing for detection of MRSA takes 3 to 5 d to yield complete information of the organism and its antibiotic sensitivity pattern. So, a rapid method is needed to diagnose and treat the MRSA infections. The present study focused on the development of a multiplex PCR assay for the rapid and sensitive detection of MRSA. The assay simultaneously detected 4 genes, namely, 16S rRNA of the Staphylococcus genus, femA of S. aureus, mecA that encodes methicillin resistance, and one internal control. It was rapid and yielded results within 4 h. The analytical sensitivity and specificity of the multiplex PCR assay was evaluated by comparing it with the conventional method. The analytical sensitivity of the multiplex PCR assay at the DNA level was 10 ng DNA. The analytical specificity was evaluated with 10 reference staphylococci strains and was 100%. The diagnostic evaluation of MRSA was carried out using 360 foodborne staphylococci isolates, and showed 99.1% of specificity, 96.4% of sensitivity, 97.5% of positive predictive value, and 97.3% of negative predictive value compared to the conventional method. The inclusion of an internal control in the multiplex PCR assay is important to exclude false-negative cases. This test can be used as an effective diagnostic and surveillance tool to investigate the spread and emergence of MRSA. © 2012 Institute of Food Technologists®

  11. A method of multiplex PCR for detection of field released Beauveria bassiana, a fungal entomopathogen applied for pest management in jute (Corchorus olitorius).

    PubMed

    Biswas, Chinmay; Dey, Piyali; Gotyal, B S; Satpathy, Subrata

    2015-04-01

    The fungal entomopathogen Beauveria bassiana is a promising biocontrol agent for many pests. Some B. bassiana strains have been found effective against jute pests. To monitor the survival of field released B. bassiana a rapid and efficient detection technique is essential. Conventional methods such as plating method or direct culture method which are based on cultivation on selective media followed by microscopy are time consuming and not so sensitive. PCR based methods are rapid, sensitive and reliable. A single primer PCR may fail to amplify some of the strains. However, multiplex PCR increases the possibility of detection as it uses multiple primers. Therefore, in the present investigation a multiplex PCR protocol was developed by multiplexing three primers SCA 14, SCA 15 and SCB 9 to detect field released B. bassiana strains from soil as well as foliage of jute field. Using our multiplex PCR protocol all the five B. bassiana strains could be detected from soil and three strains viz., ITCC 6063, ITCC 4563 and ITCC 4796 could be detected even from the crop foliage after 45 days of spray.

  12. Evaluation of DNA extraction methods and their clinical application for direct detection of causative bacteria in continuous ambulatory peritoneal dialysis culture fluids from patients with peritonitis by using broad-range PCR.

    PubMed

    Kim, Si Hyun; Jeong, Haeng Soon; Kim, Yeong Hoon; Song, Sae Am; Lee, Ja Young; Oh, Seung Hwan; Kim, Hye Ran; Lee, Jeong Nyeo; Kho, Weon-Gyu; Shin, Jeong Hwan

    2012-03-01

    The aims of this study were to compare several DNA extraction methods and 16S rDNA primers and to evaluate the clinical utility of broad-range PCR in continuous ambulatory peritoneal dialysis (CAPD) culture fluids. Six type strains were used as model organisms in dilutions from 10(8) to 10(0) colony-forming units (CFU)/mL for the evaluation of 5 DNA extraction methods and 5 PCR primer pairs. Broad-range PCR was applied to 100 CAPD culture fluids, and the results were compared with conventional culture results. There were some differences between the various DNA extraction methods and primer sets with regard to the detection limits. The InstaGene Matrix (Bio-Rad Laboratories, USA) and Exgene Clinic SV kits (GeneAll Biotechnology Co. Ltd, Korea) seem to have higher sensitivities than the others. The results of broad-range PCR were concordant with the results from culture in 97% of all cases (97/100). Two culture-positive cases that were broad-range PCR-negative were identified as Candida albicans, and 1 PCR-positive but culture-negative sample was identified as Bacillus circulans by sequencing. Two samples among 54 broad-range PCR-positive products could not be sequenced. There were differences in the analytical sensitivity of various DNA extraction methods and primers for broad-range PCR. The broad-range PCR assay can be used to detect bacterial pathogens in CAPD culture fluid as a supplement to culture methods.

  13. Detection of influenza A virus subtypes using a solid-phase PCR microplate chip assay.

    PubMed

    Sun, Xin-Cheng; Wang, YunLong; Yang, Liping; Zhang, HuiRu

    2015-01-01

    A rapid and sensitive microplate chip based on solid PCR was developed to identify influenza A subtypes. A simple ultraviolet cross-linking method was used to immobilize DNA probes on pretreated microplates. Solid-phase PCR was proven to be a convenient method for influenza A screening. The sensitivity of the microplate chip was 10(-3) μg/mL for the enzymatic colorimetric method and 10(-4) μg/mL for the fluorescence method. The 10 sets of primers and probes for the microplate chip were highly specific and did not interfere with each other. These results suggest that the microplate chip based on solid PCR can be used to rapidly detect universal influenza A and its subtypes. This platform can also be used to detect other pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Identification of Pseudallescheria and Scedosporium Species by Three Molecular Methods▿

    PubMed Central

    Lu, Qiaoyun; Gerrits van den Ende, A. H. G.; Bakkers, J. M. J. E.; Sun, Jiufeng; Lackner, M.; Najafzadeh, M. J.; Melchers, W. J. G.; Li, Ruoyu; de Hoog, G. S.

    2011-01-01

    The major clinically relevant species in Scedosporium (teleomorph Pseudallescheria) are Pseudallescheria boydii, Scedosporium aurantiacum, Scedosporium apiospermum, and Scedosporium prolificans, while Pseudallescheria minutispora, Petriellopsis desertorum, and Scedosporium dehoogii are exceptional agents of disease. Three molecular methods targeting the partial β-tubulin gene were developed and evaluated to identify six closely related species of the S. apiospermum complex using quantitative real-time PCR (qPCR), PCR-based reverse line blot (PCR-RLB), and loop-mediated isothermal amplification (LAMP). qPCR was not specific enough for the identification of all species but had the highest sensitivity. The PCR-RLB assay was efficient for the identification of five species. LAMP distinguished all six species unambiguously. The analytical sensitivities of qPCR, PCR-RLB, and LAMP combined with MagNAPure, CTAB (cetyltrimethylammonium bromide), and FTA filter (Whatman) extraction were 50, 5 × 103, and 5 × 102 cells/μl, respectively. When LAMP was combined with a simplified DNA extraction method using an FTA filter, identification to the species level was achieved within 2 h, including DNA extraction. The FTA-LAMP assay is therefore recommended as a cost-effective, simple, and rapid method for the identification of Scedosporium species. PMID:21177887

  15. [Identification of Clonorchis sinensis metacercariae based on PCR targeting ribosomal DNA ITS regions and COX1 gene].

    PubMed

    Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Yang, Yi-Chao; Li, Hong-Mei; Chen, Ying-Dan; Zhou, Xiao-Nong

    2014-06-01

    To identify Clonorchis sinensis metacercariae using PCR targeting ribosomal DNA ITS region and COX1 gene. Pseudorasbora parva were collected from Hengxian County of Guangxi at the end of May 2013. Single metacercaria of C. sinensis and other trematodes were separated from muscle tissue of P. parva by digestion method. Primers targeting ribosomal DNA ITS region and COX1 gene of C. sinensis were designed for PCR and the universal primers were used as control. The sensitivity and specificity of the PCR detection were analyzed. C. sinensis metacercariae at different stages were identified by PCR. DNA from single C. sinensis metacercaria was detected by PCR targeting ribosomal DNA ITS region and COX1 gene. The specific amplicans have sizes of 437/549, 156/249 and 195/166 bp, respectively. The ratio of the two positive numbers in PCR with universal primers and specific primers targeting C. sinensis ribosomal DNA ITS1 and ITS2 regions was 0.905 and 0.952, respectively. The target gene fragments were amplified by PCR using COX1 gene-specific primers. The PCR with specific primers did not show any non-specific amplification. However, the PCR with universal primers targeting ribosomal DNA ITS regions performed serious non-specific amplification. C. sinensis metacercariae at different stages are identified by morphological observation and PCR method. Species-specific primers targeting ribosomal DNA ITS region show higher sensitivity and specificity than the universal primers. PCR targeting COX1 gene shows similar sensitivity and specificity to PCR with specific primers targeting ribosomal DNA ITS regions.

  16. Comparison of Non-Culture-Based Methods for Detection of Systemic Fungal Infections, with an Emphasis on Invasive Candida Infections

    PubMed Central

    White, P. Lewis; Archer, Alice E.; Barnes, Rosemary A.

    2005-01-01

    The accepted limitations associated with classic culture techniques for the diagnosis of invasive fungal infections have lead to the emergence of many non-culture-based methods. With superior sensitivities and quicker turnaround times, non-culture-based methods may aid the diagnosis of invasive fungal infections. In this review of the diagnostic service, we assessed the performances of two antigen detection techniques (enzyme-linked immunosorbent assay [ELISA] and latex agglutination) with a molecular method for the detection of invasive Candida infection and invasive aspergillosis. The specificities for all three assays were high (≥97%), although the Candida PCR method had enhanced sensitivity over both ELISA and latex agglutination with values of 95%, 75%, and 25%, respectively. However, calculating significant sensitivity values for the Aspergillus detection methods was not feasible due to a low number of proven/probable cases. Despite enhanced sensitivity, the PCR method failed to detect nucleic acid in a probable case of invasive Candida infection that was detected by ELISA. In conclusion, both PCR and ELISA techniques should be used in unison to aid the detection of invasive fungal infections. PMID:15872239

  17. Rapid detection of fungal keratitis with DNA-stabilizing FTA filter paper.

    PubMed

    Menassa, Nardine; Bosshard, Philipp P; Kaufmann, Claude; Grimm, Christian; Auffarth, Gerd U; Thiel, Michael A

    2010-04-01

    Purpose. Polymerase chain reaction (PCR) is increasingly important for the rapid detection of fungal keratitis. However, techniques of specimen collection and DNA extraction before PCR may interfere with test sensitivity. The purpose of this study was to investigate the use of DNA-stabilizing FTA filter paper (Indicating FTA filter paper; Whatman International, Ltd., Maidstone, UK) for specimen collection without DNA extraction in a single-step, nonnested PCR for fungal keratitis. Methods. Specimens were collected from ocular surfaces with FTA filter discs, which automatically lyse collected cells and stabilize nucleic acids. Filter discs were directly used in single-step PCR reactions to detect fungal DNA. Test sensitivity was evaluated with serial dilutions of Candida albicans, Fusarium oxysporum, and Aspergillus fumigatus cultures. Test specificity was analyzed by comparing 196 and 155 healthy individuals from Switzerland and Egypt, respectively, with 15 patients with a diagnosis of microbial keratitis. Results. PCR with filter discs detected 3 C. albicans, 25 F. oxysporum, and 125 A. fumigatus organisms. In healthy volunteers, fungal PCR was positive in 1.0% and 8.4% of eyes from Switzerland and Egypt, respectively. Fungal PCR remained negative in 10 cases of culture-proven bacterial keratitis, became positive in 4 cases of fungal keratitis, but missed 1 case of culture-proven A. fumigatus keratitis. Conclusions. FTA filter paper for specimen collection together with direct PCR is a promising method of detecting fungal keratitis. The analytical sensitivity is high without the need for a semi-nested or nested second PCR, the clinical specificity is 91.7% to 99.0%, and the method is rapid and inexpensive.

  18. Application of Coamplification at Lower Denaturation Temperature-PCR Sequencing for Early Detection of Antiviral Drug Resistance Mutations of Hepatitis B Virus

    PubMed Central

    Wong, Danny Ka-Ho; Tsoi, Ottilia; Huang, Fung-Yu; Seto, Wai-Kay; Fung, James; Lai, Ching-Lung

    2014-01-01

    Nucleoside/nucleotide analogue for the treatment of chronic hepatitis B virus (HBV) infection is hampered by the emergence of drug resistance mutations. Conventional PCR sequencing cannot detect minor variants of <20%. We developed a modified co-amplification at lower denaturation temperature-PCR (COLD-PCR) method for the detection of HBV minority drug resistance mutations. The critical denaturation temperature for COLD-PCR was determined to be 78°C. Sensitivity of COLD-PCR sequencing was determined using serially diluted plasmids containing mixed proportions of HBV reverse transcriptase (rt) wild-type and mutant sequences. Conventional PCR sequencing detected mutations only if they existed in ≥25%, whereas COLD-PCR sequencing detected mutations when they existed in 5 to 10% of the viral population. The performance of COLD-PCR was compared to conventional PCR sequencing and a line probe assay (LiPA) using 215 samples obtained from 136 lamivudine- or telbivudine-treated patients with virological breakthrough. Among these 215 samples, drug resistance mutations were detected in 155 (72%), 148 (69%), and 113 samples (53%) by LiPA, COLD-PCR, and conventional PCR sequencing, respectively. Nineteen (9%) samples had mutations detectable by COLD-PCR but not LiPA, while 26 (12%) samples had mutations detectable by LiPA but not COLD-PCR, indicating both methods were comparable (P = 0.371). COLD-PCR was more sensitive than conventional PCR sequencing. Thirty-five (16%) samples had mutations detectable by COLD-PCR but not conventional PCR sequencing, while none had mutations detected by conventional PCR sequencing but not COLD-PCR (P < 0.0001). COLD-PCR sequencing is a simple method which is comparable to LiPA and superior to conventional PCR sequencing in detecting minor lamivudine/telbivudine resistance mutations. PMID:24951803

  19. RAPID PCR-BASED MONITORING OF INFECTIOUS ENTEROVIRUSES IN DRINKING WATER. (R824756)

    EPA Science Inventory

    Abstract

    Currently, the standard method for the detection of enteroviruses and hepatitis A virus in water involves cell culture assay which is expensive and time consuming. Direct RT-PCR offers a rapid and sensitive alternative to virus detection but sensitivity is oft...

  20. Pyrosequencing®-Based Identification of Low-Frequency Mutations Enriched Through Enhanced-ice-COLD-PCR.

    PubMed

    How-Kit, Alexandre; Tost, Jörg

    2015-01-01

    A number of molecular diagnostic assays have been developed in the last years for mutation detection. Although these methods have become increasingly sensitive, most of them are incompatible with a sequencing-based readout and require prior knowledge of the mutation present in the sample. Consequently, coamplification at low denaturation (COLD)-PCR-based methods have been developed and combine a high analytical sensitivity due to mutation enrichment in the sample with the identification of known or unknown mutations by downstream sequencing experiments. Among these methods, the recently developed Enhanced-ice-COLD-PCR appeared as the most powerful method as it outperformed the other COLD-PCR-based methods in terms of the mutation enrichment and due to the simplicity of the experimental setup of the assay. Indeed, E-ice-COLD-PCR is very versatile as it can be used on all types of PCR platforms and is applicable to different types of samples including fresh frozen, FFPE, and plasma samples. The technique relies on the incorporation of an LNA containing blocker probe in the PCR reaction followed by selective heteroduplex denaturation enabling amplification of the mutant allele while amplification of the wild-type allele is prevented. Combined with Pyrosequencing(®), which is a very quantitative high-resolution sequencing technology, E-ice-COLD-PCR can detect and identify mutations with a limit of detection down to 0.01 %.

  1. Nested-PCR real time as alternative molecular tool for detection of Borrelia burgdorferi compared to the classical serological diagnosis of the blood.

    PubMed

    Sroka-Oleksiak, Agnieszka; Ufir, Krzysztof; Salamon, Dominika; Bulanda, Malgorzata; Gosiewski, Tomasz

    Lyme disease, caused by Borrelia burgdorferi, is a multisystem disease that often makes difficulties to recognize caused by their genetic heterogenity. Currently, the gold standard for the detection of Lyme disease (LD) is serologic diagnostics based mainly on tests: ELISA and Western blot (WB). These methods, however, are subject to consider- able defect, especially in the initial phase of infection due to the occurrence of so-called serological window period and low specificity. For this reason, they might be replaced by molecular methods, for example polymerase chain reaction (PCR), which should be more sensitivity and specificity. In the present study we attempt to optimize the PCR reaction conditions and enhance existing test sensitivity by applying the equivalent of real time PCR - nested PCR for detection B. burgdorferi DNA in the patient's blood. The study involved 94 blood samples of patients with suspected LD. From each sample, 1.5 ml of blood was used for the isolation of bacterial DNA and PCR real time am- plification and its equivalent, in nested version. The remaining part earmarked for serologi- cal testing. Optimization of the reaction conditions made experimentally, using gradient of the temperature and gradient of the magnesium ions concentration for reaction real time in nested-PCR and PCR version. The results show that the nested-PCR real time, has a much higher sensitivity 45 (47.8%) of positive results for the detection of B. burgdorferi compared to the single- variety, without a preceding pre-amplification 2 (2.1%). Serological methods allowed the detection of infection in 41 (43.6%) samples. These results support of the nested PCR method as a better molecular tool for the detection of B. burgdorferi infection than classical PCR real time reaction. The nested-PCR real time method may be considered as a complement to ELISA and WB mainly in the early stages of infection, when in the blood circulating B. burgdorferi cells. By contrast, the results of serological and molecular tests should always be carried out tak- ing into account the patient's clinical status.

  2. Molecular diagnosis of strongyloidiasis in a population of an endemic area through nested-PCR.

    PubMed

    Sharifdini, Meysam; Keyhani, Amir; Eshraghian, Mohammad Reza; Beigom Kia, Eshrat

    2018-01-01

    This study is aimed to diagnose and analyze strongyloidiasis in a population of an endemic area of Iran using nested-PCR, coupled with parasitological methods. Screening of strongyloidiasis infected people using reliable diagnostic techniques are essential to decrease the mortality and morbidity associated with this infection. Molecular methods have been proved to be highly sensitive and specific for detection of Strongyloides stercoralis in stool samples. A total of 155 fresh single stool samples were randomly collected from residents of north and northwest of Khouzestan Province, Iran. All samples were examined by parasitological methods including formalin-ether concentration and nutrient agar plate culture, and molecular method of nested-PCR. Infections with S. stercoralis were analyzed according to demographic criteria. Based on the results of nested-PCR method 15 cases (9.7%) were strongyloidiasis positive. Nested-PCR was more sensitive than parasitological techniques on single stool sampling. Elderly was the most important population index for higher infectivity with S. stercoralis . In endemic areas of S. stercoralis , old age should be considered as one of the most important risk factors of infection, especially among the immunosuppressed individuals.

  3. Assessment of real-time PCR method for detection of EGFR mutation using both supernatant and cell pellet of malignant pleural effusion samples from non-small-cell lung cancer patients.

    PubMed

    Shin, Saeam; Kim, Juwon; Kim, Yoonjung; Cho, Sun-Mi; Lee, Kyung-A

    2017-10-26

    EGFR mutation is an emerging biomarker for treatment selection in non-small-cell lung cancer (NSCLC) patients. However, optimal mutation detection is hindered by complications associated with the biopsy procedure, tumor heterogeneity and limited sensitivity of test methodology. In this study, we evaluated the diagnostic utility of real-time PCR using malignant pleural effusion samples. A total of 77 pleural fluid samples from 77 NSCLC patients were tested using the cobas EGFR mutation test (Roche Molecular Systems). Pleural fluid was centrifuged, and separated cell pellets and supernatants were tested in parallel. Results were compared with Sanger sequencing and/or peptide nucleic acid (PNA)-mediated PCR clamping of matched tumor tissue or pleural fluid samples. All samples showed valid real-time PCR results in one or more DNA samples extracted from cell pellets and supernatants. Compared with other molecular methods, the sensitivity of real-time PCR method was 100%. Concordance rate of real-time PCR and Sanger sequencing plus PNA-mediated PCR clamping was 98.7%. We have confirmed that real-time PCR using pleural fluid had a high concordance rate compared to conventional methods, with no failed samples. Our data demonstrated that the parallel real-time PCR testing using supernatant and cell pellet could offer reliable and robust surrogate strategy when tissue is not available.

  4. Simultaneous quantification of alternatively spliced transcripts in a single droplet digital PCR reaction.

    PubMed

    Sun, Bing; Tao, Lian; Zheng, Yun-Ling

    2014-06-01

    Human telomerase reverse transcriptase (hTERT) is an essential component required for telomerase activity and telomere maintenance. Several alternatively spliced forms of hTERT mRNA have been reported in human primary and tumor cells. Currently, however, there is no sensitive and accurate method for the simultaneous quantification of multiple alternatively spliced RNA transcripts, such as in the case of hTERT. Here we show droplet digital PCR (ddPCR) provides sensitive, simultaneous digital quantification in a single reaction of two alternatively spliced single deletion hTERT transcripts (α-/β+ and α+/β-) as well as the opportunity to manually quantify non-deletion (α+/β+) and double deletion (α-/β-) transcripts. Our ddPCR method enables direct comparison among four alternatively spliced mRNAs without the need for internal standards or multiple primer pairs specific for each variant as real-time PCR (qPCR) requires, thus eliminating potential variation due to differences in PCR amplification efficiency.

  5. Comparison of real-time PCR with disk diffusion, agar screen and E-test methods for detection of methicillin-resistant Staphylococcus aureus.

    PubMed

    Shariati, Laleh; Validi, Majid; Tabatabaiefar, Mohammad Amin; Karimi, Ali; Nafisi, Mohammad Reza

    2010-12-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a nosocomial pathogen. Our main objective was to compare oxacillin disk test, oxacillin E-test, and oxacillin agar screen for detection of methicillin resistance in S. aureus, using real-time PCR for mecA as the "gold standard" comparison assay. 196 S. aureus isolates were identified out of 284 Staphylococcus isolates. These isolates were screened for MRSA with several methods: disk diffusion, agar screen (6.0 μg/ml), oxacillin E-test, and real-time PCR for detection of mecA gene. Of the 196 S. aureus isolates tested, 96 isolates (49%) were mecA-positive and 100 isolates (51%) mecA-negative. All methods tested had a statistically significant agreement with real-time PCR. E-test was 100% sensitive and specific for mecA presence. The sensitivity and specificity of oxacillin agar screen method were 98 and 99%, respectively and sensitivity and specificity of oxacillin disk diffusion method were 95 and 93%, respectively. In the present study, oxacillin E-test is proposed as the best phenotypic method. For economic reasons, the oxacillin agar screen method (6.0 μg/ml), which is suitable for the detection of MRSA, is recommended due to its accuracy and low cost.

  6. Quantification of mixed chimerism by real time PCR on whole blood-impregnated FTA cards.

    PubMed

    Pezzoli, N; Silvy, M; Woronko, A; Le Treut, T; Lévy-Mozziconacci, A; Reviron, D; Gabert, J; Picard, C

    2007-09-01

    This study has investigated quantification of chimerism in sex-mismatched transplantations by quantitative real time PCR (RQ-PCR) using FTA paper for blood sampling. First, we demonstrate that the quantification of DNA from EDTA-blood which has been deposit on FTA card is accurate and reproducible. Secondly, we show that fraction of recipient cells detected by RQ-PCR was concordant between the FTA and salting-out method, reference DNA extraction method. Furthermore, the sensitivity of detection of recipient cells is relatively similar with the two methods. Our results show that this innovative method can be used for MC assessment by RQ-PCR.

  7. Volume dependency for culture of fungi from respiratory secretions and increased sensitivity of Aspergillus quantitative PCR.

    PubMed

    Fraczek, Marcin G; Kirwan, Marie B; Moore, Caroline B; Morris, Julie; Denning, David W; Richardson, Malcolm D

    2014-02-01

    Diagnosis of aspergillosis is often difficult. We compared fungal yields from respiratory specimens using the Health Protection Agency standard culture method (BSOP57), a higher volume undiluted culture method Mycology Reference Centre Manchester (MRCM) and Aspergillus quantitative real time polymerase chain reaction (qPCR). Sputum, bronchial aspirate and bronchoalveolar lavage (BAL) samples (total 23) were collected from aspergillosis patients. One fraction of all samples was cultured using the MRCM method, one BSOP57 and one was used for qPCR. The recovery rate for fungi was significantly higher by MRCM (87%) than by BSOP57 (8.7%) from all 23 specimens. Sputum samples were 44% positive by MRCM compared to no fungi isolated (0%) by BSOP57. Bronchial aspirates were 75% positive by MRCM and 0% by BSOP57. BAL samples were positive in 20% by MRCM and 10% by BSOP57. qPCR was always more sensitive than culture (95.6%) from all samples. In general, over 100 mould colonies (81 Aspergillus fumigatus) were grown using the MRCM method compared with only one colony from BSOP57. This study provides a reference point for standardisation of respiratory sample processing in diagnostic laboratories. Culture from higher volume undiluted respiratory specimens has a much higher yield for Aspergillus than BSOP57. qPCR is much more sensitive than culture and the current UK method requires revision. © 2013 Blackwell Verlag GmbH.

  8. Polymerase chain displacement reaction.

    PubMed

    Harris, Claire L; Sanchez-Vargas, Irma J; Olson, Ken E; Alphey, Luke; Fu, Guoliang

    2013-02-01

    Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics.

  9. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    PubMed

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  10. A simplified strategy for sensitive detection of Rose rosette virus compatible with three RT-PCR chemistries.

    PubMed

    Dobhal, Shefali; Olson, Jennifer D; Arif, Mohammad; Garcia Suarez, Johnny A; Ochoa-Corona, Francisco M

    2016-06-01

    Rose rosette disease is a disorder associated with infection by Rose rosette virus (RRV), a pathogen of roses that causes devastating effects on most garden cultivated varieties, and the wild invasive rose especially Rosa multiflora. Reliable and sensitive detection of this disease in early phases is needed to implement proper control measures. This study assesses a single primer-set based detection method for RRV and demonstrates its application in three different chemistries: Endpoint RT-PCR, TaqMan-quantitative RT-PCR (RT-qPCR) and SYBR Green RT-qPCR with High Resolution Melting analyses. A primer set (RRV2F/2R) was designed from consensus sequences of the nucleocapsid protein gene p3 located in the RNA 3 region of RRV. The specificity of primer set RRV2F/2R was validated in silico against published GenBank sequences and in-vitro against infected plant samples and an exclusivity panel of near-neighbor and other viruses that commonly infect Rosa spp. The developed assay is sensitive with a detection limit of 1fg from infected plant tissue. Thirty rose samples from 8 different states of the United States were tested using the developed methods. The developed methods are sensitive and reliable, and can be used by diagnostic laboratories for routine testing and disease management decisions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Direct identification of Streptococcus agalactiae and capsular type by real-time PCR in vaginal swabs from pregnant women.

    PubMed

    Morozumi, Miyuki; Chiba, Naoko; Igarashi, Yuko; Mitsuhashi, Naoki; Wajima, Takeaki; Iwata, Satoshi; Ubukata, Kimiko

    2015-01-01

    Most group B streptococcus (GBS) infections in newborns are with capsular type Ia, Ib, or III. To prevent these infections more effectively, we developed a real-time PCR method to simultaneously detect GBS species and identify these 3 capsular types in vaginal swab samples from women at 36-39 weeks of gestation. DNA to be detected included those of the dltS gene (encoding a histidine kinase specific to GBS) and cps genes encoding capsular types. PCR sensitivity was 10 CFU/well for a 33-35 threshold cycle. Results were obtained within 2 h. Direct PCR results were compared with results obtained from cultures. Samples numbering 1226 underwent PCR between September 2008 and August 2012. GBS positivity rates by direct PCR and after routine culture were 15.7% (n = 192) and 12.6% (n = 154), respectively. Sensitivity and specificity of direct PCR relative to culture were 96.1% and 95.9%. Of GBS positive samples identified by PCR, capsular types determined directly by real-time PCR were Ia (n = 24), Ib (n = 32), and III (n = 26). Real-time PCR using our designed cycling probe is a practical, highly sensitive method for identification of GBS in pregnant carriers, allowing use of prophylactic intrapartum antibiotics in time to cover the possibility of unexpected premature birth. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Role of PCR method using IS6110 primer in detecting Mycobacterium tuberculosis among the clinically diagnosed childhood tuberculosis patients at an urban hospital in Dhaka, Bangladesh.

    PubMed

    Kabir, Senjuti; Uddin, Mohammad Khaja Mafij; Chisti, Mohammod Jobayer; Fannana, Tilka; Haque, Mohammad Enamul; Uddin, Muhammad Reaj; Banu, Sayera; Ahmed, Tahmeed

    2018-03-01

    Better methods are needed for the accurate detection of child tuberculosis (TB). This study compared different laboratory tests and evaluated IS6110 PCR for the detection of Mycobacterium tuberculosis (MTB) among clinically diagnosed child TB patients. A total of 102 paediatric patients (<15 years old) with clinically diagnosed TB were enrolled in this study. The patients were admitted to the icddr,b hospital in Dhaka between 2003 and 2005. Sputum/gastric lavage samples were collected for smear microscopy, culture (solid/Lowenstein-Jensen medium and liquid/MGIT), and IS6110 PCR testing. The sensitivity, specificity, and positive and negative predictive values (PPV, NPV) of smear microscopy and PCR were compared to the two culture methods. Three patients were positive on smear microscopy (2.9%). MTB was detected by conventional culture in 15.7% (16/102), liquid culture in 14% (14/100), and IS6110 PCR in 61.8% (63/102). PCR detected an additional 45 patients who were undetected with the three other tests. Compared to conventional and liquid culture, respectively, smear microscopy showed sensitivity of 18.8% and 21.4%, specificity of 100% individually, PPV of 100% individually, and NPV of 86.9% and 88.7%, whereas PCR had sensitivity of 87.5% and 92.9%, specificity of 43% individually, PPV of 22.2% and 21%, and NPV of 94.9% and 97.4%. PCR can be useful compared to smear microscopy and culture methods and is applicable as a rapid screening test for child TB. A larger scale study is required to determine its diagnostic efficacy in improving the detection of child TB in the presence and absence of severe malnutrition. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Rapid Diagnosis of Bloodstream Infections with PCR Followed by Mass Spectrometry

    PubMed Central

    Jordana-Lluch, Elena; Carolan, Heather E.; Giménez, Montserrat; Sampath, Rangarajan; Ecker, David J.; Quesada, M. Dolores; Mòdol, Josep M.; Arméstar, Fernando; Blyn, Lawrence B.; Cummins, Lendell L.; Ausina, Vicente; Martró, Elisa

    2013-01-01

    Achieving a rapid microbiological diagnosis is crucial for decreasing morbidity and mortality of patients with a bloodstream infection, as it leads to the administration of an appropriate empiric antimicrobial therapy. Molecular methods may offer a rapid alternative to conventional microbiological diagnosis involving blood culture. In this study, the performance of a new technology that uses broad-spectrum PCR coupled with mass spectrometry (PCR/ESI-MS) was evaluated for the detection of microorganisms directly from whole blood. A total of 247 whole blood samples and paired blood cultures were prospectively obtained from 175 patients with a suspicion of sepsis. Both sample types were analyzed using the PCR/ESI-MS technology, and the results were compared with those obtained by conventional identification methods. The overall agreement between conventional methods and PCR/ESI-MS performed in blood culture aliquots was 94.2% with 96.8% sensitivity and 98.5% specificity for the molecular method. When comparing conventional methods with PCR/ESI-MS performed in whole blood specimens, the overall agreement was 77.1% with 50% sensitivity and 93.8% specificity for the molecular method. Interestingly, the PCR/ESI-MS technology led to the additional identification of 13 pathogens that were not found by conventional methods. Using the PCR/ESI-MS technology the microbiological diagnosis of bloodstream infections could be anticipated in about half of the patients in our setting, including a small but significant proportion of patients newly diagnosed. Thus, this promising technology could be very useful for the rapid diagnosis of sepsis in combination with traditional methods. PMID:23626775

  14. Hepatitis E Virus in Wild Boar in Northwest Poland: Sensitivity of Methods of Detection.

    PubMed

    Dorn-In, Samart; Schwaiger, Karin; Twarużek, Magdalena; Grajewski, Jan; Gottschalk, Christoph; Gareis, Manfred

    2017-02-01

    In northwest Poland, 163 blood and 53 fecal samples of wild boars were collected in winter 2012/13 and 2013/14. All blood samples were tested for the presence of hepatitis E virus (HEV) ribonucleic acid (RNA) by two reverse transcription-polymerase chain reaction (RT-PCR) based methods and by anti-HEV IgG enzyme-linked immunosorbent assay (ELISA). About 17.2% of blood samples were seropositive. One-step nested RT-PCR turned out to be too insensitive (11.6% were positive). Therefore a two-step nested RT-PCR was applied where 25.8% of the blood samples were tested positive for HEV RNA. About 50.0% of blood samples positive in ELISA were also positive in two-step nested RT-PCR. The prevalence of HEV RNA in feces was 9.4%. Based on the results of blood (ELISA, PCR) and fecal (PCR) tests, the overall prevalence of HEV in wild boars in northwest Poland was 36.8%. There was no correlation between the ELISA results and the presence of HEV RNA in plasma or in feces. According to the sequencing results of 348 bp PCR products of HEV, there were four different subtypes identified. Reports on the prevalence of HEV in wild boar populations are varying due to different sensitivities of the detection methods. However, this study reveals based on a highly sensitive method that HEV is widely spread in wild boar populations in the northwestern region of Poland and posing a potential risk to the consumer of game meat.

  15. Touch-down reverse transcriptase-PCR detection of IgV(H) rearrangement and Sybr-Green-based real-time RT-PCR quantitation of minimal residual disease in patients with chronic lymphocytic leukemia.

    PubMed

    Peková, Sona; Marková, Jana; Pajer, Petr; Dvorák, Michal; Cetkovský, Petr; Schwarz, Jirí

    2005-01-01

    Patients with chronic lymphocytic leukemia (CLL) can relapse even after aggressive therapy and autografts. It is commonly assumed that to prevent relapse the level of minimal residual disease (MRD) should be as low as possible. To evaluate MRD, highly sensitive quantitative assays are needed. The aim of the study was to develop a robust and sensitive method for detection of the clonal immunoglobulin heavy-chain variable (IgV(H)) rearrangement in CLL and to introduce a highly sensitive and specific methodology for MRD monitoring in patients with CLL who undergo intensive treatment. As a prerequisite for MRD detection, touch-down reverse transcriptase (RT)-PCR using degenerate primers were used for the diagnostic identification of (H) gene rearrangement(s). For quantitative MRD detection in 18 patients, we employed a real-time RT-PCR assay (RQ-PCR) making use of patient-specific primers and the cost-saving Sybr-Green reporter dye (SG). For precise calibration of RQ-PCR, patient-specific IgV(H) sequences were cloned. Touch-down RT-PCR with degenerate primers allowed the successful detection of IgV(H) clonal rearrangement(s) in 252 of 257 (98.1%) diagnostic samples. Biallelic rearrangements were found in 27 of 252 (10.7%) cases. Degenerate primers used for the identification of clonal expansion at diagnosis were not sensitive enough for MRD detection. In contrast, our RQ-PCR assay using patient-specific primers and SG reached the sensitivity of 10(-)(6). We demonstrated MRD in each patient tested, including four of four patients in complete remission following autologous hematopoietic stem cell transplantation (HSCT) and three of three following allogeneic 'mini'-HSCT. Increments in MRD might herald relapse; aggressive chemotherapy could induce molecular remission. Our touch-down RT-PCR has higher efficiency to detect clonal IgV(H) rearrangements including the biallelic ones. MRD quantitation of IgV(H) expression using SG-based RQ-PCR represents a highly specific, sensitive, and economic alternative to the current quantitative methods.

  16. Single-tube analysis of DNA methylation with silica superparamagnetic beads.

    PubMed

    Bailey, Vasudev J; Zhang, Yi; Keeley, Brian P; Yin, Chao; Pelosky, Kristen L; Brock, Malcolm; Baylin, Stephen B; Herman, James G; Wang, Tza-Huei

    2010-06-01

    DNA promoter methylation is a signature for the silencing of tumor suppressor genes. Most widely used methods to detect DNA methylation involve 3 separate, independent processes: DNA extraction, bisulfite conversion, and methylation detection via a PCR method, such as methylation-specific PCR (MSP). This method includes many disconnected steps with associated losses of material, potentially reducing the analytical sensitivity required for analysis of challenging clinical samples. Methylation on beads (MOB) is a new technique that integrates DNA extraction, bisulfite conversion, and PCR in a single tube via the use of silica superparamagnetic beads (SSBs) as a common DNA carrier for facilitating cell debris removal and buffer exchange throughout the entire process. In addition, PCR buffer is used to directly elute bisulfite-treated DNA from SSBs for subsequent target amplifications. The diagnostic sensitivity of MOB was evaluated by methylation analysis of the CDKN2A [cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4); also known as p16(INK4a)] promoter in serum DNA of lung cancer patients and compared with that of conventional methods. Methylation analysis consisting of DNA extraction followed by bisulfite conversion and MSP was successfully carried out within 9 h in a single tube. The median pre-PCR DNA yield was 6.61-fold higher with the MOB technique than with conventional techniques. Furthermore, MOB increased the diagnostic sensitivity in our analysis of the CDKN2A promoter in patient serum by successfully detecting methylation in 74% of cancer patients, vs the 45% detection rate obtained with conventional techniques. The MOB technique successfully combined 3 processes into a single tube, thereby allowing ease in handling and an increased detection throughput. The increased pre-PCR yield in MOB allowed efficient, diagnostically sensitive methylation detection.

  17. Development of an optimized protocol for the detection of classical swine fever virus in formalin-fixed, paraffin-embedded tissues by seminested reverse transcription-polymerase chain reaction and comparison with in situ hybridization.

    PubMed

    Ha, S-K; Choi, C; Chae, C

    2004-10-01

    An optimized protocol was developed for the detection of classical swine fever virus (CSFV) in formalin-fixed, paraffin-embedded tissues obtained from experimentally and naturally infected pigs by seminested reverse transcription-polymerase chain reaction (RT-PCR). The results for seminested RT-PCR were compared with those determined by in situ hybridization. The results obtained show that the use of deparaffinization with xylene, digestion with proteinase K, extraction with Trizol LS, followed by seminested RT-PCR is a reliable detection method. An increase in sensitivity was observed as amplicon size decreased. The highest sensitivity for RT-PCR on formalin-fixed, paraffin-embedded tissues RNA was obtained with amplicon sizes less than approximately 200 base pairs. An hybridization signal for CSFV was detected in lymph nodes from 12 experimentally and 12 naturally infected pigs. The sensitivity of seminested RT-PCR compared with in situ hybridization was 100% for CSFV. When only formalin-fixed tissues are available, seminested RT-PCR and in situ hybridization would be useful diagnostic methods for the detection of CSFV nucleic acid.

  18. Detection of Echinococcus multilocularis by MC-PCR: evaluation of diagnostic sensitivity and specificity without gold standard.

    PubMed

    Wahlström, Helene; Comin, Arianna; Isaksson, Mats; Deplazes, Peter

    2016-01-01

    A semi-automated magnetic capture probe-based DNA extraction and real-time PCR method (MC-PCR), allowing for a more efficient large-scale surveillance of Echinococcus multilocularis occurrence, has been developed. The test sensitivity has previously been evaluated using the sedimentation and counting technique (SCT) as a gold standard. However, as the sensitivity of the SCT is not 1, test characteristics of the MC-PCR was also evaluated using latent class analysis, a methodology not requiring a gold standard. Test results, MC-PCR and SCT, from a previous evaluation of the MC-PCR using 177 foxes shot in the spring (n=108) and autumn 2012 (n=69) in high prevalence areas in Switzerland were used. Latent class analysis was used to estimate the test characteristics of the MC-PCR. Although it is not the primary aim of this study, estimates of the test characteristics of the SCT were also obtained. This study showed that the sensitivity of the MC-PCR was 0.88 [95% posterior credible interval (PCI) 0.80-0.93], which was not significantly different than the SCT, 0.83 (95% PCI 0.76-0.88), which is currently considered as the gold standard. The specificity of both tests was high, 0.98 (95% PCI 0.94-0.99) for the MC-PCR and 0.99 (95% PCI 0.99-1) for the SCT. In a previous study, using fox scats from a low prevalence area, the specificity of the MC-PCR was higher, 0.999% (95% PCI 0.997-1). One reason for the lower estimate of the specificity in this study could be that the MC-PCR detects DNA from infected but non-infectious rodents eaten by foxes. When using MC-PCR in low prevalence areas or areas free from the parasite, a positive result in the MC-PCR should be regarded as a true positive. The sensitivity of the MC-PCR (0.88) was comparable to the sensitivity of SCT (0.83).

  19. Improved detection of Burkholderia pseudomallei from non-blood clinical specimens using enrichment culture and PCR: narrowing diagnostic gap in resource-constrained settings.

    PubMed

    Tellapragada, Chaitanya; Shaw, Tushar; D'Souza, Annet; Eshwara, Vandana Kalwaje; Mukhopadhyay, Chiranjay

    2017-07-01

    To evaluate the diagnostic utility of enrichment culture and PCR for improved case detection rates of non-bacteraemic form of melioidosis in limited resource settings. Clinical specimens (n = 525) obtained from patients presenting at a tertiary care hospital of South India with clinical symptoms suggestive of community-acquired pneumonia, lower respiratory tract infections, superficial or internal abscesses, chronic skin ulcers and bone or joint infections were tested for the presence of Burkholderia pseudomallei using conventional culture (CC), enrichment culture (EC) and PCR. Sensitivity, specificity, positive and negative predictive values of CC and PCR were initially deduced using EC as the gold standard method. Further, diagnostic accuracies of all the three methods were analysed using Bayesian latent class modelling (BLCM). Detection rates of B. pseudomallei using CC, EC and PCR were 3.8%, 5.3% and 6%, respectively. Diagnostic sensitivities and specificities of CC and PCR were 71.4, 98.4% and 100 and 99.4%, respectively in comparison with EC as the gold standard test. With Bayesian latent class modelling, EC and PCR demonstrated sensitivities of 98.7 and 99.3%, respectively, while CC showed a sensitivity of 70.3% for detection of B. pseudomallei. An increase of 1.6% (95% CI: 1.08-4.32%) in the case detection rate of melioidosis was observed in the study population when EC and/or PCR were used in adjunct to the conventional culture technique. Our study findings underscore the diagnostic superiority of enrichment culture and/or PCR over conventional microbiological culture for improved case detection of melioidosis from non-blood clinical specimens. © 2017 John Wiley & Sons Ltd.

  20. Comparison of Different Methods to Identify tdh-Positive Pathogenic Vibrio parahaemolyticus Isolates.

    PubMed

    Zhang, Hongzhi; Chen, Min

    2018-01-01

    We evaluated the accuracy and ease of operation of three methods to identify tdh-positive Vibrio parahaemolyticus isolates, including the Kanagawa phenomenon test (KP test), a tdh gene PCR test, and a colloidal gold immunochromatographic assay (CGIA). A total of 221 V. parahaemolyticus isolates were collected from patients, freshly harvested seafood, and fresh seawater. Using the KP test, 92% of V. parahaemolyticus isolates from patients were identified tdh-positive, including four weak KP-positive isolates. The PCR test and CGIA also identified 92% of the isolates as tdh-positive. However, PCR and CGIA only confirmed one of the four weak KP-positive isolates. Similar results were obtained using the three methods to identify V. parahaemolyticus isolates from the other sources. Among the three methods, the KP test was the simplest to perform because it lacked any requirement for sample pretreatment, and was low cost, with no equipment requirements. Therefore, the KP test has been applied widely in many first-line quarantine laboratories. However, the sensitivity and accuracy of KP test were lower than those of the other two methods. PCR can identify the tdh rapidly, specifically, and sensitively. However, PCR requires equipment and facilities that are unavailable in first-line quarantine laboratories. The CGIA can compensate for the disadvantages of the other two methods by its higher sensitivity, accuracy, and ease of operation. Therefore, the CGIA has the highest potential to be used to identify tdh-positive V. parahaemolyticus isolates to guarantee food safety.

  1. A semi-automated magnetic capture probe based DNA extraction and real-time PCR method applied in the Swedish surveillance of Echinococcus multilocularis in red fox (Vulpes vulpes) faecal samples.

    PubMed

    Isaksson, Mats; Hagström, Åsa; Armua-Fernandez, Maria Teresa; Wahlström, Helene; Ågren, Erik Olof; Miller, Andrea; Holmberg, Anders; Lukacs, Morten; Casulli, Adriano; Deplazes, Peter; Juremalm, Mikael

    2014-12-19

    Following the first finding of Echinococcus multilocularis in Sweden in 2011, 2985 red foxes (Vulpes vulpes) were analysed by the segmental sedimentation and counting technique. This is a labour intensive method and requires handling of the whole carcass of the fox, resulting in a costly analysis. In an effort to reduce the cost of labour and sample handling, an alternative method has been developed. The method is sensitive and partially automated for detection of E. multilocularis in faecal samples. The method has been used in the Swedish E. multilocularis monitoring program for 2012-2013 on more than 2000 faecal samples. We describe a new semi-automated magnetic capture probe DNA extraction method and real time hydrolysis probe polymerase chain reaction assay (MC-PCR) for the detection of E. multilocularis DNA in faecal samples from red fox. The diagnostic sensitivity was determined by validating the new method against the sedimentation and counting technique in fox samples collected in Switzerland where E. multilocularis is highly endemic. Of 177 foxes analysed by the sedimentation and counting technique, E. multilocularis was detected in 93 animals. Eighty-two (88%, 95% C.I 79.8-93.9) of these were positive in the MC-PCR. In foxes with more than 100 worms, the MC-PCR was positive in 44 out of 46 (95.7%) cases. The two MC-PCR negative samples originated from foxes with only immature E. multilocularis worms. In foxes with 100 worms or less, (n = 47), 38 (80.9%) were positive in the MC-PCR. The diagnostic specificity of the MC-PCR was evaluated using fox scats collected within the Swedish screening. Of 2158 samples analysed, two were positive. This implies that the specificity is at least 99.9% (C.I. = 99.7-100). The MC-PCR proved to have a high sensitivity and a very high specificity. The test is partially automated but also possible to perform manually if desired. The test is well suited for nationwide E. multilocularis surveillance programs where sampling of fox scats is done to reduce the costs for sampling and where a test with a high sensitivity and a very high specificity is needed.

  2. Novel and highly sensitive sybr® green real-time pcr for poxvirus detection in odontocete cetaceans.

    PubMed

    Sacristán, Carlos; Luiz Catão-Dias, José; Ewbank, Ana Carolina; Machado, Eduardo Ferreira; Neves, Elena; Santos-Neto, Elitieri Batista; Azevedo, Alexandre; Laison-Brito, José; De Castilho, Pedro Volkmer; Daura-Jorge, Fábio Gonçalves; Simões-Lopes, Paulo César; Carballo, Matilde; García-Párraga, Daniel; Manuel Sánchez-Vizcaíno, José; Esperón, Fernando

    2018-06-08

    Poxviruses are emerging pathogens in cetaceans, temporarily named 'Cetaceanpoxvirus' (CePV, family Poxviridae), classified into two main lineages: CePV-1 in odontocetes and CePV-2 in mysticetes. Only a few studies performed the molecular detection of CePVs, based on DNA-polymerase gene and/or DNA-topoisomerase I gene amplification. Herein we describe a new real-time PCR assay based on SYBR ® Green and a new primer set to detect a 150 bp fragment of CePV DNA-polymerase gene, also effective for conventional PCR detection. The novel real-time PCR was able to detect 5 up to 5 × 10 6 copies per reaction of a cloned positive control. Both novel PCR methods were 1000 to 100,000-fold more sensitive than those previously described in the literature. Samples of characteristic poxvirus skin lesions ('tattoo') from one Risso's dolphin (Grampus griseus), two striped dolphins (Stenella coeruleoalba) and two Guiana dolphins (Sotalia guianensis) were all positive to both our novel real time- and conventional PCR methods, even though three of these animals (a Risso's dolphin, a striped dolphin, and a Guiana dolphin) were previously negative to the conventional PCRs previously available. To our knowledge, this is the first real-time PCR detection method for Cetaceanpoxvirus, a much more sensitive tool for the detection of CePV-1 infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The agony of choice in dermatophyte diagnostics-performance of different molecular tests and culture in the detection of Trichophyton rubrum and Trichophyton interdigitale.

    PubMed

    Kupsch, C; Ohst, T; Pankewitz, F; Nenoff, P; Uhrlaß, S; Winter, I; Gräser, Y

    2016-08-01

    Dermatophytosis caused by dermatophytes of the genera Trichophyton and Microsporum belong to the most frequent mycoses worldwide. Molecular detection methods proved to be highly sensitive and enable rapid and accurate detection of dermatophyte species from clinical specimens. For the first time, we compare the performance of different molecular methods with each other and with conventional diagnostics in the detection of dermatophytoses caused by Trichophyton rubrum and Trichophyton interdigitale in clinical specimens (nail, skin and hair). The compared molecular methods comprise two already published PCR-ELISAs, a published quantitative RT-PCR as well as a newly developed PCR-ELISA targeting the internal transcribed spacer region. We investigated the sensitivity of the assays by analysing 375 clinical samples. In 148 specimens (39.5%) a positive result was gained in at least one of the four molecular tests or by culture, but the number of detected agents differed significantly between some of the assays. The most sensitive assay, a PCR-ELISA targeting a microsatellite region, detected 81 T. rubrum infections followed by an internal transcribed spacer PCR-ELISA (60), quantitative RT-PCR (52) and a topoisomerase II PCR-ELISA (51), whereas cultivation resulted in T. rubrum identification in 37 samples. The pros and cons of all four tests in routine diagnostics are discussed. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Use of Occult Blood Detection Cards for Real-Time PCR-Based Diagnosis of Schistosoma Mansoni Infection

    PubMed Central

    Schunk, Mirjam; Kebede Mekonnen, Seleshi; Wondafrash, Beyene; Mengele, Carolin; Fleischmann, Erna; Herbinger, Karl-Heinz; Verweij, Jaco J.; Geldmacher, Christof; Bretzel, Gisela; Löscher, Thomas; Zeynudin, Ahmed

    2015-01-01

    Background In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study. Methodology Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months. Principal Findings Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic “gold standard”, the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100). Conclusions The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments PMID:26360049

  5. Use of Occult Blood Detection Cards for Real-Time PCR-Based Diagnosis of Schistosoma Mansoni Infection.

    PubMed

    Schunk, Mirjam; Kebede Mekonnen, Seleshi; Wondafrash, Beyene; Mengele, Carolin; Fleischmann, Erna; Herbinger, Karl-Heinz; Verweij, Jaco J; Geldmacher, Christof; Bretzel, Gisela; Löscher, Thomas; Zeynudin, Ahmed

    2015-01-01

    In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study. Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months. Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic "gold standard", the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100). The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments.

  6. [Improvement of sensitivity in the second generation HCV core antigen assay by a novel concentration method using polyethylene glycol (PEG)].

    PubMed

    Higashimoto, Makiko; Takahashi, Masahiko; Jokyu, Ritsuko; Syundou, Hiromi; Saito, Hidetsugu

    2007-11-01

    A HCV core antigen (Ag) detection assay system, Lumipulse Ortho HCV Ag has been developed and is commercially available in Japan with a lower detection level limit of 50 fmol/l, which is equivalent to 20 KIU/ml in PCR quantitative assay. HCV core Ag assay has an advantage of broader dynamic range compared with PCR assay, however the sensitivity is lower than PCR. We developed a novel HCV core Ag concentration method using polyethylene glycol (PEG), which can improve the sensitivity five times better than the original assay. The reproducibility was examined by consecutive five-time measurement of HCV patients serum, in which the results of HCV core Ag original and concentrated method were 56.8 +/- 8.1 fmol/l (mean +/- SD), CV 14.2% and 322.9 +/- 45.5 fmol/l CV 14.0%, respectively. The assay results of HCV negative samples in original HCV core Ag were all 0.1 fmol/l and the results were same even in the concentration method. The results of concentration method were 5.7 times higher than original assay, which was almost equal to theoretical rate as expected. The assay results of serially diluted samples were also as same as expected data in both original and concentration assay. We confirmed that the sensitivity of HCV core Ag concentration method had almost as same sensitivity as PCR high range assay in the competitive assay study using the serially monitored samples of five HCV patients during interferon therapy. A novel concentration method using PEG in HCV core Ag assay system seems to be useful for assessing and monitoring interferon treatment for HCV.

  7. Rapid detection of Porcine circovirus 2 by recombinase polymerase amplification.

    PubMed

    Wang, Jianchang; Wang, Jinfeng; Liu, Libing; Li, Ruiwen; Yuan, Wanzhe

    2016-09-01

    Porcine circovirus-associated disease, caused primarily by Porcine circovirus 2 (PCV-2), has become endemic in many pig-producing countries and has resulted in significant economic losses to the swine industry worldwide. Tests for PCV-2 infection include PCR, nested PCR, competitive PCR, and real-time PCR (rtPCR). Recombinase polymerase amplification (RPA) has emerged as an isothermal gene amplification technology for the molecular detection of infectious disease agents. RPA is performed at a constant temperature and therefore can be carried out in a water bath. In addition, RPA is completed in ~30 min, much faster than PCR, which usually takes >60 min. We developed a RPA-based method for the detection of PCV-2. The detection limit of RPA was 10(2) copies of PCV-2 genomic DNA. RPA showed the same sensitivity as rtPCR but was 10 times more sensitive than conventional PCR. Successful amplification of PCV-2 DNA, but not other viral templates, demonstrated high specificity of the RPA assay. This method was also validated using clinical samples. The results showed that the RPA assay had a diagnostic agreement rate of 93.7% with conventional PCR and 100% with rtPCR. These findings suggest that the RPA assay is a simple, rapid, and cost-effective method for PCV-2 detection, which could be potentially applied in clinical diagnosis and field surveillance of PCV-2 infection. © 2016 The Author(s).

  8. Protocol for the use of light upon extension real-time PCR for the determination of viral load in HBV infection.

    PubMed

    Li, Guimin; Li, Wangfeng; Liu, Lixia

    2012-01-01

    Real-time PCR has engendered wide acceptance for quantitation of hepatitis B virus (HBV) DNA in the blood due to its improved rapidity, sensitivity, reproducibility, and reduced contamination. Here we describe a cost-effective and highly sensitive HBV real-time quantitative assay based on the light upon extension real-time PCR platform and a simple and reliable HBV DNA preparation method using silica-coated magnetic beads.

  9. A rapid single-tube protocol for HAV detection by nested real-time PCR.

    PubMed

    Hu, Yuan; Arsov, Ivica

    2014-09-01

    Infections by food-borne viruses such as hepatitis A virus (HAV) and norovirus are significant public health concerns worldwide. Since food-borne viruses are rarely confirmed through direct isolation from contaminated samples, highly sensitive molecular techniques remain the methods of choice for the detection of viral genetic material. Our group has previously developed a specific nested real-time PCR (NRT-PCR) assay for HAV detection that improved overall sensitivity. Furthermore in this study, we have developed a single-tube NRT-PCR approach for HAV detection in food samples that reduces the likelihood of cross contamination between tubes during sample manipulation. HAV RNA was isolated from HAV-spiked food samples and HAV-infected cell cultures. All reactions following HAV RNA isolation, including conventional reverse transcriptase PCR, nested-PCR, and RT-PCR were performed in a single tube. Our results demonstrated that all the samples tested positive by RT-PCR and nested-PCR were also positive by a single-tube NRT-PCR. The detection limits observed for HAV-infected cell cultures and HAV-spiked green onions were 0.1 and 1 PFU, respectively. This novel method retained the specificity and robustness of the original NRT-PCR method, while greatly reducing sample manipulation, turnaround time, and the risk of carry-over contamination. Single-tube NRT-PCR thus represents a promising new tool that can potentially facilitate the detection of HAV in foods thereby improving food safety and public health.

  10. Improved detection of endoparasite DNA in soil sample PCR by the use of anti-inhibitory substances.

    PubMed

    Krämer, F; Vollrath, T; Schnieder, T; Epe, C

    2002-09-26

    Although there have been numerous microbial examinations of soil for the presence of human pathogenic developmental parasite stages of Ancylostoma caninum and Toxocara canis, molecular techniques (e.g. DNA extraction, purification and subsequent PCR) have scarcely been applied. Here, DNA preparations of soil samples artificially contaminated with genomic DNA or parasite eggs were examined by PCR. A. caninum and T. canis-specific primers based on the ITS-2 sequence were used for amplification. After the sheer DNA preparation a high content of PCR-interfering substances was still detectable. Subsequently, two different inhibitors of PCR-interfering agents (GeneReleaser, Bioventures Inc. and Maximator, Connex GmbH) were compared in PCR. Both substances increased PCR sensitivity greatly. However, comparison of the increase in sensitivity achieved with the two compounds demonstrated the superiority of Maximator, which enhanced sensitivity to the point of permitting positive detection of a single A. caninum egg and three T. canis eggs in a soil sample. This degree of sensitivity could not be achieved with GeneReleaser for either parasite Furthermore, Maximator not only increased sensitivity; it also cost less, required less time and had a lower risk of contamination. Future applications of molecular methods in epidemiological examinations of soil samples are discussed/elaborated.

  11. Characterization and Comparison of Galactomannan Enzyme Immunoassay and Quantitative Real-Time PCR Assay for Detection of Aspergillus fumigatus in Bronchoalveolar Lavage Fluid from Experimental Invasive Pulmonary Aspergillosis

    PubMed Central

    Francesconi, Andrea; Kasai, Miki; Petraitiene, Ruta; Petraitis, Vidmantas; Kelaher, Amy M.; Schaufele, Robert; Hope, William W.; Shea, Yvonne R.; Bacher, John; Walsh, Thomas J.

    2006-01-01

    Bronchoalveolar lavage (BAL) is widely used for evaluation of patients with suspected invasive pulmonary aspergillosis (IPA). However, the diagnostic yield of BAL for detection of IPA by culture and direct examination is limited. Earlier diagnosis may be facilitated by assays that can detect Aspergillus galactomannan antigen or DNA in BAL fluid. We therefore characterized and compared the diagnostic yields of a galactomannan enzyme immunoassay (GM EIA), quantitative real-time PCR (qPCR), and quantitative cultures in experiments using BAL fluid from neutropenic rabbits with experimentally induced IPA defined as microbiologically and histologically evident invasion. The qPCR assay targeted the rRNA gene complex of Aspergillus fumigatus. The GM EIA and qPCR assay were characterized by receiver operator curve analysis. With an optimal cutoff of 0.75, the GM EIA had a sensitivity and specificity of 100% in untreated controls. A decline in sensitivity (92%) was observed when antifungal therapy (AFT) was administered. The optimal cutoff for qPCR was a crossover of 36 cycles, with sensitivity and specificity of 80% and 100%, respectively. The sensitivity of qPCR also decreased with AFT to 50%. Quantitative culture of BAL had a sensitivity of 46% and a specificity of 100%. The sensitivity of quantitative culture decreased with AFT to 16%. The GM EIA and qPCR assay had greater sensitivity than culture in detection of A. fumigatus in BAL fluid in experimentally induced IPA (P ± 0.04). Use of the GM EIA and qPCR assay in conjunction with culture-based diagnostic methods applied to BAL fluid could facilitate accurate diagnosis and more-timely initiation of specific therapy. PMID:16825367

  12. Direct PCR - A rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples.

    PubMed

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas; Quyen, Than Linh; Engelsmann, Pia; Wolff, Anders; Bang, Dang Duong

    2017-04-01

    Salmonellosis, an infectious disease caused by Salmonella spp., is one of the most common foodborne diseases. Isolation and identification of Salmonella by conventional bacterial culture method is time consuming. In response to the demand for rapid on line or at site detection of pathogens, in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair of newly designed primers targeting Salmonella spp. at subtype level were incorporated in the multiplex Direct PCR. To maximize the efficiency of the Direct PCR, the ratio between sample and dilution buffer was optimized. The sensitivity and specificity of the multiplex Direct PCR were tested using naturally contaminated pork meat samples for detecting and subtyping of Salmonella spp. Conventional bacterial culture methods were used as reference to evaluate the performance of the multiplex Direct PCR. Relative accuracy, sensitivity and specificity of 98.8%; 97.6% and 100%, respectively, were achieved by the method. Application of the multiplex Direct PCR to detect Salmonella in pork meat at slaughter reduces the time of detection from 5 to 6 days by conventional bacterial culture and serotyping methods to 14 h (including 12 h enrichment time). Furthermore, the method poses a possibility of miniaturization and integration into a point-of-need Lab-on-a-chip system for rapid online pathogen detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Detecting the Presence of Bacterial DNA and RNA by Polymerase Chain Reaction to Diagnose Suspected Periprosthetic Joint Infection after Antibiotic Therapy.

    PubMed

    Fang, Xin-Yu; Li, Wen-Bo; Zhang, Chao-Fan; Huang, Zi-da; Zeng, Hui-Yi; Dong, Zheng; Zhang, Wen-Ming

    2018-02-01

    To explore the diagnostic efficiency of DNA-based and RNA-based quantitative polymerase chain reaction (qPCR) analyses for periprosthetic joint infection (PJI). To determine the detection limit of DNA-based and RNA-based qPCR in vitro, Staphylococcus aureus and Escherichia coli strains were added to sterile synovial fluid obtained from a patient with knee osteoarthritis. Serial dilutions of samples were analyzed by DNA-based and RNA-based qPCR. Clinically, patients who were suspected of having PJI and eventually underwent revision arthroplasty in our hospital from July 2014 to December 2016 were screened. Preoperative puncture or intraoperative collection was performed on patients who met the inclusion and exclusion criteria to obtain synovial fluid. DNA-based and RNA-based PCR analyses and culture were performed on each synovial fluid sample. The patients' demographic characteristics, medical history, and laboratory test results were recorded. The diagnostic efficiency of both PCR assays was compared with culture methods. The in vitro analysis demonstrated that DNA-based qPCR assay was highly sensitive, with the detection limit being 1200 colony forming units (CFU)/mL of S. aureus and 3200 CFU/mL of E. coli. Meanwhile, The RNA-based qPCR assay could detect 2300 CFU/mL of S. aureus and 11 000 CFU/mL of E. coli. Clinically, the sensitivity, specificity, and accuracy were 65.7%, 100%, and 81.6%, respectively, for the culture method; 81.5%, 84.8%, and 83.1%, respectively, for DNA-based qPCR; and 73.6%, 100%, and 85.9%, respectively, for RNA-based qPCR. DNA-based qPCR could detect suspected PJI with high sensitivity after antibiotic therapy. RNA-based qPCR could reduce the false positive rates of DNA-based assays. qPCR-based methods could improve the efficiency of PJI diagnosis. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  14. Next-Generation Genotyping by Digital PCR to Detect and Quantify the BRAF V600E Mutation in Melanoma Biopsies.

    PubMed

    Lamy, Pierre-Jean; Castan, Florence; Lozano, Nicolas; Montélion, Cécile; Audran, Patricia; Bibeau, Frédéric; Roques, Sylvie; Montels, Frédéric; Laberenne, Anne-Claire

    2015-07-01

    The detection of the BRAF V600E mutation in melanoma samples is used to select patients who should respond to BRAF inhibitors. Different techniques are routinely used to determine BRAF status in clinical samples. However, low tumor cellularity and tumor heterogeneity can affect the sensitivity of somatic mutation detection. Digital PCR (dPCR) is a next-generation genotyping method that clonally amplifies nucleic acids and allows the detection and quantification of rare mutations. Our aim was to evaluate the clinical routine performance of a new dPCR-based test to detect and quantify BRAF mutation load in 47 paraffin-embedded cutaneous melanoma biopsies. We compared the results obtained by dPCR with high-resolution melting curve analysis and pyrosequencing or with one of the allele-specific PCR methods available on the market. dPCR showed the lowest limit of detection. dPCR and allele-specific amplification detected the highest number of mutated samples. For the BRAF mutation load quantification both dPCR and pyrosequencing gave similar results with strong disparities in allele frequencies in the 47 tumor samples under study (from 0.7% to 79% of BRAF V600E mutations/sample). In conclusion, the four methods showed a high degree of concordance. dPCR was the more-sensitive method to reliably and easily detect mutations. Both pyrosequencing and dPCR could quantify the mutation load in heterogeneous tumor samples. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  15. Diagnosis of clinical samples spotted on FTA cards using PCR-based methods.

    PubMed

    Jamjoom, Manal; Sultan, Amal H

    2009-04-01

    The broad clinical presentation of Leishmaniasis makes the diagnosis of current and past cases of this disease rather difficult. Differential diagnosis is important because diseases caused by other aetiologies and a clinical spectrum similar to that of leishmaniasis (e.g. leprosy, skin cancers and tuberculosis for CL; malaria and schistosomiasis for VL) are often present in endemic areas of endemicity. Presently, a variety of methods have been developed and tested to aid the identification and diagnosis of Leishmania. The advent of the PCR technology has opened new channels for the diagnosis of leishmaniasis in a variety of clinical materials. PCR is a simple, rapid procedure that has been adapted for diagnosis of leishmaniasis. A range of tools is currently available for the diagnosis and identification of leishmaniasis and Leishmania species, respectively. However, none of these diagnostic tools are examined and tested using samples spotted on FTA cards. Three different PCR-based approaches were examined including: kDNA minicircle, Leishmania 18S rRNA gene and PCR-RFLP of Intergenic region of ribosomal protein. PCR primers were designed that sit within the coding sequences of genes (relatively well conserved) but which amplify across the intervening intergenic sequence (relatively variable). These were used in PCR-RFLP on reference isolates of 10 of the most important Leishmania species: L. donovani, L. infantum, L. major & L. tropica. Digestion of PCR products with restriction enzymes produced species-specific restriction patterns allowed discrimination of reference isolates. The kDNA minicircle primers are highly sensitive in diagnosis of both bone marrow and skin smears from FTA cards. Leishmania 18S rRNA gene conserved region is sensitive in identification of bone marrow smear but less sensitive in diagnosing skin smears. The intergenic nested PCR-RFLP using P5 & P6 as well as P1 & P2 newly designed primers showed high level of reproducibility and sensitivity. Though, it was less sensitive than kDNA minicircle primers, but easily discriminated between Leishmania species.

  16. Quantitative Detection and Genotyping of Helicobacter pylori from Stool using Droplet Digital PCR Reveals Variation in Bacterial Loads that Correlates with cagA Virulence Gene Carriage.

