Sample records for sensitive sequence profile

  1. COACH: profile-profile alignment of protein families using hidden Markov models.

    PubMed

    Edgar, Robert C; Sjölander, Kimmen

    2004-05-22

    Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed and have been shown to improve sensitivity and alignment quality compared with sequence-sequence methods (such as BLAST) and profile-sequence methods (e.g. PSI-BLAST). Here we present a new approach to profile-profile alignment we call Comparison of Alignments by Constructing Hidden Markov Models (HMMs) (COACH). COACH aligns two multiple sequence alignments by constructing a profile HMM from one alignment and aligning the other to that HMM. We compare the alignment accuracy of COACH with two recently published methods: Yona and Levitt's prof_sim and Sadreyev and Grishin's COMPASS. On two sets of reference alignments selected from the FSSP database, we find that COACH is able, on average, to produce alignments giving the best coverage or the fewest errors, depending on the chosen parameter settings. COACH is freely available from www.drive5.com/lobster

  2. A low-complexity add-on score for protein remote homology search with COMER.

    PubMed

    Margelevicius, Mindaugas

    2018-06-15

    Protein sequence alignment forms the basis for comparative modeling, the most reliable approach to protein structure prediction, among many other applications. Alignment between sequence families, or profile-profile alignment, represents one of the most, if not the most, sensitive means for homology detection but still necessitates improvement. We aim at improving the quality of profile-profile alignments and the sensitivity induced by them by refining profile-profile substitution scores. We have developed a new score that represents an additional component of profile-profile substitution scores. A comprehensive evaluation shows that the new add-on score statistically significantly improves both the sensitivity and the alignment quality of the COMER method. We discuss why the score leads to the improvement and its almost optimal computational complexity that makes it easily implementable in any profile-profile alignment method. An implementation of the add-on score in the open-source COMER software and data are available at https://sourceforge.net/projects/comer. The COMER software is also available on Github at https://github.com/minmarg/comer and as a Docker image (minmar/comer). Supplementary data are available at Bioinformatics online.

  3. High-resolution mapping of transcription factor binding sites on native chromatin

    PubMed Central

    Kasinathan, Sivakanthan; Orsi, Guillermo A.; Zentner, Gabriel E.; Ahmad, Kami; Henikoff, Steven

    2014-01-01

    Sequence-specific DNA-binding proteins including transcription factors (TFs) are key determinants of gene regulation and chromatin architecture. Formaldehyde cross-linking and sonication followed by Chromatin ImmunoPrecipitation (X-ChIP) is widely used for profiling of TF binding, but is limited by low resolution and poor specificity and sensitivity. We present a simple protocol that starts with micrococcal nuclease-digested uncross-linked chromatin and is followed by affinity purification of TFs and paired-end sequencing. The resulting ORGANIC (Occupied Regions of Genomes from Affinity-purified Naturally Isolated Chromatin) profiles of Saccharomyces cerevisiae Abf1 and Reb1 provide highly accurate base-pair resolution maps that are not biased toward accessible chromatin, and do not require input normalization. We also demonstrate the high specificity of our method when applied to larger genomes by profiling Drosophila melanogaster GAGA Factor and Pipsqueak. Our results suggest that ORGANIC profiling is a widely applicable high-resolution method for sensitive and specific profiling of direct protein-DNA interactions. PMID:24336359

  4. Methylation-sensitive amplified polymorphism-based genome-wide analysis of cytosine methylation profiles in Nicotiana tabacum cultivars.

    PubMed

    Jiao, J; Wu, J; Lv, Z; Sun, C; Gao, L; Yan, X; Cui, L; Tang, Z; Yan, B; Jia, Y

    2015-11-26

    This study aimed to investigate cytosine methylation profiles in different tobacco (Nicotiana tabacum) cultivars grown in China. Methylation-sensitive amplified polymorphism was used to analyze genome-wide global methylation profiles in four tobacco cultivars (Yunyan 85, NC89, K326, and Yunyan 87). Amplicons with methylated C motifs were cloned by reamplified polymerase chain reaction, sequenced, and analyzed. The results show that geographical location had a greater effect on methylation patterns in the tobacco genome than did sampling time. Analysis of the CG dinucleotide distribution in methylation-sensitive polymorphic restriction fragments suggested that a CpG dinucleotide cluster-enriched area is a possible site of cytosine methylation in the tobacco genome. The sequence alignments of the Nia1 gene (that encodes nitrate reductase) in Yunyan 87 in different regions indicate that a C-T transition might be responsible for the tobacco phenotype. T-C nucleotide replacement might also be responsible for the tobacco phenotype and may be influenced by geographical location.

  5. The limits of protein sequence comparison?

    PubMed Central

    Pearson, William R; Sierk, Michael L

    2010-01-01

    Modern sequence alignment algorithms are used routinely to identify homologous proteins, proteins that share a common ancestor. Homologous proteins always share similar structures and often have similar functions. Over the past 20 years, sequence comparison has become both more sensitive, largely because of profile-based methods, and more reliable, because of more accurate statistical estimates. As sequence and structure databases become larger, and comparison methods become more powerful, reliable statistical estimates will become even more important for distinguishing similarities that are due to homology from those that are due to analogy (convergence). The newest sequence alignment methods are more sensitive than older methods, but more accurate statistical estimates are needed for their full power to be realized. PMID:15919194

  6. Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster

    PubMed Central

    Hoffman, Jessica M; Soltow, Quinlyn A; Li, Shuzhao; Sidik, Alfire; Jones, Dean P; Promislow, Daniel E L

    2014-01-01

    Researchers have used whole-genome sequencing and gene expression profiling to identify genes associated with age, in the hope of understanding the underlying mechanisms of senescence. But there is a substantial gap from variation in gene sequences and expression levels to variation in age or life expectancy. In an attempt to bridge this gap, here we describe the effects of age, sex, genotype, and their interactions on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Among the 6800 features analyzed, we found that over one-quarter of all metabolites were significantly associated with age, sex, genotype, or their interactions, and multivariate analysis shows that individual metabolomic profiles are highly predictive of these traits. Using a metabolomic equivalent of gene set enrichment analysis, we identified numerous metabolic pathways that were enriched among metabolites associated with age, sex, and genotype, including pathways involving sugar and glycerophospholipid metabolism, neurotransmitters, amino acids, and the carnitine shuttle. Our results suggest that high-sensitivity metabolomic studies have excellent potential not only to reveal mechanisms that lead to senescence, but also to help us understand differences in patterns of aging among genotypes and between males and females. PMID:24636523

  7. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.

    PubMed

    Meinicke, Peter

    2009-09-02

    Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  8. Combination of cytochrome b heteroduplex-assay and sequencing for identification of triatomine blood meals.

    PubMed

    Buitrago, Rosio; Depickère, Stéphanie; Bosseno, Marie-France; Patzi, Edda Siñani; Waleckx, Etienne; Salas, Renata; Aliaga, Claudia; Brenière, Simone Frédérique

    2012-01-01

    The identification of blood meals in vectors contributes greatly to the understanding of interactions between vectors, microorganisms and hosts. The aim of the current work was to complement the validation of cytochrome b (Cytb) heteroduplex assay (HDA) previously described, and to add the sequencing of the Cytb gene of some samples for the identification of blood meals in triatomines. Experimental feedings of reared triatomines helped to clarify the sensitivity of the HDA. Moreover, the sequencing coupled with the HDA, allowed the assessment of the technique's taxonomic level of discrimination. The primers used to produce DNA fragments of Cytb genes for HDA had a very high sensitivity for vertebrate DNAs, rather similar for mammals, birds and reptiles. However, the formation of heteroduplex depended on blood meal's quality rather than its quantity; a correlation was observed between blood meals' color and the positivity of HDA. HDA electrophoresis profiles were reproducible, and allowed the discrimination of blood origins at the species level. However, in some cases, intraspecific variability of Cytb gene generated different HDA profiles. The HDA based on comparison of electrophoresis profiles is a very useful tool for screening large samples to determine blood origins; the subsequent sequencing of PCR products of Cytb corresponding to different HDA profiles allowed the identification of species whatever the biotope in which the vectors were captured. Copyright © 2011. Published by Elsevier B.V.

  9. HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold.

    PubMed

    Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel; Ten Have, Arjen

    2018-01-01

    Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following URL: https://github.com/BBCMdP/HMMERCTTER.

  10. HMMER Cut-off Threshold Tool (HMMERCTTER): Supervised classification of superfamily protein sequences with a reliable cut-off threshold

    PubMed Central

    Pagnuco, Inti Anabela; Revuelta, María Victoria; Bondino, Hernán Gabriel; Brun, Marcel

    2018-01-01

    Background Protein superfamilies can be divided into subfamilies of proteins with different functional characteristics. Their sequences can be classified hierarchically, which is part of sequence function assignation. Typically, there are no clear subfamily hallmarks that would allow pattern-based function assignation by which this task is mostly achieved based on the similarity principle. This is hampered by the lack of a score cut-off that is both sensitive and specific. Results HMMER Cut-off Threshold Tool (HMMERCTTER) adds a reliable cut-off threshold to the popular HMMER. Using a high quality superfamily phylogeny, it clusters a set of training sequences such that the cluster-specific HMMER profiles show cluster or subfamily member detection with 100% precision and recall (P&R), thereby generating a specific threshold as inclusion cut-off. Profiles and thresholds are then used as classifiers to screen a target dataset. Iterative inclusion of novel sequences to groups and the corresponding HMMER profiles results in high sensitivity while specificity is maintained by imposing 100% P&R self detection. In three presented case studies of protein superfamilies, classification of large datasets with 100% precision was achieved with over 95% recall. Limits and caveats are presented and explained. Conclusions HMMERCTTER is a promising protein superfamily sequence classifier provided high quality training datasets are used. It provides a decision support system that aids in the difficult task of sequence function assignation in the twilight zone of sequence similarity. All relevant data and source codes are available from the Github repository at the following URL: https://github.com/BBCMdP/HMMERCTTER. PMID:29579071

  11. Integrated digital error suppression for improved detection of circulating tumor DNA

    PubMed Central

    Kurtz, David M.; Chabon, Jacob J.; Scherer, Florian; Stehr, Henning; Liu, Chih Long; Bratman, Scott V.; Say, Carmen; Zhou, Li; Carter, Justin N.; West, Robert B.; Sledge, George W.; Shrager, Joseph B.; Loo, Billy W.; Neal, Joel W.; Wakelee, Heather A.; Diehn, Maximilian; Alizadeh, Ash A.

    2016-01-01

    High-throughput sequencing of circulating tumor DNA (ctDNA) promises to facilitate personalized cancer therapy. However, low quantities of cell-free DNA (cfDNA) in the blood and sequencing artifacts currently limit analytical sensitivity. To overcome these limitations, we introduce an approach for integrated digital error suppression (iDES). Our method combines in silico elimination of highly stereotypical background artifacts with a molecular barcoding strategy for the efficient recovery of cfDNA molecules. Individually, these two methods each improve the sensitivity of cancer personalized profiling by deep sequencing (CAPP-Seq) by ~3 fold, and synergize when combined to yield ~15-fold improvements. As a result, iDES-enhanced CAPP-Seq facilitates noninvasive variant detection across hundreds of kilobases. Applied to clinical non-small cell lung cancer (NSCLC) samples, our method enabled biopsy-free profiling of EGFR kinase domain mutations with 92% sensitivity and 96% specificity and detection of ctDNA down to 4 in 105 cfDNA molecules. We anticipate that iDES will aid the noninvasive genotyping and detection of ctDNA in research and clinical settings. PMID:27018799

  12. Universal digital high-resolution melt: a novel approach to broad-based profiling of heterogeneous biological samples.

    PubMed

    Fraley, Stephanie I; Hardick, Justin; Masek, Billie J; Jo Masek, Billie; Athamanolap, Pornpat; Rothman, Richard E; Gaydos, Charlotte A; Carroll, Karen C; Wakefield, Teresa; Wang, Tza-Huei; Yang, Samuel

    2013-10-01

    Comprehensive profiling of nucleic acids in genetically heterogeneous samples is important for clinical and basic research applications. Universal digital high-resolution melt (U-dHRM) is a new approach to broad-based PCR diagnostics and profiling technologies that can overcome issues of poor sensitivity due to contaminating nucleic acids and poor specificity due to primer or probe hybridization inaccuracies for single nucleotide variations. The U-dHRM approach uses broad-based primers or ligated adapter sequences to universally amplify all nucleic acid molecules in a heterogeneous sample, which have been partitioned, as in digital PCR. Extensive assay optimization enables direct sequence identification by algorithm-based matching of melt curve shape and Tm to a database of known sequence-specific melt curves. We show that single-molecule detection and single nucleotide sensitivity is possible. The feasibility and utility of U-dHRM is demonstrated through detection of bacteria associated with polymicrobial blood infection and microRNAs (miRNAs) associated with host response to infection. U-dHRM using broad-based 16S rRNA gene primers demonstrates universal single cell detection of bacterial pathogens, even in the presence of larger amounts of contaminating bacteria; U-dHRM using universally adapted Lethal-7 miRNAs in a heterogeneous mixture showcases the single copy sensitivity and single nucleotide specificity of this approach.

  13. Accurate detection for a wide range of mutation and editing sites of microRNAs from small RNA high-throughput sequencing profiles

    PubMed Central

    Zheng, Yun; Ji, Bo; Song, Renhua; Wang, Shengpeng; Li, Ting; Zhang, Xiaotuo; Chen, Kun; Li, Tianqing; Li, Jinyan

    2016-01-01

    Various types of mutation and editing (M/E) events in microRNAs (miRNAs) can change the stabilities of pre-miRNAs and/or complementarities between miRNAs and their targets. Small RNA (sRNA) high-throughput sequencing (HTS) profiles can contain many mutated and edited miRNAs. Systematic detection of miRNA mutation and editing sites from the huge volume of sRNA HTS profiles is computationally difficult, as high sensitivity and low false positive rate (FPR) are both required. We propose a novel method (named MiRME) for an accurate and fast detection of miRNA M/E sites using a progressive sequence alignment approach which refines sensitivity and improves FPR step-by-step. From 70 sRNA HTS profiles with over 1.3 billion reads, MiRME has detected thousands of statistically significant M/E sites, including 3′-editing sites, 57 A-to-I editing sites (of which 32 are novel), as well as some putative non-canonical editing sites. We demonstrated that a few non-canonical editing sites were not resulted from mutations in genome by integrating the analysis of genome HTS profiles of two human cell lines, suggesting the existence of new editing types to further diversify the functions of miRNAs. Compared with six existing studies or methods, MiRME has shown much superior performance for the identification and visualization of the M/E sites of miRNAs from the ever-increasing sRNA HTS profiles. PMID:27229138

  14. Gene encoding the group B streptococcal protein R4, its presence in clinical reference laboratory isolates & R4 protein pepsin sensitivity.

    PubMed

    Smith, B L; Flores, A; Dechaine, J; Krepela, J; Bergdall, A; Ferrieri, P

    2004-05-01

    R proteins were first identified by Lancefield in group B Streptococcus (GBS) as resistant to trypsin at pH8 and sensitive to pepsin at pH2. The R4 protein found predominantly in type III and some type II and V invasive isolates conforms to these criteria. The Rib protein, although structurally and epidemiologically similar to R4, was reported as resistant to both proteases. We report here the gene encoding the R4 protein from a type III group B streptococcal isolate (76-043) well characterized in our laboratory. Trypsin extracted GBS proteins were assayed for protease sensitivities by double-diffusion Ouchterlony using varying conditions for the enzyme pepsin. Standard haemoglobin assay was used to examine pepsin enzymatic activity. Thirty clinical isolates of varying protein profiles identified by double-diffusion from our reference strain laboratory were screened by PCR and Southern technique. SDS-PAGE gel purified R4 amino acid sequences were determined and used to design oligonucleotide primers for screening a 76-043 genomic library. R4 was sensitive to pepsin at pH2 but appeared resistant at pH4, the reported pH used for Rib. By standard haemoglobin assay and trypsin extract studies of R4 protein, pepsin was shown to be active at pH2, yet easily inactivated; assays of GBS surface proteins are critical at pH2. Of the amino acids initially sequenced from R4, 88 per cent (61/69) showed identity to Rib; the r4 nucleotide sequence was identical to that of rib. All isolates with strong positive protein reactions for R4 were positive in both PCR and Southern technique, whereas isolates expressing alpha, beta, R1/R4, and R5 (BPS) protein profiles were not. Sequenced PCR products aligned with identity to the R4 and Rib nucleotide sequences and confirmed the identity of these proteins and their molecular sequences.

  15. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    PubMed

    Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem

    2016-01-01

    Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  16. Clinical Application of Picodroplet Digital PCR Technology for Rapid Detection of EGFR T790M in Next-Generation Sequencing Libraries and DNA from Limited Tumor Samples.

    PubMed

    Borsu, Laetitia; Intrieri, Julie; Thampi, Linta; Yu, Helena; Riely, Gregory; Nafa, Khedoudja; Chandramohan, Raghu; Ladanyi, Marc; Arcila, Maria E

    2016-11-01

    Although next-generation sequencing (NGS) is a robust technology for comprehensive assessment of EGFR-mutant lung adenocarcinomas with acquired resistance to tyrosine kinase inhibitors, it may not provide sufficiently rapid and sensitive detection of the EGFR T790M mutation, the most clinically relevant resistance biomarker. Here, we describe a digital PCR (dPCR) assay for rapid T790M detection on aliquots of NGS libraries prepared for comprehensive profiling, fully maximizing broad genomic analysis on limited samples. Tumor DNAs from patients with EGFR-mutant lung adenocarcinomas and acquired resistance to epidermal growth factor receptor inhibitors were prepared for Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets sequencing, a hybrid capture-based assay interrogating 410 cancer-related genes. Precapture library aliquots were used for rapid EGFR T790M testing by dPCR, and results were compared with NGS and locked nucleic acid-PCR Sanger sequencing (reference high sensitivity method). Seventy resistance samples showed 99% concordance with the reference high sensitivity method in accuracy studies. Input as low as 2.5 ng provided a sensitivity of 1% and improved further with increasing DNA input. dPCR on libraries required less DNA and showed better performance than direct genomic DNA. dPCR on NGS libraries is a robust and rapid approach to EGFR T790M testing, allowing most economical utilization of limited material for comprehensive assessment. The same assay can also be performed directly on any limited DNA source and cell-free DNA. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  17. A chemogenomic analysis of the human proteome: application to enzyme families.

    PubMed

    Bernasconi, Paul; Chen, Min; Galasinski, Scott; Popa-Burke, Ioana; Bobasheva, Anna; Coudurier, Louis; Birkos, Steve; Hallam, Rhonda; Janzen, William P

    2007-10-01

    Sequence-based phylogenies (SBP) are well-established tools for describing relationships between proteins. They have been used extensively to predict the behavior and sensitivity toward inhibitors of enzymes within a family. The utility of this approach diminishes when comparing proteins with little sequence homology. Even within an enzyme family, SBPs must be complemented by an orthogonal method that is independent of sequence to better predict enzymatic behavior. A chemogenomic approach is demonstrated here that uses the inhibition profile of a 130,000 diverse molecule library to uncover relationships within a set of enzymes. The profile is used to construct a semimetric additive distance matrix. This matrix, in turn, defines a sequence-independent phylogeny (SIP). The method was applied to 97 enzymes (kinases, proteases, and phosphatases). SIP does not use structural information from the molecules used for establishing the profile, thus providing a more heuristic method than the current approaches, which require knowledge of the specific inhibitor's structure. Within enzyme families, SIP shows a good overall correlation with SBP. More interestingly, SIP uncovers distances within families that are not recognizable by sequence-based methods. In addition, SIP allows the determination of distance between enzymes with no sequence homology, thus uncovering novel relationships not predicted by SBP. This chemogenomic approach, used in conjunction with SBP, should prove to be a powerful tool for choosing target combinations for drug discovery programs as well as for guiding the selection of profiling and liability targets.

  18. Improve homology search sensitivity of PacBio data by correcting frameshifts.

    PubMed

    Du, Nan; Sun, Yanni

    2016-09-01

    Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Dissecting whole-genome sequencing-based online tools for predicting resistance in Mycobacterium tuberculosis: can we use them for clinical decision guidance?

    PubMed

    Macedo, Rita; Nunes, Alexandra; Portugal, Isabel; Duarte, Sílvia; Vieira, Luís; Gomes, João Paulo

    2018-05-01

    Whole-genome sequencing (WGS)-based bioinformatics platforms for the rapid prediction of resistance will soon be implemented in the Tuberculosis (TB) laboratory, but their accuracy assessment still needs to be strengthened. Here, we fully-sequenced a total of 54 multidrug-resistant (MDR) and five susceptible TB strains and performed, for the first time, a simultaneous evaluation of the major four free online platforms (TB Profiler, PhyResSE, Mykrobe Predictor and TGS-TB). Overall, the sensitivity of resistance prediction ranged from 84.3% using Mykrobe predictor to 95.2% using TB profiler, while specificity was higher and homogeneous among platforms. TB profiler revealed the best performance robustness (sensitivity, specificity, PPV and NPV above 95%), followed by TGS-TB (all parameters above 90%). We also observed a few discrepancies between phenotype and genotype, where, in some cases, it was possible to pin-point some "candidate" mutations (e.g., in the rpsL promoter region) highlighting the need for their confirmation through mutagenesis assays and potential review of the anti-TB genetic databases. The rampant development of the bioinformatics algorithms and the tremendously reduced time-frame until the clinician may decide for a definitive and most effective treatment will certainly trigger the technological transition where WGS-based bioinformatics platforms could replace phenotypic drug susceptibility testing for TB. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Application of denaturing gradient gel electrophoresis (DGGE) to the analysis of microbial communities of subgingival plaque.

    PubMed

    Fujimoto, C; Maeda, H; Kokeguchi, S; Takashiba, S; Nishimura, F; Arai, H; Fukui, K; Murayama, Y

    2003-08-01

    Denaturing gradient gel electrophoresis (DGGE) was applied to the microbiologic examination of subgingival plaque. The PCR primers were designed from conserved nucleotide sequences on 16S ribosomal RNA gene (16SrDNA) with GC rich clamp at the 5'-end. Polymerase chain reaction (PCR) was performed using the primers and genomic DNAs of typical periodontal bacteria. The generated 16SrDNA fragments were separated by denaturing gel. Although the sizes of the amplified DNA fragments were almost the same among the species, 16SrDNAs of the periodontal bacteria were distinguished according to their specific sequences. The microflora of clinical plaque samples were profiled by the PCR-DGGE method, and the dominant 16SrDNA bands were cloned and sequenced. Simultaneously, Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia were detected by an ordinary PCR method. In the deep periodontal pockets, the bacterial community structures were complicated and P. gingivalis was the most dominant species, whereas the DGGE profiles were simple and Streptococcus or Neisseria species were dominant in the shallow pockets. The species-specific PCR method revealed the presence of A. actinomycetemcomitans, P. gingivalis and P. intermedia in the clinical samples. However, corresponding bands were not always observed in the DGGE profiles, indicating a lower sensitivity of the DGGE method. Although the DGGE method may have a lower sensitivity than the ordinary PCR methods, it could visualize the bacterial qualitative compositions and reveal the major species of the plaque. The DGGE analysis and following sequencing may have the potential to be a promising bacterial examination procedure in periodontal diseases.

  1. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing

    PubMed Central

    Jin, Ying; Shao, Yang; Shi, Xun; Lou, Guangyuan; Zhang, Yiping; Wu, Xue; Tong, Xiaoling; Yu, Xinmin

    2016-01-01

    Patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable genetic alterations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. One of the major resistant mechanisms is secondary EGFR-T790M mutation. Other mechanisms, such as HER2 and MET amplifications, and PIK3CA mutations, were also reported. However, the mechanisms in the remaining patients are still unknown. In this study, we performed mutational profiling in a cohort of 83 NSCLC patients with TKI-sensitizing EGFR mutations at diagnosis and acquired resistance to three different first-generation EGFR TKIs using targeted next generation sequencing (NGS) of 416 cancer-related genes. In total, we identified 322 genetic alterations with a median of 3 mutations per patient. 61% of patients still exhibit TKI-sensitizing EGFR mutations, and 36% of patients acquired EGFR-T790M. Besides other known resistance mechanisms, we identified TET2 mutations in 12% of patients. Interestingly, we also observed SOX2 amplification in EGFR-T790M negative patients, which are restricted to Icotinib treatment resistance, a drug widely used in Chinese NSCLC patients. Our study uncovered mutational profiles of NSCLC patients with first-generation EGFR TKIs resistance with potential therapeutic implications. PMID:27528220

  2. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines

    PubMed Central

    Hofving, Tobias; Arvidsson, Yvonne; Almobarak, Bilal; Inge, Linda; Pfragner, Roswitha; Persson, Marta; Stenman, Göran; Kristiansson, Erik; Johanson, Viktor; Nilsson, Ola

    2018-01-01

    Experimental models of neuroendocrine tumour disease are scarce, and no comprehensive characterisation of existing gastroenteropancreatic neuroendocrine tumour (GEPNET) cell lines has been reported. In this study, we aimed to define the molecular characteristics and therapeutic sensitivity of these cell lines. We therefore performed immunophenotyping, copy number profiling, whole-exome sequencing and a large-scale inhibitor screening of seven GEPNET cell lines. Four cell lines, GOT1, P-STS, BON-1 and QGP-1, displayed a neuroendocrine phenotype while three others, KRJ-I, L-STS and H-STS, did not. Instead, these three cell lines were identified as lymphoblastoid. Characterisation of remaining authentic GEPNET cell lines by copy number profiling showed that GOT1, among other chromosomal alterations, harboured losses on chromosome 18 encompassing the SMAD4 gene, while P-STS had a loss on 11q. BON-1 had a homozygous loss of CDKN2A and CDKN2B, and QGP-1 harboured amplifications of MDM2 and HMGA2. Whole-exome sequencing revealed both disease-characteristic mutations (e.g. ATRX mutation in QGP-1) and, for patient tumours, rare genetic events (e.g. TP53 mutation in P-STS, BON-1 and QGP-1). A large-scale inhibitor screening showed that cell lines from pancreatic NETs to a greater extent, when compared to small intestinal NETs, were sensitive to inhibitors of MEK. Similarly, neuroendocrine NET cells originating from the small intestine were considerably more sensitive to a group of HDAC inhibitors. Taken together, our results provide a comprehensive characterisation of GEPNET cell lines, demonstrate their relevance as neuroendocrine tumour models and explore their therapeutic sensitivity to a broad range of inhibitors. PMID:29444910

  3. Rapid detection, classification and accurate alignment of up to a million or more related protein sequences.

    PubMed

    Neuwald, Andrew F

    2009-08-01

    The patterns of sequence similarity and divergence present within functionally diverse, evolutionarily related proteins contain implicit information about corresponding biochemical similarities and differences. A first step toward accessing such information is to statistically analyze these patterns, which, in turn, requires that one first identify and accurately align a very large set of protein sequences. Ideally, the set should include many distantly related, functionally divergent subgroups. Because it is extremely difficult, if not impossible for fully automated methods to align such sequences correctly, researchers often resort to manual curation based on detailed structural and biochemical information. However, multiply-aligning vast numbers of sequences in this way is clearly impractical. This problem is addressed using Multiply-Aligned Profiles for Global Alignment of Protein Sequences (MAPGAPS). The MAPGAPS program uses a set of multiply-aligned profiles both as a query to detect and classify related sequences and as a template to multiply-align the sequences. It relies on Karlin-Altschul statistics for sensitivity and on PSI-BLAST (and other) heuristics for speed. Using as input a carefully curated multiple-profile alignment for P-loop GTPases, MAPGAPS correctly aligned weakly conserved sequence motifs within 33 distantly related GTPases of known structure. By comparison, the sequence- and structurally based alignment methods hmmalign and PROMALS3D misaligned at least 11 and 23 of these regions, respectively. When applied to a dataset of 65 million protein sequences, MAPGAPS identified, classified and aligned (with comparable accuracy) nearly half a million putative P-loop GTPase sequences. A C++ implementation of MAPGAPS is available at http://mapgaps.igs.umaryland.edu. Supplementary data are available at Bioinformatics online.

  4. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target.

    PubMed

    Dufva, Olli; Kankainen, Matti; Kelkka, Tiina; Sekiguchi, Nodoka; Awad, Shady Adnan; Eldfors, Samuli; Yadav, Bhagwan; Kuusanmäki, Heikki; Malani, Disha; Andersson, Emma I; Pietarinen, Paavo; Saikko, Leena; Kovanen, Panu E; Ojala, Teija; Lee, Dean A; Loughran, Thomas P; Nakazawa, Hideyuki; Suzumiya, Junji; Suzuki, Ritsuro; Ko, Young Hyeh; Kim, Won Seog; Chuang, Shih-Sung; Aittokallio, Tero; Chan, Wing C; Ohshima, Koichi; Ishida, Fumihiro; Mustjoki, Satu

    2018-04-19

    Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malignancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epigenetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma, nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a framework for application of targeted therapies in NK-cell malignancies.

  5. Blood Transcriptomics and Metabolomics for Personalized Medicine

    DTIC Science & Technology

    2015-10-31

    the network by taking addi- tional information as priors. For example, genes with cis-eQTLs (cis means locally acting on a genomic sequence ) could be...Lander ES. Initial impact of the sequencing of the human genome . Nature 2011; 470(7333):187–97. [9] Manolio TA, et al. Finding the missing heritability of...2010;6(2). [80] Hoffman JM, et al. Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster

  6. Serial-order learning impairment and hypersensitivity-to-interference in dyscalculia.

    PubMed

    De Visscher, Alice; Szmalec, Arnaud; Van Der Linden, Lize; Noël, Marie-Pascale

    2015-11-01

    In the context of heterogeneity, the different profiles of dyscalculia are still hypothetical. This study aims to link features of mathematical difficulties to certain potential etiologies. First, we wanted to test the hypothesis of a serial-order learning deficit in adults with dyscalculia. For this purpose we used a Hebb repetition learning task. Second, we wanted to explore a recent hypothesis according to which hypersensitivity-to-interference hampers the storage of arithmetic facts and leads to a particular profile of dyscalculia. We therefore used interfering and non-interfering repeated sequences in the Hebb paradigm. A final test was used to assess the memory trace of the non-interfering sequence and the capacity to manipulate it. In line with our predictions, we observed that people with dyscalculia who show good conceptual knowledge in mathematics but impaired arithmetic fluency suffer from increased sensitivity-to-interference compared to controls. Secondly, people with dyscalculia who show a deficit in a global mathematical test suffer from a serial-order learning deficit characterized by a slow learning and a quick degradation of the memory trace of the repeated sequence. A serial-order learning impairment could be one of the explanations for a basic numerical deficit, since it is necessary for the number-word sequence acquisition. Among the different profiles of dyscalculia, this study provides new evidence and refinement for two particular profiles. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy

    PubMed Central

    Parmeggiani, Fabio; Velasco, D. Alejandro Fernandez; Höcker, Birte; Baker, David

    2015-01-01

    Despite efforts for over 25 years, de novo protein design has not succeeded in achieving the TIM-barrel fold. Here we describe the computational design of 4-fold symmetrical (β/α)8-barrels guided by geometrical and chemical principles. Experimental characterization of 33 designs revealed the importance of sidechain-backbone hydrogen bonding for defining the strand register between repeat units. The X-ray crystal structure of a designed thermostable 184-residue protein is nearly identical with the designed TIM-barrel model. PSI-BLAST searches do not identify sequence similarities to known TIM-barrel proteins, and sensitive profile-profile searches indicate that the design sequence is distant from other naturally occurring TIM-barrel superfamilies, suggesting that Nature has only sampled a subset of the sequence space available to the TIM-barrel fold. The ability to de novo design TIM-barrels opens new possibilities for custom-made enzymes. PMID:26595462

  8. Analytical validation of a next generation sequencing liquid biopsy assay for high sensitivity broad molecular profiling.

    PubMed

    Plagnol, Vincent; Woodhouse, Samuel; Howarth, Karen; Lensing, Stefanie; Smith, Matt; Epstein, Michael; Madi, Mikidache; Smalley, Sarah; Leroy, Catherine; Hinton, Jonathan; de Kievit, Frank; Musgrave-Brown, Esther; Herd, Colin; Baker-Neblett, Katherine; Brennan, Will; Dimitrov, Peter; Campbell, Nathan; Morris, Clive; Rosenfeld, Nitzan; Clark, James; Gale, Davina; Platt, Jamie; Calaway, John; Jones, Greg; Forshew, Tim

    2018-01-01

    Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in profiling patients to guide treatment decisions. Responses to targeted therapies have been observed in patients with actionable mutations detected in plasma DNA at variant allele fractions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical use. To enable objective assessment of assay performance, detailed analytical validation is required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alterations in cell-free DNA. The assay has been developed to detect point mutations, indels, amplifications and gene fusions that commonly occur in NSCLC. For analytical validation, two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In addition, contrived samples were used to represent a wide spectrum of genetic aberrations and VAFs. Samples were analyzed by multiple operators, at different times and using different reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of detection at lower frequencies while retaining high specificity (99.9997% per base). The assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2, FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVisionFirst assay and dPCR in a series of cancer patients showed high concordance. This analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific and robust, and meets analytical requirements for clinical applications.

  9. Analytical validation of a next generation sequencing liquid biopsy assay for high sensitivity broad molecular profiling

    PubMed Central

    Howarth, Karen; Lensing, Stefanie; Smith, Matt; Epstein, Michael; Madi, Mikidache; Smalley, Sarah; Leroy, Catherine; Hinton, Jonathan; de Kievit, Frank; Musgrave-Brown, Esther; Herd, Colin; Baker-Neblett, Katherine; Brennan, Will; Dimitrov, Peter; Campbell, Nathan; Morris, Clive; Rosenfeld, Nitzan; Clark, James; Gale, Davina; Platt, Jamie; Calaway, John; Jones, Greg

    2018-01-01

    Circulating tumor DNA (ctDNA) analysis is being incorporated into cancer care; notably in profiling patients to guide treatment decisions. Responses to targeted therapies have been observed in patients with actionable mutations detected in plasma DNA at variant allele fractions (VAFs) below 0.5%. Highly sensitive methods are therefore required for optimal clinical use. To enable objective assessment of assay performance, detailed analytical validation is required. We developed the InVisionFirst™ assay, an assay based on enhanced tagged amplicon sequencing (eTAm-Seq™) technology to profile 36 genes commonly mutated in non-small cell lung cancer (NSCLC) and other cancer types for actionable genomic alterations in cell-free DNA. The assay has been developed to detect point mutations, indels, amplifications and gene fusions that commonly occur in NSCLC. For analytical validation, two 10mL blood tubes were collected from NSCLC patients and healthy volunteer donors. In addition, contrived samples were used to represent a wide spectrum of genetic aberrations and VAFs. Samples were analyzed by multiple operators, at different times and using different reagent Lots. Results were compared with digital PCR (dPCR). The InVisionFirst assay demonstrated an excellent limit of detection, with 99.48% sensitivity for SNVs present at VAF range 0.25%-0.33%, 92.46% sensitivity for indels at 0.25% VAF and a high rate of detection at lower frequencies while retaining high specificity (99.9997% per base). The assay also detected ALK and ROS1 gene fusions, and DNA amplifications in ERBB2, FGFR1, MET and EGFR with high sensitivity and specificity. Comparison between the InVisionFirst assay and dPCR in a series of cancer patients showed high concordance. This analytical validation demonstrated that the InVisionFirst assay is highly sensitive, specific and robust, and meets analytical requirements for clinical applications. PMID:29543828

  10. ALK F1174V mutation confers sensitivity while ALK I1171 mutation confers resistance to alectinib. The importance of serial biopsy post progression.

    PubMed

    Ou, Sai-Hong; Milliken, Jeffrey C; Azada, Michele C; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J

    2016-01-01

    Many acquired resistant mutations to the anaplastic lymphoma kinase (ALK) gene have been identified during treatment of ALK-rearranged non-small cell lung cancer (NSCLC) patients with crizotinib, ceritinib, and alectinib. These various acquired resistant ALK mutations confer differential sensitivities to various ALK inhibitors and may provide guidance on how to sequence the use of many of the second generation ALK inhibitors. We described a patient who developed an acquired ALK F1174V resistant mutation on progression from crizotinib that responded to alectinib for 18 months but then developed an acquired ALK I1171S mutation to alectinib. Both tumor samples had essentially the same genomic profile by comprehensive genomic profiling otherwise. This is the first patient report that demonstrates ALK F1174V mutation is sensitive to alectinib and further confirms missense acquired ALK I1171 mutation is resistant to alectinib. Sequential tumor re-biopsy for comprehensive genomic profiling (CGP) is important to appreciate the selective pressure during treatment with various ALK inhibitors underpinning the evolution of the disease course of ALK+NSCLC patients while on treatment with the various ALK inhibitors. This approach will likely help inform the optimal sequencing strategy as more ALK inhibitors become available. This case report also validates the importance of developing structurally distinct ALK inhibitors for clinical use to overcome non-cross resistant ALK mutations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    PubMed

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.

    PubMed

    Sun, Ming-An; Zhang, Qing; Wang, Yejun; Ge, Wei; Guo, Dianjing

    2016-08-24

    Reactive oxygen species can modify the structure and function of proteins and may also act as important signaling molecules in various cellular processes. Cysteine thiol groups of proteins are particularly susceptible to oxidation. Meanwhile, their reversible oxidation is of critical roles for redox regulation and signaling. Recently, several computational tools have been developed for predicting redox-sensitive cysteines; however, those methods either only focus on catalytic redox-sensitive cysteines in thiol oxidoreductases, or heavily depend on protein structural data, thus cannot be widely used. In this study, we analyzed various sequence-based features potentially related to cysteine redox-sensitivity, and identified three types of features for efficient computational prediction of redox-sensitive cysteines. These features are: sequential distance to the nearby cysteines, PSSM profile and predicted secondary structure of flanking residues. After further feature selection using SVM-RFE, we developed Redox-Sensitive Cysteine Predictor (RSCP), a SVM based classifier for redox-sensitive cysteine prediction using primary sequence only. Using 10-fold cross-validation on RSC758 dataset, the accuracy, sensitivity, specificity, MCC and AUC were estimated as 0.679, 0.602, 0.756, 0.362 and 0.727, respectively. When evaluated using 10-fold cross-validation with BALOSCTdb dataset which has structure information, the model achieved performance comparable to current structure-based method. Further validation using an independent dataset indicates it is robust and of relatively better accuracy for predicting redox-sensitive cysteines from non-enzyme proteins. In this study, we developed a sequence-based classifier for predicting redox-sensitive cysteines. The major advantage of this method is that it does not rely on protein structure data, which ensures more extensive application compared to other current implementations. Accurate prediction of redox-sensitive cysteines not only enhances our understanding about the redox sensitivity of cysteine, it may also complement the proteomics approach and facilitate further experimental investigation of important redox-sensitive cysteines.

  13. Characterization of a beta-lactamase produced in Mycobacterium fortuitum D316.

    PubMed Central

    Amicosante, G; Franceschini, N; Segatore, B; Oratore, A; Fattorini, L; Orefici, G; Van Beeumen, J; Frere, J M

    1990-01-01

    A beta-lactamase from Mycobacterium fortuitum D316 was purified and some physico-chemical properties and substrate profile determined. On the basis of its N-terminal sequence and of its sensitivity to beta-iodopenicillanate inactivation, the enzyme appeared to be a class A beta-lactamase, but its substrate profile was quite unexpected, since nine cephalosporins were among the eleven best substrates. The enzyme also hydrolysed ureidopenicillins and some so-called 'beta-lactamase-stable' cephalosporins. Images Fig. 1. PMID:2123098

  14. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.

    PubMed

    Raghav, Sunil Kumar; Deplancke, Bart

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.

  15. Application of the High Resolution Melting analysis for genetic mapping of Sequence Tagged Site markers in narrow-leafed lupin (Lupinus angustifolius L.).

    PubMed

    Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech

    2015-01-01

    Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.

  16. Transcriptome Analysis at the Single-Cell Level Using SMART Technology.

    PubMed

    Fish, Rachel N; Bostick, Magnolia; Lehman, Alisa; Farmer, Andrew

    2016-10-10

    RNA sequencing (RNA-seq) is a powerful method for analyzing cell state, with minimal bias, and has broad applications within the biological sciences. However, transcriptome analysis of seemingly homogenous cell populations may in fact overlook significant heterogeneity that can be uncovered at the single-cell level. The ultra-low amount of RNA contained in a single cell requires extraordinarily sensitive and reproducible transcriptome analysis methods. As next-generation sequencing (NGS) technologies mature, transcriptome profiling by RNA-seq is increasingly being used to decipher the molecular signature of individual cells. This unit describes an ultra-sensitive and reproducible protocol to generate cDNA and sequencing libraries directly from single cells or RNA inputs ranging from 10 pg to 10 ng. Important considerations for working with minute RNA inputs are given. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  17. A highly sensitive and accurate gene expression analysis by sequencing ("bead-seq") for a single cell.

    PubMed

    Matsunaga, Hiroko; Goto, Mari; Arikawa, Koji; Shirai, Masataka; Tsunoda, Hiroyuki; Huang, Huan; Kambara, Hideki

    2015-02-15

    Analyses of gene expressions in single cells are important for understanding detailed biological phenomena. Here, a highly sensitive and accurate method by sequencing (called "bead-seq") to obtain a whole gene expression profile for a single cell is proposed. A key feature of the method is to use a complementary DNA (cDNA) library on magnetic beads, which enables adding washing steps to remove residual reagents in a sample preparation process. By adding the washing steps, the next steps can be carried out under the optimal conditions without losing cDNAs. Error sources were carefully evaluated to conclude that the first several steps were the key steps. It is demonstrated that bead-seq is superior to the conventional methods for single-cell gene expression analyses in terms of reproducibility, quantitative accuracy, and biases caused during sample preparation and sequencing processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees.

    PubMed

    Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard

    2010-03-31

    Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.

  19. RISC RNA sequencing for context-specific identification of in vivo miR targets

    PubMed Central

    Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W

    2010-01-01

    Rationale MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. Objective To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). Methods and Results We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias, and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1,645 mRNAs consistently targeted to mouse cardiac RISCs. We employed this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing ‘seed’ sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. Conclusions RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context, and is applicable to any tissue and any disease state. Summary MicroRNAs (miRs) are key regulators of mRNA translation in health and disease. While bioinformatic predictions suggest that a single miR may target hundreds of mRNAs, the number of experimentally verified targets of miRs is low. To enable comprehensive, unbiased examination of miR targets, we have performed deep RNA sequencing of cardiac transcriptomes in parallel with cardiac RNA-induced silencing complex (RISC)-associated RNAs (the RISCome), called RISC sequencing. We developed methods that did not require cross-linking of RNAs to RISCs or amplification of mRNA prior to sequencing, making it possible to rapidly perform RISC sequencing from intact tissue while avoiding amplification bias. Comparison of RISCome with transcriptome expression defined the degree of RISC enrichment for each mRNA. The majority of the mRNAs enriched in wild-type cardiac RISComes compared to transcriptomes were bioinformatically predicted to be targets of at least 1 of 139 cardiac-expressed miRs. Programming cardiomyocyte RISCs via transgenic overexpression in adult hearts of miR-133a or miR-499, two miRs that contain entirely different ‘seed’ sequences, elicited differing profiles of RISC-targeted mRNAs. Thus, RISC sequencing represents a highly sensitive method for general RISC profiling and individual miR target identification in biological context. PMID:21030712

  20. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis

    PubMed Central

    Bradley, Phelim; Gordon, N. Claire; Walker, Timothy M.; Dunn, Laura; Heys, Simon; Huang, Bill; Earle, Sarah; Pankhurst, Louise J.; Anson, Luke; de Cesare, Mariateresa; Piazza, Paolo; Votintseva, Antonina A.; Golubchik, Tanya; Wilson, Daniel J.; Wyllie, David H.; Diel, Roland; Niemann, Stefan; Feuerriegel, Silke; Kohl, Thomas A.; Ismail, Nazir; Omar, Shaheed V.; Smith, E. Grace; Buck, David; McVean, Gil; Walker, A. Sarah; Peto, Tim E. A.; Crook, Derrick W.; Iqbal, Zamin

    2015-01-01

    The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package (‘Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes. PMID:26686880

  1. Molecular characterization and drug susceptibility profile of a Mycobacterium avium subspecies avium isolate from a dog with disseminated infection.

    PubMed

    Armas, Federica; Furlanello, Tommaso; Camperio, Cristina; Trotta, Michele; Novari, Gianluca; Marianelli, Cinzia

    2016-04-01

    Mycobacterium avium-intracellulare complex (MAC) infections have been described in many mammalian species, including humans and pets. We isolated and molecularly typed the causative agent of a rare case of disseminated mycobacteriosis in a dog. We identified the pathogen as M. avium subspecies avium by sequencing the partial genes gyrB and rpsA . Considering the zoonotic potential of this infection, and in an attempt to ensure the most effective treatment for the animal, we also determined the drug susceptibility profile of the isolate to the most common drugs used to treat MAC disease in humans. The pathogen was tested in vitro against the macrolide clarithromycin, as well as against amikacin, ciprofloxacin, rifampicin, ethambutol and linezolid, by the resazurin microdilution assay. It was found to be sensitive to all tested drugs apart from ethambutol. Despite the fact that the pathogen was sensitive to the therapies administered, the dog's overall clinical status worsened and the animal died shortly after antimicrobial susceptibility results became available. Nucleotide sequencing of the embB gene, the target gene most commonly associated with ethambutol resistance, showed new missense mutations when compared to sequences available in public databases. In conclusion, we molecularly identified the MAC pathogen and determined its drug susceptibility profile in a relatively short period of time (7 days). We also characterized new genetic mutations likely to have been involved in the observed ethambutol resistance. Our results confirmed the usefulness of both the gyrB and the rpsA genes as biomarkers for an accurate identification and differentiation of MAC pathogens.

  2. Genome-wide transcriptome profiling reveals novel insights into Luffa cylindrica browning.

    PubMed

    Chen, Xia; Tan, Taiming; Xu, Changcheng; Huang, Shuping; Tan, Jie; Zhang, Min; Wang, Chunli; Xie, Conghua

    2015-08-07

    Luffa cylindrica (sponge gourd) is one of the most popular vegetables in China. Production and consumption of L. cylindrica are limited due to postharvest browning; however, little is known about the genetic regulation of the browning process. In the present study, transcriptome profiles of L. cylindrica cultivars, YLB05 (browning resistant) and XTR05 (browning sensitive), were analyzed using next-generation sequencing to clarify the genes and mechanisms associated with browning. A total of 9.1 Gb of valid data including 116,703 unigenes (>200 bp) were obtained and 39,473 sequences were annotated by alignment against five public databases. Of these, there were 27,407 genes assigned to 747 Gene Ontology functional categories; and 12,350 genes were annotated with 25 Eukaryotic Orthologous Groups (KOG) categories with 343 KOG functional terms. Additionally, by searching against the Kyoto Encyclopedia of Genes and Genomes database, 8689 unigenes were mapped to 189 pathways. Furthermore, there were 24,556 sequences found to be differentially regulated, including 4344 annotated unigenes. Several genes potentially associated with phenolic oxidation, carbohydrate and hormone metabolism were found differentially regulated between the cultivars of different browning sensitivities. Our results suggest that elements involved in enzymatic processes and other pathways might be responsible for L. cylindrica browning. The present study provides a comprehensive transcriptome sequence resource, which will facilitate further studies on gene discovery and exploiting the fruit browning mechanism of L. cylindrica. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    PubMed

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.

  4. Safety profile of hymenoptera venom immunotherapy (VIT) in monosensitized patients: lack of new sensitization to nontreated insect venom.

    PubMed

    Spoerl, D; Bircher, A J; Scherer, K

    2011-01-01

    Venom immunotherapy (VIT) has proven to be efficacious in reducing the severity of anaphylactic reactions following field stings in patients with Hymenoptera venom allergy. Due to sequence homologies in the allergens used in Hymenoptera vaccines, there is concern that immunotherapy could lead to sensitization to allergens to which patients were not previously sensitized. The relevance of such an undesired phenomenon is unclear. To investigate the incidence of sensitization to Hymenoptera venoms other than those to which the patients were already sensitized and to assess the overall safety profile of VIT in order to compare the risk-benefit ratio in a subpopulation of monosensitized individuals. We performed a retrospective analysis of specific immunoglobulin E (sIgE) levels in patients with no prior detectable sIgE to Hymenoptera venom other than the one for which they received VIT. We assessed the safety profile of VIT using serological and clinical parameters. Of the 56 monosensitized patients who had VIT, 3 (5%) developed sIgE to the other insect with no history of field sting to explain it. This rate was similar to the rate of new sensitization due to field stings during VIT. VIT was well-tolerated and levels of serological markers improved. No patient had a systemic anaphylactic reaction after having been stung by an insect other than the one he/she was desensitized for during follow-up. VIT seems to be safe with respect to clinically significant new sensitizations.

  5. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    PubMed Central

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  6. A Novel Real-Time PCR Assay of microRNAs Using S-Poly(T), a Specific Oligo(dT) Reverse Transcription Primer with Excellent Sensitivity and Specificity

    PubMed Central

    Kang, Kang; Zhang, Xiaoying; Liu, Hongtao; Wang, Zhiwei; Zhong, Jiasheng; Huang, Zhenting; Peng, Xiao; Zeng, Yan; Wang, Yuna; Yang, Yi; Luo, Jun; Gou, Deming

    2012-01-01

    Background MicroRNAs (miRNAs) are small, non-coding RNAs capable of postranscriptionally regulating gene expression. Accurate expression profiling is crucial for understanding the biological roles of miRNAs, and exploring them as biomarkers of diseases. Methodology/Principal Findings A novel, highly sensitive, and reliable miRNA quantification approach,termed S-Poly(T) miRNA assay, is designed. In this assay, miRNAs are subjected to polyadenylation and reverse transcription with a S-Poly(T) primer that contains a universal reverse primer, a universal Taqman probe, an oligo(dT)11 sequence and six miRNA-specific bases. Individual miRNAs are then amplified by a specific forward primer and a universal reverse primer, and the PCR products are detected by a universal Taqman probe. The S-Poly(T) assay showed a minimum of 4-fold increase in sensitivity as compared with the stem-loop or poly(A)-based methods. A remarkable specificity in discriminating among miRNAs with high sequence similarity was also obtained with this approach. Using this method, we profiled miRNAs in human pulmonary arterial smooth muscle cells (HPASMC) and identified 9 differentially expressed miRNAs associated with hypoxia treatment. Due to its outstanding sensitivity, the number of circulating miRNAs from normal human serum was significantly expanded from 368 to 518. Conclusions/Significance With excellent sensitivity, specificity, and high-throughput, the S-Poly(T) method provides a powerful tool for miRNAs quantification and identification of tissue- or disease-specific miRNA biomarkers. PMID:23152780

  7. Accelerated Profile HMM Searches

    PubMed Central

    Eddy, Sean R.

    2011-01-01

    Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the “multiple segment Viterbi” (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call “sparse rescaling”. These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches. PMID:22039361

  8. ExprAlign - the identification of ESTs in non-model species by alignment of cDNA microarray expression profiles

    PubMed Central

    2009-01-01

    Background Sequence identification of ESTs from non-model species offers distinct challenges particularly when these species have duplicated genomes and when they are phylogenetically distant from sequenced model organisms. For the common carp, an environmental model of aquacultural interest, large numbers of ESTs remained unidentified using BLAST sequence alignment. We have used the expression profiles from large-scale microarray experiments to suggest gene identities. Results Expression profiles from ~700 cDNA microarrays describing responses of 7 major tissues to multiple environmental stressors were used to define a co-expression landscape. This was based on the Pearsons correlation coefficient relating each gene with all other genes, from which a network description provided clusters of highly correlated genes as 'mountains'. We show that these contain genes with known identities and genes with unknown identities, and that the correlation constitutes evidence of identity in the latter. This procedure has suggested identities to 522 of 2701 unknown carp ESTs sequences. We also discriminate several common carp genes and gene isoforms that were not discriminated by BLAST sequence alignment alone. Precision in identification was substantially improved by use of data from multiple tissues and treatments. Conclusion The detailed analysis of co-expression landscapes is a sensitive technique for suggesting an identity for the large number of BLAST unidentified cDNAs generated in EST projects. It is capable of detecting even subtle changes in expression profiles, and thereby of distinguishing genes with a common BLAST identity into different identities. It benefits from the use of multiple treatments or contrasts, and from the large-scale microarray data. PMID:19939286

  9. A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data.

    PubMed

    Pandey, Gaurav; Pandey, Om P; Rogers, Angela J; Ahsen, Mehmet E; Hoffman, Gabriel E; Raby, Benjamin A; Weiss, Scott T; Schadt, Eric E; Bunyavanich, Supinda

    2018-06-11

    Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified an asthma classifier consisting of 90 genes interpreted via an L2-regularized logistic regression classification model. This classifier performed with strong predictive value and sensitivity across eight test sets, including (1) a test set of independent asthmatic and control subjects profiled by RNA sequencing (positive and negative predictive values of 1.00 and 0.96, respectively; AUC of 0.994), (2) two independent case-control cohorts of asthma profiled by microarray, and (3) five cohorts with other respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), where the classifier had a low to zero misclassification rate. Following validation in large, prospective cohorts, this classifier could be developed into a nasal biomarker of asthma.

  10. Improving prokaryotic transposable elements identification using a combination of de novo and profile HMM methods.

    PubMed

    Kamoun, Choumouss; Payen, Thibaut; Hua-Van, Aurélie; Filée, Jonathan

    2013-10-11

    Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of short reads data (<300 bp) for which both techniques seem equally limited, profile HMM searches considerably ameliorate the detection of transposase encoding genes (up to +50%) generating low level of false positives compare to BLAST-based methods. Compared to classical BLAST-based methods, the sensitivity of de novo and profile HMM methods developed in this study allow a better and more reliable detection of transposons in prokaryotic genomes and metagenomes. We believed that future studies implying ISs and MITEs identification in genomic data should combine at least one de novo and one library-based method, with optimal results obtained by running the two de novo methods in addition to a library-based search. For metagenomic data, profile HMM search should be favored, a BLAST-based step is only useful to the final annotation into groups and families.

  11. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling

    PubMed Central

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S.

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes. PMID:26512991

  12. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling.

    PubMed

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes.

  13. Are syllabification and resyllabification strategies phonotactically directed in French children with dyslexia? A preliminary report.

    PubMed

    Maïonchi-Pino, Norbert; de Cara, Bruno; Ecalle, Jean; Magnan, Annie

    2012-04-01

    In this study, the authors queried whether French-speaking children with dyslexia were sensitive to consonant sonority and position within syllable boundaries to influence a phonological syllable-based segmentation in silent reading. Participants included 15 French-speaking children with dyslexia, compared with 30 chronological age-matched and reading level-matched controls. Children were tested with an audiovisual recognition task. A target pseudoword (TOLPUDE) was simultaneously presented visually and auditorily and then was compared with a printed test pseudoword that either was identical or differed after the coda deletion (TOPUDE) or the onset deletion (TOLUDE). The intervocalic consonant sequences had either a sonorant coda-sonorant onset (TOR.LADE), sonorant coda-obstruent onset (TOL.PUDE), obstruent coda-sonorant onset (DOT.LIRE), or obstruent coda-obstruent onset (BIC.TADE) sonority profile. All children processed identity better than they processed deletion, especially with the optimal sonorant coda-obstruent onset sonority profile. However, children preserved syllabification (coda deletion; TO.PUDE) rather than resyllabification (onset deletion; TO.LUDE) with intervocalic consonant sequence reductions, especially when sonorant codas were deleted but the optimal intersyllable contact was respected. It was surprising to find that although children with dyslexia generally exhibit phonological and acoustic-phonetic impairments (voicing), they showed sensitivity to the optimal sonority profile and a preference for preserved syllabification. The authors proposed a sonority-modulated explanation to account for phonological syllable-based processing. Educational implications are discussed.

  14. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs

    PubMed Central

    Shigematsu, Megumi; Honda, Shozo; Loher, Phillipe; Telonis, Aristeidis G.; Rigoutsos, Isidore

    2017-01-01

    Abstract Besides translation, transfer RNAs (tRNAs) play many non-canonical roles in various biological pathways and exhibit highly variable expression profiles. To unravel the emerging complexities of tRNA biology and molecular mechanisms underlying them, an efficient tRNA sequencing method is required. However, the rigid structure of tRNA has been presenting a challenge to the development of such methods. We report the development of Y-shaped Adapter-ligated MAture TRNA sequencing (YAMAT-seq), an efficient and convenient method for high-throughput sequencing of mature tRNAs. YAMAT-seq circumvents the issue of inefficient adapter ligation, a characteristic of conventional RNA sequencing methods for mature tRNAs, by employing the efficient and specific ligation of Y-shaped adapter to mature tRNAs using T4 RNA Ligase 2. Subsequent cDNA amplification and next-generation sequencing successfully yield numerous mature tRNA sequences. YAMAT-seq has high specificity for mature tRNAs and high sensitivity to detect most isoacceptors from minute amount of total RNA. Moreover, YAMAT-seq shows quantitative capability to estimate expression levels of mature tRNAs, and has high reproducibility and broad applicability for various cell lines. YAMAT-seq thus provides high-throughput technique for identifying tRNA profiles and their regulations in various transcriptomes, which could play important regulatory roles in translation and other biological processes. PMID:28108659

  15. Genetic profiling of putative breast cancer stem cells from malignant pleural effusions.

    PubMed

    Tiran, Verena; Stanzer, Stefanie; Heitzer, Ellen; Meilinger, Michael; Rossmann, Christopher; Lax, Sigurd; Tsybrovskyy, Oleksiy; Dandachi, Nadia; Balic, Marija

    2017-01-01

    A common symptom during late stage breast cancer disease is pleural effusion, which is related to poor prognosis. Malignant cells can be detected in pleural effusions indicating metastatic spread from the primary tumor site. Pleural effusions have been shown to be a useful source for studying metastasis and for isolating cells with putative cancer stem cell (CSC) properties. For the present study, pleural effusion aspirates from 17 metastatic breast cancer patients were processed to propagate CSCs in vitro. Patient-derived aspirates were cultured under sphere forming conditions and isolated primary cultures were further sorted for cancer stem cell subpopulations ALDH1+ and CD44+CD24-/low. Additionally, sphere forming efficiency of CSC and non-CSC subpopulations was determined. In order to genetically characterize the different tumor subpopulations, DNA was isolated from pleural effusions before and after cell sorting, and compared with corresponding DNA copy number profiles from primary tumors or bone metastasis using low-coverage whole genome sequencing (SCNA-seq). In general, unsorted cells had a higher potential to form spheres when compared to CSC subpopulations. In most cases, cell sorting did not yield sufficient cells for copy number analysis. A total of five from nine analyzed unsorted pleura samples (55%) showed aberrant copy number profiles similar to the respective primary tumor. However, most sorted subpopulations showed a balanced profile indicating an insufficient amount of tumor cells and low sensitivity of the sequencing method. Finally, we were able to establish a long term cell culture from one pleural effusion sample, which was characterized in detail. In conclusion, we confirm that pleural effusions are a suitable source for enrichment of putative CSC. However, sequencing based molecular characterization is impeded due to insufficient sensitivity along with a high number of normal contaminating cells, which are masking genetic alterations of rare cancer (stem) cells.

  16. Modular probes for enriching and detecting complex nucleic acid sequences

    NASA Astrophysics Data System (ADS)

    Wang, Juexiao Sherry; Yan, Yan Helen; Zhang, David Yu

    2017-12-01

    Complex DNA sequences are difficult to detect and profile, but are important contributors to human health and disease. Existing hybridization probes lack the capability to selectively bind and enrich hypervariable, long or repetitive sequences. Here, we present a generalized strategy for constructing modular hybridization probes (M-Probes) that overcomes these challenges. We demonstrate that M-Probes can tolerate sequence variations of up to 7 nt at prescribed positions while maintaining single nucleotide sensitivity at other positions. M-Probes are also shown to be capable of sequence-selectively binding a continuous DNA sequence of more than 500 nt. Furthermore, we show that M-Probes can detect genes with triplet repeats exceeding a programmed threshold. As a demonstration of this technology, we have developed a hybrid capture method to determine the exact triplet repeat expansion number in the Huntington's gene of genomic DNA using quantitative PCR.

  17. i-rDNA: alignment-free algorithm for rapid in silico detection of ribosomal gene fragments from metagenomic sequence data sets.

    PubMed

    Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Chadaram, Sudha; Mande, Sharmila S

    2011-11-30

    Obtaining accurate estimates of microbial diversity using rDNA profiling is the first step in most metagenomics projects. Consequently, most metagenomic projects spend considerable amounts of time, money and manpower for experimentally cloning, amplifying and sequencing the rDNA content in a metagenomic sample. In the second step, the entire genomic content of the metagenome is extracted, sequenced and analyzed. Since DNA sequences obtained in this second step also contain rDNA fragments, rapid in silico identification of these rDNA fragments would drastically reduce the cost, time and effort of current metagenomic projects by entirely bypassing the experimental steps of primer based rDNA amplification, cloning and sequencing. In this study, we present an algorithm called i-rDNA that can facilitate the rapid detection of 16S rDNA fragments from amongst millions of sequences in metagenomic data sets with high detection sensitivity. Performance evaluation with data sets/database variants simulating typical metagenomic scenarios indicates the significantly high detection sensitivity of i-rDNA. Moreover, i-rDNA can process a million sequences in less than an hour on a simple desktop with modest hardware specifications. In addition to the speed of execution, high sensitivity and low false positive rate, the utility of the algorithmic approach discussed in this paper is immense given that it would help in bypassing the entire experimental step of primer-based rDNA amplification, cloning and sequencing. Application of this algorithmic approach would thus drastically reduce the cost, time and human efforts invested in all metagenomic projects. A web-server for the i-rDNA algorithm is available at http://metagenomics.atc.tcs.com/i-rDNA/

  18. Brucella papionis sp. nov., isolated from baboons (Papio spp.)

    PubMed Central

    Davison, Nicholas; Cloeckaert, Axel; Al Dahouk, Sascha; Zygmunt, Michel S.; Brew, Simon D.; Perrett, Lorraine L.; Koylass, Mark S.; Vergnaud, Gilles; Quance, Christine; Scholz, Holger C.; Dick, Edward J.; Hubbard, Gene; Schlabritz-Loutsevitch, Natalia E.

    2014-01-01

    Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60T and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60T and F8/08-61 could be distinguished clearly from all known species of the genus Brucellaand their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucellasuggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60T ( = NCTC 13660T = CIRMBP 0958T). PMID:25242540

  19. Flip-flop method: A new T1-weighted flow-MRI for plants studies.

    PubMed

    Buy, Simon; Le Floch, Simon; Tang, Ning; Sidiboulenouar, Rahima; Zanca, Michel; Canadas, Patrick; Nativel, Eric; Cardoso, Maida; Alibert, Eric; Dupont, Guillaume; Ambard, Dominique; Maurel, Christophe; Verdeil, Jean-Luc; Bertin, Nadia; Goze-Bac, Christophe; Coillot, Christophe

    2018-01-01

    The climate warming implies an increase of stress of plants (drought and torrential rainfall). The understanding of plant behavior, in this context, takes a major importance and sap flow measurement in plants remains a key issue for plant understanding. Magnetic Resonance Imaging (MRI) which is well known to be a powerful tool to access water quantity can be used to measure moving water. We describe a novel flow-MRI method which takes advantage of inflow slice sensitivity. The method involves the slice selectivity in the context of multi slice spin echo sequence. Two sequences such as a given slice is consecutively inflow and outflow sensitive are performed, offering the possiblility to perform slow flow sensitive imaging in a quite straigthforward way. The method potential is demonstrated by imaging both a slow flow measurement on a test bench (as low as 10 μm.s-1) and the Poiseuille's profile of xylemian sap flow velocity in the xylematic tissues of a tomato plant stem.

  20. BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks.

    PubMed

    Yan, Winston X; Mirzazadeh, Reza; Garnerone, Silvano; Scott, David; Schneider, Martin W; Kallas, Tomasz; Custodio, Joaquin; Wernersson, Erik; Li, Yinqing; Gao, Linyi; Federova, Yana; Zetsche, Bernd; Zhang, Feng; Bienko, Magda; Crosetto, Nicola

    2017-05-12

    Precisely measuring the location and frequency of DNA double-strand breaks (DSBs) along the genome is instrumental to understanding genomic fragility, but current methods are limited in versatility, sensitivity or practicality. Here we present Breaks Labeling In Situ and Sequencing (BLISS), featuring the following: (1) direct labelling of DSBs in fixed cells or tissue sections on a solid surface; (2) low-input requirement by linear amplification of tagged DSBs by in vitro transcription; (3) quantification of DSBs through unique molecular identifiers; and (4) easy scalability and multiplexing. We apply BLISS to profile endogenous and exogenous DSBs in low-input samples of cancer cells, embryonic stem cells and liver tissue. We demonstrate the sensitivity of BLISS by assessing the genome-wide off-target activity of two CRISPR-associated RNA-guided endonucleases, Cas9 and Cpf1, observing that Cpf1 has higher specificity than Cas9. Our results establish BLISS as a versatile, sensitive and efficient method for genome-wide DSB mapping in many applications.

  1. Integrated Patient-Derived Models Delineate Individualized Therapeutic Vulnerabilities of Pancreatic Cancer.

    PubMed

    Witkiewicz, Agnieszka K; Balaji, Uthra; Eslinger, Cody; McMillan, Elizabeth; Conway, William; Posner, Bruce; Mills, Gordon B; O'Reilly, Eileen M; Knudsen, Erik S

    2016-08-16

    Pancreatic ductal adenocarcinoma (PDAC) harbors the worst prognosis of any common solid tumor, and multiple failed clinical trials indicate therapeutic recalcitrance. Here, we use exome sequencing of patient tumors and find multiple conserved genetic alterations. However, the majority of tumors exhibit no clearly defined therapeutic target. High-throughput drug screens using patient-derived cell lines found rare examples of sensitivity to monotherapy, with most models requiring combination therapy. Using PDX models, we confirmed the effectiveness and selectivity of the identified treatment responses. Out of more than 500 single and combination drug regimens tested, no single treatment was effective for the majority of PDAC tumors, and each case had unique sensitivity profiles that could not be predicted using genetic analyses. These data indicate a shortcoming of reliance on genetic analysis to predict efficacy of currently available agents against PDAC and suggest that sensitivity profiling of patient-derived models could inform personalized therapy design for PDAC. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Multi-targeted priming for genome-wide gene expression assays.

    PubMed

    Adomas, Aleksandra B; Lopez-Giraldez, Francesc; Clark, Travis A; Wang, Zheng; Townsend, Jeffrey P

    2010-08-17

    Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and precise assay of the transcribed sequences within the genome.

  3. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    NASA Astrophysics Data System (ADS)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  4. Prevalence of sensitization to Cannabis sativa. Lipid-transfer and thaumatin-like proteins are relevant allergens.

    PubMed

    Larramendi, Carlos H; López-Matas, M Ángeles; Ferrer, Angel; Huertas, Angel Julio; Pagán, Juan Antonio; Navarro, Luis Ángel; García-Abujeta, José Luis; Andreu, Carmen; Carnés, Jerónimo

    2013-01-01

    Although allergy to Cannabis sativa was first reported over 40 years ago, the allergenicity has scarcely been studied. The objectives of this study were to investigate the frequency of sensitization to this plant, to analyze the clinical characteristics and allergenic profile of sensitized individuals and to identify the allergens involved. Five hundred and forty-five individuals in Spain attending allergy clinics with respiratory or cutaneous symptoms underwent a skin-prick test (SPT) with C. sativa leaf extract. The extract was characterized by SDS-PAGE and 2-dimensional electrophoresis. Specific IgE to C. sativa was measured in positive SPT individuals. The clinical and allergenic profiles of sensitized individuals were investigated and the most-recognized allergens sequenced and characterized by liquid chromatography-mass spectrometry/mass spectrometry. Of this preselected population, 44 individuals had positive SPT to C. sativa (prevalence 8.1%). Prevalence was higher in individuals who were C. sativa smokers (14.6%). Two individuals reported mild symptoms with C. sativa. Twenty-one individuals from 32 available sera (65.6%) had positive specific IgE to C. sativa. Twelve sera recognized at least 6 different bands in a molecular-weight range of between 10 and 60 kDa. Six of them recognized a 10-kDa band, identified as a lipid transfer protein (LTP) and 8 recognized a 38-kDa band, identified as a thaumatin-like protein. There is a high prevalence of sensitization to C. sativa leaves. The clinical symptoms directly attributed to C. sativa were uncommon and mild. The sensitization profile observed suggests that C. sativa sensitization may be mediated by two mechanisms, i.e. cross-reactivity, mainly with LTP and thaumatin-like protein, and exposure-related 'de novo' sensitization. Copyright © 2013 S. Karger AG, Basel.

  5. The HMMER Web Server for Protein Sequence Similarity Search.

    PubMed

    Prakash, Ananth; Jeffryes, Matt; Bateman, Alex; Finn, Robert D

    2017-12-08

    Protein sequence similarity search is one of the most commonly used bioinformatics methods for identifying evolutionarily related proteins. In general, sequences that are evolutionarily related share some degree of similarity, and sequence-search algorithms use this principle to identify homologs. The requirement for a fast and sensitive sequence search method led to the development of the HMMER software, which in the latest version (v3.1) uses a combination of sophisticated acceleration heuristics and mathematical and computational optimizations to enable the use of profile hidden Markov models (HMMs) for sequence analysis. The HMMER Web server provides a common platform by linking the HMMER algorithms to databases, thereby enabling the search for homologs, as well as providing sequence and functional annotation by linking external databases. This unit describes three basic protocols and two alternate protocols that explain how to use the HMMER Web server using various input formats and user defined parameters. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  6. FIST: a sensory domain for diverse signal transduction pathways in prokaryotes and ubiquitin signaling in eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borziak, Kirill; Jouline, Igor B

    2007-01-01

    Motivation: Sensory domains that are conserved among Bacteria, Archaea and Eucarya are important detectors of common signals detected by living cells. Due to their high sequence divergence, sensory domains are difficult to identify. We systematically look for novel sensory domains using sensitive profile-based searches initi-ated with regions of signal transduction proteins where no known domains can be identified by current domain models. Results: Using profile searches followed by multiple sequence alignment, structure prediction, and domain architecture analysis, we have identified a novel sensory domain termed FIST, which is present in signal transduction proteins from Bacteria, Archaea and Eucarya. Remote similaritymore » to a known ligand-binding fold and chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids.« less

  7. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs.

    PubMed

    Shigematsu, Megumi; Honda, Shozo; Loher, Phillipe; Telonis, Aristeidis G; Rigoutsos, Isidore; Kirino, Yohei

    2017-05-19

    Besides translation, transfer RNAs (tRNAs) play many non-canonical roles in various biological pathways and exhibit highly variable expression profiles. To unravel the emerging complexities of tRNA biology and molecular mechanisms underlying them, an efficient tRNA sequencing method is required. However, the rigid structure of tRNA has been presenting a challenge to the development of such methods. We report the development of Y-shaped Adapter-ligated MAture TRNA sequencing (YAMAT-seq), an efficient and convenient method for high-throughput sequencing of mature tRNAs. YAMAT-seq circumvents the issue of inefficient adapter ligation, a characteristic of conventional RNA sequencing methods for mature tRNAs, by employing the efficient and specific ligation of Y-shaped adapter to mature tRNAs using T4 RNA Ligase 2. Subsequent cDNA amplification and next-generation sequencing successfully yield numerous mature tRNA sequences. YAMAT-seq has high specificity for mature tRNAs and high sensitivity to detect most isoacceptors from minute amount of total RNA. Moreover, YAMAT-seq shows quantitative capability to estimate expression levels of mature tRNAs, and has high reproducibility and broad applicability for various cell lines. YAMAT-seq thus provides high-throughput technique for identifying tRNA profiles and their regulations in various transcriptomes, which could play important regulatory roles in translation and other biological processes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Molecular Profiling of Malignant Pleural Effusion in Metastatic Non-Small-Cell Lung Carcinoma. The Effect of Preanalytical Factors.

    PubMed

    Carter, Jamal; Miller, James Adam; Feller-Kopman, David; Ettinger, David; Sidransky, David; Maleki, Zahra

    2017-07-01

    Non-small-cell lung cancer (NSCLC)-associated malignant pleural effusions (MPEs) are sometimes the only available specimens for molecular analysis. This study evaluates diagnostic yield of NSCLC-associated MPE, its adequacy for molecular profiling and the potential influence of MPE volume/cellularity on the analytic sensitivity of our assays. Molecular results of 50 NSCLC-associated MPE cases during a 5-year period were evaluated. Molecular profiling was performed on cell blocks and consisted of fluorescent in situ hybridization (FISH) for ALK gene rearrangements and the following sequencing platforms: Sanger sequencing (for EGFR) and high-throughput pyrosequencing (for KRAS and BRAF) during the first 4 years of the study period, and targeted next-generation sequencing performed thereafter. A total of 50 NSCLC-associated MPE cases were identified where molecular testing was requested. Of these, 17 cases were excluded: 14 cases (28%) due to inadequate tumor cellularity and 3 cases due to unavailability of the slides to review. A total of 27 out of 50 MPE cases (54%) underwent at least EGFR and KRAS sequencing and FISH for ALK rearrangement. Of the 27 cases with molecular testing results available, a genetic abnormality was detected in 16 cases (59%). The most common genetic aberrations identified involved EGFR ( 9 ) and KRAS ( 7 ). Six cases had ALK FISH only, of which one showed rearrangement. MPE volume was not associated with overall cellularity or tumor cellularity (P = 0.360). Molecular profiling of MPE is a viable alternative to testing solid tissue in NSCLC. This study shows successful detection of genetic aberrations in 59% of samples with minimal risk of false negative.

  9. Recombination of mitochondrial DNA without selection pressure among compatible strains of the Aspergillus niger species aggregate.

    PubMed

    Tóth, B; Hamari, Z; Ferenczy, L; Varga, J; Kevei, F

    1998-03-01

    Previous mitochondrial transmission experiments between oligomycin-resistant and oligomycin-sensitive incompatible strains of the A. niger aggregate bearing various mtDNA RFLP profiles resulted in a great variety of mitochondrial recombinants under selection pressure. Apart from the recombinant mtDNAs, resistant clones harbouring unchanged RFLP profiles of resistant donor mtDNAs with the recipient nuclear backgrounds were rarely isolated. These strains were anastomosed with nuclearly isogenic oligomycin-sensitive recipient partners and the mitochondria of the resulting progeny were examined under non-selective conditions. These experiments provide insights into events which are possibly similar to those occurring in nature. The heterokaryons obtained formed both oligomycin-resistant and -sensitive sectors, most of which were found to be homoplasmons. Progenies harbouring oligomycin-resistant and -sensitive mtDNAs may originate either from individual recombination events or be due to parental segregation. MtDNA recombination might take place in the heterokaryons without selection by oligomycin. The most frequent recombinant types of mtDNA RFLP profiles were indistinguishable from those recombinant mtDNAs which were frequently obtained under selection pressure from directed transfer experiments between incompatible strains. We present evidence that mixed mitochondrial populations may influence the compatibility reactions in the presence of an isogenic nuclear background, that recombination may take place without selection pressure, and that the process does not require specific nuclear sequences of both parental strains.

  10. An analytical SMASH procedure (ASP) for sensitivity-encoded MRI.

    PubMed

    Lee, R F; Westgate, C R; Weiss, R G; Bottomley, P A

    2000-05-01

    The simultaneous acquisition of spatial harmonics (SMASH) method of imaging with detector arrays can reduce the number of phase-encoding steps, and MRI scan time several-fold. The original approach utilized numerical gradient-descent fitting with the coil sensitivity profiles to create a set of composite spatial harmonics to replace the phase-encoding steps. Here, an analytical approach for generating the harmonics is presented. A transform is derived to project the harmonics onto a set of sensitivity profiles. A sequence of Fourier, Hilbert, and inverse Fourier transform is then applied to analytically eliminate spatially dependent phase errors from the different coils while fully preserving the spatial-encoding. By combining the transform and phase correction, the original numerical image reconstruction method can be replaced by an analytical SMASH procedure (ASP). The approach also allows simulation of SMASH imaging, revealing a criterion for the ratio of the detector sensitivity profile width to the detector spacing that produces optimal harmonic generation. When detector geometry is suboptimal, a group of quasi-harmonics arises, which can be corrected and restored to pure harmonics. The simulation also reveals high-order harmonic modulation effects, and a demodulation procedure is presented that enables application of ASP to a large numbers of detectors. The method is demonstrated on a phantom and humans using a standard 4-channel phased-array MRI system. Copyright 2000 Wiley-Liss, Inc.

  11. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state

    PubMed Central

    Yates, Kathleen B.; Bi, Kevin; Darko, Samuel; Godec, Jernej; Gerdemann, Ulrike; Swadling, Leo; Douek, Daniel C.; Klenerman, Paul; Barnes, Eleanor J.; Sharpe, Arlene H.

    2017-01-01

    Abstract The T cell compartment must contain diversity in both T cell receptor (TCR) repertoire and cell state to provide effective immunity against pathogens. However, it remains unclear how differences in the TCR contribute to heterogeneity in T cell state. Single cell RNA-sequencing (scRNA-seq) can allow simultaneous measurement of TCR sequence and global transcriptional profile from single cells. However, current methods for TCR inference from scRNA-seq are limited in their sensitivity and require long sequencing reads, thus increasing the cost and decreasing the number of cells that can be feasibly analyzed. Here we present TRAPeS, a publicly available tool that can efficiently extract TCR sequence information from short-read scRNA-seq libraries. We apply it to investigate heterogeneity in the CD8+ T cell response in humans and mice, and show that it is accurate and more sensitive than existing approaches. Coupling TRAPeS with transcriptome analysis of CD8+ T cells specific for a single epitope from Yellow Fever Virus (YFV), we show that the recently described ‘naive-like’ memory population have significantly longer CDR3 regions and greater divergence from germline sequence than do effector-memory phenotype cells. This suggests that TCR usage is associated with the differentiation state of the CD8+ T cell response to YFV. PMID:28934479

  12. Very Low Abundance Single-Cell Transcript Quantification with 5-Plex ddPCRTM Assays.

    PubMed

    Karlin-Neumann, George; Zhang, Bin; Litterst, Claudia

    2018-01-01

    Gene expression studies have provided one of the most accessible windows for understanding the molecular basis of cell and tissue phenotypes and how these change in response to stimuli. Current PCR-based and next generation sequencing methods offer great versatility in allowing the focused study of the roles of small numbers of genes or comprehensive profiling of the entire transcriptome of a sample at one time. Marrying of these approaches to various cell sorting technologies has recently enabled the profiling of expression in single cells, thereby increasing the resolution and sensitivity and strengthening the inferences from observed expression levels and changes. This chapter presents a quick and efficient 1-day workflow for sorting single cells with a small laboratory cell-sorter followed by an ultrahigh sensitivity, multiplexed digital PCR method for quantitative tracking of changes in 5-10 genes per single cell.

  13. Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.

    PubMed

    Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-01-19

    Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.

  14. POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): a general algorithm for reducing motion-related artifacts

    PubMed Central

    Chu, Mei-Lan; Chang, Hing-Chiu; Chung, Hsiao-Wen; Truong, Trong-Kha; Bashir, Mustafa R.; Chen, Nan-kuei

    2014-01-01

    Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion weighted imaging (DWI). Theory Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. PMID:25394325

  15. Identification of copy number variants in whole-genome data using Reference Coverage Profiles

    PubMed Central

    Glusman, Gustavo; Severson, Alissa; Dhankani, Varsha; Robinson, Max; Farrah, Terry; Mauldin, Denise E.; Stittrich, Anna B.; Ament, Seth A.; Roach, Jared C.; Brunkow, Mary E.; Bodian, Dale L.; Vockley, Joseph G.; Shmulevich, Ilya; Niederhuber, John E.; Hood, Leroy

    2015-01-01

    The identification of DNA copy numbers from short-read sequencing data remains a challenge for both technical and algorithmic reasons. The raw data for these analyses are measured in tens to hundreds of gigabytes per genome; transmitting, storing, and analyzing such large files is cumbersome, particularly for methods that analyze several samples simultaneously. We developed a very efficient representation of depth of coverage (150–1000× compression) that enables such analyses. Current methods for analyzing variants in whole-genome sequencing (WGS) data frequently miss copy number variants (CNVs), particularly hemizygous deletions in the 1–100 kb range. To fill this gap, we developed a method to identify CNVs in individual genomes, based on comparison to joint profiles pre-computed from a large set of genomes. We analyzed depth of coverage in over 6000 high quality (>40×) genomes. The depth of coverage has strong sequence-specific fluctuations only partially explained by global parameters like %GC. To account for these fluctuations, we constructed multi-genome profiles representing the observed or inferred diploid depth of coverage at each position along the genome. These Reference Coverage Profiles (RCPs) take into account the diverse technologies and pipeline versions used. Normalization of the scaled coverage to the RCP followed by hidden Markov model (HMM) segmentation enables efficient detection of CNVs and large deletions in individual genomes. Use of pre-computed multi-genome coverage profiles improves our ability to analyze each individual genome. We make available RCPs and tools for performing these analyses on personal genomes. We expect the increased sensitivity and specificity for individual genome analysis to be critical for achieving clinical-grade genome interpretation. PMID:25741365

  16. Susceptibility and molecular characterization of Candida species from patients with vulvovaginitis.

    PubMed

    Fornari, Gheniffer; Vicente, Vania Aparecida; Gomes, Renata Rodrigues; Muro, Marisol Dominguez; Pinheiro, Rosangela Lameira; Ferrari, Carolina; Herkert, Patricia Fernanda; Takimura, Marcos; Carvalho, Newton Sérgio de; Queiroz-Telles, Flavio

    2016-01-01

    Vulvovaginal candidiasis affects women of reproductive age, which represents approximately 15-25% of vaginitis cases. The present study aimed to isolate and characterize yeast from the patients irrespective of the presentation of clinical symptoms. The isolates were subjected to in vitro susceptibility profile and characterization by molecular markers, which intended to assess the distribution of species. A total of 40 isolates were obtained and identified through the CHROMagar, API20aux and by ITS and D1/D2 regions sequencing of DNAr gene. Candida albicans strains were genotyped by the ABC system and the isolates were divided into two genotypic groups. The identity of the C. albicans, C. glabrata, C. guilliermondii, C. kefyr and Saccharomyces cerevisiae isolates was confirmed by the multilocus analysis. The strains of Candida, isolated from patients with complications, were found to be resistant to nystatin but sensitive to fluconazole, amphotericin B and ketoconazole, as observed by in vitro sensitivity profile. The isolates from asymptomatic patients, i.e., the colonized group, showed a dose-dependent sensitivity to the anti-fungal agents, fluconazole and amphotericin B. However, the isolates of C. albicans that belong to distinct genotypic groups showed the same in vitro susceptibility profile. Copyright © 2016. Published by Elsevier Editora Ltda.

  17. RISC RNA sequencing for context-specific identification of in vivo microRNA targets.

    PubMed

    Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W

    2011-01-07

    MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1645 mRNAs consistently targeted to mouse cardiac RISCs. We used this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing "seed" sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context and is applicable to any tissue and any disease state.

  18. Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells

    PubMed Central

    Han, Lin; Wu, Hua-Jun; Zhu, Haiying; Kim, Kun-Yong; Marjani, Sadie L.; Riester, Markus; Euskirchen, Ghia; Zi, Xiaoyuan; Yang, Jennifer; Han, Jasper; Snyder, Michael; Park, In-Hyun; Irizarry, Rafael; Weissman, Sherman M.

    2017-01-01

    Abstract Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population. PMID:28126923

  19. Brucella papionis sp. nov., isolated from baboons (Papio spp.).

    PubMed

    Whatmore, Adrian M; Davison, Nicholas; Cloeckaert, Axel; Al Dahouk, Sascha; Zygmunt, Michel S; Brew, Simon D; Perrett, Lorraine L; Koylass, Mark S; Vergnaud, Gilles; Quance, Christine; Scholz, Holger C; Dick, Edward J; Hubbard, Gene; Schlabritz-Loutsevitch, Natalia E

    2014-12-01

    Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60(T) and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60(T) and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60(T) ( = NCTC 13660(T) = CIRMBP 0958(T)). Crown Copyright 2014. Reproduced with the permission of the Controller of Her Majesty's Stationery Office/Queen's Printer for Scotland and AHVLA.

  20. Massively parallel sequencing of forensic STRs and SNPs using the Illumina® ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx™ Forensic Genomics System.

    PubMed

    Guo, Fei; Yu, Jiao; Zhang, Lu; Li, Jun

    2017-11-01

    The ForenSeq™ DNA Signature Prep Kit (ForenSeq Kit) is designed to detect more than 200 forensically relevant markers in a single reaction on the MiSeq FGx™ Forensic Genomics System (MiSeq FGx System), including Amelogenin, 27 autosomal short tandem repeats (A-STRs), 7 X chromosomal STRs (X-STRs), 24 Y chromosomal STRs (Y-STRs) and 94 identity-informative single nucleotide polymorphisms (iSNPs) with the option to contain 22 phenotypic-informative SNPs (pSNPs) and 56 ancestry-informative SNPs (aSNPs). In this study, we evaluated the MiSeq FGx System on three major parts: methodological optimization (DNA extraction, sample quantification, library normalization, diluted libraries concentration, and sample-to-cell arrangement), massively parallel sequencing (MPS) performance (depth of coverage, sequence coverage ratio, and allele coverage ratio), and ForenSeq Kit characteristics (repeatability and concordance, sensitivity, mixture, stability and case-type samples). Results showed that quantitative polymerase chain reaction (qPCR)-based sample quantification and library normalization and the appropriate number of pooled libraries and concentration of diluted libraries provided a greater level of MPS performance and repeatability. Repeatable and concordant genotypes were obtained by the ForenSeq Kit. Full profiles were obtained from ≥100pg input DNA for STRs and ≥200pg for SNPs. A sample with ≥5% minor contributors was considered as a mixture by imbalanced allele coverage ratio distribution, and full profiles from minor contributors were easily detected between 9:1 and 1:9 mixtures with known reference profiles. The ForenSeq Kit tolerated considerable concentrations of inhibitors like ≤200μM hematin and ≤50μg/ml humic acid, and >56% STR profiles and >88% SNP profiles were obtained from ≥200-bp degraded samples. Also, it was adapted to case-type samples. As a whole, the ForenSeq Kit is a well-performed, robust, reliable, reproducible and highly informative assay, and it can fully meet requirements for human identification. Further, sensitive QC indicator and automated sample comparison function in the ForenSeq™ Universal Analysis Software are quite helpful, so that we can concentrate on questionable genotypes and avoid tedious and time-consuming labor to maximum the time spent in data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Chromosome 6q24 transient neonatal diabetes mellitus and protein sensitive hyperinsulinaemic hypoglycaemia.

    PubMed

    Kalaivanan, Prabhakaran; Arya, Ved Bhushan; Shah, Pratik; Datta, Vipan; Flanagan, Sarah E; Mackay, Deborah J G; Ellard, Sian; Senniappan, Senthil; Hussain, Khalid

    2014-11-01

    We describe the novel clinical observation of protein induced hyperinsulinaemic hypoglycaemia following remission of transient neonatal diabetes mellitus (TNDM) in a patient with 6q24 methylation defect. A male infant of non-consanguineous Caucasian parents, born at 40 weeks of gestation with a birth weight of 3330 g (-0.55 standard deviation score) presented with hyperglycaemia in the first week of life and was diagnosed with 6q24 TNDM. At 22 months of age, he developed recurrent hypoglycaemic episodes. Controlled diagnostic fast, oral glucose tolerance test, protein loading test and mixed meal tolerance test were undertaken. Sequencing of ABCC8, KCNJ11, GLUD1 and HADH were performed. Investigations suggested a diagnosis of protein sensitive hyperinsulinaemic hypoglycaemia with normal serum ammonia, acylcarnitine profile and urine organic acids. Sequencing of ABCC8, KCNJ11, GLUD1 and HADH did not identify a pathogenic mutation to explain his hyperinsulinaemic hypoglycaemia. This clinical case demonstrates the novel observation of protein sensitive hyperinsulinaemic hypoglycaemia in a patient with 6q24 TNDM. Long-term follow-up of patients with chromosome 6q24 TNDM is warranted following remission.

  2. Genome-wide identification of wheat (Triticum aestivum) expansins and expansin expression analysis in cold-tolerant and cold-sensitive wheat cultivars

    PubMed Central

    Zhang, Jun-Feng; Xu, Yong-Qing; Dong, Jia-Min; Peng, Li-Na; Feng, Xu; Wang, Xu; Li, Fei; Miao, Yu; Yao, Shu-Kuan; Zhao, Qiao-Qin; Feng, Shan-Shan; Hu, Bao-Zhong

    2018-01-01

    Plant expansins are proteins involved in cell wall loosening, plant growth, and development, as well as in response to plant diseases and other stresses. In this study, we identified 128 expansin coding sequences from the wheat (Triticum aestivum) genome. These sequences belong to 45 homoeologous copies of TaEXPs, including 26 TaEXPAs, 15 TaEXPBs and four TaEXLAs. No TaEXLB was identified. Gene expression and sub-expression profiles revealed that most of the TaEXPs were expressed either only in root tissues or in multiple organs. Real-time qPCR analysis showed that many TaEXPs were differentially expressed in four different tissues of the two wheat cultivars—the cold-sensitive ‘Chinese Spring (CS)’ and the cold-tolerant ‘Dongnongdongmai 1 (D1)’ cultivars. Our results suggest that the differential expression of TaEXPs could be related to low-temperature tolerance or sensitivity of different wheat cultivars. Our study expands our knowledge on wheat expansins and sheds new light on the functions of expansins in plant development and stress response. PMID:29596529

  3. Characteristics of 263K Scrapie Agent in Multiple Hamster Species

    PubMed Central

    Barbian, Kent D.; Race, Brent; Favara, Cynthia; Gardner, Don; Taubner, Lara; Porcella, Stephen; Race, Richard

    2009-01-01

    Transmissible spongiform encephalopathy (TSE) diseases are known to cross species barriers, but the pathologic and biochemical changes that occur during transmission are not well understood. To better understand these changes, we infected 6 hamster species with 263K hamster scrapie strain and, after each of 3 successive passages in the new species, analyzed abnormal proteinase K (PK)–resistant prion protein (PrPres) glycoform ratios, PrPres PK sensitivity, incubation periods, and lesion profiles. Unique 263K molecular and biochemical profiles evolved in each of the infected hamster species. Characteristics of 263K in the new hamster species seemed to correlate best with host factors rather than agent strain. Furthermore, 2 polymorphic regions of the prion protein amino acid sequence correlated with profile differences in these TSE-infected hamster species. PMID:19193264

  4. Genome-wide assessment of differential translations with ribosome profiling data.

    PubMed

    Xiao, Zhengtao; Zou, Qin; Liu, Yu; Yang, Xuerui

    2016-04-04

    The closely regulated process of mRNA translation is crucial for precise control of protein abundance and quality. Ribosome profiling, a combination of ribosome foot-printing and RNA deep sequencing, has been used in a large variety of studies to quantify genome-wide mRNA translation. Here, we developed Xtail, an analysis pipeline tailored for ribosome profiling data that comprehensively and accurately identifies differentially translated genes in pairwise comparisons. Applied on simulated and real datasets, Xtail exhibits high sensitivity with minimal false-positive rates, outperforming existing methods in the accuracy of quantifying differential translations. With published ribosome profiling datasets, Xtail does not only reveal differentially translated genes that make biological sense, but also uncovers new events of differential translation in human cancer cells on mTOR signalling perturbation and in human primary macrophages on interferon gamma (IFN-γ) treatment. This demonstrates the value of Xtail in providing novel insights into the molecular mechanisms that involve translational dysregulations.

  5. Systematic and fully automated identification of protein sequence patterns.

    PubMed

    Hart, R K; Royyuru, A K; Stolovitzky, G; Califano, A

    2000-01-01

    We present an efficient algorithm to systematically and automatically identify patterns in protein sequence families. The procedure is based on the Splash deterministic pattern discovery algorithm and on a framework to assess the statistical significance of patterns. We demonstrate its application to the fully automated discovery of patterns in 974 PROSITE families (the complete subset of PROSITE families which are defined by patterns and contain DR records). Splash generates patterns with better specificity and undiminished sensitivity, or vice versa, in 28% of the families; identical statistics were obtained in 48% of the families, worse statistics in 15%, and mixed behavior in the remaining 9%. In about 75% of the cases, Splash patterns identify sequence sites that overlap more than 50% with the corresponding PROSITE pattern. The procedure is sufficiently rapid to enable its use for daily curation of existing motif and profile databases. Third, our results show that the statistical significance of discovered patterns correlates well with their biological significance. The trypsin subfamily of serine proteases is used to illustrate this method's ability to exhaustively discover all motifs in a family that are statistically and biologically significant. Finally, we discuss applications of sequence patterns to multiple sequence alignment and the training of more sensitive score-based motif models, akin to the procedure used by PSI-BLAST. All results are available at httpl//www.research.ibm.com/spat/.

  6. DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data.

    PubMed

    Yang, Jian-Hua; Qu, Liang-Hu

    2012-01-01

    Recent advances in high-throughput deep-sequencing technology have produced large numbers of short and long RNA sequences and enabled the detection and profiling of known and novel microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) at unprecedented sensitivity and depth. In this chapter, we describe the use of deepBase, a database that we have developed to integrate all public deep-sequencing data and to facilitate the comprehensive annotation and discovery of miRNAs and other ncRNAs from these data. deepBase provides an integrative, interactive, and versatile web graphical interface to evaluate miRBase-annotated miRNA genes and other known ncRNAs, explores the expression patterns of miRNAs and other ncRNAs, and discovers novel miRNAs and other ncRNAs from deep-sequencing data. deepBase also provides a deepView genome browser to comparatively analyze these data at multiple levels. deepBase is available at http://deepbase.sysu.edu.cn/.

  7. Bioorthogonal Metabolic Labeling of Nascent RNA in Neurons Improves the Sensitivity of Transcriptome-Wide Profiling.

    PubMed

    Zajaczkowski, Esmi L; Zhao, Qiong-Yi; Zhang, Zong Hong; Li, Xiang; Wei, Wei; Marshall, Paul R; Leighton, Laura J; Nainar, Sarah; Feng, Chao; Spitale, Robert C; Bredy, Timothy W

    2018-06-15

    Transcriptome-wide expression profiling of neurons has provided important insights into the underlying molecular mechanisms and gene expression patterns that transpire during learning and memory formation. However, there is a paucity of tools for profiling stimulus-induced RNA within specific neuronal cell populations. A bioorthogonal method to chemically label nascent (i.e., newly transcribed) RNA in a cell-type-specific and temporally controlled manner, which is also amenable to bioconjugation via click chemistry, was recently developed and optimized within conventional immortalized cell lines. However, its value within a more fragile and complicated cellular system such as neurons, as well as for transcriptome-wide expression profiling, has yet to be demonstrated. Here, we report the visualization and sequencing of activity-dependent nascent RNA derived from neurons using this labeling method. This work has important implications for improving transcriptome-wide expression profiling and visualization of nascent RNA in neurons, which has the potential to provide valuable insights into the mechanisms underlying neural plasticity, learning, and memory.

  8. Evaluating the protein coding potential of exonized transposable element sequences

    PubMed Central

    Piriyapongsa, Jittima; Rutledge, Mark T; Patel, Sanil; Borodovsky, Mark; Jordan, I King

    2007-01-01

    Background Transposable element (TE) sequences, once thought to be merely selfish or parasitic members of the genomic community, have been shown to contribute a wide variety of functional sequences to their host genomes. Analysis of complete genome sequences have turned up numerous cases where TE sequences have been incorporated as exons into mRNAs, and it is widely assumed that such 'exonized' TEs encode protein sequences. However, the extent to which TE-derived sequences actually encode proteins is unknown and a matter of some controversy. We have tried to address this outstanding issue from two perspectives: i-by evaluating ascertainment biases related to the search methods used to uncover TE-derived protein coding sequences (CDS) and ii-through a probabilistic codon-frequency based analysis of the protein coding potential of TE-derived exons. Results We compared the ability of three classes of sequence similarity search methods to detect TE-derived sequences among data sets of experimentally characterized proteins: 1-a profile-based hidden Markov model (HMM) approach, 2-BLAST methods and 3-RepeatMasker. Profile based methods are more sensitive and more selective than the other methods evaluated. However, the application of profile-based search methods to the detection of TE-derived sequences among well-curated experimentally characterized protein data sets did not turn up many more cases than had been previously detected and nowhere near as many cases as recent genome-wide searches have. We observed that the different search methods used were complementary in the sense that they yielded largely non-overlapping sets of hits and differed in their ability to recover known cases of TE-derived CDS. The probabilistic analysis of TE-derived exon sequences indicates that these sequences have low protein coding potential on average. In particular, non-autonomous TEs that do not encode protein sequences, such as Alu elements, are frequently exonized but unlikely to encode protein sequences. Conclusion The exaptation of the numerous TE sequences found in exons as bona fide protein coding sequences may prove to be far less common than has been suggested by the analysis of complete genomes. We hypothesize that many exonized TE sequences actually function as post-transcriptional regulators of gene expression, rather than coding sequences, which may act through a variety of double stranded RNA related regulatory pathways. Indeed, their relatively high copy numbers and similarity to sequences dispersed throughout the genome suggests that exonized TE sequences could serve as master regulators with a wide scope of regulatory influence. Reviewers: This article was reviewed by Itai Yanai, Kateryna D. Makova, Melissa Wilson (nominated by Kateryna D. Makova) and Cedric Feschotte (nominated by John M. Logsdon Jr.). PMID:18036258

  9. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    PubMed

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  10. Identification and characterization of novel serum microRNA candidates from deep sequencing in cervical cancer patients.

    PubMed

    Juan, Li; Tong, Hong-li; Zhang, Pengjun; Guo, Guanghong; Wang, Zi; Wen, Xinyu; Dong, Zhennan; Tian, Ya-ping

    2014-09-03

    Small non-coding microRNAs (miRNAs) are involved in cancer development and progression, and serum profiles of cervical cancer patients may be useful for identifying novel miRNAs. We performed deep sequencing on serum pools of cervical cancer patients and healthy controls with 3 replicates and constructed a small RNA library. We used MIREAP to predict novel miRNAs and identified 2 putative novel miRNAs between serum pools of cervical cancer patients and healthy controls after filtering out pseudo-pre-miRNAs using Triplet-SVM analysis. The 2 putative novel miRNAs were validated by real time PCR and were significantly decreased in cervical cancer patients compared with healthy controls. One novel miRNA had an area under curve (AUC) of 0.921 (95% CI: 0.883, 0.959) with a sensitivity of 85.7% and a specificity of 88.2% when discriminating between cervical cancer patients and healthy controls. Our results suggest that characterizing serum profiles of cervical cancers by Solexa sequencing may be a good method for identifying novel miRNAs and that the validated novel miRNAs described here may be cervical cancer-associated biomarkers.

  11. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity

    PubMed Central

    Lohman, Gregory J. S.; Bauer, Robert J.; Nichols, Nicole M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C.

    2016-01-01

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241

  12. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    PubMed

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Predicting protein-binding regions in RNA using nucleotide profiles and compositions.

    PubMed

    Choi, Daesik; Park, Byungkyu; Chae, Hanju; Lee, Wook; Han, Kyungsook

    2017-03-14

    Motivated by the increased amount of data on protein-RNA interactions and the availability of complete genome sequences of several organisms, many computational methods have been proposed to predict binding sites in protein-RNA interactions. However, most computational methods are limited to finding RNA-binding sites in proteins instead of protein-binding sites in RNAs. Predicting protein-binding sites in RNA is more challenging than predicting RNA-binding sites in proteins. Recent computational methods for finding protein-binding sites in RNAs have several drawbacks for practical use. We developed a new support vector machine (SVM) model for predicting protein-binding regions in mRNA sequences. The model uses sequence profiles constructed from log-odds scores of mono- and di-nucleotides and nucleotide compositions. The model was evaluated by standard 10-fold cross validation, leave-one-protein-out (LOPO) cross validation and independent testing. Since actual mRNA sequences have more non-binding regions than protein-binding regions, we tested the model on several datasets with different ratios of protein-binding regions to non-binding regions. The best performance of the model was obtained in a balanced dataset of positive and negative instances. 10-fold cross validation with a balanced dataset achieved a sensitivity of 91.6%, a specificity of 92.4%, an accuracy of 92.0%, a positive predictive value (PPV) of 91.7%, a negative predictive value (NPV) of 92.3% and a Matthews correlation coefficient (MCC) of 0.840. LOPO cross validation showed a lower performance than the 10-fold cross validation, but the performance remains high (87.6% accuracy and 0.752 MCC). In testing the model on independent datasets, it achieved an accuracy of 82.2% and an MCC of 0.656. Testing of our model and other state-of-the-art methods on a same dataset showed that our model is better than the others. Sequence profiles of log-odds scores of mono- and di-nucleotides were much more powerful features than nucleotide compositions in finding protein-binding regions in RNA sequences. But, a slight performance gain was obtained when using the sequence profiles along with nucleotide compositions. These are preliminary results of ongoing research, but demonstrate the potential of our approach as a powerful predictor of protein-binding regions in RNA. The program and supporting data are available at http://bclab.inha.ac.kr/RBPbinding .