    PubMed

    Talarico, Sarah; Safaeian, Mahboobeh; Gonzalez, Paula; Hildesheim, Allan; Herrero, Rolando; Porras, Carolina; Cortes, Bernal; Larson, Ann; Fang, Ferric C; Salama, Nina R

    2016-08-01

    Epidemiologic studies of the carcinogenic stomach bacterium Helicobacter pylori have been limited by the lack of noninvasive detection and genotyping methods. We developed a new stool-based method for detection, quantification, and partial genotyping of H. pylori using droplet digital PCR (ddPCR), which allows for increased sensitivity and absolute quantification by PCR partitioning. Stool-based ddPCR assays for H. pylori 16S gene detection and cagA virulence gene typing were tested using a collection of 50 matched stool and serum samples from Costa Rican volunteers and 29 H. pylori stool antigen-tested stool samples collected at a US hospital. The stool-based H. pylori 16S ddPCR assay had a sensitivity of 84% and 100% and a specificity of 100% and 71% compared to serology and stool antigen tests, respectively. The stool-based cagA genotyping assay detected cagA in 22 (88%) of 25 stools from CagA antibody-positive individuals and four (16%) of 25 stools from CagA antibody-negative individuals from Costa Rica. All 26 of these samples had a Western-type cagA allele. Presence of serum CagA antibodies was correlated with a significantly higher load of H. pylori in the stool. The stool-based ddPCR assays are a sensitive, noninvasive method for detection, quantification, and partial genotyping of H. pylori. The quantitative nature of ddPCR-based H. pylori detection revealed significant variation in bacterial load among individuals that correlates with presence of the cagA virulence gene. These stool-based ddPCR assays will facilitate future population-based epidemiologic studies of this important human pathogen. © 2015 John Wiley & Sons Ltd.

  17. Evaluation of a combined triple method to detect causative HPV in oral and oropharyngeal squamous cell carcinomas: p16 Immunohistochemistry, Consensus PCR HPV-DNA, and In Situ Hybridization

    PubMed Central

    2012-01-01

    Background Recent emerging evidences identify Human Papillomavirus (HPV) related Head and Neck squamous cell carcinomas (HN-SCCs) as a separate subgroup among Head and Neck Cancers with different epidemiology, histopathological characteristics, therapeutic response to chemo-radiation treatment and clinical outcome. However, there is not a worldwide consensus on the methods to be used in clinical practice. The endpoint of this study was to demonstrate the reliability of a triple method which combines evaluation of: 1. p16 protein expression by immunohistochemistry (p16-IHC); 2. HPV-DNA genotyping by consensus HPV-DNA PCR methods (Consensus PCR); and 3 viral integration into the host by in situ hybridization method (ISH). This triple method has been applied to HN-SCC originated from oral cavity (OSCC) and oropharynx (OPSCC), the two anatomical sites in which high risk (HR) HPVs have been clearly implicated as etiologic factors. Methylation-Specific PCR (MSP) was performed to study inactivation of p16-CDKN2a locus by epigenetic events. Reliability of multiple methods was measured by Kappa statistics. Results All the HN-SCCs confirmed HPV positive by PCR and/or ISH were also p16 positive by IHC, with the latter showing a very high level of sensitivity as single test (100% in both OSCC and OPSCC) but lower specificity level (74% in OSCC and 93% in OPSCC). Concordance analysis between ISH and Consensus PCR showed a faint agreement in OPSCC (κ = 0.38) and a moderate agreement in OSCC (κ = 0.44). Furthermore, the addition of double positive score (ISHpositive and Consensus PCR positive) increased significantly the specificity of HR-HPV detection on formalin-fixed paraffin embedded (FFPE) samples (100% in OSCC and 78.5% in OPSCC), but reduced the sensitivity (33% in OSCC and 60% in OPSCC). The significant reduction of sensitivity by the double method was compensated by a very high sensitivity of p16-IHC detection in the triple approach. Conclusions Although HR-HPVs detection is of utmost importance in clinical settings for the Head and Neck Cancer patients, there is no consensus on which to consider the 'golden standard' among the numerous detection methods available either as single test or combinations. Until recently, quantitative E6 RNA PCR has been considered the 'golden standard' since it was demonstrated to have very high accuracy level and very high statistical significance associated with prognostic parameters. In contrast, quantitative E6 DNA PCR has proven to have very high level of accuracy but lesser prognostic association with clinical outcome than the HPV E6 oncoprotein RNA PCR. However, although it is theoretically possible to perform quantitative PCR detection methods also on FFPE samples, they reach the maximum of accuracy on fresh frozen tissue. Furthermore, worldwide diagnostic laboratories have not all the same ability to analyze simultaneously both FFPE and fresh tissues with these quantitative molecular detection methods. Therefore, in the current clinical practice a p16-IHC test is considered as sufficient for HPV diagnostic in accordance with the recently published Head and Neck Cancer international guidelines. Although p16-IHC may serve as a good prognostic indicator, our study clearly demonstrated that it is not satisfactory when used exclusively as the only HPV detecting method. Adding ISH, although known as less sensitive than PCR-based detection methods, has the advantage to preserve the morphological context of HPV-DNA signals in FFPE samples and, thus increase the overall specificity of p16/Consensus PCR combination tests. PMID:22376902

  18. Rapid polymerase chain reaction diagnosis of white-nose syndrome in bats

    USGS Publications Warehouse

    Lorch, J.M.; Gargas, A.; Meteyer, C.U.; Berlowski-Zier, B. M.; Green, D.E.; Shearn-Bochsler, V.; Thomas, N.J.; Blehert, D.S.

    2010-01-01

    A newly developed polymerase chain reaction (PCR)-based method to rapidly and specifically detect Geomyces destructans on the wings of infected bats from small quantities (1-2 mg) of tissue is described in the current study (methods for culturing and isolating G. destructans from bat skin are also described). The lower limits of detection for PCR were 5 fg of purified fungal DNA or 100 conidia per 2 mg of wing tissue. By using histology as the standard, the PCR had a diagnostic specificity of 100% and a diagnostic sensitivity of 96%, whereas the diagnostic sensitivity of culture techniques was only 54%. The accuracy and fast turnaround time of PCR provides field biologists with valuable information on infection status more rapidly than traditional methods, and the small amount of tissue required for the test would allow diagnosis of white-nose syndrome in live animals.

  19. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers

    PubMed Central

    Steenkeste, Nicolas; Incardona, Sandra; Chy, Sophy; Duval, Linda; Ekala, Marie-Thérèse; Lim, Pharath; Hewitt, Sean; Sochantha, Tho; Socheat, Doung; Rogier, Christophe; Mercereau-Puijalon, Odile; Fandeur, Thierry; Ariey, Frédéric

    2009-01-01

    Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the molecular methods. Dot18S and CYTB, the new methods reported herein are highly sensitive, allow parasite DNA extraction as well as genus- and species-specific diagnosis of several hundreds of samples, and are amenable to high-throughput scaling up for larger sample sizes. Such methods provide novel information on malaria prevalence and epidemiology and are suited for active malaria detection. The usefulness of such sensitive malaria diagnosis tools, especially in low endemic areas where eradication plans are now on-going, is discussed in this paper. PMID:19402894

  20. The efficacy of a nested PCR in detecting cytochrome c oxidase subunit 1 gene of Sarcoptes scabiei var. Hominis for diagnosing scabies.

    PubMed

    Hahm, J E; Kim, C W; Kim, S S

    2018-04-06

    A widespread scabies infestation, associated to long-term residence in nursing homes, is becoming a serious issue in developed countries. Mineral oil examination is regarded as the gold standard in diagnosing scabies, but the sensitivity of this method is generally low-approximately 50%. Molecular tests may contribute to enhance the sensitivity of current tests for laboratory diagnosis of human scabies. In this study, we developed new primers for a nested PCR for the cytochrome c oxidase subunit 1 (cox1) gene of Sarcoptes scabiei var. hominis to increase the sensitivity of a previously developed conventional PCR. Clinically suspected scabies patients underwent dermoscopy-guided skin scraping with microscopic examination. The diagnosis was positive for scabies when mites or eggs were found under the microscope, and patients were then designated as 'microscopy-positive'. Patients in the 'microscopy-negative' group presented with negative microscopic results. Skin scrapings were collected from both groups for PCR. Of the total 63 samples, 28 were microscopy-positive and 35 were negative with no differences in sex and age between the two groups. All microscopically proven scabies cases were positive with the cox1 nested PCR. Among microscopy-negative ones, S. scabiei DNA was detected in 9 samples. If sensitivity of the cox1 nested PCR is considered 100% (95% CI, 90.51-100), then sensitivity of microscopy is 75.68% (95% CI, 58.80-88.23; P = 0.004). Nested PCR can be successfully used as an alternative method for diagnosing suspected scabies patient. Therefore, infection control measures and treatments can be initiated before significant transmission occurs, minimizing the risk of outbreaks. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Validated method for quantification of genetically modified organisms in samples of maize flour.

    PubMed

    Kunert, Renate; Gach, Johannes S; Vorauer-Uhl, Karola; Engel, Edwin; Katinger, Hermann

    2006-02-08

    Sensitive and accurate testing for trace amounts of biotechnology-derived DNA from plant material is the prerequisite for detection of 1% or 0.5% genetically modified ingredients in food products or raw materials thereof. Compared to ELISA detection of expressed proteins, real-time PCR (RT-PCR) amplification has easier sample preparation and detection limits are lower. Of the different methods of DNA preparation CTAB method with high flexibility in starting material and generation of sufficient DNA with relevant quality was chosen. Previous RT-PCR data generated with the SYBR green detection method showed that the method is highly sensitive to sample matrices and genomic DNA content influencing the interpretation of results. Therefore, this paper describes a real-time DNA quantification based on the TaqMan probe method, indicating high accuracy and sensitivity with detection limits of lower than 18 copies per sample applicable and comparable to highly purified plasmid standards as well as complex matrices of genomic DNA samples. The results were evaluated with ValiData for homology of variance, linearity, accuracy of the standard curve, and standard deviation.

  2. Digital-Direct-RT-PCR: a sensitive and specific method for quantification of CTC in patients with cervical carcinoma.

    PubMed

    Pfitzner, Claudia; Schröder, Isabel; Scheungraber, Cornelia; Dogan, Askin; Runnebaum, Ingo Bernhard; Dürst, Matthias; Häfner, Norman

    2014-02-05

    The detection of circulating tumour cells (CTC) in cancer patients may be useful for therapy monitoring and prediction of relapse. A sensitive assay based on HPV-oncogene transcripts which are highly specific for cervical cancer cells was established. The Digital-Direct-RT-PCR (DD-RT-PCR) combines Ficoll-separation, ThinPrep-fixation and one-step RT-PCR in a low-throughput digital-PCR format enabling the direct analysis and detection of individual CTC without RNA isolation. Experimental samples demonstrated a sensitivity of one HPV-positive cell in 500,000 HPV-negative cells. Spike-in experiments with down to 5 HPV-positive cells per millilitre EDTA-blood resulted in concordant positive results by PCR and immunocytochemistry. Blood samples from 3 of 10 CxCa patients each contained a single HPV-oncogene transcript expressing CTC among 5 to 15*10(5) MNBC. Only 1 of 7 patients with local but 2 of 3 women with systemic disease had CTC. This highly sensitive DD-RT-PCR for the detection of CTC may also be applied to other tumour entities which express tumour-specific transcripts.

  3. Diagnosis of invasive fungal infections using real-time PCR assay in paediatric acute leukaemia induction.

    PubMed

    Mandhaniya, Sushil; Iqbal, Sobuhi; Sharawat, Surender Kumar; Xess, Immaculata; Bakhshi, Sameer

    2012-07-01

    Invasive fungal infections (IFI) lead to morbidity and mortality in neutropenic patients and in allogenic stem cell transplantation. Serum-based fungal detection assays have limitation of specificity or sensitivity. Studies on fungal DNA detection using real-time PCR in childhood leukaemia are lacking. The aim of this study was to develop sensitive and specific diagnostic tools for IFI in paediatric acute leukaemia patients using real-time PCR. Of 100 randomised paediatric acute leukaemia patients receiving antifungal prophylaxis with voriconazole/amphotericin B, single peripheral whole blood sample in EDTA was used for Pan-AC real-time PCR assay (detects nine Candida and six Aspergillus species) in patients who failed prophylaxis due to proven, probable, possible or suspected fungal infections. PCR results were retrospectively correlated with clinical profile. Real-time PCR test was positive in 18/29 (62%) patients who failed prophylaxis. The only patient with proven IFI (mucormycosis), real-time PCR assay was negative. Real-time PCR was positive in 2/4 (50%) patients with possible and 16/24 (66.6%) suspected IFI and 5/10 (50%) patients with pneumonia. By applying method A/B, sensitivity and positive predictive value could not be commented due to unproven Aspergillus or Candida infections; specificity and negative predictive values (NPV) were 41% and 100% respectively; by method C (included episodes of possible IFI as true positive), sensitivity, specificity, PPV and NPV were 50%, 36%, 11% and 81% respectively. In those with suspected IFI, 8/24 (33.3%) were PCR negative and unnecessarily received empirical antifungal therapy (EAFT). Real-time PCR is a practical, rapid, non-invasive screening test for excluding IFI in paediatric leukaemia. The high NPV makes real-time PCR a promising tool to use this prior to initiating EAFT in antibiotic-resistant febrile neutropenic patients; this would avoid toxicity, cost and hospitalisation for EAFT (ClinicalTrials.gov identifier:NCT00624143). © 2011 Blackwell Verlag GmbH.

  4. Development of a novel single tube nested PCR for enhanced detection of cytomegalovirus DNA from dried blood spots.

    PubMed

    Atkinson, C; Emery, V C; Griffiths, P D

    2014-02-01

    Newborn screening for congenital cytomegalovirus (CCMV) using dried blood spots (DBS) has been proposed because many developed countries have DBS screening programmes in place for other diseases. The aim of this study was to develop a rapid, single tube nested polymerase chain reaction (PCR) method for enhanced detection of CMV from DBS compared to existing (single target) real time PCRs. The new method was compared with existing real time PCRs for sensitivity and specificity. Overall sensitivity of the single target PCR assays in both asymptomatic and symptomatic infants with laboratory confirmed congenital CMV was 69% (CMV PCR or culture positive before day 21 of life). In contrast, the single tube nested assay had an increased sensitivity of 81% with100% specificity. Overall the assay detected CMV from a DBS equivalent to an original blood sample which contained 500IU/ml. In conclusion this single tube nested methodology allows simultaneous amplification and detection of CMV DNA in 1.5h removing the associated contamination risk of a two step nested PCR. Owing to its increased sensitivity, it has the potential to be used as a screening assay and ultimately allow early identification and intervention for children with congenital CMV. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Rapid and sensitive detection of Feline immunodeficiency virus using an insulated isothermal PCR-based assay with a point-of-need PCR detection platform.

    PubMed

    Wilkes, Rebecca Penrose; Kania, Stephen A; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chang, Hsiu-Hui; Ma, Li-Juan; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2015-07-01

    Feline immunodeficiency virus (FIV) is an important infectious agent of cats. Clinical syndromes resulting from FIV infection include immunodeficiency, opportunistic infections, and neoplasia. In our study, a 5' long terminal repeat/gag region-based reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) was developed to amplify all known FIV strains to facilitate point-of-need FIV diagnosis. The RT-iiPCR method was applied in a point-of-need PCR detection platform--a field-deployable device capable of generating automatically interpreted RT-iiPCR results from nucleic acids within 1 hr. Limit of detection 95% of FIV RT-iiPCR was calculated to be 95 copies standard in vitro transcription RNA per reaction. Endpoint dilution studies with serial dilutions of an ATCC FIV type strain showed that the sensitivity of lyophilized FIV RT-iiPCR reagent was comparable to that of a reference nested PCR. The established reaction did not amplify any nontargeted feline pathogens, including Felid herpesvirus 1, feline coronavirus, Feline calicivirus, Feline leukemia virus, Mycoplasma haemofelis, and Chlamydophila felis. Based on analysis of 76 clinical samples (including blood and bone marrow) with the FIV RT-iiPCR, test sensitivity was 97.78% (44/45), specificity was 100.00% (31/31), and agreement was 98.65% (75/76), determined against a reference nested-PCR assay. A kappa value of 0.97 indicated excellent correlation between these 2 methods. The lyophilized FIV RT-iiPCR reagent, deployed on a user-friendly portable device, has potential utility for rapid and easy point-of-need detection of FIV in cats. © 2015 The Author(s).

  6. Synthetic internal control sequences to increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...

  7. Nested-PCR and a new ELISA-based NovaLisa test kit for malaria diagnosis in an endemic area of Thailand.

    PubMed

    Thongdee, Pimwan; Chaijaroenkul, Wanna; Kuesap, Jiraporn; Na-Bangchang, Kesara

    2014-08-01

    Microscopy is considered as the gold standard for malaria diagnosis although its wide application is limited by the requirement of highly experienced microscopists. PCR and serological tests provide efficient diagnostic performance and have been applied for malaria diagnosis and research. The aim of this study was to investigate the diagnostic performance of nested PCR and a recently developed an ELISA-based new rapid diagnosis test (RDT), NovaLisa test kit, for diagnosis of malaria infection, using microscopic method as the gold standard. The performance of nested-PCR as a malaria diagnostic tool is excellent with respect to its high accuracy, sensitivity, specificity, and ability to discriminate Plasmodium species. The sensitivity and specificity of nested-PCR compared with the microscopic method for detection of Plasmodium falciparum, Plasmodium vivax, and P. falciparum/P. vivax mixed infection were 71.4 vs 100%, 100 vs 98.7%, and 100 vs 95.0%, respectively. The sensitivity and specificity of the ELISA-based NovaLisa test kit compared with the microscopic method for detection of Plasmodium genus were 89.0 vs 91.6%, respectively. NovaLisa test kit provided comparable diagnostic performance. Its relatively low cost, simplicity, and rapidity enables large scale field application.

  8. Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.)

    PubMed Central

    Turner, Cameron R.; Miller, Derryl J.; Coyne, Kathryn J.; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species. PMID:25474207

  9. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.).

    PubMed

    Turner, Cameron R; Miller, Derryl J; Coyne, Kathryn J; Corush, Joel

    2014-01-01

    Indirect, non-invasive detection of rare aquatic macrofauna using aqueous environmental DNA (eDNA) is a relatively new approach to population and biodiversity monitoring. As such, the sensitivity of monitoring results to different methods of eDNA capture, extraction, and detection is being investigated in many ecosystems and species. One of the first and largest conservation programs with eDNA-based monitoring as a central instrument focuses on Asian bigheaded carp (Hypophthalmichthys spp.), an invasive fish spreading toward the Laurentian Great Lakes. However, the standard eDNA methods of this program have not advanced since their development in 2010. We developed new, quantitative, and more cost-effective methods and tested them against the standard protocols. In laboratory testing, our new quantitative PCR (qPCR) assay for bigheaded carp eDNA was one to two orders of magnitude more sensitive than the existing endpoint PCR assays. When applied to eDNA samples from an experimental pond containing bigheaded carp, the qPCR assay produced a detection probability of 94.8% compared to 4.2% for the endpoint PCR assays. Also, the eDNA capture and extraction method we adapted from aquatic microbiology yielded five times more bigheaded carp eDNA from the experimental pond than the standard method, at a per sample cost over forty times lower. Our new, more sensitive assay provides a quantitative tool for eDNA-based monitoring of bigheaded carp, and the higher-yielding eDNA capture and extraction method we describe can be used for eDNA-based monitoring of any aquatic species.

  10. Ultrasensitive detection of oncogenic human papillomavirus in oropharyngeal tissue swabs.

    PubMed

    Isaac, Andre; Kostiuk, Morris; Zhang, Han; Lindsay, Cameron; Makki, Fawaz; O'Connell, Daniel A; Harris, Jeffrey R; Cote, David W J; Seikaly, Hadi; Biron, Vincent L

    2017-01-14

    The incidence of oropharyngeal squamous cell carcinoma (OPSCC) caused by oncogenic human papillomavirus (HPV) is rising worldwide. HPV-OPSCC is commonly diagnosed by RT-qPCR of HPV E6 and E7 oncoproteins or by p16 immunohistochemistry (IHC). Droplet digital PCR (ddPCR) has been recently reported as an ultra-sensitive and highly precise method of nucleic acid quantification for biomarker analysis. To validate the use of a minimally invasive assay for detection of oncogenic HPV based on oropharyngeal swabs using ddPCR. Secondary objectives were to compare the accuracy of ddPCR swabs to fresh tissue p16 IHC and RT-qPCR, and to compare the cost of ddPCR with p16 IHC. We prospectively included patients with p16 + oral cavity/oropharyngeal cancer (OC/OPSCC), and two control groups: p16 - OC/OPSCC patients, and healthy controls undergoing tonsillectomy. All underwent an oropharyngeal swab with ddPCR for quantitative detection of E6 and E7 mRNA. Surgical specimens had p16 IHC performed. Agreement between ddPCR and p16 IHC was determined for patients with p16 positive and negative OC/OPSCC as well as for healthy control patients. The sensitivity and specificity of ddPCR of oropharyngeal swabs were calculated against p16 IHC for OPSCC. 122 patients were included: 36 patients with p16 + OPSCC, 16 patients with p16 - OPSCC, 4 patients with p16 + OCSCC, 41 patients with p16 - OCSCC, and 25 healthy controls. The sensitivity and specificity of ddPCR of oropharyngeal swabs against p16 IHC were 92 and 98% respectively, using 20-50 times less RNA than that required for conventional RT-qPCR. Overall agreement between ddPCR of tissue swabs and p16 of tumor tissue was high at ĸ = 0.826 [0.662-0.989]. Oropharyngeal swabs analyzed by ddPCR is a quantitative, rapid, and effective method for minimally invasive oncogenic HPV detection. This assay represents the most sensitive and accurate mode of HPV detection in OPSCC without a tissue biopsy in the available literature.

  11. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

    PubMed Central

    Cura, Carolina I.; Duffy, Tomas; Lucero, Raúl H.; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J.; Valencia Ayala, Edward; Kjos, Sonia A.; Santalla, José; Mahaney, Susan M.; Cayo, Nelly M.; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S.; Acosta Viana, Karla Y.; Brutus, Laurent; Ocampo, Susana B.; Aznar, Christine; Cuba Cuba, Cesar A.; Gürtler, Ricardo E.; Ramsey, Janine M.; Ribeiro, Isabela; VandeBerg, John L.; Yadon, Zaida E.; Osuna, Antonio; Schijman, Alejandro G.

    2015-01-01

    Background Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). Methods/Principal Findings The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Conclusions/Significance Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production. PMID:25993316

  12. Importance of sample preparation for molecular diagnosis of lyme borreliosis from urine.

    PubMed

    Bergmann, A R; Schmidt, B L; Derler, A-M; Aberer, E

    2002-12-01

    Urine PCR has been used for the diagnosis of Borrelia burgdorferi infection in recent years but has been abandoned because of its low sensitivity and the irreproducibility of the results. Our study aimed to analyze technical details related to sample preparation and detection methods. Crucial for a successful urine PCR were (i) avoidance of the first morning urine sample; (ii) centrifugation at 36,000 x g; and (iii) the extraction method, with only DNAzol of the seven different extraction methods used yielding positive results with patient urine specimens. Furthermore, storage of frozen urine samples at -80 degrees C reduced the sensitivity of a positive urine PCR result obtained with samples from 72 untreated erythema migrans (EM) patients from 85% in the first 3 months to <30% after more than 3 months. Bands were detected at 276 bp on ethidium bromide-stained agarose gels after amplification by a nested PCR. The specificity of bands for 32 of 33 samples was proven by hybridization with a GEN-ETI-K-DEIA kit and for a 10 further positive amplicons by sequencing. By using all of these steps to optimize the urine PCR technique, B. burgdorferi infection could be diagnosed by using urine samples from EM patients with a sensitivity (85%) substantially better than that of serological methods (50%). This improved method could be of future importance as an additional laboratory technique for the diagnosis of unclear, unrecognized borrelia infections and diseases possibly related to Lyme borreliosis.

  13. Evaluation of chromogenic media and seminested PCR in the identification of Candida species

    PubMed Central

    Daef, Enas; Moharram, Ahmed; Eldin, Salwa Seif; Elsherbiny, Nahla; Mohammed, Mona

    2014-01-01

    Identification of Candida cultured from various clinical specimens to the species level is increasingly necessary for clinical laboratories. Although sn PCR identifies the species within hours but its cost-effectiveness is to be considered. So there is always a need for media which help in the isolation and identification at the species level. The study aimed to evaluate the performance of different chromogenic media and to compare the effectiveness of the traditional phenotypic methods vs. seminested polymerase chain reaction (sn PCR) for identification of Candida species. One hundred and twenty seven Candida strains isolated from various clinical specimens were identified by conventional methods, four different chromogenic media and sn PCR. HiCrome Candida Differential and CHROMagar Candida media showed comparably high sensitivities and specificities in the identification of C. albicans, C. tropicalis, C. glabrata and C. krusei. CHROMagar Candida had an extra advantage of identifying all C. parapsilosis isolates. CHROMagar-Pal’s medium identified C. albicans, C. tropicalis and C. krusei with high sensitivities and specificities, but couldn’t identify C. glabrata or C. parapsilosis. It was the only medium that identified C. dubliniensis with a sensitivity and specificity of 100%. Biggy agar showed the least sensitivities and specificities. The overall concordance of the snPCR compared to the conventional tests including CHROMAgar Candida in the identification of Candida species was 97.5%. The use of CHROMAgar Candida medium is an easy and accurate method for presumptive identification of the most commonly encountered Candida spp. PMID:24948942

  14. Rectal swab sampling followed by an enrichment culture-based real-time PCR assay to detect Salmonella enterocolitis in children.

    PubMed

    Lin, L-H; Tsai, C-Y; Hung, M-H; Fang, Y-T; Ling, Q-D

    2011-09-01

    Although routine bacterial culture is the traditional reference standard method for the detection of Salmonella infection in children with diarrhoea, it is a time-consuming procedure that usually only gives results after 3-4 days. Some molecular detection methods can improve the turn-around time to within 24 h, but these methods are not applied directly from stool or rectal swab specimens as routine diagnostic methods for the detection of gastrointestinal pathogens. In this study, we tested the feasibility of a bacterial enrichment culture-based real-time PCR assay method for detecting and screening for diarrhoea in children caused by Salmonella. Our results showed that the minimum real-time PCR assay time required to detect enriched bacterial culture from a swab was 3 h. In all children with suspected Salmonella diarrhoea, the enrichment culture-based real-time PCR achieved 85.4% sensitivity and 98.1% specificity, as compared with the 53.7% sensitivity and 100% specificity of detection with the routine bacterial culture method. We suggest that rectal swab sampling followed by enrichment culture-based real-time PCR is suitable as a rapid method for detecting and screening for Salmonella in paediatric patients. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  15. Detection of Haemophilus influenzae in respiratory secretions from pneumonia patients by quantitative real-time polymerase chain reaction.

    PubMed

    Abdeldaim, Guma M K; Strålin, Kristoffer; Kirsebom, Leif A; Olcén, Per; Blomberg, Jonas; Herrmann, Björn

    2009-08-01

    A quantitative real-time polymerase chain reaction (PCR) based on the omp P6 gene was developed to detect Haemophilus influenzae. Its specificity was determined by analysis of 29 strains of 11 different Haemophilus spp. and was compared with PCR assays having other target genes: rnpB, 16S rRNA, and bexA. The method was evaluated on nasopharyngeal aspirates from 166 adult patients with community-acquired pneumonia. When 10(4) DNA copies/mL was used as cutoff limit for the method, P6 PCR had a sensitivity of 97.5% and a specificity of 96.0% compared with the culture. Of 20 culture-negative but P6 PCR-positive cases, 18 were confirmed by fucK PCR as H. influenzae. Five (5.9%) of 84 nasopharyngeal aspirates from adult controls tested PCR positive. We conclude that the P6 real-time PCR is both sensitive and specific for identification of H. influenzae in respiratory secretions. Quantification facilitates discrimination between disease-causing H. influenzae strains and commensal colonization.

  16. PCR technology for screening and quantification of genetically modified organisms (GMOs).

    PubMed

    Holst-Jensen, Arne; Rønning, Sissel B; Løvseth, Astrid; Berdal, Knut G

    2003-04-01

    Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why it has been the first choice of most analytical laboratories interested in detection of genetically modified (GM) organisms (GMOs) and derived materials. Because the products that laboratories receive for analysis are often processed and refined, the quality and quantity of target analyte (e.g. protein or DNA) frequently challenges the sensitivity of any detection method. Among the currently available methods, PCR methods are generally accepted as the most sensitive and reliable methods for detection of GM-derived material in routine applications. The choice of target sequence motif is the single most important factor controlling the specificity of the PCR method. The target sequence is normally a part of the modified gene construct, for example a promoter, a terminator, a gene, or a junction between two of these elements. However, the elements may originate from wildtype organisms, they may be present in more than one GMO, and their copy number may also vary from one GMO to another. They may even be combined in a similar way in more than one GMO. Thus, the choice of method should fit the purpose. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content. Thresholds for labelling are now in place in many countries including those in the European Union. The success of the labelling schemes is dependent upon the efficiency with which GM-derived material can be detected. We will present an overview of currently available PCR methods for screening and quantification of GM-derived DNA, and discuss their applicability and limitations. In addition, we will discuss some of the major challenges related to determination of the limits of detection (LOD) and quantification (LOQ), and to validation of methods.

  17. Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene.

    PubMed

    Omori, Aline Myuki; Ono, Elisabete Yurie Sataque; Bordini, Jaqueline Gozzi; Hirozawa, Melissa Tiemi; Fungaro, Maria Helena Pelegrinelli; Ono, Mario Augusto

    2018-08-01

    Fusarium verticillioides is a primary corn pathogen and fumonisin producer which is associated with toxic effects in humans and animals. The traditional methods for detection of fungal contamination based on morphological characteristics are time-consuming and show low sensitivity and specificity. Therefore, the objective of this study was to develop a PCR-ELISA based on the FUM21 gene for F. verticillioides detection. The DNA of the F. verticillioides, Fusarium sp., Aspergillus sp. and Penicillium sp. isolates was analyzed by conventional PCR and PCR-ELISA to determine the specificity. The PCR-ELISA was specific to F. verticillioides isolates, showed a 2.5 pg detection limit and was 100-fold more sensitive than conventional PCR. In corn samples inoculated with F. verticillioides conidia, the detection limit of the PCR-ELISA was 1 × 10 4 conidia/g and was also 100-fold more sensitive than conventional PCR. Naturally contaminated corn samples were analyzed by PCR-ELISA based on the FUM21 gene and PCR-ELISA absorbance values correlated positively (p < 0.05) with Fusarium sp. counts (CFU/g). These results suggest that the PCR-ELISA developed in this study can be useful for F. verticillioides detection in corn samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Development of touch down-multiplex PCR for the diagnosis of toxoplasmosis.

    PubMed

    Hallur, V; Sehgal, R; Khurana, S

    2015-01-01

    The diagnosis of toxoplasmosis is challenging since conventional methods like culture and immunofluorescence are not universally available. Serology, which is used regularly might be negative during early phase of infection and in immunosuppressed patients or may remain positive for a long time. Several molecular tests have been used for the diagnosis of toxoplasmosis, but none of them have an internal control which would inform us regarding the presence of polymerase chain reaction (PCR) inhibitors thus, undermining the confidence of a laboratory physician. We designed a multiplex PCR containing primers targeting human beta globin gene which would act as internal control and two primers against the B1 gene and 5s gene which aid in sensitive detection of T. gondii. Multiplex PCR had a sensitivity of 83.3% and specificity of 100%. Multiplex PCR may provide a sensitive and specific tool for diagnosis of human toxoplasmosis.

  19. Comparison of 16S rDNA-based PCR and checkerboard DNA-DNA hybridisation for detection of selected endodontic pathogens.

    PubMed

    Siqueira, José F; Rôças, Isabela N; De Uzeda, Milton; Colombo, Ana P; Santos, Kátia R N

    2002-12-01

    Molecular methods have been used recently to investigate the bacteria encountered in human endodontic infections. The aim of the present study was to compare the ability of a 16S rDNA-based PCR assay and checkerboard DNA-DNA hybridisation in detecting Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Peptostreptococcus micros, Porphyromonas endodontalis, Por. gingivalis and Treponema denticola directly from clinical samples. Specimens were obtained from 50 cases of endodontic infections and the presence of the target species was investigated by whole genomic DNA probes and checkerboard DNA-DNA hybridisation or taxon-specific oligonucleotides with PCR assay. Prevalence of the target species was based on data obtained by each method. The sensitivity and specificity of each molecular method was compared with the data generated by the other method as the reference--a value of 1.0 representing total agreement with the chosen standard. The methods were also compared with regard to the prevalence values for each target species. Regardless of the detection method used, T. denticola, Por. gingivalis, Por. endodontalis and B. forsythus were the most prevalent species. If the checkerboard data for these four species were used as the reference, PCR detection sensitivities ranged from 0.53 to 1.0, and specificities from 0.5 to 0.88, depending on the target bacterial species. When PCR data for the same species were used as the reference, the detection sensitivities for the checkerboard method ranged from 0.17 to 0.73, and specificities from 0.75 to 1.0. Accuracy values ranged from 0.6 to 0.74. On the whole, matching results between the two molecular methods ranged from 60% to 97.5%, depending on the target species. The major discrepancies between the methods comprised a number of PCR-positive but checkerboard-negative results. Significantly higher prevalence figures for Por. endodontalis and T. denticola were observed after PCR assessment. There was no further significant difference between the methods with regard to detection of the other target species.

  20. Digital-Direct-RT-PCR: a sensitive and specific method for quantification of CTC in patients with cervical carcinoma

    PubMed Central

    Pfitzner, Claudia; Schröder, Isabel; Scheungraber, Cornelia; Dogan, Askin; Runnebaum, Ingo Bernhard; Dürst, Matthias; Häfner, Norman

    2014-01-01

    The detection of circulating tumour cells (CTC) in cancer patients may be useful for therapy monitoring and prediction of relapse. A sensitive assay based on HPV-oncogene transcripts which are highly specific for cervical cancer cells was established. The Digital-Direct-RT-PCR (DD-RT-PCR) combines Ficoll-separation, ThinPrep-fixation and one-step RT-PCR in a low-throughput digital-PCR format enabling the direct analysis and detection of individual CTC without RNA isolation. Experimental samples demonstrated a sensitivity of one HPV-positive cell in 500,000 HPV-negative cells. Spike-in experiments with down to 5 HPV-positive cells per millilitre EDTA-blood resulted in concordant positive results by PCR and immunocytochemistry. Blood samples from 3 of 10 CxCa patients each contained a single HPV-oncogene transcript expressing CTC among 5 to 15*105 MNBC. Only 1 of 7 patients with local but 2 of 3 women with systemic disease had CTC. This highly sensitive DD-RT-PCR for the detection of CTC may also be applied to other tumour entities which express tumour-specific transcripts. Abbreviations: CTC – circulating tumour cells, CxCa – cervical cancer, DD-RT-PCR – Digital-Direct Reverse Transcriptase PCR, HPV – Human Papilloma Virus, MNBC – mononuclear blood cells, ICC – immunocytochemistry. PMID:24496006

  1. Improved Sensitivity for Molecular Detection of Bacterial and Candida Infections in Blood

    PubMed Central

    Bacconi, Andrea; Richmond, Gregory S.; Baroldi, Michelle A.; Laffler, Thomas G.; Blyn, Lawrence B.; Carolan, Heather E.; Frinder, Mark R.; Toleno, Donna M.; Metzgar, David; Gutierrez, Jose R.; Massire, Christian; Rounds, Megan; Kennel, Natalie J.; Rothman, Richard E.; Peterson, Stephen; Carroll, Karen C.; Wakefield, Teresa; Ecker, David J.

    2014-01-01

    The rapid identification of bacteria and fungi directly from the blood of patients with suspected bloodstream infections aids in diagnosis and guides treatment decisions. The development of an automated, rapid, and sensitive molecular technology capable of detecting the diverse agents of such infections at low titers has been challenging, due in part to the high background of genomic DNA in blood. PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) allows for the rapid and accurate identification of microorganisms but with a sensitivity of about 50% compared to that of culture when using 1-ml whole-blood specimens. Here, we describe a new integrated specimen preparation technology that substantially improves the sensitivity of PCR/ESI-MS analysis. An efficient lysis method and automated DNA purification system were designed for processing 5 ml of whole blood. In addition, PCR amplification formulations were optimized to tolerate high levels of human DNA. An analysis of 331 specimens collected from patients with suspected bloodstream infections resulted in 35 PCR/ESI-MS-positive specimens (10.6%) compared to 18 positive by culture (5.4%). PCR/ESI-MS was 83% sensitive and 94% specific compared to culture. Replicate PCR/ESI-MS testing from a second aliquot of the PCR/ESI-MS-positive/culture-negative specimens corroborated the initial findings in most cases, resulting in increased sensitivity (91%) and specificity (99%) when confirmed detections were considered true positives. The integrated solution described here has the potential to provide rapid detection and identification of organisms responsible for bloodstream infections. PMID:24951806

  2. A semi-nested real-time PCR method to detect low chimerism percentage in small quantity of hematopoietic stem cell transplant DNA samples.

    PubMed

    Aloisio, Michelangelo; Bortot, Barbara; Gandin, Ilaria; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2017-02-01

    Chimerism status evaluation of post-allogeneic hematopoietic stem cell transplantation samples is essential to predict post-transplant relapse. The most commonly used technique capable of detecting small increments of chimerism is quantitative real-time PCR. Although this method is already used in several laboratories, previously described protocols often lack sensitivity and the amount of the DNA required for each chimerism analysis is too high. In the present study, we compared a novel semi-nested allele-specific real-time PCR (sNAS-qPCR) protocol with our in-house standard allele-specific real-time PCR (gAS-qPCR) protocol. We selected two genetic markers and analyzed technical parameters (slope, y-intercept, R2, and standard deviation) useful to determine the performances of the two protocols. The sNAS-qPCR protocol showed better sensitivity and precision. Moreover, the sNAS-qPCR protocol requires, as input, only 10 ng of DNA, which is at least 10-fold less than the gAS-qPCR protocols described in the literature. Finally, the proposed sNAS-qPCR protocol could prove very useful for performing chimerism analysis with a small amount of DNA, as in the case of blood cell subsets.

  3. Relative Accuracy of Nucleic Acid Amplification Tests and Culture in Detecting Chlamydia in Asymptomatic Men

    PubMed Central

    Cheng, Hong; Macaluso, Maurizio; Vermund, Sten H.; Hook, Edward W.

    2001-01-01

    Published estimates of the sensitivity and specificity of PCR and ligase chain reaction (LCR) for detecting Chlamydia trachomatis are potentially biased because of study design limitations (confirmation of test results was limited to subjects who were PCR or LCR positive but culture negative). Relative measures of test accuracy are less prone to bias in incomplete study designs. We estimated the relative sensitivity (RSN) and relative false-positive rate (RFP) for PCR and LCR versus cell culture among 1,138 asymptomatic men and evaluated the potential bias of RSN and RFP estimates. PCR and LCR testing in urine were compared to culture of urethral specimens. Discordant results (PCR or LCR positive, but culture negative) were confirmed by using a sequence including the other DNA amplification test, direct fluorescent antibody testing, and a DNA amplification test to detect chlamydial major outer membrane protein. The RSN estimates for PCR and LCR were 1.45 (95% confidence interval [CI] = 1.3 to 1.7) and 1.49 (95% CI = 1.3 to 1.7), respectively, indicating that both methods are more sensitive than culture. Very few false-positive results were found, indicating that the specificity levels of PCR, LCR, and culture are high. The potential bias in RSN and RFP estimates were <5 and <20%, respectively. The estimation of bias is based on the most likely and probably conservative parameter settings. If the sensitivity of culture is between 60 and 65%, then the true sensitivity of PCR and LCR is between 90 and 97%. Our findings indicate that PCR and LCR are significantly more sensitive than culture, while the three tests have similar specificities. PMID:11682509

  4. Comparison of real-time SYBR green dengue assay with real-time taqman RT-PCR dengue assay and the conventional nested PCR for diagnosis of primary and secondary dengue infection

    PubMed Central

    Paudel, Damodar; Jarman, Richard; Limkittikul, Kriengsak; Klungthong, Chonticha; Chamnanchanunt, Supat; Nisalak, Ananda; Gibbons, Robert; Chokejindachai, Watcharee

    2011-01-01

    Background: Dengue fever and dengue hemorrhagic fever are caused by dengue virus. Dengue infection remains a burning problem of many countries. To diagnose acute dengue in the early phase we improve the low cost, rapid SYBR green real time assay and compared the sensitivity and specificity with real time Taqman® assay and conventional nested PCR assay. Aims: To develop low cost, rapid and reliable real time SYBR green diagnostic dengue assay and compare with Taqman real-time assay and conventional nested PCR (modified Lanciotti). Materials and Methods: Eight cultured virus strains were diluted in tenth dilution down to undetectable level by the PCR to optimize the primer, temperature (annealing, and extension and to detect the limit of detection of the assay. Hundred and ninety three ELISA and PCR proved dengue clinical samples were tested with real time SYBR® Green assay, real time Taqman® assay to compare the sensitivity and specificity. Results: Sensitivity and specificity of real time SYBR® green dengue assay (84% and 66%, respectively) was almost comparable to those (81% and 74%) of Taqman real time PCR dengue assay. Real time SYBR® green RT-PCR was equally sensitive in primary and secondary infection while real time Taqman was less sensitive in the secondary infection. Sensitivity of real time Taqman on DENV3 (87%) was equal to SYBR green real time PCR dengue assay. Conclusion: We developed low cost rapid diagnostic SYBR green dengue assay. Further study is needed to make duplex primer assay for the serotyping of dengue virus. PMID:22363089

  5. Comparison of a real-time PCR method with a culture method for the detection of Salmonella enterica serotype enteritidis in naturally contaminated environmental samples from integrated poultry houses.

    PubMed

    Lungu, Bwalya; Waltman, W Douglas; Berghaus, Roy D; Hofacre, Charles L

    2012-04-01

    Conventional culture methods have traditionally been considered the "gold standard" for the isolation and identification of foodborne bacterial pathogens. However, culture methods are labor-intensive and time-consuming. A Salmonella enterica serotype Enteritidis-specific real-time PCR assay that recently received interim approval by the National Poultry Improvement Plan for the detection of Salmonella Enteritidis was evaluated against a culture method that had also received interim National Poultry Improvement Plan approval for the analysis of environmental samples from integrated poultry houses. The method was validated with 422 field samples collected by either the boot sock or drag swab method. The samples were cultured by selective enrichment in tetrathionate broth followed by transfer onto a modified semisolid Rappaport-Vassiliadis medium and then plating onto brilliant green with novobiocin and xylose lysine brilliant Tergitol 4 plates. One-milliliter aliquots of the selective enrichment broths from each sample were collected for DNA extraction by the commercial PrepSEQ nucleic acid extraction assay and analysis by the Salmonella Enteritidis-specific real-time PCR assay. The real-time PCR assay detected no significant differences between the boot sock and drag swab samples. In contrast, the culture method detected a significantly higher number of positive samples from boot socks. The diagnostic sensitivity of the real-time PCR assay for the field samples was significantly higher than that of the culture method. The kappa value obtained was 0.46, indicating moderate agreement between the real-time PCR assay and the culture method. In addition, the real-time PCR method had a turnaround time of 2 days compared with 4 to 8 days for the culture method. The higher sensitivity as well as the reduction in time and labor makes this real-time PCR assay an excellent alternative to conventional culture methods for diagnostic purposes, surveillance, and research studies to improve food safety.

  6. Real-time PCR detection of Listeria monocytogenes in infant formula and lettuce following macrophage-based isolation and enrichment.

    PubMed

    Day, J B; Basavanna, U

    2015-01-01

    To develop a rapid detection procedure for Listeria monocytogenes in infant formula and lettuce using a macrophage-based enrichment protocol and real-time PCR. A macrophage cell culture system was employed for the isolation and enrichment of L. monocytogenes from infant formula and lettuce for subsequent identification using real-time PCR. Macrophage monolayers were exposed to infant formula and lettuce contaminated with a serial dilution series of L. monocytogenes. As few as approx. 10 CFU ml(-1) or g(-1) of L. monocytogenes were detected in infant formula and lettuce after 16 h postinfection by real-time PCR. Internal positive PCR controls were utilized to eliminate the possibility of false-negative results. Co-inoculation with Listeria innocua did not reduce the L. monocytogenes detection sensitivity. Intracellular L. monocytogenes could also be isolated on Listeria selective media from infected macrophage lysates for subsequent confirmation. The detection method is highly sensitive and specific for L. monocytogenes in infant formula and lettuce and establishes a rapid identification time of 20 and 48 h for presumptive and confirmatory identification, respectively. The method is a promising alternative to many currently used q-PCR detection methods which employ traditional selective media for enrichment of contaminated food samples. Macrophage enrichment of L. monocytogenes eliminates PCR inhibitory food elements and contaminating food microflora which produce cleaner samples that increase the rapidity and sensitivity of detection. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  7. [Rapid Detection of Adenovirus in Fecal Samples by Capillary Electrophoresis-laser Induced Fluorescence and Microchip Capillary Electrophoresis-laser Induced Fluorescence].

    PubMed

    Ruan, Jia; Ren, Dong-xia; Yang, Dan-ni; Long, Pin-pin; Zhao, Hong-yue; Wang, Yi-qi; Li, Yong-xin

    2015-07-01

    To establish a rapid and sensitive method based on polymerase chain reaction (PCR) combined with capillary electrophoresis-laser induced fluorescence (CE-LIF) and microchip capillary electrophoresis-laser induced fluorescence (MCE-LIF) for detecting adenoviruses in fecal samples. The DNA of adenovirus in fecal samples were extracted by the commercial kits and the conserved region of hexon gene was selected as the target gene and amplified by PCR reaction. After labeling highly sensitive nucleic acid fluorescent dye SYBR Gold and SYBR Orange respectively, PCR amplification products were separated by CE and MCE under the optimized condition and detected by LIF detector. PCR amplification products could be detected within 9 min by CE-LIF and 6 min by MCE-LIF under the optimized separation condition. The sequenced PCR product showed good specificity in comparison with the prototype sequences from NCBI. The intraday and inter-day relative standard deviation (RSD) of the size (bp) of the target DNA was in the range of 1.14%-1.34% and 1.27%- 2.76%, respectively, for CE-LIF, and 1.18%-1.48% and 2.85%-4.06%, respectively, for MCE-LIF. The detection limits was 2.33 x 10(2) copies/mL for CE-LIF and 2.33 x 10(3) copies/mL for MCE-LIF. The two proposed methods were applied to detect fecal samples, both showing high accuracy. The two proposed methods of PCR-CE-LIF and PCR-MCE-LIF can detect adenovirus in fecal samples rapidly, sensitively and specifically.

  8. Accurate quantitation of circulating cell-free mitochondrial DNA in plasma by droplet digital PCR.

    PubMed

    Ye, Wei; Tang, Xiaojun; Liu, Chu; Wen, Chaowei; Li, Wei; Lyu, Jianxin

    2017-04-01

    To establish a method for accurate quantitation of circulating cell-free mitochondrial DNA (ccf-mtDNA) in plasma by droplet digital PCR (ddPCR), we designed a ddPCR method to determine the copy number of ccf-mtDNA by amplifying mitochondrial ND1 (MT-ND1). To evaluate the sensitivity and specificity of the method, a recombinant pMD18-T plasmid containing MT-ND1 sequences and mtDNA-deleted (ρ 0 ) HeLa cells were used, respectively. Subsequently, different plasma samples were prepared for ddPCR to evaluate the feasibility of detecting plasma ccf-mtDNA. In the results, the ddPCR method showed high sensitivity and specificity. When the DNA was extracted from plasma prior to ddPCR, the ccf-mtDNA copy number was higher than that measured without extraction. This difference was not due to a PCR inhibitor, such as EDTA-Na 2 , an anti-coagulant in plasma, because standard EDTA-Na 2 concentration (5 mM) did not significantly inhibit ddPCR reactions. The difference might be attributable to plasma exosomal mtDNA, which was 4.21 ± 0.38 copies/μL of plasma, accounting for ∼19% of plasma ccf-mtDNA. Therefore, ddPCR can quickly and reliably detect ccf-mtDNA from plasma with a prior DNA extraction step, providing for a more accurate detection of ccf-mtDNA. The direct use of plasma as a template in ddPCR is suitable for the detection of exogenous cell-free nucleic acids within plasma, but not of nucleic acids that have a vesicle-associated form, such as exosomal mtDNA. Graphical Abstract Designs of the present work. *: Module 1, #: Module 2, &: Module 3.

  9. Amplification of Mycoplasma haemofelis DNA by a PCR for point-of-care use.

    PubMed

    Hawley, Jennifer; Yaaran, Tal; Maurice, Sarah; Lappin, Michael R

    2018-01-01

    We compared a qualitative in-clinic (IC)-PCR for the detection of Mycoplasma haemofelis DNA with the results of a commercial qualitative laboratory-based, conventional (c)PCR. In order to determine the specificity of both tests, Bartonella spp. samples were included. Forty-three previously tested blood samples with known PCR results for hemoplasmas and Bartonella spp. were selected. The samples were split between 2 laboratories. At the first laboratory, DNA was purified and run on 2 cPCR assays for the detection of hemoplasmas and Bartonella spp. At the second laboratory, DNA was purified using 2 purification protocols and both run in the IC-PCR assay. The cPCR results confirmed that 18 samples were positive for M. haemofelis, 5 for ' Candidatus M. haemominutum', 8 for Bartonella henselae, 2 for Bartonella clarridgeiae, and 10 were negative for both genera. No mixed infections were observed. The IC-PCR assay for the detection of M. haemofelis had a sensitivity of 94.4% and specificity of 96%, when using the same DNA purification method as the first laboratory. Using the second purification method, the sensitivity of the IC-PCR assay was 77.8% and specificity was 96%. Bartonella species were not detected by the IC-PCR M. haemofelis assay. The IC-PCR assay decreased the amount of time to final result compared to a cPCR assay.

  10. Comparison of PCR-based methods for the simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in clinical samples.

    PubMed

    de Filippis, Ivano; de Andrade, Claudia Ferreira; Caldeira, Nathalia; de Azevedo, Aline Carvalho; de Almeida, Antonio Eugenio

    2016-01-01

    Several in-house PCR-based assays have been described for the detection of bacterial meningitis caused by Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae from clinical samples. PCR-based methods targeting different bacterial genes are frequently used by different laboratories worldwide, but no standard method has ever been established. The aim of our study was to compare different in-house and a commercial PCR-based tests for the detection of bacterial pathogens causing meningitis and invasive disease in humans. A total of 110 isolates and 134 clinical samples (99 cerebrospinal fluid and 35 blood samples) collected from suspected cases of invasive disease were analyzed. Specific sets of primers frequently used for PCR-diagnosis of the three pathogens were used and compared with the results achieved using the multiplex approach described here. Several different gene targets were used for each microorganism, namely ctrA, crgA and nspA for N. meningitidis, ply for S. pneumoniae, P6 and bexA for H. influenzae. All used methods were fast, specific and sensitive, while some of the targets used for the in-house PCR assay detected lower concentrations of genomic DNA than the commercial method. An additional PCR reaction is described for the differentiation of capsulated and non-capsulated H. influenzae strains, the while commercial method only detects capsulated strains. The in-house PCR methods here compared showed to be rapid, sensitive, highly specific, and cheaper than commercial methods. The in-house PCR methods could be easily adopted by public laboratories of developing countries for diagnostic purposes. The best results were achieved using primers targeting the genes nspA, ply, and P6 which were able to detect the lowest DNA concentrations for each specific target. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  11. PCR method of detecting pork in foods for verifying allergen labeling and for identifying hidden pork ingredients in processed foods.

    PubMed

    Tanabe, Soichi; Miyauchi, Eiji; Muneshige, Akemi; Mio, Kazuhiro; Sato, Chikara; Sato, Masahiko

    2007-07-01

    A PCR method to detect porcine DNA was developed for verifying the allergen labeling of foods and for identifying hidden pork ingredients in processed foods. The primer pair, F2/R1, was designed to detect the gene encoding porcine cytochrome b for the specific detection of pork with high sensitivity. The amplified DNA fragment (130 bp) was specifically detected from porcine DNA, while no amplification occurred with other species such as cattle, chicken, sheep, and horse. When the developed PCR method was used for investigating commercial food products, porcine DNA was clearly detected in those containing pork in the list of ingredients. In addition, 100 ppb of pork in heated gyoza (pork and vegetable dumpling) could be detected by this method. This method is rapid, specific and sensitive, making it applicable for detecting trace amounts of pork in processed foods.

  12. Rapid and Accurate Diagnosis of Acute Pyogenic Meningitis Due to Streptococcus Pneumoniae, Haemophilus influenzae Type b and Neisseria meningitidis Using A Multiplex PCR Assay.

    PubMed

    Seth, Rajeev; Murthy, Peela Sree Ramchandra; Sistla, Sujatha; Subramanian, Mahadevan; Tamilarasu, Kadhiravan

    2017-09-01

    Acute bacterial meningitis is one of the major causes of morbidity and mortality in children and geriatric population, especially in developing countries. Methods of identification are standard culture and other phenotypic tests in many resource poor settings. To use molecular methods for the improvement of aetiological diagnosis of acute pyogenic meningitis in patients. CSF samples of 125 patients were included for the study. Gram staining and culture were performed according to standard procedures. Antigen was detected using commercial latex agglutination test kit. Multiplex PCR was performed using previously published primers and protocols. Fischer's exact test was used for finding association between presence of the disease and clinical/biochemical parameters, considering two tailed p<0.05 as statistically significant. Sensitivity, specificity, positive and negative predictive values were calculated using Graphpad QuicCalc software. A total of 39 cases (31.2%) were confirmed to be of acute pyogenic meningitis based on biochemical methods. Only 10/39 was positive for the three organisms tested. Multiplex PCR was able to detect one additional isolate each of Streptococcus pneumoniae and Haemophilus influenzae type b. When compared with multiplex PCR as the gold standard, culture and latex agglutination tests had same sensitivity (80%), specificity (100%), PPV (100%) and NPV (97.8%), whereas Gram stain had poor sensitivity (40%) and good specificity (95.6%). Detection rates were higher in multiplex PCR for the two organisms Streptococcus pneumoniae and Haemophilus influenzae type b. Multiplex PCR was more sensitive than culture or antigen detection, and employing this assay can significantly increase the speed and accuracy of identification of the pathogen.

  13. PCR in laboratory diagnosis of human Borrelia burgdorferi infections.

    PubMed

    Schmidt, B L

    1997-01-01

    The laboratory diagnosis of Lyme borreliosis, the most prevalent vector-borne disease in the United States and endemic in parts of Europe and Asia, is currently based on serology with known limitations. Direct demonstration of Borrelia burgdorferi by culture may require weeks, while enzyme-linked immunosorbent assays for antigen detection often lack sensitivity. The development of the PCR has offered a new dimension in the diagnosis. Capable of amplifying minute amounts of DNA into billions of copies in just a few hours, PCR facilitates the sensitive and specific detection of DNA or RNA of pathogenic organisms. This review is restricted to applications of PCR methods in the diagnosis of human B. burgdorferi infections. In the first section, methodological aspects, e.g., sample preparation, target selection, primers and PCR methods, and detection and control of inhibition and contamination, are highlighted. In the second part, emphasis is placed on diagnostic aspects, where PCR results in patients with dermatological, neurological, joint, and ocular manifestations of the disease are discussed. Here, special attention is given to monitoring treatment efficacy by PCR tests. Last, specific guidelines on how to interpret PCR results, together with the advantages and limitations of these new techniques, are presented.

  14. Comparative evaluation of the sensitivity of LAMP, PCR and in vitro culture methods for the diagnosis of equine piroplasmosis.

    PubMed

    Alhassan, Andy; Govind, Yadav; Tam, Nguyen Thanh; Thekisoe, Oriel M M; Yokoyama, Naoaki; Inoue, Noboru; Igarashi, Ikuo

    2007-04-01

    The sensitivity of LAMP, PCR and in vitro culture methods for the detection of Theileria equi and Babesia caballi was evaluated using tenfold serially diluted culture parasites. On day 1 post-culture, both T. equi and B. caballi parasites could only be observed at 1% parasite dilution from the in vitro culture method, whereas LAMP could detect up to 1 x 10(-3)% of both T. equi and B. caballi parasite dilutions, whilst PCR could detect 1 x 10(-3)% T. equi and 1 x 10(-1)% B. caballi parasite dilutions. On day 7 post-culture, the detection limit for T. equi and B. caballi in the in vitro culture increased up to 1 x 10(-6)%, whereas LAMP detection limit increased to 1 x 10(-10)% for both parasites, whilst the PCR detection limit increased to 1 x 10(-10)% and 1 x 10(-6)% for T. equi and B. caballi, respectively. Furthermore, LAMP and PCR amplified the T. equi DNA extracted from the organs of an experimentally infected horse. This study further validates LAMP as an alternative molecular diagnostic tool, which can be used in the diagnosis of early infections of equine piroplasmosis and together with PCR can also be used as supplementary methods during post-mortems.

  15. Evaluation of digital PCR for detecting low-level EGFR mutations in advanced lung adenocarcinoma patients: a cross-platform comparison study

    PubMed Central

    Liu, Bing; Li, Lei; Huang, Lixia; Li, Shaoli; Rao, Guanhua; Yu, Yang; Zhou, Yanbin

    2017-01-01

    Emerging evidence has indicated that circulating tumor DNA (ctDNA) from plasma could be used to analyze EGFR mutation status for NSCLC patients; however, due to the low level of ctDNA in plasma, highly sensitive approaches are required to detect low frequency mutations. In addition, the cutoff for the mutation abundance that can be detected in tumor tissue but cannot be detected in matched ctDNA is still unknown. To assess a highly sensitive method, we evaluated the use of digital PCR in the detection of EGFR mutations in tumor tissue from 47 advanced lung adenocarcinoma patients through comparison with NGS and ARMS. We determined the degree of concordance between tumor tissue DNA and paired ctDNA and analyzed the mutation abundance relationship between them. Digital PCR and Proton had a high sensitivity (96.00% vs. 100%) compared with that of ARMS in the detection of mutations in tumor tissue. Digital PCR outperformed Proton in identifying more low abundance mutations. The ctDNA detection rate of digital PCR was 87.50% in paired tumor tissue with a mutation abundance above 5% and 7.59% in paired tumor tissue with a mutation abundance below 5%. When the DNA mutation abundance of tumor tissue was above 3.81%, it could identify mutations in paired ctDNA with a high sensitivity. Digital PCR will help identify alternative methods for detecting low abundance mutations in tumor tissue DNA and plasma ctDNA. PMID:28978074

  16. A broad range assay for rapid detection and etiologic characterization of bacterial meningitis: performance testing in samples from sub-Sahara.

    PubMed

    Won, Helen; Yang, Samuel; Gaydos, Charlotte; Hardick, Justin; Ramachandran, Padmini; Hsieh, Yu-Hsiang; Kecojevic, Alexander; Njanpop-Lafourcade, Berthe-Marie; Mueller, Judith E; Tameklo, Tsidi Agbeko; Badziklou, Kossi; Gessner, Bradford D; Rothman, Richard E

    2012-09-01

    This study aimed to conduct a pilot evaluation of broad-based multiprobe polymerase chain reaction (PCR) in clinical cerebrospinal fluid (CSF) samples compared to local conventional PCR/culture methods used for bacterial meningitis surveillance. A previously described PCR consisting of initial broad-based detection of Eubacteriales by a universal probe, followed by Gram typing, and pathogen-specific probes was designed targeting variable regions of the 16S rRNA gene. The diagnostic performance of the 16S rRNA assay in "127 CSF samples was evaluated in samples from patients from Togo, Africa, by comparison to conventional PCR/culture methods. Our probes detected Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. Uniprobe sensitivity and specificity versus conventional PCR were 100% and 54.6%, respectively. Sensitivity and specificity of uniprobe versus culture methods were 96.5% and 52.5%, respectively. Gram-typing probes correctly typed 98.8% (82/83) and pathogen-specific probes identified 96.4% (80/83) of the positives. This broad-based PCR algorithm successfully detected and provided species level information for multiple bacterial meningitis agents in clinical samples. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. A broad range assay for rapid detection and etiologic characterization of bacterial meningitis: performance testing in samples from sub-Sahara☆, ☆☆,★

    PubMed Central

    Won, Helen; Yang, Samuel; Gaydos, Charlotte; Hardick, Justin; Ramachandran, Padmini; Hsieh, Yu-Hsiang; Kecojevic, Alexander; Njanpop-Lafourcade, Berthe-Marie; Mueller, Judith E.; Tameklo, Tsidi Agbeko; Badziklou, Kossi; Gessner, Bradford D.; Rothman, Richard E.

    2012-01-01

    This study aimed to conduct a pilot evaluation of broad-based multiprobe polymerase chain reaction (PCR) in clinical cerebrospinal fluid (CSF) samples compared to local conventional PCR/culture methods used for bacterial meningitis surveillance. A previously described PCR consisting of initial broad-based detection of Eubacteriales by a universal probe, followed by Gram typing, and pathogen-specific probes was designed targeting variable regions of the 16S rRNA gene. The diagnostic performance of the 16S rRNA assay in “”127 CSF samples was evaluated in samples from patients from Togo, Africa, by comparison to conventional PCR/culture methods. Our probes detected Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae. Uniprobe sensitivity and specificity versus conventional PCR were 100% and 54.6%, respectively. Sensitivity and specificity of uniprobe versus culture methods were 96.5% and 52.5%, respectively. Gram-typing probes correctly typed 98.8% (82/83) and pathogen-specific probes identified 96.4% (80/83) of the positives. This broad-based PCR algorithm successfully detected and provided species level information for multiple bacterial meningitis agents in clinical samples. PMID:22809694

  18. Cytomegalovirus frequency in neonatal intrahepatic cholestasis determined by serology, histology, immunohistochemistry and PCR

    PubMed Central

    Bellomo-Brandao, Maria Angela; Andrade, Paula D; Costa, Sandra CB; Escanhoela, Cecilia AF; Vassallo, Jose; Porta, Gilda; De Tommaso, Adriana MA; Hessel, Gabriel

    2009-01-01

    AIM: To determine cytomegalovirus (CMV) frequency in neonatal intrahepatic cholestasis by serology, histological revision (searching for cytomegalic cells), immunohistochemistry, and polymerase chain reaction (PCR), and to verify the relationships among these methods. METHODS: The study comprised 101 non-consecutive infants submitted for hepatic biopsy between March 1982 and December 2005. Serological results were obtained from the patient’s files and the other methods were performed on paraffin-embedded liver samples from hepatic biopsies. The following statistical measures were calculated: frequency, sensibility, specific positive predictive value, negative predictive value, and accuracy. RESULTS: The frequencies of positive results were as follows: serology, 7/64 (11%); histological revision, 0/84; immunohistochemistry, 1/44 (2%), and PCR, 6/77 (8%). Only one patient had positive immunohistochemical findings and a positive PCR. The following statistical measures were calculated between PCR and serology: sensitivity, 33.3%; specificity, 88.89%; positive predictive value, 28.57%; negative predictive value, 90.91%; and accuracy, 82.35%. CONCLUSION: The frequency of positive CMV varied among the tests. Serology presented the highest positive frequency. When compared to PCR, the sensitivity and positive predictive value of serology were low. PMID:19610143

  19. Real-time PCR assay for the detection and quantification of Legionella pneumophila in environmental water samples: utility for daily practice.

    PubMed

    Morio, Florent; Corvec, Stéphane; Caroff, Nathalie; Le Gallou, Florence; Drugeon, Henri; Reynaud, Alain

    2008-07-01

    We developed a quantitative real-time PCR assay targeting the mip gene of Legionella pneumophila for a prospective study from September 2004 to April 2005. It was compared with a standard culture method (French guideline AFNOR T90-431), analysing 120 water samples collected to monitor the risk related to Legionellae at Nantes hospital and to investigate a case of legionellosis acquired from hospital environment. Samples from six distinct water distribution systems were analysed by DNA extraction, amplification and detection with specific primers and FRET probes. The detection limit was 100 genomic units of L. pneumophila per liter (GU/l), the positivity threshold about 600 GU/l and the quantification limit 800 GU/l. PCR results were divided into three groups: negative (n=63), positive but non-quantifiable (n=22) or positive (n=35). PCR showed higher sensitivity than culture, whereas four culture-positive samples appeared negative by PCR (PCR inhibitor detected for two of them). Although no correlation was observed between both methods and real-time PCR cannot substitute for the reference method, it represents an interesting complement. Its sensitivity, reproducibility and rapidity appear particularly interesting in epidemic contexts in order to identify the source of contamination or to evaluate critical points of contamination in water distribution systems.

  20. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules.

    PubMed

    Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; Khairil Mokhtar, Nur Fadhilah; El Sheikha, Aly Farag

    2018-03-05

    The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared. A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA. The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. A more sensitive, efficient and ISO 17025 validated Magnetic Capture real time PCR method for the detection of archetypal Toxoplasma gondii strains in meat.

    PubMed

    Gisbert Algaba, Ignacio; Geerts, Manon; Jennes, Malgorzata; Coucke, Wim; Opsteegh, Marieke; Cox, Eric; Dorny, Pierre; Dierick, Katelijne; De Craeye, Stéphane

    2017-11-01

    Toxoplasma gondii is a globally prevalent, zoonotic parasite of major importance to public health. Various indirect and direct methods can be used for the diagnosis of toxoplasmosis. Whereas serological tests are useful to prove contact with the parasite has occurred, the actual presence of the parasite in the tissues of a seropositive animal is not demonstrated. For this, a bioassay is still the reference method. As an alternative, various PCR methods have been developed, but due to the limited amount of sample that can be tested, combined with a low tissue cyst density, those have proved to be insufficiently sensitive. A major improvement of the sensitivity was achieved with magnetic capture-based DNA extraction. By combining the hybridization of specific, biotinylated probes with the capture of those probes with streptavidin-coated paramagnetic beads, T. gondii DNA can selectively be "fished out" from a large volume of meat lysate. Still, several studies showed an insufficient sensitivity compared with the mouse bioassay. Here we present a method that is more sensitive (99% limit of detection: 65.4 tachyzoites per 100g of meat), economical and reliable (ISO 17025 validated) by adding a non-competitive PCR inhibition control (co-capture of cellular r18S) and making the release of the target DNA from the streptavidin-coated paramagnetic beads UV-dependent. The presented results demonstrate the potential of the modified Magnetic Capture real time PCR as a full alternative to the mouse bioassay for the screening of various types of tissues and meat, with the additional advantage of being quantitative. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  2. Production of anti-digoxigenin antibody HRP conjugate for PCR-ELISA DIG detection system.