  14. Next-Generation Sequencing Combined with Specific PCR Assays To Determine the Bacterial 16S rRNA Gene Profiles of Middle Ear Fluid Collected from Children with Acute Otitis Media

    PubMed Central

    Kramna, Lenka; Oikarinen, Sami; Sipilä, Markku; Rautiainen, Markus; Aittoniemi, Janne; Laranne, Jussi; Hyöty, Heikki; Cinek, Ondrej

    2017-01-01

    ABSTRACT The aim of the study was to analyze the bacteriome of acute otitis media with a novel modification of next-generation sequencing techniques. Outpatient children with acute otitis media were enrolled in the study, and middle ear fluids were collected during 90 episodes from 79 subjects aged 5 to 42 months (median age, 19 months). The bacteriome profiles of middle ear fluid samples were determined by a nested-PCR amplification of the 16S rRNA gene (V4 region), followed by mass sequencing. The profiling results were compared to the results of specific PCR assays targeting selected prevalent pathogens. Bacteriome profiling using nested amplification of low-volume samples was aided by a bioinformatic subtraction of signal contaminants from the recombinant polymerase, achieving a sensitivity slightly lower than that of specific PCR detection. Streptococcus pneumoniae was detected in 28 (31%) samples, Haemophilus influenzae in 24 (27%), Moraxella catarrhalis in 18 (20%), Staphylococcus spp. in 21 (23%), Turicella otitidis in 5 (5.6%), Alloiococcus otitidis in 3 (3.3%), and other bacteria in 14 (16%) using bacteriome profiling. S. pneumoniae was the dominant pathogen in 14 (16%) samples, H. influenzae in 15 (17%), M. catarrhalis in 5 (5.6%), T. otitidis in 2, and Staphylococcus auricularis in 2. Weaker signals of Prevotella melaninogenica, Veillonella dispar, and Veillonella montpellierensis were noted in several samples. Fourteen samples (16%) were not explainable by bacterial pathogens; novel causative agents were not detected. In conclusion, unbiased bacteriome profiling helped in depicting the true mutual quantitative ratios of ear bacteria, but at present, its complicated protocol impedes its routine clinical use. IMPORTANCE Although S. pneumoniae, H. influenzae, and M. catarrhalis have been long established as the most important pathogens in acute otitis media using culture and specific PCR assays, the knowledge of their mutual quantitative relations and possible roles of other bacteria is incomplete. The advent of unbiased bacteriome 16S rRNA gene profiling has allowed the detection of nearly all bacteria present in the sample, and it helps in depicting their mutual quantitative ratios. Due to the difficulties in performing mass sequencing in low-volume samples, only a few bacteriome-profiling studies of otitis media have been published, all limited to cases of chronic otitis media. Here, we present a study on samples obtained from young children with acute otitis media, successfully using a strategy of nested PCR coupled with mass sequencing, and demonstrate that the method can confer quantitative information hardly obtainable by other methods. PMID:28357413

  15. Comprehensive Molecular Profiling of African-American Prostate Cancer to Inform on Prognosis and Disease Biology

    DTIC Science & Technology

    2016-10-01

    prostate cancer through sequencing xenografts and tissue samples. Qualify novel drivers of AR- prostate cancer through in vitro models. Develop novel...ability of RNASEH2A to modulate radio-sensitivity in prostate cancer cell lines and xenograft models. 3: Investigate RNASEH2A as a marker of radio...lung cancer clinical management. List of the Specific Aims: Aim 1: To establish patient-derived xenografts (PDX) models of pre-neoplastic lesions

  16. MetaMeta: integrating metagenome analysis tools to improve taxonomic profiling.

    PubMed

    Piro, Vitor C; Matschkowski, Marcel; Renard, Bernhard Y

    2017-08-14

    Many metagenome analysis tools are presently available to classify sequences and profile environmental samples. In particular, taxonomic profiling and binning methods are commonly used for such tasks. Tools available among these two categories make use of several techniques, e.g., read mapping, k-mer alignment, and composition analysis. Variations on the construction of the corresponding reference sequence databases are also common. In addition, different tools provide good results in different datasets and configurations. All this variation creates a complicated scenario to researchers to decide which methods to use. Installation, configuration and execution can also be difficult especially when dealing with multiple datasets and tools. We propose MetaMeta: a pipeline to execute and integrate results from metagenome analysis tools. MetaMeta provides an easy workflow to run multiple tools with multiple samples, producing a single enhanced output profile for each sample. MetaMeta includes a database generation, pre-processing, execution, and integration steps, allowing easy execution and parallelization. The integration relies on the co-occurrence of organisms from different methods as the main feature to improve community profiling while accounting for differences in their databases. In a controlled case with simulated and real data, we show that the integrated profiles of MetaMeta overcome the best single profile. Using the same input data, it provides more sensitive and reliable results with the presence of each organism being supported by several methods. MetaMeta uses Snakemake and has six pre-configured tools, all available at BioConda channel for easy installation (conda install -c bioconda metameta). The MetaMeta pipeline is open-source and can be downloaded at: https://gitlab.com/rki_bioinformatics .

  17. Comprehensive profiling and quantitation of oncogenic mutations in non small-cell lung carcinoma using single molecule amplification and re-sequencing technology

    PubMed Central

    Jiang, Hong; Wang, Limin; Xu, Rujun; Shi, Yanbin; Zhang, Jianguang; Xu, Mengnan; Cram, David S.; Ma, Shenglin

    2016-01-01

    Activating and resistance mutations in the tyrosine kinase domain of several oncogenes are frequently associated with non-small cell lung carcinoma (NSCLC). In this study we assessed the frequency, type and abundance of EGFR, KRAS, BRAF, TP53 and ALK mutations in tumour specimens from 184 patients with early and late stage disease using single molecule amplification and re-sequencing technology (SMART). Based on modelling of EGFR mutations, the detection sensitivity of the SMART assay was at least 0.1%. Benchmarking EGFR mutation detection against the gold standard ARMS-PCR assay, SMART assay had a sensitivity and specificity of 98.7% and 99.0%. Amongst the 184 samples, EGFR mutations were the most prevalent (59.9%), followed by KRAS (16.9%), TP53 (12.7%), EML4-ALK fusions (6.3%) and BRAF (4.2%) mutations. The abundance and types of mutations in tumour specimens were extremely heterogeneous, involving either monoclonal (51.6%) or polyclonal (12.6%) mutation events. At the clinical level, although the spectrum of tumour mutation(s) was unique to each patient, the overall patterns in early or advanced stage disease were relatively similar. Based on these findings, we propose that personalized profiling and quantitation of clinically significant oncogenic mutations will allow better classification of patients according to tumour characteristics and provide clinicians with important ancillary information for treatment decision-making. PMID:27409166

  18. Comprehensive profiling and quantitation of oncogenic mutations in non small-cell lung carcinoma using single molecule amplification and re-sequencing technology.

    PubMed

    Zhang, Shirong; Xia, Bing; Jiang, Hong; Wang, Limin; Xu, Rujun; Shi, Yanbin; Zhang, Jianguang; Xu, Mengnan; Cram, David S; Ma, Shenglin

    2016-08-02

    Activating and resistance mutations in the tyrosine kinase domain of several oncogenes are frequently associated with non-small cell lung carcinoma (NSCLC). In this study we assessed the frequency, type and abundance of EGFR, KRAS, BRAF, TP53 and ALK mutations in tumour specimens from 184 patients with early and late stage disease using single molecule amplification and re-sequencing technology (SMART). Based on modelling of EGFR mutations, the detection sensitivity of the SMART assay was at least 0.1%. Benchmarking EGFR mutation detection against the gold standard ARMS-PCR assay, SMART assay had a sensitivity and specificity of 98.7% and 99.0%. Amongst the 184 samples, EGFR mutations were the most prevalent (59.9%), followed by KRAS (16.9%), TP53 (12.7%), EML4-ALK fusions (6.3%) and BRAF (4.2%) mutations. The abundance and types of mutations in tumour specimens were extremely heterogeneous, involving either monoclonal (51.6%) or polyclonal (12.6%) mutation events. At the clinical level, although the spectrum of tumour mutation(s) was unique to each patient, the overall patterns in early or advanced stage disease were relatively similar. Based on these findings, we propose that personalized profiling and quantitation of clinically significant oncogenic mutations will allow better classification of patients according to tumour characteristics and provide clinicians with important ancillary information for treatment decision-making.

  19. Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells.

    PubMed

    Han, Lin; Wu, Hua-Jun; Zhu, Haiying; Kim, Kun-Yong; Marjani, Sadie L; Riester, Markus; Euskirchen, Ghia; Zi, Xiaoyuan; Yang, Jennifer; Han, Jasper; Snyder, Michael; Park, In-Hyun; Irizarry, Rafael; Weissman, Sherman M; Michor, Franziska; Fan, Rong; Pan, Xinghua

    2017-06-02

    Conventional DNA bisulfite sequencing has been extended to single cell level, but the coverage consistency is insufficient for parallel comparison. Here we report a novel method for genome-wide CpG island (CGI) methylation sequencing for single cells (scCGI-seq), combining methylation-sensitive restriction enzyme digestion and multiple displacement amplification for selective detection of methylated CGIs. We applied this method to analyzing single cells from two types of hematopoietic cells, K562 and GM12878 and small populations of fibroblasts and induced pluripotent stem cells. The method detected 21 798 CGIs (76% of all CGIs) per cell, and the number of CGIs consistently detected from all 16 profiled single cells was 20 864 (72.7%), with 12 961 promoters covered. This coverage represents a substantial improvement over results obtained using single cell reduced representation bisulfite sequencing, with a 66-fold increase in the fraction of consistently profiled CGIs across individual cells. Single cells of the same type were more similar to each other than to other types, but also displayed epigenetic heterogeneity. The method was further validated by comparing the CpG methylation pattern, methylation profile of CGIs/promoters and repeat regions and 41 classes of known regulatory markers to the ENCODE data. Although not every minor methylation differences between cells are detectable, scCGI-seq provides a solid tool for unsupervised stratification of a heterogeneous cell population. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development.

    PubMed

    Elchuri, Sailaja V; Rajasekaran, Swetha; Miles, Wayne O

    2018-01-01

    Retinoblastoma is rare tumor of the retina caused by the homozygous loss of the Retinoblastoma 1 tumor suppressor gene (RB1). Loss of the RB1 protein, pRB, results in de-regulated activity of the E2F transcription factors, chromatin changes and developmental defects leading to tumor development. Extensive microarray profiles of these tumors have enabled the identification of genes sensitive to pRB disruption, however, this technology has a number of limitations in the RNA profiles that they generate. The advent of RNA-sequencing has enabled the global profiling of all of the RNA within the cell including both coding and non-coding features and the detection of aberrant RNA processing events. In this perspective, we focus on discussing how RNA-sequencing of rare Retinoblastoma tumors will build on existing data and open up new area's to improve our understanding of the biology of these tumors. In particular, we discuss how the RB-research field may be to use this data to determine how RB1 loss results in the expression of; non-coding RNAs, causes aberrant RNA processing events and how a deeper analysis of metabolic RNA changes can be utilized to model tumor specific shifts in metabolism. Each section discusses new opportunities and challenges associated with these types of analyses and aims to provide an honest assessment of how understanding these different processes may contribute to the treatment of Retinoblastoma.

  1. Predicting turns in proteins with a unified model.

    PubMed

    Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan

    2012-01-01

    Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.

  2. Predicting Turns in Proteins with a Unified Model

    PubMed Central

    Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan

    2012-01-01

    Motivation Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. Results In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications. PMID:23144872

  3. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis

    PubMed Central

    Du, Yushen; Wu, Nicholas C.; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting

    2016-01-01

    ABSTRACT Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. PMID:27803181

  4. Genome-wide assessment of differential translations with ribosome profiling data

    PubMed Central

    Xiao, Zhengtao; Zou, Qin; Liu, Yu; Yang, Xuerui

    2016-01-01

    The closely regulated process of mRNA translation is crucial for precise control of protein abundance and quality. Ribosome profiling, a combination of ribosome foot-printing and RNA deep sequencing, has been used in a large variety of studies to quantify genome-wide mRNA translation. Here, we developed Xtail, an analysis pipeline tailored for ribosome profiling data that comprehensively and accurately identifies differentially translated genes in pairwise comparisons. Applied on simulated and real datasets, Xtail exhibits high sensitivity with minimal false-positive rates, outperforming existing methods in the accuracy of quantifying differential translations. With published ribosome profiling datasets, Xtail does not only reveal differentially translated genes that make biological sense, but also uncovers new events of differential translation in human cancer cells on mTOR signalling perturbation and in human primary macrophages on interferon gamma (IFN-γ) treatment. This demonstrates the value of Xtail in providing novel insights into the molecular mechanisms that involve translational dysregulations. PMID:27041671

  5. Enterobacterial Repetitive Intergenic Consensus Sequences as Molecular Targets for Typing of Mycobacterium tuberculosis Strains

    PubMed Central

    Sechi, Leonardo A.; Zanetti, Stefania; Dupré, Ilaria; Delogu, Giovanni; Fadda, Giovanni

    1998-01-01

    The presence of enterobacterial repetitive intergenic consensus (ERIC) sequences was demonstrated for the first time in the genome of Mycobacterium tuberculosis; these sequences have been found in transcribed regions of the chromosomes of gram-negative bacteria. In this study genetic diversity among clinical isolates of M. tuberculosis was determined by PCR with ERIC primers (ERIC-PCR). The study isolates comprised 71 clinical isolates collected from Sardinia, Italy. ERIC-PCR was able to identify 59 distinct profiles. The results obtained were compared with IS6110 and PCR-GTG fingerprinting. We found that the level of differentiation obtained by ERIC-PCR is greater than that obtained by IS6110 fingerprinting and comparable to that obtained by PCR-GTG. This method of fingerprinting is rapid and sensitive and can be applied to the study of the epidemiology of M. tuberculosis infections, especially when IS6110 fingerprinting is not of any help. PMID:9431935

  6. Separation of endogenous viral elements from infectious Penaeus stylirostris densovirus using recombinase polymerase amplification.

    PubMed

    Jaroenram, Wansadaj; Owens, Leigh

    2014-01-01

    Non-infectious Penaeus stylirostris densovirus (PstDV)-related sequences in the shrimp genome cause false positive results with current PCR protocols. Here, we examined and mapped PstDV insertion profile in the genome of Australian Penaeus monodon. A DNA sequence which is likely to represent infectious PstDV was also identified and used as a target sequence for recombinase polymerase amplification (RPA)-based approach, developed for specifically detecting PstDV. The RPA protocol at 37 °C for 30 min showed no cross-reaction with other shrimp viruses, and was 10 times more sensitive than the 309F/R PCR protocol currently recommended by the World Organization for Animal Health (OIE) for PstDV diagnosis. These features, together with the simplicity of the protocol, requiring only a heating block for the reaction, offer opportunities for rapid and efficient detection of PstDV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.

    PubMed

    Hayashi, Tetsutaro; Ozaki, Haruka; Sasagawa, Yohei; Umeda, Mana; Danno, Hiroki; Nikaido, Itoshi

    2018-02-12

    Total RNA sequencing has been used to reveal poly(A) and non-poly(A) RNA expression, RNA processing and enhancer activity. To date, no method for full-length total RNA sequencing of single cells has been developed despite the potential of this technology for single-cell biology. Here we describe random displacement amplification sequencing (RamDA-seq), the first full-length total RNA-sequencing method for single cells. Compared with other methods, RamDA-seq shows high sensitivity to non-poly(A) RNA and near-complete full-length transcript coverage. Using RamDA-seq with differentiation time course samples of mouse embryonic stem cells, we reveal hundreds of dynamically regulated non-poly(A) transcripts, including histone transcripts and long noncoding RNA Neat1. Moreover, RamDA-seq profiles recursive splicing in >300-kb introns. RamDA-seq also detects enhancer RNAs and their cell type-specific activity in single cells. Taken together, we demonstrate that RamDA-seq could help investigate the dynamics of gene expression, RNA-processing events and transcriptional regulation in single cells.

  8. Functional annotation of chemical libraries across diverse biological processes.

    PubMed

    Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles

    2017-09-01

    Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.

  9. Genomic and Molecular Screenings Identify Different Mechanisms for Acquired Resistance to MET Inhibitors in Lung Cancer Cells.

    PubMed

    Gimenez-Xavier, Pol; Pros, Eva; Bonastre, Ester; Moran, Sebastian; Aza, Ana; Graña, Osvaldo; Gomez-Lopez, Gonzalo; Derdak, Sophia; Dabad, Marc; Esteve-Codina, Anna; Hernandez Mora, Jose R; Salinas-Chaparro, Diana; Esteller, Manel; Pisano, David; Sanchez-Cespedes, Montse

    2017-07-01

    The development of resistance to tyrosine kinase inhibitors (TKI) limits the long-term efficacy of cancer treatments involving them. We aimed to understand the mechanisms that underlie acquired resistance (AR) to MET inhibitors in lung cancer. EBC1 cells, which have MET amplification and are sensitive to TKIs against MET, were used to generate multiple clones with AR to a MET-TKI. Whole-exome sequencing, RNA sequencing, and global DNA methylation analysis were used to scrutinize the genetic and molecular characteristics of the resistant cells. AR to the MET-TKI involved changes common to all resistant cells, that is, phenotypic modifications, specific changes in gene expression, and reactivation of AKT, ERK, and mTOR. The gene expression, global DNA methylation, and mutational profiles distinguished at least two groups of resistant cells. In one of these, the cells have acquired sensitivity to erlotinib, concomitantly with mutations of the KIRREL, HDAC11, HIATL1 , and MAPK1IP1L genes, among others. In the other group, some cells have acquired inactivation of neurofibromatosis type 2 ( NF2 ) concomitantly with strong overexpression of NRG1 and a mutational profile that includes changes in LMLN and TOMM34 Multiple independent and simultaneous strategies lead to AR to the MET-TKIs in lung cancer cells. The acquired sensitivity to erlotinib supports the known crosstalk between MET and the HER family of receptors. For the first time, we show inactivation of NF2 during acquisition of resistance to MET-TKI that may explain the refractoriness to erlotinib in these cells. Mol Cancer Ther; 16(7); 1366-76. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Single-Molecule Denaturation Mapping of Genomic DNA in Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Reisner, Walter; Larsen, Niels; Kristensen, Anders; Tegenfeldt, Jonas O.; Flyvbjerg, Henrik

    2009-03-01

    We have developed a new DNA barcoding technique based on the partial denaturation of extended fluorescently labeled DNA molecules. We partially melt DNA extended in nanofluidic channels via a combination of local heating and added chemical denaturants. The melted molecules, imaged via a standard fluorescence videomicroscopy setup, exhibit a nonuniform fluorescence profile corresponding to a series of local dips and peaks in the intensity trace along the stretched molecule. We show that this barcode is consistent with the presence of locally melted regions and can be explained by calculations of sequence-dependent melting probability. We believe this melting mapping technology is the first optically based single molecule technique sensitive to genome wide sequence variation that does not require an additional enzymatic labeling or restriction scheme.

  11. qpure: A Tool to Estimate Tumor Cellularity from Genome-Wide Single-Nucleotide Polymorphism Profiles

    PubMed Central

    Song, Sarah; Nones, Katia; Miller, David; Harliwong, Ivon; Kassahn, Karin S.; Pinese, Mark; Pajic, Marina; Gill, Anthony J.; Johns, Amber L.; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Newell, Felicity; Cowley, Mark J.; Wu, Jianmin; Wilson, Peter; Fink, Lynn; Biankin, Andrew V.; Waddell, Nic; Grimmond, Sean M.; Pearson, John V.

    2012-01-01

    Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 (-value = 0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 (-value 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 (-value = 0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/. PMID:23049875

  12. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis.

    PubMed

    Du, Yushen; Wu, Nicholas C; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting; Sun, Ren

    2016-11-01

    Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is usually limited by sampling size. Sequence conservation-based methods are further confounded by structural constraints and multifunctionality of proteins. Here we present a method that can systematically identify and annotate functional residues of a given protein. We used a high-throughput functional profiling platform to identify essential residues. Coupling it with homologous-structure comparison, we were able to annotate multiple functions of proteins. We demonstrated the method with the PB1 protein of influenza A virus and identified novel functional residues in addition to its canonical function as an RNA-dependent RNA polymerase. Not limited to virology, this method is generally applicable to other proteins that can be functionally selected and about which homologous-structure information is available. Copyright © 2016 Du et al.

  13. ProfileGrids: a sequence alignment visualization paradigm that avoids the limitations of Sequence Logos.

    PubMed

    Roca, Alberto I

    2014-01-01

    The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org.

  14. Evolutionary profiles from the QR factorization of multiple sequence alignments

    PubMed Central

    Sethi, Anurag; O'Donoghue, Patrick; Luthey-Schulten, Zaida

    2005-01-01

    We present an algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of the homologous group. The method, based on the multidimensional QR factorization of numerically encoded multiple sequence alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. We observe a general trend that these smaller, more evolutionarily balanced profiles have comparable and, in many cases, better performance in database searches than conventional profiles containing hundreds of sequences, constructed in an iterative and computationally intensive procedure. For more diverse families or superfamilies, with sequence identity <30%, structural alignments, based purely on the geometry of the protein structures, provide better alignments than pure sequence-based methods. Merging the structure and sequence information allows the construction of accurate profiles for distantly related groups. These structure-based profiles outperformed other sequence-based methods for finding distant homologs and were used to identify a putative class II cysteinyl-tRNA synthetase (CysRS) in several archaea that eluded previous annotation studies. Phylogenetic analysis showed the putative class II CysRSs to be a monophyletic group and homology modeling revealed a constellation of active site residues similar to that in the known class I CysRS. PMID:15741270

  15. Phylum- and Class-Specific PCR Primers for General Microbial Community Analysis

    PubMed Central

    Blackwood, Christopher B.; Oaks, Adam; Buyer, Jeffrey S.

    2005-01-01

    Amplification of a particular DNA fragment from a mixture of organisms by PCR is a common first step in methods of examining microbial community structure. The use of group-specific primers in community DNA profiling applications can provide enhanced sensitivity and phylogenetic detail compared to domain-specific primers. Other uses for group-specific primers include quantitative PCR and library screening. The purpose of the present study was to develop several primer sets targeting commonly occurring and important groups. Primers specific for the 16S ribosomal sequences of Alphaproteobacteria, Betaproteobacteria, Bacilli, Actinobacteria, and Planctomycetes and for parts of both the 18S ribosomal sequence and the internal transcribed spacer region of Basidiomycota were examined. Primers were tested by comparison to sequences in the ARB 2003 database, and chosen primers were further tested by cloning and sequencing from soil community DNA. Eighty-five to 100% of the sequences obtained from clone libraries were found to be placed with the groups intended as targets, demonstrating the specificity of the primers under field conditions. It will be important to reevaluate primers over time because of the continual growth of sequence databases and revision of microbial taxonomy. PMID:16204538

  16. A comparison of PCR assays for beak and feather disease virus and high resolution melt (HRM) curve analysis of replicase associated protein and capsid genes.

    PubMed

    Das, Shubhagata; Sarker, Subir; Ghorashi, Seyed Ali; Forwood, Jade K; Raidal, Shane R

    2016-11-01

    Beak and feather disease virus (BFDV) threatens a wide range of endangered psittacine birds worldwide. In this study, we assessed a novel PCR assay and genetic screening method using high-resolution melt (HRM) curve analysis for BFDV targeting the capsid (Cap) gene (HRM-Cap) alongside conventional PCR detection as well as a PCR method that targets a much smaller fragment of the virus genome in the replicase initiator protein (Rep) gene (HRM-Rep). Limits of detection, sensitivity, specificity and discriminatory power for differentiating BFDV sequences were compared. HRM-Cap had a high positive predictive value and could readily differentiate between a reference genotype and 17 other diverse BFDV genomes with more discriminatory power (genotype confidence percentage) than HRM-Rep. Melt curve profiles generated by HRM-Cap correlated with unique DNA sequence profiles for each individual test genome. The limit of detection of HRM-Cap was lower (2×10 -5 ng/reaction or 48 viral copies) than that for both HRM-Rep and conventional BFDV PCR which had similar sensitivity (2×10 -6 ng or 13 viral copies/reaction). However, when used in a diagnostic setting with 348 clinical samples there was strong agreement between HRM-Cap and conventional PCR (kappa=0.87, P<0.01, 98% specificity) and HRM-Cap demonstrated higher specificity (99.9%) than HRM-Rep (80.3%). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterizing genomic alterations in cancer by complementary functional associations.

    PubMed

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  18. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications

    USDA-ARS?s Scientific Manuscript database

    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylat...

  19. ProfileGrids: a sequence alignment visualization paradigm that avoids the limitations of Sequence Logos

    PubMed Central

    2014-01-01

    Background The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. Results The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. Conclusions The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org. PMID:25237393

  20. Exploiting three kinds of interface propensities to identify protein binding sites.

    PubMed

    Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan

    2009-08-01

    Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. In this study, we present a building block of proteins called order profiles to use the evolutionary information of the protein sequence frequency profiles and apply this building block to produce a class of propensities called order profile interface propensities. For comparisons, we revisit the usage of residue interface propensities and binary profile interface propensities for protein binding site prediction. Each kind of propensities combined with sequence profiles and accessible surface areas are inputted into SVM. When tested on four types of complexes (hetero-permanent complexes, hetero-transient complexes, homo-permanent complexes and homo-transient complexes), experimental results show that the order profile interface propensities are better than residue interface propensities and binary profile interface propensities. Therefore, order profile is a suitable profile-level building block of the protein sequences and can be widely used in many tasks of computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the protein remote homology detection.

  1. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: Sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vose, Sarah C.; Center for Children's Environmental Health Research, School of Public Health, University of California, Berkeley, CA 94720; Holland, Nina T.

    2007-10-01

    Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC{sub 50} valuesmore » of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.« less

  2. Next-generation sequencing facilitates quantitative analysis of wild-type and Nrl−/− retinal transcriptomes

    PubMed Central

    Brooks, Matthew J.; Rajasimha, Harsha K.; Roger, Jerome E.

    2011-01-01

    Purpose Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis. Methods Retinal mRNA profiles of 21-day-old wild-type (WT) and neural retina leucine zipper knockout (Nrl−/−) mice were generated by deep sequencing, in triplicate, using Illumina GAIIx. The sequence reads that passed quality filters were analyzed at the transcript isoform level with two methods: Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA) and TopHat followed by Cufflinks. qRT–PCR validation was performed using TaqMan and SYBR Green assays. Results Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl−/− mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl−/− retina, with a fold change ≥1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions Our study represents the first detailed analysis of retinal transcriptomes, with biologic replicates, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. PMID:22162623

  3. Mutations in the pantothenate kinase of Plasmodium falciparum confer diverse sensitivity profiles to antiplasmodial pantothenate analogues

    PubMed Central

    Tjhin, Erick T.; Siddiqui, Ghizal; Marquez, Rodolfo; Saliba, Kevin J.

    2018-01-01

    The malaria-causing blood stage of Plasmodium falciparum requires extracellular pantothenate for proliferation. The parasite converts pantothenate into coenzyme A (CoA) via five enzymes, the first being a pantothenate kinase (PfPanK). Multiple antiplasmodial pantothenate analogues, including pantothenol and CJ-15,801, kill the parasite by targeting CoA biosynthesis/utilisation. Their mechanism of action, however, remains unknown. Here, we show that parasites pressured with pantothenol or CJ-15,801 become resistant to these analogues. Whole-genome sequencing revealed mutations in one of two putative PanK genes (Pfpank1) in each resistant line. These mutations significantly alter PfPanK activity, with two conferring a fitness cost, consistent with Pfpank1 coding for a functional PanK that is essential for normal growth. The mutants exhibit a different sensitivity profile to recently-described, potent, antiplasmodial pantothenate analogues, with one line being hypersensitive. We provide evidence consistent with different pantothenate analogue classes having different mechanisms of action: some inhibit CoA biosynthesis while others inhibit CoA-utilising enzymes. PMID:29614109

  4. Tissue Gene Expression Analysis Using Arrayed Normalized cDNA Libraries

    PubMed Central

    Eickhoff, Holger; Schuchhardt, Johannes; Ivanov, Igor; Meier-Ewert, Sebastian; O'Brien, John; Malik, Arif; Tandon, Neeraj; Wolski, Eryk-Witold; Rohlfs, Elke; Nyarsik, Lajos; Reinhardt, Richard; Nietfeld, Wilfried; Lehrach, Hans

    2000-01-01

    We have used oligonucleotide-fingerprinting data on 60,000 cDNA clones from two different mouse embryonic stages to establish a normalized cDNA clone set. The normalized set of 5,376 clones represents different clusters and therefore, in almost all cases, different genes. The inserts of the cDNA clones were amplified by PCR and spotted on glass slides. The resulting arrays were hybridized with mRNA probes prepared from six different adult mouse tissues. Expression profiles were analyzed by hierarchical clustering techniques. We have chosen radioactive detection because it combines robustness with sensitivity and allows the comparison of multiple normalized experiments. Sensitive detection combined with highly effective clustering algorithms allowed the identification of tissue-specific expression profiles and the detection of genes specifically expressed in the tissues investigated. The obtained results are publicly available (http://www.rzpd.de) and can be used by other researchers as a digital expression reference. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AL360374–AL36537.] PMID:10958641

  5. The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile

    NASA Technical Reports Server (NTRS)

    Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.

  6. Developing biochemical and molecular markers for cyanobacterial inoculants.

    PubMed

    Prasanna, R; Madhan, K; Singh, R N; Chauhan, A K; Nain, L

    2010-09-01

    Markers for evaluating the establishment of cyanobacteria based on their sensitivity or resistance to antibiotics, saccharide utilization patterns and PCR generated fingerprints were developed. Four selected strains (isolates from rhizosphere soils of diverse agro-ecosystems) have shown potential as diazotrophs and exhibited plant growth promoting abilities. Different responses were obtained on screening against 40 antibiotics, which aided in developing selectable antibiotic markers for each strain. Biochemical profiles generated using standardized chromogenic identification system (including saccharide utilization tests) revealed that 53 % of the saccharides tested were not utilized by any strain, while some strains exhibited unique ability for utilization of saccharides such as melibiose, cellobiose, maltose and glucosamine. PCR based amplification profiles developed using a number of primers based on repeat sequences revealed the utility of 3 primers in providing unique fingerprints for the strains.

  7. DNA Replication Profiling Using Deep Sequencing.

    PubMed

    Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W

    2018-01-01

    Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.

  8. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients.

    PubMed

    Koeppel, Florence; Blanchard, Steven; Jovelet, Cécile; Genin, Bérengère; Marcaillou, Charles; Martin, Emmanuel; Rouleau, Etienne; Solary, Eric; Soria, Jean-Charles; André, Fabrice; Lacroix, Ludovic

    2017-01-01

    Tumor mutation load (TML) has been proposed as a biomarker of patient response to immunotherapy in several studies. TML is usually determined by tumor biopsy DNA (tDNA) whole exome sequencing (WES), therefore TML evaluation is limited by informative biopsy availability. Circulating cell free DNA (cfDNA) provided by liquid biopsy is a surrogate specimen to biopsy for molecular profiling. Nevertheless performing WES on DNA from plasma is technically challenging and the ability to determine tumor mutation load from liquid biopsies remains to be demonstrated. In the current study, WES was performed on cfDNA from 32 metastatic patients of various cancer types included into MOSCATO 01 (NCT01566019) and/or MATCHR (NCT02517892) molecular triage trials. Results from targeted gene sequencing (TGS) and WES performed on cfDNA were compared to results from tumor tissue biopsy. In cfDNA samples, WES mutation detection sensitivity was 92% compared to targeted sequencing (TGS). When comparing cfDNA-WES to tDNA-WES, mutation detection sensitivity was 53%, consistent with previously published prospective study comparing cfDNA-TGS to tDNA-TGS. For samples in which presence of tumor DNA was confirmed in cfDNA, tumor mutation load from liquid biopsy was correlated with tumor biopsy. Taken together, this study demonstrated that liquid biopsy may be applied to determine tumor mutation load. Qualification of liquid biopsy for interpretation is a crucial point to use cfDNA for mutational load estimation.

  9. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients

    PubMed Central

    Blanchard, Steven; Jovelet, Cécile; Genin, Bérengère; Marcaillou, Charles; Martin, Emmanuel; Rouleau, Etienne; Solary, Eric; Soria, Jean-Charles; André, Fabrice; Lacroix, Ludovic

    2017-01-01

    Tumor mutation load (TML) has been proposed as a biomarker of patient response to immunotherapy in several studies. TML is usually determined by tumor biopsy DNA (tDNA) whole exome sequencing (WES), therefore TML evaluation is limited by informative biopsy availability. Circulating cell free DNA (cfDNA) provided by liquid biopsy is a surrogate specimen to biopsy for molecular profiling. Nevertheless performing WES on DNA from plasma is technically challenging and the ability to determine tumor mutation load from liquid biopsies remains to be demonstrated. In the current study, WES was performed on cfDNA from 32 metastatic patients of various cancer types included into MOSCATO 01 (NCT01566019) and/or MATCHR (NCT02517892) molecular triage trials. Results from targeted gene sequencing (TGS) and WES performed on cfDNA were compared to results from tumor tissue biopsy. In cfDNA samples, WES mutation detection sensitivity was 92% compared to targeted sequencing (TGS). When comparing cfDNA-WES to tDNA-WES, mutation detection sensitivity was 53%, consistent with previously published prospective study comparing cfDNA-TGS to tDNA-TGS. For samples in which presence of tumor DNA was confirmed in cfDNA, tumor mutation load from liquid biopsy was correlated with tumor biopsy. Taken together, this study demonstrated that liquid biopsy may be applied to determine tumor mutation load. Qualification of liquid biopsy for interpretation is a crucial point to use cfDNA for mutational load estimation. PMID:29161279

  10. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform | Office of Cancer Genomics

    Cancer.gov

    The vast datasets generated by next generation gene sequencing and expression profiling have transformed biological and translational research. However, technologies to produce large-scale functional genomics datasets, such as high-throughput detection of protein-protein interactions (PPIs), are still in early development. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform featured with both high sensitivity and robustness in a mammalian cell environment remains to be established.

  11. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

    PubMed

    Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2006-06-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.

  12. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

    PubMed Central

    Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2007-01-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900

  13. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples.

    PubMed

    Peck, Michelle A; Sturk-Andreaggi, Kimberly; Thomas, Jacqueline T; Oliver, Robert S; Barritt-Ross, Suzanne; Marshall, Charla

    2018-05-01

    Generating mitochondrial genome (mitogenome) data from reference samples in a rapid and efficient manner is critical to harnessing the greater power of discrimination of the entire mitochondrial DNA (mtDNA) marker. The method of long-range target enrichment, Nextera XT library preparation, and Illumina sequencing on the MiSeq is a well-established technique for generating mitogenome data from high-quality samples. To this end, a validation was conducted for this mitogenome method processing up to 24 samples simultaneously along with analysis in the CLC Genomics Workbench and utilizing the AQME (AFDIL-QIAGEN mtDNA Expert) tool to generate forensic profiles. This validation followed the Federal Bureau of Investigation's Quality Assurance Standards (QAS) for forensic DNA testing laboratories and the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines. The evaluation of control DNA, non-probative samples, blank controls, mixtures, and nonhuman samples demonstrated the validity of this method. Specifically, the sensitivity was established at ≥25 pg of nuclear DNA input for accurate mitogenome profile generation. Unreproducible low-level variants were observed in samples with low amplicon yields. Further, variant quality was shown to be a useful metric for identifying sequencing error and crosstalk. Success of this method was demonstrated with a variety of reference sample substrates and extract types. These studies further demonstrate the advantages of using NGS techniques by highlighting the quantitative nature of heteroplasmy detection. The results presented herein from more than 175 samples processed in ten sequencing runs, show this mitogenome sequencing method and analysis strategy to be valid for the generation of reference data. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Identification of (R)-selective ω-aminotransferases by exploring evolutionary sequence space.

    PubMed

    Kim, Eun-Mi; Park, Joon Ho; Kim, Byung-Gee; Seo, Joo-Hyun

    2018-03-01

    Several (R)-selective ω-aminotransferases (R-ωATs) have been reported. The existence of additional R-ωATs having different sequence characteristics from previous ones is highly expected. In addition, it is generally accepted that R-ωATs are variants of aminotransferase group III. Based on these backgrounds, sequences in RefSeq database were scored using family profiles of branched-chain amino acid aminotransferase (BCAT) and d-alanine aminotransferase (DAT) to predict and identify putative R-ωATs. Sequences with two profile analysis scores were plotted on two-dimensional score space. Candidates with relatively similar scores in both BCAT and DAT profiles (i.e., profile analysis score using BCAT profile was similar to profile analysis score using DAT profile) were selected. Experimental results for selected candidates showed that putative R-ωATs from Saccharopolyspora erythraea (R-ωAT_Sery), Bacillus cellulosilyticus (R-ωAT_Bcel), and Bacillus thuringiensis (R-ωAT_Bthu) had R-ωAT activity. Additional experiments revealed that R-ωAT_Sery also possessed DAT activity while R-ωAT_Bcel and R-ωAT_Bthu had BCAT activity. Selecting putative R-ωATs from regions with similar profile analysis scores identified potential R-ωATs. Therefore, R-ωATs could be efficiently identified by using simple family profile analysis and exploring evolutionary sequence space. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Profiling defect depth in composite materials using thermal imaging NDE

    NASA Astrophysics Data System (ADS)

    Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan

    2018-04-01

    Sonic Infrared (IR) NDE, is a relatively new NDE technology; it has been demonstrated as a reliable and sensitive method to detect defects. SIR uses ultrasonic excitation with IR imaging to detect defects and flaws in the structures being inspected. An IR camera captures infrared radiation from the target for a period of time covering the ultrasound pulse. This period of time may be much longer than the pulse depending on the defect depth and the thermal properties of the materials. With the increasing deployment of composites in modern aerospace and automobile structures, fast, wide-area and reliable NDE methods are necessary. Impact damage is one of the major concerns in modern composites. Damage can occur at a certain depth without any visual indication on the surface. Defect depth information can influence maintenance decisions. Depth profiling relies on the time delays in the captured image sequence. We'll present our work on the defect depth profiling by using the temporal information of IR images. An analytical model is introduced to describe heat diffusion from subsurface defects in composite materials. Depth profiling using peak time is introduced as well.

  16. Identification of Mild Freezing Shock Response Pathways in Barley Based on Transcriptome Profiling.

    PubMed

    Wang, Xiaolei; Wu, Dezhi; Yang, Qian; Zeng, Jianbin; Jin, Gulei; Chen, Zhong-Hua; Zhang, Guoping; Dai, Fei

    2016-01-01

    Low temperature is a major abiotic stress affecting crop growth and productivity. A better understanding of low temperature tolerance mechanisms is imperative for developing the crop cultivars with improved tolerance. We herein performed an Illumina RNA-sequencing experiment using two barley genotypes differing in freezing tolerance (Nure, tolerant and Tremois, sensitive), to determine the transcriptome profiling and genotypic difference under mild freezing shock treatment after a very short acclimation for gene induction. A total of 6474 differentially expressed genes, almost evenly distributed on the seven chromosomes, were identified. The key DEGs could be classified into six signaling pathways, i.e., Ca(2+) signaling, PtdOH signaling, CBFs pathway, ABA pathway, jasmonate pathway, and amylohydrolysis pathway. Expression values of DEGs in multiple signaling pathways were analyzed and a hypothetical model of mild freezing shock tolerance mechanism was proposed. Expression and sequence profile of HvCBFs cluster within Frost resistance-H2, a major quantitative trait locus on 5H being closely related to low temperature tolerance in barley, were further illustrated, considering the crucial role of HvCBFs on freezing tolerance. It may be concluded that multiple signaling pathways are activated in concert when barley is exposed to mild freezing shock. The pathway network we presented may provide a platform for further exploring the functions of genes involved in low temperature tolerance in barley.

  17. A new approach for detecting adventitious viruses shows Sf-rhabdovirus-negative Sf-RVN cells are suitable for safe biologicals production.

    PubMed

    Geisler, Christoph

    2018-02-07

    Adventitious viral contamination in cell substrates used for biologicals production is a major safety concern. A powerful new approach that can be used to identify adventitious viruses is a combination of bioinformatics tools with massively parallel sequencing technology. Typically, this involves mapping or BLASTN searching individual reads against viral nucleotide databases. Although extremely sensitive for known viruses, this approach can easily miss viruses that are too dissimilar to viruses in the database. Moreover, it is computationally intensive and requires reference cell genome databases. To avoid these drawbacks, we set out to develop an alternative approach. We reasoned that searching genome and transcriptome assemblies for adventitious viral contaminants using TBLASTN with a compact viral protein database covering extant viral diversity as the query could be fast and sensitive without a requirement for high performance computing hardware. We tested our approach on Spodoptera frugiperda Sf-RVN, a recently isolated insect cell line, to determine if it was contaminated with one or more adventitious viruses. We used Illumina reads to assemble the Sf-RVN genome and transcriptome and searched them for adventitious viral contaminants using TBLASTN with our viral protein database. We found no evidence of viral contamination, which was substantiated by the fact that our searches otherwise identified diverse sequences encoding virus-like proteins. These sequences included Maverick, R1 LINE, and errantivirus transposons, all of which are common in insect genomes. We also identified previously described as well as novel endogenous viral elements similar to ORFs encoded by diverse insect viruses. Our results demonstrate TBLASTN searching massively parallel sequencing (MPS) assemblies with a compact, manually curated viral protein database is more sensitive for adventitious virus detection than BLASTN, as we identified various sequences that encoded virus-like proteins, but had no similarity to viral sequences at the nucleotide level. Moreover, searches were fast without requiring high performance computing hardware. Our study also documents the enhanced biosafety profile of Sf-RVN as compared to other Sf cell lines, and supports the notion that Sf-RVN is highly suitable for the production of safe biologicals.

  18. Connectivity Mapping for Candidate Therapeutics Identification Using Next Generation Sequencing RNA-Seq Data

    PubMed Central

    McArt, Darragh G.; Dunne, Philip D.; Blayney, Jaine K.; Salto-Tellez, Manuel; Van Schaeybroeck, Sandra; Hamilton, Peter W.; Zhang, Shu-Dong

    2013-01-01

    The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping. PMID:23840550

  19. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A

    PubMed Central

    Ndhlovu, Andrew; Durand, Pierre M.; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. Database URL: http://www.bioinf.wits.ac.za/software/fire/evodb PMID:26140928

  20. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A.

    PubMed

    Ndhlovu, Andrew; Durand, Pierre M; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. © The Author(s) 2015. Published by Oxford University Press.

  1. Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA.

    PubMed

    Skvortsova, Ksenia; Zotenko, Elena; Luu, Phuc-Loi; Gould, Cathryn M; Nair, Shalima S; Clark, Susan J; Stirzaker, Clare

    2017-01-01

    The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches, namely whole-genome bisulphite/oxidative bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). We also perform loci-specific TET-assisted bisulphite sequencing (TAB-seq) for validation of candidate regions. We show that whole-genome single-base resolution approaches are advantaged in providing precise 5hmC values but require high sequencing depth to accurately measure 5hmC, as this modification is commonly in low abundance in mammalian cells. HM450K arrays coupled with oxidative bisulphite provide a cost-effective representation of 5hmC distribution, at CpG sites with 5hmC levels >~10%. However, 5hmC analysis is restricted to the genomic location of the probes, which is an important consideration as 5hmC modification is commonly enriched at enhancer elements. Finally, we show that the widely used hMeDIP-seq method provides an efficient genome-wide profile of 5hmC and shows high correlation with WG Bis/OxBis-seq 5hmC distribution in brain DNA. However, in cell line DNA with low levels of 5hmC, hMeDIP-seq-enriched regions are not detected by WG Bis/OxBis or HM450K, either suggesting misinterpretation of 5hmC calls by hMeDIP or lack of sensitivity of the latter methods. We highlight both the advantages and caveats of three commonly used genome-wide 5hmC profiling technologies and show that interpretation of 5hmC data can be significantly influenced by the sensitivity of methods used, especially as the levels of 5hmC are low and vary in different cell types and different genomic locations.

  2. High-resolution melt PCR analysis for genotyping of Ureaplasma parvum isolates directly from clinical samples.

    PubMed

    Payne, Matthew S; Tabone, Tania; Kemp, Matthew W; Keelan, Jeffrey A; Spiller, O Brad; Newnham, John P

    2014-02-01

    Ureaplasma sp. infection in neonates and adults underlies a variety of disease pathologies. Of the two human Ureaplasma spp., Ureaplasma parvum is clinically the most common. We have developed a high-resolution melt (HRM) PCR assay for the differentiation of the four serovars of U. parvum in a single step. Currently U. parvum strains are separated into four serovars by sequencing the promoter and coding region of the multiple-banded antigen (MBA) gene. We designed primers to conserved sequences within this region for PCR amplification and HRM analysis to generate reproducible and distinct melt profiles that distinguish clonal representatives of serovars 1, 3, 6, and 14. Furthermore, our HRM PCR assay could classify DNA extracted from 74 known (MBA-sequenced) test strains with 100% accuracy. Importantly, HRM PCR was also able to identify U. parvum serovars directly from 16 clinical swabs. HRM PCR performed with DNA consisting of mixtures of combined known serovars yielded profiles that were easily distinguished from those for single-serovar controls. These profiles mirrored clinical samples that contained mixed serovars. Unfortunately, melt curve analysis software is not yet robust enough to identify the composition of mixed serovar samples, only that more than one serovar is present. HRM PCR provides a single-step, rapid, cost-effective means to differentiate the four serovars of U. parvum that did not amplify any of the known 10 serovars of Ureaplasma urealyticum tested in parallel. Choice of reaction reagents was found to be crucial to allow sufficient sensitivity to differentiate U. parvum serovars directly from clinical swabs rather than requiring cell enrichment using microbial culture techniques.

  3. Evaluation of somatic copy number estimation tools for whole-exome sequencing data.

    PubMed

    Nam, Jae-Yong; Kim, Nayoung K D; Kim, Sang Cheol; Joung, Je-Gun; Xi, Ruibin; Lee, Semin; Park, Peter J; Park, Woong-Yang

    2016-03-01

    Whole-exome sequencing (WES) has become a standard method for detecting genetic variants in human diseases. Although the primary use of WES data has been the identification of single nucleotide variations and indels, these data also offer a possibility of detecting copy number variations (CNVs) at high resolution. However, WES data have uneven read coverage along the genome owing to the target capture step, and the development of a robust WES-based CNV tool is challenging. Here, we evaluate six WES somatic CNV detection tools: ADTEx, CONTRA, Control-FREEC, EXCAVATOR, ExomeCNV and Varscan2. Using WES data from 50 kidney chromophobe, 50 bladder urothelial carcinoma, and 50 stomach adenocarcinoma patients from The Cancer Genome Atlas, we compared the CNV calls from the six tools with a reference CNV set that was identified by both single nucleotide polymorphism array 6.0 and whole-genome sequencing data. We found that these algorithms gave highly variable results: visual inspection reveals significant differences between the WES-based segmentation profiles and the reference profile, as well as among the WES-based profiles. Using a 50% overlap criterion, 13-77% of WES CNV calls were covered by CNVs from the reference set, up to 21% of the copy gains were called as losses or vice versa, and dramatic differences in CNV sizes and CNV numbers were observed. Overall, ADTEx and EXCAVATOR had the best performance with relatively high precision and sensitivity. We suggest that the current algorithms for somatic CNV detection from WES data are limited in their performance and that more robust algorithms are needed. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    PubMed Central

    Hingston, Patricia; Chen, Jessica; Dhillon, Bhavjinder K.; Laing, Chad; Bertelli, Claire; Gannon, Victor; Tasara, Taurai; Allen, Kevin; Brinkman, Fiona S. L.; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p < 0.001) enhanced cold tolerance relative to those harboring a premature stop codon (PMSC) in this gene. Similarly, isolates possessing a plasmid demonstrated significantly (p = 0.013) enhanced acid tolerance. We also identified nine new L. monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in addition to screening for the presence of full-length inlA and a plasmid, could help food processors and food agency investigators determine why certain isolates might be persisting in a food processing environment. Additionally, increased sequencing of L. monocytogenes isolates in combination with stress tolerance profiling, will enhance the ability to identify genetic elements associated with higher risk strains. PMID:28337186

  5. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents.

    PubMed

    Zaboikin, Michail; Zaboikina, Tatiana; Freter, Carl; Srinivasakumar, Narasimhachar

    2017-01-01

    Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.

  6. Targeted and genome-scale methylomics reveals gene body signatures in human cell lines

    PubMed Central

    Ball, Madeleine Price; Li, Jin Billy; Gao, Yuan; Lee, Je-Hyuk; LeProust, Emily; Park, In-Hyun; Xie, Bin; Daley, George Q.; Church, George M.

    2012-01-01

    Cytosine methylation, an epigenetic modification of DNA, is a target of growing interest for developing high throughput profiling technologies. Here we introduce two new, complementary techniques for cytosine methylation profiling utilizing next generation sequencing technology: bisulfite padlock probes (BSPPs) and methyl sensitive cut counting (MSCC). In the first method, we designed a set of ~10,000 BSPPs distributed over the ENCODE pilot project regions to take advantage of existing expression and chromatin immunoprecipitation data. We observed a pattern of low promoter methylation coupled with high gene body methylation in highly expressed genes. Using the second method, MSCC, we gathered genome-scale data for 1.4 million HpaII sites and confirmed that gene body methylation in highly expressed genes is a consistent phenomenon over the entire genome. Our observations highlight the usefulness of techniques which are not inherently or intentionally biased in favor of only profiling particular subsets like CpG islands or promoter regions. PMID:19329998

  7. Estimation of Cloud Fraction Profile in Shallow Convection Using a Scanning Cloud Radar

    DOE PAGES

    Oue, Mariko; Kollias, Pavlos; North, Kirk W.; ...

    2016-10-18

    Large spatial heterogeneities in shallow convection result in uncertainties in estimations of domain-averaged cloud fraction profiles (CFP). This issue is addressed using large eddy simulations of shallow convection over land coupled with a radar simulator. Results indicate that zenith profiling observations are inadequate to provide reliable CFP estimates. Use of Scanning Cloud Radar (SCR), performing a sequence of cross-wind horizon-to-horizon scans, is not straightforward due to the strong dependence of radar sensitivity to target distance. An objective method for estimating domain-averaged CFP is proposed that uses observed statistics of SCR hydrometeor detection with height to estimate optimum sampling regions. Thismore » method shows good agreement with the model CFP. Results indicate that CFP estimates require more than 35 min of SCR scans to converge on the model domain average. Lastly, the proposed technique is expected to improve our ability to compare model output with cloud radar observations in shallow cumulus cloud conditions.« less

  8. Artifact Suppression in Imaging of Myocardial Infarction Using B1-Weighted Phased-Array Combined Phase-Sensitive Inversion Recovery

    PubMed Central

    Kellman, Peter; Dyke, Christopher K.; Aletras, Anthony H.; McVeigh, Elliot R.; Arai, Andrew E.

    2007-01-01

    Regions of the body with long T1, such as cerebrospinal fluid (CSF), may create ghost artifacts on gadolinium-hyperenhanced images of myocardial infarction when inversion recovery (IR) sequences are used with a segmented acquisition. Oscillations in the transient approach to steady state for regions with long T1 may cause ghosts, with the number of ghosts being equal to the number of segments. B1-weighted phased-array combining provides an inherent degree of ghost artifact suppression because the ghost artifact is weighted less than the desired signal intensity by the coil sensitivity profiles. Example images are shown that illustrate the suppression of CSF ghost artifacts by the use of B1-weighted phased-array combining of multiple receiver coils. PMID:14755669

  9. A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks.

    PubMed

    Zhang, Haitao; Wu, Chenxue; Chen, Zewei; Liu, Zhao; Zhu, Yunhong

    2017-01-01

    Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules.

  10. A novel on-line spatial-temporal k-anonymity method for location privacy protection from sequence rules-based inference attacks

    PubMed Central

    Wu, Chenxue; Liu, Zhao; Zhu, Yunhong

    2017-01-01

    Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules. PMID:28767687

  11. Colorstratigraphy; A New Stratigraphic Correlation Technique

    NASA Astrophysics Data System (ADS)

    Nanayakkara, N. U.; Ranasinghage, P. N.; Priyantha, C.; Abillapitiya, T.

    2016-12-01

    Here we introduce a novel stratigraphic technique namely colorstratigraphy for correlating sedimentary sequences. Minihagalkanda is about 1 km long amphitheater like sedimentary terrain, situated at the southeastern coast of Sri Lanka. It has Miocene sedimentary sequences, separated in to 10-12 m high small hillocks by erosion, and bounded by about 30 m high escarpment. Sandstone, yellowish sandy clay, greenish silty clay sequences are capped by 4-5 m limestone bed in these hillocks but not at the boundary escarpment. Stratigraphic profiles at two hillocks and the boundary escarpment, separated each other by 200-300 m, were selected to test the new colorstartigraphic correlation technique. Color reflectance (DSR) was measured at four samples in each sequence at every profile and hence altogether 36 reflectance measurements were taken using Minolta 2500D hand-held color spectrophotometer. The first-derivative of the reflectance spectra (dR/dλ) defines the "spectral shape" of the sample. Therefore, DSR data (360-740 nm) measured at 10 nm resolution were used to calculate a center-weighted, first-derivative spectra for each reflectance sample consisting of 39 channels. Particle size of each sequence was measured at all 03 profiles using laser particle size analyzer to verify the stratigraphic correlation. Mean reflectance spectrum for each sequence at all 03 profiles were plotted on the same graph for comparison. Same was done for the grain size spectrums. Discriminant function analysis was performed separately for dsr data and grain size data using a number assigned to each sedimentary sequence as the grouping variable Color spectrums of sandstone, yellowish sandy clay, and greenish silty clay sequences at all three profiles perfectly match showing clear stratigraphic correlation among these three stratigraphic profiles. Matching grain size distribution curves of the three sequence at the three profiles verify the stratigraphic correlation. Perfect 100 % discrimination of the three sequences with color reflectance data proves the accuracy of the correlation. Similar 100 % discrimination resulted with grain size data further verifies the results. Therefore, colorstratigraphy based on DSR can be introduced as a quick and easy technique for stratigraphic correlation of sedimentary sequences.

  12. Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers.

    PubMed

    Ornstein, T J; Iddon, J L; Baldacchino, A M; Sahakian, B J; London, M; Everitt, B J; Robbins, T W

    2000-08-01

    Groups of subjects whose primary drug of abuse was amphetamine or heroin were compared, together with age- and IQ-matched control subjects. The study consisted of a neuropsychological test battery which included both conventional tests and also computerised tests of recognition memory, spatial working memory, planning, sequence generation, visual discrimination learning, and attentional set-shifting. Many of these tests have previously been shown to be sensitive to cortical damage (including selective lesions of the temporal or frontal lobes) and to cognitive deficits in dementia, basal ganglia disease, and neuropsychiatric disorder. Qualitative differences, as well as some commonalities, were found in the profile of cognitive impairment between the two groups. The chronic amphetamine abusers were significantly impaired in performance on the extra-dimensional shift task (a core component of the Wisconsin Card Sort Test) whereas in contrast, the heroin abusers were impaired in learning the normally easier intra-dimensional shift component. Both groups were impaired in some of tests of spatial working memory. However, the amphetamine group, unlike the heroin group, were not deficient in an index of strategic performance on this test. The heroin group failed to show significant improvement between two blocks of a sequence generation task after training and additionally exhibited more perseverative behavior on this task. The two groups were profoundly, but equivalently impaired on a test of pattern recognition memory sensitive to temporal lobe dysfunction. These results indicate that chronic drug use may lead to distinct patterns of cognitive impairment that may be associated with dysfunction of different components of cortico-striatal circuitry.

  13. HIPPI: highly accurate protein family classification with ensembles of HMMs.

    PubMed

    Nguyen, Nam-Phuong; Nute, Michael; Mirarab, Siavash; Warnow, Tandy

    2016-11-11

    Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics. We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy. HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp .

  14. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Zhou, Yanqing; Han, Yue; Xu, Mingyan; Gu, Jia

    2017-03-14

    Some applications, especially those clinical applications requiring high accuracy of sequencing data, usually have to face the troubles caused by unavoidable sequencing errors. Several tools have been proposed to profile the sequencing quality, but few of them can quantify or correct the sequencing errors. This unmet requirement motivated us to develop AfterQC, a tool with functions to profile sequencing errors and correct most of them, plus highly automated quality control and data filtering features. Different from most tools, AfterQC analyses the overlapping of paired sequences for pair-end sequencing data. Based on overlapping analysis, AfterQC can detect and cut adapters, and furthermore it gives a novel function to correct wrong bases in the overlapping regions. Another new feature is to detect and visualise sequencing bubbles, which can be commonly found on the flowcell lanes and may raise sequencing errors. Besides normal per cycle quality and base content plotting, AfterQC also provides features like polyX (a long sub-sequence of a same base X) filtering, automatic trimming and K-MER based strand bias profiling. For each single or pair of FastQ files, AfterQC filters out bad reads, detects and eliminates sequencer's bubble effects, trims reads at front and tail, detects the sequencing errors and corrects part of them, and finally outputs clean data and generates HTML reports with interactive figures. AfterQC can run in batch mode with multiprocess support, it can run with a single FastQ file, a single pair of FastQ files (for pair-end sequencing), or a folder for all included FastQ files to be processed automatically. Based on overlapping analysis, AfterQC can estimate the sequencing error rate and profile the error transform distribution. The results of our error profiling tests show that the error distribution is highly platform dependent. Much more than just another new quality control (QC) tool, AfterQC is able to perform quality control, data filtering, error profiling and base correction automatically. Experimental results show that AfterQC can help to eliminate the sequencing errors for pair-end sequencing data to provide much cleaner outputs, and consequently help to reduce the false-positive variants, especially for the low-frequency somatic mutations. While providing rich configurable options, AfterQC can detect and set all the options automatically and require no argument in most cases.

  15. Hidden Markov models incorporating fuzzy measures and integrals for protein sequence identification and alignment.

    PubMed

    Bidargaddi, Niranjan P; Chetty, Madhu; Kamruzzaman, Joarder

    2008-06-01

    Profile hidden Markov models (HMMs) based on classical HMMs have been widely applied for protein sequence identification. The formulation of the forward and backward variables in profile HMMs is made under statistical independence assumption of the probability theory. We propose a fuzzy profile HMM to overcome the limitations of that assumption and to achieve an improved alignment for protein sequences belonging to a given family. The proposed model fuzzifies the forward and backward variables by incorporating Sugeno fuzzy measures and Choquet integrals, thus further extends the generalized HMM. Based on the fuzzified forward and backward variables, we propose a fuzzy Baum-Welch parameter estimation algorithm for profiles. The strong correlations and the sequence preference involved in the protein structures make this fuzzy architecture based model as a suitable candidate for building profiles of a given family, since the fuzzy set can handle uncertainties better than classical methods.

  16. The contribution of the DNA microarray technology to gene expression profiling in Leishmania spp.: a retrospective.

    PubMed

    Alonso, Ana; Larraga, Vicente; Alcolea, Pedro J

    2018-05-07

    The first genome project of any living organism excluding viruses, the gammaproteobacteria Haemophilus influenzae, was completed in 1995. Until the last decade, genome sequencing was very tedious because genome survey sequences (GSS) and/or expressed sequence tags (ESTs) belonging to plasmid, cosmid and artificial chromosome genome libraries had to be sequenced and assembled in silico. Nowadays, no genome is completely assembled actually, because gaps and unassembled contigs are always remaining. However, most represent the whole genome of the organism of origin from a practical point of view. The first genome sequencing projects of trypanosomatid parasites were completed in 2005 following those strategies, and belong to Leishmania major, Trypanosoma cruzi and T. brucei. The functional genomics era rapidly developed on the basis of the microarray technology and has been evolving. In the case of the genus Leishmania, substantial biological information about differentiation in the digenetic life cycle of the parasite has been obtained. Later on, next generation sequencing has revolutionized genome sequencing and functional genomics, leading to more sensitive, accurate results by using much less resources. This new technology is more advantageous, but does not invalidate microarray results. In fact, promising vaccine candidates and drug targets have been found on the basis of microarray-based screening and preliminary proof-of-concept tests. Copyright © 2018. Published by Elsevier B.V.

  17. Prevalence and persistence of male DNA identified in mixed saliva samples after intense kissing.

    PubMed

    Kamodyová, Natália; Durdiaková, Jaroslava; Celec, Peter; Sedláčková, Tatiana; Repiská, Gabriela; Sviežená, Barbara; Minárik, Gabriel

    2013-01-01

    Identification of foreign biological material by genetic profiling is widely used in forensic DNA testing in different cases of sexual violence, sexual abuse or sexual harassment. In all these kinds of sexual assaults, the perpetrator could constrain the victim to kissing. The value of the victim's saliva taken after such an assault has not been investigated in the past with currently widely used molecular methods of extremely high sensitivity (e.g. qPCR) and specificity (e.g. multiplex Y-STR PCR). In our study, 12 voluntary pairs were tested at various intervals after intense kissing and saliva samples were taken from the women to assess the presence of male DNA. Sensitivity-focused assays based on the SRY (single-copy gene) and DYS (multi-copy gene) sequence motifs confirmed the presence of male DNA in female saliva after 10 and even 60min after kissing, respectively. For specificity, standard multiplex Y-STR PCR profiling was performed and male DNA was found in female saliva samples, as the entire Y-STR profile, even after 30min in one sample. Our study confirms that foreign DNA tends to persist for a restricted period of time in the victim's mouth, can be isolated from saliva after prompt collection and can be used as a valuable source of evidence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing.

    PubMed

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-06-15

    Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. yasu@bio.keio.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  19. Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.

    PubMed

    Tornow, R P; Stilling, R

    1998-01-01

    To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.

  20. Clinical profiling and use of loop-mediated isothermal amplification assay for rapid detection of Mycobacterium tuberculosis from sputum.

    PubMed

    Poudel, A; Pandey, B D; Lekhak, B; Rijal, B; Sapkota, B R; Suzuki, Y

    2009-01-01

    Tuberculosis is a global health problem and the situation is worsening with newer incidences of drug resistance and HIV association. Diagnosis of tuberculosis can be done by many methods and test, culture of sputum being the ideal one. Nucleic acid amplification (NAA) assay are more time efficient one, that amplify and detect specific nucleic acid sequences allows rapid, sensitive and specific detection of M. tuberculosis in sputum samples. The present study intends to compile the clinical presentations of the pulmonary tuberculosis (PTB) patients and to evaluate the efficacy of in-house loop-mediated isothermal amplification (LAMP) in detecting Mycobacterium tuberculosis in sputum samples by comparing with microscopy and culture. Two hundred two sputum samples were collected from 202 patients at National Tuberculosis Center, Bhaktapur, Nepal. Complete clinical profiling, epidemiological data and record on BCG vaccination were noted and the samples were subjected for microscopy, culture and in-house LAMP with six primers specific for 16S RNA gene of Mycobacterium tuberculosis. Of the 176 cases of clinical profiling, productive cough was most common symptom in 147 (83.52%), followed by chest pain 136 (77.27%), fever 133 (75.56%) and haemoptysis 61 (34.66%). There was a statistically significant association between BCG vaccination and development of TB (chi(2)=5.33, P=0.02). Of 202 cases, 115 (56.93%) were chest X-ray positive, 101(50%) were direct smear-positive and 100 (49.51%) were culture positive. LAMP had a sensitivity of 97% and specificity of 94.12% while comparing with culture. In addition, its sensitivity and specificity were 91.09% and 89.11% respectively with reference to microscopy. As in our previous study, overall, the result of present study further confirms that the in-house LAMP is a simple, rapid, sensitive and specific DNA amplification technique for PTB diagnosis. Because of rapidity of microscopy and specificity of culture, in-house LAMP assay can be used as a very powerful and useful supplementary tool with complete clinical profiling of the patients for rapid diagnosis of TB in both AFB-positive and negative cases who are suspected as PTB in disease endemic country like Nepal.

  1. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues.

    PubMed

    El-Manzalawy, Yasser; Abbas, Mostafa; Malluhi, Qutaibah; Honavar, Vasant

    2016-01-01

    A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein-DNA interfaces.

  2. Differential Mass Spectrometry Profiles of Tau Protein in the Cerebrospinal Fluid of Patients with Alzheimer's Disease, Progressive Supranuclear Palsy, and Dementia with Lewy Bodies.

    PubMed

    Barthélemy, Nicolas R; Gabelle, Audrey; Hirtz, Christophe; Fenaille, François; Sergeant, Nicolas; Schraen-Maschke, Susanna; Vialaret, Jérôme; Buée, Luc; Junot, Christophe; Becher, François; Lehmann, Sylvain

    2016-01-01

    Microtubule-associated Tau proteins are major actors in neurological disorders, the so-called tauopathies. In some of them, and specifically in Alzheimer's disease (AD), hyperphosphorylated forms of Tau aggregate into neurofibrillary tangles. Following and understanding the complexity of Tau's molecular profile with its multiple isoforms and post-translational modifications represent an important issue, and a major analytical challenge. Immunodetection methods are, in fact, limited by the number, specificity, sensitivity, and capturing property of the available antibodies. Mass spectrometry (MS) has recently allowed protein quantification in complex biological fluids using isotope-labeled recombinant standard for absolute quantification (PSAQ). To study Tau proteins, which are found at very low concentrations within the cerebrospinal fluid (CSF), we relied on an innovative two-step pre-fractionation strategy, which was not dependent on immuno-enrichment. We then developed a sensitive multiplex peptide detection capability using targeted high-resolution MS to quantify Tau-specific peptides covering its entire sequence. This approach was used on a clinical cohort of patients with AD, progressive supranuclear palsy (PSP), and dementia with Lewy body (DLB) and with control non-neurodegenerative disorders. We uncovered a common CSF Tau molecular profile characterized by a predominance of central core expression and 1N/3R isoform detection. While PSP and DLB tau profiles showed minimal changes, AD was characterized by a unique pattern with specific modifications of peptide distribution. Taken together these results provide important information on Tau biology for future therapeutic interventions, and improved molecular diagnosis of tauopathies.

  3. Global Transcriptome Sequencing Reveals Molecular Profiles of Summer Diapause Induction Stage of Onion Maggot, Delia antiqua (Diptera: Anthomyiidae)

    PubMed Central

    Ren, Shuang; Hao, You-Jin; Chen, Bin; Yin, You-Ping

    2017-01-01

    The onion maggot, Delia antiqua, is a worldwide subterranean pest and can enter diapause during the summer and winter seasons. The molecular regulation of the ontogenesis transition remains largely unknown. Here we used high-throughput RNA sequencing to identify candidate genes and processes linked to summer diapause (SD) induction by comparing the transcriptome differences between the most sensitive larval developmental stage of SD and nondiapause (ND). Nine pairwise comparisons were performed, and significantly differentially regulated transcripts were identified. Several functional terms related to lipid, carbohydrate, and energy metabolism, environmental adaption, immune response, and aging were enriched during the most sensitive SD induction period. A subset of genes, including circadian clock genes, were expressed differentially under diapause induction conditions, and there was much more variation in the most sensitive period of ND- than SD-destined larvae. These expression variations probably resulted in a deep restructuring of metabolic pathways. Potential regulatory elements of SD induction including genes related to lipid, carbohydrate, energy metabolism, and environmental adaption. Collectively, our results suggest the circadian clock is one of the key drivers for integrating environmental signals into the SD induction. Our transcriptome analysis provides insight into the fundamental role of the circadian clock in SD induction in this important model insect species, and contributes to the in-depth elucidation of the molecular regulation mechanism of insect diapause induction. PMID:29158334

  4. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    PubMed Central

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass. PMID:28559903

  5. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway.

    PubMed

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  6. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  7. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions

    PubMed Central

    2013-01-01

    Background Soybean is an important crop that provides valuable proteins and oils for human use. Because soybean growth and development is extremely sensitive to water deficit, quality and crop yields are severely impacted by drought stress. In the face of limited water resources, drought-responsive genes are therefore of interest. Identification and analysis of dehydration- and rehydration-inducible differentially expressed genes (DEGs) would not only aid elucidation of molecular mechanisms of stress response, but also enable improvement of crop stress tolerance via gene transfer. Using Digital Gene Expression Tag profiling (DGE), a new technique based on Illumina sequencing, we analyzed expression profiles between two soybean genotypes to identify drought-responsive genes. Results Two soybean genotypes—drought-tolerant Jindou21 and drought-sensitive Zhongdou33—were subjected to dehydration and rehydration conditions. For analysis of DEGs under dehydration conditions, 20 cDNA libraries were generated from roots and leaves at two different time points under well-watered and dehydration conditions. We also generated eight libraries for analysis under rehydration conditions. Sequencing of the 28 libraries produced 25,000–33,000 unambiguous tags, which were mapped to reference sequences for annotation of expressed genes. Many genes exhibited significant expression differences among the libraries. DEGs in the drought-tolerant genotype were identified by comparison of DEGs among treatments and genotypes. In Jindou21, 518 and 614 genes were differentially expressed under dehydration in leaves and roots, respectively, with 24 identified both in leaves and roots. The main functional categories enriched in these DEGs were metabolic process, response to stresses, plant hormone signal transduction, protein processing, and plant-pathogen interaction pathway; the associated genes primarily encoded transcription factors, protein kinases, and other regulatory proteins. The seven most significantly expressed (|log2 ratio| ≥ 8) genes— Glyma15g03920, Glyma05g02470, Glyma15g15010, Glyma05g09070, Glyma06g35630, Glyma08g12590, and Glyma11g16000—are more likely to determine drought stress tolerance. The expression patterns of eight randomly-selected genes were confirmed by quantitative RT-PCR; the results of QRT-PCR analysis agreed with transcriptional profile data for 96 out of 128 (75%) data points. Conclusions Many soybean genes were differentially expressed between drought-tolerant and drought-sensitive genotypes. Based on GO functional annotation and pathway enrichment analysis, some of these genes encoded transcription factors, protein kinases, and other regulatory proteins. The seven most significant DEGs are candidates for improving soybean drought tolerance. These findings will be helpful for analysis and elucidation of molecular mechanisms of drought tolerance; they also provide a basis for cultivating new varieties of drought-tolerant soybean. PMID:24093224

  8. Identification of cancer-specific motifs in mimotope profiles of serum antibody repertoire.

    PubMed

    Gerasimov, Ekaterina; Zelikovsky, Alex; Măndoiu, Ion; Ionov, Yurij

    2017-06-07

    For fighting cancer, earlier detection is crucial. Circulating auto-antibodies produced by the patient's own immune system after exposure to cancer proteins are promising bio-markers for the early detection of cancer. Since an antibody recognizes not the whole antigen but 4-7 critical amino acids within the antigenic determinant (epitope), the whole proteome can be represented by a random peptide phage display library. This opens the possibility to develop an early cancer detection test based on a set of peptide sequences identified by comparing cancer patients' and healthy donors' global peptide profiles of antibody specificities. Due to the enormously large number of peptide sequences contained in global peptide profiles generated by next generation sequencing, the large number of cancer and control sera is required to identify cancer-specific peptides with high degree of statistical significance. To decrease the number of peptides in profiles generated by nextgen sequencing without losing cancer-specific sequences we used for generation of profiles the phage library enriched by panning on the pool of cancer sera. To further decrease the complexity of profiles we used computational methods for transforming a list of peptides constituting the mimotope profiles to the list motifs formed by similar peptide sequences. We have shown that the amino-acid order is meaningful in mimotope motifs since they contain significantly more peptides than motifs among peptides where amino-acids are randomly permuted. Also the single sample motifs significantly differ from motifs in peptides drawn from multiple samples. Finally, multiple cancer-specific motifs have been identified.

  9. Bacteriological and virulence study of a Mycobacterium chimaera isolate from a patient in China.

    PubMed

    Liu, Guan; Chen, Su-Ting; Yu, Xia; Li, Yu-Xun; Ling, Ying; Dong, Ling-Ling; Zheng, Su-Hua; Huang, Hai-Rong

    2015-04-01

    A clinical isolate from a patient was identified as Mycobacterium chimaera, a recently identified species of nontuberculous Mycobacteria. The biochemical and molecular identity, drug sensitivity and virulence of this isolated strain were investigated. 16S rRNA, the 16S-23S ITS, hsp65 and rpoB were amplified, and their sequence similarities with other mycobacteria were analyzed. The minimum inhibitory concentrations of 22 anti-microbial agents against this isolate were established, and the virulence of the isolate was evaluated by intravenous injection into C57BL/6 mice using Mycobacterium tuberculosis H37Rv as a control strain. Growth and morphological characteristics and mycolic acid profile analysis revealed that this isolated strain was a member of the Mycobacterium avium complex. BLAST analysis of the amplified sequences showed that the isolated strain was closely related to M. chimaera. Susceptibility testing showed that the isolate was sensitive to rifabutin, rifapentine, clarithromycin, azithromycin, imipenem and cefoxitin. Bacterial load determination and tissue histopathology of the infected mice indicated that the isolate was highly virulent. The first case of M. chimaera infection in China was evaluated. The information derived from this case may offer valuable guidance for clinical diagnosis and treatment.

  10. Intensity correction for multichannel hyperpolarized 13C imaging of the heart.

    PubMed

    Dominguez-Viqueira, William; Geraghty, Benjamin J; Lau, Justin Y C; Robb, Fraser J; Chen, Albert P; Cunningham, Charles H

    2016-02-01

    Develop and test an analytic correction method to correct the signal intensity variation caused by the inhomogeneous reception profile of an eight-channel phased array for hyperpolarized (13) C imaging. Fiducial markers visible in anatomical images were attached to the individual coils to provide three dimensional localization of the receive hardware with respect to the image frame of reference. The coil locations and dimensions were used to numerically model the reception profile using the Biot-Savart Law. The accuracy of the coil sensitivity estimation was validated with images derived from a homogenous (13) C phantom. Numerical coil sensitivity estimates were used to perform intensity correction of in vivo hyperpolarized (13) C cardiac images in pigs. In comparison to the conventional sum-of-squares reconstruction, improved signal uniformity was observed in the corrected images. The analytical intensity correction scheme was shown to improve the uniformity of multichannel image reconstruction in hyperpolarized [1-(13) C]pyruvate and (13) C-bicarbonate cardiac MRI. The method is independent of the pulse sequence used for (13) C data acquisition, simple to implement and does not require additional scan time, making it an attractive technique for multichannel hyperpolarized (13) C MRI. © 2015 Wiley Periodicals, Inc.

  11. Assessing the accuracy of blood RNA profiles to identify patients with post-concussion syndrome: A pilot study in a military patient population.

    PubMed

    Hardy, Jimmaline J; Mooney, Scott R; Pearson, Andrea N; McGuire, Dawn; Correa, Daniel J; Simon, Roger P; Meller, Robert

    2017-01-01

    Mild traumatic brain injury (mTBI) is a complex, neurophysiological condition that can have detrimental outcomes. Yet, to date, no objective method of diagnosis exists. Physical damage to the blood-brain-barrier and normal waste clearance via the lymphatic system may enable the detection of biomarkers of mTBI in peripheral circulation. Here we evaluate the accuracy of whole transcriptome analysis of blood to predict the clinical diagnosis of post-concussion syndrome (PCS) in a military cohort. Sixty patients with clinically diagnosed chronic concussion and controls (no history of concussion) were recruited (retrospective study design). Male patients (46) were split into a training set comprised of 20 long-term concussed (> 6 months and symptomatic) and 12 controls (no documented history of concussion). Models were validated in a testing set (control = 9, concussed = 5). RNA_Seq libraries were prepared from whole blood samples for sequencing using a SOLiD5500XL sequencer and aligned to hg19 reference genome. Patterns of differential exon expression were used for diagnostic modeling using support vector machine classification, and then validated in a second patient cohort. The accuracy of RNA profiles to predict the clinical diagnosis of post-concussion syndrome patients from controls was 86% (sensitivity 80%; specificity 89%). In addition, RNA profiles reveal duration of concussion. This pilot study shows the potential utility of whole transcriptome analysis to establish the clinical diagnosis of chronic concussion syndrome.

  12. Mining SNPs from EST sequences using filters and ensemble classifiers.

    PubMed

    Wang, J; Zou, Q; Guo, M Z

    2010-05-04

    Abundant single nucleotide polymorphisms (SNPs) provide the most complete information for genome-wide association studies. However, due to the bottleneck of manual discovery of putative SNPs and the inaccessibility of the original sequencing reads, it is essential to develop a more efficient and accurate computational method for automated SNP detection. We propose a novel computational method to rapidly find true SNPs in public-available EST (expressed sequence tag) databases; this method is implemented as SNPDigger. EST sequences are clustered and aligned. SNP candidates are then obtained according to a measure of redundant frequency. Several new informative biological features, such as the structural neighbor profiles and the physical position of the SNP, were extracted from EST sequences, and the effectiveness of these features was demonstrated. An ensemble classifier, which employs a carefully selected feature set, was included for the imbalanced training data. The sensitivity and specificity of our method both exceeded 80% for human genetic data in the cross validation. Our method enables detection of SNPs from the user's own EST dataset and can be used on species for which there is no genome data. Our tests showed that this method can effectively guide SNP discovery in ESTs and will be useful to avoid and save the cost of biological analyses.

  13. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  14. Comparison of next-generation sequencing mutation profiling with BRAF and IDH1 mutation-specific immunohistochemistry.

    PubMed

    Jabbar, Kausar J; Luthra, Rajalakshmi; Patel, Keyur P; Singh, Rajesh R; Goswami, Rashmi; Aldape, Ken D; Medeiros, L Jeffrey; Routbort, Mark J

    2015-04-01

    Mutation-specific antibodies for BRAF V600E and IDH1 R132H offer convenient immunohistochemical (IHC) assays to detect these mutations in tumors. Previous studies using these antibodies have shown high sensitivity and specificity, but use in routine diagnosis with qualitative assessment has not been well studied. In this retrospective study, we reviewed BRAF and IDH1 mutation-specific IHC results compared with separately obtained clinical next-generation sequencing results. For 67 tumors with combined IDH1 IHC and mutation data, IHC was unequivocally reported as positive or negative in all cases. Sensitivity of IHC for IDH1 R132H was 98% and specificity was 100% compared with mutation status. Four IHC-negative samples showed non-R132H IDH1 mutations including R132C, R132G, and P127T. For 128 tumors with combined BRAF IHC and mutation data, IHC was positive in 33, negative in 82, and equivocal in 13 tumors. The sensitivity of IHC was 97% and specificity was 99% when including only unequivocally positive or negative results. If equivocal IHC cases were included in the analysis as negative, sensitivity fell to 81%. If equivocal cases were classified as positive, specificity dropped to 91%. Eight IHC-negative samples showed non-V600E BRAF mutations including V600K, N581I, V600M, and K601E. We conclude that IHC for BRAF V600E and IDH1 R132H is relatively sensitive and specific, but there is a discordance rate that is not trivial. In addition, a significant proportion of patients harbor BRAF non-V600E or IDH1 non-R132H mutations not detectable by IHC, potentially limiting utility of IHC screening for BRAF and IDH1 mutations.

  15. Structure-related statistical singularities along protein sequences: a correlation study.

    PubMed

    Colafranceschi, Mauro; Colosimo, Alfredo; Zbilut, Joseph P; Uversky, Vladimir N; Giuliani, Alessandro

    2005-01-01

    A data set composed of 1141 proteins representative of all eukaryotic protein sequences in the Swiss-Prot Protein Knowledge base was coded by seven physicochemical properties of amino acid residues. The resulting numerical profiles were submitted to correlation analysis after the application of a linear (simple mean) and a nonlinear (Recurrence Quantification Analysis, RQA) filter. The main RQA variables, Recurrence and Determinism, were subsequently analyzed by Principal Component Analysis. The RQA descriptors showed that (i) within protein sequences is embedded specific information neither present in the codes nor in the amino acid composition and (ii) the most sensitive code for detecting ordered recurrent (deterministic) patterns of residues in protein sequences is the Miyazawa-Jernigan hydrophobicity scale. The most deterministic proteins in terms of autocorrelation properties of primary structures were found (i) to be involved in protein-protein and protein-DNA interactions and (ii) to display a significantly higher proportion of structural disorder with respect to the average data set. A study of the scaling behavior of the average determinism with the setting parameters of RQA (embedding dimension and radius) allows for the identification of patterns of minimal length (six residues) as possible markers of zones specifically prone to inter- and intramolecular interactions.

  16. Simultaneous detection of human mitochondrial DNA and nuclear-inserted mitochondrial-origin sequences (NumtS) using forensic mtDNA amplification strategies and pyrosequencing technology.

    PubMed

    Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R

    2014-07-01

    Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework. © 2014 American Academy of Forensic Sciences.

  17. Evaluation of ionophore sensitivity of Eimeria acervulina and Eimeria maxima isolated from the Algerian to Jijel province poultry farms.

    PubMed

    Djemai, Samir; Mekroud, Abdeslam; Jenkins, Mark C

    2016-07-15

    The present study represents the first description of ionophore resistance in recovered from commercial Algerian (Jijel-Algeria) broiler farms. Microscopy and intervening transcribed sequence 1 PCR (ITS1 PCR) revealed only 2 Eimeria species present in litter from these farms- namely Eimeria acervulina and Eimeria maxima. A pool of these isolates were evaluated in broiler chickens (Cobb 500) for sensitivity to 5 anticoccidial compounds-diclazuril (1ppm), lasalocid (125ppm), monensin (125ppm), narasin (70ppm) and salinomycin (60ppm). As indicated by anticoccidial sensitivity profiles based on lesion scores and anticoccidial index (ACI), complete resistance to monensin and narasin, partial resistance to salinomycin and lasalocid, and complete sensitivity to diclazuril was observed. While lack of sensitivity to monensin is not surprising given its use for years as the sole anticoccidial compound, the resistance to monoether (narasin) and polyether (lasalocid) ionophores suggests that cross-resistance has developed in a segment of the Eimeria population. The fairly uniform Eimeria species composition among all poultry farms suggests that E. acervulina and E. maxima more rapidly develop resistance to ionophore drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Classification of Fowl Adenovirus Serotypes by Use of High-Resolution Melting-Curve Analysis of the Hexon Gene Region▿

    PubMed Central

    Steer, Penelope A.; Kirkpatrick, Naomi C.; O'Rourke, Denise; Noormohammadi, Amir H.

    2009-01-01

    Identification of fowl adenovirus (FAdV) serotypes is of importance in epidemiological studies of disease outbreaks and the adoption of vaccination strategies. In this study, real-time PCR and subsequent high-resolution melting (HRM)-curve analysis of three regions of the hexon gene were developed and assessed for their potential in differentiating 12 FAdV reference serotypes. The results were compared to previously described PCR and restriction enzyme analyses of the hexon gene. Both HRM-curve analysis of a 191-bp region of the hexon gene and restriction enzyme analysis failed to distinguish a number of serotypes used in this study. In addition, PCR of the region spanning nucleotides (nt) 144 to 1040 failed to amplify FAdV-5 in sufficient quantities for further analysis. However, HRM-curve analysis of the region spanning nt 301 to 890 proved a sensitive and specific method of differentiating all 12 serotypes. All melt curves were highly reproducible, and replicates of each serotype were correctly genotyped with a mean confidence value of more than 99% using normalized HRM curves. Sequencing analysis revealed that each profile was related to a unique sequence, with some sequences sharing greater than 94% identity. Melting-curve profiles were found to be related mainly to GC composition and distribution throughout the amplicons, regardless of sequence identity. The results presented in this study show that the closed-tube method of PCR and HRM-curve analysis provides an accurate, rapid, and robust genotyping technique for the identification of FAdV serotypes and can be used as a model for developing genotyping techniques for other pathogens. PMID:19036935

  19. Effects of Bread with Nigella Sativa on Lipid Profiles, Apolipoproteins and Inflammatory Factor in Metabolic Syndrome Patients

    PubMed Central

    2016-01-01

    Nigella sativa (N.sativa) has been used in traditional medicine and many studies have been performed in different communities in order to reveal the effects of it on medical disorders and chronic diseases. The aim of this study was to investigate the effects of bread with N. Sativa on lipid profiles, apolipoproteins, and inflammatory factors in metabolic syndrome (MetS) patients. A randomized, double-blind, cross-over and clinical trial was conducted in 51 MetS patients of both sexes with age group of 20-65 years old in Chaloos, north of Iran. Patients were randomly divided in two groups. In phase 1, intervention group (A, n = 27) received daily a bread with N. sativa and wheat bran and control group (B, n = 24) received the same bread without N. sativa for 2 months. After 2 weeks of wash out period, phase 2 was started with switch the intervention between two groups. Measuring of lipid profiles, apolipoproteins and inflammatory factor was performed for all patients before and after two phases. In this study, treatment, sequence and time effects of intervention were evaluated and revealed that consumption of bread with N. sativa has no significant treatment and time effects on triglyceride (TG), cholesterol (CHOL), low density lipoprotein (LDL), high density lipoprotein (HDL), apolipoprotein (APO)-A, APO-B and high-sensitivity C-reactive protein (p > 0.05). Sequence effect was significant on CHOL, LDL, APO-A, and APO-B (p < 0.05) but was not significant on other parameters (p > 0.05). Consumption of bread with N. sativa has no a significant effect on lipid profiles, apolipoproteins and inflammatory factor in MetS patients. PMID:27152298

  20. AlignMe—a membrane protein sequence alignment web server

    PubMed Central

    Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.

    2014-01-01

    We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425

  1. Peregrine

    PubMed Central

    Langevin, Stanley A.; Bent, Zachary W.; Solberg, Owen D.; Curtis, Deanna J.; Lane, Pamela D.; Williams, Kelly P.; Schoeniger, Joseph S.; Sinha, Anupama; Lane, Todd W.; Branda, Steven S.

    2013-01-01

    Use of second generation sequencing (SGS) technologies for transcriptional profiling (RNA-Seq) has revolutionized transcriptomics, enabling measurement of RNA abundances with unprecedented specificity and sensitivity and the discovery of novel RNA species. Preparation of RNA-Seq libraries requires conversion of the RNA starting material into cDNA flanked by platform-specific adaptor sequences. Each of the published methods and commercial kits currently available for RNA-Seq library preparation suffers from at least one major drawback, including long processing times, large starting material requirements, uneven coverage, loss of strand information and high cost. We report the development of a new RNA-Seq library preparation technique that produces representative, strand-specific RNA-Seq libraries from small amounts of starting material in a fast, simple and cost-effective manner. Additionally, we have developed a new quantitative PCR-based assay for precisely determining the number of PCR cycles to perform for optimal enrichment of the final library, a key step in all SGS library preparation workflows. PMID:23558773

  2. Massively parallel digital transcriptional profiling of single cells

    PubMed Central

    Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.

    2017-01-01

    Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601

  3. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    PubMed Central

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-01-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats. PMID:27966673

  4. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    NASA Astrophysics Data System (ADS)

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-12-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats.

  5. Cross-platform comparison for the detection of RAS mutations in cfDNA (ddPCR Biorad detection assay, BEAMing assay, and NGS strategy).

    PubMed

    Garcia, Jessica; Forestier, Julien; Dusserre, Eric; Wozny, Anne-Sophie; Geiguer, Florence; Merle, Patrick; Tissot, Claire; Ferraro-Peyret, Carole; Jones, Frederick S; Edelstein, Daniel L; Cheynet, Valérie; Bardel, Claire; Vilchez, Gaelle; Xu, Zhenyu; Bringuier, Pierre Paul; Barritault, Marc; Brengle-Pesce, Karen; Guillet, Marielle; Chauvenet, Marion; Manship, Brigitte; Brevet, Marie; Rodriguez-Lafrasse, Claire; Hervieu, Valérie; Couraud, Sébastien; Walter, Thomas; Payen, Léa

    2018-04-20

    CfDNA samples from colon (mCRC) and non-small cell lung cancers (NSCLC) (CIRCAN cohort) were compared using three platforms: droplet digital PCR (ddPCR, Biorad); BEAMing/OncoBEAM™-RAS-CRC (Sysmex Inostics); next-generation sequencing (NGS, Illumina), utilizing the 56G oncology panel (Swift Biosciences). Tissue biopsy and time matched cfDNA samples were collected at diagnosis in the mCRC cohort and during 1st progression in the NSCLC cohort. Excellent matches between cfDNA/FFPE mutation profiles were observed. Detection thresholds were between 0.5-1% for cfDNA samples examined using ddPCR and NGS, and 0.03% with BEAMing. This high level of sensitivity enabled the detection of KRAS mutations in 5/19 CRC patients with negative FFPE profiles. In the mCRC cohort, comparison of mutation results obtained by testing FFPE to those obtained by testing cfDNA by ddPCR resulted in 47% sensitivity, 77% specificity, 70% positive predictive value (PPV) and 55% negative predictive value (NPV). For BEAMing, we observed 93% sensitivity, 69% specificity, 78% PPV and 90% NPV. Finally, sensitivity of NGS was 73%, specificity was 77%, PPV 79% and NPV 71%. Our study highlights the complementarity of different diagnostic approaches and variability of results between OncoBEAM™-RAS-CRC and NGS assays. While the NGS assay provided a larger breadth of coverage of the major targetable alterations of 56 genes in one run, its performance for specific alterations was frequently confirmed by ddPCR results.

  6. Cross-platform comparison for the detection of RAS mutations in cfDNA (ddPCR Biorad detection assay, BEAMing assay, and NGS strategy)

    PubMed Central

    Garcia, Jessica; Forestier, Julien; Dusserre, Eric; Wozny, Anne-Sophie; Geiguer, Florence; Merle, Patrick; Tissot, Claire; Ferraro-Peyret, Carole; Jones, Frederick S.; Edelstein, Daniel L.; Cheynet, Valérie; Bardel, Claire; Vilchez, Gaelle; Xu, Zhenyu; Bringuier, Pierre Paul; Barritault, Marc; Brengle-Pesce, Karen; Guillet, Marielle; Chauvenet, Marion; Manship, Brigitte; Brevet, Marie; Rodriguez-Lafrasse, Claire; Hervieu, Valérie; Couraud, Sébastien; Walter, Thomas; Payen, Léa

    2018-01-01

    CfDNA samples from colon (mCRC) and non-small cell lung cancers (NSCLC) (CIRCAN cohort) were compared using three platforms: droplet digital PCR (ddPCR, Biorad); BEAMing/OncoBEAM™-RAS-CRC (Sysmex Inostics); next-generation sequencing (NGS, Illumina), utilizing the 56G oncology panel (Swift Biosciences). Tissue biopsy and time matched cfDNA samples were collected at diagnosis in the mCRC cohort and during 1st progression in the NSCLC cohort. Excellent matches between cfDNA/FFPE mutation profiles were observed. Detection thresholds were between 0.5–1% for cfDNA samples examined using ddPCR and NGS, and 0.03% with BEAMing. This high level of sensitivity enabled the detection of KRAS mutations in 5/19 CRC patients with negative FFPE profiles. In the mCRC cohort, comparison of mutation results obtained by testing FFPE to those obtained by testing cfDNA by ddPCR resulted in 47% sensitivity, 77% specificity, 70% positive predictive value (PPV) and 55% negative predictive value (NPV). For BEAMing, we observed 93% sensitivity, 69% specificity, 78% PPV and 90% NPV. Finally, sensitivity of NGS was 73%, specificity was 77%, PPV 79% and NPV 71%. Our study highlights the complementarity of different diagnostic approaches and variability of results between OncoBEAM™-RAS-CRC and NGS assays. While the NGS assay provided a larger breadth of coverage of the major targetable alterations of 56 genes in one run, its performance for specific alterations was frequently confirmed by ddPCR results. PMID:29765524

  7. Technical Report: Benchmarking for Quasispecies Abundance Inference with Confidence Intervals from Metagenomic Sequence Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLoughlin, K.

    2016-01-22

    The software application “MetaQuant” was developed by our group at Lawrence Livermore National Laboratory (LLNL). It is designed to profile microbial populations in a sample using data from whole-genome shotgun (WGS) metagenomic DNA sequencing. Several other metagenomic profiling applications have been described in the literature. We ran a series of benchmark tests to compare the performance of MetaQuant against that of a few existing profiling tools, using real and simulated sequence datasets. This report describes our benchmarking procedure and results.

  8. Clostridium sphenoides Chronic Osteomyelitis Diagnosed Via Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry, Conflicting With 16S rRNA Sequencing but Confirmed by Whole Genome Sequencing.

    PubMed

    Perkins, Matthew J; Snesrud, Erik; McGann, Patrick; Duplessis, Christopher A

    2017-01-01

    We report a case of successful treatment of chronic osteomyelitis (emanating from contaminated soil exposure) caused by Clostridium sphenoides, an organism infrequently identified as a cause of human infection and more saliently osteomyelitis (only 1 reported case in the literature). Additional impetus for reporting this case resides in the insights gained regarding pathogen identification exploiting sophisticated molecular platforms coupled to traditional microbial culture-based methods. The fastidious nature of cultivating anaerobic organisms required initial attempts at 16S rRNA sequencing to identify a Clostridium species (Clostridium celerecrescens). However, on exploiting matrix-assisted laser desorption ionization time of flight (MALDI TOF) technology, C. sphenoides was identified, and confirmed on whole genome sequencing. The discrepancies noted in the varying platforms require vigilance to seek complementary testing for conflicting results. Although highly accurate, the MALDI TOF and 16S rRNA sequencing platforms are not immune to false identification particularly in differentiating closely related organisms. More germane, whole genome sequencing should be entertained when conflicting results are obtained from MALDI TOF and 16S rRNA sequencing. Precise species and/or strain level identification can be clinically relevant as antimicrobial sensitivity profiles may be discrepant between closely related species influencing clinical outcomes. Thus, it is incumbent on us to strive to acquire the correct species characterization when resources allow to dictate optimal treatment. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  9. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.

    PubMed

    Rizzetto, Simone; Eltahla, Auda A; Lin, Peijie; Bull, Rowena; Lloyd, Andrew R; Ho, Joshua W K; Venturi, Vanessa; Luciani, Fabio

    2017-10-06

    Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the characterisation of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the full length T cell receptor (TCRαβ), which defines the specificity against cognate antigens. Several factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq data. We studied the effects of read length and sequencing depth on the quality of gene expression profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 single cells from 8 publically available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an increased number of unique genes identified with short read lengths (<50 bp), but these featured higher technical variability compared to profiles from longer reads. Successful TCRαβ reconstruction was achieved for 6 datasets (81% - 100%) with at least 0.25 millions (PE) reads of length >50 bp, while it failed for datasets with <30 bp reads. Sufficient read length and sequencing depth can control technical noise to enable accurate identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells.

  10. Modic Type 1 Changes: Detection Performance of Fat-Suppressed Fluid-Sensitive MRI Sequences.

    PubMed

    Finkenstaedt, Tim; Del Grande, Filippo; Bolog, Nicolae; Ulrich, Nils; Tok, Sina; Kolokythas, Orpheus; Steurer, Johann; Andreisek, Gustav; Winklhofer, Sebastian

    2018-02-01

     To assess the performance of fat-suppressed fluid-sensitive MRI sequences compared to T1-weighted (T1w) / T2w sequences for the detection of Modic 1 end-plate changes on lumbar spine MRI.  Sagittal T1w, T2w, and fat-suppressed fluid-sensitive MRI images of 100 consecutive patients (consequently 500 vertebral segments; 52 female, mean age 74 ± 7.4 years; 48 male, mean age 71 ± 6.3 years) were retrospectively evaluated. We recorded the presence (yes/no) and extension (i. e., Likert-scale of height, volume, and end-plate extension) of Modic I changes in T1w/T2w sequences and compared the results to fat-suppressed fluid-sensitive sequences (McNemar/Wilcoxon-signed-rank test).  Fat-suppressed fluid-sensitive sequences revealed significantly more Modic I changes compared to T1w/T2w sequences (156 vs. 93 segments, respectively; p < 0.001). The extension of Modic I changes in fat-suppressed fluid-sensitive sequences was significantly larger compared to T1w/T2w sequences (height: 2.53 ± 0.82 vs. 2.27 ± 0.79, volume: 2.35 ± 0.76 vs. 2.1 ± 0.65, end-plate: 2.46 ± 0.76 vs. 2.19 ± 0.81), (p < 0.05). Modic I changes that were only visible in fat-suppressed fluid-sensitive sequences but not in T1w/T2w sequences were significantly smaller compared to Modic I changes that were also visible in T1w/T2w sequences (p < 0.05).  In conclusion, fat-suppressed fluid-sensitive MRI sequences revealed significantly more Modic I end-plate changes and demonstrated a greater extent compared to standard T1w/T2w imaging.   · When the Modic classification was defined in 1988, T2w sequences were heavily T2-weighted and thus virtually fat-suppressed.. · Nowadays, the bright fat signal in T2w images masks edema-like changes.. · The conventional definition of Modic I changes is not fully applicable anymore.. · Fat-suppressed fluid-sensitive MRI sequences revealed more/greater extent of Modic I changes.. · Finkenstaedt T, Del Grande F, Bolog N et al. Modic Type 1 Changes: Detection Performance of Fat-Suppressed Fluid-Sensitive MRI Sequences. Fortschr Röntgenstr 2018; 190: 152 - 160. © Georg Thieme Verlag KG Stuttgart · New York.

  11. HMM-ModE: implementation, benchmarking and validation with HMMER3

    PubMed Central

    2014-01-01

    Background HMM-ModE is a computational method that generates family specific profile HMMs using negative training sequences. The method optimizes the discrimination threshold using 10 fold cross validation and modifies the emission probabilities of profiles to reduce common fold based signals shared with other sub-families. The protocol depends on the program HMMER for HMM profile building and sequence database searching. The recent release of HMMER3 has improved database search speed by several orders of magnitude, allowing for the large scale deployment of the method in sequence annotation projects. We have rewritten our existing scripts both at the level of parsing the HMM profiles and modifying emission probabilities to upgrade HMM-ModE using HMMER3 that takes advantage of its probabilistic inference with high computational speed. The method is benchmarked and tested on GPCR dataset as an accurate and fast method for functional annotation. Results The implementation of this method, which now works with HMMER3, is benchmarked with the earlier version of HMMER, to show that the effect of local-local alignments is marked only in the case of profiles containing a large number of discontinuous match states. The method is tested on a gold standard set of families and we have reported a significant reduction in the number of false positive hits over the default HMM profiles. When implemented on GPCR sequences, the results showed an improvement in the accuracy of classification compared with other methods used to classify the familyat different levels of their classification hierarchy. Conclusions The present findings show that the new version of HMM-ModE is a highly specific method used to differentiate between fold (superfamily) and function (family) specific signals, which helps in the functional annotation of protein sequences. The use of modified profile HMMs of GPCR sequences provides a simple yet highly specific method for classification of the family, being able to predict the sub-family specific sequences with high accuracy even though sequences share common physicochemical characteristics between sub-families. PMID:25073805

  12. Use of the Charge/Discharge (C/D) ratio to augment voltage limit (V sub T) charge control in the ERBS spacecraft

    NASA Astrophysics Data System (ADS)

    Halpert, G.

    1982-07-01

    A 50-ampere hour nickel cadmium cell test pack was operated in a power profile simulating the orbit of the Earth Radiation Budget Satellite (ERBS). The objective was to determine the ability of the temperature compensated voltage limit (V sub T) charge control system to maintain energy balance in the half sine wave-type current profile expected of this mission. The four-cell pack (50 E) was tested at the Naval Weapons Support Center (NWSC) at Crane, Indiana. The ERBS evaluation test consisted of two distinct operating sequences, each having a specific purpose. The first phase was a parametric test involving the effect of V sub T level, temperature, and Beta angle on the charge/discharge (C/D) ratio, an indicator of the amount of overcharge. The second phase of testing made use of the C/D ratio limit to augment the V sub T charge limit control. When the C/D limit was reached, the current was switched from the taper mode to a C/67 (0.75 A) trickle charge. The use of an ampere hour integrator limiting the overcharge to a C/67 rate provided a fine tuning of the charge control technique which eliminated the sensitivity problems noted in the initial operating sequence.

  13. Use of the Charge/Discharge (C/D) ratio to aument voltage limit (V sub T) charge control in the ERBS spacecraft

    NASA Technical Reports Server (NTRS)

    Halpert, G.

    1982-01-01

    A 50-ampere hour nickel cadmium cell test pack was operated in a power profile simulating the orbit of the Earth Radiation Budget Satellite (ERBS). The objective was to determine the ability of the temperature compensated voltage limit (V sub T) charge control system to maintain energy balance in the half sine wave-type current profile expected of this mission. The four-cell pack (50 E) was tested at the Naval Weapons Support Center (NWSC) at Crane, Indiana. The ERBS evaluation test consisted of two distinct operating sequences, each having a specific purpose. The first phase was a parametric test involving the effect of V sub T level, temperature, and Beta angle on the charge/discharge (C/D) ratio, an indicator of the amount of overcharge. The second phase of testing made use of the C/D ratio limit to augment the V sub T charge limit control. When the C/D limit was reached, the current was switched from the taper mode to a C/67 (0.75 A) trickle charge. The use of an ampere hour integrator limiting the overcharge to a C/67 rate provided a fine tuning of the charge control technique which eliminated the sensitivity problems noted in the initial operating sequence.

  14. msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.

    PubMed

    Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James

    2018-02-01

    Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).

  15. Pharmacological profiling of the TRPV3 channel in recombinant and native assays.

    PubMed

    Grubisha, Olivera; Mogg, Adrian J; Sorge, Jessica L; Ball, Laura-Jayne; Sanger, Helen; Ruble, Cara L A; Folly, Elizabeth A; Ursu, Daniel; Broad, Lisa M

    2014-05-01

    Transient receptor potential vanilloid subtype 3 (TRPV3) is implicated in nociception and certain skin conditions. As such, it is an attractive target for pharmaceutical research. Understanding of endogenous TRPV3 function and pharmacology remains elusive as selective compounds and native preparations utilizing higher throughput methodologies are lacking. In this study, we developed medium-throughput recombinant and native cellular assays to assess the detailed pharmacological profile of human, rat and mouse TRPV3 channels. Medium-throughput cellular assays were developed using a Ca(2+) -sensitive dye and a fluorescent imaging plate reader. Human and rat TRPV3 pharmacology was examined in recombinant cell lines, while the mouse 308 keratinocyte cell line was used to assess endogenous TRPV3 activity. A recombinant rat TRPV3 cellular assay was successfully developed after solving a discrepancy in the published rat TRPV3 protein sequence. A medium-throughput, native, mouse TRPV3 keratinocyte assay was also developed and confirmed using genetic approaches. Whereas the recombinant human and rat TRPV3 assays exhibited similar agonist and antagonist profiles, the native mouse assay showed important differences, namely, TRPV3 activity was detected only in the presence of potentiator or during agonist synergy. Furthermore, the native assay was more sensitive to block by some antagonists. Our findings demonstrate similarities but also notable differences in TRPV3 pharmacology between recombinant and native systems. These findings offer insights into TRPV3 function and these assays should aid further research towards developing TRPV3 therapies. © 2013 The British Pharmacological Society.

  16. High throughput profile-profile based fold recognition for the entire human proteome.

    PubMed

    McGuffin, Liam J; Smith, Richard T; Bryson, Kevin; Sørensen, Søren-Aksel; Jones, David T

    2006-06-07

    In order to maintain the most comprehensive structural annotation databases we must carry out regular updates for each proteome using the latest profile-profile fold recognition methods. The ability to carry out these updates on demand is necessary to keep pace with the regular updates of sequence and structure databases. Providing the highest quality structural models requires the most intensive profile-profile fold recognition methods running with the very latest available sequence databases and fold libraries. However, running these methods on such a regular basis for every sequenced proteome requires large amounts of processing power. In this paper we describe and benchmark the JYDE (Job Yield Distribution Environment) system, which is a meta-scheduler designed to work above cluster schedulers, such as Sun Grid Engine (SGE) or Condor. We demonstrate the ability of JYDE to distribute the load of genomic-scale fold recognition across multiple independent Grid domains. We use the most recent profile-profile version of our mGenTHREADER software in order to annotate the latest version of the Human proteome against the latest sequence and structure databases in as short a time as possible. We show that our JYDE system is able to scale to large numbers of intensive fold recognition jobs running across several independent computer clusters. Using our JYDE system we have been able to annotate 99.9% of the protein sequences within the Human proteome in less than 24 hours, by harnessing over 500 CPUs from 3 independent Grid domains. This study clearly demonstrates the feasibility of carrying out on demand high quality structural annotations for the proteomes of major eukaryotic organisms. Specifically, we have shown that it is now possible to provide complete regular updates of profile-profile based fold recognition models for entire eukaryotic proteomes, through the use of Grid middleware such as JYDE.