    PubMed

    Gill, Pooria; Forouzandeh, Mehdi; Rahbarizadeh, Fatemeh; Ramezani, Reihaneh; Rasaee, Mohammad Javad

    2006-01-01

    There are several methods used to visualize the end product of polymerase chain reactions. One of these methods is an ELISA-based detection system (PCR-ELISA) which is very sensitive and can be used to measure the PCR products quantitatively by a colorimetric method. According to this technique, copies of DNA segments from genomic DNA are amplified by PCR with incorporation of digoxigenin-11-dUTP. Samples are analyzed in a microtiter plate format by alkaline denaturation and are hybridized to biotinylated allele-specific capture probes bound to streptavidin coated plates. Use of the produced anti-digoxigenin antibody horseradish peroxidase conjugate and the substrate 2,2'-azino-di-3-ethylbenzthiazolinsulfonate (ABTS) detected the hybridized DNA. One of the key components in this procedure is the anti-digoxigenin antibody HRP conjugate. Described here is the preparation, purification, and characterization of anti-digoxigenin antibody HRP conjugate for use in the PCR-ELISA DIG detection system. Several biochemical protocols and modifications were applied to increase the sensitivity and specificity of this conjugate for an efficient and cost-effective product.

  3. Pneumocystis PCR: It Is Time to Make PCR the Test of Choice

    PubMed Central

    Doyle, Laura; Vogel, Sherilynn

    2017-01-01

    Abstract Background The testing strategy for Pneumocystis at the Cleveland Clinic changed from toluidine blue staining to polymerase chain reaction (PCR). We studied the differences in positivity rates for these assays and compared each with the detection of Pneumocystis in companion specimens by cytology and surgical pathology. Methods We reviewed the results of all Pneumocystis test orders 1 year before and 1 year after the implementation of a Pneumocystis-specific PCR. We also reviewed the corresponding cytology and surgical pathology results, if performed. Finally, we reviewed the medical records of patients with rare Pneumocystis detected by PCR in an effort to differentiate colonization vs true disease. Results Toluidine blue staining and surgical pathology had similar sensitivities and negative predictive values, both of which were superior to cytology. There was a >4-fold increase in the annual detection of Pneumocystis by PCR compared with toluidine blue staining (toluidine blue staining: 11/1583 [0.69%] vs PCR: 44/1457 [3.0%]; chi-square P < .001). PCR detected 1 more case than surgical pathology and was far more sensitive than cytology. Chart review demonstrated that the vast majority of patients with rare Pneumocystis detected were immunosuppressed, had radiologic findings supportive of this infection, had no other pathogens detected, and were treated for pneumocystosis by the clinical team. Conclusion PCR was the most sensitive method for the detection of Pneumocystis and should be considered the diagnostic test of choice. Correlation with clinical and radiologic findings affords discrimination of early true disease from the far rarer instances of colonization. PMID:29062861

  4. Comparison of ion chromatographic methods based on conductivity detection, post-column-reaction and on-line-coupling IC-ICP-MS for the determination of bromate.

    PubMed

    Schminke, G; Seubert, A

    2000-02-01

    An established method for the determination of the disinfection by-product bromate is ion chromatography (IC). This paper presents a comparison of three IC methods based on either conductivity detection (IC-CD), a post-column-reaction (IC-PCR-VIS) or the on-line-coupling with inductively coupled plasma mass spectrometry (IC-ICP-MS). Main characteristics of the methods such as method detection limits (MDL), time of analysis and sample pretreatment are compared and applicability for routine analysis is critically discussed. The most sensitive and rugged method is IC-ICP-MS, followed by IC-PCR-VIS. The photometric detection is subject to a minor interference in real world samples, presumably caused by carbonate. The lowest sensitivity is shown by the IC-CD method as slowest method compared, which, in addition, requires a sample pretreatment. The highest amount of information is delivered by IC-PCR-VIS, which allows the simultaneous determination of the seven standard anions and bromate.

  5. Comparison of real-time PCR methods for the detection of Naegleria fowleri in surface water and sediment.

    PubMed

    Streby, Ashleigh; Mull, Bonnie J; Levy, Karen; Hill, Vincent R

    2015-05-01

    Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Foursuch assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices.

  6. Comparison of real-time PCR methods for the detection of Naegleria fowleri in surface water and sediment

    PubMed Central

    Streby, Ashleigh; Mull, Bonnie J.; Levy, Karen

    2015-01-01

    Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Four such assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices. PMID:25855343

  7. Rapid concentration and sensitive detection of hookworm ova from wastewater matrices using a real-time PCR method.

    PubMed

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2015-12-01

    The risk of human hookworm infections from land application of wastewater matrices could be high in regions with high hookworm prevalence. A rapid, sensitive and specific hookworm detection method from wastewater matrices is required in order to assess human health risks. Currently available methods used to identify hookworm ova to the species level are time consuming and lack accuracy. In this study, a real-time PCR method was developed for the rapid, sensitive and specific detection of canine hookworm (Ancylostoma caninum) ova from wastewater matrices. A. caninum was chosen because of its morphological similarity to the human hookworm (Ancylostoma duodenale and Necator americanus). The newly developed PCR method has high detection sensitivity with the ability to detect less than one A. caninum ova from 1 L of secondary treated wastewater at the mean threshold cycle (CT) values ranging from 30.1 to 34.3. The method is also able to detect four A. caninum ova from 1 L of raw wastewater and from ∼4 g of treated sludge with mean CT values ranging from 35.6 to 39.8 and 39.8 to 39.9, respectively. The better detection sensitivity obtained for secondary treated wastewater compared to raw wastewater and sludge samples could be attributed to sample turbidity. The proposed method appears to be rapid, sensitive and specific compared to traditional methods and has potential to aid in the public health risk assessment associated with land application of wastewater matrices. Furthermore, the method can be adapted to detect other helminth ova of interest from wastewater matrices. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  8. International Study to Evaluate PCR Methods for Detection of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Schijman, Alejandro G.; Bisio, Margarita; Orellana, Liliana; Sued, Mariela; Duffy, Tomás; Mejia Jaramillo, Ana M.; Cura, Carolina; Auter, Frederic; Veron, Vincent; Qvarnstrom, Yvonne; Deborggraeve, Stijn; Hijar, Gisely; Zulantay, Inés; Lucero, Raúl Horacio; Velazquez, Elsa; Tellez, Tatiana; Sanchez Leon, Zunilda; Galvão, Lucia; Nolder, Debbie; Monje Rumi, María; Levi, José E.; Ramirez, Juan D.; Zorrilla, Pilar; Flores, María; Jercic, Maria I.; Crisante, Gladys; Añez, Néstor; De Castro, Ana M.; Gonzalez, Clara I.; Acosta Viana, Karla; Yachelini, Pedro; Torrico, Faustino; Robello, Carlos; Diosque, Patricio; Triana Chavez, Omar; Aznar, Christine; Russomando, Graciela; Büscher, Philippe; Assal, Azzedine; Guhl, Felipe; Sosa Estani, Sergio; DaSilva, Alexandre; Britto, Constança; Luquetti, Alejandro; Ladzins, Janis

    2011-01-01

    Background A century after its discovery, Chagas disease still represents a major neglected tropical threat. Accurate diagnostics tools as well as surrogate markers of parasitological response to treatment are research priorities in the field. The purpose of this study was to evaluate the performance of PCR methods in detection of Trypanosoma cruzi DNA by an external quality evaluation. Methodology/Findings An international collaborative study was launched by expert PCR laboratories from 16 countries. Currently used strategies were challenged against serial dilutions of purified DNA from stocks representing T. cruzi discrete typing units (DTU) I, IV and VI (set A), human blood spiked with parasite cells (set B) and Guanidine Hidrochloride-EDTA blood samples from 32 seropositive and 10 seronegative patients from Southern Cone countries (set C). Forty eight PCR tests were reported for set A and 44 for sets B and C; 28 targeted minicircle DNA (kDNA), 13 satellite DNA (Sat-DNA) and the remainder low copy number sequences. In set A, commercial master mixes and Sat-DNA Real Time PCR showed better specificity, but kDNA-PCR was more sensitive to detect DTU I DNA. In set B, commercial DNA extraction kits presented better specificity than solvent extraction protocols. Sat-DNA PCR tests had higher specificity, with sensitivities of 0.05–0.5 parasites/mL whereas specific kDNA tests detected 5.10−3 par/mL. Sixteen specific and coherent methods had a Good Performance in both sets A and B (10 fg/µl of DNA from all stocks, 5 par/mL spiked blood). The median values of sensitivities, specificities and accuracies obtained in testing the Set C samples with the 16 tests determined to be good performing by analyzing Sets A and B samples varied considerably. Out of them, four methods depicted the best performing parameters in all three sets of samples, detecting at least 10 fg/µl for each DNA stock, 0.5 par/mL and a sensitivity between 83.3–94.4%, specificity of 85–95%, accuracy of 86.8–89.5% and kappa index of 0.7–0.8 compared to consensus PCR reports of the 16 good performing tests and 63–69%, 100%, 71.4–76.2% and 0.4–0.5, respectively compared to serodiagnosis. Method LbD2 used solvent extraction followed by Sybr-Green based Real time PCR targeted to Sat-DNA; method LbD3 used solvent DNA extraction followed by conventional PCR targeted to Sat-DNA. The third method (LbF1) used glass fiber column based DNA extraction followed by TaqMan Real Time PCR targeted to Sat-DNA (cruzi 1/cruzi 2 and cruzi 3 TaqMan probe) and the fourth method (LbQ) used solvent DNA extraction followed by conventional hot-start PCR targeted to kDNA (primer pairs 121/122). These four methods were further evaluated at the coordinating laboratory in a subset of human blood samples, confirming the performance obtained by the participating laboratories. Conclusion/Significance This study represents a first crucial step towards international validation of PCR procedures for detection of T. cruzi in human blood samples. PMID:21264349

  9. Comparison of allele-specific PCR, created restriction-site PCR, and PCR with primer-introduced restriction analysis methods used for screening complex vertebral malformation carriers in Holstein cattle

    PubMed Central

    Altınel, Ahmet

    2017-01-01

    Complex vertebral malformation (CVM) is an inherited, autosomal recessive disorder of Holstein cattle. The aim of this study was to compare sensitivity, specificity, positive and negative predictive values, accuracy, and rapidity of allele-specific polymerase chain reaction (AS-PCR), created restriction-site PCR (CRS-PCR), and PCR with primer-introduced restriction analysis (PCR-PIRA), three methods used in identification of CVM carriers in a Holstein cattle population. In order to screen for the G>T mutation in the solute carrier family 35 member A3 (SLC35A3) gene, DNA sequencing as the gold standard method was used. The prevalence of carriers and the mutant allele frequency were 3.2% and 0.016, respectively, among Holstein cattle in the Thrace region of Turkey. Among the three methods, the fastest but least accurate was AS-PCR. Although the rapidity of CRS-PCR and PCR-PIRA were nearly equal, the accuracy of PCR-PIRA was higher than that of CRS-PCR. Therefore, among the three methods, PCR-PIRA appears to be the most efficacious for screening of mutant alleles when identifying CVM carriers in a Holstein cattle population. PMID:28927256

  10. New PCR diagnostic systems for the detection and quantification of porcine cytomegalovirus (PCMV).

    PubMed

    Morozov, Vladimir A; Morozov, Alexey V; Denner, Joachim

    2016-05-01

    Pigs are frequently infected with porcine cytomegalovirus (PCMV). Infected adult animals may not present with symptoms of disease, and the virus remains latent. However, the virus may be transmitted to human recipients receiving pig transplants. Recently, it was shown that pig-to-non-human-primate xenotransplantations showed 2 to 3 times lower transplant survival when the donor pig was infected with PCMV. Therefore, highly sensitive methods are required to select virus-free pigs and to examine xenotransplants. Seven previously established PCR detection systems targeting the DNA polymerase gene of PCMV were examined by comparison of thermodynamic parameters of oligonucleotides, and new diagnostic nested PCR and real-time PCR systems with improved parameters and high sensitivity were established. The detection limit of conventional PCR was estimated to be 15 copies, and that of the nested PCR was 5 copies. The sensitivity of the real-time PCR with a TaqMan probe was two copies. An equal efficiency of the newly established detection systems was shown by parallel testing of DNA from sera and blood of six pigs, identifying the same animals as PCMV infected. These new diagnostic PCR systems will improve the detection of PCMV and therefore increase the safety of porcine xenotransplants.

  11. Enhanced capillary electrophoretic screening of Alzheimer based on direct apolipoprotein E genotyping and one-step multiplex PCR.

    PubMed

    Woo, Nain; Kim, Su-Kang; Sun, Yucheng; Kang, Seong Ho

    2018-01-01

    Human apolipoprotein E (ApoE) is associated with high cholesterol levels, coronary artery disease, and especially Alzheimer's disease. In this study, we developed an ApoE genotyping and one-step multiplex polymerase chain reaction (PCR) based-capillary electrophoresis (CE) method for the enhanced diagnosis of Alzheimer's. The primer mixture of ApoE genes enabled the performance of direct one-step multiplex PCR from whole blood without DNA purification. The combination of direct ApoE genotyping and one-step multiplex PCR minimized the risk of DNA loss or contamination due to the process of DNA purification. All amplified PCR products with different DNA lengths (112-, 253-, 308-, 444-, and 514-bp DNA) of the ApoE genes were analyzed within 2min by an extended voltage programming (VP)-based CE under the optimal conditions. The extended VP-based CE method was at least 120-180 times faster than conventional slab gel electrophoresis methods In particular, all amplified DNA fragments were detected in less than 10 PCR cycles using a laser-induced fluorescence detector. The detection limits of the ApoE genes were 6.4-62.0pM, which were approximately 100-100,000 times more sensitive than previous Alzheimer's diagnosis methods In addition, the combined one-step multiplex PCR and extended VP-based CE method was also successfully applied to the analysis of ApoE genotypes in Alzheimer's patients and normal samples and confirmed the distribution probability of allele frequencies. This combination of direct one-step multiplex PCR and an extended VP-based CE method should increase the diagnostic reliability of Alzheimer's with high sensitivity and short analysis time even with direct use of whole blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Rapid and simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes by magnetic capture hybridization and multiplex real-time PCR.

    PubMed

    Carloni, Elisa; Rotundo, Luca; Brandi, Giorgio; Amagliani, Giulia

    2018-05-25

    The application of rapid, specific, and sensitive methods for pathogen detection and quantification is very advantageous in diagnosis of human pathogens in several applications, including food analysis. The aim of this study was the evaluation of a method for the multiplexed detection and quantification of three significant foodborne pathogenic species (Escherichia coli O157, Salmonella spp., and Listeria monocytogenes). The assay combines specific DNA extraction by multiplex magnetic capture hybridization (mMCH) with multiplex real-time PCR. The amplification assay showed linearity in the range 10 6 -10 genomic units (GU)/PCR for each co-amplified species. The sensitivity corresponded to 1 GU/PCR for E. coli O157 and L. monocytogenes, and 10 GU/PCR for Salmonella spp. The immobilization process and the hybrid capture of the MCH showed good efficiency and reproducibility for all targets, allowing the combination in equal amounts of the different nanoparticle types in mMCH. MCH and mMCH efficiencies were similar. The detection limit of the method was 10 CFU in samples with individual pathogens and 10 2  CFU in samples with combination of the three pathogens in unequal amounts (amount's differences of 2 or 3 log). In conclusion, this multiplex molecular platform can be applied to determine the presence of target species in food samples after culture enrichment. In this way, this method could be a time-saving and sensitive tool to be used in routine diagnosis.

  13. Evaluation of Cytology for Diagnosing Avian Pox in Wild Turkeys ( Meleagris gallopavo).

    PubMed

    Hydock, Kira; Brown, Holly; Nemeth, Nicole; Poulson, Rebecca; Casalena, Mary Jo; Johnson, Joshua B; Brown, Justin

    2018-03-01

    Avian pox virus is a common cause of proliferative skin disease in wild turkeys ( Meleagris gallopavo); however, other etiologies may produce grossly indistinguishable lesions. Common methods for diagnosing avian pox include histopathology, virus isolation, and PCR. While these methods are sufficient in most cases, each has their limitations. Cytology is a cost-effective and rapid approach that may be useful when traditional diagnostics are not feasible. The objective of this study was to evaluate the performance of cytology relative to histopathology and PCR for avian pox diagnosis in wild turkeys. Fifty wild turkeys were submitted for necropsy due to nodular skin lesions on unfeathered skin of the head. Of these, five had similar skin lesions on the unfeathered legs and 26 had plaques on the mucosa of the oropharynx or esophagus. Representative skin, oropharyngeal, and esophageal lesions from all birds were examined with cytology and histopathology. Skin lesions on the head of each bird were also tested for avian pox virus via PCR. Histopathology and PCR were equally sensitive in diagnosing avian pox from skin lesions on the head. There were no significant differences between cytologic and histopathologic diagnosis of avian pox from skin lesions on the head (sensitivity = 97.4%, specificity = 100.0%), legs (sensitivity = 75.0%, specificity = 100.0%), or from lesions in the oropharynx and esophagus (sensitivity of 62.5%). Similarly, there were no significant differences between PCR and cytology for diagnosis of pox viral skin lesions of the head. Relative to PCR detection of avian pox virus, cytology had a sensitivity of 90.0% and a specificity of 90.0%. These results suggest that cytology is a useful tool for diagnosis of avian pox in wild turkeys.

  14. Detection and enumeration of Salmonella enteritidis in homemade ice cream associated with an outbreak: comparison of conventional and real-time PCR methods.

    PubMed

    Seo, K H; Valentin-Bon, I E; Brackett, R E

    2006-03-01

    Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.

  15. Single-Step qPCR and dPCR Detection of Diverse CRISPR-Cas9 Gene Editing Events In Vivo.

    PubMed

    Falabella, Micol; Sun, Linqing; Barr, Justin; Pena, Andressa Z; Kershaw, Erin E; Gingras, Sebastien; Goncharova, Elena A; Kaufman, Brett A

    2017-10-05

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based technology is currently the most flexible means to create targeted mutations by recombination or indel mutations by nonhomologous end joining. During mouse transgenesis, recombinant and indel alleles are often pursued simultaneously. Multiple alleles can be formed in each animal to create significant genetic complexity that complicates the CRISPR-Cas9 approach and analysis. Currently, there are no rapid methods to measure the extent of on-site editing with broad mutation sensitivity. In this study, we demonstrate the allelic diversity arising from targeted CRISPR editing in founder mice. Using this DNA sample collection, we validated specific quantitative and digital PCR methods (qPCR and dPCR, respectively) for measuring the frequency of on-target editing in founder mice. We found that locked nucleic acid (LNA) probes combined with an internal reference probe (Drop-Off Assay) provide accurate measurements of editing rates. The Drop-Off LNA Assay also detected on-target CRISPR-Cas9 gene editing in blastocysts with a sensitivity comparable to PCR-clone sequencing. Lastly, we demonstrate that the allele-specific LNA probes used in qPCR competitor assays can accurately detect recombinant mutations in founder mice. In summary, we show that LNA-based qPCR and dPCR assays provide a rapid method for quantifying the extent of on-target genome editing in vivo , testing RNA guides, and detecting recombinant mutations. Copyright © 2017 Falabella et al.

  16. Development of loop-mediated isothermal amplification methods for detecting Taylorella equigenitalis and Taylorella asinigenitalis

    PubMed Central

    KINOSHITA, Yuta; NIWA, Hidekazu; KATAYAMA, Yoshinari; HARIU, Kazuhisa

    2015-01-01

    ABSTRACT Taylorella equigenitalis is a causative bacterium of contagious equine metritis (CEM), and Taylorella asinigenitalis is species belonging to genus Taylorella. The authors developed two loop-mediated isothermal amplification (LAMP) methods, Te-LAMP and Ta-LAMP, for detecting T. equigenitalis and T. asinigenitalis, respectively. Using experimentally spiked samples, Te-LAMP was as sensitive as a published semi-nested PCR method, and Ta-LAMP was more sensitive than conventional PCR. Multiplex LAMP worked well without nonspecific reactions, and the analytical sensitivities of multiplex LAMP in the spiked samples were almost equivalent to those of Te-LAMP and Ta-LAMP. Therefore, the LAMP methods are considered useful tools to detect T. equigenitalis and/or T. asinigenitalis, and preventive measures will be rapidly implemented if the occurrence of CEM is confirmed by the LAMP methods. PMID:25829868

  17. Rapid and sensitive multiplex single-tube nested PCR for the identification of five human Plasmodium species.

    PubMed

    Saito, Takahiro; Kikuchi, Aoi; Kaneko, Akira; Isozumi, Rie; Teramoto, Isao; Kimura, Masatsugu; Hirasawa, Noriyasu; Hiratsuka, Masahiro

    2018-06-01

    Malaria is caused by five species of Plasmodium in humans. Microscopy is currently used for pathogen detection, requiring considerable training and technical expertise as the parasites are often difficult to differentiate morphologically. Rapid diagnostic tests are as reliable as microscopy and offer faster diagnoses but possess lower detection limits and are incapable of distinguishing among the parasitic species. To improve global health efforts towards malaria control, a rapid, sensitive, species-specific, and economically viable diagnostic method is needed. In this study, we designed a malaria diagnostic method involving a multiplex single-tube nested PCR targeting Plasmodium mitochondrial cytochrome c oxidase III and single-stranded tag hybridization chromatographic printed-array strip. The detection sensitivity was found to be at least 40 times higher than that of agarose gel electrophoresis with ethidium bromide. This system also enables the identification of both single- and mixed-species malaria infections. The assay was validated with 152 Kenyan samples; using nested PCR as the standard, the assay's sensitivity and specificity were 88.7% and 100.0%, respectively. The turnaround time required, from PCR preparation to signal detection, is 90min. Our method should improve the diagnostic speed, treatment efficacy, and control of malaria, in addition to facilitating surveillance within global malaria eradication programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Combining PCR with Microscopy to Reduce Costs of Laboratory Diagnosis of Buruli Ulcer

    PubMed Central

    Yeboah-Manu, Dorothy; Asante-Poku, Adwoa; Asan-Ampah, Kobina; Ampadu, Emelia Danso Edwin; Pluschke, Gerd

    2011-01-01

    The introduction of antibiotic therapy as first-line treatment of Buruli ulcer underlines the importance of laboratory confirmation of clinical diagnosis. Because smear microscopy has very limited sensitivity, the technically demanding and more expensive IS2404 diagnostic polymerase chain reaction (PCR) has become the main method for confirmation. By optimization of the release of mycobacteria from swab specimen and concentration of bacterial suspensions before smearing, we were able to improve the detection rate of acid-fast bacilli by microscopy after Ziehl–Neelsen staining. Compared with IS2404 PCR, which is the gold standard diagnostic method, the sensitivity and specificity of microscopy with 100 concentrated specimens were 58.4% and 95.7%, respectively. We subsequently evaluated a stepwise laboratory confirmation algorithm with detection of AFB as first-line method and IS2404 PCR performed only with those samples that were negative in microscopic analysis. This stepwise approach reduced unit cost by more than 50% to $5.41, and the total costs were reduced from $917 to $433. PMID:22049046

  19. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  20. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay

    PubMed Central

    Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility. PMID:26544710

  1. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    PubMed

    Huang, Yong; Xing, Na; Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  2. Validation of a sensitive PCR assay for the detection of Chelonid fibropapilloma-associated herpesvirus in latent turtle infections.

    PubMed

    Alfaro-Núñez, Alonzo; Gilbert, M Thomas P

    2014-09-01

    The Chelonid fibropapilloma-associated herpesvirus (CFPHV) is hypothesized to be the causative agent of fibropapillomatosis, a neoplastic disease in sea turtles, given its consistent detection by PCR in fibropapilloma tumours. CFPHV has also been detected recently by PCR in tissue samples from clinically healthy (non exhibiting fibropapilloma tumours) turtles, thus representing presumably latent infections of the pathogen. Given that template copy numbers of viruses in latent infections can be very low, extremely sensitive PCR assays are needed to optimize detection efficiency. In this study, efficiency of several PCR assays designed for CFPHV detection is explored and compared to a method published previously. The results show that adoption of a triplet set of singleplex PCR assays outperforms other methods, with an approximately 3-fold increase in detection success in comparison to the standard assay. Thus, a new assay for the detection of CFPHV DNA markers is presented, and adoption of its methodology is recommended in future CFPHV screens among sea turtles. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples

    PubMed Central

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID:23950653

  4. Applied Genomics: Data Mining Reveals Species-Specific Malaria Diagnostic Targets More Sensitive than 18S rRNA▿†‡

    PubMed Central

    Demas, Allison; Oberstaller, Jenna; DeBarry, Jeremy; Lucchi, Naomi W.; Srinivasamoorthy, Ganesh; Sumari, Deborah; Kabanywanyi, Abdunoor M.; Villegas, Leopoldo; Escalante, Ananias A.; Kachur, S. Patrick; Barnwell, John W.; Peterson, David S.; Udhayakumar, Venkatachalam; Kissinger, Jessica C.

    2011-01-01

    Accurate and rapid diagnosis of malaria infections is crucial for implementing species-appropriate treatment and saving lives. Molecular diagnostic tools are the most accurate and sensitive method of detecting Plasmodium, differentiating between Plasmodium species, and detecting subclinical infections. Despite available whole-genome sequence data for Plasmodium falciparum and P. vivax, the majority of PCR-based methods still rely on the 18S rRNA gene targets. Historically, this gene has served as the best target for diagnostic assays. However, it is limited in its ability to detect mixed infections in multiplex assay platforms without the use of nested PCR. New diagnostic targets are needed. Ideal targets will be species specific, highly sensitive, and amenable to both single-step and multiplex PCRs. We have mined the genomes of P. falciparum and P. vivax to identify species-specific, repetitive sequences that serve as new PCR targets for the detection of malaria. We show that these targets (Pvr47 and Pfr364) exist in 14 to 41 copies and are more sensitive than 18S rRNA when utilized in a single-step PCR. Parasites are routinely detected at levels of 1 to 10 parasites/μl. The reaction can be multiplexed to detect both species in a single reaction. We have examined 7 P. falciparum strains and 91 P. falciparum clinical isolates from Tanzania and 10 P. vivax strains and 96 P. vivax clinical isolates from Venezuela, and we have verified a sensitivity and specificity of ∼100% for both targets compared with a nested 18S rRNA approach. We show that bioinformatics approaches can be successfully applied to identify novel diagnostic targets and improve molecular methods for pathogen detection. These novel targets provide a powerful alternative molecular diagnostic method for the detection of P. falciparum and P. vivax in conventional or multiplex PCR platforms. PMID:21525225

  5. Comparison of Four Human Papillomavirus Genotyping Methods: Next-generation Sequencing, INNO-LiPA, Electrochemical DNA Chip, and Nested-PCR.

    PubMed

    Nilyanimit, Pornjarim; Chansaenroj, Jira; Poomipak, Witthaya; Praianantathavorn, Kesmanee; Payungporn, Sunchai; Poovorawan, Yong

    2018-03-01

    Human papillomavirus (HPV) infection causes cervical cancer, thus necessitating early detection by screening. Rapid and accurate HPV genotyping is crucial both for the assessment of patients with HPV infection and for surveillance studies. Fifty-eight cervicovaginal samples were tested for HPV genotypes using four methods in parallel: nested-PCR followed by conventional sequencing, INNO-LiPA, electrochemical DNA chip, and next-generation sequencing (NGS). Seven HPV genotypes (16, 18, 31, 33, 45, 56, and 58) were identified by all four methods. Nineteen HPV genotypes were detected by NGS, but not by nested-PCR, INNO-LiPA, or electrochemical DNA chip. Although NGS is relatively expensive and complex, it may serve as a sensitive HPV genotyping method. Because of its highly sensitive detection of multiple HPV genotypes, NGS may serve as an alternative for diagnostic HPV genotyping in certain situations. © The Korean Society for Laboratory Medicine

  6. Evaluation of Legionella pneumophila contamination in Italian hotel water systems by quantitative real-time PCR and culture methods.

    PubMed

    Bonetta, Sa; Bonetta, Si; Ferretti, E; Balocco, F; Carraro, E

    2010-05-01

    This study was designed to define the extent of water contamination by Legionella pneumophila of certain Italian hotels and to compare quantitative real-time PCR with the conventional culture method. Nineteen Italian hotels of different sizes were investigated. In each hotel three hot water samples (boiler, room showers, recycling) and one cold water sample (inlet) were collected. Physico-chemical parameters were also analysed. Legionella pneumophila was detected in 42% and 74% of the hotels investigated by the culture method and by real-time PCR, respectively. In 21% of samples analysed by the culture method, a concentration of >10(4) CFU l(-1) was found, and Leg. pneumophila serogroup 1 was isolated from 10.5% of the hotels. The presence of Leg. pneumophila was significantly influenced by water sample temperature, while no association with water hardness or residual-free chlorine was found. This study showed a high percentage of buildings colonized by Leg. pneumophila. Moreover, real-time PCR proved to be sensitive enough to detect lower levels of contamination than the culture method. This study indicates that the Italian hotels represent a possible source of risk for Legionnaires' disease and confirms the sensitivity of the molecular method. To our knowledge, this is the first report to demonstrate Legionella contamination in Italian hotels using real-time PCR and culture methods.

  7. Comparison of ELISA, nested PCR and sequencing and a novel qPCR for detection of Giardia isolates from Jordan.

    PubMed

    Hijjawi, Nawal; Yang, Rongchang; Hatmal, Ma'mon; Yassin, Yasmeen; Mharib, Taghrid; Mukbel, Rami; Mahmoud, Sameer Alhaj; Al-Shudifat, Abdel-Ellah; Ryan, Una

    2018-02-01

    Little is known about the prevalence of Giardia duodenalis in human patients in Jordan and all previous studies have used direct microscopy, which lacks sensitivity. The present study developed a novel quantitative PCR (qPCR) assay at the β-giardin (bg) locus and evaluated its use as a frontline test for the diagnosis of giardiasis in comparison with a commercially available ELISA using nested PCR and sequencing of the glutamate dehydrogenase (gdh) locus (gdh nPCR) as the gold standard. A total of 96 human faecal samples were collected from 96 patients suffering from diarrhoea from 5 regions of Jordan and were screened using the ELISA and qPCR. The analytical specificity of the bg qPCR assay revealed no cross-reactions with other genera and detected all the Giardia isolates tested. Analytical sensitivity was 1 Giardia cyst per μl of DNA extract. The overall prevalence of Giardia was 64.6%. The clinical sensitivity and specificity of the bg qPCR was 89.9% and 82.9% respectively compared to 76.5 and 68.0% for the ELISA. This study is the first to compare three different methods (ELISA, bg qPCR, nested PCR and sequencing at the gdh locus) to diagnose Jordanian patients suffering from giardiasis and to analyze their demographic data. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview.

    PubMed

    Deshmukh, Rehan A; Joshi, Kopal; Bhand, Sunil; Roy, Utpal

    2016-12-01

    Waterborne diseases have emerged as global health problems and their rapid and sensitive detection in environmental water samples is of great importance. Bacterial identification and enumeration in water samples is significant as it helps to maintain safe drinking water for public consumption. Culture-based methods are laborious, time-consuming, and yield false-positive results, whereas viable but nonculturable (VBNCs) microorganisms cannot be recovered. Hence, numerous methods have been developed for rapid detection and quantification of waterborne pathogenic bacteria in water. These rapid methods can be classified into nucleic acid-based, immunology-based, and biosensor-based detection methods. This review summarizes the principle and current state of rapid methods for the monitoring and detection of waterborne bacterial pathogens. Rapid methods outlined are polymerase chain reaction (PCR), digital droplet PCR, real-time PCR, multiplex PCR, DNA microarray, Next-generation sequencing (pyrosequencing, Illumina technology and genomics), and fluorescence in situ hybridization that are categorized as nucleic acid-based methods. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence are classified into immunology-based methods. Optical, electrochemical, and mass-based biosensors are grouped into biosensor-based methods. Overall, these methods are sensitive, specific, time-effective, and important in prevention and diagnosis of waterborne bacterial diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA)

    PubMed Central

    Schultz, Martin T.; Lance, Richard F.

    2015-01-01

    The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives. PMID:26509674

  10. Modeling the Sensitivity of Field Surveys for Detection of Environmental DNA (eDNA).

    PubMed

    Schultz, Martin T; Lance, Richard F

    2015-01-01

    The environmental DNA (eDNA) method is the practice of collecting environmental samples and analyzing them for the presence of a genetic marker specific to a target species. Little is known about the sensitivity of the eDNA method. Sensitivity is the probability that the target marker will be detected if it is present in the water body. Methods and tools are needed to assess the sensitivity of sampling protocols, design eDNA surveys, and interpret survey results. In this study, the sensitivity of the eDNA method is modeled as a function of ambient target marker concentration. The model accounts for five steps of sample collection and analysis, including: 1) collection of a filtered water sample from the source; 2) extraction of DNA from the filter and isolation in a purified elution; 3) removal of aliquots from the elution for use in the polymerase chain reaction (PCR) assay; 4) PCR; and 5) genetic sequencing. The model is applicable to any target species. For demonstration purposes, the model is parameterized for bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) assuming sampling protocols used in the Chicago Area Waterway System (CAWS). Simulation results show that eDNA surveys have a high false negative rate at low concentrations of the genetic marker. This is attributed to processing of water samples and division of the extraction elution in preparation for the PCR assay. Increases in field survey sensitivity can be achieved by increasing sample volume, sample number, and PCR replicates. Increasing sample volume yields the greatest increase in sensitivity. It is recommended that investigators estimate and communicate the sensitivity of eDNA surveys to help facilitate interpretation of eDNA survey results. In the absence of such information, it is difficult to evaluate the results of surveys in which no water samples test positive for the target marker. It is also recommended that invasive species managers articulate concentration-based sensitivity objectives for eDNA surveys. In the absence of such information, it is difficult to design appropriate sampling protocols. The model provides insights into how sampling protocols can be designed or modified to achieve these sensitivity objectives.

  11. Clinical Application of Picodroplet Digital PCR Technology for Rapid Detection of EGFR T790M in Next-Generation Sequencing Libraries and DNA from Limited Tumor Samples.

    PubMed

    Borsu, Laetitia; Intrieri, Julie; Thampi, Linta; Yu, Helena; Riely, Gregory; Nafa, Khedoudja; Chandramohan, Raghu; Ladanyi, Marc; Arcila, Maria E

    2016-11-01

    Although next-generation sequencing (NGS) is a robust technology for comprehensive assessment of EGFR-mutant lung adenocarcinomas with acquired resistance to tyrosine kinase inhibitors, it may not provide sufficiently rapid and sensitive detection of the EGFR T790M mutation, the most clinically relevant resistance biomarker. Here, we describe a digital PCR (dPCR) assay for rapid T790M detection on aliquots of NGS libraries prepared for comprehensive profiling, fully maximizing broad genomic analysis on limited samples. Tumor DNAs from patients with EGFR-mutant lung adenocarcinomas and acquired resistance to epidermal growth factor receptor inhibitors were prepared for Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets sequencing, a hybrid capture-based assay interrogating 410 cancer-related genes. Precapture library aliquots were used for rapid EGFR T790M testing by dPCR, and results were compared with NGS and locked nucleic acid-PCR Sanger sequencing (reference high sensitivity method). Seventy resistance samples showed 99% concordance with the reference high sensitivity method in accuracy studies. Input as low as 2.5 ng provided a sensitivity of 1% and improved further with increasing DNA input. dPCR on libraries required less DNA and showed better performance than direct genomic DNA. dPCR on NGS libraries is a robust and rapid approach to EGFR T790M testing, allowing most economical utilization of limited material for comprehensive assessment. The same assay can also be performed directly on any limited DNA source and cell-free DNA. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  12. Roche/BIOTECON Diagnostics LightCycler foodproof L. monocytogenes detection kit in combination with ShortPrep foodproof II Kit. Performance-Tested Method 070401.

    PubMed

    Junge, Benjamin; Berghof-Jäger, Kornelia

    2006-01-01

    A method was developed for the detection of L. monocytogenes in food based on real-time polymerase chain reaction (PCR). This advanced PCR method was designed to reduce the time needed to achieve results from PCR reactions and to enable the user to monitor the amplification of the PCR product simultaneously, in real-time. After DNA isolation using the Roche/BIOTECON Diagnostics ShortPrep foodproof II Kit (formerly called Listeria ShortPrep Kit) designed for the rapid preparation of L. monocytogenes DNA for direct use in PCR, the real-time detection of L. monocytogenes DNA is performed by using the Roche/BIOTECON Diagnostics LightCycler foodproof L. monocytogenes Detection Kit. This kit provides primers and hybridization probes for sequence-specific detection, convenient premixed reagents, and different controls for reliable interpretation of results. For repeatability studies, 20 different foods, covering the 15 food groups recommended from the AOAC Research Institute (AOAC RI) for L. monocytogenes detection were analyzed: raw meats, fresh produce/vegetables, processed meats, seafood, egg and egg products, dairy (cultured/noncultured), spices, dry foods, fruit/juices, uncooked pasta, nuts, confectionery, pet food, food dyes and colorings, and miscellaneous. From each food 20, samples were inoculated with a low level (1-10 colony-forming units (CFU)/25 g) and 20 samples with a high level (10-50 CFU/25 g) of L. monocytogenes. Additionally, 5 uninoculated samples were prepared from each food. The food samples were examined with the test kits and in correlation with the cultural methods according to U.S. Food and Drug Administration (FDA) Bacteriological Analytical Manual (BAM) or U.S. Department of Agriculture (USDA)/Food Safety and Inspection Service (FSIS) Microbiology Laboratory Guidebook. After 48 h of incubation, the PCR method in all cases showed equal or better results than the reference cultural FDA/BAM or USDA/FSIS methods. Fifteen out of 20 tested food types gave exactly the same amount of positive samples for both methods in both inoculation levels. For 5 out of 20 foodstuffs, the PCR method resulted in more positives than the reference method after 48 h of incubation. Following AOAC RI definition, these were false positives because they were not confirmed by the reference method (false-positive rate for low inoculated foodstuffs: 5.4%; for high inoculated foodstuffs: 7.1%). Without calculating these unconfirmed positives, the PCR method showed equal sensitivity results compared to the alternative method. With the unconfirmed PCR-positives included into the calculations, the alternative PCR method showed a higher sensitivity than the microbiological methods (low inoculation level: 100 vs 98.0%; sensitivity rate: 1; high inoculation level: 99.7 vs 97.7%; sensitivity rate, 1). All in-house and independently tested uninoculated food samples were negative for L. monocytogenes. The ruggedness testing of both ShortPrep foodproof II Kit and Roche/BIOTECON LightCycler foodproof L. monocytogenes Detection Kit showed no noteworthy influences to any variation of the parameters component concentration, apparatus comparison, tester comparison, and sample volumes. In total, 102 L. monocytogenes isolates (cultures and pure DNA) were tested and detected for the inclusivity study, including all isolates claimed by the AOAC RI. The exclusivity study included 60 non-L. monocytogenes bacteria. None of the tested isolates gave a false-positive result; specificity was 100%. Three different lots were tested in the lot-to-lot study. All 3 lots gave equal results. The stability study was subdivided into 3 parts: long-term study, stress test, and freeze-defrost test. Three lots were tested in 4 time intervals within a period of 13 months. They all gave comparable results for all test intervals. For the stress test, LightCycler L. monocytogenes detection mixes were stored at different temperatures and tested at different time points during 1 month. Stable results were produced at all storage temperatures. The freeze-defrost analysis showed no noteworthy aggravation of test results. The independent validation study examined by Campden and Chorleywood Food Research Association Group (CCFRA) demonstrated again that the LightCycler L. monocytogenes detection system shows a comparable sensitivity to reference methods. With both the LightCycler PCR and BAM methods, 19 out of 20 inoculated food samples were detected. The 24 h PCR results generated by the LightCycler system corresponded directly with the FDA/BAM culture results. However, the 48 h PCR results did not relate exactly to the FDA/BAM results, as one sample found to be positive by the 48 h PCR could not be culturally confirmed and another sample which was negative by the 48 h PCR was culturally positive.

  13. Enhanced Reverse Transcription-PCR Assay for Detection of Norovirus Genogroup I

    PubMed Central

    Dreier, Jens; Störmer, Melanie; Mäde, Dietrich; Burkhardt, Sabine; Kleesiek, Knut

    2006-01-01

    We have developed a one-tube reverse transcription (RT)-PCR method using the real-time TaqMan PCR system for the detection of norovirus genogroup I (NV GGI). By introduction of a novel probe based on locked nucleic acid technology, we enhanced the sensitivity of the assay compared to those of conventional TaqMan probes. The sensitivity of the NV GGI RT-PCR was determined by probit analysis with defined RNA standards and quantified norovirus isolates to 711 copies/ml (95% detection limit). In order to detect PCR inhibition, we included a heterologous internal control (IC) system based on phage MS2. This internally controlled RT-PCR was tested on different real-time PCR platforms, LightCycler, Rotorgene, Mastercycler EP realplex, and ABI Prism. Compared to the assay without an IC, the duplex RT-PCR exhibited no reduction in sensitivity in clinical samples. In combination with an established NV GGII real-time RT-PCR, we used the novel assay in a routine assay for diagnosis of clinical and food-borne norovirus infection. We applied this novel assay to analyze outbreaks of nonbacterial acute gastroenteritis. Norovirus of GGI was detected in these outbreaks. Sequence and similarity plot analysis of open reading frame 1 (ORF1) and ORF2 showed two genotypes, GGI/2 and GGI/4, in semiclosed communities. PMID:16891482

  14. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction.

    PubMed

    Peng, Cheng; Wang, Hua; Xu, Xiaoli; Wang, Xiaofu; Chen, Xiaoyun; Wei, Wei; Lai, Yongmin; Liu, Guoquan; Godwin, Ian Douglas; Li, Jieqin; Zhang, Ling; Xu, Junfeng

    2018-05-15

    Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene-edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high-throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high-throughput quantitative real-time (qPCR)-based method. The qPCR-based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild-type and a gene-edited mutant. We showed that the qPCR-based method can accurately distinguish CRISPR/Cas9-induced mutants from the wild-type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR-based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T 0 transgenic plants. In a 384-well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post-polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T 0 transgenic plants, which will be widely used in the area of plant gene editing. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  15. Diagnosing leprosy: revisiting the role of the slit-skin smear with critical analysis of the applicability of polymerase chain reaction in diagnosis.

    PubMed

    Banerjee, Surajita; Biswas, Nibir; Kanti Das, Nilay; Sil, Amrita; Ghosh, Pramit; Hasanoor Raja, Abu Hena; Dasgupta, Sarbani; Kanti Datta, Pijush; Bhattacharya, Basudev

    2011-12-01

    Diagnosing leprosy is challenging, especially in early-stage cases, and the need for a sensitive diagnostic tool is urgent. Polymerase chain reaction (PCR) holds promise as a simple and sensitive diagnostic tool, but its usefulness in the Indian context requires further evaluation. Slit-skin smear (SSS) remains the conventional method of leprosy detection. Hence, this study was undertaken to evaluate and compare the diagnostic efficacy of PCR versus that of SSS. Punch biopsy of skin and SSS were obtained from the active margins of lesions. Cases were clinically grouped according to whether they were multibacillary (MB) or paucibacillary (PB) and classified into tuberculoid (TT), borderline tuberculoid (BT), borderline lepromatous (BL), lepromatous (LL), histoid, and indeterminate groups after clinicopathological correlation. DNA was extracted from biopsy specimens, and multiplex PCR was carried out incorporating primers intended for the amplification of a specific 372-bp fragment of a repetitive sequence of Mycobacterium leprae DNA. Among 164 patients, PCR was positive in 82.3%. The sensitivity of PCR was significantly greater (P < 0.0001) than that of SSS in both the MB (85.9% vs. 59.8%) and PB (75.4% vs. 1.8%) subgroups; the difference in sensitivity in the PB subgroup is remarkable. Positivity by PCR and SSS was found in 100% of LL and histoid leprosy, but PCR had significantly greater (P < 0.0001) positivity in BT leprosy and was of definite increased value in indeterminate and TT leprosy. Polymerase chain reaction had higher sensitivity compared with SSS, especially in diagnostically challenging and PB cases. Thus, the use of this costly but sensitive tool should be restricted to this subgroup, because SSS is sufficiently sensitive in the diagnosis of LL and histoid leprosy. © 2011 The International Society of Dermatology.

  16. Development and comparison of a real-time PCR assay for detection of Dichelobacter nodosus with culturing and conventional PCR: harmonisation between three laboratories

    PubMed Central

    2012-01-01

    Background Ovine footrot is a contagious disease with worldwide occurrence in sheep. The main causative agent is the fastidious bacterium Dichelobacter nodosus. In Scandinavia, footrot was first diagnosed in Sweden in 2004 and later also in Norway and Denmark. Clinical examination of sheep feet is fundamental to diagnosis of footrot, but D. nodosus should also be detected to confirm the diagnosis. PCR-based detection using conventional PCR has been used at our institutes, but the method was laborious and there was a need for a faster, easier-to-interpret method. The aim of this study was to develop a TaqMan-based real-time PCR assay for detection of D. nodosus and to compare its performance with culturing and conventional PCR. Methods A D. nodosus-specific TaqMan based real-time PCR assay targeting the 16S rRNA gene was designed. The inclusivity and exclusivity (specificity) of the assay was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126 samples, and to a conventional PCR method by analysing 224 samples. A selection of PCR-products was cloned and sequenced in order to verify that they had been identified correctly. Results The developed assay had a detection limit of 3.9 fg of D. nodosus genomic DNA. This result was obtained at all three laboratories and corresponds to approximately three copies of the D. nodosus genome per reaction. The assay showed 100% inclusivity and 100% exclusivity for the strains tested. The real-time PCR assay found 54.8% more positive samples than by culturing and 8% more than conventional PCR. Conclusions The developed real-time PCR assay has good specificity and sensitivity for detection of D. nodosus, and the results are easy to interpret. The method is less time-consuming than either culturing or conventional PCR. PMID:22293440

  17. In Situ CaptureRT-qPCR: A new simple and sensitive method to detect human norovirus in oysters

    USDA-ARS?s Scientific Manuscript database

    Human noroviruses (HuNoVs) are the major cause for the non-bacterial acute gastroenteritis worldwide. RT-qPCR is a widely used method to detect HuNoVs. However, the method is unable to discriminate between infectious and non-infectious viruses. Previously, we reported that the receptor mediated in s...

  18. Effect of Sequence Polymorphisms on Performance of Two Real-Time PCR Assays for Detection of Herpes Simplex Virus

    PubMed Central

    Stevenson, Jeffery; Hymas, Weston; Hillyard, David

    2005-01-01

    Herpes simplex virus (HSV) is the most common cause of acquired, sporadic encephalitis in the United States. PCR identification of HSV in spinal fluid has become the diagnostic gold standard due to its sensitivity and potential for speed, replacing other methods such as culture. We developed a real-time PCR assay to detect HSV, using a new type of hybridization probe, the Eclipse probe. In this study, we ran 323 samples (171 positives and 152 negatives) with the Eclipse real-time PCR assay and compared these results with another PCR assay using gel detection. The real-time assay agreed with our reference method for 319 out of the 323 samples tested (99%). Using two different real-time PCR platforms, we discovered that SNPs within the amplicon's probe binding region that are used to distinguish HSV-1 from HSV-2 can decrease assay sensitivity. This problem is potentially a general one for assays using fluorescent probes to detect target amplification in a real-time format. While real-time PCR can be a powerful tool in the field of infectious disease, careful sequence evaluation and clinical validation are essential in creating an effective assay. PMID:15872272

  19. Salmonella detection in poultry samples. Comparison of two commercial real-time PCR systems with culture methods for the detection of Salmonella spp. in environmental and fecal samples of poultry.

    PubMed

    Sommer, D; Enderlein, D; Antakli, A; Schönenbrücher, H; Slaghuis, J; Redmann, T; Lierz, M

    2012-01-01

    The efficiency of two commercial PCR methods based on real-time technology, the foodproof® Salmonella detection system and the BAX® PCR Assay Salmonella system was compared to standardized culture methods (EN ISO 6579:2002 - Annex D) for the detection of Salmonella spp. in poultry samples. Four sample matrices (feed, dust, boot swabs, feces) obtained directly from poultry flocks, as well as artificially spiked samples of the same matrices, were used. All samples were tested for Salmonella spp. using culture methods first as the gold standard. In addition samples spiked with Salmonella Enteridis were tested to evaluate the sensitivity of both PCR methods. Furthermore all methods were evaluated in an annual ring-trial of the National Salmonella Reference Laboratory of Germany. Salmonella detection in the matrices feed, dust and boot swabs were comparable in both PCR systems whereas the results from feces differed markedly. The quality, especially the freshness, of the fecal samples had an influence on the sensitivity of the real-time PCR and the results of the culture methods. In fresh fecal samples an initial spiking level of 100cfu/25g Salmonella Enteritidis was detected. Two-days-dried fecal samples allowed the detection of 14cfu/25g. Both real- time PCR protocols appear to be suitable for the detection of Salmonella spp. in all four matrices. The foodproof® system detected eight samples more to be positive compared to the BAX® system, but had a potential false positive result in one case. In 7-days-dried samples none of the methods was able to detect Salmonella likely through letal cell damage. In general the advantage of PCR analyses over the culture method is the reduction of working time from 4-5 days to only 2 days. However, especially for the analysis of fecal samples official validation should be conducted according to the requirement of EN ISO6579:2002 - Annex D.

  20. Design and performance testing of a real-time PCR assay for sensitive and reliable direct quantification of Brettanomyces in wine.

    PubMed

    Tessonnière, H; Vidal, S; Barnavon, L; Alexandre, H; Remize, F

    2009-02-28

    Because the yeast Brettanomyces produces volatile phenols and acetic acid, it is responsible for wine spoilage. The uncontrolled accumulation of these molecules in wine leads to sensorial defects that compromise wine quality. The need for a rapid, specific, sensitive and reliable method to detect this spoilage yeast has increased over the last decade. All these requirements are met by real-time PCR. We here propose improvements of existing methods to enhance the robustness of the assay. Six different protocols to isolate DNA from a wine and three PCR mix compositions were tested, and the best method was selected. Insoluble PVPP addition during DNA extraction by a classical phenol:chloroform protocol succeeded in the relief of PCR inhibitors from wine. We developed an internal control which was efficient to avoid false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The method was evaluated by an intra-laboratory study for its specificity, linearity, repeatability and reproducibility. A standard curve was established from 14 different wines artificially inoculated. The quantification limit was 31 cfu/mL.

  1. Evaluation of formalin-fixed paraffin-embedded tissues obtained from vaccine site-associated sarcomas of cats for DNA of feline immunodeficiency virus.

    PubMed

    Kidney, B A; Ellis, J A; Haines, D M; Jackson, M L

    2000-09-01

    To evaluate the use of a polymerase chain reaction (PCR) method for detection of feline immunodeficiency virus (FIV) DNA, using formalin-fixed paraffin-embedded (FFPE) tissues, and to use this method to evaluate tissues obtained from vaccine site-associated sarcomas (VSS) of cats for FIV DNA. 50 FFPE tissue blocks from VSS of cats and 50 FFPE tissue blocks from cutaneous non-vaccine site-associated fibrosarcomas (non-VSS) of cats. DNA was extracted from FFPE sections of each tumor and regions of the gag gene of FIV were amplified by a PCR, using 3 sets of primers. Sensitivity of the method was compared between frozen and FFPE tissues, using splenic tissue obtained from a cat that had been experimentally infected with FIV. We did not detect FIV DNA in VSS or non-VSS tissues. Sensitivity of the PCR method was identical for frozen or FFPE tissues. It is possible to detect FIV DNA in FFPE tissues by use of a PCR. We did not find evidence to support direct FIV involvement in the pathogenesis of VSS in cats.

  2. Validation and clinical application of a molecular method for the identification of Cryptococcus neoformans/Cryptococcus gattii complex DNA in human clinical specimens.

    PubMed

    Rivera, Vanessa; Gaviria, Marcela; Muñoz-Cadavid, Cesar; Cano, Luz; Naranjo, Tonny

    2015-01-01

    The diagnosis of cryptococcosis is usually performed based on cultures of tissue or body fluids and isolation of the fungus, but this method may require several days. Direct microscopic examination, although rapid, is relatively insensitive. Biochemical and immunodiagnostic rapid tests are also used. However, all of these methods have limitations that may hinder final diagnosis. The increasing incidence of fungal infections has focused attention on tools for rapid and accurate diagnosis using molecular biological techniques. Currently, PCR-based methods, particularly nested, multiplex and real-time PCR, provide both high sensitivity and specificity. In the present study, we evaluated a nested PCR targeting the gene encoding the ITS-1 and ITS-2 regions of rDNA in samples from a cohort of patients diagnosed with cryptococcosis. The results showed that in our hands, this Cryptococcus nested PCR assay has 100% specificity and 100% sensitivity and was able to detect until 2 femtograms of Cryptococcus DNA. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  3. Detection of the KIT D816V mutation in peripheral blood of systemic mastocytosis: diagnostic implications.

    PubMed

    Jara-Acevedo, Maria; Teodosio, Cristina; Sanchez-Muñoz, Laura; Álvarez-Twose, Ivan; Mayado, Andrea; Caldas, Carolina; Matito, Almudena; Morgado, José M; Muñoz-González, Javier I; Escribano, Luis; Garcia-Montero, Andrés C; Orfao, Alberto

    2015-08-01

    Recent studies have found the KIT D816V mutation in peripheral blood of virtually all adult systemic mastocytosis patients once highly sensitive PCR techniques were used; thus, detection of the KIT D816V mutation in peripheral blood has been proposed to be included in the diagnostic work-up of systemic mastocytosis algorithms. However, the precise frequency of the mutation, the biological significance of peripheral blood-mutated cells and their potential association with involvement of bone marrow hematopoietic cells other than mast cells still remain to be investigated. Here, we determined the frequency of peripheral blood involvement by the KIT D816V mutation, as assessed by two highly sensitive PCR methods, and investigated its relationship with multilineage involvement of bone marrow hematopoiesis. Overall, our results confirmed the presence of the KIT D816V mutation in peripheral blood of most systemic mastocytosis cases (161/190; 85%)--with an increasing frequency from indolent systemic mastocytosis without skin lesions (29/44; 66%) to indolent systemic mastocytosis with skin involvement (124/135; 92%), and more aggressive disease subtypes (11/11; 100%)--as assessed by the allele-specific oligonucleotide-qPCR method, which was more sensitive (P<.0001) than the peptide nucleic acid-mediated PCR approach (84/190; 44%). Although the presence of the KIT mutation in peripheral blood, as assessed by the allele-specific oligonucleotide-qPCR technique, did not accurately predict for multilineage bone marrow involvement of hematopoiesis, the allele-specific oligonucleotide-qPCR allele burden and the peptide nucleic acid-mediated-PCR approach did. These results suggest that both methods provide clinically useful and complementary information through the identification and/or quantification of the KIT D816V mutation in peripheral blood of patients suspected of systemic mastocytosis.

  4. Increased sensitivity of RT-PCR for Potato virus Y detection using RNA isolated by a procedure with differential centrifugation.

    PubMed

    Zhang, Jianhua; Nie, Xianzhou; Boquel, Sébastien; Al-Daoud, Fadi; Pelletier, Yvan

    2015-12-01

    The sensitivity of reverse transcription-polymerase chain reaction (RT-PCR) for virus detection is influenced by many factors such as specificity of primers and quality of templates. These factors become extremely important for successful detection when virus concentration is low. Total RNA isolated from Potato virus Y (PVY)-infected potato plants using the sodium sulfite RNA isolation method or RNeasy plant mini kit contains a high proportion of host RNA and may also contain trace amount of phenolic and polysaccharide residues, which may inhibit RT-PCR. The goal of this study was to enhance the sensitivity of PVY detection by reducing host RNA in the extract by differential centrifugation followed by extraction using an RNeasy mini kit (DCR method). One-step RT-PCR had relatively low amplification efficiency for PVY RNA when a high proportion of plant RNA was present. SYBR Green-based real time RT-PCR showed that the RNA isolated by the DCR method had a higher cycle threshold value (Ct) for the elongation factor 1-α mRNA (Ef1α) of potato than the Ct value of the RNA extracted using the RNeasy plant mini kit, indicating that the DCR method significantly reduced the proportion of potato RNA in the extract. The detectable amount of RNA extracted using the DCR method was <0.001ng when plant sap from 10 PVY-infected and PVY-free potato leaflets in a 1.5:100 fresh weight ratio was extracted, compared with 0.01 and 0.02ng of RNA using the RNeasy plant mini kit and sodium sulfite RNA isolation methods, respectively. Copyright © 2015. Published by Elsevier B.V.

  5. Evaluation of NGS and RT-PCR Methods for ALK Rearrangement in European NSCLC Patients: Results from the European Thoracic Oncology Platform Lungscape Project.

    PubMed

    Letovanec, Igor; Finn, Stephen; Zygoura, Panagiota; Smyth, Paul; Soltermann, Alex; Bubendorf, Lukas; Speel, Ernst-Jan; Marchetti, Antonio; Nonaka, Daisuke; Monkhorst, Kim; Hager, Henrik; Martorell, Miguel; Sejda, Aleksandra; Cheney, Richard; Hernandez-Losa, Javier; Verbeken, Eric; Weder, Walter; Savic, Spasenija; Di Lorito, Alessia; Navarro, Atilio; Felip, Enriqueta; Warth, Arne; Baas, Paul; Meldgaard, Peter; Blackhall, Fiona; Dingemans, Anne-Marie; Dienemann, Hendrik; Dziadziuszko, Rafal; Vansteenkiste, Johan; O'Brien, Cathal; Geiger, Thomas; Sherlock, Jon; Schageman, Jeoffrey; Dafni, Urania; Kammler, Roswitha; Kerr, Keith; Thunnissen, Erik; Stahel, Rolf; Peters, Solange

    2018-03-01

    The reported prevalence of ALK receptor tyrosine kinase gene (ALK) rearrangement in NSCLC ranges from 2% to 7%. The primary standard diagnostic method is fluorescence in situ hybridization (FISH). Recently, immunohistochemistry (IHC) has also proved to be a reproducible and sensitive technique. Reverse-transcriptase polymerase chain reaction (RT-PCR) has also been advocated, and most recently, the advent of targeted next-generation sequencing (NGS) for ALK and other fusions has become possible. This study compares anaplastic lymphoma kinase (ALK) evaluation with all four techniques in resected NSCLC from the large European Thoracic Oncology Platform Lungscape cohort. A total of 96 cases from the European Thoracic Oncology Platform Lungscape iBiobank, with any ALK immunoreactivity were examined by FISH, central RT-PCR, and NGS. An H-score higher than 120 defines IHC positivity. RNA was extracted from the same formalin-fixed, paraffin-embedded tissues. For RT-PCR, primers covered the most frequent ALK translocations. For NGS, the Oncomine Solid Tumour Fusion Transcript Kit (Thermo Fisher Scientific, Waltham, MA) was used. The concordance was assessed using the Cohen κ coefficient (two-sided α ≤ 5%). NGS provided results for 77 of the 95 cases tested (81.1%), whereas RT-PCR provided results for 77 of 96 (80.2%). Concordance occurred in 55 cases of the 60 cases tested with all four methods (43 ALK negative and 12 ALK positive). Using ALK copositivity for IHC and FISH as the criterion standard, we derived a sensitivity for RT-PCR/NGS of 70.0%/85.0%, with a specificity of 87.1%/79.0%. When either RT-PCR or NGS was combined with IHC, the sensitivity remained the same, whereas the specificity increased to 88.7% and 83.9% respectively. NGS evaluation with the Oncomine Solid Tumour Fusion transcript kit and RT-PCR proved to have high sensitivity and specificity, advocating their use in routine practice. For maximal sensitivity and specificity, ALK status should be assessed by using two techniques and a third one in discordant cases. We therefore propose a customizable testing algorithm. These findings significantly influence existing testing paradigms and have clear clinical and economic impact. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  6. Rapid and sensitive insulated isothermal PCR for point-of-need feline leukaemia virus detection.

    PubMed

    Wilkes, Rebecca P; Anis, Eman; Dunbar, Dawn; Lee, Pei-Yu A; Tsai, Yun-Long; Lee, Fu-Chun; Chang, Hsiao-Fen G; Wang, Hwa-Tang T; Graham, Elizabeth M

    2018-04-01

    Objectives Feline leukaemia virus (FeLV), a gamma retrovirus, causes diseases of the feline haematopoietic system that are invariably fatal. Rapid and accurate testing at the point-of-need (PON) supports prevention of virus spread and management of clinical disease. This study evaluated the performance of an insulated isothermal PCR (iiPCR) that detects proviral DNA, and a reverse transcription (RT)-iiPCR that detects both viral RNA and proviral DNA, for FeLV detection at the PON. Methods Mycoplasma haemofelis, feline coronavirus, feline herpesvirus, feline calicivirus and feline immunodeficiency virus were used to test analytical specificity. In vitro transcribed RNA, artificial plasmid, FeLV strain American Type Culture Collection VR-719 and a clinical FeLV isolate were used in the analytical sensitivity assays. A retrospective study including 116 clinical plasma and serum samples that had been tested with virus isolation, real-time PCR and ELISA, and a prospective study including 150 clinical plasma and serum samples were implemented to evaluate the clinical performances of the iiPCR-based methods for FeLV detection. Results Ninety-five percent assay limit of detection was calculated to be 16 RNA and five DNA copies for the RT-iiPCR, and six DNA copies for the iiPCR. Both reactions had analytical sensitivity comparable to a reference real-time PCR (qPCR) and did not detect five non-target feline pathogens. The clinical performance of the RT-iiPCR and iiPCR had 98.82% agreement (kappa[κ] = 0.97) and 100% agreement (κ = 1.0), respectively, with the qPCR (n = 85). The agreement between an automatic nucleic extraction/RT-iiPCR system and virus isolation to detect FeLV in plasma or serum was 95.69% (κ = 0.95) and 98.67% (κ = 0.85) in a retrospective (n = 116) and a prospective (n = 150) study, respectively. Conclusions and relevance These results suggested that both RT-iiPCR and iiPCR assays can serve as reliable tools for PON FeLV detection.

  7. Efficacy of the detection of Legionella in hot and cold water samples by culture and PCR. I. Standardization of methods.

    PubMed

    Wójcik-Fatla, Angelina; Stojek, Nimfa Maria; Dutkiewicz, Jacek

    2012-01-01

    The aim of the present study was: - to compare methods for concentration and isolation of Legionella DNA from water; - to examine the efficacy of various modifications of PCR test (PCR, semi-nested PCR, and real-time PCR) for the detection of known numbers of Legionella pneumophila in water samples artificially contaminated with the strain of this bacterium and in randomly selected samples of environmental water, in parallel with examination by culture. It was found that filtration is much more effective than centrifugation for the concentration of DNA in water samples, and that the Qiamp DNA Mini-Kit is the most efficient for isolation of Legionella DNA from water. The semi-nested PCR and real-time PCR proved to be the most sensitive methods for detection of Legionella DNA in water samples. Both PCR modifications showed a high correlation with recovery of Legionella by culture (p<0.01), while no correlation occurred between the results of one-stage PCR and culture (p>0.1).

  8. Analysis of a quantitative PCR assay for CMV infection in liver transplant recipients: an intent to find the optimal cut-off value.

    PubMed

    Martín-Dávila, P; Fortún, J; Gutiérrez, C; Martí-Belda, P; Candelas, A; Honrubia, A; Barcena, R; Martínez, A; Puente, A; de Vicente, E; Moreno, S

    2005-06-01

    Preemptive therapy required highly predictive tests for CMV disease. CMV antigenemia assay (pp65 Ag) has been commonly used for rapid diagnosis of CMV infection. Amplification methods for early detection of CMV DNA are under analysis. To compare two diagnostic methods for CMV infection and disease in this population: quantitative PCR (qPCR) performed in two different samples, plasma and leukocytes (PMNs) and using a commercial diagnostic test (COBAS Amplicor Monitor Test) versus pp65 Ag. Prospective study conducted in liver transplant recipients from February 2000 to February 2001. Analyses were performed on 164 samples collected weekly during early post-transplant period from 33 patients. Agreements higher than 78% were observed between the three assays. Optimal qPCR cut-off values were calculated using ROC curves for two specific antigenemia values. For antigenemia >or=10 positive cells, the optimal cut-off value for qPCR in plasma was 1330 copies/ml, with a sensitivity (S) of 58% and a specificity (E) of 98% and the optimal cut-off value for qPCR-cells was 713 copies/5x10(6) cells (S:91.7% and E:86%). Using a threshold of antigenemia >or=20 positive cells, the optimal cut-off values were 1330 copies/ml for qPCR-plasma (S 87%; E 98%) and 4755 copies/5x10(6) cells for qPCR-cells (S 87.5%; E 98%). Prediction values for the three assays were calculated in patients with CMV disease (9 pts; 27%). Considering the assays in a qualitative way, the most sensitive was CMV PCR in cells (S: 100%, E: 54%, PPV: 40%; NPV: 100%). Using specific cut-off values for disease detection the sensitivity, specificity, PPV and NPV for antigenemia >or=10 positive cells were: 89%; 83%; 67%; 95%, respectively. For qPCR-cells >or=713 copies/5x10(6) cells: 100%; 54%; 33% and 100% and for plasma-qPCR>or=1330 copies/ml: 78%, 77%, 47%, 89% respectively. Optimal cut-off for viral load performed in plasma and cells can be obtained for the breakpoint antigenemia value recommended for initiating preemptive therapy with high specificities and sensitivities. Diagnostic assays like CMV pp65 Ag and quantitative PCR for CMV have similar efficiency and could be recommended as methods of choice for diagnosis and monitoring of active CMV infection after transplantation.

  9. Comparison between conventional and molecular methods for diagnosis of bovine babesiosis (Babesia bovis infection) in tick infested cattle in upper Egypt.

    PubMed

    Al-Hosary, Amira A T

    2017-03-01

    Ticks and tick-borne diseases are the main problems affecting the livestock production in Egypt. Bovine babesiosis has adverse effects on the animal health and production. A comparison of Giemsa stained blood smears, polymerase chain reaction (PCR) and nested PCR (nPCR) assays for detection of Babesia bovis infection in Egyptian Baladi cattle ( Bos taurus ) in reference to reverse line blot was carried out. The sensitivity of PCR and nested PCR (nPCR) assays were 65 and 100 % respectively. Giemsa stained blood smears showed the lowest sensitivity (30 %). According to these results using of PCR and nPCR target for B. bovis , [BBOV-IV005650 (BV5650)] gene are suitable for diagnosis of B. bovis infection. The 18Ss rRNA partial sequence confirmed that all the positive samples were Babesia bovis and all of them were deposited in the GenBank databases (Accession No: KM455548, KM455549 and KM455550).

  10. Enrichment of methylated molecules using enhanced-ice-co-amplification at lower denaturation temperature-PCR (E-ice-COLD-PCR) for the sensitive detection of disease-related hypermethylation.