  17. Clinical mutational profiling of 1006 lung cancers by next generation sequencing

    PubMed Central

    Illei, Peter B.; Belchis, Deborah; Tseng, Li-Hui; Nguyen, Doreen; De Marchi, Federico; Haley, Lisa; Riel, Stacy; Beierl, Katie; Zheng, Gang; Brahmer, Julie R.; Askin, Frederic B.; Gocke, Christopher D.; Eshleman, James R.; Forde, Patrick M.; Lin, Ming-Tseh

    2017-01-01

    Analysis of lung adenocarcinomas for actionable mutations has become standard of care. Here, we report our experience using next generation sequencing (NGS) to examine AKT1, BRAF, EGFR, ERBB2, KRAS, NRAS, and PIK3CA genes in 1006 non-small cell lung cancers in a clinical diagnostic setting. NGS demonstrated high sensitivity. Among 760 mutations detected, the variant allele frequency (VAF) was 2–5% in 33 (4.3%) mutations and 2–10% in 101 (13%) mutations. A single bioinformatics pipeline using Torrent Variant Caller, however, missed a variety of EGFR mutations. Mutations were detected in KRAS (36% of tumors), EGFR (19%) including 8 (0.8%) within the extracellular domain (4 at codons 108 and 4 at codon 289), BRAF (6.3%), and PIK3CA (3.7%). With a broader reportable range, exon 19 deletion and p.L858R accounted for only 36% and 26% of EGFR mutations and p.V600E accounted for only 24% of BRAF mutations. NGS provided accurate sequencing of complex mutations seen in 19% of EGFR exon 19 deletion mutations. Doublet (compound) EGFR mutations were observed in 29 (16%) of 187 EGFR-mutated tumors, including 69% with two non-p.L858R missense mutations and 24% with p.L858 and non-p.L858R missense mutations. Concordant VAFs suggests doublet EGFR mutations were present in a dominant clone and cooperated in oncogenesis. Mutants with predicted impaired kinase, observed in 25% of BRAF-mutated tumors, were associated with a higher incidence of concomitant activating KRAS mutations. NGS demonstrates high analytic sensitivity, broad reportable range, quantitative VAF measurement, single molecule sequencing to resolve complex deletion mutations, and simultaneous detection of concomitant mutations. PMID:29228562

  18. Pain sensitivity profiles in patients with advanced knee osteoarthritis

    PubMed Central

    Frey-Law, Laura A.; Bohr, Nicole L.; Sluka, Kathleen A.; Herr, Keela; Clark, Charles R.; Noiseux, Nicolas O.; Callaghan, John J; Zimmerman, M Bridget; Rakel, Barbara A.

    2016-01-01

    The development of patient profiles to subgroup individuals on a variety of variables has gained attention as a potential means to better inform clinical decision-making. Patterns of pain sensitivity response specific to quantitative sensory testing (QST) modality have been demonstrated in healthy subjects. It has not been determined if these patterns persist in a knee osteoarthritis population. In a sample of 218 participants, 19 QST measures along with pain, psychological factors, self-reported function, and quality of life were assessed prior to total knee arthroplasty. Component analysis was used to identify commonalities across the 19 QST assessments to produce standardized pain sensitivity factors. Cluster analysis then grouped individuals that exhibited similar patterns of standardized pain sensitivity component scores. The QST resulted in four pain sensitivity components: heat, punctate, temporal summation, and pressure. Cluster analysis resulted in five pain sensitivity profiles: a “low pressure pain” group, an “average pain” group, and three “high pain” sensitivity groups who were sensitive to different modalities (punctate, heat, and temporal summation). Pain and function differed between pain sensitivity profiles, along with sex distribution; however no differences in OA grade, medication use, or psychological traits were found. Residualizing QST data by age and sex resulted in similar components and pain sensitivity profiles. Further, these profiles are surprisingly similar to those reported in healthy populations suggesting that individual differences in pain sensitivity are a robust finding even in an older population with significant disease. PMID:27152688

  19. Slice profile effects in 2D slice-selective MRI of hyperpolarized nuclei.

    PubMed

    Deppe, Martin H; Teh, Kevin; Parra-Robles, Juan; Lee, Kuan J; Wild, Jim M

    2010-02-01

    This work explores slice profile effects in 2D slice-selective gradient-echo MRI of hyperpolarized nuclei. Two different sequences were investigated: a Spoiled Gradient Echo sequence with variable flip angle (SPGR-VFA) and a balanced Steady-State Free Precession (SSFP) sequence. It is shown that in SPGR-VFA the distribution of flip angles across the slice present in any realistically shaped radiofrequency (RF) pulse leads to large excess signal from the slice edges in later RF views, which results in an undesired non-constant total transverse magnetization, potentially exceeding the initial value by almost 300% for the last RF pulse. A method to reduce this unwanted effect is demonstrated, based on dynamic scaling of the slice selection gradient. SSFP sequences with small to moderate flip angles (<40 degrees ) are also shown to preserve the slice profile better than the most commonly used SPGR sequence with constant flip angle (SPGR-CFA). For higher flip angles, the slice profile in SSFP evolves in a manner similar to SPGR-CFA, with depletion of polarization in the center of the slice. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Advanced colorectal adenoma related gene expression signature may predict prognostic for colorectal cancer patients with adenoma-carcinoma sequence.

    PubMed

    Li, Bing; Shi, Xiao-Yu; Liao, Dai-Xiang; Cao, Bang-Rong; Luo, Cheng-Hua; Cheng, Shu-Jun

    2015-01-01

    There are still no absolute parameters predicting progression of adenoma into cancer. The present study aimed to characterize functional differences on the multistep carcinogenetic process from the adenoma-carcinoma sequence. All samples were collected and mRNA expression profiling was performed by using Agilent Microarray high-throughput gene-chip technology. Then, the characteristics of mRNA expression profiles of adenoma-carcinoma sequence were described with bioinformatics software, and we analyzed the relationship between gene expression profiles of adenoma-adenocarcinoma sequence and clinical prognosis of colorectal cancer. The mRNA expressions of adenoma-carcinoma sequence were significantly different between high-grade intraepithelial neoplasia group and adenocarcinoma group. The biological process of gene ontology function enrichment analysis on differentially expressed genes between high-grade intraepithelial neoplasia group and adenocarcinoma group showed that genes enriched in the extracellular structure organization, skeletal system development, biological adhesion and itself regulated growth regulation, with the P value after FDR correction of less than 0.05. In addition, IPR-related protein mainly focused on the insulin-like growth factor binding proteins. The variable trends of gene expression profiles for adenoma-carcinoma sequence were mainly concentrated in high-grade intraepithelial neoplasia and adenocarcinoma. The differentially expressed genes are significantly correlated between high-grade intraepithelial neoplasia group and adenocarcinoma group. Bioinformatics analysis is an effective way to study the gene expression profiles in the adenoma-carcinoma sequence, and may provide an effective tool to involve colorectal cancer research strategy into colorectal adenoma or advanced adenoma.

  1. Images in the rocket ultraviolet - The stellar population in the central bulge of M31

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Cornett, R. H.; Hill, J. K.; Hill, R. S.; Oconnell, R. W.; Stecher, T. P.

    1985-01-01

    Imagery of the bulge of M31 obtained with a rocket-borne telescope in two broad bands centered at 1460 A and 2380 A is discussed. The UV spatial profiles over a region about 200 arcsec wide are identical with those at visible wavelengths. The absence of detectable point sources indicates that main-sequence stars hotter than B0 V are not present in the bulge. It is suggested that the far-UV flux in old stellar populations originates in post-AGB stars. The UV flux from such stars is extremely sensitive to age and the physics of their previous mass loss.

  2. Investigation of Human Cancers for Retrovirus by Low-Stringency Target Enrichment and High-Throughput Sequencing.

    PubMed

    Vinner, Lasse; Mourier, Tobias; Friis-Nielsen, Jens; Gniadecki, Robert; Dybkaer, Karen; Rosenberg, Jacob; Langhoff, Jill Levin; Cruz, David Flores Santa; Fonager, Jannik; Izarzugaza, Jose M G; Gupta, Ramneek; Sicheritz-Ponten, Thomas; Brunak, Søren; Willerslev, Eske; Nielsen, Lars Peter; Hansen, Anders Johannes

    2015-08-19

    Although nearly one fifth of all human cancers have an infectious aetiology, the causes for the majority of cancers remain unexplained. Despite the enormous data output from high-throughput shotgun sequencing, viral DNA in a clinical sample typically constitutes a proportion of host DNA that is too small to be detected. Sequence variation among virus genomes complicates application of sequence-specific, and highly sensitive, PCR methods. Therefore, we aimed to develop and characterize a method that permits sensitive detection of sequences despite considerable variation. We demonstrate that our low-stringency in-solution hybridization method enables detection of <100 viral copies. Furthermore, distantly related proviral sequences may be enriched by orders of magnitude, enabling discovery of hitherto unknown viral sequences by high-throughput sequencing. The sensitivity was sufficient to detect retroviral sequences in clinical samples. We used this method to conduct an investigation for novel retrovirus in samples from three cancer types. In accordance with recent studies our investigation revealed no retroviral infections in human B-cell lymphoma cells, cutaneous T-cell lymphoma or colorectal cancer biopsies. Nonetheless, our generally applicable method makes sensitive detection possible and permits sequencing of distantly related sequences from complex material.

  3. Winds in hot main-sequence stars near the static limit

    NASA Technical Reports Server (NTRS)

    Morrison, Nancy D.

    1995-01-01

    This project began with the acquisition of short-wavelength, high-dispersion IUE spectra of selected late O- and early B-type stars that are near the main sequence in open clusters and associations. The profiles of the resonance lines of N(V), Si(IV), and C(IV) were studied, and we found that the C(IV) lines are the most sensitive indicators of mass loss (stellar winds) in stars of this type. The mass loss manifests itself as an extension of the short-wavelength absorption wing of the doublet, while there is no P Cygni-type emission on the long-wavelength side of the line profile. We investigated whether the short-wavelength extension could be caused by blended lines of other ionic species formed in the photosphere. Although blending is present and introduces uncertainty into the estimation of the precise location on the main sequence of the onset of the mass-loss signature, it is a crucial issue only in a few marginal cases. Mass loss certainly overwhelms blending in its influence on the spectrum between spectral types B0 and B1 (effective temperatures in the range 25,000-27,000 K). We defined a parameter called P(sub w), to describe the degree of asymmetry of the C(IV) resonance-line profile, and we studied the dependence of this parameter on the fundamental stellar parameters. For this purpose, we derived new estimates of the stellar T(eff) and log g from a non-LTE, line-blanketed model-atmosphere analysis of these stars (Grigsby, Morrison, and Anderson 1992). In order to estimate the stellar luminosities, we performed an exhaustive search of the literature for the most reliable available estimates of the distances of the clusters and associations to which the program stars belong. The dependence of P(sub w) on stellar temperature and luminosity is also studied.

  4. Intratumoral genetic heterogeneity in metastatic melanoma is accompanied by variation in malignant behaviors.

    PubMed

    Anaka, Matthew; Hudson, Christopher; Lo, Pu-Han; Do, Hongdo; Caballero, Otavia L; Davis, Ian D; Dobrovic, Alexander; Cebon, Jonathan; Behren, Andreas

    2013-10-11

    Intratumoral heterogeneity is a major obstacle for the treatment of cancer, as the presence of even minor populations that are insensitive to therapy can lead to disease relapse. Increased clonal diversity has been correlated with a poor prognosis for cancer patients, and we therefore examined genetic, transcriptional, and functional diversity in metastatic melanoma. Amplicon sequencing and SNP microarrays were used to profile somatic mutations and DNA copy number changes in multiple regions from metastatic lesions. Clonal genetic and transcriptional heterogeneity was also assessed in single cell clones from early passage cell lines, which were then subjected to clonogenicity and drug sensitivity assays. MAPK pathway and tumor suppressor mutations were identified in all regions of the melanoma metastases analyzed. In contrast, we identified copy number abnormalities present in only some regions in addition to homogeneously present changes, suggesting ongoing genetic evolution following metastatic spread. Copy number heterogeneity from a tumor was represented in matched cell line clones, which also varied in their clonogenicity and drug sensitivity. Minor clones were identified based on dissimilarity to the parental cell line, and these clones were the most clonogenic and least sensitive to drugs. Finally, treatment of a polyclonal cell line with paclitaxel to enrich for drug-resistant cells resulted in the adoption of a gene expression profile with features of one of the minor clones, supporting the idea that these populations can mediate disease relapse. Our results support the hypothesis that minor clones might have major consequences for patient outcomes in melanoma.

  5. High-Throughput Sequencing of microRNAs in Glucocorticoid Sensitive Paediatric Inflammatory Bowel Disease Patients.

    PubMed

    De Iudicibus, Sara; Lucafò, Marianna; Vitulo, Nicola; Martelossi, Stefano; Zimbello, Rosanna; De Pascale, Fabio; Forcato, Claudio; Naviglio, Samuele; Di Silvestre, Alessia; Gerdol, Marco; Stocco, Gabriele; Valle, Giorgio; Ventura, Alessandro; Bramuzzo, Matteo; Decorti, Giuliana

    2018-05-08

    The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.

  6. Stratification of co-evolving genomic groups using ranked phylogenetic profiles

    PubMed Central

    Freilich, Shiri; Goldovsky, Leon; Gottlieb, Assaf; Blanc, Eric; Tsoka, Sophia; Ouzounis, Christos A

    2009-01-01

    Background Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database. Results The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples. Conclusion Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples. PMID:19860884

  7. ampliMethProfiler: a pipeline for the analysis of CpG methylation profiles of targeted deep bisulfite sequenced amplicons.

    PubMed

    Scala, Giovanni; Affinito, Ornella; Palumbo, Domenico; Florio, Ermanno; Monticelli, Antonella; Miele, Gennaro; Chiariotti, Lorenzo; Cocozza, Sergio

    2016-11-25

    CpG sites in an individual molecule may exist in a binary state (methylated or unmethylated) and each individual DNA molecule, containing a certain number of CpGs, is a combination of these states defining an epihaplotype. Classic quantification based approaches to study DNA methylation are intrinsically unable to fully represent the complexity of the underlying methylation substrate. Epihaplotype based approaches, on the other hand, allow methylation profiles of cell populations to be studied at the single molecule level. For such investigations, next-generation sequencing techniques can be used, both for quantitative and for epihaplotype analysis. Currently available tools for methylation analysis lack output formats that explicitly report CpG methylation profiles at the single molecule level and that have suited statistical tools for their interpretation. Here we present ampliMethProfiler, a python-based pipeline for the extraction and statistical epihaplotype analysis of amplicons from targeted deep bisulfite sequencing of multiple DNA regions. ampliMethProfiler tool provides an easy and user friendly way to extract and analyze the epihaplotype composition of reads from targeted bisulfite sequencing experiments. ampliMethProfiler is written in python language and requires a local installation of BLAST and (optionally) QIIME tools. It can be run on Linux and OS X platforms. The software is open source and freely available at http://amplimethprofiler.sourceforge.net .

  8. Comparative analysis of virulence and resistance profiles of Salmonella Enteritidis isolates from poultry meat and foodborne outbreaks in northern Jordan

    PubMed Central

    Jaradat, Ziad W; Abedel Hafiz, Leena; Ababneh, Mustafa M; Ababneh, Qotaibah O; Al Mousa, Waseem; Al-Nabulsi, Anas; Osaili, Tareq M; Holley, Richard

    2014-01-01

    This study was conducted to isolate Salmonella Enteritidis from poultry samples and compare their virulence and antibiotic resistance profiles to S. Enteritidis isolated from outbreaks in northern Jordan. Two hundred presumptive isolates were obtained from 302 raw poultry samples and were subjected to further analysis and confirmation. A phylogenic tree based on 16S rRNA sequencing was constructed and selected isolates representing each cluster were further studied for their virulence in normal adult Swiss white mice. The most virulent strains were isolated from poultry samples and had an LD50 of 1.55 × 105 CFU, while some of the outbreak isolates were avirulent in mice. Antibiotic resistance profiling revealed that the isolates were resistant to seven of eight antibiotics screened with each isolate resistant to multiple antibiotics (from two to six). Of the poultry isolates, 100%, 88.9%, 77.8%, 66.7%, and 50% showed resistance to nalidixic acid, ciprofloxacin, ampicillin, cephalothin, and cefoperazone, respectively. Two outbreak isolates were sensitive to all tested antibiotics, while 71.4% were resistant to cefoperazone and only 28.6% showed resistance to nalidixic acid. Salmonella outbreak isolates were genetically related to poultry isolates as inferred from the 16S rRNA sequencing, yet were phenotypically different. Although outbreak strains were similar to poultry isolates, when tested in the mouse model, some of the outbreak isolates were highly virulent while others were avirulent. This might be due to a variation in susceptibility of the mouse to different S. Enteritidis isolates. PMID:24780883

  9. Exhaled molecular profiles in the assessment of cystic fibrosis and primary ciliary dyskinesia.

    PubMed

    Paff, T; van der Schee, M P; Daniels, J M A; Pals, G; Postmus, P E; Sterk, P J; Haarman, E G

    2013-09-01

    Early diagnosis and monitoring of disease activity are essential in cystic fibrosis (CF) and primary ciliary dyskinesia (PCD). We aimed to establish exhaled molecular profiles as the first step in assessing the potential of breath analysis. Exhaled breath was analyzed by electronic nose in 25 children with CF, 25 with PCD and 23 controls. Principle component reduction and canonical discriminant analysis were used to construct internally cross-validated ROC curves. CF and PCD patients had significantly different breath profiles when compared to healthy controls (CF: sensitivity 84%, specificity 65%; PCD: sensitivity 88%, specificity 52%) and from each other (sensitivity 84%, specificity 60%). Patients with and without exacerbations had significantly different breath profiles (CF: sensitivity 89%, specificity 56%; PCD: sensitivity 100%, specificity 90%). Exhaled molecular profiles significantly differ between patients with CF, PCD and controls. The eNose may have potential in disease monitoring based on the influence of exacerbations on the VOC-profile. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  10. Meristem micropropagation of cassava (Manihot esculenta) evokes genome-wide changes in DNA methylation.

    PubMed

    Kitimu, Shedrack R; Taylor, Julian; March, Timothy J; Tairo, Fred; Wilkinson, Mike J; Rodríguez López, Carlos M

    2015-01-01

    There is great interest in the phenotypic, genetic and epigenetic changes associated with plant in vitro culture known as somaclonal variation. In vitro propagation systems that are based on the use of microcuttings or meristem cultures are considered analogous to clonal cuttings and so widely viewed to be largely free from such somaclonal effects. In this study, we surveyed for epigenetic changes during propagation by meristem culture and by field cuttings in five cassava (Manihot esculenta) cultivars. Principal Co-ordinate Analysis of profiles generated by methylation-sensitive amplified polymorphism revealed clear divergence between samples taken from field-grown cuttings and those recovered from meristem culture. There was also good separation between the tissues of field samples but this effect was less distinct among the meristem culture materials. Application of methylation-sensitive Genotype by sequencing identified 105 candidate epimarks that distinguish between field cutting and meristem culture samples. Cross referencing the sequences of these epimarks to the draft cassava genome revealed 102 sites associated with genes whose homologs have been implicated in a range of fundamental biological processes including cell differentiation, development, sugar metabolism, DNA methylation, stress response, photosynthesis, and transposon activation. We explore the relevance of these findings for the selection of micropropagation systems for use on this and other crops.

  11. Meristem micropropagation of cassava (Manihot esculenta) evokes genome-wide changes in DNA methylation

    PubMed Central

    Kitimu, Shedrack R.; Taylor, Julian; March, Timothy J.; Tairo, Fred; Wilkinson, Mike J.; Rodríguez López, Carlos M.

    2015-01-01

    There is great interest in the phenotypic, genetic and epigenetic changes associated with plant in vitro culture known as somaclonal variation. In vitro propagation systems that are based on the use of microcuttings or meristem cultures are considered analogous to clonal cuttings and so widely viewed to be largely free from such somaclonal effects. In this study, we surveyed for epigenetic changes during propagation by meristem culture and by field cuttings in five cassava (Manihot esculenta) cultivars. Principal Co-ordinate Analysis of profiles generated by methylation-sensitive amplified polymorphism revealed clear divergence between samples taken from field-grown cuttings and those recovered from meristem culture. There was also good separation between the tissues of field samples but this effect was less distinct among the meristem culture materials. Application of methylation-sensitive Genotype by sequencing identified 105 candidate epimarks that distinguish between field cutting and meristem culture samples. Cross referencing the sequences of these epimarks to the draft cassava genome revealed 102 sites associated with genes whose homologs have been implicated in a range of fundamental biological processes including cell differentiation, development, sugar metabolism, DNA methylation, stress response, photosynthesis, and transposon activation. We explore the relevance of these findings for the selection of micropropagation systems for use on this and other crops. PMID:26322052

  12. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity

    PubMed Central

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A.; Kim, Sungjoon; Wilson, Christopher J.; Lehár, Joseph; Kryukov, Gregory V.; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F.; Monahan, John E.; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A.; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H.; Cheng, Jill; Yu, Guoying K.; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D.; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C.; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P.; Gabriel, Stacey B.; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E.; Weber, Barbara L.; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L.; Meyerson, Matthew; Golub, Todd R.; Morrissey, Michael P.; Sellers, William R.; Schlegel, Robert; Garraway, Levi A.

    2012-01-01

    The systematic translation of cancer genomic data into knowledge of tumor biology and therapeutic avenues remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacologic annotation is available1. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our results suggest that large, annotated cell line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of “personalized” therapeutic regimens2. PMID:22460905

  13. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

    PubMed

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A; Kim, Sungjoon; Wilson, Christopher J; Lehár, Joseph; Kryukov, Gregory V; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F; Monahan, John E; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H; Cheng, Jill; Yu, Guoying K; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P; Gabriel, Stacey B; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E; Weber, Barbara L; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L; Meyerson, Matthew; Golub, Todd R; Morrissey, Michael P; Sellers, William R; Schlegel, Robert; Garraway, Levi A

    2012-03-28

    The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

  14. Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations

    PubMed Central

    2017-01-01

    Recent advances in next-generation sequencing approaches have revolutionized our understanding of transcriptional expression in diverse systems. However, measurements of transcription do not necessarily reflect gene translation, the process of ultimate importance in understanding cellular function. To circumvent this limitation, biochemical tagging of ribosome subunits to isolate ribosome-associated mRNA has been developed. However, this approach, called TRAP, lacks quantitative resolution compared to a superior technology, ribosome profiling. Here, we report the development of an optimized ribosome profiling approach in Drosophila. We first demonstrate successful ribosome profiling from a specific tissue, larval muscle, with enhanced resolution compared to conventional TRAP approaches. We next validate the ability of this technology to define genome-wide translational regulation. This technology is leveraged to test the relative contributions of transcriptional and translational mechanisms in the postsynaptic muscle that orchestrate the retrograde control of presynaptic function at the neuromuscular junction. Surprisingly, we find no evidence that significant changes in the transcription or translation of specific genes are necessary to enable retrograde homeostatic signaling, implying that post-translational mechanisms ultimately gate instructive retrograde communication. Finally, we show that a global increase in translation induces adaptive responses in both transcription and translation of protein chaperones and degradation factors to promote cellular proteostasis. Together, this development and validation of tissue-specific ribosome profiling enables sensitive and specific analysis of translation in Drosophila. PMID:29194454

  15. Identification of evolutionarily conserved DNA damage response genes that alter sensitivity to cisplatin

    PubMed Central

    Gaponova, Anna V.; Deneka, Alexander Y.; Beck, Tim N.; Liu, Hanqing; Andrianov, Gregory; Nikonova, Anna S.; Nicolas, Emmanuelle; Einarson, Margret B.; Golemis, Erica A.; Serebriiskii, Ilya G.

    2017-01-01

    Ovarian, head and neck, and other cancers are commonly treated with cisplatin and other DNA damaging cytotoxic agents. Altered DNA damage response (DDR) contributes to resistance of these tumors to chemotherapies, some targeted therapies, and radiation. DDR involves multiple protein complexes and signaling pathways, some of which are evolutionarily ancient and involve protein orthologs conserved from yeast to humans. To identify new regulators of cisplatin-resistance in human tumors, we integrated high throughput and curated datasets describing yeast genes that regulate sensitivity to cisplatin and/or ionizing radiation. Next, we clustered highly validated genes based on chemogenomic profiling, and then mapped orthologs of these genes in expanded genomic networks for multiple metazoans, including humans. This approach identified an enriched candidate set of genes involved in the regulation of resistance to radiation and/or cisplatin in humans. Direct functional assessment of selected candidate genes using RNA interference confirmed their activity in influencing cisplatin resistance, degree of γH2AX focus formation and ATR phosphorylation, in ovarian and head and neck cancer cell lines, suggesting impaired DDR signaling as the driving mechanism. This work enlarges the set of genes that may contribute to chemotherapy resistance and provides a new contextual resource for interpreting next generation sequencing (NGS) genomic profiling of tumors. PMID:27863405

  16. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications

    PubMed Central

    Harris, R. Alan; Wang, Ting; Coarfa, Cristian; Nagarajan, Raman P.; Hong, Chibo; Downey, Sara L.; Johnson, Brett E.; Fouse, Shaun D.; Delaney, Allen; Zhao, Yongjun; Olshen, Adam; Ballinger, Tracy; Zhou, Xin; Forsberg, Kevin J.; Gu, Junchen; Echipare, Lorigail; O’Geen, Henriette; Lister, Ryan; Pelizzola, Mattia; Xi, Yuanxin; Epstein, Charles B.; Bernstein, Bradley E.; Hawkins, R. David; Ren, Bing; Chung, Wen-Yu; Gu, Hongcang; Bock, Christoph; Gnirke, Andreas; Zhang, Michael Q.; Haussler, David; Ecker, Joseph; Li, Wei; Farnham, Peggy J.; Waterland, Robert A.; Meissner, Alexander; Marra, Marco A.; Hirst, Martin; Milosavljevic, Aleksandar; Costello, Joseph F.

    2010-01-01

    Sequencing-based DNA methylation profiling methods are comprehensive and, as accuracy and affordability improve, will increasingly supplant microarrays for genome-scale analyses. Here, four sequencing-based methodologies were applied to biological replicates of human embryonic stem cells to compare their CpG coverage genome-wide and in transposons, resolution, cost, concordance and its relationship with CpG density and genomic context. The two bisulfite methods reached concordance of 82% for CpG methylation levels and 99% for non-CpG cytosine methylation levels. Using binary methylation calls, two enrichment methods were 99% concordant, while regions assessed by all four methods were 97% concordant. To achieve comprehensive methylome coverage while reducing cost, an approach integrating two complementary methods was examined. The integrative methylome profile along with histone methylation, RNA, and SNP profiles derived from the sequence reads allowed genome-wide assessment of allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression. PMID:20852635

  17. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    PubMed

    Yang, Xiaoxia; Wang, Jia; Sun, Jun; Liu, Rong

    2015-01-01

    Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  18. Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data

    NASA Astrophysics Data System (ADS)

    Sandmann, Sarah; de Graaf, Aniek O.; Karimi, Mohsen; van der Reijden, Bert A.; Hellström-Lindberg, Eva; Jansen, Joop H.; Dugas, Martin

    2017-02-01

    Valid variant calling results are crucial for the use of next-generation sequencing in clinical routine. However, there are numerous variant calling tools that usually differ in algorithms, filtering strategies, recommendations and thus, also in the output. We evaluated eight open-source tools regarding their ability to call single nucleotide variants and short indels with allelic frequencies as low as 1% in non-matched next-generation sequencing data: GATK HaplotypeCaller, Platypus, VarScan, LoFreq, FreeBayes, SNVer, SAMtools and VarDict. We analysed two real datasets from patients with myelodysplastic syndrome, covering 54 Illumina HiSeq samples and 111 Illumina NextSeq samples. Mutations were validated by re-sequencing on the same platform, on a different platform and expert based review. In addition we considered two simulated datasets with varying coverage and error profiles, covering 50 samples each. In all cases an identical target region consisting of 19 genes (42,322 bp) was analysed. Altogether, no tool succeeded in calling all mutations. High sensitivity was always accompanied by low precision. Influence of varying coverages- and background noise on variant calling was generally low. Taking everything into account, VarDict performed best. However, our results indicate that there is a need to improve reproducibility of the results in the context of multithreading.

  19. Competitive Growth Enhances Conditional Growth Mutant Sensitivity to Antibiotics and Exposes a Two-Component System as an Emerging Antibacterial Target in Burkholderia cenocepacia.

    PubMed

    Gislason, April S; Choy, Matthew; Bloodworth, Ruhi A M; Qu, Wubin; Stietz, Maria S; Li, Xuan; Zhang, Chenggang; Cardona, Silvia T

    2017-01-01

    Chemogenetic approaches to profile an antibiotic mode of action are based on detecting differential sensitivities of engineered bacterial strains in which the antibacterial target (usually encoded by an essential gene) or an associated process is regulated. We previously developed an essential-gene knockdown mutant library in the multidrug-resistant Burkholderia cenocepacia by transposon delivery of a rhamnose-inducible promoter. In this work, we used Illumina sequencing of multiplex-PCR-amplified transposon junctions to track individual mutants during pooled growth in the presence of antibiotics. We found that competition from nontarget mutants magnified the hypersensitivity of a clone underexpressing gyrB to novobiocin by 8-fold compared with hypersensitivity measured during clonal growth. Additional profiling of various antibiotics against a pilot library representing most categories of essential genes revealed a two-component system with unknown function, which, upon depletion of the response regulator, sensitized B. cenocepacia to novobiocin, ciprofloxacin, tetracycline, chloramphenicol, kanamycin, meropenem, and carbonyl cyanide 3-chlorophenylhydrazone, but not to colistin, hydrogen peroxide, and dimethyl sulfoxide. We named the gene cluster esaSR for enhanced sensitivity to antibiotics sensor and response regulator. Mutational analysis and efflux activity assays revealed that while esaS is not essential and is involved in antibiotic-induced efflux, esaR is an essential gene and regulates efflux independently of antibiotic-mediated induction. Furthermore, microscopic analysis of cells stained with propidium iodide provided evidence that depletion of EsaR has a profound effect on the integrity of cell membranes. In summary, we unraveled a previously uncharacterized two-component system that can be targeted to reduce antibiotic resistance in B. cenocepacia. Copyright © 2016 American Society for Microbiology.

  20. Link between epigenomic alterations and genome-wide aberrant transcriptional response to allergen in dendritic cells conveying maternal asthma risk.

    PubMed

    Mikhaylova, Lyudmila; Zhang, Yiming; Kobzik, Lester; Fedulov, Alexey V

    2013-01-01

    We investigated the link between epigenome-wide methylation aberrations at birth and genomic transcriptional changes upon allergen sensitization that occur in the neonatal dendritic cells (DC) due to maternal asthma. We previously demonstrated that neonates of asthmatic mothers are born with a functional skew in splenic DCs that can be seen even in allergen-naïve pups and can convey allergy responses to normal recipients. However, minimal-to-no transcriptional or phenotypic changes were found to explain this alteration. Here we provide in-depth analysis of genome-wide DNA methylation profiles and RNA transcriptional (microarray) profiles before and after allergen sensitization. We identified differentially methylated and differentially expressed loci and performed manually-curated matching of methylation status of the key regulatory sequences (promoters and CpG islands) to expression of their respective transcripts before and after sensitization. We found that while allergen-naive DCs from asthma-at-risk neonates have minimal transcriptional change compared to controls, the methylation changes are extensive. The substantial transcriptional change only becomes evident upon allergen sensitization, when it occurs in multiple genes with the pre-existing epigenetic alterations. We demonstrate that maternal asthma leads to both hyper- and hypomethylation in neonatal DCs, and that both types of events at various loci significantly overlap with transcriptional responses to allergen. Pathway analysis indicates that approximately 1/2 of differentially expressed and differentially methylated genes directly interact in known networks involved in allergy and asthma processes. We conclude that congenital epigenetic changes in DCs are strongly linked to altered transcriptional responses to allergen and to early-life asthma origin. The findings are consistent with the emerging paradigm that asthma is a disease with underlying epigenetic changes.

  1. Distinct profiles of expressed sequence tags during intestinal regeneration in the sea cucumber Holothuria glaberrima

    PubMed Central

    Rojas-Cartagena, Carmencita; Ortíz-Pineda, Pablo; Ramírez-Gómez, Francisco; Suárez-Castillo, Edna C.; Matos-Cruz, Vanessa; Rodríguez, Carlos; Ortíz-Zuazaga, Humberto; García-Arrarás, José E.

    2010-01-01

    Repair and regeneration are key processes for tissue maintenance, and their disruption may lead to disease states. Little is known about the molecular mechanisms that underline the repair and regeneration of the digestive tract. The sea cucumber Holothuria glaberrima represents an excellent model to dissect and characterize the molecular events during intestinal regeneration. To study the gene expression profile, cDNA libraries were constructed from normal, 3-day, and 7-day regenerating intestines of H. glaberrima. Clones were randomly sequenced and queried against the nonredundant protein database at the National Center for Biotechnology Information. RT-PCR analyses were made of several genes to determine their expression profile during intestinal regeneration. A total of 5,173 sequences from three cDNA libraries were obtained. About 46.2, 35.6, and 26.2% of the sequences for the normal, 3-days, and 7-days cDNA libraries, respectively, shared significant similarity with known sequences in the protein database of GenBank but only present 10% of similarity among them. Analysis of the libraries in terms of functional processes, protein domains, and most common sequences suggests that a differential expression profile is taking place during the regeneration process. Further examination of the expressed sequence tag dataset revealed that 12 putative genes are differentially expressed at significant level (R > 6). Experimental validation by RT-PCR analysis reveals that at least three genes (unknown C-4677-1, melanotransferrin, and centaurin) present a differential expression during regeneration. These findings strongly suggest that the gene expression profile varies among regeneration stages and provide evidence for the existence of differential gene expression. PMID:17579180

  2. Projection-based estimation and nonuniformity correction of sensitivity profiles in phased-array surface coils.

    PubMed

    Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook

    2007-03-01

    To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.

  3. mPUMA: a computational approach to microbiota analysis by de novo assembly of operational taxonomic units based on protein-coding barcode sequences.

    PubMed

    Links, Matthew G; Chaban, Bonnie; Hemmingsen, Sean M; Muirhead, Kevin; Hill, Janet E

    2013-08-15

    Formation of operational taxonomic units (OTU) is a common approach to data aggregation in microbial ecology studies based on amplification and sequencing of individual gene targets. The de novo assembly of OTU sequences has been recently demonstrated as an alternative to widely used clustering methods, providing robust information from experimental data alone, without any reliance on an external reference database. Here we introduce mPUMA (microbial Profiling Using Metagenomic Assembly, http://mpuma.sourceforge.net), a software package for identification and analysis of protein-coding barcode sequence data. It was developed originally for Cpn60 universal target sequences (also known as GroEL or Hsp60). Using an unattended process that is independent of external reference sequences, mPUMA forms OTUs by DNA sequence assembly and is capable of tracking OTU abundance. mPUMA processes microbial profiles both in terms of the direct DNA sequence as well as in the translated amino acid sequence for protein coding barcodes. By forming OTUs and calculating abundance through an assembly approach, mPUMA is capable of generating inputs for several popular microbiota analysis tools. Using SFF data from sequencing of a synthetic community of Cpn60 sequences derived from the human vaginal microbiome, we demonstrate that mPUMA can faithfully reconstruct all expected OTU sequences and produce compositional profiles consistent with actual community structure. mPUMA enables analysis of microbial communities while empowering the discovery of novel organisms through OTU assembly.

  4. Identification of Proteus mirabilis Mutants with Increased Sensitivity to Antimicrobial Peptides

    PubMed Central

    McCoy, Andrea J.; Liu, Hongjian; Falla, Timothy J.; Gunn, John S.

    2001-01-01

    Antimicrobial peptides (APs) are important components of the innate defenses of animals, plants, and microorganisms. However, some bacterial pathogens are resistant to the action of APs. For example, Proteus mirabilis is highly resistant to the action of APs, such as polymyxin B (PM), protegrin, and the synthetic protegrin analog IB-367. To better understand this resistance, a transposon mutagenesis approach was used to generate P. mirabilis mutants sensitive to APs. Four unique PM-sensitive mutants of P. mirabilis were identified (these mutants were >2 to >128 times more sensitive than the wild type). Two of these mutants were also sensitive to IB-367 (16 and 128 times more sensitive than the wild type). Lipopolysaccharide (LPS) profiles of the PM- and protegrin-sensitive mutants demonstrated marked differences in both the lipid A and O-antigen regions, while the PM-sensitive mutants appeared to have alterations of either lipid A or O antigen. Matrix-assisted laser desorption ionization–time of flight mass spectrometry analysis of the wild-type and PM-sensitive mutant lipid A showed species with one or two aminoarabinose groups, while lipid A from the PM- and protegrin-sensitive mutants was devoid of aminoarabinose. When the mutants were streaked on an agar-containing medium, the swarming motility of the PM- and protegrin-sensitive mutants was completely inhibited and the swarming motility of the mutants sensitive to only PM was markedly decreased. DNA sequence analysis of the mutagenized loci revealed similarities to an O-acetyltransferase (PM and protegrin sensitive) and ATP synthase and sap loci (PM sensitive). These data further support the role of LPS modifications as an elaborate mechanism in the resistance of certain bacterial species to APs and suggest that LPS surface charge alterations may play a role in P. mirabilis swarming motility. PMID:11408219

  5. A Comprehensive Approach to Sequence-oriented IsomiR annotation (CASMIR): demonstration with IsomiR profiling in colorectal neoplasia.

    PubMed

    Wu, Chung Wah; Evans, Jared M; Huang, Shengbing; Mahoney, Douglas W; Dukek, Brian A; Taylor, William R; Yab, Tracy C; Smyrk, Thomas C; Jen, Jin; Kisiel, John B; Ahlquist, David A

    2018-05-25

    MicroRNA (miRNA) profiling is an important step in studying biological associations and identifying marker candidates. miRNA exists in isoforms, called isomiRs, which may exhibit distinct properties. With conventional profiling methods, limitations in assay and analysis platforms may compromise isomiR interrogation. We introduce a comprehensive approach to sequence-oriented isomiR annotation (CASMIR) to allow unbiased identification of global isomiRs from small RNA sequencing data. In this approach, small RNA reads are maintained as independent sequences instead of being summarized under miRNA names. IsomiR features are identified through step-wise local alignment against canonical forms and precursor sequences. Through customizing the reference database, CASMIR is applicable to isomiR annotation across species. To demonstrate its application, we investigated isomiR profiles in normal and neoplastic human colorectal epithelia. We also ran miRDeep2, a popular miRNA analysis algorithm to validate isomiRs annotated by CASMIR. With CASMIR, specific and biologically relevant isomiR patterns could be identified. We note that specific isomiRs are often more abundant than their canonical forms. We identify isomiRs that are commonly up-regulated in both colorectal cancer and advanced adenoma, and illustrate advantages in targeting isomiRs as potential biomarkers over canonical forms. Studying miRNAs at the isomiR level could reveal new insight into miRNA biology and inform assay design for specific isomiRs. CASMIR facilitates comprehensive annotation of isomiR features in small RNA sequencing data for isomiR profiling and differential expression analysis.

  6. Defining a Conformational Consensus Motif in Cotransin-Sensitive Signal Sequences: A Proteomic and Site-Directed Mutagenesis Study

    PubMed Central

    Klein, Wolfgang; Westendorf, Carolin; Schmidt, Antje; Conill-Cortés, Mercè; Rutz, Claudia; Blohs, Marcus; Beyermann, Michael; Protze, Jonas; Krause, Gerd; Krause, Eberhard; Schülein, Ralf

    2015-01-01

    The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar) to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity. PMID:25806945

  7. Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress

    PubMed Central

    Muthusamy, Muthusamy; Uma, Subbaraya; Backiyarani, Suthanthiram; Saraswathi, Marimuthu Somasundaram; Chandrasekar, Arumugam

    2016-01-01

    In banana, drought responsive gene expression profiles of drought-tolerant and sensitive genotypes remain largely unexplored. In this research, the transcriptome of drought-tolerant banana cultivar (Saba, ABB genome) and sensitive cultivar (Grand Naine, AAA genome) was monitored using mRNA-Seq under control and drought stress condition. A total of 162.36 million reads from tolerant and 126.58 million reads from sensitive libraries were produced and mapped onto the Musa acuminata genome sequence and assembled into 23,096 and 23,079 unigenes. Differential gene expression between two conditions (control and drought) showed that at least 2268 and 2963 statistically significant, functionally known, non-redundant differentially expressed genes (DEGs) from tolerant and sensitive libraries. Drought has up-regulated 991 and 1378 DEGs and down-regulated 1104 and 1585 DEGs respectively in tolerant and sensitive libraries. Among DEGs, 15.9% are coding for transcription factors (TFs) comprising 46 families and 9.5% of DEGs are constituted by protein kinases from 82 families. Most enriched DEGs are mainly involved in protein modifications, lipid metabolism, alkaloid biosynthesis, carbohydrate degradation, glycan metabolism, and biosynthesis of amino acid, cofactor, nucleotide-sugar, hormone, terpenoids and other secondary metabolites. Several, specific genotype-dependent gene expression pattern was observed for drought stress in both cultivars. A subset of 9 DEGs was confirmed using quantitative reverse transcription-PCR. These results will provide necessary information for developing drought-resilient banana plants. PMID:27867388

  8. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.

    PubMed

    Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C

    2015-01-01

    Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  9. Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks.

    PubMed

    Wang, Edwin; Zou, Jinfeng; Zaman, Naif; Beitel, Lenore K; Trifiro, Mark; Paliouras, Miltiadis

    2013-08-01

    Recent tumor genome sequencing confirmed that one tumor often consists of multiple cell subpopulations (clones) which bear different, but related, genetic profiles such as mutation and copy number variation profiles. Thus far, one tumor has been viewed as a whole entity in cancer functional studies. With the advances of genome sequencing and computational analysis, we are able to quantify and computationally dissect clones from tumors, and then conduct clone-based analysis. Emerging technologies such as single-cell genome sequencing and RNA-Seq could profile tumor clones. Thus, we should reconsider how to conduct cancer systems biology studies in the genome sequencing era. We will outline new directions for conducting cancer systems biology by considering that genome sequencing technology can be used for dissecting, quantifying and genetically characterizing clones from tumors. Topics discussed in Part 1 of this review include computationally quantifying of tumor subpopulations; clone-based network modeling, cancer hallmark-based networks and their high-order rewiring principles and the principles of cell survival networks of fast-growing clones. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Abnormal plasma DNA profiles in early ovarian cancer using a non-invasive prenatal testing platform: implications for cancer screening.

    PubMed

    Cohen, Paul A; Flowers, Nicola; Tong, Stephen; Hannan, Natalie; Pertile, Mark D; Hui, Lisa

    2016-08-24

    Non-invasive prenatal testing (NIPT) identifies fetal aneuploidy by sequencing cell-free DNA in the maternal plasma. Pre-symptomatic maternal malignancies have been incidentally detected during NIPT based on abnormal genomic profiles. This low coverage sequencing approach could have potential for ovarian cancer screening in the non-pregnant population. Our objective was to investigate whether plasma DNA sequencing with a clinical whole genome NIPT platform can detect early- and late-stage high-grade serous ovarian carcinomas (HGSOC). This is a case control study of prospectively-collected biobank samples comprising preoperative plasma from 32 women with HGSOC (16 'early cancer' (FIGO I-II) and 16 'advanced cancer' (FIGO III-IV)) and 32 benign controls. Plasma DNA from cases and controls were sequenced using a commercial NIPT platform and chromosome dosage measured. Sequencing data were blindly analyzed with two methods: (1) Subchromosomal changes were called using an open source algorithm WISECONDOR (WIthin-SamplE COpy Number aberration DetectOR). Genomic gains or losses ≥ 15 Mb were prespecified as "screen positive" calls, and mapped to recurrent copy number variations reported in an ovarian cancer genome atlas. (2) Selected whole chromosome gains or losses were reported using the routine NIPT pipeline for fetal aneuploidy. We detected 13/32 cancer cases using the subchromosomal analysis (sensitivity 40.6 %, 95 % CI, 23.7-59.4 %), including 6/16 early and 7/16 advanced HGSOC cases. Two of 32 benign controls had subchromosomal gains ≥ 15 Mb (specificity 93.8 %, 95 % CI, 79.2-99.2 %). Twelve of the 13 true positive cancer cases exhibited specific recurrent changes reported in HGSOC tumors. The NIPT pipeline resulted in one "monosomy 18" call from the cancer group, and two "monosomy X" calls in the controls. Low coverage plasma DNA sequencing used for prenatal testing detected 40.6 % of all HGSOC, including 38 % of early stage cases. Our findings demonstrate the potential of a high throughput sequencing platform to screen for early HGSOC in plasma based on characteristic multiple segmental chromosome gains and losses. The performance of this approach may be further improved by refining bioinformatics algorithms and targeting selected cancer copy number variations.

  11. DNA Multiple Sequence Alignment Guided by Protein Domains: The MSA-PAD 2.0 Method.

    PubMed

    Balech, Bachir; Monaco, Alfonso; Perniola, Michele; Santamaria, Monica; Donvito, Giacinto; Vicario, Saverio; Maggi, Giorgio; Pesole, Graziano

    2018-01-01

    Multiple sequence alignment (MSA) is a fundamental component in many DNA sequence analyses including metagenomics studies and phylogeny inference. When guided by protein profiles, DNA multiple alignments assume a higher precision and robustness. Here we present details of the use of the upgraded version of MSA-PAD (2.0), which is a DNA multiple sequence alignment framework able to align DNA sequences coding for single/multiple protein domains guided by PFAM or user-defined annotations. MSA-PAD has two alignment strategies, called "Gene" and "Genome," accounting for coding domains order and genomic rearrangements, respectively. Novel options were added to the present version, where the MSA can be guided by protein profiles provided by the user. This allows MSA-PAD 2.0 to run faster and to add custom protein profiles sometimes not present in PFAM database according to the user's interest. MSA-PAD 2.0 is currently freely available as a Web application at https://recasgateway.cloud.ba.infn.it/ .

  12. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles

    PubMed Central

    Brender, Jeffrey R.; Zhang, Yang

    2015-01-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533

  13. Gene expression profiling of human breast tissue samples using SAGE-Seq.

    PubMed

    Wu, Zhenhua Jeremy; Meyer, Clifford A; Choudhury, Sibgat; Shipitsin, Michail; Maruyama, Reo; Bessarabova, Marina; Nikolskaya, Tatiana; Sukumar, Saraswati; Schwartzman, Armin; Liu, Jun S; Polyak, Kornelia; Liu, X Shirley

    2010-12-01

    We present a powerful application of ultra high-throughput sequencing, SAGE-Seq, for the accurate quantification of normal and neoplastic mammary epithelial cell transcriptomes. We develop data analysis pipelines that allow the mapping of sense and antisense strands of mitochondrial and RefSeq genes, the normalization between libraries, and the identification of differentially expressed genes. We find that the diversity of cancer transcriptomes is significantly higher than that of normal cells. Our analysis indicates that transcript discovery plateaus at 10 million reads/sample, and suggests a minimum desired sequencing depth around five million reads. Comparison of SAGE-Seq and traditional SAGE on normal and cancerous breast tissues reveals higher sensitivity of SAGE-Seq to detect less-abundant genes, including those encoding for known breast cancer-related transcription factors and G protein-coupled receptors (GPCRs). SAGE-Seq is able to identify genes and pathways abnormally activated in breast cancer that traditional SAGE failed to call. SAGE-Seq is a powerful method for the identification of biomarkers and therapeutic targets in human disease.

  14. Peregrine: A rapid and unbiased method to produce strand-specific RNA-Seq libraries from small quantities of starting material.

    PubMed

    Langevin, Stanley A; Bent, Zachary W; Solberg, Owen D; Curtis, Deanna J; Lane, Pamela D; Williams, Kelly P; Schoeniger, Joseph S; Sinha, Anupama; Lane, Todd W; Branda, Steven S

    2013-04-01

    Use of second generation sequencing (SGS) technologies for transcriptional profiling (RNA-Seq) has revolutionized transcriptomics, enabling measurement of RNA abundances with unprecedented specificity and sensitivity and the discovery of novel RNA species. Preparation of RNA-Seq libraries requires conversion of the RNA starting material into cDNA flanked by platform-specific adaptor sequences. Each of the published methods and commercial kits currently available for RNA-Seq library preparation suffers from at least one major drawback, including long processing times, large starting material requirements, uneven coverage, loss of strand information and high cost. We report the development of a new RNA-Seq library preparation technique that produces representative, strand-specific RNA-Seq libraries from small amounts of starting material in a fast, simple and cost-effective manner. Additionally, we have developed a new quantitative PCR-based assay for precisely determining the number of PCR cycles to perform for optimal enrichment of the final library, a key step in all SGS library preparation workflows.

  15. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes.

    PubMed

    Xie, Zhiqun; Tang, Haixu

    2017-11-01

    The insertion sequence (IS) elements are the smallest but most abundant autonomous transposable elements in prokaryotic genomes, which play a key role in prokaryotic genome organization and evolution. With the fast growing genomic data, it is becoming increasingly critical for biology researchers to be able to accurately and automatically annotate ISs in prokaryotic genome sequences. The available automatic IS annotation systems are either providing only incomplete IS annotation or relying on the availability of existing genome annotations. Here, we present a new IS elements annotation pipeline to address these issues. ISEScan is a highly sensitive software pipeline based on profile hidden Markov models constructed from manually curated IS elements. ISEScan performs better than existing IS annotation systems when tested on prokaryotic genomes with curated annotations of IS elements. Applying it to 2784 prokaryotic genomes, we report the global distribution of IS families across taxonomic clades in Archaea and Bacteria. ISEScan is implemented in Python and released as an open source software at https://github.com/xiezhq/ISEScan. hatang@indiana.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. Genetic Determinants of Cisplatin Resistance in Patients With Advanced Germ Cell Tumors

    PubMed Central

    Bagrodia, Aditya; Lee, Byron H.; Lee, William; Cha, Eugene K.; Sfakianos, John P.; Iyer, Gopa; Pietzak, Eugene J.; Gao, Sizhi Paul; Zabor, Emily C.; Ostrovnaya, Irina; Kaffenberger, Samuel D.; Syed, Aijazuddin; Arcila, Maria E.; Chaganti, Raju S.; Kundra, Ritika; Eng, Jana; Hreiki, Joseph; Vacic, Vladimir; Arora, Kanika; Oschwald, Dayna M.; Berger, Michael F.; Bajorin, Dean F.; Bains, Manjit S.; Schultz, Nikolaus; Reuter, Victor E.; Sheinfeld, Joel; Bosl, George J.; Al-Ahmadie, Hikmat A.; Solit, David B.

    2016-01-01

    Purpose Owing to its exquisite chemotherapy sensitivity, most patients with metastatic germ cell tumors (GCTs) are cured with cisplatin-based chemotherapy. However, up to 30% of patients with advanced GCT exhibit cisplatin resistance, which requires intensive salvage treatment, and have a 50% risk of cancer-related death. To identify a genetic basis for cisplatin resistance, we performed whole-exome and targeted sequencing of cisplatin-sensitive and cisplatin-resistant GCTs. Methods Men with GCT who received a cisplatin-containing chemotherapy regimen and had available tumor tissue were eligible to participate in this study. Whole-exome sequencing or targeted exon-capture–based sequencing was performed on 180 tumors. Patients were categorized as cisplatin sensitive or cisplatin resistant by using a combination of postchemotherapy parameters, including serum tumor marker levels, radiology, and pathology at surgical resection of residual disease. Results TP53 alterations were present exclusively in cisplatin-resistant tumors and were particularly prevalent among primary mediastinal nonseminomas (72%). TP53 pathway alterations including MDM2 amplifications were more common among patients with adverse clinical features, categorized as poor risk according to the International Germ Cell Cancer Collaborative Group (IGCCCG) model. Despite this association, TP53 and MDM2 alterations predicted adverse prognosis independent of the IGCCCG model. Actionable alterations, including novel RAC1 mutations, were detected in 55% of cisplatin-resistant GCTs. Conclusion In GCT, TP53 and MDM2 alterations were associated with cisplatin resistance and inferior outcomes, independent of the IGCCCG model. The finding of frequent TP53 alterations among mediastinal primary nonseminomas may explain the more frequent chemoresistance observed with this tumor subtype. A substantial portion of cisplatin-resistant GCTs harbor actionable alterations, which might respond to targeted therapies. Genomic profiling of patients with advanced GCT could improve current risk stratification and identify novel therapeutic approaches for patients with cisplatin-resistant disease. PMID:27646943

  17. Extracellular calcium triggers unique transcriptional programs and modulates staurosporine-induced cell death in Neurospora crassa

    PubMed Central

    Gonçalves, A. P.; Monteiro, João; Lucchi, Chiara; Kowbel, David J.; Cordeiro, J. M.; Correia-de-Sá, Paulo; Rigden, Daniel J.; Glass, N. L.; Videira, Arnaldo

    2014-01-01

    Alterations in the intracellular levels of calcium are a common response to cell death stimuli in animals and fungi and, particularly, in the Neurospora crassa response to staurosporine. We highlight the importance of the extracellular availability of Ca2+ for this response. Limitation of the ion in the culture medium further sensitizes cells to the drug and results in increased accumulation of reactive oxygen species (ROS). Conversely, an approximately 30-fold excess of external Ca2+ leads to increased drug tolerance and lower ROS generation. In line with this, distinct staurosporine-induced cytosolic Ca2+ signaling profiles were observed in the absence or presence of excessive external Ca2+. High-throughput RNA sequencing revealed that different concentrations of extracellular Ca2+ define distinct transcriptional programs. Our transcriptional profiling also pointed to two putative novel Ca2+-binding proteins, encoded by the NCU08524 and NCU06607 genes, and provides a reference dataset for future investigations on the role of Ca2+ in fungal biology. PMID:28357255

  18. Pre-supernova models for massive stars produced with large nuclear reaction network by MESA

    NASA Astrophysics Data System (ADS)

    Park, Byeongchan; Kwak, Kyujin

    2018-04-01

    Core-collapsed Supernova (CCSN) is one of violent phenomena in the universe. CCSN generates heavy elements and leaves a neutron star behind. It has been known that the physical properties of CCSN depend on those of pre-supernova such as mass, metallicities including distribution of elements, and the density and temperature profile which are obtained from the stellar evolution calculation. In particular, the production of heavy elements in CCSN is sensitive to the abundance profiles in the pre-supernova models. In this study, we evolve a massive main sequence star with 15Msun and solar metallicity to the pre-supernova stage by using two different networks, small and large. The large nuclear reaction network includes more than four times isotopes than the small network. Our calculations were done by MESA (Modules for Experiments in Stellar Astrophysics) which allowed us to use the large network containing about a hundred isotopes. We compare the results obtained with two networks.

  19. Integrated single-cell genetic and transcriptional analysis suggests novel drivers of chronic lymphocytic leukemia

    PubMed Central

    Wang, Lili; Fan, Jean; Francis, Joshua M.; Georghiou, George; Hergert, Sarah; Li, Shuqiang; Gambe, Rutendo; Zhou, Chensheng W.; Yang, Chunxiao; Xiao, Sheng; Cin, Paola Dal; Bowden, Michaela; Kotliar, Dylan; Shukla, Sachet A.; Brown, Jennifer R.; Neuberg, Donna; Alessi, Dario R.; Zhang, Cheng-Zhong; Kharchenko, Peter V.; Livak, Kenneth J.; Wu, Catherine J.

    2017-01-01

    Intra-tumoral genetic heterogeneity has been characterized across cancers by genome sequencing of bulk tumors, including chronic lymphocytic leukemia (CLL). In order to more accurately identify subclones, define phylogenetic relationships, and probe genotype–phenotype relationships, we developed methods for targeted mutation detection in DNA and RNA isolated from thousands of single cells from five CLL samples. By clearly resolving phylogenic relationships, we uncovered mutated LCP1 and WNK1 as novel CLL drivers, supported by functional evidence demonstrating their impact on CLL pathways. Integrative analysis of somatic mutations with transcriptional states prompts the idea that convergent evolution generates phenotypically similar cells in distinct genetic branches, thus creating a cohesive expression profile in each CLL sample despite the presence of genetic heterogeneity. Our study highlights the potential for single-cell RNA-based targeted analysis to sensitively determine transcriptional and mutational profiles of individual cancer cells, leading to increased understanding of driving events in malignancy. PMID:28679620

  20. Comprehensive analysis of the T-cell receptor beta chain gene in rhesus monkey by high throughput sequencing

    PubMed Central

    Li, Zhoufang; Liu, Guangjie; Tong, Yin; Zhang, Meng; Xu, Ying; Qin, Li; Wang, Zhanhui; Chen, Xiaoping; He, Jiankui

    2015-01-01

    Profiling immune repertoires by high throughput sequencing enhances our understanding of immune system complexity and immune-related diseases in humans. Previously, cloning and Sanger sequencing identified limited numbers of T cell receptor (TCR) nucleotide sequences in rhesus monkeys, thus their full immune repertoire is unknown. We applied multiplex PCR and Illumina high throughput sequencing to study the TCRβ of rhesus monkeys. We identified 1.26 million TCRβ sequences corresponding to 643,570 unique TCRβ sequences and 270,557 unique complementarity-determining region 3 (CDR3) gene sequences. Precise measurements of CDR3 length distribution, CDR3 amino acid distribution, length distribution of N nucleotide of junctional region, and TCRV and TCRJ gene usage preferences were performed. A comprehensive profile of rhesus monkey immune repertoire might aid human infectious disease studies using rhesus monkeys. PMID:25961410

  1. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains.

    PubMed

    Suresh, Sundari; Schlecht, Ulrich; Xu, Weihong; Miranda, Molly; Davis, Ronald W; Nislow, Corey; Giaever, Guri; St Onge, Robert P

    2016-09-01

    The Yeast Knockout Collection is a complete set of gene deletion strains for the budding yeast, Saccharomyces cerevisiae In each strain, one of approximately 6000 open-reading frames is replaced with a dominant selectable marker flanked by two DNA barcodes. These barcodes, which are unique to each gene, allow the growth of thousands of strains to be individually measured from a single pooled culture. The collection, and other resources that followed, has ushered in a new era in chemical biology, enabling unbiased and systematic identification of chemical-genetic interactions (CGIs) with remarkable ease. CGIs link bioactive compounds to biological processes, and hence can reveal the mechanism of action of growth-inhibitory compounds in vivo, including those of antifungal, antibiotic, and anticancer drugs. The chemogenomic profiling method described here measures the sensitivity induced in yeast heterozygous and homozygous deletion strains in the presence of a chemical inhibitor of growth (termed haploinsufficiency profiling and homozygous profiling, respectively, or HIPHOP). The protocol is both scalable and amenable to automation. After competitive growth of yeast knockout collection cultures, with and without chemical inhibitors, CGIs can be identified and quantified using either array- or sequencing-based approaches as described here. © 2016 Cold Spring Harbor Laboratory Press.

  2. Echinococcus granulosus Sensu Stricto in Dogs and Jackals from Caspian Sea Region, Northern Iran

    PubMed Central

    GHOLAMI, Shirzad; JAHANDAR, Hefzallah; ABASTABAR, Mahdi; PAGHEH, Abdolsatar; MOBEDI, Iraj; SHARBATKHORI, Mitra

    2016-01-01

    Background: The aim of the present study was genotyping of Echinococcus granulosus isolates from dogs and jackals in Mazandaran Province, northern Iran, and using partial sequence of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1). Methods: E. granulosus isolates (n = 15) were collected from 42 stray dogs and 16 jackals found in south of the Caspian Sea in northern Iran. After morphological study, the isolates were genetically characterized using consensus sequences (366bp) of the cox1 gene. Phylogenetic analysis of cox1 nucleotide sequence data was performed using a Bayesian Inference approach. Results: Four different sequences were observed among the isolates. Two genotypes [G1 (66.7%) and G3 (33.3%)] were identified among the isolates. The G1 sequences indicated three sequence profiles. One profile (Maz1) had 100% homology with reference sequence (AN: KP339045). Two other profiles, designated Maz2 and Maz3, had 99% homology with the G1 genotype (ANs: KP339046 and KP339047). A G3 sequence designated Maz4 showed 100% homology with a G3 reference sequence (AN: KP339048). Conclusion: The occurrence of the G1 genotype of E. granulosus sensu stricto as a frequent genotype in dogs is emphasized. This study established the first molecular characterization of E. granulosus in the province. PMID:28096852

  3. PSS-3D1D: an improved 3D1D profile method of protein fold recognition for the annotation of twilight zone sequences.

    PubMed

    Ganesan, K; Parthasarathy, S

    2011-12-01

    Annotation of any newly determined protein sequence depends on the pairwise sequence identity with known sequences. However, for the twilight zone sequences which have only 15-25% identity, the pair-wise comparison methods are inadequate and the annotation becomes a challenging task. Such sequences can be annotated by using methods that recognize their fold. Bowie et al. described a 3D1D profile method in which the amino acid sequences that fold into a known 3D structure are identified by their compatibility to that known 3D structure. We have improved the above method by using the predicted secondary structure information and employ it for fold recognition from the twilight zone sequences. In our Protein Secondary Structure 3D1D (PSS-3D1D) method, a score (w) for the predicted secondary structure of the query sequence is included in finding the compatibility of the query sequence to the known fold 3D structures. In the benchmarks, the PSS-3D1D method shows a maximum of 21% improvement in predicting correctly the α + β class of folds from the sequences with twilight zone level of identity, when compared with the 3D1D profile method. Hence, the PSS-3D1D method could offer more clues than the 3D1D method for the annotation of twilight zone sequences. The web based PSS-3D1D method is freely available in the PredictFold server at http://bioinfo.bdu.ac.in/servers/ .

  4. Multiplex Amplification Coupled with COLD-PCR and High Resolution Melting Enables Identification of Low-Abundance Mutations in Cancer Samples with Low DNA Content

    PubMed Central

    Milbury, Coren A.; Chen, Clark C.; Mamon, Harvey; Liu, Pingfang; Santagata, Sandro; Makrigiorgos, G. Mike

    2011-01-01

    Thorough screening of cancer-specific biomarkers, such as DNA mutations, can require large amounts of genomic material; however, the amount of genomic material obtained from some specimens (such as biopsies, fine-needle aspirations, circulating-DNA or tumor cells, and histological slides) may limit the analyses that can be performed. Furthermore, mutant alleles may be at low-abundance relative to wild-type DNA, reducing detection ability. We present a multiplex-PCR approach tailored to amplify targets of interest from small amounts of precious specimens, for extensive downstream detection of low-abundance alleles. Using 3 ng of DNA (1000 genome-equivalents), we amplified the 1 coding exons (2-11) of TP53 via multiplex-PCR. Following multiplex-PCR, we performed COLD-PCR (co-amplification of major and minor alleles at lower denaturation temperature) to enrich low-abundance variants and high resolution melting (HRM) to screen for aberrant melting profiles. Mutation-positive samples were sequenced. Evaluation of mutation-containing dilutions revealed improved sensitivities after COLD-PCR over conventional-PCR. COLD-PCR improved HRM sensitivity by approximately threefold to sixfold. Similarly, COLD-PCR improved mutation identification in sequence-chromatograms over conventional PCR. In clinical specimens, eight mutations were detected via conventional-PCR-HRM, whereas 12 were detected by COLD-PCR-HRM, yielding a 33% improvement in mutation detection. In summary, we demonstrate an efficient approach to increase screening capabilities from limited DNA material via multiplex-PCR and improve mutation detection sensitivity via COLD-PCR amplification. PMID:21354058

  5. A novel high-resolution multilocus sequence typing of Giardia intestinalis Assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination.

    PubMed

    Ankarklev, Johan; Lebbad, Marianne; Einarsson, Elin; Franzén, Oscar; Ahola, Harri; Troell, Karin; Svärd, Staffan G

    2018-06-01

    Molecular epidemiology and genotyping studies of the parasitic protozoan Giardia intestinalis have proven difficult due to multiple factors, such as low discriminatory power in the commonly used genotyping loci, which has hampered molecular analyses of outbreak sources, zoonotic transmission and virulence types. Here we have focused on assemblage A Giardia and developed a high-resolution assemblage-specific multilocus sequence typing (MLST) method. Analyses of sequenced G. intestinalis assemblage A genomes from different sub-assemblages identified a set of six genetic loci with high genetic variability. DNA samples from both humans (n = 44) and animals (n = 18) that harbored Giardia assemblage A infections, were PCR amplified (557-700 bp products) and sequenced at the six novel genetic loci. Bioinformatic analyses showed five to ten-fold higher levels of polymorphic sites than what was previously found among assemblage A samples using the classic genotyping loci. Phylogenetically, a division of two major clusters in assemblage A became apparent, separating samples of human and animal origin. A subset of human samples (n = 9) from a documented Giardia outbreak in a Swedish day-care center, showed full complementarity at nine genetic loci (the six new and the standard BG, TPI and GDH loci), strongly suggesting one source of infection. Furthermore, three samples of human origin displayed MLST profiles that were phylogenetically more closely related to MLST profiles from animal derived samples, suggesting zoonotic transmission. These new genotyping loci enabled us to detect events of recombination between different assemblage A isolates but also between assemblage A and E isolates. In summary, we present a novel and expanded MLST strategy with significantly improved sensitivity for molecular analyses of virulence types, zoonotic potential and source tracking for assemblage A Giardia. Copyright © 2018. Published by Elsevier B.V.

  6. Intratumoral genetic heterogeneity in metastatic melanoma is accompanied by variation in malignant behaviors

    PubMed Central

    2013-01-01

    Background Intratumoral heterogeneity is a major obstacle for the treatment of cancer, as the presence of even minor populations that are insensitive to therapy can lead to disease relapse. Increased clonal diversity has been correlated with a poor prognosis for cancer patients, and we therefore examined genetic, transcriptional, and functional diversity in metastatic melanoma. Methods Amplicon sequencing and SNP microarrays were used to profile somatic mutations and DNA copy number changes in multiple regions from metastatic lesions. Clonal genetic and transcriptional heterogeneity was also assessed in single cell clones from early passage cell lines, which were then subjected to clonogenicity and drug sensitivity assays. Results MAPK pathway and tumor suppressor mutations were identified in all regions of the melanoma metastases analyzed. In contrast, we identified copy number abnormalities present in only some regions in addition to homogeneously present changes, suggesting ongoing genetic evolution following metastatic spread. Copy number heterogeneity from a tumor was represented in matched cell line clones, which also varied in their clonogenicity and drug sensitivity. Minor clones were identified based on dissimilarity to the parental cell line, and these clones were the most clonogenic and least sensitive to drugs. Finally, treatment of a polyclonal cell line with paclitaxel to enrich for drug-resistant cells resulted in the adoption of a gene expression profile with features of one of the minor clones, supporting the idea that these populations can mediate disease relapse. Conclusion Our results support the hypothesis that minor clones might have major consequences for patient outcomes in melanoma. PMID:24119551

  7. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  8. FMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa

    PubMed Central

    Grahn, Jessica A.; Henry, Molly J.; McAuley, J. Devin

    2011-01-01

    How we measure time and integrate temporal cues from different sensory modalities are fundamental questions in neuroscience. Sensitivity to a “beat” (such as that routinely perceived in music) differs substantially between auditory and visual modalities. Here we examined beat sensitivity in each modality, and examined cross-modal influences, using functional magnetic resonance imaging (fMRI) to characterize brain activity during perception of auditory and visual rhythms. In separate fMRI sessions, participants listened to auditory sequences or watched visual sequences. The order of auditory and visual sequence presentation was counterbalanced so that cross-modal order effects could be investigated. Participants judged whether sequences were speeding up or slowing down, and the pattern of tempo judgments was used to derive a measure of sensitivity to an implied beat. As expected, participants were less sensitive to an implied beat in visual sequences than in auditory sequences. However, visual sequences produced a stronger sense of beat when preceded by auditory sequences with identical temporal structure. Moreover, increases in brain activity were observed in the bilateral putamen for visual sequences preceded by auditory sequences when compared to visual sequences without prior auditory exposure. No such order-dependent differences (behavioral or neural) were found for the auditory sequences. The results provide further evidence for the role of the basal ganglia in internal generation of the beat and suggest that an internal auditory rhythm representation may be activated during visual rhythm perception. PMID:20858544

  9. MEGGASENSE - The Metagenome/Genome Annotated Sequence Natural Language Search Engine: A Platform for 
the Construction of Sequence Data Warehouses.

    PubMed

    Gacesa, Ranko; Zucko, Jurica; Petursdottir, Solveig K; Gudmundsdottir, Elisabet Eik; Fridjonsson, Olafur H; Diminic, Janko; Long, Paul F; Cullum, John; Hranueli, Daslav; Hreggvidsson, Gudmundur O; Starcevic, Antonio

    2017-06-01

    The MEGGASENSE platform constructs relational databases of DNA or protein sequences. The default functional analysis uses 14 106 hidden Markov model (HMM) profiles based on sequences in the KEGG database. The Solr search engine allows sophisticated queries and a BLAST search function is also incorporated. These standard capabilities were used to generate the SCATT database from the predicted proteome of Streptomyces cattleya . The implementation of a specialised metagenome database (AMYLOMICS) for bioprospecting of carbohydrate-modifying enzymes is described. In addition to standard assembly of reads, a novel 'functional' assembly was developed, in which screening of reads with the HMM profiles occurs before the assembly. The AMYLOMICS database incorporates additional HMM profiles for carbohydrate-modifying enzymes and it is illustrated how the combination of HMM and BLAST analyses helps identify interesting genes. A variety of different proteome and metagenome databases have been generated by MEGGASENSE.

  10. Managing the genomic revolution in cancer diagnostics.

    PubMed

    Nguyen, Doreen; Gocke, Christopher D

    2017-08-01

    Molecular tumor profiling is now a routine part of patient care, revealing targetable genomic alterations and molecularly distinct tumor subtypes with therapeutic and prognostic implications. The widespread adoption of next-generation sequencing technologies has greatly facilitated clinical implementation of genomic data and opened the door for high-throughput multigene-targeted sequencing. Herein, we discuss the variability of cancer genetic profiling currently offered by clinical laboratories, the challenges of applying rapidly evolving medical knowledge to individual patients, and the need for more standardized population-based molecular profiling.

  11. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes

    PubMed Central

    Shiroguchi, Katsuyuki; Jia, Tony Z.; Sims, Peter A.; Xie, X. Sunney

    2012-01-01

    RNA sequencing (RNA-Seq) is a powerful tool for transcriptome profiling, but is hampered by sequence-dependent bias and inaccuracy at low copy numbers intrinsic to exponential PCR amplification. We developed a simple strategy for mitigating these complications, allowing truly digital RNA-Seq. Following reverse transcription, a large set of barcode sequences is added in excess, and nearly every cDNA molecule is uniquely labeled by random attachment of barcode sequences to both ends. After PCR, we applied paired-end deep sequencing to read the two barcodes and cDNA sequences. Rather than counting the number of reads, RNA abundance is measured based on the number of unique barcode sequences observed for a given cDNA sequence. We optimized the barcodes to be unambiguously identifiable, even in the presence of multiple sequencing errors. This method allows counting with single-copy resolution despite sequence-dependent bias and PCR-amplification noise, and is analogous to digital PCR but amendable to quantifying a whole transcriptome. We demonstrated transcriptome profiling of Escherichia coli with more accurate and reproducible quantification than conventional RNA-Seq. PMID:22232676

  12. Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles.

    PubMed

    Glaubitz, Ulrike; Li, Xia; Schaedel, Sandra; Erban, Alexander; Sulpice, Ronan; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2017-01-01

    Transcript and metabolite profiling were performed on leaves from six rice cultivars under high night temperature (HNT) condition. Six genes were identified as central for HNT response encoding proteins involved in transcription regulation, signal transduction, protein-protein interactions, jasmonate response and the biosynthesis of secondary metabolites. Sensitive cultivars showed specific changes in transcript abundance including abiotic stress responses, changes of cell wall-related genes, of ABA signaling and secondary metabolism. Additionally, metabolite profiles revealed a highly activated TCA cycle under HNT and concomitantly increased levels in pathways branching off that could be corroborated by enzyme activity measurements. Integrated data analysis using clustering based on one-dimensional self-organizing maps identified two profiles highly correlated with HNT sensitivity. The sensitivity profile included genes of the functional bins abiotic stress, hormone metabolism, cell wall, signaling, redox state, transcription factors, secondary metabolites and defence genes. In the tolerance profile, similar bins were affected with slight differences in hormone metabolism and transcription factor responses. Metabolites of the two profiles revealed involvement of GABA signaling, thus providing a link to the TCA cycle status in sensitive cultivars and of myo-inositol as precursor for inositol phosphates linking jasmonate signaling to the HNT response specifically in tolerant cultivars. © 2016 John Wiley & Sons Ltd.

  13. Genotyping by alkaline dehybridization using graphically encoded particles.

    PubMed

    Zhang, Huaibin; DeConinck, Adam J; Slimmer, Scott C; Doyle, Patrick S; Lewis, Jennifer A; Nuzzo, Ralph G

    2011-03-01

    This work describes a nonenzymatic, isothermal genotyping method based on the kinetic differences exhibited in the dehybridization of perfectly matched (PM) and single-base mismatched (MM) DNA duplexes in an alkaline solution. Multifunctional encoded hydrogel particles incorporating allele-specific oligonucleotide (ASO) probes in two distinct regions were fabricated by using microfluidic-based stop-flow lithography. Each particle contained two distinct ASO probe sequences differing at a single base position, and thus each particle was capable of simultaneously probing two distinct target alleles. Fluorescently labeled target alleles were annealed to both probe regions of a particle, and the rate of duplex dehybridization was monitored by using fluorescence microscopy. Duplex dehybridization was achieved through an alkaline stimulus using either a pH step function or a temporal pH gradient. When a single target probe sequence was used, the rate of mismatch duplex dehybridization could be discriminated from the rate of perfect match duplex dehybridization. In a more demanding application in which two distinct probe sequences were used, we found that the rate profiles provided a means to discriminate probe dehybridizations from both of the two mismatched duplexes as well as to distinguish at high certainty the dehybridization of the two perfectly matched duplexes. These results demonstrate an ability of alkaline dehybridization to correctly discriminate the rank hierarchy of thermodynamic stability among four sets of perfect match and single-base mismatch duplexes. We further demonstrate that these rate profiles are strongly temperature dependent and illustrate how the sensitivity can be compensated beneficially by the use of an actuating gradient pH field. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Comparison of Two Capillary Gel Electrophoresis Systems for Clostridium difficile Ribotyping, Using a Panel of Ribotype 027 Isolates and Whole-Genome Sequences as a Reference Standard

    PubMed Central

    Xiao, Meng; Kong, Fanrong; Jin, Ping; Wang, Qinning; Xiao, Kelin; Jeoffreys, Neisha; James, Gregory

    2012-01-01

    PCR ribotyping is the most commonly used Clostridium difficile genotyping method, but its utility is limited by lack of standardization. In this study, we analyzed four published whole genomes and tested an international collection of 21 well-characterized C. difficile ribotype 027 isolates as the basis for comparison of two capillary gel electrophoresis (CGE)-based ribotyping methods. There were unexpected differences between the 16S-23S rRNA intergenic spacer region (ISR) allelic profiles of the four ribotype 027 genomes, but six bands were identified in all four and a seventh in three genomes. All seven bands and another, not identified in any of the whole genomes, were found in all 21 isolates. We compared sequencer-based CGE (SCGE) with three different primer pairs to the Qiagen QIAxcel CGE (QCGE) platform. Deviations from individual reference/consensus band sizes were smaller for SCGE (0 to 0.2 bp) than for QCGE (4.2 to 9.5 bp). Compared with QCGE, SCGE more readily distinguished bands of similar length (more discriminatory), detected bands of larger size and lower intensity (more sensitive), and assigned band sizes more accurately and reproducibly, making it more suitable for standardization. Specifically, QCGE failed to identify the largest ISR amplicon. Based on several criteria, we recommend the primer set 16S-USA/23S-USA for use in a proposed standard SCGE method. Similar differences between SCGE and QCGE were found on testing of 14 isolates of four other C. difficile ribotypes. Based on our results, ISR profiles based on accurate sequencer-based band lengths would be preferable to agarose gel-based banding patterns for the assignment of ribotypes. PMID:22692737

  15. ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis

    PubMed Central

    2011-01-01

    Background Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. Results Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. Conclusions Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis. PMID:21356108

  16. DNA-Sequence Based Typing of the Cronobacter Genus Using MLST, CRISPR-cas Array and Capsular Profiling

    PubMed Central

    Ogrodzki, Pauline; Forsythe, Stephen J.

    2017-01-01

    The Cronobacter genus is composed of seven species, within which a number of pathovars have been described. The most notable infections by Cronobacter spp. are of infants through the consumption of contaminated infant formula. The description of the genus has greatly improved in recent years through DNA sequencing techniques, and this has led to a robust means of identification. However some species are highly clonal and this limits the ability to discriminate between unrelated strains by some methods of genotyping. This article updates the application of three genotyping methods across the Cronobacter genus. The three genotyping methods were multilocus sequence typing (MLST), capsular profiling of the K-antigen and colanic acid (CA) biosynthesis regions, and CRISPR-cas array profiling. A total of 1654 MLST profiled and 286 whole genome sequenced strains, available by open access at the PubMLST Cronobacter database, were used this analysis. The predominance of C. sakazakii and C. malonaticus in clinical infections was confirmed. The majority of clinical strains being in the C. sakazakii clonal complexes (CC) 1 and 4, sequence types (ST) 8 and 12 and C. malonaticus ST7. The capsular profile K2:CA2, previously proposed as being strongly associated with C. sakazakii and C. malonaticus isolates from severe neonatal infections, was also found in C. turicensis, C. dublinensis and C. universalis. The majority of CRISPR-cas types across the genus was the I-E (Ecoli) type. Some strains of C. dublinensis and C. muytjensii encoded the I-F (Ypseudo) type, and others lacked the cas gene loci. The significance of the expanding profiling will be of benefit to researchers as well as governmental and industrial risk assessors. PMID:29033918

  17. Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling–A Feasibility Study

    PubMed Central

    Weißenborn, Sandra; Walther, Dirk

    2017-01-01

    Despite many developed experimental and computational approaches, functional gene annotation remains challenging. With the rapidly growing number of sequenced genomes, the concept of phylogenetic profiling, which predicts functional links between genes that share a common co-occurrence pattern across different genomes, has gained renewed attention as it promises to annotate gene functions based on presence/absence calls alone. We applied phylogenetic profiling to the problem of metabolic pathway assignments of plant genes with a particular focus on secondary metabolism pathways. We determined phylogenetic profiles for 40,960 metabolic pathway enzyme genes with assigned EC numbers from 24 plant species based on sequence and pathway annotation data from KEGG and Ensembl Plants. For gene sequence family assignments, needed to determine the presence or absence of particular gene functions in the given plant species, we included data of all 39 species available at the Ensembl Plants database and established gene families based on pairwise sequence identities and annotation information. Aside from performing profiling comparisons, we used machine learning approaches to predict pathway associations from phylogenetic profiles alone. Selected metabolic pathways were indeed found to be composed of gene families of greater than expected phylogenetic profile similarity. This was particularly evident for primary metabolism pathways, whereas for secondary pathways, both the available annotation in different species as well as the abstraction of functional association via distinct pathways proved limiting. While phylogenetic profile similarity was generally not found to correlate with gene co-expression, direct physical interactions of proteins were reflected by a significantly increased profile similarity suggesting an application of phylogenetic profiling methods as a filtering step in the identification of protein-protein interactions. This feasibility study highlights the potential and challenges associated with phylogenetic profiling methods for the detection of functional relationships between genes as well as the need to enlarge the set of plant genes with proven secondary metabolism involvement as well as the limitations of distinct pathways as abstractions of relationships between genes. PMID:29163570

  18. Massively parallel sequencing of 32 forensic markers using the Precision ID GlobalFiler™ NGS STR Panel and the Ion PGM™ System.

    PubMed

    Wang, Zheng; Zhou, Di; Wang, Hui; Jia, Zhenjun; Liu, Jing; Qian, Xiaoqin; Li, Chengtao; Hou, Yiping

    2017-11-01

    Massively parallel sequencing (MPS) technologies have proved capable of sequencing the majority of the key forensic STR markers. By MPS, not only the repeat-length size but also sequence variations could be detected. Recently, Thermo Fisher Scientific has designed an advanced MPS 32-plex panel, named the Precision ID GlobalFiler™ NGS STR Panel, where the primer set has been designed specifically for the purpose of MPS technologies and the data analysis are supported by a new version HID STR Genotyper Plugin (V4.0). In this study, a series of experiments that evaluated concordance, reliability, sensitivity of detection, mixture analysis, and the ability to analyze case-type and challenged samples were conducted. In addition, 106 unrelated Han individuals were sequenced to perform genetic analyses of allelic diversity. As expected, MPS detected broader allele variations and gained higher power of discrimination and exclusion rate. MPS results were found to be concordant with current capillary electrophoresis methods, and single source complete profiles could be obtained stably using as little as 100pg of input DNA. Moreover, this MPS panel could be adapted to case-type samples and partial STR genotypes of the minor contributor could be detected up to 19:1 mixture. Aforementioned results indicate that the Precision ID GlobalFiler™ NGS STR Panel is reliable, robust and reproducible and have the potential to be used as a tool for human forensics. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterization of the mammalian miRNA turnover landscape

    PubMed Central

    Guo, Yanwen; Liu, Jun; Elfenbein, Sarah J.; Ma, Yinghong; Zhong, Mei; Qiu, Caihong; Ding, Ye; Lu, Jun

    2015-01-01

    Steady state cellular microRNA (miRNA) levels represent the balance between miRNA biogenesis and turnover. The kinetics and sequence determinants of mammalian miRNA turnover during and after miRNA maturation are not fully understood. Through a large-scale study on mammalian miRNA turnover, we report the co-existence of multiple cellular miRNA pools with distinct turnover kinetics and biogenesis properties and reveal previously unrecognized sequence features for fast turnover miRNAs. We measured miRNA turnover rates in eight mammalian cell types with a combination of expression profiling and deep sequencing. While most miRNAs are stable, a subset of miRNAs, mostly miRNA*s, turnovers quickly, many of which display a two-step turnover kinetics. Moreover, different sequence isoforms of the same miRNA can possess vastly different turnover rates. Fast turnover miRNA isoforms are enriched for 5′ nucleotide bias against Argonaute-(AGO)-loading, but also additional 3′ and central sequence features. Modeling based on two fast turnover miRNA*s miR-222-5p and miR-125b-1-3p, we unexpectedly found that while both miRNA*s are associated with AGO, they strongly differ in HSP90 association and sensitivity to HSP90 inhibition. Our data characterize the landscape of genome-wide miRNA turnover in cultured mammalian cells and reveal differential HSP90 requirements for different miRNA*s. Our findings also implicate rules for designing stable small RNAs, such as siRNAs. PMID:25653157

  20. Detection of genome-wide copy number variants in myeloid malignancies using next-generation sequencing.

    PubMed

    Shen, Wei; Paxton, Christian N; Szankasi, Philippe; Longhurst, Maria; Schumacher, Jonathan A; Frizzell, Kimberly A; Sorrells, Shelly M; Clayton, Adam L; Jattani, Rakhi P; Patel, Jay L; Toydemir, Reha; Kelley, Todd W; Xu, Xinjie

    2018-04-01

    Genetic abnormalities, including copy number variants (CNV), copy number neutral loss of heterozygosity (CN-LOH) and gene mutations, underlie the pathogenesis of myeloid malignancies and serve as important diagnostic, prognostic and/or therapeutic markers. Currently, multiple testing strategies are required for comprehensive genetic testing in myeloid malignancies. The aim of this proof-of-principle study was to investigate the feasibility of combining detection of genome-wide large CNVs, CN-LOH and targeted gene mutations into a single assay using next-generation sequencing (NGS). For genome-wide CNV detection, we designed a single nucleotide polymorphism (SNP) sequencing backbone with 22 762 SNP regions evenly distributed across the entire genome. For targeted mutation detection, 62 frequently mutated genes in myeloid malignancies were targeted. We combined this SNP sequencing backbone with a targeted mutation panel, and sequenced 9 healthy individuals and 16 patients with myeloid malignancies using NGS. We detected 52 somatic CNVs, 11 instances of CN-LOH and 39 oncogenic mutations in the 16 patients with myeloid malignancies, and none in the 9 healthy individuals. All CNVs and CN-LOH were confirmed by SNP microarray analysis. We describe a genome-wide SNP sequencing backbone which allows for sensitive detection of genome-wide CNVs and CN-LOH using NGS. This proof-of-principle study has demonstrated that this strategy can provide more comprehensive genetic profiling for patients with myeloid malignancies using a single assay. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Profiling mRNAs of Two Cuscuta Species Reveals Possible Candidate Transcripts Shared by Parasitic Plants

    PubMed Central

    Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions. PMID:24312295

  2. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants.

    PubMed

    Jiang, Linjian; Wijeratne, Asela J; Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.

  3. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  4. A reference human genome dataset of the BGISEQ-500 sequencer.

    PubMed

    Huang, Jie; Liang, Xinming; Xuan, Yuankai; Geng, Chunyu; Li, Yuxiang; Lu, Haorong; Qu, Shoufang; Mei, Xianglin; Chen, Hongbo; Yu, Ting; Sun, Nan; Rao, Junhua; Wang, Jiahao; Zhang, Wenwei; Chen, Ying; Liao, Sha; Jiang, Hui; Liu, Xin; Yang, Zhaopeng; Mu, Feng; Gao, Shangxian

    2017-05-01

    BGISEQ-500 is a new desktop sequencer developed by BGI. Using DNA nanoball and combinational probe anchor synthesis developed from Complete Genomics™ sequencing technologies, it generates short reads at a large scale. Here, we present the first human whole-genome sequencing dataset of BGISEQ-500. The dataset was generated by sequencing the widely used cell line HG001 (NA12878) in two sequencing runs of paired-end 50 bp (PE50) and two sequencing runs of paired-end 100 bp (PE100). We also include examples of the raw images from the sequencer for reference. Finally, we identified variations using this dataset, estimated the accuracy of the variations, and compared to that of the variations identified from similar amounts of publicly available HiSeq2500 data. We found similar single nucleotide polymorphism (SNP) detection accuracy for the BGISEQ-500 PE100 data (false positive rate [FPR] = 0.00020%, sensitivity = 96.20%) compared to the PE150 HiSeq2500 data (FPR = 0.00017%, sensitivity = 96.60%) better SNP detection accuracy than the PE50 data (FPR = 0.0006%, sensitivity = 94.15%). But for insertions and deletions (indels), we found lower accuracy for BGISEQ-500 data (FPR = 0.00069% and 0.00067% for PE100 and PE50 respectively, sensitivity = 88.52% and 70.93%) than the HiSeq2500 data (FPR = 0.00032%, sensitivity = 96.28%). Our dataset can serve as the reference dataset, providing basic information not just for future development, but also for all research and applications based on the new sequencing platform. © The Authors 2017. Published by Oxford University Press.

  5. Correlation of offshore seismic profiles with onshore New Jersey Miocene sediments

    USGS Publications Warehouse

    Monteverde, D.H.; Miller, K.G.; Mountain, Gregory S.

    2000-01-01

    The New Jersey passive continental margin records the interaction of sequences and sea-level, although previous studies linking seismically defined sequences, borehole control, and global ??18O records were hindered by a seismic data gap on the inner-shelf. We describe new seismic data from the innermost New Jersey shelf that tie offshore seismic stratigraphy directly to onshore boreholes. These data link the onshore boreholes to existing seismic grids across the outer margin and to boreholes on the continental slope. Surfaces defined by age; facies, and log signature in the onshore boreholes at the base of sequences Kw2b, Kw2a, Kw1c, and Kw0 are now tied to seismic sequence boundaries m5s, m5.2s, m5.4s, and m6s, respectively, defined beneath the inner shelf. Sequence boundaries recognized in onshore boreholes and inner shelf seismic profiles apparently correlate with reflections m5, m5.2, m5.4, and m6, respectively, that were dated at slope boreholes during ODP Leg 150. We now recognize an additional sequence boundary beneath the shelf that we name m5.5s and correlate to the base of the onshore sequence Kw1b. The new seismic data image prograding Oligocene clinoforms beneath the inner shelf, consistent with the results from onshore boreholes. A land-based seismic profile crossing the Island Beach borehole reveals reflector geometries that we tie to Lower Miocene litho- and bio-facies in this borehole. These land-based seismic profiles image well-defined sequence boundaries, onlap and downlap truncations that correlate to Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST) identified in boreholes. Preliminary analysis of CH0698 data continues these system tract delineations across the inner shelf The CH0698 seismic profiles tie seismically defined sequence boundaries with sequences identified by lithiologic and paleontologic criteria. Both can now be related to global ??18O increases and attendant glacioeustatic lowerings. This integration of core, log, and seismic character of mid-Tertiary sediments across the width of the New Jersey margin is a major step in the long-standing effort to evaluate the impact of glaciouestasy on siliciclastic sediments of a passive continental margin. (C) 2000 Elsevier Science B.V. All rights reserved.

  6. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing.

    PubMed

    Hanson, E; Ingold, S; Haas, C; Ballantyne, J

    2018-05-01

    The recovery of a DNA profile from the perpetrator or victim in criminal investigations can provide valuable 'source level' information for investigators. However, a DNA profile does not reveal the circumstances by which biological material was transferred. Some contextual information can be obtained by a determination of the tissue or fluid source of origin of the biological material as it is potentially indicative of some behavioral activity on behalf of the individual that resulted in its transfer from the body. Here, we sought to improve upon established RNA based methods for body fluid identification by developing a targeted multiplexed next generation mRNA sequencing assay comprising a panel of approximately equal sized gene amplicons. The multiplexed biomarker panel includes several highly specific gene targets with the necessary specificity to definitively identify most forensically relevant biological fluids and tissues (blood, semen, saliva, vaginal secretions, menstrual blood and skin). In developing the biomarker panel we evaluated 66 gene targets, with a progressive iteration of testing target combinations that exhibited optimal sensitivity and specificity using a training set of forensically relevant body fluid samples. The current assay comprises 33 targets: 6 blood, 6 semen, 6 saliva, 4 vaginal secretions, 5 menstrual blood and 6 skin markers. We demonstrate the sensitivity and specificity of the assay and the ability to identify body fluids in single source and admixed stains. A 16 sample blind test was carried out by one lab with samples provided by the other participating lab. The blinded lab correctly identified the body fluids present in 15 of the samples with the major component identified in the 16th. Various classification methods are being investigated to permit inference of the body fluid/tissue in dried physiological stains. These include the percentage of reads in a sample that are due to each of the 6 tissues/body fluids tested and inter-sample differential gene expression revealed by agglomerative hierarchical clustering. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Multilocus sequence typing of Trichomonas vaginalis clinical samples from Amsterdam, the Netherlands

    PubMed Central

    van der Veer, C; Himschoot, M; Bruisten, S M

    2016-01-01

    Objectives In this cross-sectional epidemiological study we aimed to identify molecular profiles for Trichomonas vaginalis and to determine how these molecular profiles were related to patient demographic and clinical characteristics. Setting Molecular typing methods previously identified two genetically distinct subpopulations for T. vaginalis; however, few molecular epidemiological studies have been performed. We now increased the sensitivity of a previously described multilocus sequence typing (MLST) tool for T. vaginalis by using nested PCR. This enabled the typing of direct patient samples. Participants From January to December 2014, we collected all T. vaginalis positive samples as detected by routine laboratory testing. Samples from patients either came from general practitioners offices or from the sexually transmitted infections (STI) clinic in Amsterdam. Epidemiological data for the STI clinic patients were retrieved from electronic patient files. Primary and secondary outcome measures The primary outcome was the success rate of genotyping direct T. vaginalis positive samples. The secondary outcome was the relation between T. vaginalis genotypes and risk factors for STI. Results All 7 MLST loci were successfully typed for 71/87 clinical samples. The 71 typed samples came from 69 patients, the majority of whom were women (n=62; 90%) and half (n=34; 49%) were STI clinic patients. Samples segregated into a two population structure for T. vaginalis representing genotypes I and II. Genotype I was most common (n=40; 59.7%). STI clinic patients infected with genotype II reported more sexual partners in the preceding 6 months than patients infected with genotype I (p=0.028). No other associations for gender, age, ethnicity, urogenital discharge or co-occurring STIs with T. vaginalis genotype were found. Conclusions MLST with nested PCR is a sensitive typing method that allows typing of direct (uncultured) patient material. Genotype II is possibly more prevalent in high-risk sexual networks. PMID:27737887

  8. Multilocus sequence typing of Trichomonas vaginalis clinical samples from Amsterdam, the Netherlands.

    PubMed

    van der Veer, C; Himschoot, M; Bruisten, S M

    2016-10-13

    In this cross-sectional epidemiological study we aimed to identify molecular profiles for Trichomonas vaginalis and to determine how these molecular profiles were related to patient demographic and clinical characteristics. Molecular typing methods previously identified two genetically distinct subpopulations for T. vaginalis; however, few molecular epidemiological studies have been performed. We now increased the sensitivity of a previously described multilocus sequence typing (MLST) tool for T. vaginalis by using nested PCR. This enabled the typing of direct patient samples. From January to December 2014, we collected all T. vaginalis positive samples as detected by routine laboratory testing. Samples from patients either came from general practitioners offices or from the sexually transmitted infections (STI) clinic in Amsterdam. Epidemiological data for the STI clinic patients were retrieved from electronic patient files. The primary outcome was the success rate of genotyping direct T. vaginalis positive samples. The secondary outcome was the relation between T. vaginalis genotypes and risk factors for STI. All 7 MLST loci were successfully typed for 71/87 clinical samples. The 71 typed samples came from 69 patients, the majority of whom were women (n=62; 90%) and half (n=34; 49%) were STI clinic patients. Samples segregated into a two population structure for T. vaginalis representing genotypes I and II. Genotype I was most common (n=40; 59.7%). STI clinic patients infected with genotype II reported more sexual partners in the preceding 6 months than patients infected with genotype I (p=0.028). No other associations for gender, age, ethnicity, urogenital discharge or co-occurring STIs with T. vaginalis genotype were found. MLST with nested PCR is a sensitive typing method that allows typing of direct (uncultured) patient material. Genotype II is possibly more prevalent in high-risk sexual networks. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Design and evaluation of Actichip, a thematic microarray for the study of the actin cytoskeleton

    PubMed Central

    Muller, Jean; Mehlen, André; Vetter, Guillaume; Yatskou, Mikalai; Muller, Arnaud; Chalmel, Frédéric; Poch, Olivier; Friederich, Evelyne; Vallar, Laurent

    2007-01-01

    Background The actin cytoskeleton plays a crucial role in supporting and regulating numerous cellular processes. Mutations or alterations in the expression levels affecting the actin cytoskeleton system or related regulatory mechanisms are often associated with complex diseases such as cancer. Understanding how qualitative or quantitative changes in expression of the set of actin cytoskeleton genes are integrated to control actin dynamics and organisation is currently a challenge and should provide insights in identifying potential targets for drug discovery. Here we report the development of a dedicated microarray, the Actichip, containing 60-mer oligonucleotide probes for 327 genes selected for transcriptome analysis of the human actin cytoskeleton. Results Genomic data and sequence analysis features were retrieved from GenBank and stored in an integrative database called Actinome. From these data, probes were designed using a home-made program (CADO4MI) allowing sequence refinement and improved probe specificity by combining the complementary information recovered from the UniGene and RefSeq databases. Actichip performance was analysed by hybridisation with RNAs extracted from epithelial MCF-7 cells and human skeletal muscle. Using thoroughly standardised procedures, we obtained microarray images with excellent quality resulting in high data reproducibility. Actichip displayed a large dynamic range extending over three logs with a limit of sensitivity between one and ten copies of transcript per cell. The array allowed accurate detection of small changes in gene expression and reliable classification of samples based on the expression profiles of tissue-specific genes. When compared to two other oligonucleotide microarray platforms, Actichip showed similar sensitivity and concordant expression ratios. Moreover, Actichip was able to discriminate the highly similar actin isoforms whereas the two other platforms did not. Conclusion Our data demonstrate that Actichip is a powerful alternative to commercial high density microarrays for cytoskeleton gene profiling in normal or pathological samples. Actichip is available upon request. PMID:17727702

  10. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water

    PubMed Central

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. PMID:25186059

  11. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    PubMed

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Trypanosoma cruzi: sequence of phagocytosis and cytotoxicity by human polymorphonuclear leucocytes.

    PubMed Central

    Rimoldi, M T; Cardoni, R L; Olabuenaga, S E; de Bracco, M M

    1981-01-01

    We have studied the relationship between phagocytosis and cytotoxicity of human polymorphonuclear leucocytes (PMN) to sensitized Trypanosoma cruzi. Assays were done simultaneously using [3H]-uridine labelled epimastigotes as target cells. Phagocytosis was evaluated by the uptake and cytotoxicity by the release of parasite associated [3H]-uridine. Both reactions reached maximum levels at the same effector- to target-cell ratio and antibody concentration. Uptake of epimastigotes by PMN was highest at 30 min and intracellular disruption and release of parasite debris took place later. In conditions that precluded repeated uptake of sensitized radiolabelled T. cruzi, the release profile of [3H]-uridine from PMN that contained intracellular parasites was similar to that of the standard cytotoxic assay. However, as the ingestion phase was separated from the release step, no lag in the onset of the reaction was observed. Although we cannot rule out extracellular killing, the results of this study demonstrate that the bulk of damaged T. cruzi epimastigotes had been previously internalized by the PMN. PMID:7016743

  13. T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization.

    PubMed

    Van de Moortele, Pierre-François; Auerbach, Edwards J; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-06-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as "intensity field bias". Such inhomogeneities mostly originate from heterogeneous RF coil B(1) profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T(1)-weighted (T(1)w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T(1) weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T(1) contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B(1) variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B(1) profiles become more heterogeneous. Another characteristic of T(1)w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T(2)(*) contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T(1)w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T(2)(*) contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 T, provide higher T(1) contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help in identifying small brain structures and that T(2)(*) induced artifacts can be removed from the images. The resulting unbiased T(1)w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T(1)w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by transmit B(1) heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T(1) contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio.

  14. T1 weighted Brain Images at 7 Tesla Unbiased for Proton Density, T2* contrast and RF Coil Receive B1 Sensitivity with Simultaneous Vessel Visualization

    PubMed Central

    Van de Moortele, Pierre-François; Auerbach, Edwards J.; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-01-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as “intensity field bias”. Such inhomogeneities mostly originate from heterogeneous RF coil B1 profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T1-weighted (T1w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T1 weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T1 contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B1 variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B1 profiles become more heterogeneous. Another characteristic of T1w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T2* contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T1w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T2* contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 Tesla, provide higher T1 contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help identifying small brain structures and that T2* induced artifacts can be removed from the images. The resulting unbiased T1w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T1w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by Transmit B1 heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T1 contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio. PMID:19233292

  15. Molecular characterization and biological response to respiration inhibitors of Pyricularia isolates from ctenanthe and rice plants.

    PubMed

    Paplomatas, Epaminondas J; Pappas, Athanasios C; Syranidou, Elene

    2005-07-01

    The molecular profile and the biological response of isolates of Pyricularia oryzae Cavara obtained from ctenanthe to two strobilurins (azoxystrobin, kresoxim-methyl) and the phenylpyridinamine fungicide fluazinam were characterized, and compared with isolates from rice plants. Five different isozymes (alpha-esterase, lactate, malate, isocitrate and sorbitol dehydrogenases) and five random decamer primers for RAPD-PCR were used to generate molecular markers. Using unweighted pair-group with arithmetic average analysis, ctenanthe isolates were found to form a separate group distinct from that of the rice isolates for both sets of markers. Amplified polymorphic sequences of mitochondrial cytochrome b that were digested with Fnu4HI or StyI revealed no differences among Pyricularia isolates at amino acid positions 143 or 129 which confer resistance to strobilurins in several fungi. In absence of the alternative respiration inhibitor salicylhydroxamic acid (SHAM) the three fungicides showed inferior and variable efficacy, with a trend toward the rice isolate being less sensitive. The addition of SHAM enhanced the effectiveness of all fungicides against isolates regardless of their origin. Appressorium formation was the most vulnerable target of action of the respiration inhibitors and azoxystrobin the most effective. This is the first report of a comparison between the molecular profiles and sensitivities to respiration inhibitors for Pyricularia oryzae isolates from a non-gramineous host and from rice. Copyright 2005 Society of Chemical Industry

  16. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples

    PubMed Central

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID:23950653

  17. Performance evaluation of a mitogenome capture and Illumina sequencing protocol using non-probative, case-type skeletal samples: Implications for the use of a positive control in a next-generation sequencing procedure.

    PubMed

    Marshall, Charla; Sturk-Andreaggi, Kimberly; Daniels-Higginbotham, Jennifer; Oliver, Robert Sean; Barritt-Ross, Suzanne; McMahon, Timothy P

    2017-11-01

    Next-generation ancient DNA technologies have the potential to assist in the analysis of degraded DNA extracted from forensic specimens. Mitochondrial genome (mitogenome) sequencing, specifically, may be of benefit to samples that fail to yield forensically relevant genetic information using conventional PCR-based techniques. This report summarizes the Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory's (AFMES-AFDIL) performance evaluation of a Next-Generation Sequencing protocol for degraded and chemically treated past accounting samples. The procedure involves hybridization capture for targeted enrichment of mitochondrial DNA, massively parallel sequencing using Illumina chemistry, and an automated bioinformatic pipeline for forensic mtDNA profile generation. A total of 22 non-probative samples and associated controls were processed in the present study, spanning a range of DNA quantity and quality. Data were generated from over 100 DNA libraries by ten DNA analysts over the course of five months. The results show that the mitogenome sequencing procedure is reliable and robust, sensitive to low template (one ng control DNA) as well as degraded DNA, and specific to the analysis of the human mitogenome. Haplotypes were overall concordant between NGS replicates and with previously generated Sanger control region data. Due to the inherent risk for contamination when working with low-template, degraded DNA, a contamination assessment was performed. The consumables were shown to be void of human DNA contaminants and suitable for forensic use. Reagent blanks and negative controls were analyzed to determine the background signal of the procedure. This background signal was then used to set analytical and reporting thresholds, which were designated at 4.0X (limit of detection) and 10.0X (limit of quantiation) average coverage across the mitogenome, respectively. Nearly all human samples exceeded the reporting threshold, although coverage was reduced in chemically treated samples resulting in a ∼58% passing rate for these poor-quality samples. A concordance assessment demonstrated the reliability of the NGS data when compared to known Sanger profiles. One case sample was shown to be mixed with a co-processed sample and two reagent blanks indicated the presence of DNA above the analytical threshold. This contamination was attributed to sequencing crosstalk from simultaneously sequenced high-quality samples to include the positive control. Overall this study demonstrated that hybridization capture and Illumina sequencing provide a viable method for mitogenome sequencing of degraded and chemically treated skeletal DNA samples, yet may require alternative measures of quality control. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing.

    PubMed

    Castle, John C; Biery, Matthew; Bouzek, Heather; Xie, Tao; Chen, Ronghua; Misura, Kira; Jackson, Stuart; Armour, Christopher D; Johnson, Jason M; Rohl, Carol A; Raymond, Christopher K

    2010-04-16

    DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.