    PubMed

    Mauger, Florence; Kernaleguen, Magali; Lallemand, Céline; Kristensen, Vessela N; Deleuze, Jean-François; Tost, Jörg

    2018-05-01

    The detection of specific DNA methylation patterns bears great promise as biomarker for personalized management of cancer patients. Co-amplification at lower denaturation temperature-PCR (COLD-PCR) assays are sensitive methods, but have previously only been able to analyze loss of DNA methylation. Enhanced (E)-ice-COLD-PCR reactions starting from 2 ng of bisulfite-converted DNA were developed to analyze methylation patterns in two promoters with locked nucleic acid (LNA) probes blocking amplification of unmethylated CpGs. The enrichment of methylated molecules was compared to quantitative (q)PCR and quantified using serial dilutions. E-ice-COLD-PCR allowed the multiplexed enrichment and quantification of methylated DNA. Assays were validated in primary breast cancer specimens and circulating cell-free DNA from cancer patients. E-ice-COLD-PCR could prove a useful tool in the context of DNA methylation analysis for personalized medicine.

  11. Comparison of diagnostic methods to detect Histoplasma capsulatum in serum and blood samples from AIDS patients

    PubMed Central

    da Silva, Marcos Vinicius; Criado, Paulo Ricardo; Luiz, Olinda do Carmo; Vicentini, Adriana Pardini

    2018-01-01

    Background Although early and rapid detection of histoplasmosis is essential to prevent morbidity and mortality, few diagnostic tools are available in resource-limited areas, especially where it is endemic and HIV/AIDS is also epidemic. Thus, we compared conventional and molecular methods to detect Histoplasma capsulatum in sera and blood from HIV/AIDS patients. Methodology We collected a total of 40 samples from control volunteers and patients suspected of histoplasmosis, some of whom were also infected with other pathogens. Samples were then analyzed by mycological, serological, and molecular methods, and stratified as histoplasmostic with (group I) or without AIDS (group II), uninfected (group III), and infected with HIV and other pathogens only (group IV). All patients were receiving treatment for histoplasmosis and other infections at the time of sample collection. Results Comparison of conventional methods with nested PCR using primers against H. capsulatum 18S rRNA (HC18S), 5.8S rRNA ITS (HC5.8S-ITS), and a 100 kDa protein (HC100) revealed that sensitivity against sera was highest for PCR with HC5.8S-ITS, followed by immunoblotting, double immunodiffusion, PCR with HC18S, and PCR with HC100. Specificity was equally high for double immunodiffusion, immunoblotting and PCR with HC100, followed for PCR with HC18S and HC5.8-ITS. Against blood, sensitivity was highest for PCR with HC5.8S-ITS, followed by PCR with HC18S, Giemsa staining, and PCR with HC100. Specificity was highest for Giemsa staining and PCR with HC100, followed by PCR with HC18S and HC5.8S-ITS. PCR was less efficient in patients with immunodeficiency due to HIV/AIDS and/or related diseases. Conclusion Molecular techniques may detect histoplasmosis even in cases with negative serology and mycology, potentially enabling early diagnosis. PMID:29342162

  12. Real-Time PCR with an Internal Control for Detection of All Known Human Adenovirus Serotypes▿

    PubMed Central

    Damen, Marjolein; Minnaar, René; Glasius, Patricia; van der Ham, Alwin; Koen, Gerrit; Wertheim, Pauline; Beld, Marcel

    2008-01-01

    The “gold standard” for the diagnosis of adenovirus (AV) infection is virus culture, which is rather time-consuming. Especially for immunocompromised patients, in whom severe infections with AV have been described, rapid diagnosis is important. Therefore, an internally controlled AV real-time PCR assay detecting all known human AV serotypes was developed. Primers were chosen from the hexon region, which is the most conserved region, and in order to cover all known serotypes, degenerate primers were used. The internal control (IC) DNA contained the same primer binding sites as the AV DNA control but had a shuffled probe region compared to the conserved 24-nucleotide consensus AV hexon probe region (the target). The IC DNA was added to the clinical sample in order to monitor extraction and PCR efficiency. The sensitivity and the linearity of the AV PCR were determined. For testing the specificity of this PCR assay for human AVs, a selection of 51 AV prototype strains and 66 patient samples positive for other DNA viruses were tested. Moreover, a comparison of the AV PCR method described herein with culture and antigen (Ag) detection was performed with a selection of 151 clinical samples. All 51 AV serotypes were detected in the selection of AV prototype strains. Concordant results from culture or Ag detection and PCR were found for 139 (92.1%) of 151 samples. In 12 cases (7.9%), PCR was positive while the culture was negative. In conclusion, a sensitive, internally controlled nonnested AV real-time PCR assay which is able to detect all known AV serotypes with higher sensitivity than a culture or Ag detection method was developed. PMID:18923006

  13. Precise Quantitation of MicroRNA in a Single Cell with Droplet Digital PCR Based on Ligation Reaction.

    PubMed

    Tian, Hui; Sun, Yuanyuan; Liu, Chenghui; Duan, Xinrui; Tang, Wei; Li, Zhengping

    2016-12-06

    MicroRNA (miRNA) analysis in a single cell is extremely important because it allows deep understanding of the exact correlation between the miRNAs and cell functions. Herein, we wish to report a highly sensitive and precisely quantitative assay for miRNA detection based on ligation-based droplet digital polymerase chain reaction (ddPCR), which permits the quantitation of miRNA in a single cell. In this ligation-based ddPCR assay, two target-specific oligonucleotide probes can be simply designed to be complementary to the half-sequence of the target miRNA, respectively, which avoids the sophisticated design of reverse transcription and provides high specificity to discriminate a single-base difference among miRNAs with simple operations. After the miRNA-templated ligation, the ddPCR partitions individual ligated products into a water-in-oil droplet and digitally counts the fluorescence-positive and negative droplets after PCR amplification for quantification of the target molecules, which possesses the power of precise quantitation and robustness to variation in PCR efficiency. By integrating the advantages of the precise quantification of ddPCR and the simplicity of the ligation-based PCR, the proposed method can sensitively measure let-7a miRNA with a detection limit of 20 aM (12 copies per microliter), and even a single-base difference can be discriminated in let-7 family members. More importantly, due to its high selectivity and sensitivity, the proposed method can achieve precise quantitation of miRNAs in single-cell lysate. Therefore, the ligation-based ddPCR assay may serve as a useful tool to exactly reveal the miRNAs' actions in a single cell, which is of great importance for the study of miRNAs' biofunction as well as for the related biomedical studies.

  14. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis.

    PubMed

    Clais, S; Boulet, G; Van Kerckhoven, M; Lanckacker, E; Delputte, P; Maes, L; Cos, P

    2015-01-01

    The viable plate count (VPC) is considered as the reference method for bacterial enumeration in periodontal microbiology but shows some important limitations for anaerobic bacteria. As anaerobes such as Porphyromonas gingivalis are difficult to culture, VPC becomes time-consuming and less sensitive. Hence, efficient normalization of experimental data to bacterial cell count requires alternative rapid and reliable quantification methods. This study compared the performance of VPC with that of turbidity measurement and real-time PCR (qPCR) in an experimental context using highly concentrated bacterial suspensions. Our TaqMan-based qPCR assay for P. gingivalis 16S rRNA proved to be sensitive and specific. Turbidity measurements offer a fast method to assess P. gingivalis growth, but suffer from high variability and a limited dynamic range. VPC was very time-consuming and less repeatable than qPCR. Our study concludes that qPCR provides the most rapid and precise approach for P. gingivalis quantification. Although our data were gathered in a specific research context, we believe that our conclusions on the inferior performance of VPC and turbidity measurements in comparison to qPCR can be extended to other research and clinical settings and even to other difficult-to-culture micro-organisms. Various clinical and research settings require fast and reliable quantification of bacterial suspensions. The viable plate count method (VPC) is generally seen as 'the gold standard' for bacterial enumeration. However, VPC-based quantification of anaerobes such as Porphyromonas gingivalis is time-consuming due to their stringent growth requirements and shows poor repeatability. Comparison of VPC, turbidity measurement and TaqMan-based qPCR demonstrated that qPCR possesses important advantages regarding speed, accuracy and repeatability. © 2014 The Society for Applied Microbiology.

  15. Evaluation of RIDA®GENE norovirus GI/GII real time RT-PCR using stool specimens collected from children and adults with acute gastroenteritis.

    PubMed

    Kanwar, N; Hassan, F; Barclay, L; Langley, C; Vinjé, J; Bryant, P W; George, K St; Mosher, L; Matthews-Greer, J M; Rocha, M A; Beenhouwer, D O; Harrison, C J; Moffatt, M; Shastri, N; Selvarangan, R

    2018-04-10

    Norovirus is the leading cause of epidemic and sporadic acute gastroenteritis (AGE) in the United States. Widespread prevalence necessitates implementation of accurate norovirus detection assays in clinical diagnostic laboratories. To evaluate RIDA ® GENE norovirus GI/GII real-time RT-PCR assay (RGN RT-PCR) using stool samples from patients with sporadic AGE. Patients between 14 days to 101 years of age with symptoms of AGE were enrolled prospectively at four sites across the United States during 2014-2015. Stool specimens were screened for the presence of norovirus RNA by the RGN RT-PCR assay. Results were compared with a reference method that included conventional RT-PCR and sequencing of a partial region of the 5'end of the norovirus ORF2 gene. A total of 259 (36.0%) of 719 specimens tested positive for norovirus by the reference method. The RGN RT-PCR assay detected norovirus in 244 (94%) of these 259 norovirus positive specimens. The sensitivity and specificity (95% confidence interval) of the RGN RT-PCR assay for detecting norovirus genogroup (G) I was 82.8% (63.5-93.5) and 99.1% (98.0-99.6) and for GII was 94.8% (90.8-97.2) and 98.6% (96.9-99.4), respectively. Seven specimens tested positive by the RGN-RT PCR that were negative by the reference method. The fifteen false negative samples were typed as GII.4 Sydney, GII.13, GI.3, GI.5, GI.2, GII.1, and GII.3 in the reference method. The RGN RT-PCR assay had a high sensitivity and specificity for the detection of norovirus in stool specimens from patients with sporadic AGE. Copyright © 2018. Published by Elsevier B.V.

  16. Evaluation of the IS6110 PCR assay for the rapid diagnosis of tuberculous meningitis

    PubMed Central

    Deshpande, Poonam S; Kashyap, Rajpal S; Ramteke, Sonali S; Nagdev, Khushboo J; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F

    2007-01-01

    Background Tuberculous meningitis (TBM) is one of the common clinical manifestations of extra-pulmonary tuberculosis. It is difficult to diagnose due to a lack of rapid, sensitive, and specific tests. Newer methods, which are easy and reliable, are required to diagnose TBM at an early stage. Thus our aim was to evaluate the polymerase chain reaction (PCR) technique, using primers directed against the IS6110 gene, for the detection of Mycobacterium tuberculosis in the CSF, for the diagnosis of TBM patients. Methods An in-house IS6110 PCR method using a specific pair of primers designed to amplify the insertion sequence, IS6110, in the M. tuberculosis genome was used to analyze CSF. A total of 80 CSF samples from different groups of patients were studied (confirmed TBM n = 35, clinically suspected TBM n = 16, non-TBM infectious meningitis n = 12, non infectious neurological diseases n = 17). Results PCR gave a sensitivity of 91.4% and specificity of 75.9% for the diagnosis of TBM in patients with TBM confirmed by culture. In 16 clinically diagnosed, but unconfirmed, TBM cases PCR was positive in 10 (62.5%) cases. There were seven (24.1%) PCR-positive cases among the 29 patients with non-TBM and non-infectious neurological disease. Conclusion We conclude that the performance of an in-house IS6110 PCR assay is valuable in the rapid diagnosis of tuberculous meningitis. PMID:17976247

  17. Development of a rapid diagnostic method for identification of Staphylococcus aureus and antimicrobial resistance in positive blood culture bottles using a PCR-DNA-chromatography method.

    PubMed

    Ohshiro, Takeya; Miyagi, Chihiro; Tamaki, Yoshikazu; Mizuno, Takuya; Ezaki, Takayuki

    2016-06-01

    Blood culturing and the rapid reporting of results are essential for infectious disease clinics to obtain bacterial information that can affect patient prognosis. When gram-positive coccoid cells are observed in blood culture bottles, it is important to determine whether the strain is Staphylococcus aureus and whether the strain has resistance genes, such as mecA and blaZ, for proper antibiotic selection. Previous work led to the development of a PCR method that is useful for rapid identification of bacterial species and antimicrobial susceptibility. However, that method has not yet been adopted in community hospitals due to the high cost and methodological complexity. We report here the development of a quick PCR and DNA-chromatography test, based on single-tag hybridization chromatography, that permits detection of S. aureus and the mecA and blaZ genes; results can be obtained within 1 h for positive blood culture bottles. We evaluated this method using 42 clinical isolates. Detection of S. aureus and the resistance genes by the PCR-DNA-chromatography method was compared with that obtained via the conventional identification method and actual antimicrobial susceptibility testing. Our method had a sensitivity of 97.0% and a specificity of 100% for the identification of the bacterial species. For the detection of the mecA gene of S. aureus, the sensitivity was 100% and the specificity was 95.2%. For the detection of the blaZ gene of S. aureus, the sensitivity was 100% and the specificity was 88.9%. The speed and simplicity of this PCR-DNA-chromatography method suggest that our method will facilitate rapid diagnoses. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods

    PubMed Central

    Bass, Chris; Nikou, Dimitra; Donnelly, Martin J; Williamson, Martin S; Ranson, Hilary; Ball, Amanda; Vontas, John; Field, Linda M

    2007-01-01

    Background Knockdown resistance (kdr) is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques. Methods Fluorescence-based assays based on 1) TaqMan probes and 2) high resolution melt (HRM) analysis were developed to detect kdr alleles in An. gambiae. Four previously reported techniques for kdr detection, Allele Specific Polymerase Chain Reaction (AS-PCR), Heated Oligonucleotide Ligation Assay (HOLA), Sequence Specific Oligonucleotide Probe – Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA) and PCR-Dot Blot were also optimized. The sensitivity and specificity of all six assays was then compared in a blind genotyping trial of 96 single insect samples that included a variety of kdr genotypes and African Anopheline species. The relative merits of each assay was assessed based on the performance in the genotyping trial, the length/difficulty of each protocol, cost (both capital outlay and consumable cost), and safety (requirement for hazardous chemicals). Results The real-time TaqMan assay was both the most sensitive (with the lowest number of failed reactions) and the most specific (with the lowest number of incorrect scores). Adapting the TaqMan assay to use a PCR machine and endpoint measurement with a fluorimeter showed a slight reduction in sensitivity and specificity. HRM initially gave promising results but was more sensitive to both DNA quality and quantity and consequently showed a higher rate of failure and incorrect scores. The sensitivity and specificity of AS-PCR, SSOP-ELISA, PCR Dot Blot and HOLA was fairly similar with a small number of failures and incorrect scores. Conclusion The results of blind genotyping trials of each assay indicate that where maximum sensitivity and specificity are required the TaqMan real-time assay is the preferred method. However, the cost of this assay, particularly in terms of initial capital outlay, is higher than that of some of the other methods. TaqMan assays using a PCR machine and fluorimeter are nearly as sensitive as real-time assays and provide a cost saving in capital expenditure. If price is a primary factor in assay choice then the AS-PCR, SSOP-ELISA, and HOLA are all reasonable alternatives with the SSOP-ELISA approach having the highest throughput. PMID:17697325

  19. Direct urine polymerase chain reaction for chlamydia and gonorrhoea: a simple means of bringing high-throughput rapid testing to remote settings?

    PubMed

    Rahimi, Frashta; Goire, Namraj; Guy, Rebecca; Kaldor, John M; Ward, James; Nissen, Michael D; Sloots, Theo P; Whiley, David M

    2013-08-01

    Background Rapid point-of-care tests (POCTs) for chlamydia (Chlamydia trachomatis) and gonorrhoea (Neisseria gonorrhoeae) have the potential to confer health benefits in certain populations even at moderate sensitivities; however, suitable POCTs for these organisms are currently lacking. In this study, we investigated the use of direct urine polymerase chain reaction (PCR), with the view of implementing a simplified PCR strategy for high-throughput chlamydia and gonorrhoea screening in remote settings. Briefly, a simple dilution of the urine was performed before adding it directly to a real-time PCR reaction. The method was evaluated using 134 stored urine specimens that had been submitted for chlamydia and gonorrhoea testing and had been tested using a commercial C. trachomatis and N. gonorrhoeae PCR method. These included samples that were PCR-positive for chlamydia (n=87), gonorrhoea (n=16) or both (n=2). Direct urine testing was conducted using previously described in-house real-time PCR methods for C. trachomatis and N. gonorrhoeae as well as for recognised N.gonorrhoeae antimicrobial resistance mechanisms. The overall sensitivities and specificities of the direct urine PCR were 78% and 100% for chlamydia, and 83% and 100% for gonorrhoea. N.gonorrhoeae penicillin and quinolone resistance mechanisms were characterised in 14 of the 18 N. gonorrhoeae-positive samples. The results of this study show that the simplified PCR strategy may be a feasible approach for rapid screening and improving chlamydia and gonorrhoea treatment in remote settings.

  20. Rapid, cost-effective, sensitive and quantitative detection of Acinetobacter baumannii from pneumonia patients

    PubMed Central

    Nomanpour, B; Ghodousi, A; Babaei, A; Abtahi, HR; Tabrizi, M; Feizabadi, MM

    2011-01-01

    Background and Objectives Pneumonia with Acinetobacter baumannii has a major therapeutic problem in health care settings. Decision to initiate correct antibiotic therapy requires rapid identification and quantification of organism. The aim of this study was to develop a rapid and sensitive method for direct detection of A. baumannii from respiratory specimens. Materials and Methods A Taqman real time PCR based on the sequence of bla oxa-51 was designed and used for direct detection of A. baumannii from 361 respiratory specimens of patients with pneumonia. All specimens were checked by conventional bacteriology in parallel. Results The new real time PCR could detect less than 200 cfu per ml of bacteria in specimens. There was agreement between the results of real time PCR and culture (Kappa value 1.0, p value<0.001). The sensitivity, specificity and predictive values of real time PCR were 100%. The prevalence of A. baumannii in pneumonia patients was 10.53 % (n=38). Poly-microbial infections were detected in 65.71% of specimens. Conclusion Acinetobacter baumannii is the third causative agent in nosocomial pneumonia after Pseudomonas aeroginosa (16%) and Staphylococcus aureus (13%) at Tehran hospitals. We recommend that 104 CFU be the threshold for definition of infection with A. baumannii using real time PCR. PMID:22530083

  1. Recombinase Polymerase Amplification Compared to Real-Time Polymerase Chain Reaction Test for the Detection of Fasciola hepatica in Human Stool

    PubMed Central

    Cabada, Miguel M.; Malaga, Jose L.; Castellanos-Gonzalez, Alejandro; Bagwell, Kelli A.; Naeger, Patrick A.; Rogers, Hayley K.; Maharsi, Safa; Mbaka, Maryann; White, A. Clinton

    2017-01-01

    Fasciola hepatica is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect Fasciola infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the Fasciola RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The Fasciola RPA lateral flow has the potential for deployment to endemic areas after further characterization. PMID:27821691

  2. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis

    PubMed Central

    2010-01-01

    Background Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR) for detection of S. pneumoniae (9802 gene fragment), H. influenzae (omp P6 gene) and N. meningitidis (ctrA gene). The method was evaluated on bronchoalveolar lavage (BAL) samples from 156 adults with lower respiratory tract infection (LRTI) and 31 controls, and on 87 cerebrospinal fluid (CSF) samples from meningitis patients. Results The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis) in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 105 genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively. In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both bacteria. Conclusions The PCR provides increased sensitivity and the multiplex format facilitates diagnosis of S. pneumoniae, H. influenzae and N. meningitidis and the assay enable detection after antibiotic treatment has been installed. Quantification increases the specificity of the etiology for pneumonia. PMID:21129171

  3. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis.

    PubMed

    Abdeldaim, Guma M K; Strålin, Kristoffer; Korsgaard, Jens; Blomberg, Jonas; Welinder-Olsson, Christina; Herrmann, Björn

    2010-12-03

    Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR) for detection of S. pneumoniae (9802 gene fragment), H. influenzae (omp P6 gene) and N. meningitidis (ctrA gene). The method was evaluated on bronchoalveolar lavage (BAL) samples from 156 adults with lower respiratory tract infection (LRTI) and 31 controls, and on 87 cerebrospinal fluid (CSF) samples from meningitis patients. The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis) in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 10⁵ genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively.In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both bacteria. The PCR provides increased sensitivity and the multiplex format facilitates diagnosis of S. pneumoniae, H. influenzae and N. meningitidis and the assay enable detection after antibiotic treatment has been installed. Quantification increases the specificity of the etiology for pneumonia.

  4. Evaluation of detection methods for screening meat and poultry products for the presence of foodborne pathogens.

    PubMed

    Bohaychuk, Valerie M; Gensler, Gary E; King, Robin K; Wu, John T; McMullen, Lynn M

    2005-12-01

    Rapid and molecular technologies such as enzyme-linked immunosorbent assay (ELISA), PCR, and lateral flow immunoprecipitation can reduce the time and labor involved in screening food products for the presence of pathogens. These technologies were compared with conventional culture methodology for the detection of Salmonella, Campylobacter, Listeria, and Escherichia coli O157:H7 inoculated in raw and processed meat and poultry products. Recommended protocols were modified so that the same enrichment broths used in the culture methods were also used in the ELISA, PCR, and lateral flow immunoprecipitation assays. The percent agreement between the rapid technologies and culture methods ranged from 80 to 100% depending on the pathogen detected and the method used. ELISA, PCR, and lateral flow immunoprecipitation all performed well, with no statistical difference, compared with the culture method for the detection of E. coli O157:H7. ELISA performed better for the detection of Salmonella, with sensitivity and specificity rates of 100%. PCR performed better for the detection of Campylobacter jejuni, with 100% agreement to the culture method. PCR was highly sensitive for the detection of all the foodborne pathogens tested except Listeria monocytogenes. Although the lateral flow immunoprecipitation tests were statistically different from the culture methods for Salmonella and Listeria because of false-positive results, the tests did not produce any false negatives, indicating that this method would be suitable for screening meat and poultry products for these pathogens.

  5. Comparison of ELISA and dual stage real time RT-PCR to differentiate Sabin like and non-Sabin like poliovirus isolates.

    PubMed

    Kaundal, Nirmal; Sarkate, Purva; Prakash, Charu; Rishi, Narayan

    2017-06-01

    Environmental surveillance of polioviruses has been used as an important tool in monitoring circulation of wild polioviruses and/or Vaccine derived polioviruses in sewage samples. It is important to distinguish Sabin like isolates from non-Sabin like; ELISA & dual stage real time RT-PCR have been used for the same. Current study was carried out on sewage isolates to compare ELISA & RT-PCR with sequencing to distinguish Sabin like from non-Sabin like. Out of 468 sewage specimens, 91 (19.44%) were non-polio enteroviruses positive and 377 (80.56%) were polio positive by virus isolation method. A total of 488 polio virus isolates were detected by L20B and RD route which were further subjected to ELISA and RT-PCR. The results were compared with sequencing. On comparison, the specificity of ELISA was only 66.67% in spite of very low sensitivity (3.43%). The sensitivity of RT-PCR was 97.71% which makes it a good primary screening test for detection of non-Sabin like viruses. However, the specificity was only 33.33%. RT-PCR appears to be a sensitive tool for detecting non-Sabin like viruses however; the isolates which are non-Sabin like by RT-PCR may not necessarily be mutated viruses. ELISA cannot be used for differentiation of Sabin likes from non-Sabin likes due to low sensitivity.

  6. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR.

    PubMed

    Wu, Zhenhua; Bai, Yanan; Cheng, Zule; Liu, Fangming; Wang, Ping; Yang, Dawei; Li, Gang; Jin, Qinghui; Mao, Hongju; Zhao, Jianlong

    2017-10-15

    Hypermethylation of CpG islands in the promoter region of many tumor suppressor genes downregulates their expression and in a result promotes tumorigenesis. Therefore, detection of DNA methylation status is a convenient diagnostic tool for cancer detection. Here, we reported a novel method for the integrative detection of methylation by the microfluidic chip-based digital PCR. This method relies on methylation-sensitive restriction enzyme HpaII, which cleaves the unmethylated DNA strands while keeping the methylated ones intact. After HpaII treatment, the DNA methylation level is determined quantitatively by the microfluidic chip-based digital PCR with the lower limit of detection equal to 0.52%. To validate the applicability of this method, promoter methylation of two tumor suppressor genes (PCDHGB6 and HOXA9) was tested in 10 samples of early stage lung adenocarcinoma and their adjacent non-tumorous tissues. The consistency was observed in the analysis of these samples using our method and a conventional bisulfite pyrosequencing. Combining high sensitivity and low cost, the microfluidic chip-based digital PCR method might provide a promising alternative for the detection of DNA methylation and early diagnosis of epigenetics-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. High-sensitivity assay for monitoring ESR1 mutations in circulating cell-free DNA of breast cancer patients receiving endocrine therapy.

    PubMed

    Lupini, Laura; Moretti, Anna; Bassi, Cristian; Schirone, Alessio; Pedriali, Massimo; Querzoli, Patrizia; Roncarati, Roberta; Frassoldati, Antonio; Negrini, Massimo

    2018-03-12

    Approximately 70% of breast cancers (BCs) express estrogen receptor alpha (ERα) and are treated with endocrine therapy. However, the effectiveness of this therapy is limited by innate or acquired resistance in approximately one-third of patients. Activating mutations in the ESR1 gene that encodes ERα promote critical resistance mechanisms. Here, we developed a high sensitivity approach based on enhanced-ice-COLD-PCR for detecting ESR1 mutations. The method produced an enrichment up to 100-fold and allowed the unambiguous detection of ESR1 mutations even when they consisted of only 0.01% of the total ESR1 allelic fraction. After COLD-PCR enrichment, methods based on next-generation sequencing or droplet-digital PCR were employed to detect and quantify ESR1 mutations. We applied the method to detect ESR1 mutations in circulating free DNA from the plasma of 56 patients with metastatic ER-positive BC. Fifteen of these patients were found to have ESR1 mutations at codons 536-538. This study demonstrates the utility of the enhanced-ice-COLD-PCR approach for simplifying and improving the detection of ESR1 tumor mutations in liquid biopsies. Because of its high sensitivity, the approach may potentially be applicable to patients with non-metastatic disease.

  8. Validation of a high-throughput real-time polymerase chain reaction assay for the detection of capripoxviral DNA.

    PubMed

    Stubbs, Samuel; Oura, Chris A L; Henstock, Mark; Bowden, Timothy R; King, Donald P; Tuppurainen, Eeva S M

    2012-02-01

    Capripoxviruses, which are endemic in much of Africa and Asia, are the aetiological agents of economically devastating poxviral diseases in cattle, sheep and goats. The aim of this study was to validate a high-throughput real-time PCR assay for routine diagnostic use in a capripoxvirus reference laboratory. The performance of two previously published real-time PCR methods were compared using commercially available reagents including the amplification kits recommended in the original publication. Furthermore, both manual and robotic extraction methods used to prepare template nucleic acid were evaluated using samples collected from experimentally infected animals. The optimised assay had an analytical sensitivity of at least 63 target DNA copies per reaction, displayed a greater diagnostic sensitivity compared to conventional gel-based PCR, detected capripoxviruses isolated from outbreaks around the world and did not amplify DNA from related viruses in the genera Orthopoxvirus or Parapoxvirus. The high-throughput robotic DNA extraction procedure did not adversely affect the sensitivity of the assay compared to manual preparation of PCR templates. This laboratory-based assay provides a rapid and robust method to detect capripoxviruses following suspicion of disease in endemic or disease-free countries. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  9. A Simple PCR Method for Rapid Genotype Analysis of Mycobacterium ulcerans

    PubMed Central

    Stinear, Timothy; Davies, John K.; Jenkin, Grant A.; Portaels, Françoise; Ross, Bruce C.; OppEdIsano, Frances; Purcell, Maria; Hayman, John A.; Johnson, Paul D. R.

    2000-01-01

    Two high-copy-number insertion sequences, IS2404 and IS2606, were recently identified in Mycobacterium ulcerans and were shown by Southern hybridization to possess restriction fragment length polymorphism between strains from different geographic origins. We have designed a simple genotyping method that captures these differences by PCR amplification of the region between adjacent copies of IS2404 and IS2606. We have called this system 2426 PCR. The method is rapid, reproducible, sensitive, and specific for M. ulcerans, and it has confirmed previous studies suggesting a clonal population structure of M. ulcerans within a geographic region. M. ulcerans isolates from Australia, Papua New Guinea, Malaysia, Surinam, Mexico, Japan, China, and several countries in Africa were easily differentiated based on an array of 4 to 14 PCR products ranging in size from 200 to 900 bp. Numerical analysis of the banding patterns suggested a close evolutionary link between M. ulcerans isolates from Africa and southeast Asia. The application of 2426 PCR to total DNA, extracted directly from M. ulcerans-infected tissue specimens without culture, demonstrated the sensitivity and specificity of this method and confirmed for the first time that both animal and human isolates from areas of endemicity in southeast Australia have the same genotype. PMID:10747130

  10. Evaluation of sensitivity of TaqMan RT-PCR for rubella virus detection in clinical specimens.

    PubMed

    Okamoto, Kiyoko; Mori, Yoshio; Komagome, Rika; Nagano, Hideki; Miyoshi, Masahiro; Okano, Motohiko; Aoki, Yoko; Ogura, Atsushi; Hotta, Chiemi; Ogawa, Tomoko; Saikusa, Miwako; Kodama, Hiroe; Yasui, Yoshihiro; Minagawa, Hiroko; Kurata, Takako; Kanbayashi, Daiki; Kase, Tetsuo; Murata, Sachiko; Shirabe, Komei; Hamasaki, Mitsuhiro; Kato, Takashi; Otsuki, Noriyuki; Sakata, Masafumi; Komase, Katsuhiro; Takeda, Makoto

    2016-07-01

    An easy and reliable assay for detection of the rubella virus is required to strengthen rubella surveillance. Although a TaqMan RT-PCR assay for detection of the rubella virus has been established in Japan, its utility for diagnostic purposes has not been tested. To allow introduction of the TaqMan RT-PCR into the rubella surveillance system in Japan, the sensitivity of the assay was determined using representative strains for all genotypes and clinical specimens. The detection limits of the method for individual genotypes were examined using viral RNA extracted from 13 representative strains. The assay was also tested at 10 prefectural laboratories in Japan, designated as local reference laboratories for measles and rubella, to allow nationwide application of the assay. The detection limits and amplification efficiencies of the assay were similar among all the representative strains of the 13 genotypes. The TaqMan RT-PCR could detect approximately 90% of throat swab and urine samples taken up to 5days of illness. These samples were determined positive by a highly sensitive nested RT-PCR. The TaqMan RT-PCR could detect at least 10 pfu of rubella virus. Although the sensitivity was somewhat lower than that of the conventional nested RT-PCR, the TaqMan RT-PCR could be more practical to routine tests for rubella laboratory diagnosis and detection in view of the rapid response and reducing risks of contamination. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A Novel Methylation PCR that Offers Standardized Determination of FMR1 Methylation and CGG Repeat Length without Southern Blot Analysis

    PubMed Central

    Grasso, Marina; Boon, Elles M.J.; Filipovic-Sadic, Stela; van Bunderen, Patrick A.; Gennaro, Elena; Cao, Ru; Latham, Gary J.; Hadd, Andrew G.; Coviello, Domenico A.

    2015-01-01

    Fragile X syndrome and associated disorders are characterized by the number of CGG repeats and methylation status of the FMR1 gene for which Southern blot (SB) historically has been required for analysis. This study describes a simple PCR-only workflow (mPCR) to replace SB analysis, that incorporates novel procedural controls, treatment of the DNA in separate control and methylation-sensitive restriction endonuclease reactions, amplification with labeled primers, and two-color amplicon sizing by capillary electrophoresis. mPCR was evaluated in two independent laboratories with 76 residual clinical samples that represented typical and challenging fragile X alleles in both males and females. mPCR enabled superior size resolution and analytical sensitivity for size and methylation mosaicism compared to SB. Full mutation mosaicism was detected down to 1% in a background of 99% normal allele with 50- to 100-fold less DNA than required for SB. A low level of full mutation mosaicism in one sample was detected using mPCR but not observed using SB. Overall, the sensitivity for detection of full mutation alleles was 100% (95% CI: 89%–100%) with an accuracy of 99% (95% CI: 93%–100%). mPCR analysis of DNA from individuals with Klinefelter and Turner syndromes, and DNA from sperm and blood, were consistent with SB. As such, mPCR enables accurate, sensitive, and standardized methods of FMR1 analysis that can harmonize results across different laboratories. PMID:24177047

  12. Development of an in situ magnetic beads based RT-PCR method for electrochemiluminescent detection of rotavirus

    NASA Astrophysics Data System (ADS)

    Zhan, Fangfang; Zhou, Xiaoming

    2012-12-01

    Rotaviruses are double-stranded RNA viruses belonging to the family of enteric pathogens. It is a major cause of diarrhoeal disease in infants and young children worldwide. Consequently, rapid and accurate detection of rotaviruses is of great importance in controlling and preventing food- and waterborne diseases and outbreaks. Reverse transcription-polymerase chain reaction (RT-PCR) is a reliable method that possesses high specificity and sensitivity. It has been widely used to detection of viruses. Electrochemiluminescence (ECL) can be considered as an important and powerful tool in analytical and clinical application with high sensitivity, excellent specificity, and low cost. Here we have developed a method for the detection of rotavirus by combining in situ magnetic beads (MBs) based RT-PCR with ECL. RT of rotavirus RNA was carried out in a traditional way and the resulting cDNA was directly amplified on MBs. Forward primers were covalently bounded to MBs and reverse primers were labeled with tris-(2, 2'-bipyridyl) ruthenium (TBR). During the PCR cycling, the TBR labeled products were directly loaded and enriched on the surface of MBs. Then the MBs-TBR complexes could be analyzed by a magnetic ECL platform without any post-modification or post-incubation which avoid some laborious manual operations and achieve rapid yet sensitive detection. In this study, rotavirus from fecal specimens was successfully detected within 2 h, and the limit of detection was estimated to be 104copies/μL. This novel in situ MBs based RT-PCR with ECL detection method can be used for pathogen detection in food safety field and clinical diagnosis.

  13. Multiplex PCR detection of Cryptosporidium sp, Giardia lamblia and Entamoeba histolytica directly from dried stool samples from Guinea-Bissauan children with diarrhoea.

    PubMed

    Mero, Sointu; Kirveskari, Juha; Antikainen, Jenni; Ursing, Johan; Rombo, Lars; Kofoed, Poul-Erik; Kantele, Anu

    2017-09-01

    In developing countries, diarrhoea is the most common cause of death for children under five years of age, with Giardia lamblia, Cryptosporidium and Entamoeba histolytica as the most frequent pathogenic parasites. Traditional microscopy for stool parasites has poor sensitivity and specificity, while new molecular methods may provide more accurate diagnostics. In poor regions with sample storage hampered by uncertain electricity supply, research would benefit from a method capable of analysing dried stools. A real-time multiplex PCR method with internal inhibition control was developed for detecting Giardia lamblia, Cryptosporidium hominis/parvum and Entamoeba histolytica directly from stool specimens. Applicability to dried samples was checked by comparing with fresh ones in a small test material. Finally, the assay was applied to dried specimens collected from Guinea-Bissauan children with diarrhoea. The PCR's analytical sensitivity limit was 0.1 ng/ml for G. lamblia DNA, 0.01 ng/ml for E. histolytica DNA and 0.1 ng/ml for Cryptosporidium sp. In the test material, the assay performed similarly with fresh and dried stools. Of the 52 Guinea-Bissauan samples, local microscopy revealed a parasite in 15%, while PCR detected 62% positive for at least one parasite: 44% of the dried samples had Giardia, 23% Cryptosporidium and 0% E. histolytica. Our new multiplex real-time PCR for protozoa presents a sensitive method applicable to dried samples. As proof of concept, it worked well on stools collected from Guinea-Bissauan children with diarrhoea. It provides an epidemiological tool for analysing dried specimens from regions poor in resources.

  14. Rapid and sensitive detection of Cronobacter spp. (previously Enterobacter sakazakii) in food by duplex PCR combined with capillary electrophoresis-laser-induced fluorescence detector.

    PubMed

    Ruan, Jia; Li, Ming; Liu, Ya-Pan; Li, Yuan-Qian; Li, Yong-Xin

    2013-03-15

    Cronobacter spp. (Enterobacter sakazakii) is an emerging opportunistic pathogen with a 40-80% mortality rate in infants and immunocompromised crowd resulting from the consumption of contaminated food. A novel method for detecting Cronobacter spp. in food samples by duplex polymerase chain reaction (PCR) in combination with capillary electrophoresis-laser induced fluorescence (CE-LIF) detector has been developed. The specific gene sequences of 16S-23S rDNA internal transcribed spacer (ITS) and the outer membrane protein A (OmpA) of Cronobacter spp. were amplified by duplex PCR. The PCR products were separated and determined sensitively by CE-LIF within 12min. The relative standard deviations of migration time for the detected DNA fragments were 2.01-2.91%. The detection limit was as low as 1.6×10(1)cfu/mL of Cronobacter spp. Besides, the specificity of the method was verified by 24 non-Cronobacter bacterial strains. A total of 120 commercial infant food formula were tested for the presence of Cronobacter spp. by using the proposed method. This current study demonstrates that the combination of CE-LIF method with duplex PCR is rapid, sensitive and environmental friendly, and has the potential to be adapted for the routine detection of Cronobacter spp. in food samples. To the best of our knowledge, this is the first use of CE-LIF for the detection of Cronobacter spp. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  15. Diagnostic value of nested-PCR for identification of Malassezia species in dandruff

    NASA Astrophysics Data System (ADS)

    Jusuf, N. K.; Nasution, T. A.; Ullyana, S.

    2018-03-01

    Dandruff or pityriasis simplex is a condition of abnormal occurrence of formation of yellowish white scales from the scalp. Many factors play a role in the pathogenesis of dandruff, i.e.colonization of Malassezia species. Examination of Malassezia species previously done by culture as the gold standard. However, there are various difficulties in doing the culture. Identification method with anested-polymerase chain reaction (nested-PCR) is expected to provide quickly and easily detected. This study aimedto determine the diagnostic value of nested-PCR in the identification of Malassezia species in dandruff. From 21 subjects, scales from the scalp were taken and sent to the laboratory for nested-PCR identification. Statistical analysis of diagnostic test carried out to determine sensitivity, specificity, positive predictive value, and negative predictive value. The results showed nested-PCR detected 10 sample (47.6%) positive for Malassezia species consist of M. sympodialis (23.8%); M. slooffiae (9.5%); M. furfur (4.8%); M. globosa and M. furfur (4.8%); and M. restricta and M. sympodialis (4.8%). Detection of Malassezia species by nested-PCR has 100% in sensitivity whereas the specificity was 55%. Nested-PCR test has high sensitivity. Therefore nested-PCR may be considered for a faster and simpler alternative examination in identification for Malassezia species in dandruff.

  16. Sensitive detection of Treponema pallidum DNA from the whole blood of patients with syphilis by the nested PCR assay.

    PubMed

    Wang, Cuini; Cheng, Yuanyuan; Liu, Biao; Wang, Yuanyuan; Gong, Weiming; Qian, Yihong; Guan, Zhifang; Lu, Haikong; Gu, Xin; Shi, Mei; Zhou, Pingyu

    2018-05-09

    The aim of this work was to investigate the application of the nested PCR assay for the detection of Treponema pallidum (TP) DNA from the blood of patients with different stages of syphilis. In this study, a nested PCR method targeting the Tpp47 and polA genes (Tpp47-Tp-PCR and polA-Tp-PCR) was developed to detect TP-DNA in whole blood samples collected from 262 patients with different stages of syphilis (84 primary syphilis, 97 secondary syphilis, and 81 latent syphilis patients). The PCR assay detected T. pallidum DNA in 53.6% and 62.9% of the patients with primary and secondary syphilis, respectively, which was much higher than the detection levels in patients with latent syphilis (7.4%) (both p < 0.001). For primary syphilis, a low RPR (0-16) was correlated with a higher detection rate of TP-DNA, whereas for secondary syphilis, the higher detection rate of blood TP-DNA was correlated with higher blood RPR titers (at or beyond 32). For latent syphilis, TP-DNA was only detectable by PCR in the early phase of the latent infection. Thus, blood RPR titers were correlated with the blood T. pallidum burden, but the correlations varied with primary and secondary syphilis. The results indicate that nested PCR is a sensitive method for detecting blood TP-DNA and is especially useful for detecting early syphilis including primary syphilis and secondary syphilis. The findings also suggest that the PCR assay may be used to complement other methods to enhance the diagnosis of syphilis.

  17. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples.

    PubMed

    Cura, Carolina I; Duffy, Tomas; Lucero, Raúl H; Bisio, Margarita; Péneau, Julie; Jimenez-Coello, Matilde; Calabuig, Eva; Gimenez, María J; Valencia Ayala, Edward; Kjos, Sonia A; Santalla, José; Mahaney, Susan M; Cayo, Nelly M; Nagel, Claudia; Barcán, Laura; Málaga Machaca, Edith S; Acosta Viana, Karla Y; Brutus, Laurent; Ocampo, Susana B; Aznar, Christine; Cuba Cuba, Cesar A; Gürtler, Ricardo E; Ramsey, Janine M; Ribeiro, Isabela; VandeBerg, John L; Yadon, Zaida E; Osuna, Antonio; Schijman, Alejandro G

    2015-05-01

    Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.

  18. A new visually improved and sensitive loop mediated isothermal amplification (LAMP) for diagnosis of symptomatic falciparum malaria.

    PubMed

    Mohon, Abu Naser; Elahi, Rubayet; Khan, Wasif A; Haque, Rashidul; Sullivan, David J; Alam, Mohammad Shafiul

    2014-06-01

    Molecular diagnosis of malaria by nucleotide amplification requires sophisticated and expensive instruments, typically found only in well-established laboratories. Loop-mediated isothermal amplification (LAMP) has provided a new platform for an easily adaptable molecular technique for molecular diagnosis of malaria without the use of expensive instruments. A new primer set has been designed targeting the 18S rRNA gene for the detection of Plasmodium falciparum in whole blood samples. The efficacy of LAMP using the new primer set was assessed in this study in comparison to that of a previously described set of LAMP primers as well as with microscopy and real-time PCR as reference methods for detecting P. falciparum. Pre-addition of hydroxy napthol blue (HNB) in the LAMP reaction caused a distinct color change, thereby improving the visual detection system. The new LAMP assay was found to be 99.1% sensitive compared to microscopy and 98.1% when compared to real-time PCR. Meanwhile, its specificity was 99% and 100% in contrast to microscopy and real-time PCR, respectively. Moreover, the LAMP method was in very good agreement with microscopy and real-time PCR (0.94 and 0.98, respectively). This new LAMP method can detect at least 5parasites/μL of infected blood within 35min, while the other LAMP method tested in this study, could detect a minimum of 100parasites/μL of human blood after 60min of amplification. Thus, the new method is sensitive and specific, can be carried out in a very short time, and can substitute PCR in healthcare clinics and standard laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. High-resolution melting analysis for bird sexing: a successful approach to molecular sex identification using different biological samples.

    PubMed

    Morinha, Francisco; Travassos, Paulo; Seixas, Fernanda; Santos, Nuno; Sargo, Roberto; Sousa, Luís; Magalhães, Paula; Cabral, João A; Bastos, Estela

    2013-05-01

    High-resolution melting (HRM) analysis is a very attractive and flexible advanced post-PCR method with high sensitivity/specificity for simple, fast and cost-effective genotyping based on the detection of specific melting profiles of PCR products. Next generation real-time PCR systems, along with improved saturating DNA-binding dyes, enable the direct acquisition of HRM data after quantitative PCR. Melting behaviour is particularly influenced by the length, nucleotide sequence and GC content of the amplicons. This method is expanding rapidly in several research areas such as human genetics, reproductive biology, microbiology and ecology/conservation of wild populations. Here we have developed a successful HRM protocol for avian sex identification based on the amplification of sex-specific CHD1 fragments. The melting curve patterns allowed efficient sexual differentiation of 111 samples analysed (plucked feathers, muscle tissues, blood and oral cavity epithelial cells) of 14 bird species. In addition, we sequenced the amplified regions of the CHD1 gene and demonstrated the usefulness of this strategy for the genotype discrimination of various amplicons (CHD1Z and CHD1W), which have small size differences, ranging from 2 bp to 44 bp. The established methodology clearly revealed the advantages (e.g. closed-tube system, high sensitivity and rapidity) of a simple HRM assay for accurate sex differentiation of the species under study. The requirements, strengths and limitations of the method are addressed to provide a simple guide for its application in the field of molecular sexing of birds. The high sensitivity and resolution relative to previous real-time PCR methods makes HRM analysis an excellent approach for improving advanced molecular methods for bird sexing. © 2013 Blackwell Publishing Ltd.

  20. Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam.

    PubMed

    Slomka, Marek J; To, Thanh L; Tong, Hien H; Coward, Vivien J; Hanna, Amanda; Shell, Wendy; Pavlidis, Theo; Densham, Anstice L E; Kargiolakis, Georgios; Arnold, Mark E; Banks, Jill; Brown, Ian H

    2012-01-01

    Forty-six chickens and 48 ducks were sampled from four Vietnamese poultry premises in 2009 infected with H5N1 highly pathogenic avian influenza (HPAI) clade 2.3.2 and 2.3.4 viruses, which also differed by cleavage site (CS) sequences in their haemagglutinin (HA) genes. All clinical specimens (n=282), namely tracheal and cloacal swabs plus feathers, were tested by five Eurasian reverse-transcriptase AI RealTime polymerase chain reaction (RRT-PCR) methods. Bayesian modelling showed similar high sensitivity for the validated H5 HA2 RRT-PCR and a new modified M-gene RRT-PCR that utilizes lyophilized reagents. Both were more sensitive than the validated "wet" M-gene RRT-PCR. Another RRT-PCR, which targeted the H5-gene CS region, was effective for clade 2.3.4 detection, but severely compromised for clade 2.3.2 viruses. Reduced sensitivity of the H5 CS and "wet" M-gene RRT-PCRs correlated with mismatches between the target and the primer and/or probe sequences. However, the H5 HA2 RRT-PCR sensitively detected both clade 2.3.2 and 2.3.4 viruses, and agreed with N1 RRT-PCR results. Feather testing from diseased chicken and duck flocks by AI RRT-PCRs resulted in the most sensitive identification of H5N1 HPAI-infected birds. Evolution of new H5N1 HPAI clades remains a concern for currently affected Asian countries, but also for more distant regions where it is important to be prepared for new incursions of H5N1 HPAI viruses. Genetic evidence for adamantane resistance and sensitivity was also observed in isolates from both clades.

  1. Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman(®) real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay.

    PubMed

    Röder, Martin; Vieths, Stefan; Holzhauser, Thomas

    2011-01-24

    Currently, causative immunotherapies are lacking in food allergy. The only option to prevent allergic reactions in susceptible individuals is to strictly avoid the offending food. Thus, reliable labelling of allergenic constituents is of major importance, but can only be achieved if appropriate specific and sensitive detection techniques for foods with allergenic potential are available. Almond is an allergenic food that requires mandatory labelling on prepackaged foods and belongs to the genus Prunus. Species of this genus are phylogenetically closely related. We observed commercially available almond specific ELISA being highly cross-reactive with other foods of the Prunoideae family, resulting in a false-positive detection of up to 500,000 mg kg(-1) almond. Previously published PCR methods were reported to be cross-reactive with false positive results >1200 mg kg(-1). We describe the development of a novel almond specific real-time PCR, based on mutated mismatch primers and sequence specific Taqman(®) probe detection, in comparison with two quantitative commercially available ELISA. PCR sensitivity was investigated with chocolate, chocolate coating and cookies spiked between 5 and 100,000 mg kg(-1) almond. In all matrices almond was reproducibly detected by real-time PCR at the lowest spike level of 5 mg kg(-1). Further, between 100 and 100,000 mg kg(-1) spiked almond, the method featured good correlation between quantified copy numbers and the amount of spiked almond. Within this range a similar relation between detectable signal and amount of almond was observed for both PCR and ELISA. In contrast to ELISA the Taqman(®) real-time PCR method was highly specific in 59 food items with negligible cross-reactivity for a very limited number of Prunoideae foods. The real-time PCR analysis of 24 retail samples was in concordance with ELISA results: 21% (n=5) contained undeclared almond. This is the first completely disclosed real-time PCR method for a specific and potentially quantitative almond detection. This PCR method detects almond at a level where severe allergic reactions should not be expected for the majority of the almond allergic individuals. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. A simplified protocol for molecular identification of Eimeria species in field samples.

    PubMed

    Haug, Anita; Thebo, Per; Mattsson, Jens G

    2007-05-15

    This study aimed to find a fast, sensitive and efficient protocol for molecular identification of chicken Eimeria spp. in field samples. Various methods for each of the three steps of the protocol were evaluated: oocyst wall rupturing methods, DNA extraction methods, and identification of species-specific DNA sequences by PCR. We then compared and evaluated five complete protocols. Three series of oocyst suspensions of known number of oocysts from Eimeria mitis, Eimeria praecox, Eimeria maxima and Eimeria tenella were prepared and ground using glass beads or mini-pestle. DNA was extracted from ruptured oocysts using commercial systems (GeneReleaser, Qiagen Stoolkit and Prepman) or phenol-chloroform DNA extraction, followed by identification of species-specific ITS-1 sequences by optimised single species PCR assays. The Stoolkit and Prepman protocols showed insufficient repeatability, and the former was also expensive and relatively time-consuming. In contrast, both the GeneReleaser protocol and phenol-chloroform protocols were robust and sensitive, detecting less than 0.4 oocysts of each species per PCR. Finally, we evaluated our new protocol on 68 coccidia positive field samples. Our data suggests that rupturing the oocysts by mini-pestle grinding, preparing the DNA with GeneReleaser, followed by optimised single species PCR assays, makes a robust and sensitive procedure for identifying chicken Eimeria species in field samples. Importantly, it also provides minimal hands-on-time in the pre-PCR process, lower contamination risk and no handling of toxic chemicals.

  3. Development and Validation of a P-35S, T-nos, T-35S and P-FMV Tetraplex Real-time PCR Screening Method to Detect Regulatory Genes of Genetically Modified Organisms in Food.

    PubMed

    Eugster, Albert; Murmann, Petra; Kaenzig, Andre; Breitenmoser, Alda

    2014-10-01

    In routine analysis screening methods based on real-time PCR (polymerase chain reaction) are most commonly used for the detection of genetically modified (GM) plant material in food and feed. Screening tests are based on sequences frequently used for GM development, allowing the detection of a large number of GMOs (genetically modified organisms). Here, we describe the development and validation of a tetraplex real-time PCR screening assay comprising detection systems for the regulatory genes Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens nos terminator, Cauliflower Mosaic Virus 35S terminator and Figwort Mosaic Virus 34S promoter. Three of the four primer and probe combinations have already been published elsewhere, whereas primers and probe for the 35S terminator have been developed in-house. Adjustment of primer and probe concentrations revealed a high PCR sensitivity with insignificant physical cross-talk between the four detection channels. The sensitivity of each PCR-system is sufficient to detect a GMO concentration as low as 0.05% of the containing respective element. The specificity of the described tetraplex is high when tested on DNA from GM maize, soy, rapeseed and tomato. We also demonstrate the robustness of the system by inter-laboratory tests. In conclusion, this method provides a sensitive and reliable screening procedure for the detection of the most frequently used regulatory elements present in GM crops either authorised or unauthorised for food.

  4. Development and Evaluation of a Loop-Mediated Isothermal Amplification (Lamp) Assay for the Detection of Haemonchus contortus in Goat Fecal Samples.

    PubMed

    Yang, X; Qi, M W; Zhang, Z Z; Gao, C; Wang, C Q; Lei, W Q; Tan, L; Zhao, J L; Fang, R; Hu, M

    2017-04-01

    Haemonchus contortus is one of the most significant strongylid nematodes infecting small ruminants, and it causes great economic losses to the livestock industry worldwide. Accurate diagnosis of H. contortus is crucial to control strategies. Traditional microscopic examinations are the most common methods for the diagnosis of H. contortus , but they are time-consuming and inaccurate. Molecular methods based on PCR are more accurate, but need expensive machines usually only used in the laboratory. Loop-mediated isothermal amplification (LAMP) is a rapid, simple, specific, and sensitive method that has been widely used to detect viruses, bacteria, and parasites. In the present study, a LAMP method targeting ribosomal ITS-2 gene for detection of the H. contortus in goat fecal samples has been established. The established LAMP method was H. contortus specific, and the sensitivity of LAMP was the same as that of the H. contortus species-specific PCR, with the lowest DNA level detected as being 1 pg. Examination of the clinical samples indicated that the positive rate of LAMP was higher than that of PCR, but no statistical difference was observed between LAMP and PCR (χ 2 = 17.991, P = 0.053). In conclusion, a LAMP assay with a high specificity and a good sensitivity has been developed to detect H. contortus infection in goats. The established LAMP assay is useful for clinical diagnosis of H. contortus .

  5. Sensitivity of the ISO 6579:2002/Amd 1:2007 Standard Method for Detection of Salmonella spp. on Mesenteric Lymph Nodes from Slaughter Pigs

    PubMed Central

    Mainar-Jaime, R. C.; Andrés, S.; Vico, J. P.; San Román, B.; Garrido, V.

    2013-01-01

    The ISO 6579:2002/Amd 1:2007 (ISO) standard has been the bacteriological standard method used in the European Union for the detection of Salmonella spp. in pig mesenteric lymph nodes (MLN), but there are no published estimates of the diagnostic sensitivity (Se) of the method in this matrix. Here, the Se of the ISO (SeISO) was estimated on 675 samples selected from two populations with different Salmonella prevalences (14 farms with a ≥20% prevalence and 13 farms with a <20% prevalence) and through the use of latent-class models in concert with Bayesian inference, assuming 100% ISO specificity, and an invA-based PCR as the second diagnostic method. The SeISO was estimated to be close to 87%, while the sensitivity of the PCR reached up to 83.6% and its specificity was 97.4%. Interestingly, the bacteriological reanalysis of 33 potential false-negative (PCR-positive) samples allowed isolation of 19 (57.5%) new Salmonella strains, improving the overall diagnostic accuracy of the bacteriology. Considering the usual limitations of bacteriology regarding Se, these results support the adequacy of the ISO for the detection of Salmonella spp. from MLN and also that of the PCR-based method as an alternative or complementary (screening) test for the diagnosis of pig salmonellosis, particularly considering the cost and time benefits of the molecular procedure. PMID:23100334

  6. Loop-mediated isothermal amplification for detection of Staphylococcus aureus in dairy cow suffering from mastitis.

    PubMed

    Tie, Zhang; Chunguang, Wang; Xiaoyuan, Wei; Xinghua, Zhao; Xiuhui, Zhong

    2012-01-01

    To develop a rapid detection method of Staphylococcus aureus using loop-mediated isothermal amplification (LAMP), four specific primers were designed according to six distinct sequences of the nuc gene. In addition, the specificity and sensitivity of LAMP were verified and compared with those of PCR. Results showed that the LAMP reaction was completed within 45 min at 62.5°C, and ladder bands were appeared in LAMP products analyzed by gel electrophoresis. After adding 1x SYBR Green l, the positive reaction tube showed green color and the negative reaction tube remained orange, indicating that the LAMP has high specificity. The minimal detectable concentration of LAMP was 1 × 10² CFU/mL and that of PCR was 1 × 10⁴ CFU/mL, indicating that the LAMP was 100 times more sensitive than the PCR. The LAMP method for detection of Staphylococcus aureus has many advantages, such as simple operation, high sensitivity, high specificity, and rapid analysis. Therefore, this method is more suitable for the rapid on-site detection of Staphylococcus aureus.

  7. Application of denaturing gradient gel electrophoresis (DGGE) to the analysis of microbial communities of subgingival plaque.

    PubMed

    Fujimoto, C; Maeda, H; Kokeguchi, S; Takashiba, S; Nishimura, F; Arai, H; Fukui, K; Murayama, Y

    2003-08-01

    Denaturing gradient gel electrophoresis (DGGE) was applied to the microbiologic examination of subgingival plaque. The PCR primers were designed from conserved nucleotide sequences on 16S ribosomal RNA gene (16SrDNA) with GC rich clamp at the 5'-end. Polymerase chain reaction (PCR) was performed using the primers and genomic DNAs of typical periodontal bacteria. The generated 16SrDNA fragments were separated by denaturing gel. Although the sizes of the amplified DNA fragments were almost the same among the species, 16SrDNAs of the periodontal bacteria were distinguished according to their specific sequences. The microflora of clinical plaque samples were profiled by the PCR-DGGE method, and the dominant 16SrDNA bands were cloned and sequenced. Simultaneously, Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia were detected by an ordinary PCR method. In the deep periodontal pockets, the bacterial community structures were complicated and P. gingivalis was the most dominant species, whereas the DGGE profiles were simple and Streptococcus or Neisseria species were dominant in the shallow pockets. The species-specific PCR method revealed the presence of A. actinomycetemcomitans, P. gingivalis and P. intermedia in the clinical samples. However, corresponding bands were not always observed in the DGGE profiles, indicating a lower sensitivity of the DGGE method. Although the DGGE method may have a lower sensitivity than the ordinary PCR methods, it could visualize the bacterial qualitative compositions and reveal the major species of the plaque. The DGGE analysis and following sequencing may have the potential to be a promising bacterial examination procedure in periodontal diseases.

  8. Discrimination of gastrointestinal nematode eggs from crude fecal egg preparations by inhibitor-resistant conventional and real-time PCR.

    PubMed

    Demeler, Janina; Ramünke, Sabrina; Wolken, Sonja; Ianiello, Davide; Rinaldi, Laura; Gahutu, Jean Bosco; Cringoli, Giuseppe; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2013-01-01

    Diagnosis of gastrointestinal nematodes relies predominantly on coproscopic methods such as flotation, Kato-Katz, McMaster or FLOTAC. Although FLOTAC allows accurate quantification, many nematode eggs can only be differentiated to genus or family level. Several molecular diagnostic tools discriminating closely related species suffer from high costs for DNA isolation from feces and limited sensitivity since most kits use only small amounts of feces (<1 g). A direct PCR from crude egg preparations was designed for full compatibility with FLOTAC to accurately quantify eggs per gram feces (epg) and determine species composition. Eggs were recovered from the flotation solution and concentrated by sieving. Lysis was achieved by repeated boiling and freezing cycles - only Trichuris eggs required additional mechanic disruption. Egg lysates were directly used as template for PCR with Phusion DNA polymerase which is particularly resistant to PCR inhibitors. Qualitative results were obtained with feces of goats, cattle, horses, swine, cats, dogs and mice. The finally established protocol was also compatible with quantitative real-time PCR in the presence of EvaGreen and no PCR inhibition was detectable when extracts were diluted at least fourfold. Sensitivity was comparable to DNA isolation protocols and spiked samples with five epg were reliably detected. For Toxocara cati a detection limit below one epg was demonstrated. It was possible to distinguish T. cati and Toxocara canis using high resolution melt (HRM) analysis, a rapid tool for species identification. In human samples, restriction fragment length polymorphism (RFLP) and HRM analysis were used to discriminate Necator americanus and Ancylostoma duodenale. The method is able to significantly improve molecular diagnosis of gastrointestinal nematodes by increasing speed and sensitivity while decreasing overall costs. For identification of species or resistance alleles, analysis of PCR products with many different post PCR methods can be used such as RFLP, reverse-line-blot, Sanger sequencing and HRM.

  9. Discrimination of Gastrointestinal Nematode Eggs from Crude Fecal Egg Preparations by Inhibitor-Resistant Conventional and Real-Time PCR

    PubMed Central

    Demeler, Janina; Ramünke, Sabrina; Wolken, Sonja; Ianiello, Davide; Rinaldi, Laura; Gahutu, Jean Bosco; Cringoli, Giuseppe; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2013-01-01

    Diagnosis of gastrointestinal nematodes relies predominantly on coproscopic methods such as flotation, Kato-Katz, McMaster or FLOTAC. Although FLOTAC allows accurate quantification, many nematode eggs can only be differentiated to genus or family level. Several molecular diagnostic tools discriminating closely related species suffer from high costs for DNA isolation from feces and limited sensitivity since most kits use only small amounts of feces (<1 g). A direct PCR from crude egg preparations was designed for full compatibility with FLOTAC to accurately quantify eggs per gram feces (epg) and determine species composition. Eggs were recovered from the flotation solution and concentrated by sieving. Lysis was achieved by repeated boiling and freezing cycles – only Trichuris eggs required additional mechanic disruption. Egg lysates were directly used as template for PCR with Phusion DNA polymerase which is particularly resistant to PCR inhibitors. Qualitative results were obtained with feces of goats, cattle, horses, swine, cats, dogs and mice. The finally established protocol was also compatible with quantitative real-time PCR in the presence of EvaGreen and no PCR inhibition was detectable when extracts were diluted at least fourfold. Sensitivity was comparable to DNA isolation protocols and spiked samples with five epg were reliably detected. For Toxocara cati a detection limit below one epg was demonstrated. It was possible to distinguish T. cati and Toxocara canis using high resolution melt (HRM) analysis, a rapid tool for species identification. In human samples, restriction fragment length polymorphism (RFLP) and HRM analysis were used to discriminate Necator americanus and Ancylostoma duodenale. The method is able to significantly improve molecular diagnosis of gastrointestinal nematodes by increasing speed and sensitivity while decreasing overall costs. For identification of species or resistance alleles, analysis of PCR products with many different post PCR methods can be used such as RFLP, reverse-line-blot, Sanger sequencing and HRM. PMID:23620739

  10. Real-time PCR in detection and quantitation of Leishmania donovani for the diagnosis of Visceral Leishmaniasis patients and the monitoring of their response to treatment

    PubMed Central

    Ghosh, Prakash; Khan, Md. Anik Ashfaq; Duthie, Malcolm S.; Vallur, Aarthy C.; Picone, Alessandro; Howard, Randall F.; Reed, Steven G.

    2017-01-01

    Sustained elimination of Visceral Leishmaniasis (VL) requires the reduction and control of parasite reservoirs to minimize the transmission of Leishmania donovani infection. A simple, reproducible and definitive diagnostic procedure is therefore indispensable for the early and accurate detection of parasites in VL, Relapsed VL (RVL) and Post Kala-azar Dermal Leishmaniasis (PKDL) patients, all of whom are potential reservoirs of Leishmania parasites. To overcome the limitations of current diagnostic approaches, a novel quantitative real-time polymerase chain reaction (qPCR) method based on Taqman chemistry was devised for the detection and quantification of L. donovani in blood and skin. The diagnostic efficacy was evaluated using archived peripheral blood buffy coat DNA from 40 VL, 40 PKDL, 10 RVL, 20 cured VL, and 40 cured PKDL along with 10 tuberculosis (TB) cases and 80 healthy endemic controls. Results were compared to those obtained using a Leishmania-specific nested PCR (Ln-PCR). The real time PCR assay was 100% (95% CI, 91.19–100%) sensitive in detecting parasite genomes in VL and RVL samples and 85.0% (95% CI, 70.16–94.29%) sensitive for PKDL samples. In contrast, the sensitivity of Ln-PCR was 77.5% (95% CI, 61.55–89.16%) for VL samples, 100% (95%CI, 69.15–100%) for RVL samples, and 52.5% (95% CI, 36.13–68.49%) for PKDL samples. There was significant discordance between the two methods with the overall sensitivity of the qPCR assay being considerably higher than Ln-PCR. None of the assay detected L. donovani DNA in buffy coats from cured VL cases, and reduced infectious burdens were demonstrated in cured PKDL cases who remained positive in 7.5% (3/40) and 2.5% (1/40) cases by real-time PCR and Ln-PCR, respectively. Both assays were 100% (95% CI, 95.98–100) specific with no positive signals in either endemic healthy control or TB samples. The real time PCR assay we developed offers a molecular tool for accurate detection of circulating L. donovani parasites in VL, PKDL and RVL patients, as well as being capable of assessing response to treatment. As such, this real time PCR assay represents an important contribution in efforts to eliminate VL. PMID:28957391

  11. Immunocapture reverse transcription-polymerase chain reaction combined with nested PCR greatly increases the detection of Prunus necrotic ring spot virus in the peach.

    PubMed

    Helguera, P R; Taborda, R; Docampo, D M; Ducasse, D A

    2001-06-01

    A detection system based on nested PCR after IC-RT-PCR (IC-RT-PCR-Nested PCR) was developed to improve indexing of Prunus necrotic ringspot virus in peach trees. Inhibitory effects and inconsistencies of the standard IC-RT-PCR were overcome by this approach. IC-RT-PCR-Nested PCR improved detection by three orders of magnitude compared with DAS-ELISA for the detection of PNRSV in leaves. Several different tissues were evaluated and equally consistent results were observed. The main advantages of the method are its consistency, high sensitivity and easy application in quarantine programs.