  19. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    PubMed Central

    2010-01-01

    Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads. PMID:20398377

  20. Role of reactive oxygen species in the anticancer activity of botanicals: Comparing sensitivity profiles

    PubMed Central

    Cohen, Zoya; Maimon, Yair; Samuels, Noah; Berger, Raanan

    2017-01-01

    Numerous botanicals have been shown to exhibit in vitro and in vivo anticancer activity, some of which is the result of the induction of reactive oxygen species (ROS) in cancer cells with a high ROS content. The present study compared sensitivities to a series of botanicals among cancer cell lines, using an XTT viability test, in order to create a specific cancer-herb profile. Of the 27 botanicals screened, 10 exhibited a cytotoxic effect, 7 of which were ROS-mediated. The sensitivity profiles of the ROS-inducing botanicals in 10 cancer cell lines were similar, unlike 3 cytotoxic ROS-independent botanicals that displayed divergent botanical-specific profiles. The correlation between sensitivity profiles of ROS-inducing botanicals suggests a common mechanism of action, in contrast to the varied mechanism of ROS-independent botanicals. This implies that the investigation of the anticancer activity of botanicals should start with the examination of ROS-mediated activity. Further investigation of ROS sensitivity among various tumor types is required in order to guide research into developing evidence-based guidelines in the use of botanicals for cancer treatment. PMID:28454445

  1. DNA Methylation Analysis of the SHOX2 and RASSF1A Panel in Bronchoalveolar Lavage Fluid for Lung Cancer Diagnosis

    PubMed Central

    Zhang, Chenzi; Yu, Wenjun; Wang, Lin; Zhao, Mingna; Guo, Qiaomei; Lv, Shaogang; Hu, Xiaomeng; Lou, Jiatao

    2017-01-01

    Introduction: Currently the majority of lung cancer patients are diagnosed as advanced diseases for no sensitive and specific biomarkers exist, noninvasive biomarkers with high sensitivity and specificity are urgently needed in lung cancer diagnosis. Bronchoscopy is a standard procedure of the diagnostic work-up of patients with suspected lung cancer despite of the limited diagnostic accuracy. Besides, epigenetic changes through DNA methylation play an important role in tumorigenesis. Thus, we examined the aberrant methylation of the SHOX2 and RASSF1A in bronchoalveolar lavage fluid (BALF) in comparing with conventional cytology examination and serum CEA in order to evaluate the new diagnostic method. Patients and Methods: BALF and serum samples were collected from 322 patients at the time of diagnosis, 284 of them were pathologically confirmed lung cancer, 35 were benign lung diseases and 3 were malignancies in other systems. For all of the 322 patients, the methylation status of the SHOX2 and RASSF1A gene were detected by a new RT-PCR platform and then confirmed by sanger sequencing. Serum CEA were detected using electrochemiluminescence immunoassay. Results: Profiling data showed the consistency of RT-PCR and sanger sequencing in detecting the methylation of the SHOX2 and RASSF1A. Besides, the combination of SHOX2 and RASSF1A methylation in BALF yielded a diagnostic sensitivity of 81.0% and specificity of 97.4%. When compared with established cytology examination (sensitivity: 68.3%, specificity: 97.4%) and serum biomarker carcinoembryonic antigen (CEA) (sensitivity: 30.6%, specificity: 100.0%), the SHOX2 and RASSF1A methylation panel showed the highest diagnostic efficiency. Notably, the combination of cytology and the SHOX2 and RASSF1A methylation panel could significantly improve the diagnostic efficacy. Conclusion: The methylation analysis of the SHOX2 and RASSF1A panel in BALF with RT-PCR achieved a satisfactory sensitivity and specificity in lung cancer diagnosis, especially in an early stage. It could be used as a promising noninvasive biomarker for auxiliary diagnosis of lung cancer. PMID:29151944

  2. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing.

    PubMed

    Liu, Minmin; Yu, Huiyang; Zhao, Gangjun; Huang, Qiufeng; Lu, Yongen; Ouyang, Bo

    2017-06-26

    Abiotic stresses cause severe loss of crop production. Among them, drought is one of the most frequent environmental stresses, which limits crop growth, development and productivity. Plant drought tolerance is fine-tuned by a complex gene regulatory network. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success to improve plant yield and quality. Recent studies have demonstrated that microRNAs play critical roles in plant drought tolerance. However, little is known about the microRNA in drought response of the model plant tomato. Here, we described the profiling of drought-responsive microRNA and mRNA in tomato using high-throughput next-generation sequencing. Drought stress was applied on the seedlings of M82, a drought-sensitive cultivated tomato genotype, and IL9-1, a drought-tolerant introgression line derived from the stress-resistant wild species Solanum pennellii LA0716 and M82. Under drought, IL9-1 performed superior than M82 regarding survival rate, H 2 O 2 elimination and leaf turgor maintenance. A total of four small RNA and eight mRNA libraries were constructed and sequenced using Illumina sequencing technology. 105 conserved and 179 novel microRNAs were identified, among them, 54 and 98 were differentially expressed upon drought stress, respectively. The majority of the differentially-expressed conserved microRNAs was up-regulated in IL9-1 whereas down-regulated in M82. Under drought stress, 2714 and 1161 genes were found to be differentially expressed in M82 and IL9-1, respectively, and many of their homologues are involved in plant stress, such as genes encoding transcription factor and protein kinase. Various pathways involved in abiotic stress were revealed by Gene Ontology and pathway analysis. The mRNA sequencing results indicated that most of the target genes were regulated by their corresponding microRNAs, which suggested that microRNAs may play essential roles in the drought tolerance of tomato. In this study, numerous microRNAs and mRNAs involved in the drought response of tomato were identified using high-throughput sequencing, which will provide new insights into the complex regulatory network of plant adaption to drought stress. This work will also help to exploit new players functioning in plant drought-stress tolerance.

  3. An Ensemble Method to Distinguish Bacteriophage Virion from Non-Virion Proteins Based on Protein Sequence Characteristics.

    PubMed

    Zhang, Lina; Zhang, Chengjin; Gao, Rui; Yang, Runtao

    2015-09-09

    Bacteriophage virion proteins and non-virion proteins have distinct functions in biological processes, such as specificity determination for host bacteria, bacteriophage replication and transcription. Accurate identification of bacteriophage virion proteins from bacteriophage protein sequences is significant to understand the complex virulence mechanism in host bacteria and the influence of bacteriophages on the development of antibacterial drugs. In this study, an ensemble method for bacteriophage virion protein prediction from bacteriophage protein sequences is put forward with hybrid feature spaces incorporating CTD (composition, transition and distribution), bi-profile Bayes, PseAAC (pseudo-amino acid composition) and PSSM (position-specific scoring matrix). When performing on the training dataset 10-fold cross-validation, the presented method achieves a satisfactory prediction result with a sensitivity of 0.870, a specificity of 0.830, an accuracy of 0.850 and Matthew's correlation coefficient (MCC) of 0.701, respectively. To evaluate the prediction performance objectively, an independent testing dataset is used to evaluate the proposed method. Encouragingly, our proposed method performs better than previous studies with a sensitivity of 0.853, a specificity of 0.815, an accuracy of 0.831 and MCC of 0.662 on the independent testing dataset. These results suggest that the proposed method can be a potential candidate for bacteriophage virion protein prediction, which may provide a useful tool to find novel antibacterial drugs and to understand the relationship between bacteriophage and host bacteria. For the convenience of the vast majority of experimental Int. J. Mol. Sci. 2015, 16,21735 scientists, a user-friendly and publicly-accessible web-server for the proposed ensemble method is established.

  4. Epigenomics and bolting tolerance in sugar beet genotypes.

    PubMed

    Hébrard, Claire; Peterson, Daniel G; Willems, Glenda; Delaunay, Alain; Jesson, Béline; Lefèbvre, Marc; Barnes, Steve; Maury, Stéphane

    2016-01-01

    In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Genetic heterogeneity after first-line chemotherapy in high-grade serous ovarian cancer.

    PubMed

    Lambrechts, Sandrina; Smeets, Dominiek; Moisse, Matthieu; Braicu, Elena Ioana; Vanderstichele, Adriaan; Zhao, Hui; Van Nieuwenhuysen, Els; Berns, Els; Sehouli, Jalid; Zeillinger, Robert; Darb-Esfahani, Silvia; Cacsire Castillo-Tong, Dan; Lambrechts, Diether; Vergote, Ignace

    2016-01-01

    Most high-grade serous ovarian carcinoma (HGSOC) patients benefit from first-line platinum-based chemotherapy, but progressively develop resistance during subsequent lines. Re-activating BRCA1 or MDR1 mutations can underlie platinum resistance in end-stage patients. However, little is known about resistance mechanisms occurring after a single line of platinum, when patients still qualify for other treatments. In 31 patients with primary platinum-sensitive HGSOC, we profiled tumours collected during debulking surgery before and after first-line chemotherapy using whole-exome sequencing and single nucleotide polymorphism profiling. Besides germline BRCA1/2 mutations, we observed frequent loss-of-heterozygosity in homologous recombination (HR) genes and mutation spectra characteristic of HR-deficiency in all tumours. At relapse, tumours differed considerably from their primary counterparts. There was, however, no evidence of events reactivating the HR pathway, also not in tumours resistant to second-line platinum. Instead, a platinum score of 13 copy number regions, among other genes including MECOM, CCNE1 and ERBB2, correlated with platinum-free interval (PFI) after first-line therapy, whereas an increase of this score in recurrent tumours predicted the change in PFI during subsequent therapy. Already after a single line of platinum, there is huge variability between primary and recurrent tumours, advocating that in HGSOC biopsies need to be collected at relapse to tailor treatment options to the underlying genetic profile. Nevertheless, all primary platinum-sensitive HGSOCs remained HR-deficient, irrespective of whether they became resistant to second-line platinum, further suggesting these tumours qualify for second-line Poly APD ribose polymerase (PARP) inhibitor treatment. Finally, chromosomal instability contributes to acquired resistance after a single line of platinum therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Pharmacological profiling of the TRPV3 channel in recombinant and native assays

    PubMed Central

    Grubisha, Olivera; Mogg, Adrian J; Sorge, Jessica L; Ball, Laura-Jayne; Sanger, Helen; Ruble, Cara L A; Folly, Elizabeth A; Ursu, Daniel; Broad, Lisa M

    2014-01-01

    Background and Purpose Transient receptor potential vanilloid subtype 3 (TRPV3) is implicated in nociception and certain skin conditions. As such, it is an attractive target for pharmaceutical research. Understanding of endogenous TRPV3 function and pharmacology remains elusive as selective compounds and native preparations utilizing higher throughput methodologies are lacking. In this study, we developed medium-throughput recombinant and native cellular assays to assess the detailed pharmacological profile of human, rat and mouse TRPV3 channels. Experimental Approach Medium-throughput cellular assays were developed using a Ca2+-sensitive dye and a fluorescent imaging plate reader. Human and rat TRPV3 pharmacology was examined in recombinant cell lines, while the mouse 308 keratinocyte cell line was used to assess endogenous TRPV3 activity. Key Results A recombinant rat TRPV3 cellular assay was successfully developed after solving a discrepancy in the published rat TRPV3 protein sequence. A medium-throughput, native, mouse TRPV3 keratinocyte assay was also developed and confirmed using genetic approaches. Whereas the recombinant human and rat TRPV3 assays exhibited similar agonist and antagonist profiles, the native mouse assay showed important differences, namely, TRPV3 activity was detected only in the presence of potentiator or during agonist synergy. Furthermore, the native assay was more sensitive to block by some antagonists. Conclusions and Implications Our findings demonstrate similarities but also notable differences in TRPV3 pharmacology between recombinant and native systems. These findings offer insights into TRPV3 function and these assays should aid further research towards developing TRPV3 therapies. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:23848361

  7. Molecular Recognition Profiles and Clinical Patterns of PR-10 Sensitization in a Birch-Free Mediterranean Area.

    PubMed

    Scala, Enrico; Abeni, Damiano; Cecchi, Lorenzo; Guerra, Emma Cristina; Locanto, Maria; Pirrotta, Lia; Giani, Mauro; Asero, Riccardo

    2017-01-01

    The order Fagales represents an important cause of tree-pollen allergy in northern countries. We investigated the IgE recognition profiles, mutual relationships, and association with clinical symptoms of a panel of allergens belonging to the PR-10 family, the main proteins responsible for Fagales allergy (Act d 8, Aln g 1, Api g 1, Ara h 8, Bet v 1, Cor a 1.0101, Cor a 1.0401, Gly m 4, Mal d 1, and Pru p 1). A total of 526 PR-10-reactive subjects living in central and southern Italy were studied by ImmunoCAP-ISAC-112 microarray analysis. Overall, Bet v 1 reactivity was the most commonly (74%) observed among PR-10 proteins, but Cor a 1.0101 was the most prevalent in participants aged <6 years, and between 15 and 65 years. Overall, 26% of the PR-10-reactive persons were Bet v 1 negative, whilst 93.6% of the PR-10 polyreactive individuals were Bet v 1 positive. Among the 10 PR-10s evaluated, 100 combinations were recorded. The strongest association was observed between molecules with the highest sequence identities (Bet v 1 and Cor a 1.0101, Cor a 1.0401 or Aln g 1; Mal d 1 and Pru p 1). Bet v 1-, Cor a 1.0101-, and Aln g 1-specific IgE recognition was associated with respiratory symptoms, whilst Ara h 8, Cor a 1.0401, Gly m 4, Mal d 1, and Pru p 1 were selectively linked to an oral allergic syndrome. Testing IgE reactivity to a panel of PR-10s in a birch-free area discloses peculiar relationships between clinical phenotypes and sensitization profiles, allowing the identification of novel cluster patterns. © 2017 S. Karger AG, Basel.

  8. Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule.

    PubMed

    Li, Wei; Jiang, Wei; Wang, Lei

    2016-10-12

    In this work, a novel self-locked aptamer probe mediated cascade amplification strategy has been constructed for highly sensitive and specific detection of protein. First, the self-locked aptamer probe was designed with three functions: one was specific molecular recognition attributed to the aptamer sequence, the second was signal transduction owing to the transduction sequence, and the third was self-locking through the hybridization of the transduction sequence and part of the aptamer sequence. Then, the aptamer sequence specific recognized the target and folded into a three-way helix junction, leading to the release of the transduction sequence. Next, the 3'-end of this three-way junction acted as primer to trigger the strand displacement amplification (SDA), yielding a large amount of primers. Finally, the primers initiated the dual-exponential rolling circle amplification (DE-RCA) and generated numerous G-quadruples sequences. By inserting the fluorescent dye N-methyl mesoporphyrin IX (NMM), enhanced fluorescence signal was achieved. In this strategy, the self-locked aptamer probe was more stable to reduce the interference signals generated by the uncontrollable folding in unbounded state. Through the cascade amplification of SDA and DE-RCA, the sensitivity was further improved with a detection limit of 3.8 × 10(-16) mol/L for protein detection. Furthermore, by changing the aptamer sequence of the probe, sensitive and selective detection of adenosine has been also achieved, suggesting that the proposed strategy has good versatility and can be widely used in sensitive and selective detection of biomolecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Temperament, character and anxiety sensitivity in panic disorder: a high-risk study.

    PubMed

    Perna, Giampaolo; di Pasquale, Danila; Grassi, Massimiliano; Vanni, Giovanna; Bellodi, Laura; Caldirola, Daniela

    2012-01-01

    Adult patients with panic disorder (PD) show high levels of harm avoidance and anxiety sensitivity. Peculiar temperament profiles and high anxiety sensitivity have been proposed as developmental risk factors for PD in adult age. Since familial-genetic influences play a role both in PD and in anxiety sensitivity and temperament profiles, this study aims to investigate the possible association between family history of PD and peculiar temperament-character profiles or high anxiety sensitivity in offspring of patients with PD. Thirty-four children of patients with PD with/without agoraphobia and 30 children of healthy subjects were compared. Temperament and character dimensions and anxiety sensitivity levels of children were obtained by the Junior Temperament and Character Inventory and the Childhood Anxiety Sensitivity Index. Children of patients with PD and children of healthy subjects differed neither in temperament and character dimensions nor in anxiety sensitivity levels. Our results show that family history of PD is not associated with peculiar temperament and character profiles or high anxiety sensitivity in children, suggesting that these factors may not be early expressions of familial vulnerability to PD. Since the sample is small and the study has a cross-sectional design, longitudinal studies in larger samples are warranted to confirm these findings and to clarify the role of anxiety sensitivity and temperament-character dimensions in the development of PD. Copyright © 2012 S. Karger AG, Basel.

  10. Uniform, optimal signal processing of mapped deep-sequencing data.

    PubMed

    Kumar, Vibhor; Muratani, Masafumi; Rayan, Nirmala Arul; Kraus, Petra; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2013-07-01

    Despite their apparent diversity, many problems in the analysis of high-throughput sequencing data are merely special cases of two general problems, signal detection and signal estimation. Here we adapt formally optimal solutions from signal processing theory to analyze signals of DNA sequence reads mapped to a genome. We describe DFilter, a detection algorithm that identifies regulatory features in ChIP-seq, DNase-seq and FAIRE-seq data more accurately than assay-specific algorithms. We also describe EFilter, an estimation algorithm that accurately predicts mRNA levels from as few as 1-2 histone profiles (R ∼0.9). Notably, the presence of regulatory motifs in promoters correlates more with histone modifications than with mRNA levels, suggesting that histone profiles are more predictive of cis-regulatory mechanisms. We show by applying DFilter and EFilter to embryonic forebrain ChIP-seq data that regulatory protein identification and functional annotation are feasible despite tissue heterogeneity. The mathematical formalism underlying our tools facilitates integrative analysis of data from virtually any sequencing-based functional profile.

  11. Value-based genomics.

    PubMed

    Gong, Jun; Pan, Kathy; Fakih, Marwan; Pal, Sumanta; Salgia, Ravi

    2018-03-20

    Advancements in next-generation sequencing have greatly enhanced the development of biomarker-driven cancer therapies. The affordability and availability of next-generation sequencers have allowed for the commercialization of next-generation sequencing platforms that have found widespread use for clinical-decision making and research purposes. Despite the greater availability of tumor molecular profiling by next-generation sequencing at our doorsteps, the achievement of value-based care, or improving patient outcomes while reducing overall costs or risks, in the era of precision oncology remains a looming challenge. In this review, we highlight available data through a pre-established and conceptualized framework for evaluating value-based medicine to assess the cost (efficiency), clinical benefit (effectiveness), and toxicity (safety) of genomic profiling in cancer care. We also provide perspectives on future directions of next-generation sequencing from targeted panels to whole-exome or whole-genome sequencing and describe potential strategies needed to attain value-based genomics.

  12. Value-based genomics

    PubMed Central

    Gong, Jun; Pan, Kathy; Fakih, Marwan; Pal, Sumanta; Salgia, Ravi

    2018-01-01

    Advancements in next-generation sequencing have greatly enhanced the development of biomarker-driven cancer therapies. The affordability and availability of next-generation sequencers have allowed for the commercialization of next-generation sequencing platforms that have found widespread use for clinical-decision making and research purposes. Despite the greater availability of tumor molecular profiling by next-generation sequencing at our doorsteps, the achievement of value-based care, or improving patient outcomes while reducing overall costs or risks, in the era of precision oncology remains a looming challenge. In this review, we highlight available data through a pre-established and conceptualized framework for evaluating value-based medicine to assess the cost (efficiency), clinical benefit (effectiveness), and toxicity (safety) of genomic profiling in cancer care. We also provide perspectives on future directions of next-generation sequencing from targeted panels to whole-exome or whole-genome sequencing and describe potential strategies needed to attain value-based genomics. PMID:29644010

  13. Protein Interaction Profile Sequencing (PIP-seq).

    PubMed

    Foley, Shawn W; Gregory, Brian D

    2016-10-10

    Every eukaryotic RNA transcript undergoes extensive post-transcriptional processing from the moment of transcription up through degradation. This regulation is performed by a distinct cohort of RNA-binding proteins which recognize their target transcript by both its primary sequence and secondary structure. Here, we describe protein interaction profile sequencing (PIP-seq), a technique that uses ribonuclease-based footprinting followed by high-throughput sequencing to globally assess both protein-bound RNA sequences and RNA secondary structure. PIP-seq utilizes single- and double-stranded RNA-specific nucleases in the absence of proteins to infer RNA secondary structure. These libraries are also compared to samples that undergo nuclease digestion in the presence of proteins in order to find enriched protein-bound sequences. Combined, these four libraries provide a comprehensive, transcriptome-wide view of RNA secondary structure and RNA protein interaction sites from a single experimental technique. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  14. An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the Expected Fragment Starting-Point and Coverage Profile.

    PubMed

    Prakash, Celine; Haeseler, Arndt Von

    2017-03-01

    RNA sequencing (RNA-seq) has emerged as the method of choice for measuring the expression of RNAs in a given cell population. In most RNA-seq technologies, sequencing the full length of RNA molecules requires fragmentation into smaller pieces. Unfortunately, the issue of nonuniform sequencing coverage across a genomic feature has been a concern in RNA-seq and is attributed to biases for certain fragments in RNA-seq library preparation and sequencing. To investigate the expected coverage obtained from fragmentation, we develop a simple fragmentation model that is independent of bias from the experimental method and is not specific to the transcript sequence. Essentially, we enumerate all configurations for maximal placement of a given fragment length, F, on transcript length, T, to represent every possible fragmentation pattern, from which we compute the expected coverage profile across a transcript. We extend this model to incorporate general empirical attributes such as read length, fragment length distribution, and number of molecules of the transcript. We further introduce the fragment starting-point, fragment coverage, and read coverage profiles. We find that the expected profiles are not uniform and that factors such as fragment length to transcript length ratio, read length to fragment length ratio, fragment length distribution, and number of molecules influence the variability of coverage across a transcript. Finally, we explore a potential application of the model where, with simulations, we show that it is possible to correctly estimate the transcript copy number for any transcript in the RNA-seq experiment.

  15. An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the Expected Fragment Starting-Point and Coverage Profile

    PubMed Central

    Haeseler, Arndt Von

    2017-01-01

    Abstract RNA sequencing (RNA-seq) has emerged as the method of choice for measuring the expression of RNAs in a given cell population. In most RNA-seq technologies, sequencing the full length of RNA molecules requires fragmentation into smaller pieces. Unfortunately, the issue of nonuniform sequencing coverage across a genomic feature has been a concern in RNA-seq and is attributed to biases for certain fragments in RNA-seq library preparation and sequencing. To investigate the expected coverage obtained from fragmentation, we develop a simple fragmentation model that is independent of bias from the experimental method and is not specific to the transcript sequence. Essentially, we enumerate all configurations for maximal placement of a given fragment length, F, on transcript length, T, to represent every possible fragmentation pattern, from which we compute the expected coverage profile across a transcript. We extend this model to incorporate general empirical attributes such as read length, fragment length distribution, and number of molecules of the transcript. We further introduce the fragment starting-point, fragment coverage, and read coverage profiles. We find that the expected profiles are not uniform and that factors such as fragment length to transcript length ratio, read length to fragment length ratio, fragment length distribution, and number of molecules influence the variability of coverage across a transcript. Finally, we explore a potential application of the model where, with simulations, we show that it is possible to correctly estimate the transcript copy number for any transcript in the RNA-seq experiment. PMID:27661099

  16. [Expression profiles of the exosomal miRNAs in the chronic hepatitis B patients with persistently normal ALT].

    PubMed

    Li, Ronghua; Fu, Xiaoyu; Tang, Yujing; Fu, Lei; Tan, Deming; Ouyang, Yi; Peng, Shifang

    2018-05-28

    To investigate expression profiles of the plasma exosomal miRNAs of the chronic hepatitis B (CHB) patients with persistently normal alamine aminotransferase (PNALT) for the first time and try to find exosomal miRNAs which could reflect liver inflammation better. 
 Methods: Five CHB patients with liver tissue inflammation grade ≥A2 of PNALT and 5 CHB patients with liver tissue inflammation grade

  17. Closed-reference metatranscriptomics enables in planta profiling of putative virulence activities in the grapevine trunk disease complex.

    PubMed

    Morales-Cruz, Abraham; Allenbeck, Gabrielle; Figueroa-Balderas, Rosa; Ashworth, Vanessa E; Lawrence, Daniel P; Travadon, Renaud; Smith, Rhonda J; Baumgartner, Kendra; Rolshausen, Philippe E; Cantu, Dario

    2018-02-01

    Grapevines, like other perennial crops, are affected by so-called 'trunk diseases', which damage the trunk and other woody tissues. Mature grapevines typically contract more than one trunk disease and often multiple grapevine trunk pathogens (GTPs) are recovered from infected tissues. The co-existence of different GTP species in complex and dynamic microbial communities complicates the study of the molecular mechanisms underlying disease development, especially under vineyard conditions. The objective of this study was to develop and optimize a community-level transcriptomics (i.e. metatranscriptomics) approach that could monitor simultaneously the virulence activities of multiple GTPs in planta. The availability of annotated genomes for the most relevant co-infecting GTPs in diseased grapevine wood provided the unprecedented opportunity to generate a multi-species reference for the mapping and quantification of DNA and RNA sequencing reads. We first evaluated popular sequence read mappers using permutations of multiple simulated datasets. Alignment parameters of the selected mapper were optimized to increase the specificity and sensitivity for its application to metagenomics and metatranscriptomics analyses. Initial testing on grapevine wood experimentally inoculated with individual GTPs confirmed the validity of the method. Using naturally infected field samples expressing a variety of trunk disease symptoms, we show that our approach provides quantitative assessments of species composition, as well as genome-wide transcriptional profiling of potential virulence factors, namely cell wall degradation, secondary metabolism and nutrient uptake for all co-infecting GTPs. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  18. Diagnostic Markers of Ovarian Cancer by High-Throughput Antigen Cloning and Detection on Arrays

    PubMed Central

    Chatterjee, Madhumita; Mohapatra, Saroj; Ionan, Alexei; Bawa, Gagandeep; Ali-Fehmi, Rouba; Wang, Xiaoju; Nowak, James; Ye, Bin; Nahhas, Fatimah A.; Lu, Karen; Witkin, Steven S.; Fishman, David; Munkarah, Adnan; Morris, Robert; Levin, Nancy K.; Shirley, Natalie N.; Tromp, Gerard; Abrams, Judith; Draghici, Sorin; Tainsky, Michael A.

    2008-01-01

    A noninvasive screening test would significantly facilitate early detection of epithelial ovarian cancer. This study used a combination of high-throughput selection and array-based serologic detection of many antigens indicative of the presence of cancer, thereby using the immune system as a biosensor. This high-throughput selection involved biopanning of an ovarian cancer phage display library using serum immunoglobulins from an ovarian cancer patient as bait. Protein macroarrays containing 480 of these selected antigen clones revealed 65 clones that interacted with immunoglobulins in sera from 32 ovarian cancer patients but not with sera from 25 healthy women or 14 patients having other benign or malignant gynecologic diseases. Sequence analysis data of these 65 clones revealed 62 different antigens. Among the markers, we identified some known antigens, including RCAS1, signal recognition protein-19, AHNAK-related sequence, nuclear autoantogenic sperm protein, Nijmegen breakage syndrome 1 (Nibrin), ribosomal protein L4, Homo sapiens KIAA0419 gene product, eukaryotic initiation factor 5A, and casein kinase II, as well as many previously uncharacterized antigenic gene products. Using these 65 antigens on protein microarrays, we trained neural networks on two-color fluorescent detection of serum IgG binding and found an average sensitivity and specificity of 55% and 98%, respectively. In addition, the top 6 of the most specific clones resulted in an average sensitivity and specificity of 32% and 94%, respectively. This global approach to antigenic profiling, epitomics, has applications to cancer and autoimmune diseases for diagnostic and therapeutic studies. Further work with larger panels of antigens should provide a comprehensive set of markers with sufficient sensitivity and specificity suitable for clinical testing in high-risk populations. PMID:16424057

  19. Chip-Based Sensors for Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Fang, Zhichao

    Nucleic acid analysis is one of the most important disease diagnostic approaches in medical practice, and has been commonly used in cancer biomarker detection, bacterial speciation and many other fields in laboratory. Currently, the application of powerful research methods for genetic analysis, including the polymerase chain reaction (PCR), DNA sequencing, and gene expression profiling using fluorescence microarrays, are not widely used in hospitals and extended-care units due to high-cost, long detection times, and extensive sample preparation. Bioassays, especially chip-based electrochemical sensors, may be suitable for the next generation of rapid, sensitive, and multiplexed detection tools. Herein, we report three different microelectrode platforms with capabilities enabled by nano- and microtechnology: nanoelectrode ensembles (NEEs), nanostructured microelectrodes (NMEs), and hierarchical nanostructured microelectrodes (HNMEs), all of which are able to directly detect unpurified RNA in clinical samples without enzymatic amplification. Biomarkers that are cancer and infectious disease relevant to clinical medicine were chosen to be the targets. Markers were successfully detected with clinically-relevant sensitivity. Using peptide nucleic acids (PNAs) as probes and an electrocatalytic reporter system, NEEs were able to detect prostate cancer-related gene fusions in tumor tissue samples with 100 ng of RNA. The development of NMEs improved the sensitivity of the assay further to 10 aM of DNA target, and multiplexed detection of RNA sequences of different prostate cancer-related gene fusion types was achieved on the chip-based NMEs platform. An HNMEs chip integrated with a bacterial lysis device was able to detect as few as 25 cfu bacteria in 30 minutes and monitor the detection in real time. Bacterial detection could also be performed in neat urine samples. The development of these versatile clinical diagnostic tools could be extended to the detection of various cancers, genetic, and infectious diseases.

  20. Evaluation of whole genome sequencing and software tools for drug susceptibility testing of Mycobacterium tuberculosis.

    PubMed

    van Beek, J; Haanperä, M; Smit, P W; Mentula, S; Soini, H

    2018-04-11

    Culture-based assays are currently the reference standard for drug susceptibility testing for Mycobacterium tuberculosis. They provide good sensitivity and specificity but are time consuming. The objective of this study was to evaluate whether whole genome sequencing (WGS), combined with software tools for data analysis, can replace routine culture-based assays for drug susceptibility testing of M. tuberculosis. M. tuberculosis cultures sent to the Finnish mycobacterial reference laboratory in 2014 (n = 211) were phenotypically tested by Mycobacteria Growth Indicator Tube (MGIT) for first-line drug susceptibilities. WGS was performed for all isolates using the Illumina MiSeq system, and data were analysed using five software tools (PhyResSE, Mykrobe Predictor, TB Profiler, TGS-TB and KvarQ). Diagnostic time and reagent costs were estimated for both methods. The sensitivity of the five software tools to predict any resistance among strains was almost identical, ranging from 74% to 80%, and specificity was more than 95% for all software tools except for TGS-TB. The sensitivity and specificity to predict resistance to individual drugs varied considerably among the software tools. Reagent costs for MGIT and WGS were €26 and €143 per isolate respectively. Turnaround time for MGIT was 19 days (range 10-50 days) for first-line drugs, and turnaround time for WGS was estimated to be 5 days (range 3-7 days). WGS could be used as a prescreening assay for drug susceptibility testing with confirmation of resistant strains by MGIT. The functionality and ease of use of the software tools need to be improved. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. High-resolution melting analysis for bird sexing: a successful approach to molecular sex identification using different biological samples.

    PubMed

    Morinha, Francisco; Travassos, Paulo; Seixas, Fernanda; Santos, Nuno; Sargo, Roberto; Sousa, Luís; Magalhães, Paula; Cabral, João A; Bastos, Estela

    2013-05-01

    High-resolution melting (HRM) analysis is a very attractive and flexible advanced post-PCR method with high sensitivity/specificity for simple, fast and cost-effective genotyping based on the detection of specific melting profiles of PCR products. Next generation real-time PCR systems, along with improved saturating DNA-binding dyes, enable the direct acquisition of HRM data after quantitative PCR. Melting behaviour is particularly influenced by the length, nucleotide sequence and GC content of the amplicons. This method is expanding rapidly in several research areas such as human genetics, reproductive biology, microbiology and ecology/conservation of wild populations. Here we have developed a successful HRM protocol for avian sex identification based on the amplification of sex-specific CHD1 fragments. The melting curve patterns allowed efficient sexual differentiation of 111 samples analysed (plucked feathers, muscle tissues, blood and oral cavity epithelial cells) of 14 bird species. In addition, we sequenced the amplified regions of the CHD1 gene and demonstrated the usefulness of this strategy for the genotype discrimination of various amplicons (CHD1Z and CHD1W), which have small size differences, ranging from 2 bp to 44 bp. The established methodology clearly revealed the advantages (e.g. closed-tube system, high sensitivity and rapidity) of a simple HRM assay for accurate sex differentiation of the species under study. The requirements, strengths and limitations of the method are addressed to provide a simple guide for its application in the field of molecular sexing of birds. The high sensitivity and resolution relative to previous real-time PCR methods makes HRM analysis an excellent approach for improving advanced molecular methods for bird sexing. © 2013 Blackwell Publishing Ltd.

  2. Introduction of the hybcell-based compact sequencing technology and comparison to state-of-the-art methodologies for KRAS mutation detection.

    PubMed

    Zopf, Agnes; Raim, Roman; Danzer, Martin; Niklas, Norbert; Spilka, Rita; Pröll, Johannes; Gabriel, Christian; Nechansky, Andreas; Roucka, Markus

    2015-03-01

    The detection of KRAS mutations in codons 12 and 13 is critical for anti-EGFR therapy strategies; however, only those methodologies with high sensitivity, specificity, and accuracy as well as the best cost and turnaround balance are suitable for routine daily testing. Here we compared the performance of compact sequencing using the novel hybcell technology with 454 next-generation sequencing (454-NGS), Sanger sequencing, and pyrosequencing, using an evaluation panel of 35 specimens. A total of 32 mutations and 10 wild-type cases were reported using 454-NGS as the reference method. Specificity ranged from 100% for Sanger sequencing to 80% for pyrosequencing. Sanger sequencing and hybcell-based compact sequencing achieved a sensitivity of 96%, whereas pyrosequencing had a sensitivity of 88%. Accuracy was 97% for Sanger sequencing, 85% for pyrosequencing, and 94% for hybcell-based compact sequencing. Quantitative results were obtained for 454-NGS and hybcell-based compact sequencing data, resulting in a significant correlation (r = 0.914). Whereas pyrosequencing and Sanger sequencing were not able to detect multiple mutated cell clones within one tumor specimen, 454-NGS and the hybcell-based compact sequencing detected multiple mutations in two specimens. Our comparison shows that the hybcell-based compact sequencing is a valuable alternative to state-of-the-art methodologies used for detection of clinically relevant point mutations.

  3. Early-life gut microbiome and egg allergy.

    PubMed

    Fazlollahi, M; Chun, Y; Grishin, A; Wood, R A; Burks, A W; Dawson, P; Jones, S M; Leung, D Y M; Sampson, H A; Sicherer, S H; Bunyavanich, S

    2018-07-01

    Gut microbiota may play a role in egg allergy. We sought to examine the association between early-life gut microbiota and egg allergy. We studied 141 children with egg allergy and controls from the multicenter Consortium of Food Allergy Research study. At enrollment (age 3 to 16 months), fecal samples were collected, and clinical evaluation, egg-specific IgE measurement, and egg skin prick test were performed. Gut microbiome was profiled by 16S rRNA sequencing. Analyses for the primary outcome of egg allergy at enrollment, and the secondary outcomes of egg sensitization at enrollment and resolution of egg allergy by age 8 years, were performed using Quantitative Insights into Microbial Ecology, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, and Statistical Analysis of Metagenomic Profiles. Compared to controls, increased alpha diversity and distinct taxa (PERMANOVA P = 5.0 × 10 -4 ) characterized the early-life gut microbiome of children with egg allergy. Genera from the Lachnospiraceae, Streptococcaceae, and Leuconostocaceae families were differentially abundant in children with egg allergy. Predicted metagenome functional analyses showed differential purine metabolism by the gut microbiota of egg-allergic subjects (Kruskal-Wallis P adj  = 0.021). Greater gut microbiome diversity and genera from Lachnospiraceae and Ruminococcaceae were associated with egg sensitization (PERMANOVA P = 5.0 × 10 -4 ). Among those with egg allergy, there was no association between early-life gut microbiota and egg allergy resolution by age 8 years. The distinct early-life gut microbiota in egg-allergic and egg-sensitized children identified by our study may point to targets for preventive or therapeutic intervention. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  4. Evaluation of the Humoral Immune Response to Human Leukocyte Antigens in Brazilian Renal Transplant Candidates

    PubMed Central

    Saito, Patricia Keiko; Yamakawa, Roger Haruki; Aparecida, Erica Pereira; da Silva Júnior, Waldir Verissimo; Borelli, Sueli Donizete

    2014-01-01

    Pre-transplant sensitization to human leukocyte antigens (HLA) is a risk factor for graft failure. Studies of the immunological profile related to anti-HLA antibodies in Brazilian renal transplant candidates are few. In this study, we evaluated the humoral immune response to HLA antigens in 269 renal transplant candidates, in Paraná State, Brazil. The HLA typing was performed by the polymerase chain reaction sequence-specific oligonucleotide method (PCR-SSO) combined with Luminex technology, using an SSO-LABType commercial kit (One Lambda, Inc., Canoga Park, CA, USA). The percentages of panel-reactive antibodies (PRA) and the specificity of anti-HLA antibodies were determined using the LS1PRA and LS2PRA commercial kits (One Lambda, Inc.). The PRA-positive group consisted of 182 (67.7%) patients, and the PRA-negative group of 87 (32.3%) patients. The two groups differed significantly only with respect to gender. Females were the most sensitized. Among the 182 patients with PRA- positive, 62 (34.1%) were positive for class I and negative for class II, 39 (21.4%) were negative for class I and positive for class II, and 81 (44.5%) were positive for both classes I and II. The HLA-A*02, A*24, A*01, B*44, B*35, B*15, DRB1*11, DRB1*04 and DRB1*03 allele groups were the most frequent. The specificities of anti-HLA antibodies were more frequent: A34, B57, Cw15, Cw16, DR51, DQ8 and DP14. This study documented the profile of anti-HLA antibodies in patients with chronic renal failure who were on waiting lists for an organ in Paraná, and found high sensitization to HLA antigens in the samples. PMID:24927116

  5. Simultaneous genomic identification and profiling of a single cell using semiconductor-based next generation sequencing.

    PubMed

    Watanabe, Manabu; Kusano, Junko; Ohtaki, Shinsaku; Ishikura, Takashi; Katayama, Jin; Koguchi, Akira; Paumen, Michael; Hayashi, Yoshiharu

    2014-09-01

    Combining single-cell methods and next-generation sequencing should provide a powerful means to understand single-cell biology and obviate the effects of sample heterogeneity. Here we report a single-cell identification method and seamless cancer gene profiling using semiconductor-based massively parallel sequencing. A549 cells (adenocarcinomic human alveolar basal epithelial cell line) were used as a model. Single-cell capture was performed using laser capture microdissection (LCM) with an Arcturus® XT system, and a captured single cell and a bulk population of A549 cells (≈ 10(6) cells) were subjected to whole genome amplification (WGA). For cell identification, a multiplex PCR method (AmpliSeq™ SNP HID panel) was used to enrich 136 highly discriminatory SNPs with a genotype concordance probability of 10(31-35). For cancer gene profiling, we used mutation profiling that was performed in parallel using a hotspot panel for 50 cancer-related genes. Sequencing was performed using a semiconductor-based bench top sequencer. The distribution of sequence reads for both HID and Cancer panel amplicons was consistent across these samples. For the bulk population of cells, the percentages of sequence covered at coverage of more than 100 × were 99.04% for the HID panel and 98.83% for the Cancer panel, while for the single cell percentages of sequence covered at coverage of more than 100 × were 55.93% for the HID panel and 65.96% for the Cancer panel. Partial amplification failure or randomly distributed non-amplified regions across samples from single cells during the WGA procedures or random allele drop out probably caused these differences. However, comparative analyses showed that this method successfully discriminated a single A549 cancer cell from a bulk population of A549 cells. Thus, our approach provides a powerful means to overcome tumor sample heterogeneity when searching for somatic mutations.

  6. Identification of ribonucleotide reductase mutation causing temperature-sensitivity of herpes simplex virus isolates from whitlow by deep sequencing.

    PubMed

    Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu

    2015-06-01

    Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.

  7. REDO: RNA Editing Detection in Plant Organelles Based on Variant Calling Results.

    PubMed

    Wu, Shuangyang; Liu, Wanfei; Aljohi, Hasan Awad; Alromaih, Sarah A; Alanazi, Ibrahim O; Lin, Qiang; Yu, Jun; Hu, Songnian

    2018-05-01

    RNA editing is a post-transcriptional or cotranscriptional process that changes the sequence of the precursor transcript by substitutions, insertions, or deletions. Almost all of the land plants undergo RNA editing in organelles (plastids and mitochondria). Although several software tools have been developed to identify RNA editing events, there has been a great challenge to distinguish true RNA editing events from genome variation, sequencing errors, and other factors. Here we introduce REDO, a comprehensive application tool for identifying RNA editing events in plant organelles based on variant call format files from RNA-sequencing data. REDO is a suite of Perl scripts that illustrate a bunch of attributes of RNA editing events in figures and tables. REDO can also detect RNA editing events in multiple samples simultaneously and identify the significant differential proportion of RNA editing loci. Comparing with similar tools, such as REDItools, REDO runs faster with higher accuracy, and more specificity at the cost of slightly lower sensitivity. Moreover, REDO annotates each RNA editing site in RNAs, whereas REDItools reports only possible RNA editing sites in genome, which need additional steps to obtain RNA editing profiles for RNAs. Overall, REDO can identify potential RNA editing sites easily and provide several functions such as detailed annotations, statistics, figures, and significantly differential proportion of RNA editing sites among different samples.

  8. Dental MRI using a dedicated RF-coil at 3 Tesla.

    PubMed

    Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara

    2015-12-01

    To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. [Effect of oral administration of ascorbic acid on insulin sensitivity and lipid profile in obese individuals].

    PubMed

    Martínez-Abundis, E; Pascoe-González, S; González-Ortiz, M; Mora-Martínez, J M; Cabrera-Pivaral, C E

    2001-01-01

    The aim of this study was to identify the effect of an oral ascorbic acid (AA) supplement on lipid profile and insulin sensitivity in obese people. A randomized double-blind clinical trial placebo controlled was performed in 16 obese male volunteers [body mass index (BMI) 30-40 kg/m2]. Eight received orally 1 g of AA daily for four weeks and the other eight volunteers received placebo by the same scheme and period of time. Before and after the pharmacological intervention were measured total cholesterol, high-density-lipoprotein (HDL) cholesterol, triglycerides, glucose, creatinine and uric acid. Low-density-lipoprotein (LDL) cholesterol and very-low-density-lipoprotein (VLDL) triglycerides were calculated using formulas. In order to assess insulin sensitivity before and after the intervention, the steady-state glucose (SSG) was calculated from the insulin suppression test modified with octreotide. There were not significant differences in clinical characteristics between both groups. Basal metabolic profile and SSG were similar between both groups. There were not significant differences in both groups between before and after the intervention in metabolic profile and insulin sensitivity. AA did not modify the lipid profile nor insulin sensitivity in the group of obese people studied.

  10. PASS2: an automated database of protein alignments organised as structural superfamilies.

    PubMed

    Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2004-04-02

    The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html

  11. SNaPshot and StripAssay as Valuable Alternatives to Direct Sequencing for KRAS Mutation Detection in Colon Cancer Routine Diagnostics

    PubMed Central

    Fariña Sarasqueta, Arantza; Moerland, Elna; de Bruyne, Hanneke; de Graaf, Henk; Vrancken, Tamara; van Lijnschoten, Gesina; van den Brule, Adriaan J.C.

    2011-01-01

    Although direct sequencing is the gold standard for KRAS mutation detection in routine diagnostics, it remains laborious, time consuming, and not very sensitive. Our objective was to evaluate SNaPshot and the KRAS StripAssay as alternatives to sequencing for KRAS mutation detection in daily practice. KRAS exon 2–specific PCR followed by sequencing or by a SNaPshot reaction was performed. For the StripAssay, a mutant-enriched PCR was followed by hybridization to KRAS-specific probes bound to a nitrocellulose strip. To test sensitivities, dilution series of mutated DNA in wild-type DNA were made. Additionally, direct sequencing and SNaPshot were evaluated in 296 colon cancer samples. Detection limits of direct sequencing, SNaPshot, and StripAssay were 20%, 10%, and 1% tumor cells, respectively. Direct sequencing and SNaPshot can detect all 12 mutations in KRAS codons 12 and 13, whereas the StripAssay detects 10 of the most frequent ones. Workload and time to results are comparable for SNaPshot and direct sequencing. SNaPshot is flexible and easy to multiplex. The StripAssay is less time consuming for daily laboratory practice. SNaPshot is more flexible and slightly more sensitive than direct sequencing. The clinical evaluation showed comparable performances between direct sequencing and SNaPshot. The StripAssay is rapid and an extremely sensitive assay that could be considered when few tumor cells are available. However, found mutants should be confirmed to avoid risk of false positives. PMID:21354055

  12. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie.

    PubMed

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol; Na, Ki-Jeong

    2010-12-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance.

  13. Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie

    PubMed Central

    Han, Jae-Ik; Son, Hyoung-Won; Park, Seung-Cheol

    2010-01-01

    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance. PMID:21113104

  14. Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer.

    PubMed

    Bernard, Guillaume; Chan, Cheong Xin; Ragan, Mark A

    2016-07-01

    Alignment-free (AF) approaches have recently been highlighted as alternatives to methods based on multiple sequence alignment in phylogenetic inference. However, the sensitivity of AF methods to genome-scale evolutionary scenarios is little known. Here, using simulated microbial genome data we systematically assess the sensitivity of nine AF methods to three important evolutionary scenarios: sequence divergence, lateral genetic transfer (LGT) and genome rearrangement. Among these, AF methods are most sensitive to the extent of sequence divergence, less sensitive to low and moderate frequencies of LGT, and most robust against genome rearrangement. We describe the application of AF methods to three well-studied empirical genome datasets, and introduce a new application of the jackknife to assess node support. Our results demonstrate that AF phylogenomics is computationally scalable to multi-genome data and can generate biologically meaningful phylogenies and insights into microbial evolution.

  15. Different DNA methylation patterns detected by the Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) technique among various cell types of bulls.

    PubMed

    Phutikanit, Nawapen; Suwimonteerabutr, Junpen; Harrison, Dion; D'Occhio, Michael; Carroll, Bernie; Techakumphu, Mongkol

    2010-03-05

    The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR) assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII). The native genomic and enzyme treated DNA samples were used as templates in an arbitrarily primed-PCR assay with 30 sets of single short oligonucleotide primer. The PCR products were separated on silver stained denaturing polyacrylamide gels. Three types of PCR markers; digestion resistant-, digestion sensitive-, and digestion dependent markers, were analyzed based on the presence/absence polymorphism of the markers between the two templates. Approximately 1,000 PCR markers per sample were produced from 27 sets of primer and most of them (>90%) were digestion resistant markers. The highest percentage of digestion resistant markers was found in leukocytic DNA (94.8%) and the lowest in fibroblastic DNA (92.3%, P < or = 0.05). Spermatozoa contained a higher number of digestion sensitive markers when compared with the others (3.6% vs. 2.2% and 2.6% in leukocytes and fibroblasts respectively, P < or = 0.05). The powerfulness of the AMP PCR assay was the generation of methylation-associated markers without any prior knowledge of the genomic sequence. The data obtained from different primers provided an overview of genome wide DNA methylation content in different cell types. By using this technique, we found that DNA methylation profile is tissue-specific. Male germ cells were hypomethylated at the HpaII locations when compared with somatic cells, while the chromatin of the well-characterized somatic cells was heavily methylated when compared with that of the versatile somatic cells.

  16. Tracing outbreaks of Streptococcus equi infection (strangles) in horses using sequence variation in the seM gene and pulsed-field gel electrophoresis.

    PubMed

    Lindahl, Susanne; Söderlund, Robert; Frosth, Sara; Pringle, John; Båverud, Viveca; Aspán, Anna

    2011-11-21

    Strangles is a serious respiratory disease in horses caused by Streptococcus equi subspecies equi (S. equi). Transmission of the disease occurs by direct contact with an infected horse or contaminated equipment. Genetically, S. equi strains are highly homogenous and differentiation of strains has proven difficult. However, the S. equi M-protein SeM contains a variable N-terminal region and has been proposed as a target gene to distinguish between different strains of S. equi and determine the source of an outbreak. In this study, strains of S. equi (n=60) from 32 strangles outbreaks in Sweden during 1998-2003 and 2008-2009 were genetically characterized by sequencing the SeM protein gene (seM), and by pulsed-field gel electrophoresis (PFGE). Swedish strains belonged to 10 different seM types, of which five have not previously been described. Most were identical or highly similar to allele types from strangles outbreaks in the UK. Outbreaks in 2008/2009 sharing the same seM type were associated by geographic location and/or type of usage of the horses (racing stables). Sequencing of the seM gene generally agreed with pulsed-field gel electrophoresis profiles. Our data suggest that seM sequencing as a epidemiological tool is supported by the agreement between seM and PFGE and that sequencing of the SeM protein gene is more sensitive than PFGE in discriminating strains of S. equi. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Offset-electrode profile acquisition strategy for electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Robbins, Austin R.; Plattner, Alain

    2018-04-01

    We present an electrode layout strategy that allows electrical resistivity profiles to image the third dimension close to the profile plane. This "offset-electrode profile" approach involves laterally displacing electrodes away from the profile line in an alternating fashion and then inverting the resulting data using three-dimensional electrical resistivity tomography software. In our synthetic and field surveys, the offset-electrode method succeeds in revealing three-dimensional structures in the vicinity of the profile plane, which we could not achieve using three-dimensional inversions of linear profiles. We confirm and explain the limits of linear electrode profiles through a discussion of the three-dimensional sensitivity patterns: For a homogeneous starting model together with a linear electrode layout, all sensitivities remain symmetric with respect to the profile plane through each inversion step. This limitation can be overcome with offset-electrode layouts by breaking the symmetry pattern among the sensitivities. Thanks to freely available powerful three-dimensional resistivity tomography software and cheap modern computing power, the requirement for full three-dimensional calculations does not create a significant burden and renders the offset-electrode approach a cost-effective method. By offsetting the electrodes in an alternating pattern, as opposed to laying the profile out in a U-shape, we minimize shortening the profile length.

  18. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies.

    PubMed

    Lagkouvardos, Ilias; Joseph, Divya; Kapfhammer, Martin; Giritli, Sabahattin; Horn, Matthias; Haller, Dirk; Clavel, Thomas

    2016-09-23

    The SRA (Sequence Read Archive) serves as primary depository for massive amounts of Next Generation Sequencing data, and currently host over 100,000 16S rRNA gene amplicon-based microbial profiles from various host habitats and environments. This number is increasing rapidly and there is a dire need for approaches to utilize this pool of knowledge. Here we created IMNGS (Integrated Microbial Next Generation Sequencing), an innovative platform that uniformly and systematically screens for and processes all prokaryotic 16S rRNA gene amplicon datasets available in SRA and uses them to build sample-specific sequence databases and OTU-based profiles. Via a web interface, this integrative sequence resource can easily be queried by users. We show examples of how the approach allows testing the ecological importance of specific microorganisms in different hosts or ecosystems, and performing targeted diversity studies for selected taxonomic groups. The platform also offers a complete workflow for de novo analysis of users' own raw 16S rRNA gene amplicon datasets for the sake of comparison with existing data. IMNGS can be accessed at www.imngs.org.

  19. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies.

    PubMed

    Haimon, Zhana; Volaski, Alon; Orthgiess, Johannes; Boura-Halfon, Sigalit; Varol, Diana; Shemer, Anat; Yona, Simon; Zuckerman, Binyamin; David, Eyal; Chappell-Maor, Louise; Bechmann, Ingo; Gericke, Martin; Ulitsky, Igor; Jung, Steffen

    2018-06-01

    Transcriptome profiling is widely used to infer functional states of specific cell types, as well as their responses to stimuli, to define contributions to physiology and pathophysiology. Focusing on microglia, the brain's macrophages, we report here a side-by-side comparison of classical cell-sorting-based transcriptome sequencing and the 'RiboTag' method, which avoids cell retrieval from tissue context and yields translatome sequencing information. Conventional whole-cell microglial transcriptomes were found to be significantly tainted by artifacts introduced by tissue dissociation, cargo contamination and transcripts sequestered from ribosomes. Conversely, our data highlight the added value of RiboTag profiling for assessing the lineage accuracy of Cre recombinase expression in transgenic mice. Collectively, this study indicates method-based biases, reveals observer effects and establishes RiboTag-based translatome profiling as a valuable complement to standard sorting-based profiling strategies.