  12. The validation and utility of a quantitative one-step multiplex RT real-time PCR targeting Rotavirus A and Norovirus

    PubMed Central

    Dung, Tran Thi Ngoc; Phat, Voong Vinh; Nga, Tran Vu Thieu; My, Phan Vu Tra; Duy, Pham Thanh; Campbell, James I.; Thuy, Cao Thu; Hoang, Nguyen Van Minh; Van Minh, Pham; Le Phuc, Hoang; Tuyet, Pham Thi Ngoc; Vinh, Ha; Kien, Duong Thi Hue; Huy, Huynh Le Anh; Vinh, Nguyen Thanh; Nga, Tran Thi Thu; Hau, Nguyen Thi Thu; Chinh, Nguyen Tran; Thuong, Tang Chi; Tuan, Ha Manh; Simmons, Cameron; Farrar, Jeremy J.; Baker, Stephen

    2013-01-01

    Rotavirus (RoV) and Norovirus (NoV) are the main causes of viral gastroenteritis. Currently, there is no validated multiplex real-time PCR that can detect and quantify RoV and NoV simultaneously. The aim of the study was to develop, validate, and internally control a multiplex one-step RT real-time PCR to detect and quantify RoV and NoV in stool samples. PCR sensitivity was assessed by comparing amplification against the current gold standard, enzyme immunoassay (EIA), on stool samples from 94 individuals with diarrhea and 94 individuals without diarrhea. PCR detected 10% more RoV positive samples than EIA in stools samples from patients with diarrhea. PCR detected 23% more NoV genogroup II positive samples from individuals with diarrhea and 9% more from individuals without diarrhea than EIA, respectively. Genotyping of the PCR positive/EIA negative samples suggested the higher rate of PCR positivity, in comparison to EIA, was due to increased sensitivity, rather than nonspecific hybridization. Quantitation demonstrated that the viral loads of RoV and NoV in the stools of diarrheal patients were an order of magnitude greater than in individuals without diarrhea. This internally controlled real-time PCR method is robust, exhibits a high degree of reproducibility, and may have a greater utility and sensitivity than commercial EIA kits. PMID:23046990

  13. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment

    PubMed Central

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-01-01

    Digital PCR has developed rapidly since it was first reported in the 1990s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products. PMID:26239916

  14. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Du, Zhixin; Tian, Wenying; Wang, Qin; Wang, Huiyu; Xu, Wentao; Zhu, Shuifang

    2015-08-04

    Digital PCR has developed rapidly since it was first reported in the 1990 s. It was recently reported that an improved method facilitated the detection of genetically modified organisms (GMOs). However, to use this improved method, the samples must be pretreated, which could introduce inaccuracy into the results. In our study, we explored a pretreatment-free digital PCR detection method for the screening for GMOs. We chose the CaMV35s promoter and the NOS terminator as the templates in our assay. To determine the specificity of our method, 9 events of GMOs were collected, including MON810, MON863, TC1507, MIR604, MIR162, GA21, T25, NK603 and Bt176. Moreover, the sensitivity, intra-laboratory and inter-laboratory reproducibility of our detection method were assessed. The results showed that the limit of detection of our method was 0.1%, which was lower than the labeling threshold level of the EU. The specificity and stability among the 9 events were consistent, respectively. The intra-laboratory and inter-laboratory reproducibility were both good. Finally, the perfect fitness for the detection of eight double-blind samples indicated the good practicability of our method. In conclusion, the method in our study would allow more sensitive, specific and stable screening detection of the GMO content of international trading products.

  15. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions.

    PubMed

    Belmonte, Frances R; Martin, James L; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A; Kaufman, Brett A

    2016-04-28

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error.

  16. Development of a polymerase chain reaction applicable to rapid and sensitive detection of Clonorchis sinensis eggs in human stool samples

    PubMed Central

    Cho, Pyo Yun; Na, Byoung-Kuk; Mi Choi, Kyung; Kim, Jin Su; Cho, Shin-Hyeong; Lee, Won-Ja; Lim, Sung-Bin; Cha, Seok Ho; Park, Yun-Kyu; Pak, Jhang Ho; Lee, Hyeong-Woo; Hong, Sung-Jong; Kim, Tong-Soo

    2013-01-01

    Microscopic examination of eggs of parasitic helminths in stool samples has been the most widely used classical diagnostic method for infections, but tiny and low numbers of eggs in stool samples often hamper diagnosis of helminthic infections with classical microscopic examination. Moreover, it is also difficult to differentiate parasite eggs by the classical method, if they have similar morphological characteristics. In this study, we developed a rapid and sensitive polymerase chain reaction (PCR)-based molecular diagnostic method for detection of Clonorchis sinensis eggs in stool samples. Nine primers were designed based on the long-terminal repeat (LTR) of C. sinensis retrotransposon1 (CsRn1) gene, and seven PCR primer sets were paired. Polymerase chain reaction with each primer pair produced specific amplicons for C. sinensis, but not for other trematodes including Metagonimus yokogawai and Paragonimus westermani. Particularly, three primer sets were able to detect 10 C. sinensis eggs and were applicable to amplify specific amplicons from DNA samples purified from stool of C. sinensis-infected patients. This PCR method could be useful for diagnosis of C. sinensis infections in human stool samples with a high level of specificity and sensitivity. PMID:23916334

  17. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    PubMed Central

    Belmonte, Frances R.; Martin, James L.; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A.; Kaufman, Brett A.

    2016-01-01

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error. PMID:27122135

  18. A cost effective real-time PCR for the detection of adenovirus from viral swabs

    PubMed Central

    2013-01-01

    Compared to traditional testing strategies, nucleic acid amplification tests such as real-time PCR offer many advantages for the detection of human adenoviruses. However, commercial assays are expensive and cost prohibitive for many clinical laboratories. To overcome fiscal challenges, a cost effective strategy was developed using a combination of homogenization and heat treatment with an “in-house” real-time PCR. In 196 swabs submitted for adenovirus detection, this crude extraction method showed performance characteristics equivalent to viral DNA obtained from a commercial nucleic acid extraction. In addition, the in-house real-time PCR outperformed traditional testing strategies using virus culture, with sensitivities of 100% and 69.2%, respectively. Overall, the combination of homogenization and heat treatment with a sensitive in-house real-time PCR provides accurate results at a cost comparable to viral culture. PMID:23758993

  19. Evaluation of PCR methods for detection of Brucella strains from culture and tissues.

    PubMed

    Çiftci, Alper; İça, Tuba; Savaşan, Serap; Sareyyüpoğlu, Barış; Akan, Mehmet; Diker, Kadir Serdar

    2017-04-01

    The genus Brucella causes significant economic losses due to infertility, abortion, stillbirth or weak calves, and neonatal mortality in livestock. Brucellosis is still a zoonosis of public health importance worldwide. The study was aimed to optimize and evaluate PCR assays used for the diagnosis of Brucella infections. For this aim, several primers and PCR protocols were performed and compared with Brucella cultures and biological material inoculated with Brucella. In PCR assays, genus- or species-specific oligonucleotide primers derived from 16S rRNA sequences (F4/R2, Ba148/928, IS711, BruP6-P7) and OMPs (JPF/JPR, 31ter/sd) of Brucella were used. All primers except for BruP6-P7 detected the DNA from reference Brucella strains and field isolates. In spiked blood, milk, and semen samples, F4-R2 primer-oriented PCR assays detected minimal numbers of Brucella. In spiked serum and fetal stomach content, Ba148/928 primer-oriented PCR assays detected minimal numbers of Brucella. Field samples collected from sheep and cattle were examined by bacteriological methods and optimized PCR assays. Overall, sensitivity of PCR assays was found superior to conventional bacteriological isolation. Brucella DNA was detected in 35.1, 1.1, 24.8, 5.0, and 8.0% of aborted fetus, blood, milk, semen, and serum samples by PCR assays, respectively. In conclusion, PCR assay in optimized conditions was found to be valuable in sensitive and specific detection of Brucella infections of animals.

  20. Comparing the Yield of Nasopharyngeal Swabs, Nasal Aspirates, and Induced Sputum for Detection of Bordetella pertussis in Hospitalized Infants

    PubMed Central

    Nunes, Marta C.; Soofie, Nasiha; Downs, Sarah; Tebeila, Naume; Mudau, Azwi; de Gouveia, Linda; Madhi, Shabir A.

    2016-01-01

    Background. Advances in molecular laboratory techniques are changing the landscape of Bordetella pertussis illness diagnosis. Polymerase chain reaction (PCR) assays have greatly improved the sensitivity detection and the turnaround time to diagnosis compared to culture. Moreover, different respiratory specimens, such as flocked nasopharyngeal swabs (NPSs), nasopharyngeal aspirates (NPAs), and induced sputum, have been used for B. pertussis detection, although there is limited head-to-head comparison to evaluating the PCR yield from the 3 sampling methods. Methods. Hospitalized infants <6 months of age who fulfilled a broad syndromic criteria of respiratory illness were tested for B. pertussis infection by PCR on paired NPSs and NPAs; or paired NPSs and induced sputum. An exploratory analysis of B. pertussis culture was performed on induced sputum specimens and in a subset of NPSs. Results. From November 2014 to May 2015, 484 infants with paired NPSs and NPAs were tested; 15 (3.1%) PCR-confirmed pertussis cases were identified, 13 of which were PCR positive on both samples, while 1 each were positive only on NPS or NPA. From March to October 2015, 320 infants had NPSs and induced sputum collected, and 11 (3.4%) pertussis cases were identified by PCR, including 8 (72.7%) positive on both samples, 1 (9.1%) only positive on NPS, and 2 (18.2%) only positive on induced sputum. The 3 types of specimens had similar negative predictive value >99% and sensitivity >83%. Compared to PCR, culture sensitivity was 60% in induced sputum and 40% in NPSs. Conclusions. Flocked nasopharyngeal swabs, nasopharyngeal aspirates, and induced sputum performed similarly for the detection of B. pertussis infection in young infants by PCR. PMID:27838671

  1. Molecular sensitivity threshold of wet mount and an immunochromatographic assay evaluated by quantitative real-time PCR for diagnosis of Trichomonas vaginalis infection in a low-risk population of childbearing women.

    PubMed

    Leli, Christian; Castronari, Roberto; Levorato, Lucia; Luciano, Eugenio; Pistoni, Eleonora; Perito, Stefano; Bozza, Silvia; Mencacci, Antonella

    2016-06-01

    Vaginal trichomoniasis is a sexually transmitted infection caused by Trichomonas vaginalis, a flagellated protozoan. Diagnosis of T. vaginalis infection is mainly performed by wet mount microscopy, with a sensitivity ranging from 38% to 82%, compared to culture, still considered the gold standard. Commercial immunochromatographic tests for monoclonal-antibody-based detection have been introduced as alternative methods for diagnosis of T. vaginalis infection and have been reported in some studies to be more sensitive than wet mount. Real-time PCR methods have been recently developed, with optimal sensitivity and specificity. The aim of this study was to evaluate whether there is a molecular sensitivity threshold for both wet mount and imunochromatographic assays. To this aim, a total of 1487 low-risk childbearing women (median age 32 years, interquartile range 27-37) were included in the study, and underwent vaginal swab for T. vaginalis detection by means of a quantitative real-time PCR assay, wet mount and an immunochromatographic test. Upon comparing the results, prevalence values observed were 1.3% for real-time PCR, 0.5% for microscopic examination, and 0.8% for the immunochromatographic test. Compared to real-time PCR, wet mount sensitivity was 40% (95% confidence interval 19.1% to 63.9%) and specificity was 100% (95% CI 99.7% to 100%). The sensitivity and specificity of the immunochromatographic assay were 57.9% (95% CI 33.5% to 79.8%) and 99.9% (95% CI 99.6% to 100%), respectively. Evaluation of the wet mount results and those of immunochromatographic assay detection in relation to the number of T. vaginalis DNA copies detected in vaginal samples showed that the lower identification threshold for both wet mount (chi-square 6.1; P = 0.016) and the immunochromatographic assay (chi-square 10.7; P = 0.002) was ≥100 copies of T. vaginalis DNA/5 mcl of eluted DNA.

  2. Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.).

    PubMed

    Nageswara-Rao, Madhugiri; Kwit, Charles; Agarwal, Sujata; Patton, Mariah T; Skeen, Jordan A; Yuan, Joshua S; Manshardt, Richard M; Stewart, C Neal

    2013-09-01

    Genetically engineered (GE) ringspot virus-resistant papaya cultivars 'Rainbow' and 'SunUp' have been grown in Hawai'i for over 10 years. In Hawai'i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai'i for the presence of transgenic seed at typical regulatory threshold levels. Incorporation of subtle differences in primers and probes for variations in cp worldwide should allow this method to be utilized elsewhere when and if deregulation of transgenic papaya occurs.

  3. Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.)

    PubMed Central

    2013-01-01

    Background Genetically engineered (GE) ringspot virus-resistant papaya cultivars ‘Rainbow’ and ‘SunUp’ have been grown in Hawai’i for over 10 years. In Hawai’i, the introduction of GE papayas into regions where non-GE cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such transgenic material would benefit both the scientific and regulatory communities. Results We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds. In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%. Conclusions This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai’i for the presence of transgenic seed at typical regulatory threshold levels. Incorporation of subtle differences in primers and probes for variations in cp worldwide should allow this method to be utilized elsewhere when and if deregulation of transgenic papaya occurs. PMID:24004548

  4. Development of a sensitive detection method for stressed E. coli O157:H7 in source and finished drinking water by culture-qPCR.

    PubMed

    Sen, Keya; L Sinclair, James; Boczek, Laura; Rice, Eugene W

    2011-03-15

    A sensitive and specific method that also demonstrates viability is of interest for detection of E. coli O157:H7 in drinking water. A combination of culture and qPCR was investigated. Two triplex qPCRs, one from a commercial source and another designed for this study were optimized from 5 different assays to be run on a single qPCR plate. The qPCR assays were specific for 33 E. coli O157:H7 strains tested and detected 500 cells spiked in a background of 10(8) nontarget bacterial cells. The qPCR detection was combined with an enrichment process using Presence Absence (P/A) broth to detect chlorine and starvation stressed cells. qPCR analysis performed post-enrichment allowed the detection of 3-4 cells/L as indicated by a sharp increase in fluorescence (lowering of Ct values) from pre-enrichment levels, demonstrating a 5-6 log increase in the number of cells. When six vulnerable untreated surface water samples were examined, only one was positive for viable E. coli O157:H7 cells. These results suggest that the culture-PCR procedure can be used for rapid detection of E. coli O157:H7 in drinking water.

  5. Development of loop-mediated isothermal amplification and SYBR green real-time PCR methods for the detection of Citrus yellow mosaic badnavirus in citrus species.

    PubMed

    Anthony Johnson, A M; Dasgupta, I; Sai Gopal, D V R

    2014-07-01

    Citrus yellow mosaic badnavirus (CMBV) is an important pathogen in southern India spread by infected citrus propagules. One of the measures to arrest the spread of CMBV is to develop methods to screen and certify citrus propagules as CMBV-free. The methods loop-mediated isothermal amplification (LAMP) and SYBR green real-time PCR (SGRTPCR) have been developed for the efficient detection of CMBV in citrus propagules. This paper compares the sensitivities of LAMP and SGRTPCR with polymerase chain reaction (PCR) for the detection of CMBV. Whereas PCR and LAMP were able to detect CMBV from a minimum of 10 ng of total DNA of infected leaf samples, SGRTPCR could detect the same from 1 ng of total DNA. Using SGRTPCR, the viral titres were estimated to be the highest in rough lemon and lowest in Nagpur Mandarin of the five naturally infected citrus species tested. The results will help in designing suitable strategies for the sensitive detection of CMBV from citrus propagules. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Real-time PCR assay for the diagnosis of pleural tuberculosis

    PubMed Central

    Cárdenas Bernal, Ana María; Giraldo-Cadavid, Luis Fernando; Prieto Diago, Enrique; Santander, Sandra Paola

    2017-01-01

    Abstract Introduction: The diagnosis of pleural tuberculosis requires an invasive and time-consuming reference method. Polymerase chain reaction (PCR) is rapid, but validation in pleural tuberculosis is still weak. Objective: To establish the operating characteristics of real-time polymerase chain reaction (RT-PCR) hybridization probes for the diagnosis of pleural tuberculosis. Methods: The validity of the RT-PCR hybridization probes was evaluated compared to a composite reference method by a cross-sectional study at the Hospital Universitario de la Samaritana. 40 adults with lymphocytic pleural effusion were included. Pleural tuberculosis was confirmed (in 9 patients) if the patient had at least one of three tests using the positive reference method: Ziehl-Neelsen or Mycobacterium tuberculosis culture in fluid or pleural tissue, or pleural biopsy with granulomas. Pleural tuberculosis was ruled out (in 31 patients) if all three tests were negative. The operating characteristics of the RT-PCR, using the Mid-P Exact Test, were determined using the OpenEpi 2.3 Software (2009). Results: The RT-PCR hybridization probes showed a sensitivity of 66.7% (95% CI: 33.2%-90.7%) and a specificity of 93.5% (95% CI: 80.3%-98.9%). The PPV was 75.0% (95% CI: 38.8%-95.6%) and a NPV of 90.6% (95% CI: 76.6%-97.6%). Two false positives were found for the test, one with pleural mesothelioma and the other with chronic pleuritis with mesothelial hyperplasia. Conclusions: The RT-PCR hybridization probes had good specificity and acceptable sensitivity, but a negative value cannot rule out pleural tuberculosis. PMID:29021638

  7. An improved method for detecting circulating microRNAs with S-Poly(T) Plus real-time PCR

    PubMed Central

    Niu, Yanqin; Zhang, Limin; Qiu, Huiling; Wu, Yike; Wang, Zhiwei; Zai, Yujia; Liu, Lin; Qu, Junle; Kang, Kang; Gou, Deming

    2015-01-01

    We herein describe a simple, sensitive and specific method for analysis of circulating microRNAs (miRNA), termed S-Poly(T) Plus real-time PCR assay. This new method is based on our previously developed S-Poly(T) method, in which a unique S-Poly(T) primer is used during reverse-transcription to increase sensitivity and specificity. Further increased sensitivity and simplicity of S-Poly(T) Plus, in comparison with the S-Poly(T) method, were achieved by a single-step, multiple-stage reaction, where RNAs were polyadenylated and reverse-transcribed at the same time. The sensitivity of circulating miRNA detection was further improved by a modified method of total RNA isolation from serum/plasma, S/P miRsol, in which glycogen was used to increase the RNA yield. We validated our methods by quantifying miRNA expression profiles in the sera of the patients with pulmonary arterial hypertension associated with congenital heart disease. In conclusion, we developed a simple, sensitive, and specific method for detecting circulating miRNAs that allows the measurement of 266 miRNAs from 100 μl of serum or plasma. This method presents a promising tool for basic miRNA research and clinical diagnosis of human diseases based on miRNA biomarkers. PMID:26459910

  8. Co-amplification at lower denaturation temperature-PCR: methodology and applications.

    PubMed

    Liang, Hui; Chen, Guo-Jie; Yu, Yan; Xiong, Li-Kuan

    2018-03-20

    Co-amplification at lower denaturation temperature-polymerase chain reaction (COLD-PCR) is a novel form of PCR that selectively denatures and amplifies low-abundance mutations from mixtures of wild-type and mutation-containing sequences, enriching the mutation 10 to 100 folds. Due to the slightly altered melting temperature (Tm) of the double-stranded DNA and the formation of the mutation/wild-type heteroduplex DNA, COLD-PCR methods are sensitive, specific, accurate, cost-effective and easy to maneuver, and can enrich mutations of any type and at any position, even unknown mutations within amplicons. COLD-PCR and its improved methods are now applied in cancer, microorganisms, prenatal screening, animals and plants. They are extremely useful for early diagnosis, monitoring the prognosis of disease and the efficiency of the treatment, drug selection, prediction of prognosis, plant breeding and etc. In this review, we introduce the principles, key techniques, derived methods and applications of COLD-PCR.

  9. A multiplex real-time PCR assay, based on invA and pagC genes, for the detection and quantification of Salmonella enterica from cattle lymph nodes.

    PubMed

    Bai, Jianfa; Trinetta, Valentina; Shi, Xiaorong; Noll, Lance W; Magossi, Gabriela; Zheng, Wanglong; Porter, Elizabeth P; Cernicchiaro, Natalia; Renter, David G; Nagaraja, Tiruvoor G

    2018-05-01

    Cattle lymph nodes can harbor Salmonella and potentially contaminate beef products. We have developed and validated a new real-time PCR (qPCR) assay for the detection and quantification of Salmonella enterica in cattle lymph nodes. The assay targets both the invA and pagC genes, the most conserved molecular targets in Salmonella enterica. An 18S rRNA gene assay that amplifies from cattle and other animal species was also included as an internal control. Available DNA sequences for invA, pagC and 18S rRNA genes were used for primer and probe selections. Three Salmonella serotypes, S. Typhimurium, S. Anatum, and S. Montevideo, were used to assess the assay's analytical sensitivity. Correlation coefficients of standard curves generated for each target and for all three serotypes were >99% and qPCR amplification efficiencies were between 93% and 110%. Assay sensitivity was also determined using standard curve data generated from Salmonella-negative cattle lymph nodes spiked with 10-fold dilutions of the three Salmonella serotypes. Assay specificity was determined using Salmonella culture method, and qPCR testing on 36 Salmonella strains representing 33 serotypes, 38 Salmonella strains of unknown serotypes, 252 E. coli strains representing 40 serogroups, and 31 other bacterial strains representing 18 different species. A collection of 647 cattle lymph node samples from steers procured from the Midwest region of the US were tested by the qPCR, and compared to culture-method of detection. Salmonella prevalence by qPCR for pre-enriched and enriched lymph nodes was 19.8% (128/647) and 94.9% (614/647), respectively. A majority of qPCR positive pre-enriched samples (105/128) were at concentrations between 10 4 and 10 5  CFU/mL. Culture method detected Salmonella in 7.7% (50/647) and 80.7% (522/647) of pre- and post-enriched samples, respectively; 96.0% (48/50) of pre-enriched and 99.4% (519/522) of post-enriched culture-positive samples were also positive by qPCR. More samples tested positive by qPCR than by culture method, indicating that the real-time PCR assay was more sensitive. Our data indicate that this triplex qPCR can be used to accurately detect and quantify Salmonella enterica strains from cattle lymph node samples. The assay may serve as a useful tool to monitor the prevalence of Salmonella in beef production systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level.

    PubMed

    Zhu, Zhi; Zhang, Wenhua; Leng, Xuefei; Zhang, Mingxia; Guan, Zhichao; Lu, Jiangquan; Yang, Chaoyong James

    2012-10-21

    Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100,000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.

  11. A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system.

    PubMed

    Mu, Di; Yan, Liang; Tang, Hui; Liao, Yong

    2015-10-01

    To develop a sensitive and accurate assay system for the quantification of covalently closed circular HBV DNA (cccDNA) for future clinical monitoring of cccDNA fluctuation during antiviral therapy in the liver of infected patients. A droplet digital PCR (ddPCR)-based assay system detected template DNA input at the single copy level (or ~10(-5) pg of plasmid HBV DNA) by using serially diluted plasmid HBV DNA samples. Compared with the conventional quantitative PCR assay in the detection of cccDNA, which required at least 50 ng of template DNA input, a parallel experiment applying a ddPCR system demonstrates that the lowest detection limit of cccDNA from HepG2.215 cellular DNA samples is around 1 ng, which is equivalent to 0.54 ± 0.94 copies of cccDNA. In addition, we demonstrated that the addition of cccDNA-safe exonuclease and utilization of cccDNA-specific primers in the ddPCR assay system significantly improved the detection accuracy of HBV cccDNA from HepG2.215 cellular DNA samples. The ddPCR-based cccDNA detection system is a sensitive and accurate assay for the quantification of cccDNA in HBV-transfected HepG2.215 cellular DNA samples and may represent an important method for future application in monitoring cccDNA fluctuation during antiviral therapy.

  12. Molecular analysis of dolphin morbillivirus: A new sensitive detection method based on nested RT-PCR.

    PubMed

    Centelleghe, Cinzia; Beffagna, Giorgia; Zanetti, Rossella; Zappulli, Valentina; Di Guardo, Giovanni; Mazzariol, Sandro

    2016-09-01

    Cetacean Morbillivirus (CeMV) has been identified as the most pathogenic virus for cetaceans. Over the past three decades, this RNA virus has caused several outbreaks of lethal disease in odontocetes and mysticetes worldwide. Isolation and identification of CeMV RNA is very challenging in whales because of the poor preservation status frequently shown by tissues from stranded animals. Nested reverse transcription polymerase chain reaction (nested RT-PCR) is used instead of conventional RT-PCR when it is necessary to increase the sensitivity and the specificity of the reaction. This study describes a new nested RT-PCR technique useful to amplify small amounts of the cDNA copy of Cetacean morbillivirus (CeMV) when it is present in scant quantity in whales' biological specimens. This technique was used to analyze different tissues (lung, brain, spleen and other lymphoid tissues) from one under human care seal and seven cetaceans stranded along the Italian coastline between October 2011 and September 2015. A well-characterized, 200 base pair (bp) fragment of the dolphin Morbillivirus (DMV) haemagglutinin (H) gene, obtained by nested RT-PCR, was sequenced and used to confirm DMV positivity in all the eight marine mammals under study. In conclusion, this nested RT-PCR protocol can represent a sensitive detection method to identify CeMV-positive, poorly preserved tissue samples. Furthermore, this is also a rather inexpensive molecular technique, relatively easy to apply. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comparison of Assays for Sensitive and Reproducible Detection of Cell Culture-Infectious Cryptosporidium parvum and Cryptosporidium hominis in Drinking Water

    PubMed Central

    Di Giovanni, George D.; Rochelle, Paul A.

    2012-01-01

    This study compared the three most commonly used assays for detecting Cryptosporidium sp. infections in cell culture: immunofluorescent antibody and microscopy assay (IFA), PCR targeting Cryptosporidium sp.-specific DNA, and reverse transcriptase PCR (RT-PCR) targeting Cryptosporidium sp.-specific mRNA. Monolayers of HCT-8 cells, grown in 8-well chamber slides or 96-well plates, were inoculated with a variety of viable and inactivated oocysts to assess assay performance. All assays detected infection with low doses of flow cytometry-enumerated Cryptosporidium parvum oocysts, including infection with one oocyst and three oocysts. All methods also detected infection with Cryptosporidium hominis. The RT-PCR assay, IFA, and PCR assay detected infection in 23%, 25%, and 51% of monolayers inoculated with three C. parvum oocysts and 10%, 9%, and 16% of monolayers inoculated with one oocyst, respectively. The PCR assay was the most sensitive, but it had the highest frequency of false positives with mock-infected cells and inactivated oocysts. IFA was the only infection detection assay that did not produce false positives with mock-infected monolayers. IFA was also the only assay that detected infections in all experiments with spiked oocysts recovered from Envirochek capsules following filtration of 1,000 liters of treated water. Consequently, cell culture with IFA detection is the most appropriate method for routine and sensitive detection of infectious Cryptosporidium parvum and Cryptosporidium hominis in drinking water. PMID:22038611

  14. Detection of Onchocerca volvulus in Skin Snips by Microscopy and Real-Time Polymerase Chain Reaction: Implications for Monitoring and Evaluation Activities.

    PubMed

    Thiele, Elizabeth A; Cama, Vitaliano A; Lakwo, Thomson; Mekasha, Sindeaw; Abanyie, Francisca; Sleshi, Markos; Kebede, Amha; Cantey, Paul T

    2016-04-01

    Microscopic evaluation of skin biopsies is the monitoring and evaluation (M and E) method currently used by multiple onchocerciasis elimination programs in Africa. However, as repeated mass drug administration suppresses microfilarial loads, the sensitivity and programmatic utility of skin snip microscopy is expected to decrease. Using a pan-filarial real-time polymerase chain reaction with melt curve analysis (qPCR-MCA), we evaluated 1) the use of a single-step molecular assay for detecting and identifying Onchocerca volvulus microfilariae in residual skin snips and 2) the sensitivity of skin snip microscopy relative to qPCR-MCA. Skin snips were collected and examined with routine microscopy in hyperendemic regions of Uganda and Ethiopia (N= 500 each) and "residual" skin snips (tissue remaining after induced microfilarial emergence) were tested with qPCR-MCA. qPCR-MCA detected Onchocerca DNA in 223 residual snips: 139 of 147 microscopy(+) and 84 among microscopy(-) snips, suggesting overall sensitivity of microscopy was 62.3% (139/223) relative to qPCR-MCA (75.6% in Uganda and 28.6% in Ethiopia). These findings demonstrate the insufficient sensitivity of skin snip microscopy for reliable programmatic monitoring. Molecular tools such as qPCR-MCA can augment sensitivity and provide diagnostic confirmation of skin biopsies and will be useful for evaluation or validation of new onchocerciasis M and E tools. © The American Society of Tropical Medicine and Hygiene.

  15. [Histopathological Diagnosis of Invasive Fungal Infections in Formalin-Fixed and Paraffin-Embedded Tissues in Conjunction with Molecular Methods].

    PubMed

    Shinozaki, Minoru; Tochigi, Naobumi; Sadamoto, Sota; Yamagata Murayama, Somay; Wakayama, Megumi; Nemoto, Tetsuo

    2018-01-01

    The main objective of this study was to evaluate the relationship between histopathology, polymerase chain reaction (PCR), and in situ hybridization (ISH) for the identification of causative fungi in formalin-fixed and paraffin-embedded (FFPE) tissue specimens. Since pathogenic fungi in tissue specimens can be difficult to identify morphologically, PCR and ISH have been usually employed as auxiliary procedures. However, little comparison has been made on the sensitivity and specificity of PCR and ISH using FFPE specimens. Therefore, to compare and clarify the reproducibility and usefulness of PCR and ISH as auxiliary procedures for histological identification, we performed histopathological review, PCR assays, and ISH to identify pathogenic fungi in 59 FFPE tissue specimens obtained from 49 autopsies. The following are the main findings for this retrospective review: i) even for cases classified as "mold not otherwise specified" (MNOS), two cases could be identified as Aspergillus species by molecular methods; ii) all cases classified as non-zygomycetes mold (NZM) were Aspergillus species and were not identified by molecular methods as other fungi; iii) all 3 cases classified as zygomycetes mold (ZM) could be identified by molecular methods as Mucorales; iv) except for 1 case identified by molecular methods as Trichosporon spp., 5 cases were originally identified as dimorphic yeast (DY). As a measure of nucleic acid integrity, PCR and ISH successfully detected human and fungal nucleic acids in approximately 60% of the specimens. Detection of Aspergillus DNA by nested PCR assay and by ISH against the A. fumigatus ALP gene were similarly sensitive and significant (p<0.01). Thus, our findings demonstrated the potential risk of error in the classification of fungi based on pathological diagnosis. Combining molecular methods such as ISH and PCR on FFPE specimens with pathological diagnosis should improve diagnostic accuracy of fungal infection.

  16. The market trend analysis and prospects of cancer molecular diagnostics kits.

    PubMed

    Seo, Ju Hwan; Lee, Joon Woo; Cho, Daemyeong

    2018-01-01

    The molecular diagnostics market can be broadly divided into PCR (rt-PCR, d-PCR), NGS(Next Generation Sequencing), Microarray, FISH(Fluorescent in situ-hybridization) and other categories, based on the diagnostic technique. Also, depending on the disease being diagnosed, the market can also be divided into cancer, infectious diseases, HIV/STDs (herpes, syphilis), and women's health issues such as breast cancer, cervical cancer, ovarian cancer, HPV(human papillomavirus), and vaginitis.Chromosome analysis (including Fluorescent In-situ Hybridization) is one type of blood cancer diagnostic method, which involves the direct detection of individual cells with chromosomal translocation, but there have been problems of sensitivity when using this method. PCR targeting individual genes or the RT (reverse transcription)-PCR method offers outstanding sensitivity, but one drawback is the risk of false-positive reaction caused by contamination of samples, etc. Blood cancer molecular diagnostics kits allow us to overcome these shortcomings, and related products have been under development, with a focus on improving detection sensitivity, enabling multiple tests, and reducing the cost and diagnostic time. Blood cancer molecular diagnostics is usually performed based on platforms such as PCR. The global market for blood cancer molecular diagnostics kits is $ 335.9 million as of 2016 and is expected to reach $ 6980 million in 2026 with an average annual growth rate of 32.9%. The market in South Korea is anticipated to grow at an average annual rate of 28.9%, from $ 3.75 million as of 2016 to $ 60.89 million in 2026. The Market for blood cancer molecular diagnostics kits is judged to be higher in growth possibility due to the increase in the number of cancer patients.

  17. Clinical sensitivity and specificity of the Check-Points Check-Direct ESBL Screen for BD MAX, a real-time PCR for direct ESBL detection from rectal swabs.

    PubMed

    Souverein, Dennis; Euser, Sjoerd M; van der Reijden, Wil A; Herpers, Bjorn L; Kluytmans, Jan; Rossen, John W A; Den Boer, Jeroen W

    2017-09-01

    To determine the diagnostic accuracy of the Check-Direct ESBL Screen for BD MAX (ESBL qPCR) and an ESBL culture method to identify ESBLs directly from rectal swabs. Rectal swabs were obtained from clinical patients by performing cross-sectional (point)prevalence measurements in three regional hospitals. Rectal swabs were analysed by direct culture (ChromID ESBL agar) and with the ESBL qPCR. Suspected ESBL-producing isolates were confirmed with the combination disc method and analysed by WGS. Out of 354 rectal swabs and 351 patients, 21 rectal swabs and 20 patients were positive for ESBL-producing isolates, resulting in a regional ESBL colonization prevalence of 5.7%. One rectal swab was false negative with the ESBL qPCR (blaTEM-12) and not covered by the ESBL qPCR. Eight ESBL qPCR-positive rectal swabs could not be confirmed by culture and were classified as false ESBL qPCR positive. The sensitivity and specificity of the ESBL qPCR were 95.2% (n = 20) and 97.6% (n = 323), respectively. When an optimal cycle threshold cut-off value of 37 was used, the ESBL qPCR displayed a sensitivity and specificity of 95.2% (n = 20) and 98.8% (n = 327), respectively (AUC = 0.975, 95% CI = 0.922-1). This ESBL qPCR offers rapid direct detection of the most prevalent ESBL types (blaCTX-M group and blaSHV group) from rectal swabs. The relatively high false-positive rate renders this test the most suitable as a screening test in high-prevalence regions or in an outbreak setting where a fast result is essential. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water.

    PubMed

    Fykse, Else M; Nilsen, Trine; Nielsen, Agnete Dessen; Tryland, Ingun; Delacroix, Stephanie; Blatny, Janet M

    2012-02-01

    Transport of ballast water is one major factor in the transmission of aquatic organisms, including pathogenic bacteria. The IMO-guidelines of the Convention for the Control and Management of Ships' Ballast Water and Sediments, states that ships are to discharge <1 CFU per 100 ml ballast water of toxigenic Vibrio cholerae, emphasizing the need to establish test methods. To our knowledge, there are no methods sensitive and rapid enough available for cholera surveillance of ballast water. In this study real-time PCR and NASBA methods have been evaluated to specifically detect 1 CFU/100ml of V. cholerae in ballast water. Ballast water samples spiked with V. cholerae cells were filtered and enriched in alkaline peptone water before PCR or NASBA detection. The entire method, including sample preparation and analysis was performed within 7 h, and has the potential to be used for analysis of ballast water for inspection and enforcement control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Development of a multiplex probe combination-based one-step real-time reverse transcription-PCR for NA subtype typing of avian influenza virus.

    PubMed

    Sun, Zhihao; Qin, Tao; Meng, Feifei; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2017-10-18

    Nine influenza virus neuraminidase (NA) subtypes have been identified in poultry and wild birds. Few methods are available for rapid and simple NA subtyping. Here we developed a multiplex probe combination-based one-step real-time reverse transcriptase PCR (rRT-PCR) to detect nine avian influenza virus NA subtypes. Nine primer-probe pairs were assigned to three groups based on the different fluorescent dyes of the probes (FAM, HEX, or Texas Red). Each probe detected only one NA subtype, without cross reactivity. The detection limit was less than 100 EID 50 or 100 copies of cDNA per reaction. Data obtained using this method with allantoic fluid samples isolated from live bird markets and H9N2-infected chickens correlated well with data obtained using virus isolation and sequencing, but was more sensitive. This new method provides a specific and sensitive alternative to conventional NA-subtyping methods.

  20. Clinical evaluation and validation of laboratory methods for the diagnosis of Bordetella pertussis infection: Culture, polymerase chain reaction (PCR) and anti-pertussis toxin IgG serology (IgG-PT).

    PubMed

    Lee, Adria D; Cassiday, Pamela K; Pawloski, Lucia C; Tatti, Kathleen M; Martin, Monte D; Briere, Elizabeth C; Tondella, M Lucia; Martin, Stacey W

    2018-01-01

    The appropriate use of clinically accurate diagnostic tests is essential for the detection of pertussis, a poorly controlled vaccine-preventable disease. The purpose of this study was to estimate the sensitivity and specificity of different diagnostic criteria including culture, multi-target polymerase chain reaction (PCR), anti-pertussis toxin IgG (IgG-PT) serology, and the use of a clinical case definition. An additional objective was to describe the optimal timing of specimen collection for the various tests. Clinical specimens were collected from patients with cough illness at seven locations across the United States between 2007 and 2011. Nasopharyngeal and blood specimens were collected from each patient during the enrollment visit. Patients who had been coughing for ≤ 2 weeks were asked to return in 2-4 weeks for collection of a second, convalescent blood specimen. Sensitivity and specificity of each diagnostic test were estimated using three methods-pertussis culture as the "gold standard," composite reference standard analysis (CRS), and latent class analysis (LCA). Overall, 868 patients were enrolled and 13.6% were B. pertussis positive by at least one diagnostic test. In a sample of 545 participants with non-missing data on all four diagnostic criteria, culture was 64.0% sensitive, PCR was 90.6% sensitive, and both were 100% specific by LCA. CRS and LCA methods increased the sensitivity estimates for convalescent serology and the clinical case definition over the culture-based estimates. Culture and PCR were most sensitive when performed during the first two weeks of cough; serology was optimally sensitive after the second week of cough. Timing of specimen collection in relation to onset of illness should be considered when ordering diagnostic tests for pertussis. Consideration should be given to including IgG-PT serology as a confirmatory test in the Council of State and Territorial Epidemiologists (CSTE) case definition for pertussis.

  1. Establishment and application of cross-priming isothermal amplification coupled with lateral flow dipstick (CPA-LFD) for rapid and specific detection of red-spotted grouper nervous necrosis virus.

    PubMed

    Su, Zi Dan; Shi, Cheng Yin; Huang, Jie; Shen, Gui Ming; Li, Jin; Wang, Sheng Qiang; Fan, Chao

    2015-09-26

    Red-spotted grouper nervous necrosis virus (RGNNV) is an important pathogen that causes diseases in many species of fish in marine aquaculture. The larvae and juveniles are more easily infected by RGNNV and the cumulative mortality is as high as 100 % after being infected with RGNNV. This virus imposes a serious threat to aquaculture of grouper fry. This study aimed to establish a simple, accurate and highly sensitive method for rapid detection of RGNNV on the spot. In this study, the primers specifically targeting RGNNV were designed and cross-priming isothermal amplification (CPA) system was established. The product amplified by CPA was detected through visualization with lateral flow dipstick (LFD). Three important parameters, including the amplification temperature, the concentration of dNTPs and the concentration of Mg(2+) for the CPA system, were optimized. The sensitivity and specificity of this method for RGNNV were tested and compared with those of the conventional RT-PCR and real-time quantitative RT-PCR (qRT-PCR). The optimized conditions for the CPA amplification system were determined as follows: the optimal amplification temperature, the optimized concentration of dNTPs and the concentration for Mg(2+) were 69 °C, 1.2 mmol/L and 5 mmol/L, respectively. The lowest limit of detection (LLOD) of this method for RGNNV was 10(1) copies/μL of RNA sample, which was 10 times lower than that of conventional RT-PCR and comparable to that of RT-qPCR. This method was specific for RGNNV in combination with SJNNV and had no cross-reactions with 8 types of virus and bacterial strains tested. This method was successfully applied to detect RGNNV in fish samples. This study established a CPA-LFD method for detection of RGNNV. This method is simple and rapid with high sensitivity and good specificity and can be widely applied for rapid detection of this virus on the spot.

  2. PCR examination of bronchoalveolar lavage samples is a useful tool in pre-clinical diagnosis of ovine pulmonary adenocarcinoma (Jaagsiekte).

    PubMed

    Voigt, K; Brügmann, M; Huber, K; Dewar, P; Cousens, C; Hall, M; Sharp, J M; Ganter, M

    2007-12-01

    Ovine pulmonary adenocarcinoma (OPA) is a contagious lung tumour of sheep caused by Jaagsiekte sheep retrovirus (JSRV). The disease is a particular problem in flocks in many parts of the world. The aim of the study was to assess screening methods for individual animals as a prelude to future eradication trials. Results of histological examination were used as the standard to evaluate the relative sensitivity and specificity of an established heminested polymerase chain reaction (PCR) test for JSRV proviral DNA from blood and bronchoalveolar lavage (BAL) samples. PCR results from tissue samples are included as control data. PCR testing of blood samples was found to have an estimated sensitivity of only 10% (95% confidence interval (CI) 3-20) while the sensitivity of the PCR test on BAL samples was 89% (CI 79-96) in comparison to the results of histological examination. We conclude that PCR testing of BAL samples is an effective confirmatory test for sheep with suspected clinical OPA. It is also a useful tool for the pre-clinical identification of individual infected sheep within an infected flock and therefore may prove beneficial in future control or eradication programmes.

  3. Comparison of microscopy, ELISA, and real-time PCR for detection of Giardia intestinalis in human stool specimens

    PubMed

    Beyhan, Yunus Emre; Taş Cengiz, Zeynep

    2017-08-23

    Background/aim: This study included patients who had digestive system complaints between August 2015 and October 2015. The research was designed to compare conventional microscopy with an antigen detection ELISA kit and the TaqMan-based real-time PCR (RT-PCR) technique for detection of Giardia intestinalis in human stool specimens. Materials and methods: Samples were concentrated by formalin-ether sedimentation technique and microscopic examinations were carried out on wet mount slides. A commercially available ELISA kit (Giardia CELISA, Cellabs, Brookvale, Australia) was used for immunoassay. DNA was extracted from fecal samples of about 200 mg using the QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden, Germany) and the LightCycler Nano system (Roche Diagnostics, Mannheim, Germany) was used for the TaqMan-based RT-PCR assay. Results: A total of 94 stool samples, 38 of them diagnosed positive (40.4%) and 56 of them diagnosed negative by microscopy, were selected for evaluation by antigen detection and molecular assays. The prevalence of G. intestinalis infection was found as 46.8% (n: 44) and 79.8% (n: 75) by ELISA and RT-PCR, respectively. RT-PCR revealed by far the highest positivity rate compared to the other two methods. The difference between these methods was found to be statistically significant (P < 0.05). In comparison to PCR, the sensitivity and specificity of microscopy and ELISA were 50.7% and 100% and 53.3% and 79%, respectively. Conclusion: RT-PCR seems to be much more sensitive and beneficial for rapid and accurate diagnosis of G. intestinalis in human stools.

  4. The detectability of the pretreatment EGFR T790M mutations in lung adenocarcinoma using CAST-PCR and digital PCR

    PubMed Central

    Tatematsu, Tsutomu; Suzuki, Ayumi; Oda, Risa; Sakane, Tadashi; Kawano, Osamu; Haneda, Hiroshi; Moriyama, Satoru; Sasaki, Hidefumi; Nakanishi, Ryoichi

    2017-01-01

    Background A gatekeeper T790M mutation is thought to cause resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment. The detection of a 2nd mutation is important for planning the next therapy when patients acquire resistance to the first line EGFR-TKI. Methods We used a competitive allele-specific polymerase chain reaction (CAST-PCR) to analyze the incidence and clinical significance of T790M mutations in 153 lung adenocarcinomas with EGFR-activating mutations. To increase the sensitivity and specificity of the detection of T790M mutations, we subjected 20 of the 153 cases to a digital PCR. The genomic DNAs were extracted from frozen, surgically resected tumor tissue specimens. Results The CAST-PCR detected T790M mutations in 45 (29.4%) of the 153 cases. The analytical sensitivity in the detection T790M mutations was 0.13–2.65% (average 0.27%, median 0.20%). In contrast, the digital PCR, detected T790M mutations in 8 (40%) out of 20 cases. Conclusions Our study shows that the pretreatment incidence of T790M mutation was less than that reported in previous studies. In order to clinically use pretreatment EGFR T790M mutation identification method, we should clarify the adequate methods and tissue preserved status. PMID:28932544

  5. [Use of nested PCR in detection of the plague pathogen].

    PubMed

    Glukhov, A I; Gordeev, S A; Al'tshuler, M L; Zykova, I E; Severin, S E

    2003-07-01

    Causative agents of plague, i.e. bacterium Yersina pestis (in the subcutaneous tissues of rodents) and their cutaneous parasites need to be isolated to enable plague prevention. A comparatively new method of polymerase chain reaction (PCR) opens up new possibilities of determining Y. pestis just within several hours and without any cultivation. The article contains a description of the PCR-method, which makes it possible to distinguish the culture of Y. pestis from cultures of other microorganism, including speci of Yersina. The method is of the cluster-type, i.e. it is made up of subsequent PC reactions with the substrate for the second reaction being the product of the first one. The cluster nature of the method preconditions a higher sensitivity and specificity versus the ordinary PCR.

  6. Efficiency of Nested-PCR in Detecting Asymptomatic Cases toward Malaria Elimination Program in an Endemic Area of Iran.

    PubMed

    Turki, Habibollah; Raeisi, Ahmad; Malekzadeh, Kianoosh; Ghanbarnejad, Amin; Zoghi, Samaneh; Yeryan, Masoud; Abedi Nejad, Masoumeh; Mohseni, Fatemeh; Shekari, Mohammad

    2015-01-01

    The aim of this study was to detect low parasite and asymptomatic malaria infections by means of three malaria diagnostic tests, in a low transmission region of Minab district, Hormozgan Province, southern Iran. Blood samples of 200 healthy volunteers from Bagh-e-Malek area were evaluated using microscopic, rapid diagnostic tests (RDT) and nested-PCR to inspect malaria parasite. The results showed no Plasmodium parasite in subjects by means of microscopy and RDT. However, 3 P. vivax positive samples (1.5%) were discovered by Nested-PCR while microscopy and RDT missed the cases. Microscopy as the gold standard method and RDT correctly identified 98.5% of cases, and molecular analysis is sensitive and reliable, especially in the detection of "asymptomatic" infections for active case surveillance. Regarding the existence of asymptomatic malaria in endemic area of Hormozgan, Iran, nested-PCR could be considered as a sensitive tool to interrupt malaria transmission in the country, beside the microscopic and RDT methods.

  7. A preamplification approach to GMO detection in processed foods.

    PubMed

    Del Gaudio, S; Cirillo, A; Di Bernardo, G; Galderisi, U; Cipollaro, M

    2010-03-01

    DNA is widely used as a target for GMO analysis because of its stability and high detectability. Real-time PCR is the method routinely used in most analytical laboratories due to its quantitative performance and great sensitivity. Accurate DNA detection and quantification is dependent on the specificity and sensitivity of the amplification protocol as well as on the quality and quantity of the DNA used in the PCR reaction. In order to enhance the sensitivity of real-time PCR and consequently expand the number of analyzable target genes, we applied a preamplification technique to processed foods where DNA can be present in low amounts and/or in degraded forms thereby affecting the reliability of qualitative and quantitative results. The preamplification procedure utilizes a pool of primers targeting genes of interest and is followed by real-time PCR reactions specific for each gene. An improvement of Ct values was found comparing preamplified vs. non-preamplified DNA. The strategy reported in the present study will be also applicable to other fields requiring quantitative DNA testing by real-time PCR.

  8. Toxoplasma gondii infections in chickens - performance of various antibody detection techniques in serum and meat juice relative to bioassay and DNA detection methods.

    PubMed

    Schares, G; Koethe, M; Bangoura, B; Geuthner, A-C; Randau, F; Ludewig, M; Maksimov, P; Sens, M; Bärwald, A; Conraths, F J; Villena, I; Aubert, D; Opsteegh, M; Van der Giessen, J

    2018-05-19

    Chickens, especially if free-range, are frequently exposed to Toxoplasma gondii, and may represent an important reservoir for T. gondii. Poultry products may pose a risk to humans, when consumed undercooked. In addition, chickens are regarded as sensitive indicators for environmental contamination with T. gondii oocysts and have been used as sentinels. The aim of the present study was to determine the suitability of commonly used antibody detection methods, i.e. the modified agglutination test (MAT), IFAT and ELISA to detect T. gondii-infected chickens. Samples of experimentally and naturally infected chickens were used. The infection state of all chickens was determined by Magnetic-Capture (MC-) real-time PCR (RT PCR). Naturally exposed chickens were additionally examined by mouse bioassay and conventional RT PCR on acidic pepsin digests (PD-RT PCR). Blood serum and meat juice of various sources were tested for antibodies to T. gondii. In naturally infected chickens, there was substantial agreement between the mouse bioassay and MC-RT PCR or the mouse bioassay and conventional PD-RT PCR. PD-RT PCR was slightly more sensitive than MC-RT PCR, as all (26/26) bioassay-positive chickens also tested positive in at least one of the tissues tested (heart, drumstick). By MC-RT PCR, 92.3% (24/26) of the naturally infected bioassay-positive chickens were positive. The diagnostic sensitivity of MC-RT PCR was clearly related to the organ examined. Based on a quantitative assessment of the MC-RT PCR results in experimentally infected chickens, brain and heart tissues harbored an at least 100 times higher parasite concentration than breast, thigh or drumstick musculature. In naturally infected chickens, only three out of 24 birds, which were MC-RT PCR-positive in heart samples, also tested positive in drumstick musculature. Under experimental conditions, the agreement between MC-RT PCR and the serological techniques revealed 100% diagnostic sensitivity and specificity. Under field conditions, examinations of sera by ELISA, IFAT and MAT showed good performance in identifying chickens that were positive in either a mouse bioassay, MC-RT PCR, or PD-RT PCR as illustrated by diagnostic sensitivities of 87.5%, 87.5% and 65.2%, respectively, and diagnostic specificities of 86.2%, 82.8% and 100%, respectively. The examination of meat juice samples from breast, drumstick or heart musculature revealed similar or even better results in the ELISA. The results in the MAT with meat juice from breast musculature were less consistent than those of ELISA and IFAT because a number of negative chickens tested false-positive in the MAT. The MAT performed similar to ELISA and IFAT when applied to test meat juice samples collected from heart, thigh or drumstick musculature. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  9. Rapid and Sensitive Salmonella Typhi Detection in Blood and Fecal Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification.

    PubMed

    Fan, Fenxia; Yan, Meiying; Du, Pengcheng; Chen, Chen; Kan, Biao

    2015-09-01

    Typhoid fever caused by Salmonella enterica serovar Typhi remains a significant public health problem in developing countries. Although the main method for diagnosing typhoid fever is blood culture, the test is time consuming and not always able to detect infections. Thus, it is very difficult to distinguish typhoid from other infections in patients with nonspecific symptoms. A simple and sensitive laboratory detection method remains necessary. The purpose of this study is to establish and evaluate a rapid and sensitive reverse transcription-based loop-mediated isothermal amplification (RT-LAMP) method to detect Salmonella Typhi infection. In this study, a new specific gene marker, STY1607, was selected to develop a STY1607-RT-LAMP assay; this is the first report of specific RT-LAMP detection assay for typhoid. Human-simulated and clinical blood/stool samples were used to evaluate the performance of STY1607-RT-LAMP for RNA detection; this method was compared with STY1607-LAMP, reverse transcription real-time polymerase chain reaction (rRT-PCR), and bacterial culture methods for Salmonella Typhi detection. Using mRNA as the template, STY1607-RT-LAMP exhibited 50-fold greater sensitivity than STY1607-LAMP for DNA detection. The STY1607-RT-LAMP detection limit is 3 colony-forming units (CFU)/mL for both the pure Salmonella Typhi samples and Salmonella Typhi-simulated blood samples and was 30 CFU/g for the simulated stool samples, all of which were 10-fold more sensitive than the rRT-PCR method. RT-LAMP exhibited improved Salmonella Typhi detection sensitivity compared to culture methods and to rRT-PCR of clinical blood and stool specimens from suspected typhoid fever patients. Because it can be performed without sophisticated equipment or skilled personnel, RT-LAMP is a valuable tool for clinical laboratories in developing countries. This method can be applied in the clinical diagnosis and care of typhoid fever patients as well as for a quick public health response.

  10. Comparison of commercial RNA extraction kits and qPCR master mixes for studying gene expression in small biopsy tissue samples from the equine gastric epithelium.

    PubMed

    Tesena, Parichart; Korchunjit, Wasamon; Taylor, Jane; Wongtawan, Tuempong

    2017-01-01

    Gastric tissue biopsy and gene expression analysis are important tools for disease diagnosis and study of the physiology of the equine stomach. However, RNA extraction from gastric biopsy samples is a complex procedure because the samples contain low quantities of RNA and are contaminated with mucous protein and bacterial flora. The objectives of these studies were to compare the performance of RNA extraction methods and to investigate the sensitivity of commercial qPCR master mixes for gene expression analysis of gastric biopsy samples. Three commercial RNA extraction methods (TRIzol ™ , GENEzol ™ and MiniPrep ™ ) and four qPCR master mixes with SYBR ® green (qPCRBIO, KAPA, QuantiNova, and PerfeCTa) were compared. RNA qualification and quantitation were compared. Real-time PCR was used to compare qPCR master mixes. The results revealed that TRIzol and GENEzol obtained significantly higher yield of RNA (P<0.01) but that TRIzol had the highest contamination of protein and DNA (P<0.05). Conversely, MiniPrep resulting in a significantly higher purification of RNA (P<0.05) but provided the lowest yield of RNA (P<0.01). For PCR master mixes, KAPA was significantly (P<0.05) more sensitive than other qPCR kits for all amounts of DNA template, particularly at the lowest amount of cDNA. In conclusion, GENEzol is the best method to obtain a high RNA yield and purification and it is more cost-effective than the others as well. Regarding the qPCR master mixes, KAPA SYBR qPCR Master Mix (2x) Universal is superior to the other tested master mixes for studying gene expression in equine gastric biopsies.

  11. Specific detection of common pathogens of acute bacterial meningitis using an internally controlled tetraplex-PCR assay.

    PubMed

    Farahani, Hamidreza; Ghaznavi-Rad, Ehsanollah; Mondanizadeh, Mahdieh; MirabSamiee, Siamak; Khansarinejad, Behzad

    2016-08-01

    Accurate and timely diagnosis of acute bacterial meningitis is critical for antimicrobial treatment of patients. Although PCR-based methods have been widely used for the diagnosis of acute meningitis caused by bacterial pathogens, the main disadvantage of these methods is their high cost. This disadvantage has hampered the widespread use of molecular assays in many developing countries. The application of multiplex assays and "in-house" protocols are two main approaches that can reduce the overall cost of a molecular test. In the present study, an internally controlled tetraplex-PCR was developed and validated for the specific detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae in cerebrospinal fluid (CSF) samples. The analysis of a panel of other human pathogens showed no cross-reactivity in the assay. The analytical sensitivity of the in-house assay was 792.3 copies/ml, when all three bacteria were presentin the specimens. This value was calculated as 444.5, 283.7, 127.8 copies/ml when only S. pneumoniae, N. meningitidis and H. influenzae, respectively, were present. To demonstrate the diagnostic performance of the assay, a total of 150 archival CSF samples were tested and compared with a commercial multiplex real-time PCR kit. A diagnostic sensitivity of 92.8% and a specificity of 95.1% were determined for the present tetraplex-PCR assay. The results indicate that the established method is sensitive, specific and cost-effective, and can be used particularly in situations where the high cost of commercial kits prevents the use of molecular methods for the diagnosis of bacterial meningitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Development and evaluation of the quantitative real-time PCR assay in detection and typing of herpes simplex virus in swab specimens from patients with genital herpes.

    PubMed

    Liu, Junlian; Yi, Yong; Chen, Wei; Si, Shaoyan; Yin, Mengmeng; Jin, Hua; Liu, Jianjun; Zhou, Jinlian; Zhang, Jianzhong

    2015-01-01

    Genital herpes (GH), which is caused mainly by herpes simplex virus (HSV)-2 and HSV-1, remains a worldwide problem. Laboratory confirmation of GH is important, particularly as there are other conditions which present similarly to GH, while atypical presentations of GH also occur. Currently, virus culture is the classical method for diagnosis of GH, but it is time consuming and with low sensitivity. A major advance for diagnosis of GH is to use Real-time polymerase chain reaction (PCR). In this study, to evaluate the significance of the real-time PCR method in diagnosis and typing of genital HSV, the primers and probes targeted at HSV-1 DNA polymerase gene and HSV-2 glycoprotein D gene fraction were designed and applied to amplify DNA from HSV-1 or HSV-2 by employing the real-time PCR technique. Then the PCR reaction system was optimized and evaluated. HSV in swab specimens from patients with genital herpes was detected by real-time PCR. The real-time PCR assay showed good specificity for detection and typing of HSV, with good linear range (5×10(2)~5×10(8) copies/ml, r=0.997), a sensitivity of 5×10(2) copies/ml, and good reproducibility (intra-assay coefficients of variation 2.29% and inter-assay coefficients of variation 4.76%). 186 swab specimens were tested for HSV by real-time PCR, and the positive rate was 23.7% (44/186). Among the 44 positive specimens, 8 (18.2%) were positive for HSV-1 with a viral load of 8.5546×10(6) copies/ml and 36 (81.2%) were positive for HSV-2 with a viral load of 1.9861×10(6) copies/ml. It is concluded that the real-time PCR is a specific, sensitive and rapid method for the detection and typing of HSV, which can be widely used in clinical diagnosis of GH.

  13. Molecular barcodes detect redundancy and contamination in hairpin-bisulfite PCR

    PubMed Central

    Miner, Brooks E.; Stöger, Reinhard J.; Burden, Alice F.; Laird, Charles D.; Hansen, R. Scott

    2004-01-01

    PCR amplification of limited amounts of DNA template carries an increased risk of product redundancy and contamination. We use molecular barcoding to label each genomic DNA template with an individual sequence tag prior to PCR amplification. In addition, we include molecular ‘batch-stamps’ that effectively label each genomic template with a sample ID and analysis date. This highly sensitive method identifies redundant and contaminant sequences and serves as a reliable method for positive identification of desired sequences; we can therefore capture accurately the genomic template diversity in the sample analyzed. Although our application described here involves the use of hairpin-bisulfite PCR for amplification of double-stranded DNA, the method can readily be adapted to single-strand PCR. Useful applications will include analyses of limited template DNA for biomedical, ancient DNA and forensic purposes. PMID:15459281

  14. Simplified PCR for detection of Haemophilus ducreyi and diagnosis of chancroid.

    PubMed Central

    West, B; Wilson, S M; Changalucha, J; Patel, S; Mayaud, P; Ballard, R C; Mabey, D

    1995-01-01

    A simplified PCR was developed for detection of Haemophilus ducreyi in samples from chancroid patients. The strategy included a straightforward chloroform extraction sample preparation method, a one-tube nested PCR to minimize contamination risks, and a colorimetric method for detection of products. Primers were designed from published nucleotide sequences of the 16S rRNA gene of H. ducreyi, with longer outer primers for annealing at a higher temperature and shorter inner primers labelled with biotin and digoxigenin for binding with avidin and colorimetric detection. The PCR technique detected all 35 strains of H. ducreyi tested, from four different geographical regions, and was negative for other, related strains of bacteria and for the common contaminating bacteria tested. Of 25 samples from H. ducreyi culture-positive chancroid patients, 24 were PCR positive and 1 produced a weak reaction. Of 83 samples from clinical cases of chancroid in the Republic of South Africa, 69 were PCR positive. The sensitivity of PCR compared with that of clinical diagnosis was 83%. All 50 negative control samples were negative. Encouraging results were also obtained with a consecutive series of 25 genital ulcer patients in Tanzania, of whom 9 were PCR positive. The adaptations of this simplified PCR strategy, at the sensitivity and specificity levels obtained, mean it will be useful for detection of H. ducreyi in areas where the organism is endemic, particularly where testing by culture is difficult or impossible. PMID:7540625

  15. A one-step multiplex RT-PCR assay for simultaneous detection of four viruses that infect peach.

    PubMed

    Yu, Y; Zhao, Z; Jiang, D; Wu, Z; Li, S

    2013-10-01

    A multiplex reverse transcription polymerase chain reaction (mRT-PCR) assay was developed to enable the simultaneous detection and differentiation of four viruses that infect peach, namely Apple chlorotic leaf spot virus (ACLSV), Cherry green ring mottle virus (CGRMV), Prunus necrotic ringspot virus (PNRSV) and Apricot pseudo-chlorotic leaf spot virus (APCLSV). In this study, four pairs of primers, one specific for each virus, were designed; the corresponding PCR products were 632, 439, 346 and 282 bp in length for ACLSV, CGRMV, PNRSV and APCLSV, respectively, and the fragments could be distinguished clearly by agarose gel electrophoresis. The sensitivity and specificity of the method were tested using individual RT-PCR and enzyme-linked immunosorbent assay (ELISA), and the identity of the RT-PCR amplification products was also confirmed by DNA sequencing. The results of RT-PCR and ELISA, along with batch detection using samples collected from peach orchards, revealed that this rapid and simple technique is an effective way to identify the four viruses simultaneously. The mRT-PCR assay described in this study was developed for the simultaneous detection of four peach viruses from infected peach samples is reliable and sensitive. In contrast to conventional uniplex RT-PCR, mRT-PCR is more efficient, reducing costs, time and handling when testing large numbers of samples. This rapid and simple method is useful for large-scale surveys of viruses that infect peach. © 2013 The Society for Applied Microbiology.

  16. Use of a nested PCR-enzyme immunoassay with an internal control to detect Chlamydophila psittaci in turkeys

    PubMed Central

    Van Loock, Marnix; Verminnen, Kristel; Messmer, Trudy O; Volckaert, Guido; Goddeeris, Bruno M; Vanrompay, Daisy

    2005-01-01

    Background Laboratory diagnosis of Chlamydophila psittaci, an important turkey respiratory pathogen, is difficult. To facilitate the diagnosis, a nested PCR-enzyme immunoassay (PCR-EIA) was developed to detect the Cp. psittaci outer membrane protein A (ompA) gene in pharyngeal swabs. Methods The fluorescein-biotin labelled PCR products were immobilized on streptavidin-coated microtiter plates and detected with anti-fluorescein peroxidase conjugate and a colorimetric substrate. An internal inhibition control was included to rule out the presence of inhibitors of DNA amplification. The diagnostic value of the ompA nested PCR-EIA in comparison to cell culture and a 16S-rRNA based nested PCR was assessed in pharyngeal turkey swabs from 10 different farms experiencing respiratory disease. Results The sensitivity of the nested PCR-EIA was established at 0.1 infection forming units (IFU). Specificity was 100%. The ompA nested PCR-EIA was more sensitive than the 16S-rRNA based nested PCR and isolation, revealing 105 out of 200 (52.5%) positives against 13 and 74 for the latter two tests, respectively. Twenty-nine (23.8%) out of 122 ompA PCR-EIA negatives showed the presence of inhibitors of DNA amplification, although 27 of them became positive after diluting (1/10) the specimens in PCR buffer or after phenol-chloroform extraction and subsequent ethanol precipitation. Conclusion The present study stresses the need for an internal control to confirm PCR true-negatives and demonstrates the high prevalence of chlamydiosis in Belgian turkeys and its potential zoonotic risk. The ompA nested PCR-EIA described here is a rapid, highly sensitive and specific diagnostic assay and will help to facilitate the diagnosis of Cp. psittaci infections in both poultry and man. PMID:16185353

  17. Validity of a PCR assay in CSF for the diagnosis of neurocysticercosis

    PubMed Central

    Campoverde, Alfredo; Romo, Matthew L.; García, Lorena; Piedra, Luis M.; Pacurucu, Mónica; López, Nelson; Aguilar, Jenner; López, Sebastian; Vintimilla, Luis C.; Toral, Ana M.; Peña-Tapia, Pablo

    2017-01-01

    Objective: To prospectively evaluate the validity of a PCR assay in CSF for the diagnosis of neurocysticercosis (NC). Methods: We conducted a multicenter, prospective case-control study, recruiting participants from 5 hospitals in Cuenca, Ecuador, from January 2015 to February 2016. Cases fulfilled validated diagnostic criteria for NC. For each case, a neurosurgical patient who did not fulfill the diagnostic criteria for NC was selected as a control. CT and MRI, as well as a CSF sample, were collected from both cases and controls. The diagnostic criteria to identify cases were used as a reference standard. Results: Overall, 36 case and 36 control participants were enrolled. PCR had a sensitivity of 72.2% (95% confidence interval [CI] 54.8%–85.8%) and a specificity of 100.0% (95% CI 90.3%–100.0%). For parenchymal NC, PCR had a sensitivity of 42.9% (95% CI 17.7%–71.1%), and for extraparenchymal NC, PCR had a sensitivity of 90.9% (95% CI 70.8%–98.9%). Conclusions: This study demonstrated the usefulness of this PCR assay in CSF for the diagnosis of NC. PCR may be particularly helpful for diagnosing extraparenchymal NC when neuroimaging techniques have failed. Classification of evidence: This study provides Class III evidence that CSF PCR can accurately identify patients with extraparenchymal NC. PMID:28105460

  18. A triplex quantitative real-time PCR assay for differential detection of human adenovirus serotypes 2, 3 and 7.

    PubMed

    Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-05-02

    Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.

  19. Novel methods to enhance single strand conformation polymorphism (SSCP) senstivity and efficiency: Application to mutation detection in cystic fibrosis (CF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagstrom, D.J.; Snow, K.; Yuan, Z.

    1994-09-01

    For single gene defects in which there are a variety of mutations with significant frequencies, it is a challenge to find an efficient and sensitive method for mutation detection. For example, although 70% to 75% of CF chromosomes in a North American Caucasian population have the mutation {delta}F508, more than 400 mutations (mostly single base pair substitutions) are represented on the remaining chromosomes. SSCP analysis is a relatively straightforward procedure and therefore suitable for routine use in a clinical laboratory. However, previous reports have demonstrated suboptimal sensitivity rates in screening for mutations. We have developed a novel set of conditionsmore » which greatly enhances sensitivity and efficiency of SSCP. Our protocol incorporates multiplex PCR, stepping of wattages during electrophoresis and increased salt concentration at the anode relative to the gel. To screen for mutations in the CFTR gene, three multiplex PCR reactions are performed using identical thermocycler parameters. Sizes of PCR products range from 441 bp to 196 bp: size differences of > 30 bp are necessary to ensure separation during electrophoresis. All PCR products are separated by electrophoresis at room temperature on a single gel containing 8% (37.5:1) polyacrylamide, 5% glycerol and 1x TBE. Using an anode buffer with increased salt (2x TBE) sharpens smaller sized bands, and stepping watts from 5W to 20W during electrophoresis enhances sensitivity. Positive controls were used to demonstrate that mutations could be detected. Other mutations or polymorphisms were verified by cycle sequencing of PCR products or by alternative PCR-based assays for the more common mutations. Thus, using 3 PCR reactions per patient and one gel condition, we are able to achieve a CF mutation detection rate of approximately 90% in a North American Caucasian population.« less

  20. An interlaboratory study on efficient detection of Shiga toxin-producing Escherichia coli O26, O103, O111, O121, O145, and O157 in food using real-time PCR assay and chromogenic agar.

    PubMed

    Hara-Kudo, Yukiko; Konishi, Noriko; Ohtsuka, Kayoko; Iwabuchi, Kaori; Kikuchi, Rie; Isobe, Junko; Yamazaki, Takumiko; Suzuki, Fumie; Nagai, Yuhki; Yamada, Hiroko; Tanouchi, Atsuko; Mori, Tetsuya; Nakagawa, Hiroshi; Ueda, Yasufumi; Terajima, Jun

    2016-08-02

    To establish an efficient detection method for Shiga toxin (Stx)-producing Escherichia coli (STEC) O26, O103, O111, O121, O145, and O157 in food, an interlaboratory study using all the serogroups of detection targets was firstly conducted. We employed a series of tests including enrichment, real-time PCR assays, and concentration by immunomagnetic separation, followed by plating onto selective agar media (IMS-plating methods). This study was particularly focused on the efficiencies of real-time PCR assays in detecting stx and O-antigen genes of the six serogroups and of IMS-plating methods onto selective agar media including chromogenic agar. Ground beef and radish sprouts samples were inoculated with the six STEC serogroups either at 4-6CFU/25g (low levels) or at 22-29CFU/25g (high levels). The sensitivity of stx detection in ground beef at both levels of inoculation with all six STEC serogroups was 100%. The sensitivity of stx detection was also 100% in radish sprouts at high levels of inoculation with all six STEC serogroups, and 66.7%-91.7% at low levels of inoculation. The sensitivity of detection of O-antigen genes was 100% in both ground beef and radish sprouts at high inoculation levels, while at low inoculation levels, it was 95.8%-100% in ground beef and 66.7%-91.7% in radish sprouts. The sensitivity of detection with IMS-plating was either the same or lower than those of the real-time PCR assays targeting stx and O-antigen genes. The relationship between the results of IMS-plating methods and Ct values of real-time PCR assays were firstly analyzed in detail. Ct values in most samples that tested negative in the IMS-plating method were higher than the maximum Ct values in samples that tested positive in the IMS-plating method. This study indicates that all six STEC serogroups in food contaminated with more than 29CFU/25g were detected by real-time PCR assays targeting stx and O-antigen genes and IMS-plating onto selective agar media. Therefore, screening of stx and O-antigen genes followed by isolation of STECs by IMS-plating methods may be an efficient method to detect the six STEC serogroups. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells.

    PubMed

    Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Myszka, Kamila; Borkowska, Monika; Grajek, Włodzimierz

    2010-01-01

    Microbial colonization is an important step in establishing pathogenic or probiotic relations to host cells and in biofilm formation on industrial or medical devices. The aim of this work was to verify the applicability of quantitative PCR (Real-Time PCR) to measure bacterial colonization of epithelial cells. Salmonella enterica and Caco-2 intestinal epithelial cell line was used as a model. To verify sensitivity of the assay a competition of the pathogen cells to probiotic microorganism was tested. The qPCR method was compared to plate count and radiolabel approach, which are well established techniques in this area of research. The three methods returned similar results. The best quantification accuracy had radiolabel method, followed by qPCR. The plate count results showed coefficient of variation two-times higher than this of qPCR. The quantitative PCR proved to be a reliable method for enumeration of microbes in colonization assay. It has several advantages that make it very useful in case of analyzing mixed populations, where several different species or even strains can be monitored at the same time.

  2. Detection of a substantial number of sub-microscopic Plasmodium falciparum infections by polymerase chain reaction: a potential threat to malaria control and diagnosis in Ethiopia

    PubMed Central

    2013-01-01

    Background Prompt and effective malaria diagnosis not only alleviates individual suffering, but also decreases malaria transmission at the community level. The commonly used diagnostic methods, microscopy and rapid diagnostic tests, are usually insensitive at very low-density parasitaemia. Molecular techniques, on the other hand, allow the detection of low-level, sub-microscopic parasitaemia. This study aimed to explore the presence of sub-microscopic Plasmodium falciparum infections using polymerase chain reaction (PCR). The PCR-based parasite prevalence was compared against microscopy and rapid diagnostic test (RDT). Methods This study used 1,453 blood samples collected from clinical patients and sub-clinical subjects to determine the prevalence of sub-microscopic P. falciparum carriages. Subsets of RDT and microscopy negative blood samples were tested by PCR while all RDT and microscopically confirmed P. falciparum-infected samples were subjected to PCR. Finger-prick blood samples spotted on filter paper were used for parasite genomic DNA extraction. Results The prevalence of sub-microscopic P. falciparum carriage was 19.2% (77/400) (95% CI = 15. 4–23.1). Microscopy-based prevalence of P. falciparum infection was 3.7% (54/1,453) while the prevalence was 6.9% (100/1,453) using RDT alone. Using microscopy and PCR, the estimated parasite prevalence was 20.6% if PCR were performed in 1,453 blood samples. The prevalence was estimated to be 22.7% if RDT and PCR were used. Of 54 microscopically confirmed P. falciparum-infected subjects, PCR detected 90.7% (49/54). Out of 100 RDT-confirmed P. falciparum infections; PCR detected 80.0% (80/100). The sensitivity of PCR relative to microscopy and RDT was, therefore, 90.7% and 80%, respectively. The sensitivity of microscopy and RDT relative to PCR was 16.5 (49/299) and 24.2% (80/330), respectively. The overall PCR-based prevalence of P. falciparum infection was 5.6- and 3.3 fold higher than that determined by microscopy and RDT, respectively. None of the sub-microscopic subjects had severe anaemia, though 29.4% had mild anaemia (10–11.9 g/dl). Conclusions Asymptomatic, low-density malaria infection was common in the study area and PCR may be a better tool for measuring Plasmodium prevalence than microscopy and RDT. The inadequate sensitivity of the diagnostic methods to detect substantial number of sub-microscopic parasitaemia would undoubtedly affect malaria control efforts, making reduction of transmission more difficult. RDT and microscopy-based prevalence studies and subsequent reports of reduction in malaria incidence underestimate the true pictures of P. falciparum infections in the community. PCR, on the other hand, seems to have reasonable sensitivity to detect a higher number of infected subjects with low and sub-microscopic parasite densities than RDTs or microscopy. PMID:24090230

  3. Multiplex PCR for rapid diagnosis and differentiation of pox and pox-like diseases in dromedary Camels.

    PubMed

    Khalafalla, Abdelmalik I; Al-Busada, Khalid A; El-Sabagh, Ibrahim M

    2015-07-07

    Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. Three distinct viruses may cause them: camelpox virus (CMLV), camel parapox virus (CPPV) and camelus dromedary papilloma virus (CdPV). These diseases are often difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify these diseases, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost-and timesaving benefits. In the present communication, we describe the development, optimization and validation of a multiplex PCR assay able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets and was validated with viral genomic DNA extracted from known virus strains (n = 14) and DNA extracted from homogenized clinical skin specimens (n = 86). The assay detects correctly the target pathogens by amplification of targeted genes, even in case of co-infection. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. This assay provide rapid, sensitive and specific method for identifying three important viruses in specimens collected from dromedary camels with varying clinical presentations.

  4. [Comparison between conventional methods, ChromAgar Candida® and PCR method for the identification of Candida species in clinical isolates].

    PubMed

    Estrada-Barraza, Deyanira; Dávalos Martínez, Arturo; Flores-Padilla, Luis; Mendoza-De Elias, Roberto; Sánchez-Vargas, Luis Octavio

    2011-01-01

    The increase in the incidence of yeast species causing fungemia in susceptible immunocompromised patients in the last two decades and the low sensitivity of conventional blood culture has led to the need to develop alternative approaches for the early detection and identification of causative species. The aim of this study was to compare the usefulness of molecular testing by the polymerase chain reaction (PCR) and conventional methods to identify clinical isolates of different species, using the ID32C ATB system (bioMérieux, France), chromogenic culture Chromagar Candida® (CHROMagar, France) and morphogenesis in corn meal agar. We studied 79 isolates, in which the most prevalent species using the system ID32C and PCR was C. albicans, followed by C. tropicalis, C. glabrata and C .krusei. PCR patterns obtained for the identification of clinical isolates were stable and consistent in the various independent studies and showed good reproducibility, concluding that PCR with species-specific primers that amplify genes ITS1 and ITS2 for rRNA or topoisomerase II primers is a very specific and sensitive method for the identification of C. glabrata, C. krusei, C. albicans, and with less specificity for C. tropicalis. Copyright © 2010 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  5. Screening DNA chip and event-specific multiplex PCR detection methods for biotech crops.

    PubMed

    Lee, Seong-Hun

    2014-11-01

    There are about 80 biotech crop events that have been approved by safety assessment in Korea. They have been controlled by genetically modified organism (GMO) and living modified organism (LMO) labeling systems. The DNA-based detection method has been used as an efficient scientific management tool. Recently, the multiplex polymerase chain reaction (PCR) and DNA chip have been developed as simultaneous detection methods for several biotech crops' events. The event-specific multiplex PCR method was developed to detect five biotech maize events: MIR604, Event 3272, LY 038, MON 88017 and DAS-59122-7. The specificity was confirmed and the sensitivity was 0.5%. The screening DNA chip was developed from four endogenous genes of soybean, maize, cotton and canola respectively along with two regulatory elements and seven genes: P35S, tNOS, pat, bar, epsps1, epsps2, pmi, cry1Ac and cry3B. The specificity was confirmed and the sensitivity was 0.5% for four crops' 12 events: one soybean, six maize, three cotton and two canola events. The multiplex PCR and DNA chip can be available for screening, gene-specific and event-specific analysis of biotech crops as efficient detection methods by saving on workload and time. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  6. Sensitive and specific identification by polymerase chain reaction of Eimeria tenella and Eimeria maxima, important protozoan pathogens in laboratory avian facilities.

    PubMed

    Lee, Hyun-A; Hong, Sunhwa; Chung, Yungho; Kim, Okjin

    2011-09-01

    Eimeria tenella and Eimeria maxima are important pathogens causing intracellular protozoa infections in laboratory avian animals and are known to affect experimental results obtained from contaminated animals. This study aimed to find a fast, sensitive, and efficient protocol for the molecular identification of E. tenella and E. maxima in experimental samples using chickens as laboratory avian animals. DNA was extracted from fecal samples collected from chickens and polymerase chain reaction (PCR) analysis was employed to detect E. tenella and E. maxima from the extracted DNA. The target nucleic acid fragments were specifically amplified by PCR. Feces secreting E. tenella and E. maxima were detected by a positive PCR reaction. In this study, we were able to successfully detect E. tenella and E. maxima using the molecular diagnostic method of PCR. As such, we recommended PCR for monitoring E. tenella and E. maxima in laboratory avian facilities.

  7. A Molecular Approach to Nested RT-PCR Using a New Set of Primers for the Detection of the Human Immunodeficiency Virus Protease Gene.

    PubMed

    Zarei, Mohammad; Ravanshad, Mehrdad; Bagban, Ashraf; Fallahi, Shahab

    2016-07-01

    The human immunodeficiency virus (HIV-1) is the etiologic agent of AIDS. The disease can be transmitted via blood in the window period prior to the development of antibodies to the disease. Thus, an appropriate method for the detection of HIV-1 during this window period is very important. This descriptive study proposes a sensitive, efficient, inexpensive, and easy method to detect HIV-1. In this study 25 serum samples of patients under treatment and also 10 positive and 10 negative control samples were studied. Twenty-five blood samples were obtained from HIV-1-infected individuals who were receiving treatment at the acquired immune deficiency syndrome (AIDS) research center of Imam Khomeini hospital in Tehran. The identification of HIV-1-positive samples was done by using reverse transcription to produce copy deoxyribonucleic acid (cDNA) and then optimizing the nested polymerase chain reaction (PCR) method. Two pairs of primers were then designed specifically for the protease gene fragment of the nested real time-PCR (RT-PCR) samples. Electrophoresis was used to examine the PCR products. The results were analyzed using statistical tests, including Fisher's exact test, and SPSS17 software. The 325 bp band of the protease gene was observed in all the positive control samples and in none of the negative control samples. The proposed method correctly identified HIV-1 in 23 of the 25 samples. These results suggest that, in comparison with viral cultures, antibody detection by enzyme linked immunosorbent assay (ELISAs), and conventional PCR methods, the proposed method has high sensitivity and specificity for the detection of HIV-1.

  8. Microscopy outperformed in a comparison of five methods for detecting Trichomonas vaginalis in symptomatic women.

    PubMed

    Nathan, B; Appiah, J; Saunders, P; Heron, D; Nichols, T; Brum, R; Alexander, S; Baraitser, P; Ison, C

    2015-03-01

    In the UK, despite its low sensitivity, wet mount microscopy is often the only method of detecting Trichomonas vaginalis infection. A study was conducted in symptomatic women to compare the performance of five methods for detecting T. vaginalis: an in-house polymerase chain reaction (PCR); Aptima T. vaginalis kit; OSOM ®Trichomonas Rapid Test; culture and microscopy. Symptomatic women underwent routine testing; microscopy and further swabs were taken for molecular testing, OSOM and culture. A true positive was defined as a sample that was positive for T. vaginalis by two or more different methods. Two hundred and forty-six women were recruited: 24 patients were positive for T. vaginalis by two or more different methods. Of these 24 patients, 21 patients were detected by real-time PCR (sensitivity 88%); 22 patients were detected by the Aptima T. vaginalis kit (sensitivity 92%); 22 patients were detected by OSOM (sensitivity 92%); nine were detected by wet mount microscopy (sensitivity 38%); and 21 were detected by culture (sensitivity 88%). Two patients were positive by just one method and were not considered true positives. All the other detection methods had a sensitivity to detect T. vaginalis that was significantly greater than wet mount microscopy, highlighting the number of cases that are routinely missed even in symptomatic women if microscopy is the only diagnostic method available. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Sensitivity of nested-PCR for plasmodium detection in pooled whole blood samples and its usefulness to blood donor screening in endemic areas.

    PubMed

    de Freitas, Daniel Roberto Coradi; Gomes, Luciano Teixeira; Fontes, Cor Jesus F; Tauil, Pedro Luiz; Pang, Lorrin W; Duarte, Elisabeth Carmen

    2014-04-01

    Transfusion-transmitted malaria is a severe disease with high fatality rate. Most Brazilian blood banks in the Amazon region perform malaria screening using microscopic examination (thick smears). Since low parasite concentrations are expected in asymptomatic blood donors a high sensitivity test should be used for donor screening. This study determined the sensitivity of a nested-PCR for plasmodium detection in pooled samples. We performed a one-stage criterion validation study with 21 positive samples pooled with samples from ten negative volunteer until three different concentrations were reached (0.33; 0.25; 0.20 parasites/μL - p/μL). Nested PCR was performed as described by Snounou et al. (1993). Sensitivities (and confidence intervals) were determined by stratum of final parasite concentration on the pooled samples. All samples with parasitemia values of 0.33 and 0.25 p/μL had 100% sensitivity (95%CI=86.3-100). One negative result was obtained from a sample with 0.20 p/μL sensitivity=95.2% (95%CI=76.2-99.9). Compared to parasitemia detectable under ideal conditions of thick smear, this nested-PCR in pooled sample was able to detect 40 times more parasites per microliter. Nested-PCR in pooled samples should be considered as a high sensitive alternative to thick smear for donor screening in blood banks at endemic regions. Local authorities need to assess cost:benefit advantages of this method compared to alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Detection of SEA-type α-thalassemia in embryo biopsies by digital PCR.

    PubMed

    Lee, Ta-Hsien; Hsu, Ya-Chiung; Chang, Chia Lin

    2017-08-01

    Accurate and efficient pre-implantation genetic diagnosis (PGD) based on the analysis of single or oligo-cells is needed for timely identification of embryos that are affected by deleterious genetic traits in in vitro fertilization (IVF) clinics. Polymerase chain reaction (PCR) is the backbone of modern genetic diagnoses, and a spectrum of PCR-based techniques have been used to detect various thalassemia mutations in prenatal diagnosis (PND) and PGD. Among thalassemias, SEA-type α-thalassemia is the most common variety found in Asia, and can lead to Bart's hydrops fetalis and serious maternal complications. To formulate an efficient digital PCR for clinical diagnosis of SEA-type α-thalassemia in cultured embryos, we conducted a pilot study to detect the α-globin and SEA-type deletion alleles in blastomere biopsies with a highly sensitive microfluidics-based digital PCR method. Genomic DNA from embryo biopsy samples were extracted, and crude DNA extracts were first amplified by a conventional PCR procedure followed by a nested PCR reaction with primers and probes that are designed for digital PCR amplification. Analysis of microfluidics-based PCR reactions showed that robust signals for normal α-globin and SEA-type deletion alleles, together with an internal control gene, can be routinely generated using crude embryo biopsies after a 10 6 -fold dilution of primary PCR products. The SEA-type deletion in cultured embryos can be sensitively diagnosed with the digital PCR procedure in clinics. The adoption of this robust PGD method could prevent the implantation of IVF embryos that are destined to develop Bart's hydrops fetalis in a timely manner. The results also help inform future development of a standard digital PCR procedure for cost-effective PGD of α-thalassemia in a standard IVF clinic. Copyright © 2017. Published by Elsevier B.V.

  11. Rapid and accurate detection of KRAS mutations in colorectal cancers using the isothermal-based optical sensor for companion diagnostics

    PubMed Central

    Koo, Bonhan; Lee, Tae Yoon; Lee, Jeong Hoon; Shin, Yong; Lim, Seok-Byung

    2017-01-01

    Although KRAS mutational status testing is becoming a companion diagnostic tool for managing patients with colorectal cancer (CRC), there are still several difficulties when analyzing KRAS mutations using the existing assays, particularly with regard to low sensitivity, its time-consuming, and the need for large instruments. We developed a rapid, sensitive, and specific mutation detection assay based on the bio-photonic sensor termed ISAD (isothermal solid-phase amplification/detection), and used it to analyze KRAS gene mutations in human clinical samples. To validate the ISAD-KRAS assay for use in clinical diagnostics, we examined for hotspot KRAS mutations (codon 12 and codon 13) in 70 CRC specimens using PCR and direct sequencing methods. In a serial dilution study, ISAD-KRAS could detect mutations in a sample containing only 1% of the mutant allele in a mixture of wild-type DNA, whereas both PCR and direct sequencing methods could detect mutations in a sample containing approximately 30% of mutant cells. The results of the ISAD-KRAS assay from 70 clinical samples matched those from PCR and direct sequencing, except in 5 cases, wherein ISAD-KRAS could detect mutations that were not detected by PCR and direct sequencing. We also found that the sensitivity and specificity of ISAD-KRAS were 100% within 30 min. The ISAD-KRAS assay provides a rapid, highly sensitive, and label-free method for KRAS mutation testing, and can serve as a robust and near patient testing approach for the rapid detection of patients most likely to respond to anti-EGFR drugs. PMID:29137388

  12. Pneumocystis PCR: It Is Time to Make PCR the Test of Choice.

    PubMed

    Doyle, Laura; Vogel, Sherilynn; Procop, Gary W

    2017-01-01

    The testing strategy for Pneumocystis at the Cleveland Clinic changed from toluidine blue staining to polymerase chain reaction (PCR). We studied the differences in positivity rates for these assays and compared each with the detection of Pneumocystis in companion specimens by cytology and surgical pathology. We reviewed the results of all Pneumocystis test orders 1 year before and 1 year after the implementation of a Pneumocystis -specific PCR. We also reviewed the corresponding cytology and surgical pathology results, if performed. Finally, we reviewed the medical records of patients with rare Pneumocystis detected by PCR in an effort to differentiate colonization vs true disease. Toluidine blue staining and surgical pathology had similar sensitivities and negative predictive values, both of which were superior to cytology. There was a >4-fold increase in the annual detection of Pneumocystis by PCR compared with toluidine blue staining (toluidine blue staining: 11/1583 [0.69%] vs PCR: 44/1457 [3.0%]; chi-square P < .001). PCR detected 1 more case than surgical pathology and was far more sensitive than cytology. Chart review demonstrated that the vast majority of patients with rare Pneumocystis detected were immunosuppressed, had radiologic findings supportive of this infection, had no other pathogens detected, and were treated for pneumocystosis by the clinical team. PCR was the most sensitive method for the detection of Pneumocystis and should be considered the diagnostic test of choice. Correlation with clinical and radiologic findings affords discrimination of early true disease from the far rarer instances of colonization.

  13. Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis.

    PubMed

    Wu, Henry M; Cordeiro, Soraia M; Harcourt, Brian H; Carvalho, Mariadaglorias; Azevedo, Jailton; Oliveira, Tainara Q; Leite, Mariela C; Salgado, Katia; Reis, Mitermayer G; Plikaytis, Brian D; Clark, Thomas A; Mayer, Leonard W; Ko, Albert I; Martin, Stacey W; Reis, Joice N

    2013-01-22

    Although cerebrospinal fluid (CSF) culture is the diagnostic reference standard for bacterial meningitis, its sensitivity is limited, particularly when antibiotics were previously administered. CSF Gram staining and real-time PCR are theoretically less affected by antibiotics; however, it is difficult to evaluate these tests with an imperfect reference standard. CSF from patients with suspected meningitis from Salvador, Brazil were tested with culture, Gram stain, and real-time PCR using S. pneumoniae, N. meningitidis, and H. influenzae specific primers and probes. An antibiotic detection disk bioassay was used to test for the presence of antibiotic activity in CSF. The diagnostic accuracy of tests were evaluated using multiple methods, including direct evaluation of Gram stain and real-time PCR against CSF culture, evaluation of real-time PCR against a composite reference standard, and latent class analysis modeling to evaluate all three tests simultaneously. Among 451 CSF specimens, 80 (17.7%) had culture isolation of one of the three pathogens (40 S. pneumoniae, 36 N. meningitidis, and 4 H. influenzae), and 113 (25.1%) were real-time PCR positive (51 S. pneumoniae, 57 N. meningitidis, and 5 H. influenzae). Compared to culture, real-time PCR sensitivity and specificity were 95.0% and 90.0%, respectively. In a latent class analysis model, the sensitivity and specificity estimates were: culture, 81.3% and 99.7%; Gram stain, 98.2% and 98.7%; and real-time PCR, 95.7% and 94.3%, respectively. Gram stain and real-time PCR sensitivity did not change significantly when there was antibiotic activity in the CSF. Real-time PCR and Gram stain were highly accurate in diagnosing meningitis caused by S. pneumoniae, N. meningitidis, and H. influenzae, though there were few cases of H. influenzae. Furthermore, real-time PCR and Gram staining were less affected by antibiotic presence and might be useful when antibiotics were previously administered. Gram staining, which is inexpensive and commonly available, should be encouraged in all clinical settings.

  14. A multiplex PCR for detection of six viruses in ducks.

    PubMed

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  15. A multiplex PCR method for the identification of commercially important salmon and trout species (Oncorhynchus and Salmo) in North America.

    PubMed

    Rasmussen Hellberg, Rosalee S; Morrissey, Michael T; Hanner, Robert H

    2010-09-01

    The purpose of this study was to develop a species-specific multiplex polymerase chain reaction (PCR) method that allows for the detection of salmon species substitution on the commercial market. Species-specific primers and TaqMan® probes were developed based on a comprehensive collection of mitochondrial 5' cytochrome c oxidase subunit I (COI) deoxyribonucleic acid (DNA) "barcode" sequences. Primers and probes were combined into multiplex assays and tested for specificity against 112 reference samples representing 25 species. Sensitivity and linearity tests were conducted using 10-fold serial dilutions of target DNA (single-species samples) and DNA admixtures containing the target species at levels of 10%, 1.0%, and 0.1% mixed with a secondary species. The specificity tests showed positive signals for the target DNA in both real-time and conventional PCR systems. Nonspecific amplification in both systems was minimal; however, false positives were detected at low levels (1.2% to 8.3%) in conventional PCR. Detection levels were similar for admixtures and single-species samples based on a 30 PCR cycle cut-off, with limits of 0.25 to 2.5 ng (1% to 10%) in conventional PCR and 0.05 to 5.0 ng (0.1% to 10%) in real-time PCR. A small-scale test with food samples showed promising results, with species identification possible even in heavily processed food items. Overall, this study presents a rapid, specific, and sensitive method for salmon species identification that can be applied to mixed-species and heavily processed samples in either conventional or real-time PCR formats. This study provides a newly developed method for salmon and trout species identification that will assist both industry and regulatory agencies in the detection and prevention of species substitution. This multiplex PCR method allows for rapid, high-throughput species identification even in heavily processed and mixed-species samples. An inter-laboratory study is currently being carried out to assess the ability of this method to identify species in a variety of commercial salmon and trout products.

  16. Real-time RT-PCR, a necessary tool to support the diagnosis and surveillance of rotavirus in Mexico.

    PubMed

    De La Cruz Hernández, Sergio Isaac; Anaya Molina, Yazmin; Gómez Santiago, Fabián; Terán Vega, Heidi Lizbeth; Monroy Leyva, Elda; Méndez Pérez, Héctor; García Lozano, Herlinda

    2018-04-01

    Rotavirus produces diarrhea in children under 5 years old. Most of those conventional methods such as polyacrylamide gel electrophoresis (PAGE) and reverse transcription-polymerase chain reaction (RT-PCR) have been used for rotavirus detection. However, these techniques need a multi-step process to get the results. In comparison with conventional methods, the real-time RT-PCR is a highly sensitive method, which allows getting the results in only one day. In this study a real-time RT-PCR assay was tested using a panel of 440 samples from patients with acute gastroenteritis, and characterized by PAGE and RT-PCR. The results show that the real-time RT-PCR detected rotavirus from 73% of rotavirus-negative samples analyzed by PAGE and RT-PCR; thus, the percentage of rotavirus-positive samples increased to 81%. The results indicate that this real-time RT-PCR should be part of a routine analysis, and as a support of the diagnosis of rotavirus in Mexico. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Development and optimization of an efficient qPCR system for olive authentication in edible oils.

    PubMed

    Alonso-Rebollo, Alba; Ramos-Gómez, Sonia; Busto, María D; Ortega, Natividad

    2017-10-01

    The applicability of qPCR in olive-oil authentication depends on the DNA obtained from the oils and the amplification primers. Therefore, four olive-specific amplification systems based on the trnL gene were designed (A-, B-, C- and D-trnL systems). The qPCR conditions, primer concentration and annealing temperature, were optimized. The systems were tested for efficiency and sensitivity to select the most suitable for olive oil authentication. The selected system (D-trnL) demonstrated specificity toward olive in contrast to other oleaginous species (canola, soybean, sunflower, maize, peanut and coconut) and showed high sensitivity in a broad linear dynamic range (LOD and LOQ: 500ng - 0.0625pg). This qPCR system enabled detection, with high sensitivity and specificity, of olive DNA isolated from oils processed in different ways, establishing it as an efficient method for the authentication of olive oil regardless of its category. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Advanced yellow fever virus genome detection in point-of-care facilities and reference laboratories.

    PubMed

    Domingo, Cristina; Patel, Pranav; Yillah, Jasmin; Weidmann, Manfred; Méndez, Jairo A; Nakouné, Emmanuel Rivalyn; Niedrig, Matthias

    2012-12-01

    Reported methods for the detection of the yellow fever viral genome are beset by limitations in sensitivity, specificity, strain detection spectra, and suitability to laboratories with simple infrastructure in areas of endemicity. We describe the development of two different approaches affording sensitive and specific detection of the yellow fever genome: a real-time reverse transcription-quantitative PCR (RT-qPCR) and an isothermal protocol employing the same primer-probe set but based on helicase-dependent amplification technology (RT-tHDA). Both assays were evaluated using yellow fever cell culture supernatants as well as spiked and clinical samples. We demonstrate reliable detection by both assays of different strains of yellow fever virus with improved sensitivity and specificity. The RT-qPCR assay is a powerful tool for reference or diagnostic laboratories with real-time PCR capability, while the isothermal RT-tHDA assay represents a useful alternative to earlier amplification techniques for the molecular diagnosis of yellow fever by field or point-of-care laboratories.

  19. Estimates of Helicobacter pylori densities in the gastric mucus layer by PCR, histologic examination, and CLOtest.

    PubMed

    Nowak, J A; Forouzandeh, B; Nowak, J A

    1997-09-01

    Helicobacter pylori inhabits the gastric mucus layer of infected persons. A number of investigators have reported the feasibility of detecting H pylori in gastric mucus with polymerase chain reaction (PCR)-based methods. We have established the sensitivity of a simple PCR assay for detecting H pylori in gastric mucus samples and estimate that the density of H pylori organisms in the gastric mucus of untreated patients is approximately 107 to 108 organisms per milliliter. We have similarly estimated the analytic sensitivities of histologic examination and the CLOtest (TRI-MED Specialties, Overland Park, Kan) for detecting H pylori and calculate similar values for the numbers of organisms in the gastric mucus layer. Our data indicate that gastric mucus is a suitable specimen for the detection of H pylori in infected patients, and that PCR-based assays of gastric mucus are significantly more sensitive than histologic testing or the CLOtest for demonstration of H pylori infection.

  20. Molecular detection of Toxoplasma gondii in water samples from Scotland and a comparison between the 529bp real-time PCR and ITS1 nested PCR.

    PubMed

    Wells, Beth; Shaw, Hannah; Innocent, Giles; Guido, Stefano; Hotchkiss, Emily; Parigi, Maria; Opsteegh, Marieke; Green, James; Gillespie, Simon; Innes, Elisabeth A; Katzer, Frank

    2015-12-15

    Waterborne transmission of Toxoplasma gondii is a potential public health risk and there are currently no agreed optimised methods for the recovery, processing and detection of T. gondii oocysts in water samples. In this study modified methods of T. gondii oocyst recovery and DNA extraction were applied to 1427 samples collected from 147 public water supplies throughout Scotland. T. gondii DNA was detected, using real time PCR (qPCR) targeting the 529bp repeat element, in 8.79% of interpretable samples (124 out of 1411 samples). The samples which were positive for T. gondii DNA originated from a third of the sampled water sources. The samples which were positive by qPCR and some of the negative samples were reanalysed using ITS1 nested PCR (nPCR) and results compared. The 529bp qPCR was the more sensitive technique and a full analysis of assay performance, by Bayesian analysis using a Markov Chain Monte Carlo method, was completed which demonstrated the efficacy of this method for the detection of T. gondii in water samples. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Simple and rapid method for the detection of Filobasidiella neoformans in a probiotic dairy product by using loop-mediated isothermal amplification.

    PubMed

    Ishikawa, Hiroshi; Kasahara, Kohei; Sato, Sumie; Shimakawa, Yasuhisa; Watanabe, Koichi

    2014-05-16

    Yeast contamination is a serious problem in the food industry and a major cause of food spoilage. Several yeasts, such as Filobasidiella neoformans, which cause cryptococcosis in humans, are also opportunistic pathogens, so a simple and rapid method for monitoring yeast contamination in food is essential. Here, we developed a simple and rapid method that utilizes loop-mediated isothermal amplification (LAMP) for the detection of F. neoformans. A set of five specific LAMP primers was designed that targeted the 5.8S-26S rDNA internal transcribed spacer 2 region of F. neoformans, and the primer set's specificity was confirmed. In a pure culture of F. neoformans, the LAMP assay had a lower sensitivity threshold of 10(2)cells/mL at a runtime of 60min. In a probiotic dairy product artificially contaminated with F. neoformans, the LAMP assay also had a lower sensitivity threshold of 10(2)cells/mL, which was comparable to the sensitivity of a quantitative PCR (qPCR) assay. We also developed a simple two-step method for the extraction of DNA from a probiotic dairy product that can be performed within 15min. This method involves initial protease treatment of the test sample at 45°C for 3min followed by boiling at 100°C for 5min under alkaline conditions. In a probiotic dairy product artificially contaminated with F. neoformans, analysis by means of our novel DNA extraction method followed by LAMP with our specific primer set had a lower sensitivity threshold of 10(3)cells/mL at a runtime of 60min. In contrast, use of our novel method of DNA extraction followed by qPCR assay had a lower sensitivity threshold of only 10(5)cells/mL at a runtime of 3 to 4h. Therefore, unlike the PCR assay, our LAMP assay can be used to quickly evaluate yeast contamination and is sensitive even for crude samples containing bacteria or background impurities. Our study provides a powerful tool for the primary screening of large numbers of food samples for yeast contamination. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Broad-Range PCR Coupled with Electrospray Ionization Time of Flight Mass Spectrometry for Detection of Bacteremia and Fungemia in Patients with Neutropenic Fever

    PubMed Central

    Maertens, J.; Bueselinck, K.; Lagrou, K.

    2016-01-01

    Infection is an important complication in patients with hematologic malignancies or solid tumors undergoing intensive cytotoxic chemotherapy. In only 20 to 30% of the febrile neutropenic episodes, an infectious agent is detected by conventional cultures. In this prospective study, the performance of broad-range PCR coupled with electrospray ionization time of flight mass spectrometry (PCR/ESI-MS) technology was compared to conventional blood cultures (BC) in a consecutive series of samples from high-risk hematology patients. In 74 patients, BC and a whole-blood sample for PCR/ESI-MS (Iridica BAC BSI; Abbott, Carlsbad, CA, USA) were collected at the start of each febrile neutropenic episode and, in case of persistent fever, also at day 5. During 100 different febrile episodes, 105 blood samples were collected and analyzed by PCR/ESI-MS. There was evidence of a bloodstream infection (BSI) in 36/105 cases (34%), based on 14 cases with both PCR/ESI-MS and BC positivity, 17 cases with BC positivity only, and 5 cases with PCR/ESI-MS positivity only. The sensitivity of PCR/ESI-MS was 45%, specificity was 93%, and the negative predictive value was 80% compared to blood culture. PCR/ESI-MS detected definite pathogens (Fusobacterium nucleatum and Streptococcus pneumoniae) missed by BC, whereas it missed both Gram-negative and Gram-positive organisms detected by BC. PCR/ESI-MS testing detected additional microorganisms but showed a low sensitivity (45%) compared to BC in neutropenic patients. Our results indicate a lower concordance between BC and PCR/ESI-MS in the neutropenic population than what has been previously reported in other patient groups with normal white blood cell distribution, and a lower sensitivity than other PCR-based methods. PMID:27440820

  3. TaqMan based real time PCR assay targeting EML4-ALK fusion transcripts in NSCLC.

    PubMed

    Robesova, Blanka; Bajerova, Monika; Liskova, Kvetoslava; Skrickova, Jana; Tomiskova, Marcela; Pospisilova, Sarka; Mayer, Jiri; Dvorakova, Dana

    2014-07-01

    Lung cancer with the ALK rearrangement constitutes only a small fraction of patients with non-small cell lung cancer (NSCLC). However, in the era of molecular-targeted therapy, efficient patient selection is crucial for successful treatment. In this context, an effective method for EML4-ALK detection is necessary. We developed a new highly sensitive variant specific TaqMan based real time PCR assay applicable to RNA from formalin-fixed paraffin-embedded tissue (FFPE). This assay was used to analyze the EML4-ALK gene in 96 non-selected NSCLC specimens and compared with two other methods (end-point PCR and break-apart FISH). EML4-ALK was detected in 33/96 (34%) specimens using variant specific real time PCR, whereas in only 23/96 (24%) using end-point PCR. All real time PCR positive samples were confirmed with direct sequencing. A total of 46 specimens were subsequently analyzed by all three detection methods. Using variant specific real time PCR we identified EML4-ALK transcript in 17/46 (37%) specimens, using end-point PCR in 13/46 (28%) specimens and positive ALK rearrangement by FISH was detected in 8/46 (17.4%) specimens. Moreover, using variant specific real time PCR, 5 specimens showed more than one EML4-ALK variant simultaneously (in 2 cases the variants 1+3a+3b, in 2 specimens the variants 1+3a and in 1 specimen the variant 1+3b). In one case of 96 EML4-ALK fusion gene and EGFR mutation were detected. All simultaneous genetic variants were confirmed using end-point PCR and direct sequencing. Our variant specific real time PCR assay is highly sensitive, fast, financially acceptable, applicable to FFPE and seems to be a valuable tool for the rapid prescreening of NSCLC patients in clinical practice, so, that most patients able to benefit from targeted therapy could be identified. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Determining the prevalence of inv-positive and ail-positive Yersinia enterocolitica in pig tonsils using PCR and culture methods.

    PubMed

    Stachelska, Milena Alicja

    2017-01-01

    Yersiniosis is believed to be the third most common intestinal zoonosis in the European Union, after campylobacteriosis and salmonellosis. Yersinia enterocolitica is the most common species responsible for human infections. Pigs are regarded as the biggest reservoir of pathogenic Y. enterocolitica strains, which are mainly isolated from pig tonsils. The aim of this paper is to examine the prevalence of inv-positive and ail-positive Y. enterocolitica in pigs which were slaughtered in a Polish abattoir. Real-time PCR and culture methods were used to assess the prevalence of patho- genic Y. enterocolitica strains in pig tonsils. Real-time PCR was applied to detect inv-positive and ail-positive Y. enterocolitica. Y. enterocolitica was also isolated by applying direct plating, unselective (tryptic soy broth) and selective (irgasan-ticarcillin-potassium chlorate bouillon) enrichment. A total of 180 pigs were studied, of which 85% and 32% respectively were found to be infected with inv-positive and ail-positive Y. enterocolitica. The 92 inv-positive and ail-positive isolates, from 57 culture- positive tonsils, underwent bio- and serotyping. The most common was bioserotype 4/O:3, which was found in 53 (93%) out of 57 culture-positive tonsils. Strains of bioserotypes 2/O:5, 2/O:9 and 2/O:5.27 occurred in significantly lower numbers. The prevalence of inv-positive and ail-positive Y. enterocolitica was found to be high in the ton- sils of slaughtered pigs, using real-time PCR. The real-time PCR method for the detection and identification of pathogenic Y. enterocolitica is sensitive and specific, which has been verified by specificity and sensitivity tests using the pure cultures. Serotypes were distinguished from each other using PCR serotyping. The PCR method was essential in forming our conclusions.

  5. Comparison of culture and qPCR methods in detection of mycobacteria from drinking waters.

    PubMed

    Räsänen, Noora H J; Rintala, Helena; Miettinen, Ilkka T; Torvinen, Eila

    2013-04-01

    Environmental mycobacteria are common bacteria in man-made water systems and may cause infections and hypersensitivity pneumonitis via exposure to water. We compared a generally used cultivation method and a quantitative polymerase chain reaction (qPCR) method to detect mycobacteria in 3 types of drinking waters: surface water, ozone-treated surface water, and groundwater. There was a correlation between the numbers of mycobacteria obtained by cultivation and qPCR methods, but the ratio of the counts obtained by the 2 methods varied among the types of water. The qPCR counts in the drinking waters produced from surface or groundwater were 5 to 34 times higher than culturable counts. In ozone-treated surface waters, both methods gave similar counts. The ozone-treated drinking waters had the highest concentration of assimilable organic carbon, which may explain the good culturability. In warm tap waters, qPCR gave 43 times higher counts than cultivation, but both qPCR counts and culturable counts were lower than those in the drinking waters collected from the same sites. The TaqMan qPCR method is a rapid and sensitive tool for total quantitation of mycobacteria in different types of clean waters. The raw water source and treatments affect both culturability and total numbers of mycobacteria in drinking waters.

  6. Application of loop-mediated isothermal amplification for malaria diagnosis during a follow-up study in São Tomé

    PubMed Central

    2012-01-01

    Background A reliable and simple test for the detection of malaria parasite is crucial in providing effective treatment and therapeutic follow-up, especially in malaria elimination programmes. A comparison of four methods, including nested polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) were used for the malaria diagnosis and treatment follow-up in São Tomé and Príncipe, during a successful pre-elimination campaign. Method During the period September to November 2009, blood samples from 128 children (five to 14 years old) with temperature ≥38°C (tympanic) in the District of Agua Grande were examined using four different methods, i.e., histidine-rich protein 2 (HRP-2) based rapid diagnostic tests (HRP-2-RDTs), optical microscopy, nested PCR, and LAMP. First-line treatment with artesunate-amodiaquine was given for uncomplicated malaria and intravenous quinine was given for complicated malaria. Children with persistent positivity for malaria by microscopy, or either by nested PCR, or by LAMP on day 7 were given second-line treatment with artemether-lumefantrine. Treatment follow-up was made weekly, for up to four weeks. Results On day 0, positive results for HRP-2-RDTs, microscopy, nested PCR, and LAMP, were 68(53%), 47(37%), 64(50%), and 65(51%), respectively. When nested PCR was used as a reference standard, only LAMP was comparable; both HRP-2-RDTs and microscopy had moderate sensitivity; HRP-2-RDTs had poor positive predictive value (PPV) and a moderate negative predictive value (NPV) for the treatment follow-up. Seventy-one children with uncomplicated malaria and eight children with complicated falciparum malaria were diagnosed based on at least one positive result from the four tests as well as clinical criteria. Twelve of the 79 children receiving first-line treatment had positive results by nested PCR on day 7 (nested PCR-corrected day 7 cure rate was 85%). After the second-line treatment, nested PCR/LAMP-corrected day 28 cure rate was 83% for these 12 children. Conclusions HRP-2-RDTs have similar sensitivity as microscopy but less specificity. However, as compared to nested PCR, the poor sensitivity of HRP-2-RDTs indicates that low parasitaemia may not be detected after treatment, as well as the low specificity of HRP-2-RDTs indicates it cannot be applied for treatment follow-up. LAMP has similar sensitivity and specificity to nested PCR. With high PPV and NPV, LAMP is simpler and faster as compared to nested PCR with the advantage of detecting low parasitaemia becoming a potential point-of-care test for treatment follow-up. PMID:23217163

  7. PCR/LDR/universal array platforms for the diagnosis of infectious disease.

    PubMed

    Pingle, Maneesh; Rundell, Mark; Das, Sanchita; Golightly, Linnie M; Barany, Francis

    2010-01-01

    Infectious diseases account for between 14 and 17 million deaths worldwide each year. Accurate and rapid diagnosis of bacterial, fungal, viral, and parasitic infections is therefore essential to reduce the morbidity and mortality associated with these diseases. Classical microbiological and serological methods have long served as the gold standard for diagnosis but are increasingly being replaced by molecular diagnostic methods that demonstrate increased sensitivity and specificity and provide an identification of the etiologic agent in a shorter period of time. PCR/LDR coupled with universal array detection provides a highly sensitive and specific platform for the detection and identification of bacterial and viral infections.

  8. PCR/LDR/Universal Array Platforms for the Diagnosis of Infectious Disease

    PubMed Central

    Pingle, Maneesh; Rundell, Mark; Das, Sanchita; Golightly, Linnie M.; Barany, Francis

    2015-01-01

    Infectious diseases account for between 14 and 17 million deaths worldwide each year. Accurate and rapid diagnosis of bacterial, fungal, viral, and parasitic infections is therefore essential to reduce the morbidity and mortality associated with these diseases. Classical microbiological and serological methods have long served as the gold standard for diagnosis but are increasingly being replaced by molecular diagnostic methods that demonstrate increased sensitivity and specificity and provide an identification of the etiologic agent in a shorter period of time. PCR/LDR coupled with universal array detection provides a highly sensitive and specific platform for the detection and identification of bacterial and viral infections. PMID:20217576

  9. High-resolution melting analysis for noninvasive prenatal diagnosis of IVS-II-I (G-A) fetal DNA in minor beta-thalassemia mothers.

    PubMed

    Zafari, Mandana; Gill, Pooria; Kowsaryan, Mehrnoush; Alipour, Abbass; Banihashemi, Ali

    2016-10-01

    The high-resolution melting (HRM) technique is fast, effective and successful method for mutation detection. The aim of this study was to determine the sensitivity and specificity of the HRM method for detection of a paternally inherited mutation in a fetus as a noninvasive prenatal diagnosis of β-thalassemia. Genomic DNAs were prepared from 50 β-thalassemia minor couples whose pregnancy was at risk for homozygous β-thalassemia. Ten milliliters of the maternal blood from each pregnant woman were collected and after separating plasma stored at -80 °C until analysis. The extracted DNAs were analyzed by HRM real-time PCR for detection of IVS-II-I (G-A) as a paternally inherited mutation. The gold standard was the result of a chorionic villus sampling by a standard reverse dot blotting test. The sensitivity and specificity of HRM real-time PCR were 92.6% and 82.6%, respectively. Also, the positive and negative predictive values were 86.2% and 90.47%, respectively. HRM real-time PCR was a sensitive and specific method for determining the paternally inherited mutation in the fetus at risk with thalassemia major.

  10. Malaria surveillance in the Democratic Republic of the Congo: comparison of microscopy, PCR, and rapid diagnostic test.

    PubMed

    Doctor, Stephanie M; Liu, Yunhao; Whitesell, Amy; Thwai, Kyaw L; Taylor, Steve M; Janko, Mark; Emch, Michael; Kashamuka, Melchior; Muwonga, Jérémie; Tshefu, Antoinette; Meshnick, Steven R

    2016-05-01

    Malaria surveillance is critical for control efforts, but diagnostic methods frequently disagree. Here, we compare microscopy, PCR, and a rapid diagnostic test in 7137 samples from children in the Democratic Republic of the Congo using latent class analysis. PCR had the highest sensitivity (94.6%) and microscopy had the lowest (76.7%). Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Highly sensitive detection of ESR1 mutations in cell-free DNA from patients with metastatic breast cancer using molecular barcode sequencing.

    PubMed

    Masunaga, Nanae; Kagara, Naofumi; Motooka, Daisuke; Nakamura, Shota; Miyake, Tomohiro; Tanei, Tomonori; Naoi, Yasuto; Shimoda, Masafumi; Shimazu, Kenzo; Kim, Seung Jin; Noguchi, Shinzaburo

    2018-01-01

    We aimed to develop a highly sensitive method to detect ESR1 mutations in cell-free DNA (cfDNA) using next-generation sequencing with molecular barcode (MB-NGS) targeting the hotspot segment (c.1600-1713). The sensitivity of MB-NGS was tested using serially diluted ESR1 mutant DNA and then cfDNA samples from 34 patients with metastatic breast cancer were analyzed with MB-NGS. The results of MB-NGS were validated in comparison with conventional NGS and droplet digital PCR (ddPCR). MB-NGS showed a higher sensitivity (0.1%) than NGS without barcode (1%) by reducing background errors. Of the cfDNA samples from 34 patients with metastatic breast cancer, NGS without barcode revealed seven mutations in six patients (17.6%) and MB-NGS revealed six additional mutations including three mutations not reported in the COSMIC database of breast cancer, resulting in total 13 ESR1 mutations in ten patients (29.4%). Regarding the three hotspot mutations, all the patients with mutations detected by MB-NGS had identical mutations detected by droplet digital PCR (ddPCR), and mutant allele frequency correlated very well between both (r = 0.850, p < 0.01). Moreover, all the patients without these mutations by MB-NGS were found to have no mutations by ddPCR. In conclusion, MB-NGS could successfully detect ESR1 mutations in cfDNA with a higher sensitivity of 0.1% than conventional NGS and was considered as clinically useful as ddPCR.

  12. Neuraminidase Subtyping of Avian Influenza Viruses with PrimerHunter-Designed Primers and Quadruplicate Primer Pools

    PubMed Central

    Huang, Yanyan; Khan, Mazhar; Măndoiu, Ion I.

    2013-01-01

    We have previously developed a software package called PrimerHunter to design primers for PCR-based virus subtyping. In this study, 9 pairs of primers were designed with PrimerHunter and successfully used to differentiate the 9 neuraminidase (NA) genes of avian influenza viruses (AIVs) in multiple PCR-based assays. Furthermore, primer pools were designed and successfully used to decrease the number of reactions needed for NA subtyping from 9 to 4. The quadruplicate primer-pool method is cost-saving, and was shown to be suitable for the NA subtyping of both cultured AIVs and uncultured AIV swab samples. The primers selected for this study showed excellent sensitivity and specificity in NA subtyping by RT-PCR, SYBR green-based Real-time PCR and Real-time RT-PCR methods. AIV RNA of 2 to 200 copies (varied by NA subtypes) could be detected by these reactions. No unspecific amplification was displayed when detecting RNAs of other avian infectious viruses such as Infectious bronchitis virus, Infectious bursal disease virus and Newcastle disease virus. In summary, this study introduced several sensitive and specific PCR-based assays for NA subtyping of AIVs and also validated again the effectiveness of the PrimerHunter tool for the design of subtyping primers. PMID:24312367

  13. Development and evaluation of a sensitive enzyme-linked oligonucleotide-sorbent assay for detection of polymerase chain reaction-amplified hepatitis C virus of genotypes 1-6.

    PubMed

    Huang, Rong-Yuan; Chang, Hao-Teng; Lan, Chung-Yu; Pai, Tun-Wen; Wu, Chao-Nan; Ling, Chung-Mei; Chang, Margaret Dah-Tsyr

    2008-08-01

    A high-throughput polymerase chain reaction (PCR)-based enzyme-linked oligonucleotide-sorbent assay (ELOSA) was developed for use in the diagnostic testing of serum from patients who may be infected with different hepatitis C virus (HCV) genotypes. Twelve genotype-specific 5'-aminated DNA-coated probes were designed based on the variable 5'-untranslated region sequences of the HCV genotypes 1-6. Using 100 clinical serum samples, the performance of the PCR-ELOSA method was compared with Roche's COBAS Amplicor HCV Monitor V2.0 assay and the VERSANT HCV genotype assay (LiPA), and the overall agreement was 99% at the level of HCV genotypes with a detection range of 2.0 x 10(2) to 1.0 x 10(7)IU/ml for PCR-ELOSA. The PCR-ELOSA was more comprehensive as demonstrated by the fact that approximately 20% of the samples with different subtypes could be discriminated by this method but not by LiPA. In addition, the PCR-ELOSA system showed high accuracy (CV

  14. Detection of coliform bacteria and Escherichia coli by multiplex polymerase chain reaction: comparison with defined substrate and plating methods for water quality monitoring.

    PubMed Central

    Bej, A K; McCarty, S C; Atlas, R M

    1991-01-01

    Multiplex polymerase chain reaction (PCR) and gene probe detection of target lacZ and uidA genes were used to detect total coliform bacteria and Escherichia coli, respectively, for determining water quality. In tests of environmental water samples, the lacZ PCR method gave results statistically equivalent to those of the plate count and defined substrate methods accepted by the U.S. Environmental Protection Agency for water quality monitoring and the uidA PCR method was more sensitive than 4-methylumbelliferyl-beta-D-glucuronide-based defined substrate tests for specific detection of E. coli. Images PMID:1768116

  15. Diagnostic accuracy of droplet digital PCR for detection of EGFR T790M mutation in circulating tumor DNA

    PubMed Central

    Tong, Xiang; Wang, Ye; Wang, Chengdi; Jin, Jing; Tian, Panwen; Li, Weimin

    2018-01-01

    Objectives Although different methods have been established to detect epidermal growth factor receptor (EGFR) T790M mutation in circulating tumor DNA (ctDNA), a wide range of diagnostic accuracy values were reported in previous studies. The aim of this meta-analysis was to provide pooled diagnostic accuracy measures for droplet digital PCR (ddPCR) in the diagnosis of EGFR T790M mutation based on ctDNA. Materials and methods A systematic review and meta-analysis were carried out based on resources from Pubmed, Web of Science, Embase and Cochrane Library up to October 11, 2017. Data were extracted to assess the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio (NLR), diagnostic OR (DOR), and areas under the summary receiver-operating characteristic curve (SROC). Results Eleven of 311 studies identified have met the including criteria. The sensitivity and specificity of ddPCR for the detection of T790M mutation in ctDNA ranged from 0.0% to 100.0% and 63.2% to 100.0%, respectively. For the pooled analysis, ddPCR had a performance of 70.1% (95% CI, 62.7%–76.7%) sensitivity, 86.9 % (95% CI, 80.6%–91.7%) specificity, 3.67 (95% CI, 2.33–5.79) PLR, 0.41 (95% CI, 0.32–0.55) NLR, and 10.83 (95% CI, 5.86–20.03) DOR, with the area under the SROC curve being 0.82. Conclusion The ddPCR harbored a good performance for detection of EGFR T790M mutation in ctDNA. PMID:29844700

  16. [Detection of rubella virus RNA in clinical material by real time polymerase chain reaction method].

    PubMed

    Domonova, É A; Shipulina, O Iu; Kuevda, D A; Larichev, V F; Safonova, A P; Burchik, M A; Butenko, A M; Shipulin, G A

    2012-01-01

    Development of a reagent kit for detection of rubella virus RNA in clinical material by PCR-RT. During development and determination of analytical specificity and sensitivity DNA and RNA of 33 different microorganisms including 4 rubella strains were used. Comparison of analytical sensitivity of virological and molecular-biological methods was performed by using rubella virus strains Wistar RA 27/3, M-33, "Orlov", Judith. Evaluation of diagnostic informativity of rubella virus RNAisolation in various clinical material by PCR-RT method was performed in comparison with determination of virus specific serum antibodies by enzyme immunoassay. A reagent kit for the detection of rubella virus RNA in clinical material by PCR-RT was developed. Analytical specificity was 100%, analytical sensitivity - 400 virus RNA copies per ml. Analytical sensitivity of the developed technique exceeds analytical sensitivity of the Vero E6 cell culture infection method in studies of rubella virus strains Wistar RA 27/3 and "Orlov" by 11g and 31g, and for M-33 and Judith strains is analogous. Diagnostic specificity is 100%. Diagnostic specificity for testing samples obtained within 5 days of rash onset: for peripheral blood sera - 20.9%, saliva - 92.5%, nasopharyngeal swabs - 70.1%, saliva and nasopharyngeal swabs - 97%. Positive and negative predictive values of the results were shown depending on the type of clinical material tested. Application of reagent kit will allow to increase rubella diagnostics effectiveness at the early stages of infectious process development, timely and qualitatively perform differential diagnostics of exanthema diseases, support tactics of anti-epidemic regime.

  17. A multiplex PCR method for the simultaneous detection of three viruses associated with canine viral enteric infections.

    PubMed

    Deng, Xiaoyu; Zhang, Jiali; Su, Jiazi; Liu, Hao; Cong, Yanlong; Zhang, Lei; Zhang, Kemeng; Shi, Ning; Lu, Rongguang; Yan, Xijun

    2018-04-19

    The aim of this study was to establish a multiplex PCR (mPCR) method that can simultaneously detect canine parvovirus (CPV-2), canine coronavirus (CCoV) and canine adenovirus (CAV), thereby eliminating the need to detect these pathogens individually. Based on conserved regions in the genomes of these three viruses, the VP2 gene of CPV-2, the endoribonuclease nsp15 gene of CCoV, and the 52K gene of CAV were selected for primer design. The specificity of the mPCR results showed no amplification of canine distemper virus (CDV), canine parainfluenza virus (CPIV), or pseudorabies virus (PRV), indicating that the method had good specificity. A sensitivity test showed that the detection limit of the mPCR method was 1 × 10 4 viral copies. A total of 63 rectal swabs from dogs with diarrheal symptoms were evaluated using mPCR and routine PCR. The ratio of positive samples to total samples for CPV-2, CCoV, and CAV was 55.6% (35/63) for mPCR and 55.6% (35/63) for routine PCR. Thirty-five positive samples were detected by both methods, for a coincidence ratio of 100%. This mPCR method can simultaneously detect CCoV (CCoV-II), CAV (CAV-1, CAV-2) and CPV-2 (CPV-2a, CPV-2b, CPV-2c), which are associated with viral enteritis, thereby providing an efficient, inexpensive, specific, and accurate new tool for clinical diagnosis and laboratory epidemiological investigations.

  18. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR.

    PubMed

    Kim, Jeong-Soon; Wang, Nian

    2009-03-06

    Citrus Huanglongbing (HLB) is one of the most devastating diseases on citrus and is associated with Candidatus Liberibacter spp.. The pathogens are phloem limited and have not been cultured in vitro. The current management strategy of HLB is to remove infected citrus trees and reduce psyllid populations with insecticides to prevent the spreading. This strategy requires sensitive and reliable diagnostic methods for early detection. We investigated the copy numbers of the 16S rDNA and 16S rRNA of the HLB pathogen and the implication of improving the diagnosis of HLB for early detection using Quantitative PCR. We compared the detection of HLB with different Quantitative PCR based methods with primers/probe targeting either 16S rDNA, beta-operon DNA, 16S rRNA, or beta-operon RNA. The 16S rDNA copy number of Ca. Liberibacter asiaticus was estimated to be three times of that of the beta-operon region, thus allowing detection of lower titer of Ca. L. asiaticus. Quantitative reverse transcriptional PCR (QRT-PCR) indicated that the 16S rRNA averaged 7.83 times more than that of 16S rDNA for the same samples. Dilution analysis also indicates that QRT-PCR targeting 16S rRNA is 10 time more sensitive than QPCR targeting 16S rDNA. Thus QRT-PCR was able to increase the sensitivity of detection by targeting 16S rRNA. Our result indicates that Candidatus Liberibacter asiaticus contains three copies of 16S rDNA. The copy number of 16S rRNA of Ca. L. asiaticus in planta averaged about 7.8 times of 16S rDNA for the same set of samples tested in this study. Detection sensitivity of HLB could be improved through the following approaches: using 16S rDNA based primers/probe in the QPCR assays; and using QRT-PCR assays targeting 16S rRNA.

  19. Clinical value of polymerase chain reaction in the diagnosis of joint tuberculosis by detecting the DNA of Mycobacterium tuberculosis.

    PubMed

    Sun, Yong-sheng; Lou, Si-quan; Wen, Jian-min; Lv, Wei-xin; Jiao, Chang-geng; Yang, Su-min; Xu, Hai-bin

    2011-02-01

    To assess the clinical value of polymerase chain reaction (PCR) in the diagnosis and differential diagnosis of joint tuberculosis (TB). PCR was used blindly to detect the DNA of Mycobacterium tuberculosis (M.TB) in five specimens of M.TB, 5 of BCG, and 10 of other bacteria. Then, M. TB in 98 samples from patients with joint TB and 100 samples from patients with non-tubercular joint disorders were detected by PCR, acid-fast staining and culture,. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of PCR were calculated. The χ2 test was used for statistical analysis of the frequency of various factors. At the same time, some problems with PCR were also systematically analyzed. (1) In the "standard samples", both M. TB and BCG showed positive while other bacteria were negative. (2) In 98 cases from patients with joint TB, 81 were positive by PCR, 6 by acid-fast staining, and 17 by culture. In 100 cases from patients with non-tuberculous joint disorders, 9 were positive by PCR, and none by either acid-fast staining or culture. Sensitivity, specificity, accuracy, positive and negative predictive value of PCR were 82.65% (81/98), 91.00% (91/100), 86.87% (172/198), 90.00% (81/90) and 84.26% (91/108), respectively. (3) The positive rates for PCR, acid-fast staining and culture in detection of M. TB were 82.65% (81/98), 6.12% (6/98), and 17.34% (17/98), respectively. There were statistically significant differences between the three methods (P < 0.001). (4) The process of PCR is automatic, and can be completed within 3 to 6 hours, whereas 4 to 8 weeks are required for the conventional culture of M. TB. PCR is a sensitive, specific, rapid, simple and minimally invasive method for detection of M. TB in samples from joint TB, and can play an important role in early and rapid diagnosis and differential diagnosis of joint TB. But it also has some limitations, such as false positivity and false negativity. © 2011 Tianjin Hospital and Blackwell Publishing Asia Pty Ltd.

  20. Rapid antigen detection tests for malaria diagnosis in severely ill Papua New Guinean children: a comparative study using Bayesian latent class models.

    PubMed

    Manning, Laurens; Laman, Moses; Rosanas-Urgell, Anna; Turlach, Berwin; Aipit, Susan; Bona, Cathy; Warrell, Jonathan; Siba, Peter; Mueller, Ivo; Davis, Timothy M E

    2012-01-01

    Although rapid diagnostic tests (RDTs) have practical advantages over light microscopy (LM) and good sensitivity in severe falciparum malaria in Africa, their utility where severe non-falciparum malaria occurs is unknown. LM, RDTs and polymerase chain reaction (PCR)-based methods have limitations, and thus conventional comparative malaria diagnostic studies employ imperfect gold standards. We assessed whether, using Bayesian latent class models (LCMs) which do not require a reference method, RDTs could safely direct initial anti-infective therapy in severe ill children from an area of hyperendemic transmission of both Plasmodium falciparum and P. vivax. We studied 797 Papua New Guinean children hospitalized with well-characterized severe illness for whom LM, RDT and nested PCR (nPCR) results were available. For any severe malaria, the estimated prevalence was 47.5% with RDTs exhibiting similar sensitivity and negative predictive value (NPV) to nPCR (≥96.0%). LM was the least sensitive test (87.4%) and had the lowest NPV (89.7%), but had the highest specificity (99.1%) and positive predictive value (98.9%). For severe falciparum malaria (prevalence 42.9%), the findings were similar. For non-falciparum severe malaria (prevalence 6.9%), no test had the WHO-recommended sensitivity and specificity of >95% and >90%, respectively. RDTs were the least sensitive (69.6%) and had the lowest NPV (96.7%). RDTs appear a valuable point-of-care test that is at least equivalent to LM in diagnosing severe falciparum malaria in this epidemiologic situation. None of the tests had the required sensitivity/specificity for severe non-falciparum malaria but the number of false-negative RDTs in this group was small.

  1. Highly Sensitive Droplet Digital PCR Method for Detection of EGFR-Activating Mutations in Plasma Cell-Free DNA from Patients with Advanced Non-Small Cell Lung Cancer.

    PubMed

    Zhu, Guanshan; Ye, Xin; Dong, Zhengwei; Lu, Ya Chao; Sun, Yun; Liu, Yi; McCormack, Rose; Gu, Yi; Liu, Xiaoqing

    2015-05-01

    Epidermal growth factor receptor (EGFR) mutation testing in plasma cell-free DNA from lung cancer patients is an emerging clinical tool. However, compared with tissue testing, the sensitivity of plasma testing is not yet satisfactory because of the highly fragmented nature of plasma cell-free DNA, low fraction of tumor DNA, and limitations of available detection technologies. We therefore developed a highly sensitive and specific droplet digital PCR method for plasma EGFR mutation (exon19 deletions and L858R) testing. Plasma from 86 EGFR-tyrosine kinase inhibitor-naive lung cancer patients was tested and compared with EGFR mutation status of matched tumor tissues tested by amplification refractory mutation system. By using EGFR mutation-positive cell DNA, we optimized the droplet digital PCR assays to reach 0.04% sensitivity. The plasma testing sensitivity and specificity, compared with the matched tumor tissues tested by amplification refractory mutation system, were 81.82% (95% CI, 59.72%-94.81%) and 98.44% (95% CI, 91.60%-99.96%), respectively, for exon19 deletions, with 94.19% concordance rate (κ = 0.840; 95% CI, 0.704-0.976; P < 0.0001), whereas they were 80.00% (95% CI, 51.91%-95.67%) and 95.77% (95% CI, 88.14%-99.12%), respectively, for L858R, with 93.02% concordance rate (κ = 0.758; 95% CI, 0.571-0.945; P < 0.0001). The reported highly sensitive and specific droplet digital PCR assays for EGFR mutation detection have potential in clinical blood testing. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. A novel COLD-PCR/FMCA assay enhances the detection of low-abundance IDH1 mutations in gliomas.

    PubMed

    Pang, Brendan; Durso, Mary B; Hamilton, Ronald L; Nikiforova, Marina N

    2013-03-01

    Point mutations in isocitrate dehydrogenase 1 (IDH1) have been identified in many gliomas. The detection of IDH1 mutations becomes challenging on suboptimal glioma biopsies when a limited number of tumor cells is available for analysis. Coamplification at lower denaturing-polymerase chain reaction (COLD-PCR) is a PCR technique that deliberately lowers the denaturing cycle temperature to selectively favor amplification of mutant alleles, allowing for the sensitive detection of low-abundance mutations. We developed a novel COLD-PCR assay on the LightCycler platform (Roche, Applied Science, Indianapolis, IN), using post-PCR fluorescent melting curve analysis (FMCA) for the detection of mutant IDH1 with a detection limit of 1%. Thirty-five WHO grade I to IV gliomas and 9 non-neoplastic brain and spinal cord biopsies were analyzed with this technique and the results were compared with the conventional real-time PCR and the Sanger sequencing analysis. COLD-PCR/FMCA was able to detect the most common IDH1 R132H mutation and rare mutation types including R132H, R132C, R132L, R132S, and R132G mutations. Twenty-five glioma cases were positive for IDH1 mutations by COLD-PCR/FMCA, and 23 gliomas were positive by the conventional real-time PCR and Sanger sequencing. A pilocytic astrocytoma (PA I) and a glioblastoma multiforme (GBM IV) showed low-abundance IDH1 mutations detected by COLD-PCR/FMCA. The remaining 10 glioma and 9 non-neoplastic samples were negative by all the 3 methods. In summary, we report a novel COLD-PCR/FMCA method that provides rapid and sensitive detection of IDH1 mutations in formalin-fixed paraffin-embedded tissue and can be used in the clinical setting to assess the small brain biopsies.

  3. Comparison of PCR, culturing and Pap smear microscopy for accurate diagnosis of genital Actinomyces.

    PubMed

    Kaya, Dilek; Demirezen, Şayeste; Hasçelik, Gülşen; Gülmez Kivanç, Dolunay; Beksaç, Mehmet Sinan

    2013-05-01

    Members of the genus Actinomyces, Gram-positive, non-spore-forming anaerobic bacteria, are normal inhabitants of the mucosal surfaces of the oral, gastrointestinal and genital tracts. Identification of these bacteria using conventional methods is generally difficult because of their complex transport and growth requirements and their fastidious and slow-growing nature. However, in recent years, the advancement of molecular techniques has provided much improved identification and differentiation of closely related Actinomyces species. The aim of the present study was to evaluate the efficacy of the PCR technique in the diagnosis of genital Actinomyces in comparison with culturing and Papanicolaou (Pap) smear microscopy. Multiple sampling was conducted from 200 women using smear microscopy, culturing and PCR. Cyto-brushes were smeared on glass slides and stained using the routine Pap technique. Culturing was performed from a sterile swab, and Actinomyces were determined using the BBL Crystal ANR ID kit. PCR was performed from a second swab, and the Actinomyces type was determined using type-specific primers designed in our laboratory. Only one vaginal fluid sample (0.5%) revealed Actinomyces-like organisms on Pap smear examination. Actinomyces were detected in nine samples (4.5%) using the BBL Crystal ANR ID kit. Using PCR, eight samples (4%) were found positive for Actinomyces. No specimens that gave positive results by Pap smear microscopy and culturing could be confirmed by PCR. Pap smear microscopy and culturing were both found to have zero sensitivity for Actinomyces. PCR appears to be a sensitive and reliable diagnostic method for the detection of Actinomyces, which are difficult to cultivate from genital samples. PCR can be used for diagnostic confirmation in cases diagnosed by conventional methods, to prevent false-positive results.

  4. Rapid direct identification of Cryptococcus neoformans from pigeon droppings by nested PCR using CNLAC1 gene.

    PubMed

    Chae, H S; Park, G N; Kim, S H; Jo, H J; Kim, J T; Jeoung, H Y; An, D J; Kim, N H; Shin, B W; Kang, Y I; Chang, K S

    2012-08-01

    Isolation and identification of Cryptococcus neoformans and pathogenic yeast-like fungi from pigeon droppings has been taken for a long time and requires various nutrients for its growth. In this study, we attempted to establish a rapid direct identification method of Cr. neoformans from pigeon dropping samples by nested-PCR using internal transcribed spacer (ITS) CAP64 and CNLAC1 genes, polysaccharide capsule gene and laccase-associated gene to produce melanin pigment, respectively, which are common genes of yeasts. The ITS and CAP64 genes were amplified in all pathogenic yeasts, but CNLAC1 was amplified only in Cr. neoformans. The ITS gene was useful for yeast genotyping depending on nucleotide sequence. Homology of CAP64 genes among the yeasts were very high. The specificity of PCR using CNLAC1 was demonstrated in Cr. neoformans environmental strains but not in other yeast-like fungi. The CNLAC1 gene was detected in 5 serotypes of Cr. neoformans. The nested-PCR amplified up to 10(-11) μg of the genomic DNA and showed high sensitivity. All pigeon droppings among 31 Cr. neoformans-positive samples were positive and all pigeon droppings among 348 Cr. neoformans-negative samples were negative by the direct nested-PCR. In addition, after primary enrichment of pigeon droppings in Sabouraud dextrose broth, all Cr. neoformans-negative samples were negative by the nested-PCR, which showed high specificity. The nested-PCR showed high sensitivity without culture of pigeon droppings. Nested-PCR using CNLAC1 provides a rapid and reliable molecular diagnostic method to overcome weak points such as long culture time of many conventional methods.

  5. Detection of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma using droplet digital polymerase chain reaction.

    PubMed

    Biron, Vincent L; Kostiuk, Morris; Isaac, Andre; Puttagunta, Lakshmi; O'Connell, Daniel A; Harris, Jeffrey; Côté, David W J; Seikaly, Hadi

    2016-05-15

    The incidence of oropharyngeal squamous cell carcinoma caused by oncogenic HPV (HPV-OPSCC) is rising worldwide. HPV-OPSCC is commonly diagnosed by RT-qPCR of HPV-16 E6 and E7 oncoproteins or by cyclin-dependent kinase inhibitor 2A, multiple tumor suppressor 1 (p16) immunohistochemistry (IHC). Droplet digital PCR (ddPCR) has been recently reported as ultra-sensitive and highly precise method of nucleic acid quantification for biomarker analysis. We aimed to validate this method for the detection of HPV-16 E6 and E7 in HPV-OPSCC. Participants were recruited from January 2015-November 2015 at initial presentation to the University of Alberta Head and Neck Oncology Clinic. RNA was extracted, purified and quantified from prospectively collected participant tissues, and ddPCR was performed with fluorescent probes detecting HPV-16 E6 and E7. Results from ddPCR were compared with p16 IHC performed by clinical pathology as standard of care. Head and neck tissues were prospectively obtained from 68 participants including 29 patients with OPSCC, 29 patients with non-OPSCC and 10 patients without carcinoma. 79.2% of patients with OPSCC were p16 positive. The sensitivity and specificity of ddPCR HPV E6/E7 compared with p16 IHC in OPSCC was 91.3 and 100%, respectively. The amount of target RNA used was ≤1 ng, 20-50 times lower than reported by other for RT-qPCR HPV E6/E7. The ddPCR of HPV E6/E7 is a novel and highly specific method of detecting HPV-16 in OPSCC. Cancer 2016;122:1544-51. © 2016 American Cancer Society. © 2016 American Cancer Society.

  6. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    PubMed

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  7. Molecular Tools for Diagnosis of Visceral Leishmaniasis: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy

    PubMed Central

    de Ruiter, C. M.; van der Veer, C.; Leeflang, M. M. G.; Deborggraeve, S.; Lucas, C.

    2014-01-01

    Molecular methods have been proposed as highly sensitive tools for the detection of Leishmania parasites in visceral leishmaniasis (VL) patients. Here, we evaluate the diagnostic accuracy of these tools in a meta-analysis of the published literature. The selection criteria were original studies that evaluate the sensitivities and specificities of molecular tests for diagnosis of VL, adequate classification of study participants, and the absolute numbers of true positives and negatives derivable from the data presented. Forty studies met the selection criteria, including PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), and loop-mediated isothermal amplification (LAMP). The sensitivities of the individual studies ranged from 29 to 100%, and the specificities ranged from 25 to 100%. The pooled sensitivity of PCR in whole blood was 93.1% (95% confidence interval [CI], 90.0 to 95.2), and the specificity was 95.6% (95% CI, 87.0 to 98.6). The specificity was significantly lower in consecutive studies, at 63.3% (95% CI, 53.9 to 71.8), due either to true-positive patients not being identified by parasitological methods or to the number of asymptomatic carriers in areas of endemicity. PCR for patients with HIV-VL coinfection showed high diagnostic accuracy in buffy coat and bone marrow, ranging from 93.1 to 96.9%. Molecular tools are highly sensitive assays for Leishmania detection and may contribute as an additional test in the algorithm, together with a clear clinical case definition. We observed wide variety in reference standards and study designs and now recommend consecutively designed studies. PMID:24829226

  8. Detection of Mycoplasma hyopneumoniae by polymerase chain reaction in swine presenting respiratory problems

    PubMed Central

    Yamaguti, M.; Muller, E.E.; Piffer, A.I.; Kich, J.D.; Klein, C.S.; Kuchiishi, S.S.

    2008-01-01

    Since Mycoplasma hyopneumoniae isolation in appropriate media is a difficult task and impractical for daily routine diagnostics, Nested-PCR (N-PCR) techniques are currently used to improve the direct diagnostic sensitivity of Swine Enzootic Pneumonia. In a first experiment, this paper describes a N-PCR technique optimization based on three variables: different sampling sites, sample transport media, and DNA extraction methods, using eight pigs. Based on the optimization results, a second experiment was conducted for testing validity using 40 animals. In conclusion, the obtained results of the N-PCR optimization and validation allow us to recommend this test as a routine monitoring diagnostic method for Mycoplasma hyopneumoniae infection in swine herds. PMID:24031248

  9. Comparative evaluation of two Rickettsia typhi-specific quantitative real-time PCRs for research and diagnostic purposes.

    PubMed

    Papp, Stefanie; Rauch, Jessica; Kuehl, Svenja; Richardt, Ulricke; Keller, Christian; Osterloh, Anke

    2017-02-01

    Rickettsioses are caused by intracellular bacteria of the family of Rickettsiaceae. Rickettsia (R.) typhi is the causative agent of endemic typhus. The disease occurs worldwide and is one of the most prevalent rickettsioses. Rickettsial diseases, however, are generally underdiagnosed which is mainly due to the lack of sensitive and specific methods. In addition, methods for quantitative detection of the bacteria for research purposes are rare. We established two qPCRs for the detection of R. typhi by amplification of the outer membrane protein B (ompB) and parvulin-type PPIase (prsA) genes. Both qPCRs are specific and exclusively recognize R. typhi but no other rickettsiae including the closest relative, R. prowazekii. The prsA-based qPCR revealed to be much more sensitive than the amplification of ompB and provided highly reproducible results in the detection of R. typhi in organs of infected mice. Furthermore, as a nested PCR the prsA qPCR was applicable for the detection of R. typhi in human blood samples. Collectively, the prsA-based qPCR represents a reliable method for the quantitative detection of R. typhi for research purposes and is a promising candidate for differential diagnosis.

  10. Molecular diagnosis of toxoplasmosis in immunocompromised patients.

    PubMed

    Robert-Gangneux, Florence; Belaz, Sorya

    2016-08-01

    Toxoplasmosis in immunocompromised patients is associated with a high mortality rate. Molecular techniques are important tools to diagnose acute disease in immunocompromised patients, but there are various methods with variable efficiency. Some of them have been validated for the diagnosis of congenital toxoplasmosis, but the impact of their use has not been evaluated in immunocompromised patients. Toxoplasmosis is of increasing importance in non-HIV immunocompromised patients. In addition, the picture of disease shows greater severity in South America, both in immunocompetent study participants and in congenitally infected infants. These epidemiological differences could influence the sensitivity of diagnostic methods. This review analyzes recent data on molecular diagnosis and compares them with older ones, in light of progress gained in molecular techniques and of recent epidemiological findings. Most recent studies were conducted in South America and used PCR targeting the B1 gene. PCR on blood could allow diagnosing a significant proportion of patients with ocular toxoplasmosis in Brazil. Quantitative PCR methods with specific probes should be used to improve sensitivity and warrant specificity. Performance of quantitative PCR targeting the repeated 529 bp sequence for the diagnosis of toxoplasmosis in immunocompromised patients needs evaluation in field studies in South America and in western countries.

  11. Detection of Alternaria fungal contamination in cereal grains by a polymerase chain reaction-based assay.

    PubMed

    Zur, Gideon; Shimoni, Eyal; Hallerman, Eric; Kashi, Yechezkel

    2002-09-01

    Alternaria sp. are important fungal contaminants of grain products; they secrete four structural classes of compounds that are toxic or carcinogenic to plants and animals and cause considerable economic losses to growers and the food-processing industry. Alternaria toxins have been detected by high-performance liquid chromatography (HPLC), enzyme-linked immunosorbent assay, and other techniques. Here, we report the development of a polymerase chain reaction (PCR)-based method for the detection of Alternaria DNA. PCR primers were designed to anneal to the ITS1 and ITS2 regions of the 5.8S rDNA gene of Alternaria alternata or Alternaria solani but not to other microbial or plant DNA. We compared the sensitivity of PCR in detecting Alternaria DNA, that of the HPLC method in detecting Alternaria alternariol and alternariol methyl ether toxins, and that of the morphological examination of mycelia and conidia in experimentally infested corn samples. The sensitivity of toxin detection for HPLC was above the level of contamination in a set of commercially obtained grain samples, resulting in negative scores for all samples, while the PCR-based method and mold growth plating followed by morphological identification of Alternaria gave parallel, positive results for 8 of 10 samples. The PCR assay required just 8 h, enabling the rapid and simultaneous testing of many samples at a low cost. PCR-based evidence for the presence of Alternaria DNA followed by positive assay results for Alternaria toxins would support the rejection of a shipment of grain.

  12. Cross-platform evaluation of commercial real-time SYBR green RT-PCR kits for sensitive and rapid detection of European bat Lyssavirus type 1.

    PubMed

    Picard-Meyer, Evelyne; Peytavin de Garam, Carine; Schereffer, Jean Luc; Marchal, Clotilde; Robardet, Emmanuelle; Cliquet, Florence

    2015-01-01

    This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency, R (2) values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes.

  13. Cross-Platform Evaluation of Commercial Real-Time SYBR Green RT-PCR Kits for Sensitive and Rapid Detection of European Bat Lyssavirus Type 1

    PubMed Central

    Picard-Meyer, Evelyne; Peytavin de Garam, Carine; Schereffer, Jean Luc; Marchal, Clotilde; Robardet, Emmanuelle; Cliquet, Florence

    2015-01-01

    This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency, R 2 values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes. PMID:25785274

  14. Comparative application of IS711-based polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) for canine brucellosis diagnosis.

    PubMed

    Batinga, Maria Cryskely Agra; de Lima, Julia Teresa Ribeiro; Gregori, Fabio; Diniz, Jaqueline Assumpção; Muner, Kerstin; Oliveira, Trícia M F S; Ferreira, Helena Lage; Soares, Rodrigo Martins; Keid, Lara Borges

    2018-06-01

    Canine brucellosis is caused by Brucella canis, a gram negative and facultative intracellular bacterium that is commonly associated with reproductive failures in dogs. The accurate diagnosis of the infection relies on the use of serological tests associated with blood culturing to guarantee sensitivity. The polymerase chain reaction (PCR) can replace the culturing procedure for the direct diagnosis of the infection because of its speed, high specificity and sensitivity values; however, it depends on some laboratory infrastructure to be conducted. The loop-mediated isothermal amplification (LAMP) may be an alternative method for DNA amplification in a shorter period, using simpler equipment, and with a lower cost. This study evaluated the potential of molecular tools based on PCR and LAMP using primers targeting the insertion sequence IS711 for Brucella detection in three groups of dogs (infected, non-infected and suspected of brucellosis), which were determined according to the results of blood culturing and clinical examination. The performance of the three diagnostic tests was also determined using McNemar test and Kappa coefficient. The proportion of positive samples detected by blood culturing, PCR and LAMP was respectively 31.57% (18/57), 33.34% (19/57), and 14.03% (8/57). The agreement between blood culturing and PCR was almost perfect, while the agreement of PCR and blood culturing compared to LAMP was fair. The diagnostic sensitivity of PCR and LAMP was respectively 100% (18/18) and 44.44% (8/18), while the diagnostic specificity of both tests was 100% (21/21). LAMP performance was not satisfactory for canine brucellosis diagnosis because of the low diagnostic sensitivity of the test. The IS711 based PCR, otherwise, showed high values of sensitivity and specificity, which makes it a good alternative for use for the rapid diagnosis of canine brucellosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A new multiplex real-time polymerase chain reaction assay for the diagnosis of periprosthetic joint infection.

    PubMed

    Kawamura, Masaki; Kobayashi, Naomi; Inaba, Yutaka; Choe, Hyonmin; Tezuka, Taro; Kubota, So; Saito, Tomoyuki

    2017-11-01

    A new multiplex real-time polymerase chain reaction (PCR) assay was developed to detect methicillin-resistant Staphylococcus (MRS) and to distinguish between gram-positive and gram-negative bacteria. In this study, we validated the sensitivity and specificity of this assay with periprosthetic joint infections (PJIs) and evaluated the utility of PCR for culture-negative PJI. Forty-five samples from 23 infectious PJI cases and 106 samples from 64 non-infectious control cases were analyzed by real-time PCR using a LightCycler Nano ® system. Twenty-eight clinical samples, comprising bacteria of known species isolated consecutively in the microbiological laboratory of our hospital, were used to determine the spectrum of bacterial species that could be detected using the new multiplex primers and probes. The sensitivity and specificity of the MRS- and universal-PCR assays were 92% and 99%, and 91% and 88%, respectively. Twenty-eight species of clinically isolated bacteria were detected using this method and the concordance rate for the identification of gram-positive or gram-negative organisms was 96%. Eight samples were identified as PCR-positive despite a culture-negative result. This novel multiplex real-time PCR system has acceptable sensitivity and specificity and several advantages; therefore, it has potential use for the diagnosis of PJIs, particularly in culture-negative cases.

  16. Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR

    PubMed Central

    Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam

    2017-01-01

    Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2–99.8% and 95.2–99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs. PMID:28640824

  17. Molecular diagnosis of Plasmodium ovale by photo-induced electron transfer fluorogenic primers: PET-PCR.

    PubMed

    Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam; Lucchi, Naomi W

    2017-01-01

    Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2-99.8% and 95.2-99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs.

  18. Promising Nucleic Acid Lateral Flow Assay Plus PCR for Shiga Toxin-Producing Escherichia coli.

    PubMed

    Terao, Yoshitaka; Takeshita, Kana; Nishiyama, Yasutaka; Morishita, Naoki; Matsumoto, Takashi; Morimatsu, Fumiki

    2015-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) is a frequent cause of foodborne infections, and methods for rapid and reliable detection of STEC are needed. A nucleic acid lateral flow assay (NALFA) plus PCR was evaluated for detecting STEC after enrichment. When cell suspensions of 45 STEC strains, 14 non-STEC strains, and 13 non-E. coli strains were tested with the NALFA plus PCR, all of the STEC strains yielded positive results, and all of the non-STEC and non-E. coli strains yielded negative results. The lower detection limit for the STEC strains ranged from 0.1 to 1 pg of genomic DNA (about 20 to 200 CFU) per test, and the NALFA plus PCR was able to detect Stx1- and Stx2-producing E. coli strains with similar sensitivities. The ability of the NALFA plus PCR to detect STEC in enrichment cultures of radish sprouts, tomato, raw ground beef, and beef liver inoculated with 10-fold serially diluted STEC cultures was comparable to that of a real-time PCR assay (at a level of 100 to 100,000 CFU/ml in enrichment culture). The bacterial inoculation test in raw ground beef revealed that the lower detection limit of the NALFA plus PCR was also comparable to that obtained with a real-time PCR assay that followed the U.S. Department of Agriculture guidelines. Although further evaluation is required, these results suggest that the NALFA plus PCR is a specific and sensitive method for detecting STEC in a food manufacturing plant.

  19. Development of an immunomagnetic separation-polymerase chain reaction (IMS-PCR) assay specific for Enterocytozoon bieneusi in water samples.

    PubMed

    Sorel, N; Guillot, E; Thellier, M; Accoceberry, I; Datry, A; Mesnard-Rouiller, L; Miégeville, M

    2003-01-01

    Microsporidia have become widely recognized as important human pathogens. Among Microsporidia, Enterocytozoon bieneusi is responsible for severe gastrointestinal disease. To date, no current therapy has been proven effective. Their mode of transmission and environmental occurrence are poorly documented because of the lack of detection methods that are both species-specific and sensitive. In this study, we developed a sensitive and specific molecular method to detect E. bieneusi spores in water samples. The molecular assay combined immunomagnetic separation (IMS) and polymerase chain reaction (PCR) amplification to detect E. bieneusi spores. A comparison was made of IMS magnetic beads coated with two different monoclonal antibodies, one specific for the Encephalitozoon genus that cross-reacts with E. bieneusi and the other specific only for the E. bieneusi species itself. Immunotech beads coated with the antibody specific for E. bieneusi were found to be the most effective combination. The highly specific IMS-PCR assay developed in this study provides a rapid and sensitive means of screening water samples for the presence of E. bieneusi spores.

  20. PCR colorimetric dot-blot assay and clinical pretest probability for diagnosis of Pulmonary Tuberculosis in Smear-Negative patients

    PubMed Central

    Scherer, Luciene Cardoso; Sperhacke, Rosa Dea; Jarczewski, Carla; Cafrune, Patrícia I; Minghelli, Simone; Ribeiro, Marta Osório; Mello, Fernanda CQ; Ruffino-Netto, Antonio; Rossetti, Maria LR; Kritski, Afrânio L

    2007-01-01

    Background Smear-negative pulmonary tuberculosis (SNPTB) accounts for 30% of Pulmonary Tuberculosis (PTB) cases reported annually in developing nations. Polymerase chain reaction (PCR) may provide an alternative for the rapid detection of Mycobacterium tuberculosis (MTB); however little data are available regarding the clinical utility of PCR in SNPTB, in a setting with a high burden of TB/HIV co-infection. Methods To evaluate the performance of the PCR dot-blot in parallel with pretest probability (Clinical Suspicion) in patients suspected of having SNPTB, a prospective study of 213 individuals with clinical and radiological suspicion of SNPTB was carried out from May 2003 to May 2004, in a TB/HIV reference hospital. Respiratory specialists estimated the pretest probability of active disease into high, intermediate, low categories. Expectorated sputum was examined by direct microscopy (Ziehl-Neelsen staining), culture (Lowenstein Jensen) and PCR dot-blot. Gold standard was based on culture positivity combined with the clinical definition of PTB. Results In smear-negative and HIV subjects, active PTB was diagnosed in 28.4% (43/151) and 42.2% (19/45), respectively. In the high, intermediate and low pretest probability categories active PTB was diagnosed in 67.4% (31/46), 24% (6/25), 7.5% (6/80), respectively. PCR had sensitivity of 65% (CI 95%: 50%–78%) and specificity of 83% (CI 95%: 75%–89%). There was no difference in the sensitivity of PCR in relation to HIV status. PCR sensitivity and specificity among non-previously TB treated and those treated in the past were, respectively: 69%, 43%, 85% and 80%. The high pretest probability, when used as a diagnostic test, had sensitivity of 72% (CI 95%:57%–84%) and specificity of 86% (CI 95%:78%–92%). Using the PCR dot-blot in parallel with high pretest probability as a diagnostic test, sensitivity, specificity, positive and negative predictive values were: 90%, 71%, 75%, and 88%, respectively. Among non-previously TB treated and HIV subjects, this approach had sensitivity, specificity, positive and negative predictive values of 91%, 79%, 81%, 90%, and 90%, 65%, 72%, 88%, respectively. Conclusion PCR dot-blot associated with a high clinical suspicion may provide an important contribution to the diagnosis of SNPTB mainly in patients that have not been previously treated attended at a TB/HIV reference hospital. PMID:18096069

  1. Processing postmortem specimens with C18-carboxypropylbetaine and analysis by PCR to develop an antemortem test for Mycobacterium avium infections in ducks.

    PubMed

    Thornton, C G; Cranfield, M R; MacLellan, K M; Brink, T L; Strandberg, J D; Carlin, E A; Torrelles, J B; Maslow, J N; Hasson, J L; Heyl, D M; Sarro, S J; Chatterjee, D; Passen, S

    1999-03-01

    Mycobacterium avium is the causative agent of the avian mycobacteriosis commonly known as avian tuberculosis (ATB). This infection causes disseminated disease, is difficult to diagnose, and is of serious concern because it causes significant mortality in birds. A new method was developed for processing specimens for an antemortem screening test for ATB. This novel method uses the zwitterionic detergent C18-carboxypropylbetaine (CB-18). Blood, bone marrow, bursa, and fecal specimens from 28 ducks and swabs of 20 lesions were processed with CB-18 for analysis by smear, culture, and polymerase chain reaction (PCR). Postmortem examination confirmed nine of these birds as either positive or highly suspect for disseminated disease. The sensitivities of smear, culture, and PCR, relative to postmortem analysis and independent of specimen type, were 44.4%, 88.9%, and 100%, respectively, and the specificities were 84.2%, 57.9%, and 15.8%, respectively. Reductions in specificity were due primarily to results among fecal specimens. However, these results were clustered among a subset of birds, suggesting that these tests actually identified birds in early stages of the disease. Restriction fragment length polymorphism mapping identified one strain of M. avium (serotype 1) that was isolated from lesions, bursa, bone marrow, blood, and feces of all but three of the culture-positive birds. In birds with confirmed disease, blood had the lowest sensitivity and the highest specificity by all diagnostic methods. Swabs of lesions provided the highest sensitivity by smear and culture (33.3% and 77.8%, respectively), whereas fecal specimens had the highest sensitivity by PCR (77.8%). The results of this study indicate that processing fecal specimens with CB-18, followed by PCR analysis, may provide a valuable first step for monitoring the presence of ATB in birds.

  2. Digital PCR Modeling for Maximal Sensitivity, Dynamic Range and Measurement Precision

    PubMed Central

    Majumdar, Nivedita; Wessel, Thomas; Marks, Jeffrey

    2015-01-01

    The great promise of digital PCR is the potential for unparalleled precision enabling accurate measurements for genetic quantification. A challenge associated with digital PCR experiments, when testing unknown samples, is to perform experiments at dilutions allowing the detection of one or more targets of interest at a desired level of precision. While theory states that optimal precision (Po) is achieved by targeting ~1.59 mean copies per partition (λ), and that dynamic range (R) includes the space spanning one positive (λL) to one negative (λU) result from the total number of partitions (n), these results are tempered for the practitioner seeking to construct digital PCR experiments in the laboratory. A mathematical framework is presented elucidating the relationships between precision, dynamic range, number of partitions, interrogated volume, and sensitivity in digital PCR. The impact that false reaction calls and volumetric variation have on sensitivity and precision is next considered. The resultant effects on sensitivity and precision are established via Monte Carlo simulations reflecting the real-world likelihood of encountering such scenarios in the laboratory. The simulations provide insight to the practitioner on how to adapt experimental loading concentrations to counteract any one of these conditions. The framework is augmented with a method of extending the dynamic range of digital PCR, with and without increasing n, via the use of dilutions. An example experiment demonstrating the capabilities of the framework is presented enabling detection across 3.33 logs of starting copy concentration. PMID:25806524

  3. Human papillomavirus detection and typing using a nested-PCR-RFLP assay.

    PubMed

    Coser, Janaina; Boeira, Thaís da Rocha; Fonseca, André Salvador Kazantzi; Ikuta, Nilo; Lunge, Vagner Ricardo

    2011-01-01

    It is clinically important to detect and type human papillomavirus (HPV) in a sensitive and specific manner. Development of a nested-polymerase chain reaction-restriction fragment length polymorphism (nested-PCR-RFLP) assay to detect and type HPV based on the analysis of L1 gene. Analysis of published DNA sequence of mucosal HPV types to select sequences of new primers. Design of an original nested-PCR assay using the new primers pair selected and classical MY09/11 primers. HPV detection and typing in cervical samples using the nested-PCR-RFLP assay. The nested-PCR-RFLP assay detected and typed HPV in cervical samples. Of the total of 128 clinical samples submitted to simple PCR and nested-PCR for detection of HPV, 37 (28.9%) were positive for the virus by both methods and 25 samples were positive only by nested-PCR (67.5% increase in detection rate compared with single PCR). All HPV positive samples were effectively typed by RFLP assay. The method of nested-PCR proved to be an effective diagnostic tool for HPV detection and typing.

  4. A digital PCR method for identifying and quantifying adulteration of meat species in raw and processed food

    PubMed Central

    Ren, Junan; Deng, Tingting; Huang, Wensheng; Chen, Ying; Ge, Yiqiang

    2017-01-01

    Meat adulteration is a worldwide concern. In this paper, a new droplet digital PCR (ddPCR) method was developed for the quantitative determination of the presence of chicken in sheep and goat meat products. Meanwhile, a constant (multiplication factor) was introduced to transform the ratio of copy numbers to the proportion of meats. The presented ddPCR method was also proved to be more accurate (showing bias of less than 9% in the range from 5% to 80%) than real-time PCR, which has been widely used in this determination. The method exhibited good repeatability and stability in different thermal treatments and at ultra-high pressure. The relative standard deviation (RSD) values of 5% chicken content was less than 5.4% for ultra-high pressure or heat treatment. Moreover, we confirmed that different parts of meat had no effect on quantification accuracy of the ddPCR method. In contrast to real-time PCR, we examined the performance of ddPCR as a more precise, sensitive and stable analytical strategy to overcome potential problems of discrepancies in amplification efficiency discrepancy and to obtain the copy numbers directly without standard curves. The method and strategy developed in this study can be applied to quantify the presence and to confirm the absence of adulterants not only to sheep but also to other kinds of meat and meat products. PMID:28319152

  5. Pneumocystis jiroveci in HIV/AIDS patients: detection by FTA filter paper together with PCR in noninvasive induced sputum specimens.

    PubMed

    Jaijakul, Siraya; Saksirisampant, Wilai; Prownebon, Juraratt; Yenthakam, Sutin; Mungthin, Mathirut; Leelayoova, Saovanee; Nuchprayoon, Surang

    2005-09-01

    To detect P. jiroveci (previously named P. carinii) by PCR using FTA filter paper to extract the DNA, from noninvasive induced sputum samples of HIV/AIDS patients. Fifty two HIV/AIDS patients suspected of Pneumocystis jiroveci pneumonia (PJP) in King Chulalongkorn Memorial Hospital were recruited. Both cytological method and PCR with FTA filter paper technique were performed to detect P jiroveci from each specimen. The detectability rate of P. jiroveci infection was 21%. The PCR with FTA filter paper method was 4 folds much more sensitive than Giemsa staining technique. P. jiroveci was detected in 18% of the HIV/AIDS patients in spite of receiving standard PJP prophylaxis. Detection of P. jiroveci by using FTA filter paper together with PCR in induced sputum samples could detect more cases of P. jiroveci infection than by using cytological method. DNA extraction using the FTA filter paper was more rapid and convenient than other extraction methods. The causes of failure of PJP prophylaxis should be evaluated.

  6. Comparison of four PCR methods for efficient detection of Trypanosoma cruzi in routine diagnostics.

    PubMed

    Seiringer, Peter; Pritsch, Michael; Flores-Chavez, María; Marchisio, Edoardo; Helfrich, Kerstin; Mengele, Carolin; Hohnerlein, Stefan; Bretzel, Gisela; Löscher, Thomas; Hoelscher, Michael; Berens-Riha, Nicole

    2017-07-01

    Due to increased migration, Chagas disease has become an international health problem. Reliable diagnosis of chronically infected people is crucial for prevention of non-vectorial transmission as well as treatment. This study compared four distinct PCR methods for detection of Trypanosoma cruzi DNA for the use in well-equipped routine diagnostic laboratories. DNA was extracted of T. cruzi-positive and negative patients' blood samples and cultured T. cruzi, T. rangeli as well as Leishmania spp. One conventional and two real-time PCR methods targeting a repetitive Sat-DNA sequence as well as one conventional PCR method targeting the variable region of the kDNA minicircle were compared for sensitivity, intra- and interassay precision, limit of detection, specificity and cross-reactivity. Considering the performance, costs and ease of use, an algorithm for PCR-diagnosis of patients with a positive serology for T. cruzi antibodies was developed. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Real-Time PCR Method for Detection of Salmonella spp. in Environmental Samples.

    PubMed

    Kasturi, Kuppuswamy N; Drgon, Tomas

    2017-07-15

    The methods currently used for detecting Salmonella in environmental samples require 2 days to produce results and have limited sensitivity. Here, we describe the development and validation of a real-time PCR Salmonella screening method that produces results in 18 to 24 h. Primers and probes specific to the gene invA , group D, and Salmonella enterica serovar Enteritidis organisms were designed and evaluated for inclusivity and exclusivity using a panel of 329 Salmonella isolates representing 126 serovars and 22 non- Salmonella organisms. The invA - and group D-specific sets identified all the isolates accurately. The PCR method had 100% inclusivity and detected 1 to 2 copies of Salmonella DNA per reaction. Primers specific for Salmonella -differentiating fragment 1 (Sdf-1) in conjunction with the group D set had 100% inclusivity for 32 S Enteritidis isolates and 100% exclusivity for the 297 non-Enteritidis Salmonella isolates. Single-laboratory validation performed on 1,741 environmental samples demonstrated that the PCR method detected 55% more positives than the V itek i mmuno d iagnostic a ssay s ystem (VIDAS) method. The PCR results correlated well with the culture results, and the method did not report any false-negative results. The receiver operating characteristic (ROC) analysis documented excellent agreement between the results from the culture and PCR methods (area under the curve, 0.90; 95% confidence interval of 0.76 to 1.0) confirming the validity of the PCR method. IMPORTANCE This validated PCR method detects 55% more positives for Salmonella in half the time required for the reference method, VIDAS. The validated PCR method will help to strengthen public health efforts through rapid screening of Salmonella spp. in environmental samples.

  8. Real-Time PCR Method for Detection of Salmonella spp. in Environmental Samples

    PubMed Central

    Drgon, Tomas

    2017-01-01

    ABSTRACT The methods currently used for detecting Salmonella in environmental samples require 2 days to produce results and have limited sensitivity. Here, we describe the development and validation of a real-time PCR Salmonella screening method that produces results in 18 to 24 h. Primers and probes specific to the gene invA, group D, and Salmonella enterica serovar Enteritidis organisms were designed and evaluated for inclusivity and exclusivity using a panel of 329 Salmonella isolates representing 126 serovars and 22 non-Salmonella organisms. The invA- and group D-specific sets identified all the isolates accurately. The PCR method had 100% inclusivity and detected 1 to 2 copies of Salmonella DNA per reaction. Primers specific for Salmonella-differentiating fragment 1 (Sdf-1) in conjunction with the group D set had 100% inclusivity for 32 S. Enteritidis isolates and 100% exclusivity for the 297 non-Enteritidis Salmonella isolates. Single-laboratory validation performed on 1,741 environmental samples demonstrated that the PCR method detected 55% more positives than the Vitek immunodiagnostic assay system (VIDAS) method. The PCR results correlated well with the culture results, and the method did not report any false-negative results. The receiver operating characteristic (ROC) analysis documented excellent agreement between the results from the culture and PCR methods (area under the curve, 0.90; 95% confidence interval of 0.76 to 1.0) confirming the validity of the PCR method. IMPORTANCE This validated PCR method detects 55% more positives for Salmonella in half the time required for the reference method, VIDAS. The validated PCR method will help to strengthen public health efforts through rapid screening of Salmonella spp. in environmental samples. PMID:28500041

  9. Quantification of measles, mumps and rubella viruses using real-time quantitative TaqMan-based RT-PCR assay.

    PubMed

    Ammour, Y; Faizuloev, E; Borisova, T; Nikonova, A; Dmitriev, G; Lobodanov, S; Zverev, V

    2013-01-01

    In this study, a rapid quantitative method using TaqMan-based real-time reverse transcription-polymerase chain reaction (qPCR-RT) has been developed for estimating the titers of measles, mumps and rubella (MMR) viruses in infected cell culture supernatants. The qPCR-RT assay was demonstrated to be a specific, sensitive, efficient and reproducible method. For MMR viral samples obtained during MMR viral propagations in Vero cells at a different multiplicity of infection, titers determined by the qPCR-RT assay have been compared with estimates of infectious virus obtained by a traditional commonly used method for MMR viruses - 50% cell culture infective dose (CCID(50)) assay, in paired samples. Pearson analysis evidenced a significant correlation between both methods for a certain period after viral inoculation. Furthermore, the established qPCR-RT assay was faster and less-laborious. The developed method could be used as an alternative method or a supplementary tool for the routine titer estimation during MMR vaccine production. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Salmonella spp. contamination in commercial layer hen farms using different types of samples and detection methods.

    PubMed

    Soria, M C; Soria, M A; Bueno, D J; Godano, E I; Gómez, S C; ViaButron, I A; Padin, V M; Rogé, A D

    2017-08-01

    The performance of detection methods (culture methods and polymerase chain reaction assay) and plating media used in the same type of samples were determined as well as the specificity of PCR primers to detected Salmonella spp. contamination in layer hen farms. Also, the association of farm characteristics with Salmonella presence was evaluated. Environmental samples (feces, feed, drinking water, air, boot-swabs) and eggs were taken from 40 layer hen houses. Salmonella spp. was most detected in boot-swabs taken around the houses (30% and 35% by isolation and PCR, respectively) follow by fecal samples (15.2% and 13.6% by isolation and PCR, respectively). Eggs, drinking water, and air samples were negative for Salmonella detection. Salmonella Schwarzengrund and S. Enteritidis were the most isolated serotypes. For plating media, relative specificity was 1, and the relative sensitivity was greater for EF-18 agar than XLDT agar in feed and fecal samples. However, relative sensitivity was greater in XLDT agar than EF-18 agar for boot-swab samples. Agreement was between fair to good depending on the sample, and it was good between isolation and PCR (feces and boot-swabs), without agreement for feed samples. Salmonella spp. PCR was positive for all strains, while S. Typhimurium PCR was negative. Salmonella Enteritidis PCR used was not specific. Based in the multiple logistic regression analyses, categorization by counties was significant for Salmonella spp. presence (P-value = 0.010). This study shows the importance of considering different types of samples, plating media and detection methods during a Salmonella spp. monitoring study. In addition, it is important to incorporate the sampling of floors around the layer hen houses to learn if biosecurity measures should be strengthened to minimize the entry and spread of Salmonella in the houses. Also, the performance of some PCR methods and S. Enteritidis PCR should be improved, and biosecurity measures in hen farms must be reinforced in the region of more concentrated layer hen houses to reduce the probability of Salmonella spp. presence. © 2017 Poultry Science Association Inc.

  11. Simplified transient isotachophoresis/capillary gel electrophoresis method for highly sensitive analysis of polymerase chain reaction samples on a microchip with laser-induced fluorescence detection.

    PubMed

    Liu, Dayu; Ou, Ziyou; Xu, Mingfei; Wang, Lihui

    2008-12-19

    We present a sensitive, simple and robust on-chip transient isotachophoresis/capillary gel electrophoresis (tITP/CGE) method for the analysis of polymerase chain reaction (PCR) samples. Using chloride ions in the PCR buffer and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) in the background electrolyte, respectively, as the leading and terminating electrolytes, the tITP preconcentration was coupled with CGE separation with double-T shaped channel network. The tITP/CGE separation was carried out with a single running buffer. The separation process involved only two steps that were performed continuously with the sequential switching of four voltage outputs. The tITP/CGE method showed an analysis time and a separation efficiency comparable to those of standard CGE, while the signal intensity was enhanced by factors of over 20. The limit of detection of the chip-based tITP/CGE method was estimated to be 1.1 ng/mL of DNA in 1x PCR buffer using confocal fluorescence detection following 473 nm laser excitation.

  12. Rapid detection of coliforms in drinking water of Arak city using multiplex PCR method in comparison with the standard method of culture (Most Probably Number)

    PubMed Central

    Fatemeh, Dehghan; Reza, Zolfaghari Mohammad; Mohammad, Arjomandzadegan; Salomeh, Kalantari; Reza, Ahmari Gholam; Hossein, Sarmadian; Maryam, Sadrnia; Azam, Ahmadi; Mana, Shojapoor; Negin, Najarian; Reza, Kasravi Alii; Saeed, Falahat

    2014-01-01

    Objective To analyse molecular detection of coliforms and shorten the time of PCR. Methods Rapid detection of coliforms by amplification of lacZ and uidA genes in a multiplex PCR reaction was designed and performed in comparison with most probably number (MPN) method for 16 artificial and 101 field samples. The molecular method was also conducted on isolated coliforms from positive MPN samples; standard sample for verification of microbial method certificated reference material; isolated strains from certificated reference material and standard bacteria. The PCR and electrophoresis parameters were changed for reducing the operation time. Results Results of PCR for lacZ and uidA genes were similar in all of standard, operational and artificial samples and showed the 876 bp and 147 bp bands of lacZ and uidA genes by multiplex PCR. PCR results were confirmed by MPN culture method by sensitivity 86% (95% CI: 0.71-0.93). Also the total execution time, with a successful change of factors, was reduced to less than two and a half hour. Conclusions Multiplex PCR method with shortened operation time was used for the simultaneous detection of total coliforms and Escherichia coli in distribution system of Arak city. It's recommended to be used at least as an initial screening test, and then the positive samples could be randomly tested by MPN. PMID:25182727

  13. A Novel Universal Primer-Multiplex-PCR Method with Sequencing Gel Electrophoresis Analysis

    PubMed Central

    Huang, Kunlun; Zhang, Nan; Yuan, Yanfang; Shang, Ying; Luo, Yunbo

    2012-01-01

    In this study, a novel universal primer-multiplex-PCR (UP-M-PCR) method adding a universal primer (UP) in the multiplex PCR reaction system was described. A universal adapter was designed in the 5′-end of each specific primer pairs which matched with the specific DNA sequences for each template and also used as the universal primer (UP). PCR products were analyzed on sequencing gel electrophoresis (SGE) which had the advantage of exhibiting extraordinary resolution. This method overcame the disadvantages rooted deeply in conventional multiplex PCR such as complex manipulation, lower sensitivity, self-inhibition and amplification disparity resulting from different primers, and it got a high specificity and had a low detection limit of 0.1 ng for single kind of crops when screening the presence of genetically modified (GM) crops in mixture samples. The novel developed multiplex PCR assay with sequencing gel electrophoresis analysis will be useful in many fields, such as verifying the GM status of a sample irrespective of the crop and GM trait and so on. PMID:22272223

  14. High-speed shaking of frozen blood clots for extraction of human and malaria parasite DNA.

    PubMed

    Lundblom, Klara; Macharia, Alex; Lebbad, Marianne; Mohammed, Adan; Färnert, Anna

    2011-08-08

    Frozen blood clots remaining after serum collection is an often disregarded source of host and pathogen DNA due to troublesome handling and suboptimal outcome. High-speed shaking of clot samples in a cell disruptor manufactured for homogenization of tissue and faecal specimens was evaluated for processing frozen blood clots for DNA extraction. The method was compared to two commercial clot protocols based on a chemical kit and centrifugation through a plastic sieve, followed by the same DNA extraction protocol. Blood clots with different levels of parasitaemia (1-1,000 p/μl) were prepared from parasite cultures to assess sensitivity of PCR detection. In addition, clots retrieved from serum samples collected within two epidemiological studies in Kenya (n = 630) were processed by high speed shaking and analysed by PCR for detection of malaria parasites and the human α-thalassaemia gene. High speed shaking succeeded in fully dispersing the clots and the method generated the highest DNA yield. The level of PCR detection of P. falciparum parasites and the human thalassaemia gene was the same as samples optimally collected with an anticoagulant. The commercial clot protocol and centrifugation through a sieve failed to fully dissolve the clots and resulted in lower sensitivity of PCR detection. High speed shaking was a simple and efficacious method for homogenizing frozen blood clots before DNA purification and resulted in PCR templates of high quality both from humans and malaria parasites. This novel method enables genetic studies from stored blood clots.

  15. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  16. Molecular and clinical analyses of Helicobacter pylori colonization in inflamed dental pulp.

    PubMed

    Nomura, Ryota; Ogaya, Yuko; Matayoshi, Saaya; Morita, Yumiko; Nakano, Kazuhiko

    2018-04-16

    Recently, dental pulp has been considered a possible source of infection of Helicobacter pylori (H. pylori) in children. We previously developed a novel PCR system for H. pylori detection with high specificity and sensitivity using primer sets constructed based on the complete genome information for 48 H. pylori strains. This PCR system showed high sensitivity with a detection limit of 1-10 cells when serial dilutions of H. pylori genomic DNA were used as templates. However, the detection limit was lower (10 2 -10 3 cells) when H. pylori bacterial DNA was detected from inflamed pulp specimens. Thus, we further refined the system using a nested PCR method, which was much more sensitive than the previous single PCR method. In addition, we examined the distribution and virulence of H. pylori in inflamed pulp tissue. Nested PCR system was constructed using primer sets designed from the complete genome information of 48 H. pylori strains. The detection limit of the nested PCR system was 1-10 cells using both H. pylori genomic DNA and bacterial DNA isolated from inflamed pulp specimens. Next, distribution of H. pylori was examined using 131 inflamed pulp specimens with the nested PCR system. In addition, association between the detection of H. pylori and clinical information regarding endodontic-infected teeth were investigated. Furthermore, adhesion property of H. pylori strains to human dental fibroblast cells was examined. H. pylori was present in 38.9% of inflamed pulp specimens using the nested PCR system. H. pylori was shown to be predominantly detected in primary teeth rather than permanent teeth. In addition, samplings of the inflamed pulp were performed twice from the same teeth at 1- or 2-week intervals, which revealed that H. pylori was detected in most specimens in both samplings. Furthermore, H. pylori strains showed adhesion property to human dental fibroblast cells. Our results suggest that H. pylori colonizes inflamed pulp in approximately 40% of all cases through adhesion to human dental fibroblast cells.

  17. Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study.

    PubMed

    Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S

    2015-01-16

    Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.

  18. Detection of high-risk mucosal human papillomavirus DNA in human specimens by a novel and sensitive multiplex PCR method combined with DNA microarray.

    PubMed

    Gheit, Tarik; Tommasino, Massimo

    2011-01-01

    Epidemiological and functional studies have clearly demonstrated that certain types of human papillomavirus (HPV) from the genus alpha of the HPV phylogenetic tree, referred to as high-risk (HR) types, are the etiological cause of cervical cancer. Several methods for HPV detection and typing have been developed, and their importance in clinical and epidemiological studies has been well demonstrated. However, comparative studies have shown that several assays have different sensitivities for the detection of specific HPV types, particularly in the case of multiple infections. In this chapter, we describe a novel one-shot method for the detection and typing of 19 mucosal HR HPV types (types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, and 82). The assay combines the advantages of the multiplex PCR methods, i.e., high sensitivity and the possibility to perform multiple amplifications in a single reaction, with an array primer extension (APEX) assay. The latter method offers the benefits of Sanger dideoxy sequencing with the high-throughput potential of the microarray. Initial studies have revealed that the assay is very sensitive in detecting multiple HPV infections.

  19. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    PubMed Central

    Han, Joan C.; Elsea, Sarah H.; Pena, Heloísa B.; Pena, Sérgio Danilo Junho

    2013-01-01

    Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations. PMID:24288428

  20. Automated methods for multiplexed pathogen detection.

    PubMed

    Straub, Timothy M; Dockendorff, Brian P; Quiñonez-Díaz, Maria D; Valdez, Catherine O; Shutthanandan, Janani I; Tarasevich, Barbara J; Grate, Jay W; Bruckner-Lea, Cynthia J

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides "live vs. dead" capabilities. However, sensitivity of the method will need to be improved for RNA analysis to replace PCR.

  1. Automated Methods for Multiplexed Pathogen Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Tim M.; Dockendorff, Brian P.; Quinonez-Diaz, Maria D.

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cyclermore » where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides ''live vs. dead'' capabilities. However, sensitivity of the method will need to be improved for RNA analysis to replace PCR.« less

  2. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients.

    PubMed

    Tat Trung, Ngo; Van Tong, Hoang; Lien, Tran Thi; Van Son, Trinh; Thanh Huyen, Tran Thi; Quyen, Dao Thanh; Hoan, Phan Quoc; Meyer, Christian G; Song, Le Huu

    2018-02-01

    For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast ® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast ® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Comparison of the Sensitivity of Laboratory Diagnostic Methods from a Well-Characterized Outbreak of Mumps in New York City in 2009

    PubMed Central

    Rosen, Jennifer B.; Doll, Margaret K.; McNall, Rebecca J.; McGrew, Marcia; Williams, Nobia; Lopareva, Elena N.; Barskey, Albert E.; Punsalang, Amado; Rota, Paul A.; Oleszko, William R.; Hickman, Carole J.; Zimmerman, Christopher M.; Bellini, William J.

    2013-01-01

    A mumps outbreak in upstate New York in 2009 at a summer camp for Orthodox Jewish boys spread into Orthodox Jewish communities in the Northeast, including New York City. The availability of epidemiologic information, including vaccination records and parotitis onset dates, allowed an enhanced analysis of laboratory methods for mumps testing. Serum and buccal swab samples were collected from 296 confirmed cases with onsets from September through December 2009. All samples were tested using the Centers for Disease Control and Prevention (CDC) capture IgM enzyme immunoassay (EIA) and a real-time reverse transcription-PCR (rRT-PCR) that targets the short hydrophobic gene. A subset of the samples (n = 205) was used to evaluate 3 commercial mumps IgM assays and to assess the sensitivity of using an alternative target gene (nucleoprotein) in the rRT-PCR protocol. Among 115 cases of mumps with 2 documented doses of measles, mumps, and rubella (MMR) vaccine, the CDC capture IgM EIA detected IgM in 51% of serum samples compared to 9% to 24% using three commercial IgM assays. The rRT-PCR that targeted the nucleoprotein gene increased RNA detection by 14% compared to that obtained with the original protocol. The ability to detect IgM improved when serum was collected 3 days or more after symptom onset, whereas sensitivity of RNA detection by rRT-PCR declined when buccal swabs were collected later than 2 days after onset. Selection of testing methods and timing of sample collection are important factors in the ability to confirm infection among vaccinated persons. These results reinforce the need to use virus detection assays in addition to serologic tests. PMID:23324519

  4. Sensitive detection of KIT D816V in patients with mastocytosis.

    PubMed

    Tan, Angela; Westerman, David; McArthur, Grant A; Lynch, Kevin; Waring, Paul; Dobrovic, Alexander

    2006-12-01

    The 2447 A > T pathogenic variation at codon 816 of exon 17 (D816V) in the KIT gene, occurring in systemic mastocytosis (SM), leads to constitutive activation of tyrosine kinase activity and confers resistance to the tyrosine kinase inhibitor imatinib mesylate. Thus detection of this variation in SM patients is important for determining treatment strategy, but because the population of malignant cells carrying this variation is often small relative to the normal cell population, standard molecular detection methods can be unsuccessful. We developed 2 methods for detection of KIT D816V in SM patients. The first uses enriched sequencing of mutant alleles (ESMA) after BsmAI restriction enzyme digestion, and the second uses an allele-specific competitive blocker PCR (ACB-PCR) assay. We used these methods to assess 26 patients undergoing evaluation for SM, 13 of whom had SM meeting WHO classification criteria (before variation testing), and we compared the results with those obtained by direct sequencing. The sensitivities of the ESMA and the ACB-PCR assays were 1% and 0.1%, respectively. According to the ACB-PCR assay results, 65% (17/26) of patients were positive for D816V. Of the 17 positive cases, only 23.5% (4/17) were detected by direct sequencing. ESMA detected 2 additional exon 17 pathogenic variations, D816Y and D816N, but detected only 12 (70.5%) of the 17 D816V-positive cases. Overall, 100% (15/15) of the WHO-classified SM cases were codon 816 pathogenic variation positive. These findings demonstrate that the ACB-PCR assay combined with ESMA is a rapid and highly sensitive approach for detection of KIT D816V in SM patients.

  5. Development and evaluation of IgY ImmunoCapture PCR ELISA for detection of Staphylococcus aureus enterotoxin A devoid of protein A interference.

    PubMed

    Reddy, Prakash; Ramlal, Shylaja; Sripathy, Murali Harishchandra; Batra, Harsh Vardhan

    2014-06-01

    In the present study, a sensitive and specific IgY mediated ImmunoCapture-PCR-ELISA (IC-PCR-ELISA) was developed for the detection of staphylococcal enterotoxin A (SEA) from culture supernatants and suspected contaminated samples. Due to the virtue of avian immunoglobulins (IgY) to have the least affinity towards staphylococcal protein A (SpA) responsible for false positives, we employed anti-SEA IgY for capture of SEA toxin and revealed with SEA specific rabbit antibodies conjugated to a 524bp DNA marker. Biotin-11-dUTP was incorporated during PCR amplification and post PCR analysis was performed by PCR-ELISA. Unlike IgG immunocapture, IgY mediated immunocapture of SEA was free from false positives due to protein A. The developed assay was specific to SEA except for minor cross reactivity with staphylococcal enterotoxin E (SEE). Several raw milk samples were evaluated for the presence of SEA with and without enrichment. Three samples were found to be positive for SEA after enrichment for 8h. Though IC-PCR-ELISA for SEA showed 100% correlation with PCR analysis for sea gene, the assay was unique in terms of sensitivity of detecting ~10pg/ml of SEA toxin from spiked milk samples. Result of IC-PCR-ELISA was further confirmed by conventional methods of isolation and characterization. The presented method can be very useful for rapid analysis of milk samples for SEA contamination and can be further extended for detection of multiple SE's in different wells of same PCR plate using common DNA substrate. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples

    PubMed Central

    Alam, Mohammad J.; Tisdel, Naradah L.; Shah, Dhara N.; Yapar, Mehmet; Lasco, Todd M.; Garey, Kevin W.

    2015-01-01

    Background The aim of this study was to develop and validate a multiplex real-time PCR assay for simultaneous identification and toxigenic type characterization of Clostridium difficile. Methods The multiplex real-time PCR assay targeted and simultaneously detected triose phosphate isomerase (tpi) and binary toxin (cdtA) genes, and toxin A (tcdA) and B (tcdB) genes in the first and sec tubes, respectively. The results of multiplex real-time PCR were compared to those of the BD GeneOhm Cdiff assay, targeting the tcdB gene alone. The toxigenic culture was used as the reference, where toxin genes were detected by multiplex real-time PCR. Results A total of 351 stool samples from consecutive patients were included in the study. Fifty-five stool samples (15.6%) were determined to be positive for the presence of C. difficile by using multiplex real-time PCR. Of these, 48 (87.2%) were toxigenic (46 tcdA and tcdB-positive, two positive for only tcdB) and 11 (22.9%) were cdtA-positive. The sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the multiplex real-time PCR compared with the toxigenic culture were 95.6%, 98.6%, 91.6%, and 99.3%, respectively. The analytical sensitivity of the multiplex real-time PCR assay was determined to be 103colonyforming unit (CFU)/g spiked stool sample and 0.0625 pg genomic DNA from culture. Analytical specificity determined by using 15 enteric and non-clostridial reference strains was 100%. Conclusions The multiplex real-time PCR assay accurately detected C. difficile isolates from diarrheal stool samples and characterized its toxin genes in a single PCR run. PMID:25932438

  7. Improvement of sampling plans for Salmonella detection in pooled table eggs by use of real-time PCR.

    PubMed

    Pasquali, Frédérique; De Cesare, Alessandra; Valero, Antonio; Olsen, John Emerdhal; Manfreda, Gerardo

    2014-08-01

    Eggs and egg products have been described as the most critical food vehicles of salmonellosis. The prevalence and level of contamination of Salmonella on table eggs are low, which severely affects the sensitivity of sampling plans applied voluntarily in some European countries, where one to five pools of 10 eggs are tested by the culture based reference method ISO 6579:2004. In the current study we have compared the testing-sensitivity of the reference culture method ISO 6579:2004 and an alternative real-time PCR method on Salmonella contaminated egg-pool of different sizes (4-9 uninfected eggs mixed with one contaminated egg) and contamination levels (10°-10(1), 10(1)-10(2), 10(2)-10(3)CFU/eggshell). Two hundred and seventy samples corresponding to 15 replicates per pool size and inoculum level were tested. At the lowest contamination level real-time PCR detected Salmonella in 40% of contaminated pools vs 12% using ISO 6579. The results were used to estimate the lowest number of sample units needed to be tested in order to have a 95% certainty not falsely to accept a contaminated lot by Monte Carlo simulation. According to this simulation, at least 16 pools of 10 eggs each are needed to be tested by ISO 6579 in order to obtain this confidence level, while the minimum number of pools to be tested was reduced to 8 pools of 9 eggs each, when real-time PCR was applied as analytical method. This result underlines the importance of including analytical methods with higher sensitivity in order to improve the efficiency of sampling and reduce the number of samples to be tested. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A one-step duplex rRT-PCR assay for the simultaneous detection of duck hepatitis A virus genotypes 1 and 3.

    PubMed

    Hu, Qin; Zhu, Dekang; Ma, Guangpeng; Cheng, Anchun; Wang, Mingshu; Chen, Shun; Jia, Renyong; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Chen, Xiaoyue

    2016-10-01

    Duck hepatitis A virus (DHAV) is a highly infectious pathogen that causes significant bleeding lesions in the viscera of ducklings less than 3 weeks old. There are three serotypes of DHAV: serotype 1 (DHAV-1), serotype 2 (DHAV-2) and serotype 3 (DHAV-3). These serotypes have no cross-antigenicity with each other. To establish an rRT-PCR assay for the rapid detection of a mixed infection of DHAV-1 and DHAV-3, two pairs of primers and a pair of matching TaqMan probes were designed based on conserved regions of DHAV-1 VP0 and DHAV-3 VP3. Finally, we established a one-step duplex rRT-PCR assay with high specificity and sensitivity for the simultaneous detection of DHAV-1 and DHAV-3. This method showed no cross-antigenicity with the other pathogens tested, including duck plague virus, Muscovy duck parvovirus, Riemerella anatipestifer, and pathogenic E. coli from ducks. Sensitivity tests identified the minimum detection limits of this method as 98 (DHAV-1) and 10 (DHAV-3) copies/reaction. To validate the method, thirty-eight clinical samples and thirty artificially infected samples collected from dead duck embryos were studied. Thirty-seven samples were positive for DHAV-1, seventeen samples were positive for DHAV-3, and fourteen samples were positive for a mixed infection using the duplex rRT-PCR method. The method established in this study is specific, sensitive, convenient and timesaving and is a powerful tool for detecting DHAV-1, DHAV-3, and their mixed infection and for conducting surveys of pandemic virus strains. Copyright © 2016. Published by Elsevier B.V.

  9. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    PubMed

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of those species during ripening of derived dairy products. A major increase in understanding the starter culture contribution to cheese ecosystem could be harnessed to control cheese ripening and flavor formation. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Development of a rapid, sensitive and specific diagnostic assay for fish Aquareovirus based on RT-PCR.

    PubMed

    Seng, E K; Fang, Q; Lam, T J; Sin, Y M

    2004-06-15

    A rapid, sensitive and highly specific detection method for Aquareovirus based on reverse-transcription polymerase chain reaction (RT-PCR) was developed. Based on multiple sequence alignment of the cloned sequences of a local isolates, the Threadfin reovirus (TFV) and Guppy reovirus (GPV) with Grass carp reovirus (GCRV), a pair of degenerate primers was selected carefully and synthesized. Using this primer combination, only one specific product, approximately 450 bp in length was obtained when RT-PCR was carried out using the genomic double-stranded RNA (dsRNA) of TFV, GPV and GCRV. Similar results were also obtained when Chum salmon reovirus (CSRV) and Striped bass reovirus (SBRV) dsRNA were used as templates. No products were observed when nucleic acids other than the dsRNA of the aquareoviruses described above were used as RT-PCR templates. This technique could detect not only TFV but also GPV and GCRV in low titer virus-infected cell cultured cells. Furthermore, this method has also been shown to be able to diagnose GPV-infected guppy (Poecilia reticulata) that exhibit clinical symptoms as well as GPV-carrier guppy. Collectively, these results showed that the RT-PCR amplification method using specific degenerate primers described below is very useful for rapid and accurate detection of a variety of aquareovirus strains isolated from different host species and origin.

  11. Diagnostic performance of swab PCR as an alternative to tissue culture methods for diagnosing infections associated with fracture fixation devices.

    PubMed

    Omar, Mohamed; Suero, Eduardo M; Liodakis, Emmanouil; Reichling, Moritz; Guenther, Daniel; Decker, Sebastian; Stiesch, Meike; Krettek, Christian; Eberhard, Jörg

    2016-07-01

    Molecular procedures could potentially improve diagnoses of orthopaedic implant-related infections, but are not yet clinically implemented. Analysis of sonication fluid shows the highest sensitivity for diagnosing implant infections in cases of revision surgery with implant removal. However, there remains controversy regarding the best method for obtaining specimens in cases of revision surgery with implant retention. Tissue culture is the most common diagnostic method for pathogen identification in such cases. Here we aimed to assess the diagnostic performance of swab PCR analysis compared to tissue culture from patients undergoing revision surgery of fracture fixation devices. We prospectively investigated 62 consecutive subjects who underwent revision surgery of fracture fixation devices during a two-year period. Tissue samples were collected for cultures, and swabs from the implant surface were obtained for 16S rRNA PCR analysis. Subjects were classified as having an implant-related infection if (1) they presented with a sinus tract or open wound in communication with the implant; or (2) purulence was encountered intraoperatively; or (3) two out of three tissue cultures tested positive for the presence of the same pathogen. Tissue culture and swab PCR results from the subjects were used to calculate the sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and area under the ROC curve (AUC) for identifying an orthopaedic implant-related infection. Orthopaedic implant-related infections were detected in 51 subjects. Tissue culture identified infections in 47 cases, and swab PCR in 35 cases. Among the 11 aseptic cases, tissue culture was positive in 2 cases and swab PCR in 4 cases. Tissue culture showed a significantly higher area under the ROC curve for diagnosing infection (AUC=0.89; 95% CI, 0.67-0.96) compared to swab PCR (AUC=0.66; 95% CI, 0.46-0.80) (p=0.033). Compared to swab PCR, tissue culture showed better performance for diagnosing orthopaedic implant-related infection. Although molecular methods are expected to yield higher diagnostic accuracy than cultures, it appears that the method of obtaining specimens plays an important role. Improved methods of specimen collection are required before swab PCR can become a reliable alternative to tissue-consumptive methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Development of SYBR Green I Based Real-Time RT-PCR Assay for Specific Detection of Watermelon silver mottle Virus.

    PubMed

    Rao, Xueqin; Sun, Jie

    2015-09-01

    Watermelon silver mottle virus (WSMoV), which belongs to the genus Tospovirus , causes significant loss in Cucurbitaceae plants. Development of a highly sensitive and reliable detection method for WSMoV. Recombinant plasmids for targeting the sequence of nucleocapsid protein gene of WSMoV were constructed. SYBR Green I real-time PCR was established and evaluated with standard recombinant plasmids and 27 watermelon samples showing WSMoV infection symptoms. The recombinant plasmid was used as template for SYBR Green I real-time PCR to generate standard and melting curves. Melting curve analysis indicated no primer-dimers and non-specific products in the assay. No cross-reaction was observed with Capsicum chlorosis virus (genus Tospovirus ) and Cucumber mosaic virus (genus Cucumovirus). Repeatability tests indicated that inter-assay variability of the Ct values was 1.6%. A highly sensitive, reliable and rapid detection method of SYBR Green I real-time PCR for timely detection of WSMoV plants and vector thrips was established, which will facilitate disease forecast and control.

  13. Rapid detection and differentiation of avian infectious bronchitis virus: an application of Mass genotype by melting temperature analysis in RT-qPCR using SYBR Green I

    PubMed Central

    OKINO, Cintia Hiromi; MONTASSIER, Maria de Fátima Silva; de OLIVEIRA, Andressa Peres; MONTASSIER, Helio José

    2018-01-01

    A method based on Melting Temperature analysis of Hypervariable regions (HVR) of S1 gene within a RT-qPCR was developed to detect different genotypes of avian infectious bronchitis virus (IBV) and identify the Mass genotype. The method was able to rapidly identify the Mass genotype among IBV field isolates, vaccine attenuated strains and reference M41 strain in allantoic liquid and also directly in tissues. The RT-qPCR developed detected the virus in both tracheal and pulmonary samples from M41-infected or H120-infected birds, in a larger post-infection period compared to detection by standard method of virus isolation. RT-qPCR method tested provided a sensitivity and rapid approach for screening on IBV detection and Mass genotyping from IBV isolates. PMID:29491226

  14. High-speed shaking of frozen blood clots for extraction of human and malaria parasite DNA

    PubMed Central

    2011-01-01

    Background Frozen blood clots remaining after serum collection is an often disregarded source of host and pathogen DNA due to troublesome handling and suboptimal outcome. Methods High-speed shaking of clot samples in a cell disruptor manufactured for homogenization of tissue and faecal specimens was evaluated for processing frozen blood clots for DNA extraction. The method was compared to two commercial clot protocols based on a chemical kit and centrifugation through a plastic sieve, followed by the same DNA extraction protocol. Blood clots with different levels of parasitaemia (1-1,000 p/μl) were prepared from parasite cultures to assess sensitivity of PCR detection. In addition, clots retrieved from serum samples collected within two epidemiological studies in Kenya (n = 630) were processed by high speed shaking and analysed by PCR for detection of malaria parasites and the human α-thalassaemia gene. Results High speed shaking succeeded in fully dispersing the clots and the method generated the highest DNA yield. The level of PCR detection of P. falciparum parasites and the human thalassaemia gene was the same as samples optimally collected with an anticoagulant. The commercial clot protocol and centrifugation through a sieve failed to fully dissolve the clots and resulted in lower sensitivity of PCR detection. Conclusions High speed shaking was a simple and efficacious method for homogenizing frozen blood clots before DNA purification and resulted in PCR templates of high quality both from humans and malaria parasites. This novel method enables genetic studies from stored blood clots. PMID:21824391

  15. Evaluation of a PCR/ESI-MS platform to identify respiratory viruses from nasopharyngeal aspirates.

    PubMed

    Lin, Yong; Fu, Yongfeng; Xu, Menghua; Su, Liyun; Cao, Lingfeng; Xu, Jin; Cheng, Xunjia

    2015-11-01

    Acute respiratory tract infection is a major cause of morbidity and mortality worldwide, particularly in infants and young children. High-throughput, accurate, broad-range tools for etiologic diagnosis are critical for effective epidemic control. In this study, the diagnostic capacities of an Ibis platform based on the PCR/ESI-MS assay were evaluated using clinical samples. Nasopharyngeal aspirates (NPAs) were collected from 120 children (<5 years old) who were hospitalized with lower respiratory tract infections between November 2010 and October 2011. The respiratory virus detection assay was performed using the PCR/ESI-MS assay and the DFA. The discordant PCR/ESI-MS and DFA results were resolved with RT-PCR plus sequencing. The overall agreement for PCR/ESI-MS and DFA was 98.3% (118/120). Compared with the results from DFA, the sensitivity and specificity of the PCR/ESI-MS assay were 100% and 97.5%, respectively. The PCR/ESI-MS assay also detected more multiple virus infections and revealed more detailed subtype information than DFA. Among the 12 original specimens with discordant results between PCR/ESI-MS and DFA, 11 had confirmed PCR/ESI-MS results. Thus, the PCR/ESI-MS assay is a high-throughput, sensitive, specific and promising method to detect and subtype conventional viruses in respiratory tract infections and allows rapid identification of mixed pathogens. © 2015 Wiley Periodicals, Inc.

  16. Clinical evaluation and validation of laboratory methods for the diagnosis of Bordetella pertussis infection: Culture, polymerase chain reaction (PCR) and anti-pertussis toxin IgG serology (IgG-PT)

    PubMed Central

    Cassiday, Pamela K.; Pawloski, Lucia C.; Tatti, Kathleen M.; Martin, Monte D.; Briere, Elizabeth C.; Tondella, M. Lucia; Martin, Stacey W.

    2018-01-01

    Introduction The appropriate use of clinically accurate diagnostic tests is essential for the detection of pertussis, a poorly controlled vaccine-preventable disease. The purpose of this study was to estimate the sensitivity and specificity of different diagnostic criteria including culture, multi-target polymerase chain reaction (PCR), anti-pertussis toxin IgG (IgG-PT) serology, and the use of a clinical case definition. An additional objective was to describe the optimal timing of specimen collection for the various tests. Methods Clinical specimens were collected from patients with cough illness at seven locations across the United States between 2007 and 2011. Nasopharyngeal and blood specimens were collected from each patient during the enrollment visit. Patients who had been coughing for ≤ 2 weeks were asked to return in 2–4 weeks for collection of a second, convalescent blood specimen. Sensitivity and specificity of each diagnostic test were estimated using three methods—pertussis culture as the “gold standard,” composite reference standard analysis (CRS), and latent class analysis (LCA). Results Overall, 868 patients were enrolled and 13.6% were B. pertussis positive by at least one diagnostic test. In a sample of 545 participants with non-missing data on all four diagnostic criteria, culture was 64.0% sensitive, PCR was 90.6% sensitive, and both were 100% specific by LCA. CRS and LCA methods increased the sensitivity estimates for convalescent serology and the clinical case definition over the culture-based estimates. Culture and PCR were most sensitive when performed during the first two weeks of cough; serology was optimally sensitive after the second week of cough. Conclusions Timing of specimen collection in relation to onset of illness should be considered when ordering diagnostic tests for pertussis. Consideration should be given to including IgG-PT serology as a confirmatory test in the Council of State and Territorial Epidemiologists (CSTE) case definition for pertussis. PMID:29652945

  17. Droplet Digital PCR for BCR/ABL(P210) Detecting of CML: A High Sensitive Method of the Minimal Residual Disease& Disease Progression.

    PubMed

    Wang, Wen-Jun; Zheng, Chao-Feng; Liu, Zhuang; Tan, Yan-Hong; Chen, Xiu-Hua; Zhao, Bin-Liang; Li, Guo-Xia; Xu, Zhi-Fang; Ren, Fang-Gang; Zhang, Yao-Fang; Chang, Jian-Mei; Wang, Hong-Wei

    2018-04-25

    The present study intended to establish a droplet digital PCR (dd-PCR) for monitoring minimal residual disease (MRD) in patients with BCR/ABL (P210)-positive CML, thereby achieving deep-level monitoring of tumor load and determining the efficacy for guided clinically individualized treatment. Using dd-PCR and RT-qPCR, two cell suspensions were obtained from K562 cells and normal peripheral blood mononuclear cells by gradient dilution and were measured at the cellular level. At peripheral blood(PB) level, 61 cases with CML-chronic phase (CML-CP) were obtained after tyrosine kinase inhibitors (TKIs) treatment and regular follow-ups. By RT-qPCR, BCR/ABL (P210) fusion gene was undetectable in PB after three successive analyses, which were performed once every three months. At the same time, dd-PCR was performed simultaneously with the last equal amount of cDNA. Ten CML patients with MR4.5 were followed up by the two methods. At the cellular level, consistency of results of dd-PCR and RT-qPCR reached R 2 ≥0.99, with conversion equation of Y=33.148X 1.222 (Y: dd-PCR results; X: RT-qPCR results). In the dd-PCR test, 11 of the 61 CML patients (18.03%) tested positive and showed statistically significant difference (P<0.01). In the follow-up of 10 CML patients who were in MR4.5, 10 patients loss of MR4.0, and 4 were tested positive by dd-PCR 3 months earlier than by RT-qPCR. In contrast with RT-qPCR, dd-PCR is more sensitive, thus enabling accurate conversion of dd-PCR results into internationally standard RT-qPCR results by conversion equation, to achieve a deeper molecular biology-based stratification of BCR/ABL(P210) MRD. It has some reference value to monitor disease progression in clinic. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Identification and genotyping of molluscum contagiosum virus from genital swab samples by real-time PCR and Pyrosequencing.

    PubMed

    Trama, Jason P; Adelson, Martin E; Mordechai, Eli

    2007-12-01

    Laboratory diagnosis of molluscum contagiosum virus (MCV) is important as lesions can be confused with those caused by Cryptococcus neoformans, herpes simplex virus, human papillomavirus, and varicella-zoster virus. To develop a rapid method for identifying patients infected with MCV via swab sampling. Two dual-labeled probe real-time PCR assays, one homologous to the p43K gene and one to the MC080R gene, were designed. The p43K PCR was designed to be used in conjunction with Pyrosequencing for confirmation of PCR products and discrimination between MCV1 and MCV2. Both PCR assays were optimized with respect to reaction components, thermocycling parameters, and primer and probe concentrations. The specificities of both PCR assays were confirmed by non-amplification of 38 known human pathogens. Sensitivity assays demonstrated detection of as few as 10 copies per reaction. Testing 703 swabs, concordance between the two real-time PCR assays was 99.9%. Under the developed conditions, Pyrosequencing of the p43K PCR product was capable of providing enough nucleotide sequence to definitively differentiate MCV1 and MCV2. These real-time PCR assays can be used for the rapid, sensitive, and specific detection of MCV and, when combined with Pyrosequencing, can further discriminate between MCV1 and MCV2.

  19. Evaluation of two real time PCR assays for the detection of bacterial DNA in amniotic fluid.

    PubMed

    Girón de Velasco-Sada, Patricia; Falces-Romero, Iker; Quiles-Melero, Inmaculada; García-Perea, Adela; Mingorance, Jesús

    2018-01-01

    The aim of this study was to evaluate two non-commercial Real-Time PCR assays for the detection of microorganisms in amniotic fluid followed by identification by pyrosequencing. We collected 126 amniotic fluids from 2010 to 2015 for the evaluation of two Real-Time PCR assays for detection of bacterial DNA in amniotic fluid (16S Universal PCR and Ureaplasma spp. specific PCR). The method was developed in the Department of Microbiology of the University Hospital La Paz. Thirty-seven samples (29.3%) were positive by PCR/pyrosequencing and/or culture, 4 of them were mixed cultures with Ureaplasma urealyticum. The Universal 16S Real-Time PCR was compared with the standard culture (81.8% sensitivity, 97.4% specificity, 75% positive predictive value, 98% negative predictive value). The Ureaplasma spp. specific Real-Time PCR was compared with the Ureaplasma/Mycoplasma specific culture (92.3% sensitivity, 89.4% specificity, 50% positive predictive value, 99% negative predictive value) with statistically significant difference (p=0.005). Ureaplasma spp. PCR shows a rapid response time (5h from DNA extraction until pyrosequencing) when comparing with culture (48h). So, the response time of bacteriological diagnosis in suspected chorioamnionitis is reduced. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Rapid ABO genotyping by high-speed droplet allele-specific PCR using crude samples.

    PubMed

    Taira, Chiaki; Matsuda, Kazuyuki; Takeichi, Naoya; Furukawa, Satomi; Sugano, Mitsutoshi; Uehara, Takeshi; Okumura, Nobuo; Honda, Takayuki

    2018-01-01

    ABO genotyping has common tools for personal identification of forensic and transplantation field. We developed a new method based on a droplet allele-specific PCR (droplet-AS-PCR) that enabled rapid PCR amplification. We attempted rapid ABO genotyping using crude DNA isolated from dried blood and buccal cells. We designed allele-specific primers for three SNPs (at nucleotides 261, 526, and 803) in exons 6 and 7 of the ABO gene. We pretreated dried blood and buccal cells with proteinase K, and obtained crude DNAs without DNA purification. Droplet-AS-PCR allowed specific amplification of the SNPs at the three loci using crude DNA, with results similar to those for DNA extracted from fresh peripheral blood. The sensitivity of the methods was 5%-10%. The genotyping of extracted DNA and crude DNA were completed within 8 and 9 minutes, respectively. The genotypes determined by the droplet-AS-PCR method were always consistent with those obtained by direct sequencing. The droplet-AS-PCR method enabled rapid and specific amplification of three SNPs of the ABO gene from crude DNA treated with proteinase K. ABO genotyping by the droplet-AS-PCR has the potential to be applied to various fields including a forensic medicine and transplantation medical care. © 2017 Wiley Periodicals, Inc.

  1. [Quantitative PCR in the diagnosis of Leishmania].

    PubMed

    Mortarino, M; Franceschi, A; Mancianti, F; Bazzocchi, C; Genchi, C; Bandi, C

    2004-06-01

    Polymerase chain reaction (PCR) is a sensitive and rapid method for the diagnosis of canine Leishmania infection and can be performed on a variety of biological samples, including peripheral blood, lymph node, bone marrow and skin. Standard PCR requires electrophoretic analysis of the amplification products and is usually not suitable for quantification of the template DNA (unless competitor-based or other methods are developed), being of reduced usefulness when accurate monitoring of target DNA is required. Quantitative real-time PCR allows the continuous monitoring of the accumulation of PCR products during the amplification reaction. This allows the identification of the cycle of near-logarithmic PCR product generation (threshold cycle) and, by inference, the relative quantification of the template DNA present at the start of the reaction. Since the amplification product are monitored in "real-time" as they form cycle-by-cycle, no post-amplification handling is required. The absolute quantification is performed according either to an internal standard co-amplified with the sample DNA, or to an external standard curve obtained by parallel amplification of serial known concentrations of a reference DNA sequence. From the quantification of the template DNA, an estimation of the relative load of parasites in the different samples can be obtained. The advantages compared to standard and semi-quantitative PCR techniques are reduction of the assay's time and contamination risks, and improved sensitivity. As for standard PCR, the minimal components of the quantitative PCR reaction mixture are the DNA target of the amplification, an oligonucleotide primer pair flanking the target sequence, a suitable DNA polymerase, deoxynucleotides, buffer and salts. Different technologies have been set up for the monitoring of amplification products, generally based on the use of fluorescent probes. For instance, SYBR Green technology is a non-specific detection system based on a fluorescent dsDNA intercalator and it is applicable to all potential targets. TaqMan technology is more specific since performs the direct assessment of the amount of amplified DNA using a fluorescent probe specific for the target sequence flanked by the primer pair. This probe is an oligonucleotide labelled with a reporter dye (fluorescent) and a quencher (which absorbs the fluorescent signal generated by the reporter). The thermic protocol of amplification allows the binding of the fluorescent probe to the target sequence before the binding of the primers and the starting of the polymerization by Taq polymerase. During polymerization, 5'-3' exonuclease activity of Taq polymerase digests the probe and in this way the reporter dye is released from the probe and a fluorescent signal is detected. The intensity of the signal accumulates at the end of each cycle and is related to the amount of the amplification product. In recent years, quantitative PCR methods based either on SYBR Green or TaqMan technology have been set up for the quantification of Leishmania in mouse liver, mouse skin and human peripheral blood, targeting either single-copy chromosomal or multi-copy minicircle sequences with high sensitivity and reproducibility. In particular, real-time PCR seems to be a reliable, rapid and noninvasive method for the diagnosis and follow up of visceral leishmaniasis in humans. At present, the application of real-time PCR for research and clinical diagnosis of Leishmania infection in dogs is still foreseable. As for standard PCR, the high sensitivity of real-time PCR could allow the use of blood sampling that is less invasive and easily performed for monitoring the status of the dogs. The development of a real-time PCR assay for Leishmania infantum infection in dogs could support the standard and optimized serological and PCR methods currenly in use for the diagnosis and follow-up of canine leishmaniasis, and perhaps prediction of recurrences associated with tissue loads of residual pathogens after treatment. At this regard, a TaqMan Real Time PCR method developed for the quantification of Leishmania infantum minicircle DNA in peripheral blood of naturally infected dogs sampled before and at different time points after the beginning of a standard antileishmanial therapy will be illustrated.

  2. Utility of PCR, Culture, and Antigen Detection Methods for Diagnosis of Legionellosis.

    PubMed

    Chen, Derrick J; Procop, Gary W; Vogel, Sherilynn; Yen-Lieberman, Belinda; Richter, Sandra S

    2015-11-01

    The goal of this retrospective study was to evaluate the performance of different diagnostic tests for Legionnaires' disease in a clinical setting where Legionella pneumophila PCR had been introduced. Electronic medical records at the Cleveland Clinic were searched for Legionella urinary antigen (UAG), culture, and PCR tests ordered from March 2010 through December 2013. For cases where two or more test methods were performed and at least one was positive, the medical record was reviewed for relevant clinical and epidemiologic factors. Excluding repeat testing on a given patient, 19,912 tests were ordered (12,569 UAG, 3,747 cultures, and 3,596 PCR) with 378 positive results. The positivity rate for each method was 0.4% for culture, 0.8% for PCR, and 2.7% for UAG. For 37 patients, at least two test methods were performed with at least one positive result: 10 (27%) cases were positive by all three methods, 16 (43%) were positive by two methods, and 11 (30%) were positive by one method only. For the 32 patients with medical records available, clinical presentation was consistent with proven or probable Legionella infection in 84% of the cases. For those cases, the sensitivities of culture, PCR, and UAG were 50%, 92%, and 96%, respectively. The specificities were 100% for culture and 99.9% for PCR and UAG. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Utility of PCR, Culture, and Antigen Detection Methods for Diagnosis of Legionellosis

    PubMed Central

    Chen, Derrick J.; Procop, Gary W.; Vogel, Sherilynn; Yen-Lieberman, Belinda

    2015-01-01

    The goal of this retrospective study was to evaluate the performance of different diagnostic tests for Legionnaires' disease in a clinical setting where Legionella pneumophila PCR had been introduced. Electronic medical records at the Cleveland Clinic were searched for Legionella urinary antigen (UAG), culture, and PCR tests ordered from March 2010 through December 2013. For cases where two or more test methods were performed and at least one was positive, the medical record was reviewed for relevant clinical and epidemiologic factors. Excluding repeat testing on a given patient, 19,912 tests were ordered (12,569 UAG, 3,747 cultures, and 3,596 PCR) with 378 positive results. The positivity rate for each method was 0.4% for culture, 0.8% for PCR, and 2.7% for UAG. For 37 patients, at least two test methods were performed with at least one positive result: 10 (27%) cases were positive by all three methods, 16 (43%) were positive by two methods, and 11 (30%) were positive by one method only. For the 32 patients with medical records available, clinical presentation was consistent with proven or probable Legionella infection in 84% of the cases. For those cases, the sensitivities of culture, PCR, and UAG were 50%, 92%, and 96%, respectively. The specificities were 100% for culture and 99.9% for PCR and UAG. PMID:26292304

  4. Evaluation of the Loop Mediated Isothermal DNA Amplification (LAMP) Kit for Malaria Diagnosis in P. vivax Endemic Settings of Colombia

    PubMed Central

    Vallejo, Andrés F.; Martínez, Nora L.; González, Iveth J.; Arévalo-Herrera, Myriam; Herrera, Sócrates

    2015-01-01

    Background Most commonly used malaria diagnostic tests, including microscopy and antigen-detecting rapid tests, cannot reliably detect low-density infections which are frequent in low transmission settings. Molecular methods such as polymerase chain reaction (PCR) are highly sensitive but remain too laborious for field deployment. In this study, the applicability of a malaria diagnosis kit based on loop-mediated isothermal amplification (mLAMP) was assessed in malaria endemic areas of Colombia with Plasmodium vivax predominance. Methodology/Principal Findings First, a passive case detection (PCD) study on 278 febrile patients recruited in Tierralta (department of Cordoba) was conducted to assess the diagnostic performance of the mLAMP method. Second, an active case detection (ACD) study on 980 volunteers was conducted in 10 sentinel sites with different epidemiological profiles. Whole blood samples were processed for microscopic and mLAMP diagnosis. Additionally RT-PCR and nested RT-PCR were used as reference tests. In the PCD study, P. falciparum accounted for 23.9% and P. vivax for 76.1% of the infections and no cases of mixed-infections were identified. Microscopy sensitivity for P. falciparum and P. vivax were 100% and 86.1%, respectively. mLAMP sensitivity for P. falciparum and P. vivax was 100% and 91.4%, respectively. In the ACD study, mLAMP detected 65 times more cases than microscopy. A high proportion (98.0%) of the infections detected by mLAMP was from volunteers without symptoms. Conclusions/Significance mLAMP sensitivity and specificity were comparable to RT-PCR. LAMP was significantly superior to microscopy and in P. vivax low-endemicity settings and under minimum infrastructure conditions, it displayed sensitivity and specificity similar to that of single-well RT-PCR for detection of both P. falciparum and P. vivax infections. Here, the dramatically increased detection of asymptomatic malaria infections by mLAMP demonstrates the usefulness of this new tool for diagnosis, surveillance, and screening in elimination strategies. PMID:25569550

  5. Diagnostic performance of rapid diagnostic tests for the diagnosis of malaria at public health facilities in north-west Ethiopia.

    PubMed

    Getnet, Gebeyaw; Getie, Sisay; Srivastava, Mitaly; Birhan, Wubet; Fola, Abebe A; Noedl, Harald

    2015-11-01

    To assess the performance of RDTs against nested polymerase chain reaction (nPCR) for the diagnosis of malaria in public health facilities in north-western Ethiopia. Cross-sectional study at public health facilities in North Gondar, Ethiopia, of 359 febrile patients with signs and symptoms consistent with malaria. Finger prick blood samples were collected for testing in a P. falciparum/pan-malaria RDTs and for molecular analysis. Sensitivity, specificity and predictive values were determined for the RDTs using nPCR as reference diagnostic method. Kappa value was determined to demonstrate the consistency of the results between the diagnostic tools. By RDTs, 22.28% (80/359) of patients tested positive for malaria, and by nPCR, 27.02% (97/359) did. In nPCR, 1.67% (6/359) and 0.28% (1/359) samples were positive for P. ovale and P. malariae, which had almost all tested negative in the RDTs. The sensitivity, specificity, positive and negative predictive values of RDTs for the diagnosis of malaria were 62.9%, 92.7%, 76.3% and 87.1%, respectively, with 0.589 measurement agreement between RDTs and nPCR. The sensitivity and specificity of RDTs for P. falciparum identification only were 70.8% and 95.2%, and 65.2% and 93.1% for P. vivax. Although RDTs are commonly used at health posts in resource-limited environments, their sensitivity and specificity for the detection and species identification of Plasmodium parasites were poor compared to nPCR, suggesting caution in interpreting RDTs results. Particularly, in the light of expanded efforts to eliminate malaria in the country, more sensitive diagnostic procedures will be needed. © 2015 John Wiley & Sons Ltd.

  6. Qualitative PCR method for Roundup Ready soybean: interlaboratory study.

    PubMed

    Kodama, Takashi; Kasahara, Masaki; Minegishi, Yasutaka; Futo, Satoshi; Sawada, Chihiro; Watai, Masatoshi; Akiyama, Hiroshi; Teshima, Reiko; Kurosawa, Yasunori; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2011-01-01

    Quantitative and qualitative methods based on PCR have been developed for genetically modified organisms (GMO). Interlaboratory studies were previously conducted for GMO quantitative methods; in this study, an interlaboratory study was conducted for a qualitative method for a GM soybean, Roundup Ready soy (RR soy), with primer pairs designed for the quantitative method of RR soy studied previously. Fourteen laboratories in Japan participated. Each participant extracted DNA from 1.0 g each of the soy samples containing 0, 0.05, and 0.10% of RR soy, and performed PCR with primer pairs for an internal control gene (Le1) and RR soy followed by agarose gel electrophoresis. The PCR product amplified in this PCR system for Le1 was detected from all samples. The sensitivity, specificity, and false-negative and false-positive rates of the method were obtained from the results of RR soy detection. False-negative rates at the level of 0.05 and 0.10% of the RR soy samples were 6.0 and 2.3%, respectively, revealing that the LOD of the method was somewhat below 0.10%. The current study demonstrated that the qualitative method would be practical for monitoring the labeling system of GM soy in kernel lots.

  7. COLD-PCR enriches low-level variant DNA sequences and increases the sensitivity of genetic testing.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Guha, Minakshi; Makrigiorgos, G Mike

    2014-01-01

    Detection of low-level mutations is important for cancer biomarker and therapy targets discovery, but reliable detection remains a technical challenge. The newly developed method of CO-amplification at Lower Denaturation temperature PCR (COLD-PCR) helps to circumvent this issue. This PCR-based technology preferentially enriches minor known or unknown variants present in samples with a high background of wild type DNA which often hampers the accurate identification of these minority alleles. This is a simple process that consists of lowering the temperature at the denaturation step during the PCR-cycling protocol (critical denaturation temperature, T c) and inducing DNA heteroduplexing during an intermediate step. COLD-PCR in its simplest forms does not need additional reagents or specific instrumentation and thus, can easily replace conventional PCR and at the same time improve the mutation detection sensitivity limit of downstream technologies. COLD-PCR can be applied in two basic formats: fast-COLD-PCR that can enrich T m-reducing mutations and full-COLD-PCR that can enrich all mutations, though it requires an intermediate cross-hybridization step that lengthens the thermocycling program. An improved version of full-COLD-PCR (improved and complete enrichment, ice-COLD-PCR) has also been described. Finally, most recently, we developed yet another form of COLD-PCR, temperature-tolerant-COLD-PCR, which gradually increases the denaturation temperature during the COLD-PCR reaction, enriching diverse targets using a single cycling program. This report describes practical considerations for application of fast-, full-, ice-, and temperature-tolerant-COLD-PCR for enrichment of mutations prior to downstream screening.

  8. Development of a fluorescent quantitative real-time polymerase chain reaction assay for the detection of Goose parvovirus in vivo

    PubMed Central

    Yang, Jin-Long; Cheng, An-Chun; Wang, Ming-Shu; Pan, Kang-Cheng; Li, Min; Guo, Yu-Fei; Li, Chuan-Feng; Zhu, De-Kang; Chen, Xiao-Yue

    2009-01-01

    Background Goose parvovirus (GPV) is a Dependovirus associated with latent infection and mortality in geese. Currently, it severely affects geese production worldwide. The objective of this study was to develop a fluorescent quantitative real-time polymerase chain reaction (PCR) (FQ-PCR) assay for fast and accurate quantification of GPV DNA in infected goslings, which can aid in the understanding of the regular distribution pattern and the nosogenesis of GPV in vivo. Results The detection limit of the assay was 2.8 × 101 standard DNA copies, with a sensitivity of 3 logs higher than that of the conventional gel-based PCR assay targeting the same gene. The real-time PCR was reproducible, as shown by satisfactory low intraassay and interassay coefficients of variation. Conclusion The high sensitivity, specificity, simplicity, and reproducibility of the GPV fluorogenic PCR assay, combined with a high throughput, make this method suitable for a broad spectrum of GPV etiology-related applications. PMID:19754946

  9. Quantitative fucK gene polymerase chain reaction on sputum and nasopharyngeal secretions to detect Haemophilus influenzae pneumonia.

    PubMed

    Abdeldaim, Guma M K; Strålin, Kristoffer; Olcén, Per; Blomberg, Jonas; Mölling, Paula; Herrmann, Björn

    2013-06-01

    A quantitative polymerase chain reaction (PCR) for the fucK gene was developed for specific detection of Haemophilus influenzae. The method was tested on sputum and nasopharyngeal aspirate (NPA) from 78 patients with community-acquired pneumonia (CAP). With a reference standard of sputum culture and/or serology against the patient's own nasopharyngeal isolate, H. influenzae etiology was detected in 20 patients. Compared with the reference standard, fucK PCR (using the detection limit 10(5) DNA copies/mL) on sputum and NPA showed a sensitivity of 95.0% (19/20) in both cases, and specificities of 87.9% (51/58) and 89.5% (52/58), respectively. In a receiver operating characteristic curve analysis, sputum fucK PCR was found to be significantly superior to sputum P6 PCR for detection of H. influenzae CAP. NPA fucK PCR was positive in 3 of 54 adult controls without respiratory symptoms. In conclusion, quantitative fucK real-time PCR provides a sensitive and specific identification of H. influenzae in respiratory secretions. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. New Highly Sensitive Real-Time PCR Assay for HIV-2 Group A and Group B DNA Quantification.

    PubMed

    Bertine, Mélanie; Gueudin, Marie; Mélard, Adeline; Damond, Florence; Descamps, Diane; Matheron, Sophie; Collin, Fidéline; Rouzioux, Christine; Plantier, Jean-Christophe; Avettand-Fenoel, Véronique

    2017-09-01

    HIV-2 infection is characterized by a very low replication rate in most cases and low progression. This necessitates an approach to patient monitoring that differs from that for HIV-1 infection. Here, a new highly specific and sensitive method for HIV-2 DNA quantification was developed. The new test is based on quantitative real-time PCR targeting the long terminal repeat (LTR) and gag regions and using an internal control. Analytical performance was determined in three laboratories, and clinical performance was determined on blood samples from 63 patients infected with HIV-2 group A ( n = 35) or group B ( n = 28). The specificity was 100%. The 95% limit of detection was three copies/PCR and the limit of quantification was six copies/PCR. The within-run coefficients of variation were between 1.03% at 3.78 log 10 copies/PCR and 27.02% at 0.78 log 10 copies/PCR. The between-run coefficient of variation was 5.10%. Both manual and automated nucleic acid extraction methods were validated. HIV-2 DNA loads were detectable in blood cells from all 63 patients. When HIV-2 DNA was quantifiable, median loads were significantly higher in antiretroviral-treated than in naive patients and were similar for groups A and B. HIV-2 DNA load was correlated with HIV-2 RNA load ( r = 0.68; 95% confidence interval [CI], 0.4 to 0.8; P < 0.0001). Our data show that this new assay is highly sensitive and quantifies the two main HIV-2 groups, making it useful for the diagnosis of HIV-2 infection and for pathogenesis studies on HIV-2 reservoirs. Copyright © 2017 American Society for Microbiology.

  11. A novel method of multiple nucleic acid detection: Real-time RT-PCR coupled with probe-melting curve analysis.

    PubMed

    Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan

    2017-11-15

    A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Development of an In-House Multiplex Nested RT-PCR Method for Detecting Acute HIV-1 Infection in High Risk Populations.

    PubMed

    Liu, Zhiying; Li, Wei; Xu, Meng; Sheng, Bo; Yang, Zixuan; Jiao, Yanmei; Zhang, Tong; Mou, Danlei; Chen, Dexi; Wu, Hao

    2015-01-01

    The detection of acute HIV infection (AHI) among high risk populations can help reduce secondary transmission of HIV. The nucleic acid testing (NAT) can shorten the test window period by up to 7-12 days. In this study, we describe an in-house NAT based on the multiplex nested RT-PCR method to detect the HIV RNA. We also evaluated it in a high risk cohort in Beijing. Four primer pairs were designed and evaluated for the detection of different HIV-1 subtypes in group M. Multiplex RT-PCR and nested PCR were performed. The sensitivity, specialty, primers compatibility among HIV subtypes were evaluated simultaneously. In an MSM cohort in Beijing during a 3-year period, a total of 11,808 blood samples that were negative by ELISA or indeterminate by Western blot were analyzed by this multiplex nested RT-PCR with pooling strategy. The multiplex nested RT-PCR was successfully applied for the detection of at least six HIV-1 subtypes. The sensitivity was 40 copies/ml and the specificity was 100%. A total of 29 people were tested HIV-1 positive with acute infection in a MSM cohort of Beijing during a 3 years period. This multiplex nested RT-PCR provides a useful tool for the rapid detection of acute HIV-1 infection. When used in combination with the 3(rd) generation ELISA, it can improve the detection rate of HIV infection, especially in the source limited regions.

  13. Detection of nucleophosmin 1 mutations by quantitative real-time polymerase chain reaction versus capillary electrophoresis: a comparative study.

    PubMed

    Barakat, Fareed H; Luthra, Rajyalakshmi; Yin, C Cameron; Barkoh, Bedia A; Hai, Seema; Jamil, Waqar; Bhakta, Yaminiben I; Chen, Su; Medeiros, L Jeffrey; Zuo, Zhuang

    2011-08-01

    Nucleophosmin 1 (NPM1) is the most commonly mutated gene in acute myeloid leukemia. Detection of NPM1 mutations is useful for stratifying patients for therapy, predicting prognosis, and assessing for minimal residual disease. Several methods have been developed to rapidly detect NPM1 mutations in genomic DNA and/or messenger RNA specimens. To directly compare a quantitative real-time polymerase chain reaction (qPCR) assay with a widely used capillary electrophoresis assay for detecting NPM1 mutations. We adopted and modified a qPCR assay designed to detect the 6 most common NPM1 mutations and performed the assay in parallel with capillary electrophoresis assay in 207 bone marrow aspirate or peripheral blood samples from patients with a range of hematolymphoid neoplasms. The qPCR assay demonstrated a higher analytical sensitivity than the capillary electrophoresis 1/1000 versus 1/40, respectively. The capillary electrophoresis assay generated 10 equivocal results that needed to be repeated, whereas the qPCR assay generated only 1 equivocal result. After test conditions were optimized, the qPCR and capillary electrophoresis methods produced 100% concordant results, 85 positive and 122 negative. Given the higher analytical sensitivity and specificity of the qPCR assay, that assay is less likely to generate equivocal results than the capillary electrophoresis assay. Moreover, the qPCR assay is quantitative, faster, cheaper, less prone to contamination, and well suited for monitoring minimal residual disease.

  14. Development of real-time PCR method for the detection and the quantification of a new endogenous reference gene in sugar beet "Beta vulgaris L.": GMO application.

    PubMed

    Chaouachi, Maher; Alaya, Akram; Ali, Imen Ben Haj; Hafsa, Ahmed Ben; Nabi, Nesrine; Bérard, Aurélie; Romaniuk, Marcel; Skhiri, Fethia; Saïd, Khaled

    2013-01-01

    KEY MESSAGE : Here, we describe a new developed quantitative real-time PCR method for the detection and quantification of a new specific endogenous reference gene used in GMO analysis. The key requirement of this study was the identification of a new reference gene used for the differentiation of the four genomic sections of the sugar beet (Beta vulgaris L.) (Beta, Corrollinae, Nanae and Procumbentes) suitable for quantification of genetically modified sugar beet. A specific qualitative polymerase chain reaction (PCR) assay was designed to detect the sugar beet amplifying a region of the adenylate transporter (ant) gene only from the species of the genomic section I of the genus Beta (cultivated and wild relatives) and showing negative PCR results for 7 species of the 3 other sections, 8 related species and 20 non-sugar beet plants. The sensitivity of the assay was 15 haploid genome copies (HGC). A quantitative real-time polymerase chain reaction (QRT-PCR) assay was also performed, having high linearity (R (2) > 0.994) over sugar beet standard concentrations ranging from 20,000 to 10 HGC of the sugar beet DNA per PCR. The QRT-PCR assay described in this study was specific and more sensitive for sugar beet quantification compared to the validated test previously reported in the European Reference Laboratory. This assay is suitable for GMO quantification in routine analysis from a wide variety of matrices.

  15. Quantifying spontaneous metastasis in a syngeneic mouse melanoma model using real time PCR.

    PubMed

    Deng, Wentao; McLaughlin, Sarah L; Klinke, David J

    2017-08-07

    Modeling metastasis in vivo with animals is a priority for both revealing mechanisms of tumor dissemination and developing therapeutic methods. While conventional intravenous injection of tumor cells provides an efficient and consistent system for studying tumor cell extravasation and colonization, studying spontaneous metastasis derived from orthotopic tumor sites has the advantage of modeling more aspects of the metastatic cascade, but is challenging as it is difficult to detect small numbers of metastatic cells. In this work, we developed an approach for quantifying spontaneous metastasis in the syngeneic mouse B16 system using real time PCR. We first transduced B16 cells with lentivirus expressing firefly luciferase Luc2 gene for bioluminescence imaging. Next, we developed a real time quantitative PCR (qPCR) method for the detection of luciferase-expressing, metastatic tumor cells in mouse lungs and other organs. To illustrate the approach, we quantified lung metastasis in both spontaneous and experimental scenarios using B16F0 and B16F10 cells in C57BL/6Ncrl and NOD-Scid Gamma (NSG) mice. We tracked B16 melanoma metastasis with both bioluminescence imaging and qPCR, which were found to be self-consistent. Using this assay, we can quantitatively detect one Luc2 positive tumor cell out of 10 4 tissue cells, which corresponds to a metastatic burden of 1.8 × 10 4 metastatic cells per whole mouse lung. More importantly, the qPCR method was at least a factor of 10 more sensitive in detecting metastatic cell dissemination and should be combined with bioluminescence imaging as a high-resolution, end-point method for final metastatic cell quantitation. Given the rapid growth of primary tumors in many mouse models, assays with improved sensitivity can provide better insight into biological mechanisms that underpin tumor metastasis.

  16. The Development of DNA Based Methods for the Reliable and Efficient Identification of Nicotiana tabacum in Tobacco and Its Derived Products

    PubMed Central

    Fan, Wei; Li, Rong; Li, Sifan; Ping, Wenli; Li, Shujun; Naumova, Alexandra; Peelen, Tamara; Yuan, Zheng; Zhang, Dabing

    2016-01-01

    Reliable methods are needed to detect the presence of tobacco components in tobacco products to effectively control smuggling and classify tariff and excise in tobacco industry to control illegal tobacco trade. In this study, two sensitive and specific DNA based methods, one quantitative real-time PCR (qPCR) assay and the other loop-mediated isothermal amplification (LAMP) assay, were developed for the reliable and efficient detection of the presence of tobacco (Nicotiana tabacum) in various tobacco samples and commodities. Both assays targeted the same sequence of the uridine 5′-monophosphate synthase (UMPS), and their specificities and sensitivities were determined with various plant materials. Both qPCR and LAMP methods were reliable and accurate in the rapid detection of tobacco components in various practical samples, including customs samples, reconstituted tobacco samples, and locally purchased cigarettes, showing high potential for their application in tobacco identification, particularly in the special cases where the morphology or chemical compositions of tobacco have been disrupted. Therefore, combining both methods would facilitate not only the detection of tobacco smuggling control, but also the detection of tariff classification and of excise. PMID:27635142

  17. PCR Method To Identify Salmonella enterica Serovars Typhi, Paratyphi A, and Paratyphi B among Salmonella Isolates from the Blood of Patients with Clinical Enteric Fever▿

    PubMed Central

    Levy, Haim; Diallo, Souleymane; Tennant, Sharon M.; Livio, Sofie; Sow, Samba O.; Tapia, Milagritos; Fields, Patricia I.; Mikoleit, Matthew; Tamboura, Boubou; Kotloff, Karen L.; Lagos, Rosanna; Nataro, James P.; Galen, James E.; Levine, Myron M.

    2008-01-01

    PCR methodology was developed to identify Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B. One multiplex PCR identifies serogroup D, A, and B and Vi-positive strains; another confirms flagellar antigen “d,” “a,” or “b.” Blinded testing of 664 Malian and Chilean Salmonella blood isolates demonstrated 100% sensitivity and specificity. PMID:18367574

  18. Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora.

    PubMed

    Ott, Stephan J; Musfeldt, Meike; Ullmann, Uwe; Hampe, Jochen; Schreiber, Stefan

    2004-06-01

    The composition of the human intestinal flora is important for the health status of the host. The global composition and the presence of specific pathogens are relevant to the effects of the flora. Therefore, accurate quantification of all major bacterial populations of the enteric flora is needed. A TaqMan real-time PCR-based method for the quantification of 20 dominant bacterial species and groups of the intestinal flora has been established on the basis of 16S ribosomal DNA taxonomy. A PCR with conserved primers was used for all reactions. In each real-time PCR, a universal probe for quantification of total bacteria and a specific probe for the species in question were included. PCR with conserved primers and the universal probe for total bacteria allowed relative and absolute quantification. Minor groove binder probes increased the sensitivity of the assays 10- to 100-fold. The method was evaluated by cross-reaction experiments and quantification of bacteria in complex clinical samples from healthy patients. A sensitivity of 10(1) to 10(3) bacterial cells per sample was achieved. No significant cross-reaction was observed. The real-time PCR assays presented may facilitate understanding of the intestinal bacterial flora through a normalized global estimation of the major contributing species.

  19. A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories

    PubMed Central

    Akimoto, Chizuru; Volk, Alexander E; van Blitterswijk, Marka; Van den Broeck, Marleen; Leblond, Claire S; Lumbroso, Serge; Camu, William; Neitzel, Birgit; Onodera, Osamu; van Rheenen, Wouter; Pinto, Susana; Weber, Markus; Smith, Bradley; Proven, Melanie; Talbot, Kevin; Keagle, Pamela; Chesi, Alessandra; Ratti, Antonia; van der Zee, Julie; Alstermark, Helena; Birve, Anna; Calini, Daniela; Nordin, Angelica; Tradowsky, Daniela C; Just, Walter; Daoud, Hussein; Angerbauer, Sabrina; DeJesus-Hernandez, Mariely; Konno, Takuya; Lloyd-Jani, Anjali; de Carvalho, Mamede; Mouzat, Kevin; Landers, John E; Veldink, Jan H; Silani, Vincenzo; Gitler, Aaron D; Shaw, Christopher E; Rouleau, Guy A; van den Berg, Leonard H; Van Broeckhoven, Christine; Rademakers, Rosa; Andersen, Peter M; Kubisch, Christian

    2014-01-01

    Background The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. Methods The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. Results Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9–100%), and the mean specificity was 98.0% (87.5–100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. Conclusions Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting. PMID:24706941

  20. Comparison of Abbott RealTime High-Risk HPV and Hybrid Capture 2 Assays for Detection of HPV Infection.

    PubMed

    Ko, Kiwoong; Yu, Shinae; Lee, Eun Hee; Park, Hyosoon; Woo, Hee-Yeon; Kwon, Min-Jung

    2016-09-01

    Various assays for detecting high-risk human papillomavirus (HR HPV) have been introduced recently, including the Abbott RealTime High-Risk HPV assay. We sought to compare the performance of Abbott PCR to Hybrid Capture 2 for the detection of HR HPV. A total of 941 cervical swab specimens were obtained. We submitted all specimens for HR HPV detection with HC2 and Abbott PCR, and then additionally analyzed discordant and concordant positive results using restriction fragment mass polymorphism (RFMP) genotyping analysis. HC2 detected one of 13 HR HPV types in 12.3% (116/941) of cases, while Abbott PCR detected one of 14 detectable HR HPV types in 12.9% (121/941) of cases. The overall agreement rate was 97.3% with a kappa coefficient of 0.879. Discordant results between these two assays were observed in 25 cases. HC2 showed a sensitivity of 90.0% and specificity of 95.9%, while Abbott PCR showed a sensitivity of 98.0% and specificity of 96.8% when using RFMP results as the gold standard. For HPV 16/18 detection, Abbott PCR showed 95.8%/88.9% sensitivity and 99.2%/99.8% specificity, respectively. The overall coinfection rate between HPV 16, 18 and non-16/18 was 9.9% (12/121) in Abbott PCR analysis. Considering its high agreement rate with HC2, higher sensitivity/specificity compared to HC2, and ability to differentiate HPV 16/18 from other HPV types, Abbott PCR could be a reliable laboratory testing method for the screening of HPV infections. © 2016 by the Association of Clinical Scientists, Inc.

  1. Mining for sensitive and reliable species-specific primers for PCR for detection of Cronobacter sakazakii by a bioinformatics approach.

    PubMed

    Qiming, Chen; Tingting, Tao; Xiaomei, Bie; Yingjian, Lu; Fengxia, Lu; Ligong, Zhai; Zhaoxin, Lu

    2015-08-01

    Although several studies have reported PCR assays for distinguishing Cronobacter sakazakii from other species in the genus, reports regarding assay sensitivity and specificity, as well as applications for food testing, are lacking. Hence, the objective of this study was to develop a sensitive and reliable PCR-based method for detection of C. sakazakii by screening for specific target genes. The genome sequence of C. sakazakii in the GenBank database was compared with that of other organisms using BLAST. Thirty-eight DNA fragments unique to C. sakazakii were identified, and primers targeting these sequences were designed. Finally, 3 primer sets (CS14, CS21, and CS38) were found to be specific for C. sakazakii by PCR verification. The detection limit of PCR assays using the 3 pairs of primers was 1.35 pg/μL, 135 fg/μL, and 135 fg/μL, respectively, for genomic DNA, and 5.5×10(5), 5.5×10(3), 5.5×10(3) cfu/mL, respectively, using pure cultures of the bacteria, compared with 13.5 pg/μLand 5.5×10(5) cfu/mLfor primer set SpeCronsaka, which has been previously described. Cronobacter sakazakii were detected in artificially contaminated powdered infant formula (PIF) by PCR using primer sets CS21 and CS38 after 8h of enrichment. The detection limit was 5.5×10(-1) cfu/10g of PIF. Thus, the PCR assay can be used for rapid and sensitive detection of C. sakazakii in PIF. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Multiplex qPCR for reliable detection and differentiation of Burkholderia mallei and Burkholderia pseudomallei.

    PubMed

    Janse, Ingmar; Hamidjaja, Raditijo A; Hendriks, Amber C A; van Rotterdam, Bart J

    2013-02-14

    Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.

  3. Prevalence and molecular characterization of methicillin resistance among Coagulase-negative Staphylococci at a tertiary care center.

    PubMed

    Bhatt, Puneet; Tandel, Kundan; Singh, Alina; Kumar, M; Grover, Naveen; Sahni, A K

    2016-12-01

    Methicillin-resistant Coagulase-negative Staphylococci (MR-CoNS) have emerged as an important cause of nosocomial infections especially in patients with prosthetic devices and implants. This study was conducted with an aim to determine the prevalence of methicillin resistance among CoNS isolates at a tertiary care center by both phenotypic and genotypic methods. This cross sectional study was carried out from September 2011 to February 2014 in which 150 non-repetitive clinical isolates of CoNS were identified at the species level by conventional phenotypic methods. Cefoxitin disk (30 μg) diffusion testing was used to determine methicillin resistance and confirmed by detection of mec A gene by polymerase chain reaction (PCR). Out of 150 CoNS isolates, 51 were methicillin resistant by cefoxitin disk diffusion method. Out of these 51 isolates, mec A gene was detected only in 45 isolates. Moreover, mec A gene was also detected in 4 isolates, which were cefoxitin sensitive. Thus, the prevalence of methicillin resistance among CoNS was found to be 32.7% by PCR. The prevalence of methicillin resistance among Coagulase-negative Staphylococci (CoNS) was 32.7% by PCR detection of mec A gene. The sensitivity and specificity of cefoxitin disk diffusion method against mec A gene detection by PCR were found to be more than 90%. It can be concluded from this study that cefoxitin disk diffusion test can be used as a useful screening method to detect methicillin resistance among CoNS isolates. However, detection of mec A gene by PCR remains a more accurate method of detecting methicillin resistance among CoNS.

  4. Simultaneous Detection of Yersinia Enterocolitica and Listeria Monocytogenes in Foodstuffs by Capillary Electrophoresis and Microchip Capillary Electrophoresis Laser-Induced Fluorescence Detector.

    PubMed

    Li, Yongru; Su, Hongwei; Lan, Yajia

    2018-05-29

    Background: Food safety is one of the most important public health problems in the world,and pathogenic bacterium is a major factor causing serious foodborne diseases. Objective: Two methods of duplex PCR combined with capillary electrophoresis laser-induced fluorescence detector (CE-LIF) and microchip capillary electrophoresis laser-induced fluorescence detector (MCE-LIF) have been developed for the simultaneous detection of Yersinia enterocolitica and Listeria monocytogenes in various foods. The specific conservative sequences of these two bacteria were amplified. Methods: After labelled with nucleic acid dye SYBR Gold and SYBR Orange, the PCR products were analyzed by CE-LIF and MCE-LIF, respectively. Under the optimal conditions, the detection of PCR products of the target bacteria was achieved in less than 15 min by CE-LIF and within 6 min by MCE-LIF. Results: The alignment analysis demonstrated that the PCR products had good agreement with the sequences published in GenBank. The CE-LIF method could detect 10 CFU/mL Y. enterocolitica and L. monocytogenes , and the MCE-LIF method could detect 100 CFU/mL Y. enterocolitica and L. monocytogenes . The intraday precisions of migration time and peak area of DNA markers and PCR products were in the range of 1.13 to 1.18% and 1.60 to 6.29%, respectively, for CE-LIF and 1.18 to 1.48% and 2.85 to 4.06%, respectively, for MCE-LIF. Conclusions : The proposed methods could be applied to target bacterial detection infood samples rapidly, sensitively, and specifically. Highlights : Two new methods based on CE and MCE have been developed for the simultaneous detection of Y. enterocolitica and L. monocytogenes in foodstuffs, and they can detect the bacteria directly without any enrichment because of their high sensitivity.

  5. Molecular tools for diagnosis of visceral leishmaniasis: systematic review and meta-analysis of diagnostic test accuracy.

    PubMed

    de Ruiter, C M; van der Veer, C; Leeflang, M M G; Deborggraeve, S; Lucas, C; Adams, E R

    2014-09-01

    Molecular methods have been proposed as highly sensitive tools for the detection of Leishmania parasites in visceral leishmaniasis (VL) patients. Here, we evaluate the diagnostic accuracy of these tools in a meta-analysis of the published literature. The selection criteria were original studies that evaluate the sensitivities and specificities of molecular tests for diagnosis of VL, adequate classification of study participants, and the absolute numbers of true positives and negatives derivable from the data presented. Forty studies met the selection criteria, including PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), and loop-mediated isothermal amplification (LAMP). The sensitivities of the individual studies ranged from 29 to 100%, and the specificities ranged from 25 to 100%. The pooled sensitivity of PCR in whole blood was 93.1% (95% confidence interval [CI], 90.0 to 95.2), and the specificity was 95.6% (95% CI, 87.0 to 98.6). The specificity was significantly lower in consecutive studies, at 63.3% (95% CI, 53.9 to 71.8), due either to true-positive patients not being identified by parasitological methods or to the number of asymptomatic carriers in areas of endemicity. PCR for patients with HIV-VL coinfection showed high diagnostic accuracy in buffy coat and bone marrow, ranging from 93.1 to 96.9%. Molecular tools are highly sensitive assays for Leishmania detection and may contribute as an additional test in the algorithm, together with a clear clinical case definition. We observed wide variety in reference standards and study designs and now recommend consecutively designed studies. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Use of quantitative real-time RT-PCR to investigate the correlation between viremia and viral shedding of canine distemper virus, and infection outcomes in experimentally infected dogs.

    PubMed

    Sehata, Go; Sato, Hiroaki; Ito, Toshihiro; Imaizumi, Yoshitaka; Noro, Taichi; Oishi, Eiji

    2015-07-01

    We used real-time RT-PCR and virus titration to examine canine distemper virus (CDV) kinetics in peripheral blood and rectal and nasal secretions from 12 experimentally infected dogs. Real-time RT-PCR proved extremely sensitive, and the correlation between the two methods for rectal and nasal (r=0.78, 0.80) samples on the peak day of viral RNA was good. Although the dogs showed diverse symptoms, viral RNA kinetics were similar; the peak of viral RNA in the symptomatic dogs was consistent with the onset of symptoms. These results indicate that real-time RT-PCR is sufficiently sensitive to monitor CDV replication in experimentally infected dogs regardless of the degree of clinical manifestation and suggest that the peak of viral RNA reflects active CDV replication.

  7. Use of quantitative real-time RT-PCR to investigate the correlation between viremia and viral shedding of canine distemper virus, and infection outcomes in experimentally infected dogs

    PubMed Central

    SEHATA, Go; SATO, Hiroaki; ITO, Toshihiro; IMAIZUMI, Yoshitaka; NORO, Taichi; OISHI, Eiji

    2015-01-01

    We used real-time RT-PCR and virus titration to examine canine distemper virus (CDV) kinetics in peripheral blood and rectal and nasal secretions from 12 experimentally infected dogs. Real-time RT-PCR proved extremely sensitive, and the correlation between the two methods for rectal and nasal (r=0.78, 0.80) samples on the peak day of viral RNA was good. Although the dogs showed diverse symptoms, viral RNA kinetics were similar; the peak of viral RNA in the symptomatic dogs was consistent with the onset of symptoms. These results indicate that real-time RT-PCR is sufficiently sensitive to monitor CDV replication in experimentally infected dogs regardless of the degree of clinical manifestation and suggest that the peak of viral RNA reflects active CDV replication. PMID:25728411

  8. A naked-eye colorimetric "PCR developer"

    NASA Astrophysics Data System (ADS)

    Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Despite several advances in molecular biology and diagnostics, Polymerase Chain Reaction (PCR) is currently the gold standard for nucleic acids amplification and detection, due to its versatility, low-cost and universality, with estimated <10 billion reactions per year and a worldwide market of several billion dollars/year. Nevertheless, PCR still relies on the laborious, time-consuming, and multi-step gel electrophoresis-based detection, which includes gel casting, electrophoretic run, gel staining, and gel visualization. In this work, we propose a "PCR developer", namely a universal one-step, one-tube method, based on controlled aggregation of gold nanoparticles (AuNPs), to detect PCR products by naked eye in few minutes, with no need for any instrumentation. We demonstrated the specificity and sensitivity of the PCR developer on different model targets, suitable for a qualitative detection in real-world diagnostics (i.e., gene rearrangements, genetically modified organisms, and pathogens). The PCR developer proved to be highly specific and ultra-sensitive, discriminating down to few copies of HIV viral DNA, diluted in an excess of interfering human genomic DNA, which is a clinically relevant viral load. Hence, it could be a valuable tool for both academic research and clinical applications.

  9. Comparative effectiveness of light-microscopic techniques and PCR in detecting Thelohania solenopsae (Microsporidia) infections in red imported fire ants (Solenopsis invicta).

    PubMed

    Milks, Maynard L; Sokolova, Yuliya Y; Isakova, Irina A; Fuxa, James R; Mitchell, Forrest; Snowden, Karen F; Vinson, S Bradleigh

    2004-01-01

    The main goal of this study was to compare the effectiveness of three staining techniques (calcofluor white M2R, Giemsa and modified trichrome), and the polymerase chain reaction (PCR) in detecting the microsporidium Thelohania solenopsae in red imported fire ants (Solenopsis invicta). The effect of the number of ants in a sample on the sensitivity of the staining techniques and the PCR, and the effect of three DNA extraction protocols on the sensitivity of PCR were also examined. In the first protocol, the ants were macerated and the crude homogenate was used immediately in the PCR. In the second protocol, the homogenate was placed on a special membrane (FTA card) that traps DNA, which is subsequently used in the PCR. In the third protocol, the DNA was purified from the homogenate by traditional phenol-chloroform extraction. Except for PCR using FTA cards, the sensitivity (number of samples positive for T. solenopsae) of all detection techniques increased with the number of ants in the sample. Overall, Giemsa was the least sensitive of all detection techniques. Calcofluor was more sensitive than modified trichrome with ants from one site and was equally as sensitive as PCR with crude DNA or a FTA card with ants from both sites. Trichrome staining was equally as sensitive as PCR with a FTA card at both sites, but it was less sensitive than PCR with crude DNA at one site. PCR on FTA cards was less sensitive than PCR with crude DNA for ants from one site but not the other. There was no difference whether crude or phenol-chloroform purified DNA was used as template. In summary, the results of this study show that PCR based on a crude DNA solution is equal to or more sensitive in detecting T. solenopsae than the other detection techniques investigated, and that it can be used as a reliable diagnostic tool for screening field samples of S. invicta for T. solenopsae. Nevertheless, ant smear stained with calcofluor or modified trichrome should be used to buttress findings from PCR.

  10. Detection of tumor markers in prostate cancer and comparison of sensitivity between real time and nested PCR.

    PubMed

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-06-27

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.

  11. Diagnosis of neonatal group B Streptococcus sepsis by nested-PCR of residual urine samples

    PubMed Central

    Cezarino, Bruno Nicolino; Yamamoto, Lidia; Del Negro, Gilda Maria Barbaro; Rocha, Daisy; Okay, Thelma Suely

    2008-01-01

    Group B streptococcus (GBS) remains the most common cause of early-onset sepsis in newborns. Laboratory gold-standard, broth culture methods are highly specific, but lack sensitivity. The aim of this study was to validate a nested-PCR and to determine whether residue volumes of urine samples obtained by non invasive, non sterile methods could be used to confirm neonatal GBS sepsis. The nested-PCR was performed with primers of the major GBS surface antigen. Unavailability of biological samples to perform life supporting exams, as well as others to elucidate the etiology of infections is a frequent problem concerning newborn patients. Nevertheless, we decided to include cases according to strict criteria: newborns had to present with signs and symptoms compatible with GBS infection; at least one of the following biological samples had to be sent for culture: blood, urine, or cerebrospinal fluid; availability of residue volumes of the samples sent for cultures, or of others collected on the day of hospitalization, prior to antibiotic therapy prescription, to be analyzed by PCR; favorable outcome after GBS empiric treatment. In only one newborn GBS infection was confirmed by cultures, while infection was only presumptive in the other three patients (they fulfilled inclusion criteria but were GBS-culture negative). From a total of 12 biological samples (5 blood, 3 CSF and 4 urine specimen), eight were tested by culture methods (2/8 were positive), and 8 were tested by PCR (7/8 were positive), and only 4 samples were simultaneously tested by both methods (1 positive by culture and 3 by PCR). In conclusion, although based on a restricted number of neonates and samples, our results suggest that the proposed nested-PCR might be used to diagnose GBS sepsis as it has successfully amplified the three types of biological samples analyzed (blood, urine and cerebrospinal fluid), and was more sensitive than culture methods as PCR in urine confirmed diagnosis in all four patients. Moreover, PCR has enabled us to use residue volumes of urine samples collected by non invasive, non sterile methods, what is technically adequate as GBS is not part of the normal urine flora, thus avoiding invasive procedures such as suprapubic bladder punction or transurethral catheterization. At the same time, the use of urine instead of blood samples could help preventing newborns blood spoliation. PMID:24031170

  12. A Comparison of Loop-Mediated Isothermal Amplification (LAMP) with Other Surveillance Tools for Echinococcus granulosus Diagnosis in Canine Definitive Hosts

    PubMed Central

    Ni, Xing-Wei; McManus, Donald P.; Lou, Zhong-Zi; Yang, Ji-Fei; Yan, Hong-Bin; Li, Li; Li, Hong-Min; Liu, Quan-Yuan; Li, Chun-Hua; Shi, Wan-Gui; Fan, Yan-Lei; Liu, Xu; Cai, Jin-Zhong; Lei, Meng-Tong; Fu, Bao-Quan; Yang, Yu-Rong; Jia, Wan-Zhong

    2014-01-01

    Background Cystic echinococcosis is highly prevalent in northwest China. A cost-effective, easy to operate diagnostic tool with high sensitivity and specificity would greatly facilitate the monitoring of Echinococcus infections in canine definitive hosts. Methods The primers used in the LAMP assay were based on the mitochondrial nad5 gene of E. granulosus sensu stricto (E. granulosus s.s., or E.g.s.s.) and were designed using Primer Explorer V4 software. The developed LAMP assay was compared with a conventional PCR method, copro-ELISA and microscopy, using the faeces of dogs experimentally infected with E.g.s.s., and field-collected faeces of domestic dogs including 190 from Qinghai province highly endemic for E.g.s.s. and 30 controls from an area in Gansu, where a domestic dog de-worming program was in operation. Results The positivity rates obtained for the field-collected faecal samples were 12.6%, 1.6% and 2.1% by the LAMP, PCR and copro-ELISA assays, respectively. All samples obtained from the control dogs were negative. Compared with the conventional PCR, the LAMP assay provided 88.8% specificity and 100% sensitivity. The higher sensitivity of the LAMP method was also shown by the fact that it could detect the presence of laboratory challenge dog infections of E. granulsous s.s. four days earlier than the PCR method. Three copro-samples shown positive by the commercial copro-ELISA were all negative by LAMP, PCR and microscopy, which suggests these samples may have originated from another infection rather than E. granulsous s.s., possibly E. shiquicus or E. Canadensis, which is also present in China. Conclusions We have developed a potentially useful surveillance tool for determining the prevalence of canine E. granulosus s.s. infections in the field. The LAMP assay may lead to a more cost-effective and practicable way of tracking Echinococcus infections in canids, especially when combined with the copro-ELISA. PMID:25007051

  13. Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR.

    PubMed

    Lucchi, Naomi W; Narayanan, Jothikumar; Karell, Mara A; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J; Hill, Vincent; Udhayakumar, Venkatachalam

    2013-01-01

    There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs.

  14. Simultaneous detection of bovine and porcine DNA in pharmaceutical gelatin capsules by duplex PCR assay for Halal authentication.

    PubMed

    Nikzad, Jafar; Shahhosseini, Soraya; Tabarzad, Maryam; Nafissi-Varcheh, Nastaran; Torshabi, Maryam

    2017-02-14

    In the pharmaceutical industry, hard- and soft-shelled capsules are typically made from gelatin, commonly derived from bovine and porcine sources. To ensure that pharmaceutical products comply with halal regulations in Muslim countries (no porcine products allowed), development of a valid, reliable, quick, and most importantly, cost-effective tests are of utmost importance. We developed a species-specific duplex polymerase chain reaction (PCR) assay targeting 149 bp porcine and 271 bp bovine mitochondrial DNA (mtDNA) to simultaneously detect both porcine and bovine DNA (in one reaction at the same time) in gelatin. Some additional simplex PCR tests (targeting 126 bp bovine and 212 bp porcine mtDNA) and real-time PCR using a commercially available kit (for identification of porcine DNA) were used to verify the selectivity and sensitivity of our duplex PCR. After optimization of DNA extraction and PCR methods, hard/soft pharmaceutical gelatin capsules (containing drug) were tested for the presence of porcine and/or bovine DNA. Duplex PCR detected the presence of as little as 0.1% porcine DNA, which was more accurate than the commercially available kit. Of all gelatin capsules tested (n = 24), 50% contained porcine DNA (pure porcine gelatin alone or in combination with bovine gelatin). Duplex PCR presents an easy-to-follow, quick, low-cost and reliable method to simultaneously detect porcine and bovine DNAs (>100 bp) in minute amounts in highly processed gelatin-containing pharmaceutical products (with a 0.1% sensitivity for porcine DNA) which may be used for halal authentication. Simultaneous detection of porcine and bovine DNA in gelatin capsules by duplex PCR.

  15. Is quantitative PCR for the pneumolysin (ply) gene useful for detection of pneumococcal lower respiratory tract infection?

    PubMed

    Abdeldaim, G; Herrmann, B; Korsgaard, J; Olcén, P; Blomberg, J; Strålin, K

    2009-06-01

    The pneumolysin (ply) gene is widely used as a target in PCR assays for Streptococcus pneumoniae in respiratory secretions. However, false-positive results with conventional ply-based PCR have been reported. The aim here was to study the performance of a quantitative ply-based PCR for the identification of pneumococcal lower respiratory tract infection (LRTI). In a prospective study, fibreoptic bronchoscopy was performed in 156 hospitalized adult patients with LRTI and 31 controls who underwent bronchoscopy because of suspicion of malignancy. Among the LRTI patients and controls, the quantitative ply-based PCR applied to bronchoalveolar lavage (BAL) fluid was positive at >or=10(3) genome copies/mL in 61% and 71% of the subjects, at >or=10(5) genome copies/mL in 40% and 58% of the subjects, and at >or=10(7) genome copies/mL in 15% and 3.2% of the subjects, respectively. Using BAL fluid culture, blood culture, and/or a urinary antigen test, S. pneumoniae was identified in 19 LRTI patients. As compared with these diagnostic methods used in combination, quantitative ply-based PCR showed sensitivities and specificities of 89% and 43% at a cut-off of 10(3) genome copies/mL, of 84% and 66% at a cut-off of 10(5) genome copies/mL, and of 53% and 90% at a cut-off of 10(7) genome copies/mL, respectively. In conclusion, a high cut-off with the quantitative ply-based PCR was required to reach acceptable specificity. However, as a high cut-off resulted in low sensitivity, quantitative ply-based PCR does not appear to be clinically useful. Quantitative PCR methods for S. pneumoniae using alternative gene targets should be evaluated.

  16. Legionella in water samples: how can you interpret the results obtained by quantitative PCR?

    PubMed

    Ditommaso, Savina; Ricciardi, Elisa; Giacomuzzi, Monica; Arauco Rivera, Susan R; Zotti, Carla M

    2015-02-01

    Evaluation of the potential risk associated with Legionella has traditionally been determined from culture-based methods. Quantitative polymerase chain reaction (qPCR) is an alternative tool that offers rapid, sensitive and specific detection of Legionella in environmental water samples. In this study we compare the results obtained by conventional qPCR (iQ-Check™ Quanti Legionella spp.; Bio-Rad) and by culture method on artificial samples prepared in Page's saline by addiction of Legionella pneumophila serogroup 1 (ATCC 33152) and we analyse the selective quantification of viable Legionella cells by the qPCR-PMA method. The amount of Legionella DNA (GU) determined by qPCR was 28-fold higher than the load detected by culture (CFU). Applying the qPCR combined with PMA treatment we obtained a reduction of 98.5% of the qPCR signal from dead cells. We observed a dissimilarity in the ability of PMA to suppress the PCR signal in samples with different amounts of bacteria: the effective elimination of detection signals by PMA depended on the concentration of GU and increasing amounts of cells resulted in higher values of reduction. Using the results from this study we created an algorithm to facilitate the interpretation of viable cell level estimation with qPCR-PMA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Evaluation of SYBR green I based visual loop-mediated isothermal amplification (LAMP) assay for genus and species-specific diagnosis of malaria in P. vivax and P. falciparum endemic regions.

    PubMed

    Singh, Ruchi; Singh, Dhirendra Pratap; Savargaonkar, Deepali; Singh, Om P; Bhatt, Rajendra M; Valecha, Neena

    2017-01-01

    Loop-mediated isothermal amplification (LAMP) is an emerging nucleic acid based diag- nostic approach that is easily adaptable to the field settings with limited technical resources. This study was aimed to evaluate the LAMP assay for the detection and identification of Plasmodium falciparum and P. vivax infection in malaria suspected cases using genus and species-specific assay. The 18S rRNA-based LAMP assay was evaluated for diagnosis of genus Plasmodium, and species- specific diagnosis of P. falciparum and P. vivax, infection employing 317 malaria suspected cases, and the results were compared with those obtained by 18S nested PCR (n-PCR). All the samples were confirmed by microscopy for the presence of Plasmodium parasite. The n-PCR was positive in all Plasmodium-infected cases (n=257; P. falciparum=133; P. vivax=124) and negative in microscopy negative cases (n=58) except for two cases which were positive for P. vivax, giving a sen- sitivity of 100% (95% CI: 97.04-100%) and a specificity of 100% (95% CI: 88.45-99.5%). Genus-specific LAMP assay missed 11 (3.2%) microscopy and n-PCR confirmed vivax malaria cases. Considering PCR results as a refer- ence, LAMP was 100% sensitive and specific for P. falciparum, whereas it exhibited 95.16% sensitivity and 96.7% specificity for P. vivax. The n-PCR assay detected 10 mixed infection cases while species-specific LAMP detected five mixed infection cases of P. vivax and P. falciparum, which were not detected by microscopy. Genus-specific LAMP assay displayed low sensitivity. Falciparum specific LAMP assay displayed high sensitivity whereas vivax specific LAMP assay displayed low sensitivity. Failed detection of vivax cases otherwise confirmed by the n-PCR assay indicates exploitation of new targets and improved detection methods to attain 100% results for P. vivax detection.

  18. Status of soil-transmitted helminth infections in schoolchildren in Laguna Province, the Philippines: Determined by parasitological and molecular diagnostic techniques.

    PubMed

    Mationg, Mary Lorraine S; Gordon, Catherine A; Tallo, Veronica L; Olveda, Remigio M; Alday, Portia P; Reñosa, Mark Donald C; Bieri, Franziska A; Williams, Gail M; Clements, Archie C A; Steinmann, Peter; Halton, Kate; Li, Yuesheng; McManus, Donald P; Gray, Darren J

    2017-11-01

    Soil-transmitted helminths (STH) are the most common parasitic infections in impoverished communities, particularly among children. Current STH control is through school-based mass drug administration (MDA), which in the Philippines is done twice annually. As expected, MDA has decreased the intensity and prevalence of STH over time. As a result, the common Kato Katz (KK) thick smear method of detecting STH is less effective because it lacks sensitivity in low intensity infections, making it difficult to measure the impact of deworming programs. A cross-sectional study was carried out over a four-week period from October 27, 2014 until November 20, 2014 in Laguna province, the Philippines. Stool samples were collected from 263 schoolchildren, to determine the prevalence of STH and compare diagnostic accuracy of multiplex quantitative polymerase chain reaction (qPCR) with the KK. A large discrepancy in the prevalence between the two techniques was noted for the detection of at least one type of STH infection (33.8% by KK vs. 78.3% by qPCR), Ascaris lumbricoides (20.5% by KK vs. 60.8% by qPCR) and Trichuris trichiura (23.6% by KK vs. 38.8% by qPCR). Considering the combined results of both methods, the prevalence of at least one type of helminth infection, A. lumbricoides, and T. trichiura were 83.3%, 67.7%, and 53.6%, respectively. Sensitivity of the qPCR for detecting at least one type of STH infection, A. lumbricoides, and T. trichiura were 94.1%, 89.9%, and 72.3% respectively; whereas KK sensitivity was 40.6%, 30.3%, and 44.0%, respectively. The qPCR method also detected infections with Ancylostoma spp. (4.6%), Necator americanus (2.3%), and Strongyloides stercoralis (0.8%) that were missed by KK. qPCR may provide new and important diagnostic information to improve assessment of the effectiveness and impact of integrated control strategies particularly in areas where large-scale STH control has led to low prevalence and/or intensity of infection.

  19. Desmoplastic small round cell tumor: evaluation of reverse transcription-polymerase chain reaction and fluorescence in situ hybridization as ancillary molecular diagnostic techniques.

    PubMed

    Mohamed, Mustafa; Gonzalez, David; Fritchie, Karen J; Swansbury, John; Wren, Dorte; Benson, Charlotte; Jones, Robin L; Fisher, Cyril; Thway, Khin

    2017-11-01

    Desmoplastic small round cell tumor (DSRCT) is a rare, biologically aggressive soft tissue neoplasm of uncertain differentiation, most often arising in the abdominal and pelvic cavities of adolescents and young adults with a striking male predominance. Histologically, it is characterized by islands of uniform small round cells in prominent desmoplastic stroma, and it has a polyimmunophenotypic profile, typically expressing WT1 and cytokeratin, desmin, and neural/neuroendocrine differentiation markers to varying degrees. Tumors at other sites and with variant morphology are more rarely described. DSRCT is associated with a recurrent t(11;22)(p13;q12) translocation, leading to the characteristic EWSR1-WT1 gene fusion. Fluorescence in situ hybridization (FISH), to detect EWSR1 rearrangement, and reverse transcription-polymerase chain reaction (RT-PCR) to assess for EWSR1-WT1 fusion transcripts are routine diagnostic ancillary tools. We present a large institutional comparative series of FISH and RT-PCR for DSRCT diagnosis. Twenty-six specimens (from 25 patients) histologically diagnosed as DSRCT were assessed for EWSR1 rearrangement and EWSR1-WT1 fusion transcripts. Of these 26 specimens, 24 yielded positive results with either FISH or RT-PCR or both. FISH was performed in 23 samples, with EWSR1 rearrangement seen in 21 (91.3%). RT-PCR was performed in 18 samples, of which 13 (72.2%) harbored EWSR1-WT1 fusion transcripts. The sensitivity of FISH in detecting DSRCT was 91.3%, and that of RT-PCR was 92.8% following omission of four technical failures. Therefore, both methods are comparable in terms of sensitivity. FISH is more sensitive if technical failures for RT-PCR are taken into account, and RT-PCR is more specific in confirming DSRCT. Both methods complement each other by confirming cases that the other method may not. In isolation, FISH is a relatively non-specific diagnostic adjunct due to the number of different neoplasms that can harbor EWSR1 rearrangement, such as Ewing sarcoma. However, in cases with appropriate morphology and a typical pattern of immunostaining, FISH is confirmatory of the diagnosis.

  20. The Use of Collagenase to Improve the Detection of Plant Viruses in Vector Nematodes by RT/PCR

    USDA-ARS?s Scientific Manuscript database

    Tomato ringspot virus (ToRSV) Tobacco ringspot virus (TRSV) and Tobacco rattle virus (TRV) are transmitted to healthy plants by viruliferous nematodes in the soil. We developed a method for extraction of genomic viral RNA from virus particles carried within nematodes and a sensitive nested RT/PCR ...

Top