  20. Predicting residue-wise contact orders in proteins by support vector regression.

    PubMed

    Song, Jiangning; Burrage, Kevin

    2006-10-03

    The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.

  1. Differences in Motivations between Fundamental Christians and Atheists on the Reiss Profile of Fundamental Goals and Motivational Sensitivities.

    ERIC Educational Resources Information Center

    Beasley, Amy; Rowell, Kevin

    A study examined differences in motivations between fundamental Christians and atheists on the Reiss Profile of Fundamental Goals and Motivational Sensitivities. Only five of the 15 areas measured by the Reiss Profile were used in the study. The hypothesis was that (within these areas: (1) independence, (2) power, (3) vengeance, (4) status, and…

  2. Interpretation of the BRITE oscillation data of the hybrid pulsator ν Eridani: a call for the modification of stellar opacities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daszyńska-Daszkiewicz, J.; Pamyatnykh, A. A.; Walczak, P.

    The analysis of the BRIght Target Explorer (BRITE) oscillation spectrum of the main-sequence early B-type star ν Eridani is presented in this paper. Only models with the modified mean opacity profile can account for the observed frequency ranges as well as for the values of some individual frequencies. The number of the κ-modified seismic models is constrained by the non-adiabatic parameter f, which is very sensitive to the opacity changes in the subphotospheric layers, where the pulsations are driven. We present an example of the model that satisfies all the above conditions. It seems that the OPLIB opacities are preferredmore » over those from the OPAL and OP projects. Finally and moreover, we discuss additional consequences of the opacity modification, namely, an enhancement of the efficiency of convection in the Z bump as well as an occurrence of close radial modes which is a kind of avoided-crossing phenomenon common for non-radial modes in standard main-sequence models.« less

  3. Interpretation of the BRITE oscillation data of the hybrid pulsator ν Eridani: a call for the modification of stellar opacities

    DOE PAGES

    Daszyńska-Daszkiewicz, J.; Pamyatnykh, A. A.; Walczak, P.; ...

    2016-12-22

    The analysis of the BRIght Target Explorer (BRITE) oscillation spectrum of the main-sequence early B-type star ν Eridani is presented in this paper. Only models with the modified mean opacity profile can account for the observed frequency ranges as well as for the values of some individual frequencies. The number of the κ-modified seismic models is constrained by the non-adiabatic parameter f, which is very sensitive to the opacity changes in the subphotospheric layers, where the pulsations are driven. We present an example of the model that satisfies all the above conditions. It seems that the OPLIB opacities are preferredmore » over those from the OPAL and OP projects. Finally and moreover, we discuss additional consequences of the opacity modification, namely, an enhancement of the efficiency of convection in the Z bump as well as an occurrence of close radial modes which is a kind of avoided-crossing phenomenon common for non-radial modes in standard main-sequence models.« less

  4. Development of a two-step high-resolution melting (HRM) analysis for screening sequence variants associated with resistance to the QoIs, benzimidazoles and dicarboximides in airborne inoculum of Botrytis cinerea.

    PubMed

    Chatzidimopoulos, Michael; Ganopoulos, Ioannis; Vellios, Evangelos; Madesis, Panagiotis; Tsaftaris, Athanasios; Pappas, Athanassios C

    2014-11-01

    A rapid, high-resolution melting (HRM) analysis protocol was developed to detect sequence variations associated with resistance to the QoIs, benzimidazoles and dicarboximides in Botrytis cinerea airborne inoculum. HRM analysis was applied directly in fungal DNA collected from air samplers with selective medium. Three and five different genotypes were detected and classified according to their melting profiles in BenA and bos1 genes associated with resistance to benzimidazoles and dicarboximides, respectively. The sensitivity of the methodology was evident in the case of the QoIs, where genotypes varying either by a single nucleotide polymorphism or an additional 1205-bp intron were separated accurately with a single pair of primers. The developed two-step protocol was completed in 82 min and showed reduced variation in the melting curves' formation. HRM analysis rapidly detected the major mutations found in greenhouse strains providing accurate data for successfully controlling grey mould. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Mid-to-late Holocene climate change record in palaeo-notch sediment from London Island, Svalbard

    NASA Astrophysics Data System (ADS)

    Yang, Zhongkang; Sun, Liguang; Zhou, Xin; Wang, Yuhong

    2018-06-01

    The Arctic region is very sensitive to climate change and important in the Earth's climate system. However, proxy datasets for Arctic climate are unevenly distributed and especially scarce for Svalbard because glaciers during the Little Ice Age, the most extensive in the Holocene, destroyed large quantities of sediment records in Svalbard. Fortunately, palaeo-notch sediments could withstand glaciers and be well-preserved after deposition. In this study, we reconstructed a mid-to-late Holocene record of climate changes in a palaeo-notch sediment sequence from London Island. Multiple weathering indices were determined, they all showed consistent weathering conditions in the study area, and they were closely linked to climate changes. Total organic carbon (TOC) and total nitrogen (TN) were also determined, and their variation profiles were similar to those of weathering indices. The climate change record in our sediment sequence is consistent with ice rafting record from North Atlantic and glacier activity from Greenland, Iceland and Svalbard, and four cold periods are clearly present. Our study provides a relatively long-term climate change record for climate conditions from mid-to-late Holocene in Svalbard.

  6. Model parameter estimation approach based on incremental analysis for lithium-ion batteries without using open circuit voltage

    NASA Astrophysics Data System (ADS)

    Wu, Hongjie; Yuan, Shifei; Zhang, Xi; Yin, Chengliang; Ma, Xuerui

    2015-08-01

    To improve the suitability of lithium-ion battery model under varying scenarios, such as fluctuating temperature and SoC variation, dynamic model with parameters updated realtime should be developed. In this paper, an incremental analysis-based auto regressive exogenous (I-ARX) modeling method is proposed to eliminate the modeling error caused by the OCV effect and improve the accuracy of parameter estimation. Then, its numerical stability, modeling error, and parametric sensitivity are analyzed at different sampling rates (0.02, 0.1, 0.5 and 1 s). To identify the model parameters recursively, a bias-correction recursive least squares (CRLS) algorithm is applied. Finally, the pseudo random binary sequence (PRBS) and urban dynamic driving sequences (UDDSs) profiles are performed to verify the realtime performance and robustness of the newly proposed model and algorithm. Different sampling rates (1 Hz and 10 Hz) and multiple temperature points (5, 25, and 45 °C) are covered in our experiments. The experimental and simulation results indicate that the proposed I-ARX model can present high accuracy and suitability for parameter identification without using open circuit voltage.

  7. MicroRNA expression profile in bovine cumulus–oocyte complexes: Possible role of let-7 and miR-106a in the development of bovine oocytes

    USDA-ARS?s Scientific Manuscript database

    The expression of microRNAs (miRs) in bovine cumulus-oocyte complexes (COCs) during late oogenesis was profiled to determine the potential for regulation of maternal mRNAs by this class of small RNAs. A cDNA cloning and sequencing strategy resulted in 1812 putative miR sequences, representing 72 di...

  8. Prediction of protein long-range contacts using an ensemble of genetic algorithm classifiers with sequence profile centers.

    PubMed

    Chen, Peng; Li, Jinyan

    2010-05-17

    Prediction of long-range inter-residue contacts is an important topic in bioinformatics research. It is helpful for determining protein structures, understanding protein foldings, and therefore advancing the annotation of protein functions. In this paper, we propose a novel ensemble of genetic algorithm classifiers (GaCs) to address the long-range contact prediction problem. Our method is based on the key idea called sequence profile centers (SPCs). Each SPC is the average sequence profiles of residue pairs belonging to the same contact class or non-contact class. GaCs train on multiple but different pairs of long-range contact data (positive data) and long-range non-contact data (negative data). The negative data sets, having roughly the same sizes as the positive ones, are constructed by random sampling over the original imbalanced negative data. As a result, about 21.5% long-range contacts are correctly predicted. We also found that the ensemble of GaCs indeed makes an accuracy improvement by around 5.6% over the single GaC. Classifiers with the use of sequence profile centers may advance the long-range contact prediction. In line with this approach, key structural features in proteins would be determined with high efficiency and accuracy.

  9. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases

    PubMed Central

    Qin, Yidan; Yao, Jun; Wu, Douglas C.; Nottingham, Ryan M.; Mohr, Sabine; Hunicke-Smith, Scott; Lambowitz, Alan M.

    2016-01-01

    Next-generation RNA-sequencing (RNA-seq) has revolutionized transcriptome profiling, gene expression analysis, and RNA-based diagnostics. Here, we developed a new RNA-seq method that exploits thermostable group II intron reverse transcriptases (TGIRTs) and used it to profile human plasma RNAs. TGIRTs have higher thermostability, processivity, and fidelity than conventional reverse transcriptases, plus a novel template-switching activity that can efficiently attach RNA-seq adapters to target RNA sequences without RNA ligation. The new TGIRT-seq method enabled construction of RNA-seq libraries from <1 ng of plasma RNA in <5 h. TGIRT-seq of RNA in 1-mL plasma samples from a healthy individual revealed RNA fragments mapping to a diverse population of protein-coding gene and long ncRNAs, which are enriched in intron and antisense sequences, as well as nearly all known classes of small ncRNAs, some of which have never before been seen in plasma. Surprisingly, many of the small ncRNA species were present as full-length transcripts, suggesting that they are protected from plasma RNases in ribonucleoprotein (RNP) complexes and/or exosomes. This TGIRT-seq method is readily adaptable for profiling of whole-cell, exosomal, and miRNAs, and for related procedures, such as HITS-CLIP and ribosome profiling. PMID:26554030

  10. CRISPR-cas loci profiling of Cronobacter sakazakii pathovars.

    PubMed

    Ogrodzki, Pauline; Forsythe, Stephen James

    2016-12-01

    Cronobacter sakazakii sequence types 1, 4, 8 and 12 are associated with outbreaks of neonatal meningitis and necrotizing enterocolitis infections. However clonality results in strains which are indistinguishable using conventional methods. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)-cas loci profiling for epidemiological investigations. Seventy whole genomes of C. sakazakii strains from four clonal complexes which were widely distributed temporally, geographically and origin of source were profiled. All strains encoded the same type I-E subtype CRISPR-cas system with a total of 12 different CRISPR spacer arrays. This study demonstrated the greater discriminatory power of CRISPR spacer array profiling compared with multilocus sequence typing, which will be of use in source attribution during Cronobacter outbreak investigations.

  11. A bidimensional finite mixture model for longitudinal data subject to dropout.

    PubMed

    Spagnoli, Alessandra; Marino, Maria Francesca; Alfò, Marco

    2018-06-05

    In longitudinal studies, subjects may be lost to follow up and, thus, present incomplete response sequences. When the mechanism underlying the dropout is nonignorable, we need to account for dependence between the longitudinal and the dropout process. We propose to model such a dependence through discrete latent effects, which are outcome-specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a probability matrix to describe the corresponding joint distribution. In this way, we separately model dependence within each outcome and dependence between outcomes. The major feature of this proposal, when compared with standard finite mixture models, is that it allows the nonignorable dropout model to properly nest its ignorable counterpart. We also discuss the use of an index of (local) sensitivity to nonignorability to investigate the effects that assumptions about the dropout process may have on model parameter estimates. The proposal is illustrated via the analysis of data from a longitudinal study on the dynamics of cognitive functioning in the elderly. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Sensitivity analysis of the space shuttle to ascent wind profiles

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Austin, L. D., Jr.

    1982-01-01

    A parametric sensitivity analysis of the space shuttle ascent flight to the wind profile is presented. Engineering systems parameters are obtained by flight simulations using wind profile models and samples of detailed (Jimsphere) wind profile measurements. The wind models used are the synthetic vector wind model, with and without the design gust, and a model of the vector wind change with respect to time. From these comparison analyses an insight is gained on the contribution of winds to ascent subsystems flight parameters.

  13. Dual signal amplification for highly sensitive electrochemical detection of uropathogens via enzyme-based catalytic target recycling.

    PubMed

    Su, Jiao; Zhang, Haijie; Jiang, Bingying; Zheng, Huzhi; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2011-11-15

    We report an ultrasensitive electrochemical approach for the detection of uropathogen sequence-specific DNA target. The sensing strategy involves a dual signal amplification process, which combines the signal enhancement by the enzymatic target recycling technique with the sensitivity improvement by the quantum dot (QD) layer-by-layer (LBL) assembled labels. The enzyme-based catalytic target DNA recycling process results in the use of each target DNA sequence for multiple times and leads to direct amplification of the analytical signal. Moreover, the LBL assembled QD labels can further enhance the sensitivity of the sensing system. The coupling of these two effective signal amplification strategies thus leads to low femtomolar (5fM) detection of the target DNA sequences. The proposed strategy also shows excellent discrimination between the target DNA and the single-base mismatch sequences. The advantageous intrinsic sequence-independent property of exonuclease III over other sequence-dependent enzymes makes our new dual signal amplification system a general sensing platform for monitoring ultralow level of various types of target DNA sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Molecular and comparative analysis of Salmonella enterica Senftenberg from humans and animals using PFGE, MLST and NARMS.

    PubMed

    Stepan, Ryan M; Sherwood, Julie S; Petermann, Shana R; Logue, Catherine M

    2011-06-27

    Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar.

  15. Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat.

    PubMed

    Harris, J Kirk; Caporaso, J Gregory; Walker, Jeffrey J; Spear, John R; Gold, Nicholas J; Robertson, Charles E; Hugenholtz, Philip; Goodrich, Julia; McDonald, Daniel; Knights, Dan; Marshall, Paul; Tufo, Henry; Knight, Rob; Pace, Norman R

    2013-01-01

    The microbial mats of Guerrero Negro (GN), Baja California Sur, Mexico historically were considered a simple environment, dominated by cyanobacteria and sulfate-reducing bacteria. Culture-independent rRNA community profiling instead revealed these microbial mats as among the most phylogenetically diverse environments known. A preliminary molecular survey of the GN mat based on only ∼1500 small subunit rRNA gene sequences discovered several new phylum-level groups in the bacterial phylogenetic domain and many previously undetected lower-level taxa. We determined an additional ∼119,000 nearly full-length sequences and 28,000 >200 nucleotide 454 reads from a 10-layer depth profile of the GN mat. With this unprecedented coverage of long sequences from one environment, we confirm the mat is phylogenetically stratified, presumably corresponding to light and geochemical gradients throughout the depth of the mat. Previous shotgun metagenomic data from the same depth profile show the same stratified pattern and suggest that metagenome properties may be predictable from rRNA gene sequences. We verify previously identified novel lineages and identify new phylogenetic diversity at lower taxonomic levels, for example, thousands of operational taxonomic units at the family-genus levels differ considerably from known sequences. The new sequences populate parts of the bacterial phylogenetic tree that previously were poorly described, but indicate that any comprehensive survey of GN diversity has only begun. Finally, we show that taxonomic conclusions are generally congruent between Sanger and 454 sequencing technologies, with the taxonomic resolution achieved dependent on the abundance of reference sequences in the relevant region of the rRNA tree of life.

  16. The segmented non-uniform dielectric module design for uniformity control of plasma profile in a capacitively coupled plasma chamber

    NASA Astrophysics Data System (ADS)

    Xia, Huanxiong; Xiang, Dong; Yang, Wang; Mou, Peng

    2014-12-01

    Low-temperature plasma technique is one of the critical techniques in IC manufacturing process, such as etching and thin-film deposition, and the uniformity greatly impacts the process quality, so the design for the plasma uniformity control is very important but difficult. It is hard to finely and flexibly regulate the spatial distribution of the plasma in the chamber via controlling the discharge parameters or modifying the structure in zero-dimensional space, and it just can adjust the overall level of the process factors. In the view of this problem, a segmented non-uniform dielectric module design solution is proposed for the regulation of the plasma profile in a CCP chamber. The solution achieves refined and flexible regulation of the plasma profile in the radial direction via configuring the relative permittivity and the width of each segment. In order to solve this design problem, a novel simulation-based auto-design approach is proposed, which can automatically design the positional sequence with multi independent variables to make the output target profile in the parameterized simulation model approximate the one that users preset. This approach employs an idea of quasi-closed-loop control system, and works in an iterative mode. It starts from initial values of the design variable sequences, and predicts better sequences via the feedback of the profile error between the output target profile and the expected one. It never stops until the profile error is narrowed in the preset tolerance.

  17. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Limited copy number - high resolution melting (LCN-HRM) enables the detection and identification by sequencing of low level mutations in cancer biopsies

    PubMed Central

    Do, Hongdo; Dobrovic, Alexander

    2009-01-01

    Background Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations. We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Results Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions. LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. Conclusion LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations. PMID:19811662

  19. Comparison of conventional MRI and MR arthrography in the evaluation of wrist ligament tears: A preliminary experience

    PubMed Central

    Pahwa, Shivani; Srivastava, Deep N; Sharma, Raju; Gamanagatti, Shivanand; Kotwal, Prakash P; Sharma, Vijay

    2014-01-01

    Aims: To compare conventional magnetic resonance imaging (MRI) and direct magnetic resonance (MR) arthrography in the evaluation of triangular fibrocartilage complex (TFCC) and intrinsic wrist ligament tears. Materials and Methods: T1-weighted, fat suppressed (FS) proton density plus T2-weighted (FS PD/T2), 3D multiple-echo data image combination (MEDIC) sequences and direct MR arthrography were performed in 53 patients with wrist pain. Images were evaluated for the presence and location of TFCC, scapholunate ligament (SLL) and lunatotriquetral ligament (LTL) tears, and imaging findings were compared with operative findings in 16 patients who underwent arthroscopy or open surgery (gold standard). Results: Sixteen patients underwent arthroscopy/open surgery: 12 TFCC tears were detected arthroscopically out of which 9 were detected on FS PD/T2 sequence, 10 on MEDIC sequence, and all 12 were detected on MR arthrography. The sensitivities of FS PD/T2, MEDIC sequences, and MR arthrography in the detection of TFCC tears were 75%, 83.3%, and 100%, respectively. Out of the eight arthroscopically confirmed SLL tears, three tears were detected on FS PD/T2 sequence, five on MEDIC sequence, and all eight were visualized on MR arthrography. The sensitivities of FS PD/T2, MEDIC sequences, and MR arthrography in detecting SLL tears were 37.5%, 62.5%, and 100%, respectively. One arthroscopically confirmed LTL tear was diagnosed on FS PD/T2 sequence, three on MEDIC sequence, and all five arthroscopically confirmed LTL tears were detected with MR arthrography. The sensitivities of PD, MEDIC sequences, and MR arthrography in detecting LTL tears were 20%, 40%, and 100%, respectively. Conclusions: MR arthrography is the most sensitive and specific imaging modality for the evaluation of wrist ligament tears. PMID:25114389

  20. Limited copy number-high resolution melting (LCN-HRM) enables the detection and identification by sequencing of low level mutations in cancer biopsies.

    PubMed

    Do, Hongdo; Dobrovic, Alexander

    2009-10-08

    Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations.We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions.LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations.

  1. Diverse Gene Cassettes in Class 1 Integrons of Facultative Oligotrophic Bacteria of River Mahananda, West Bengal, India

    PubMed Central

    Chakraborty, Ranadhir; Kumar, Arvind; Bhowal, Suparna Saha; Mandal, Amit Kumar; Tiwary, Bipransh Kumar; Mukherjee, Shriparna

    2013-01-01

    Background In this study a large random collection (n = 2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007–2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. Methodology/Principal Findings Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (χ2) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6′-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families, Moraxellaceae, Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. Conclusions Oligotrophic bacteria are good sources of novel genes as well as potential reservoirs of antibiotic resistance gene casettes. PMID:23951238

  2. A comparison of the enzymatic properties of the major cysteine proteinases from Trypanosoma congolense and Trypanosoma cruzi.

    PubMed

    Chagas, J R; Authie, E; Serveau, C; Lalmanach, G; Juliano, L; Gauthier, F

    1997-09-01

    Congopain and cruzipain, the major cysteine proteinases from Trypanosoma congolense and Trypanosoma cruzi, were compared for their activities towards a series of new, sensitive fluorogenic substrates of the papain family of cysteine proteinases and for their sensitivity to inhibition by cystatins and related biotinylated peptidyl diazomethanes. Low Ki values, in the 10 pM range, were found for the interaction of both proteinases with natural cystatin inhibitors. The kinetic constants for the hydrolysis of cystatin-derived substrates, and the inhibition by related diazomethanes were essentially identical. Unlike cathepsins B and L, the related mammal papain family proteinases, congopain and cruzipain accomodate a prolyl residue in P2'. Substrates having the sequence VGGP from P2 to P2' were hydrolysed by both congopain and cruzipain with a k(cat)/Km greater than 4.10(3) mM(-1) s(-1). Irreversible diazomethane inhibitors, deduced from the unprime sequence of cystatin-derived substrates, inhibited the two parasite proteinases. N-terminal labelling of diazomethanes with a biotin group did not alter the rate of inhibition significantly, which provides a useful tool for examining the distribution of these enzymes in the parasite and in the host. Despite their similar activities on cystatin-derived substrates, congopain and cruzipain had significantly different pH-activity profiles when assayed with a cystatin-derived substrate. They were correlated with structural differences, especially at the presumed S2 subsites.

  3. Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.).

    PubMed

    Pandey, Garima; Yadav, Chandra Bhan; Sahu, Pranav Pankaj; Muthamilarasan, Mehanathan; Prasad, Manoj

    2017-05-01

    Genome-wide methylation analysis of foxtail millet cultivars contrastingly differing in salinity tolerance revealed DNA demethylation events occurring in tolerant cultivar under salinity stress, eventually modulating the expression of stress-responsive genes. Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative. Foxtail millet (Setaria italica) is known for its better tolerance to abiotic stresses compared to other cereal crops. In the present study, methylation-sensitive amplified polymorphism (MSAP) technique was used to quantify the salt-induced methylation changes in two foxtail millet cultivars contrastingly differing in their tolerance levels to salt stress. The study highlighted that the DNA methylation level was significantly reduced in tolerant cultivar compared to sensitive cultivar. A total of 86 polymorphic MSAP fragments were identified, sequenced and functionally annotated. These fragments showed sequence similarity to several genes including ABC transporter, WRKY transcription factor, serine threonine-protein phosphatase, disease resistance, oxidoreductases, cell wall-related enzymes and retrotransposon and transposase like proteins, suggesting salt stress-induced methylation in these genes. Among these, four genes were chosen for expression profiling which showed differential expression pattern between both cultivars of foxtail millet. Altogether, the study infers that salinity stress induces genome-wide DNA demethylation, which in turn, modulates expression of corresponding genes.

  4. Rapid molecular screening for multidrug-resistant tuberculosis in a resource-limited region of China.

    PubMed

    Zhang, Dan; Liu, Beizhong; Wang, Yufeng; Pang, Yu

    2014-10-01

    To investigate the molecular characteristics of MDR and XDR strains circulating in Chongqing, China. The drug target genes conferring for rifampicin (RIF), isoniazid (INH), ethambutol (EMB), ofloxacin (OFLX) and kanamycin (KAN) resistance were screened by DNA sequencing to determine the mutation frequencies in this area. Drug susceptibility of 208 MDR isolates revealed that 132 (63.46%) were resistant to streptomycin (SM), 96 (46.15%) to ethambutol (EMB), 51 (24.52%) to ofloxacin (OFLX), and 26 (12.50%) to kanamycin (KAN); six (2.88%) isolates had XDR profiles. In comparison with the drug susceptibility phenotype, the sensitivity of drug resistance by DNA sequencing was 91.83% for RIF, 87.50% for INH, 66.67% for EMB, 74.51% for OFLX and 53.85% for KAN resistance. 12.50% of EMB- and 1.27% of OFLX-susceptible isolates were harboured genetic mutations in embB and gyrA, respectively. Our findings demonstrate that the hot-spot regions localised in rpoB, katG and inhA genes serve as excellent markers for the corresponding drug resistance, while EMB, OFLX or KAN drug-resistant TB cases may not be identifiable by scanning embB, gyrA, rrs and eis promoter in Chongqing, indicating that further studies on the drug resistance mechanisms of EMB, OFLX and KAN are urgently needed to elucidate the low sensitivity between genomic substitutions and drug-resistant phenotype. © 2014 John Wiley & Sons Ltd.

  5. Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure.

    PubMed

    Svensson, J Peter; Quirós Pesudo, Laia; McRee, Siobhan K; Adeleye, Yeyejide; Carmichael, Paul; Samson, Leona D

    2013-01-01

    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N'-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic 'barcode', were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput 'barcode' sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.

  6. Genomic Phenotyping by Barcode Sequencing Broadly Distinguishes between Alkylating Agents, Oxidizing Agents, and Non-Genotoxic Agents, and Reveals a Role for Aromatic Amino Acids in Cellular Recovery after Quinone Exposure

    PubMed Central

    Svensson, J. Peter; Quirós Pesudo, Laia; McRee, Siobhan K.; Adeleye, Yeyejide; Carmichael, Paul; Samson, Leona D.

    2013-01-01

    Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised. PMID:24040048

  7. Temporal profile of functional visual rehabilitative outcomes modulated by transcranial direct current stimulation.

    PubMed

    Plow, Ela B; Obretenova, Souzana N; Jackson, Mary Lou; Merabet, Lotfi B

    2012-07-01

    We have previously reported that transcranial direct current stimulation (tDCS) delivered to the occipital cortex enhances visual functional recovery when combined with three months of computer-based rehabilitative training in patients with hemianopia. The principal objective of this study was to evaluate the temporal sequence of effects of tDCS on visual recovery as they appear over the course of training and across different indicators of visual function. Primary objective outcome measures were 1) shifts in visual field border and 2) stimulus detection accuracy within the affected hemifield. These were compared between patients randomized to either vision restoration therapy (VRT) combined with active tDCS or VRT paired with sham tDCS. Training comprised two half-hour sessions, three times a week for three months. Primary outcome measures were collected at baseline (pretest), monthly interim intervals, and at posttest (three months). As secondary outcome measures, contrast sensitivity and reading performance were collected at pretest and posttest time points only. Active tDCS combined with VRT accelerated the recovery of stimulus detection as between-group differences appeared within the first month of training. In contrast, a shift in the visual field border was only evident at posttest (after three months of training). tDCS did not affect contrast sensitivity or reading performance. These results suggest that tDCS may differentially affect the magnitude and sequence of visual recovery in a manner that is task specific to the type of visual rehabilitative training strategy employed. © 2012 International Neuromodulation Society.

  8. Effect of an ozone injury retardant chemical on isozyme profiles from alfalfa callus in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rier, J.P. Jr.; Sood, V.K.; Whitaker, A.

    1983-01-01

    Plant ozone injury retardant N-(2-(2-oxo-1-imidazolidinyl)-ethyl)-N'-phenylurea (EDU or ethylenediurea) at 1.0 ppm inhibited growth of callus of alfalfa cultivars Williamsburg (ozone-sensitive) and MSB-CW5An2 (ozone-insensitive) germplasm of Medicago sativa. The presence of EDU (0.1 ppm)in the growth medium increased the number of protein and peroxidase isozyme bands in alfalfa cultivar Williamsburg stem callus and ozone modified their intensities. Protein profiles of MSB stem callus from media containing EDU or exposed to ozone were unchanged. Marked differences were observed between the peroxidase profiles of ozonated and control ozone-insensitive stem callus from media containing EDU. Protein profiles of ozonated ozone-sensitive leaf callus differed slightlymore » from controls. The peroxidase profile of ozonated ozone-sensitive leaf callus was not altered when its growth medium contained EDU, but when it was absent, changes were observed in these profiles.« less

  9. High-precision drop shape analysis on inclining flat surfaces: introduction and comparison of this special method with commercial contact angle analysis.

    PubMed

    Schmitt, Michael; Heib, Florian

    2013-10-07

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in combination with innovative fit algorithms and data presentations, can result in enhanced reproducibility and comparability of the contact angle measurements in terms of the material characterisation in a comprehensible way.

  10. High-precision drop shape analysis on inclining flat surfaces: Introduction and comparison of this special method with commercial contact angle analysis

    NASA Astrophysics Data System (ADS)

    Schmitt, Michael; Heib, Florian

    2013-10-01

    Drop shape analysis is one of the most important and frequently used methods to characterise surfaces in the scientific and industrial communities. An especially large number of studies, which use contact angle measurements to analyse surfaces, are characterised by incorrect or misdirected conclusions such as the determination of surface energies from poorly performed contact angle determinations. In particular, the characterisation of surfaces, which leads to correlations between the contact angle and other effects, must be critically validated for some publications. A large number of works exist concerning the theoretical and thermodynamic aspects of two- and tri-phase boundaries. The linkage between theory and experiment is generally performed by an axisymmetric drop shape analysis, that is, simulations of the theoretical drop profiles by numerical integration onto a number of points of the drop meniscus (approximately 20). These methods work very well for axisymmetric profiles such as those obtained by pendant drop measurements, but in the case of a sessile drop onto real surfaces, additional unknown and misunderstood effects on the dependence of the surface must be considered. We present a special experimental and practical investigation as another way to transition from experiment to theory. This procedure was developed to be especially sensitive to small variations in the dependence of the dynamic contact angle on the surface; as a result, this procedure will allow the properties of the surface to be monitored with a higher precession and sensitivity. In this context, water drops onto a 111 silicon wafer are dynamically measured by video recording and by inclining the surface, which results in a sequence of non-axisymmetric drops. The drop profiles are analysed by commercial software and by the developed and presented high-precision drop shape analysis. In addition to the enhanced sensitivity for contact angle determination, this analysis technique, in combination with innovative fit algorithms and data presentations, can result in enhanced reproducibility and comparability of the contact angle measurements in terms of the material characterisation in a comprehensible way.

  11. High-resolution phylogenetic microbial community profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  12. High-resolution phylogenetic microbial community profiling

    DOE PAGES

    Singer, Esther; Bushnell, Brian; Coleman-Derr, Devin; ...

    2016-02-09

    Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structuresmore » at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake's water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.« less

  13. Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models

    PubMed Central

    2014-01-01

    Background Logos are commonly used in molecular biology to provide a compact graphical representation of the conservation pattern of a set of sequences. They render the information contained in sequence alignments or profile hidden Markov models by drawing a stack of letters for each position, where the height of the stack corresponds to the conservation at that position, and the height of each letter within a stack depends on the frequency of that letter at that position. Results We present a new tool and web server, called Skylign, which provides a unified framework for creating logos for both sequence alignments and profile hidden Markov models. In addition to static image files, Skylign creates a novel interactive logo plot for inclusion in web pages. These interactive logos enable scrolling, zooming, and inspection of underlying values. Skylign can avoid sampling bias in sequence alignments by down-weighting redundant sequences and by combining observed counts with informed priors. It also simplifies the representation of gap parameters, and can optionally scale letter heights based on alternate calculations of the conservation of a position. Conclusion Skylign is available as a website, a scriptable web service with a RESTful interface, and as a software package for download. Skylign’s interactive logos are easily incorporated into a web page with just a few lines of HTML markup. Skylign may be found at http://skylign.org. PMID:24410852

  14. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    PubMed

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  15. Transposon identification using profile HMMs

    PubMed Central

    2010-01-01

    Background Transposons are "jumping genes" that account for large quantities of repetitive content in genomes. They are known to affect transcriptional regulation in several different ways, and are implicated in many human diseases. Transposons are related to microRNAs and viruses, and many genes, pseudogenes, and gene promoters are derived from transposons or have origins in transposon-induced duplication. Modeling transposon-derived genomic content is difficult because they are poorly conserved. Profile hidden Markov models (profile HMMs), widely used for protein sequence family modeling, are rarely used for modeling DNA sequence families. The algorithm commonly used to estimate the parameters of profile HMMs, Baum-Welch, is prone to prematurely converge to local optima. The DNA domain is especially problematic for the Baum-Welch algorithm, since it has only four letters as opposed to the twenty residues of the amino acid alphabet. Results We demonstrate with a simulation study and with an application to modeling the MIR family of transposons that two recently introduced methods, Conditional Baum-Welch and Dynamic Model Surgery, achieve better estimates of the parameters of profile HMMs across a range of conditions. Conclusions We argue that these new algorithms expand the range of potential applications of profile HMMs to many important DNA sequence family modeling problems, including that of searching for and modeling the virus-like transposons that are found in all known genomes. PMID:20158867

  16. Arpeggio: harmonic compression of ChIP-seq data reveals protein-chromatin interaction signatures

    PubMed Central

    Stanton, Kelly Patrick; Parisi, Fabio; Strino, Francesco; Rabin, Neta; Asp, Patrik; Kluger, Yuval

    2013-01-01

    Researchers generating new genome-wide data in an exploratory sequencing study can gain biological insights by comparing their data with well-annotated data sets possessing similar genomic patterns. Data compression techniques are needed for efficient comparisons of a new genomic experiment with large repositories of publicly available profiles. Furthermore, data representations that allow comparisons of genomic signals from different platforms and across species enhance our ability to leverage these large repositories. Here, we present a signal processing approach that characterizes protein–chromatin interaction patterns at length scales of several kilobases. This allows us to efficiently compare numerous chromatin-immunoprecipitation sequencing (ChIP-seq) data sets consisting of many types of DNA-binding proteins collected from a variety of cells, conditions and organisms. Importantly, these interaction patterns broadly reflect the biological properties of the binding events. To generate these profiles, termed Arpeggio profiles, we applied harmonic deconvolution techniques to the autocorrelation profiles of the ChIP-seq signals. We used 806 publicly available ChIP-seq experiments and showed that Arpeggio profiles with similar spectral densities shared biological properties. Arpeggio profiles of ChIP-seq data sets revealed characteristics that are not easily detected by standard peak finders. They also allowed us to relate sequencing data sets from different genomes, experimental platforms and protocols. Arpeggio is freely available at http://sourceforge.net/p/arpeggio/wiki/Home/. PMID:23873955

  17. Arpeggio: harmonic compression of ChIP-seq data reveals protein-chromatin interaction signatures.

    PubMed

    Stanton, Kelly Patrick; Parisi, Fabio; Strino, Francesco; Rabin, Neta; Asp, Patrik; Kluger, Yuval

    2013-09-01

    Researchers generating new genome-wide data in an exploratory sequencing study can gain biological insights by comparing their data with well-annotated data sets possessing similar genomic patterns. Data compression techniques are needed for efficient comparisons of a new genomic experiment with large repositories of publicly available profiles. Furthermore, data representations that allow comparisons of genomic signals from different platforms and across species enhance our ability to leverage these large repositories. Here, we present a signal processing approach that characterizes protein-chromatin interaction patterns at length scales of several kilobases. This allows us to efficiently compare numerous chromatin-immunoprecipitation sequencing (ChIP-seq) data sets consisting of many types of DNA-binding proteins collected from a variety of cells, conditions and organisms. Importantly, these interaction patterns broadly reflect the biological properties of the binding events. To generate these profiles, termed Arpeggio profiles, we applied harmonic deconvolution techniques to the autocorrelation profiles of the ChIP-seq signals. We used 806 publicly available ChIP-seq experiments and showed that Arpeggio profiles with similar spectral densities shared biological properties. Arpeggio profiles of ChIP-seq data sets revealed characteristics that are not easily detected by standard peak finders. They also allowed us to relate sequencing data sets from different genomes, experimental platforms and protocols. Arpeggio is freely available at http://sourceforge.net/p/arpeggio/wiki/Home/.

  18. Sequence Tolerance of a Highly Stable Single Domain Antibody: Comparison of Computational and Experimental Profiles

    DTIC Science & Technology

    2016-09-09

    evaluating 18 mutants using either the A or B conformer is only r = ~ 0.2. Given the poor performance of approximating the observed experimental ...1    Sequence Tolerance of a Highly Stable Single Domain Antibody: Comparison of Computational and Experimental Profiles Mark A. Olson,1 Patricia...unusually high thermal stability is explored by a combined computational and experimental study. Starting with the crystallographic structure

  19. A High Resolution Seismic Sequence Analysis of the Malta Plateau

    DTIC Science & Technology

    1999-05-01

    the SACLANTCEN Programme of Work. The document has been approved for release by The Director, SACLANTCEN. Jan L . Spoelstra Director NATO...the Plio- Quatemary. To the southwest of Sicily, Di Stefano et al. (1993) identified six sequence boundaries and estimated the ages by the...the location of the seismic reflection profiles in Di Stefano et al. (1993) do not overlap any of the profiles in this study and use a lower frequency

  20. Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR

    NASA Astrophysics Data System (ADS)

    Metz, G.; Wu, X. L.; Smith, S. O.

    The Hartmann-Hahn matching profile in CP-MAS NMR shows a strong mismatch dependence if the MAS frequency is on the order of the dipolar couplings in the sample. Under these conditions, the profile breaks down into a series of narrow matching bands separated by the spinning speed, and it becomes difficult to establish and maintain an efficient matching condition. Variable-amplitude CP (VACP), as introduced previously (Peersen et al., J. Magn. Reson. A104, 334, 1993), has been proven to be effective for restoring flat profiles at high spinning speeds. Here, a refined implementation of VACP using a ramped-amplitude cross-polarization sequence (RAMP-CP) is described. The order of the amplitude modulation is shown to be of importance for the cross-polarization process. The new pulse sequence with a linear amplitude ramp is not only easier to set up but also improves the performance of the variable-amplitude experiment in that it produces flat profiles over a wider range of matching conditions even with short total contact times. An increase in signal intensity is obtained compared to both con ventional CP and the originally proposed VACP sequence.

  1. HAMAP in 2013, new developments in the protein family classification and annotation system

    PubMed Central

    Pedruzzi, Ivo; Rivoire, Catherine; Auchincloss, Andrea H.; Coudert, Elisabeth; Keller, Guillaume; de Castro, Edouard; Baratin, Delphine; Cuche, Béatrice A.; Bougueleret, Lydie; Poux, Sylvain; Redaschi, Nicole; Xenarios, Ioannis; Bridge, Alan

    2013-01-01

    HAMAP (High-quality Automated and Manual Annotation of Proteins—available at http://hamap.expasy.org/) is a system for the classification and annotation of protein sequences. It consists of a collection of manually curated family profiles for protein classification, and associated annotation rules that specify annotations that apply to family members. HAMAP was originally developed to support the manual curation of UniProtKB/Swiss-Prot records describing microbial proteins. Here we describe new developments in HAMAP, including the extension of HAMAP to eukaryotic proteins, the use of HAMAP in the automated annotation of UniProtKB/TrEMBL, providing high-quality annotation for millions of protein sequences, and the future integration of HAMAP into a unified system for UniProtKB annotation, UniRule. HAMAP is continuously updated by expert curators with new family profiles and annotation rules as new protein families are characterized. The collection of HAMAP family classification profiles and annotation rules can be browsed and viewed on the HAMAP website, which also provides an interface to scan user sequences against HAMAP profiles. PMID:23193261

  2. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding.

    PubMed

    Shahi, Payam; Kim, Samuel C; Haliburton, John R; Gartner, Zev J; Abate, Adam R

    2017-03-14

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  3. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    NASA Astrophysics Data System (ADS)

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  4. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    PubMed Central

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-01-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing. PMID:28290550

  5. Cytokine Profile of Patients with Allergic Rhinitis Caused by Pollen, Mite, and Microbial Allergen Sensitization.

    PubMed

    Tyurin, Yury A; Lissovskaya, Svetlana A; Fassahov, Rustem S; Mustafin, Ilshat G; Shamsutdinov, Anton F; Shilova, Marina A; Rizvanov, Albert A

    2017-01-01

    Allergic rhinitis (AR) is especially prevalent among the population of large cities. Immunologically, the airway epithelium is a region where the population of allergen-presenting cells concentrates. These cells actively express a group of receptors of the innate immune system. A specific cytokine profile is its representation. The study was aimed at evaluating the cytokine profile in patients with seasonal and perennial allergic rhinitis. The cytokine profile of nasal secretion and blood serum of 44 patients with AR was studied. 24 of them had seasonal allergic rhinitis (SAR), and 20 patients suffered from perennial allergic rhinitis (PAR). The patients' age ranged from 4 to 60 years. It was determined in our study that the activation of the GM-CSF production retained in patients with PAR sensitized to mite allergen components ( Dermatophagoides pteronyssinus ). There was a higher production profile of TNF- α and TSLP in nasal secretion in the patients with perennial allergic rhinitis and additional high sensitization to SEs. Sensitization to mold fungal allergen components significantly increases in patients with seasonal allergic rhinitis. They demonstrated high level of sensitization to the Aspergillus fumigatus component m3. Thus, along with other clinical trials, the study performed would clarify some aspects of molecular pathogenesis of human allergic rhinitis.

  6. A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design

    PubMed Central

    Arguel, Marie-Jeanne; LeBrigand, Kevin; Paquet, Agnès; Ruiz García, Sandra; Zaragosi, Laure-Emmanuelle; Waldmann, Rainer

    2017-01-01

    Abstract Single cell RNA sequencing approaches are instrumental in studies of cell-to-cell variability. 5΄ selective transcriptome profiling approaches allow simultaneous definition of the transcription start size and have advantages over 3΄ selective approaches which just provide internal sequences close to the 3΄ end. The only currently existing 5΄ selective approach requires costly and labor intensive fragmentation and cell barcoding after cDNA amplification. We developed an optimized 5΄ selective workflow where all the cell indexing is done prior to fragmentation. With our protocol, cell indexing can be performed in the Fluidigm C1 microfluidic device, resulting in a significant reduction of cost and labor. We also designed optimized unique molecular identifiers that show less sequence bias and vulnerability towards sequencing errors resulting in an improved accuracy of molecule counting. We provide comprehensive experimental workflows for Illumina and Ion Proton sequencers that allow single cell sequencing in a cost range comparable to qPCR assays. PMID:27940562

  7. 3' terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing.

    PubMed

    Goldfarb, Katherine C; Cech, Thomas R

    2013-09-21

    Post-transcriptional 3' end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3' RACE coupled with high-throughput sequencing to characterize the 3' terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. The 3' terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3' terminus of an in vitro transcribed MRP RNA control and the differing 3' terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). 3' RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3' terminal sequences of noncoding RNAs.

  8. Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing.

    PubMed

    Kim, Charissa; Gao, Ruli; Sei, Emi; Brandt, Rachel; Hartman, Johan; Hatschek, Thomas; Crosetto, Nicola; Foukakis, Theodoros; Navin, Nicholas E

    2018-05-03

    Triple-negative breast cancer (TNBC) is an aggressive subtype that frequently develops resistance to chemotherapy. An unresolved question is whether resistance is caused by the selection of rare pre-existing clones or alternatively through the acquisition of new genomic aberrations. To investigate this question, we applied single-cell DNA and RNA sequencing in addition to bulk exome sequencing to profile longitudinal samples from 20 TNBC patients during neoadjuvant chemotherapy (NAC). Deep-exome sequencing identified 10 patients in which NAC led to clonal extinction and 10 patients in which clones persisted after treatment. In 8 patients, we performed a more detailed study using single-cell DNA sequencing to analyze 900 cells and single-cell RNA sequencing to analyze 6,862 cells. Our data showed that resistant genotypes were pre-existing and adaptively selected by NAC, while transcriptional profiles were acquired by reprogramming in response to chemotherapy in TNBC patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Disorder-specific cognitive profiles in major depressive disorder and generalized anxiety disorder.

    PubMed

    Hendriks, Sanne M; Licht, Carmilla M M; Spijker, Jan; Beekman, Aartjan T F; Hardeveld, Florian; de Graaf, Ron; Penninx, Brenda W J H

    2014-04-01

    This investigation examines differences in cognitive profiles in subjects with major depressive disorder (MDD) and generalized anxiety disorder (GAD). Data were used from subjects with current MDD (n = 655), GAD (n = 107) and comorbid MDD/GAD (n = 266) diagnosis from the Netherlands Study of Depression and Anxiety (NESDA). The Composite Interview Diagnostic Instrument was used to diagnose MDD and GAD. Cognitive profiles were measured using the Leiden Index of Depression Sensitivity, the Anxiety Sensitivity Index, and the Penn State Worry Questionnaire. Results showed that differences in cognitive profiles between single MDD and single GAD subjects were present: scores on hopelessness/suicidality and rumination were significantly higher in MDD than GAD, whereas anxiety sensitivity for physical concerns and pathological worry were higher in GAD than MDD. The cognitive profile of comorbid MDD/GAD showed more extreme depression cognitions compared to single disorders, and a similar anxiety profile compared to single GAD subjects. Despite the commonalities in cognitive profiles in MDD and GAD, there are differences suggesting that MDD and GAD have disorder-specific cognitive profiles. Findings of this investigation give support for models like the cognitive content-specificity model and the tripartite model and could provide useful handles for treatment focus.

  10. Effect of confounding variables on hemodynamic response function estimation using averaging and deconvolution analysis: An event-related NIRS study.

    PubMed

    Aarabi, Ardalan; Osharina, Victoria; Wallois, Fabrice

    2017-07-15

    Slow and rapid event-related designs are used in fMRI and functional near-infrared spectroscopy (fNIRS) experiments to temporally characterize the brain hemodynamic response to discrete events. Conventional averaging (CA) and the deconvolution method (DM) are the two techniques commonly used to estimate the Hemodynamic Response Function (HRF) profile in event-related designs. In this study, we conducted a series of simulations using synthetic and real NIRS data to examine the effect of the main confounding factors, including event sequence timing parameters, different types of noise, signal-to-noise ratio (SNR), temporal autocorrelation and temporal filtering on the performance of these techniques in slow and rapid event-related designs. We also compared systematic errors in the estimates of the fitted HRF amplitude, latency and duration for both techniques. We further compared the performance of deconvolution methods based on Finite Impulse Response (FIR) basis functions and gamma basis sets. Our results demonstrate that DM was much less sensitive to confounding factors than CA. Event timing was the main parameter largely affecting the accuracy of CA. In slow event-related designs, deconvolution methods provided similar results to those obtained by CA. In rapid event-related designs, our results showed that DM outperformed CA for all SNR, especially above -5 dB regardless of the event sequence timing and the dynamics of background NIRS activity. Our results also show that periodic low-frequency systemic hemodynamic fluctuations as well as phase-locked noise can markedly obscure hemodynamic evoked responses. Temporal autocorrelation also affected the performance of both techniques by inducing distortions in the time profile of the estimated hemodynamic response with inflated t-statistics, especially at low SNRs. We also found that high-pass temporal filtering could substantially affect the performance of both techniques by removing the low-frequency components of HRF profiles. Our results emphasize the importance of characterization of event timing, background noise and SNR when estimating HRF profiles using CA and DM in event-related designs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. 3D fluid-attenuated inversion recovery imaging: reduced CSF artifacts and enhanced sensitivity and specificity for subarachnoid hemorrhage.

    PubMed

    Lummel, N; Schoepf, V; Burke, M; Brueckmann, H; Linn, J

    2011-12-01

    FLAIR images are highly sensitive for SAH. However, CSF flow artifacts caused by conventional FLAIR can produce false-positive results. Here, we compare 3D and 3D FLAIR sequences, focusing on their potential for containing these artifacts and their sensitivity and specificity for detection of SAHs. We evaluated the following 4 FLAIR sequences: 1) 2D FLAIR at 1.5T, 2) 2D FLAIR, 3) 2D PROPELLER-FLAIR, and 4) 3D Cube-FLAIR at 3T. All sequences were performed in 5 healthy volunteers; sequences 2 and 4 were also performed under routine conditions in 10 patients with focal epilepsy and in 10 patients with SAH. Two neuroradiologists independently conducted the analysis. The presence of flow artifacts in the ventricles and cisterns of healthy volunteers and patients with epilepsy was evaluated and scored on a 4-point scale. Mean values were calculated and compared by using paired t tests. Sensitivity and specificity for SAH detection in sequences 2 and 4 were determined. Cube-FLAIR showed almost no CSF artifacts in the volunteers and the patients with epilepsy; therefore, it was superior to any other FLAIR (P < .001). Sensitivity and specificity of SAH detection by 3T FLAIR were 58.3% and 89.4%, respectively, whereas Cube-FLAIR had a sensitivity of 95% and a specificity of 100%. Cube-FLAIR allows FLAIR imaging with almost no CSF artifacts and is, thus, particularly useful for SAH detection.

  12. Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling.

    PubMed

    Tome, Jacob M; Ozer, Abdullah; Pagano, John M; Gheba, Dan; Schroth, Gary P; Lis, John T

    2014-06-01

    RNA-protein interactions play critical roles in gene regulation, but methods to quantitatively analyze these interactions at a large scale are lacking. We have developed a high-throughput sequencing-RNA affinity profiling (HiTS-RAP) assay by adapting a high-throughput DNA sequencer to quantify the binding of fluorescently labeled protein to millions of RNAs anchored to sequenced cDNA templates. Using HiTS-RAP, we measured the affinity of mutagenized libraries of GFP-binding and NELF-E-binding aptamers to their respective targets and identified critical regions of interaction. Mutations additively affected the affinity of the NELF-E-binding aptamer, whose interaction depended mainly on a single-stranded RNA motif, but not that of the GFP aptamer, whose interaction depended primarily on secondary structure.

  13. Distribution and Features of the Six Classes of Peroxiredoxins

    PubMed Central

    Poole, Leslie B.; Nelson, Kimberly J.

    2016-01-01

    Peroxiredoxins are cysteine-dependent peroxide reductases that group into 6 different, structurally discernable classes. In 2011, our research team reported the application of a bioinformatic approach called active site profiling to extract active site-proximal sequence segments from the 29 distinct, structurally-characterized peroxiredoxins available at the time. These extracted sequences were then used to create unique profiles for the six groups which were subsequently used to search GenBank(nr), allowing identification of ∼3500 peroxiredoxin sequences and their respective subgroups. Summarized in this minireview are the features and phylogenetic distributions of each of these peroxiredoxin subgroups; an example is also provided illustrating the use of the web accessible, searchable database known as PREX to identify subfamily-specific peroxiredoxin sequences for the organism Vitis vinifera (grape). PMID:26810075

  14. Improved Selection of Internal Transcribed Spacer-Specific Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities

    PubMed Central

    Bokulich, Nicholas A.

    2013-01-01

    Ultra-high-throughput sequencing (HTS) of fungal communities has been restricted by short read lengths and primer amplification bias, slowing the adoption of newer sequencing technologies to fungal community profiling. To address these issues, we evaluated the performance of several common internal transcribed spacer (ITS) primers and designed a novel primer set and work flow for simultaneous quantification and species-level interrogation of fungal consortia. Primer comparison and validation were predicted in silico and by sequencing a “mock community” of mixed yeast species to explore the challenges of amplicon length and amplification bias for reconstructing defined yeast community structures. The amplicon size and distribution of this primer set are smaller than for all preexisting ITS primer sets, maximizing sequencing coverage of hypervariable ITS domains by very-short-amplicon, high-throughput sequencing platforms. This feature also enables the optional integration of quantitative PCR (qPCR) directly into the HTS preparatory work flow by substituting qPCR with these primers for standard PCR, yielding quantification of individual community members. The complete work flow described here, utilizing any of the qualified primer sets evaluated, can rapidly profile mixed fungal communities and capably reconstructed well-characterized beer and wine fermentation fungal communities. PMID:23377949

  15. Computation of repetitions and regularities of biologically weighted sequences.

    PubMed

    Christodoulakis, M; Iliopoulos, C; Mouchard, L; Perdikuri, K; Tsakalidis, A; Tsichlas, K

    2006-01-01

    Biological weighted sequences are used extensively in molecular biology as profiles for protein families, in the representation of binding sites and often for the representation of sequences produced by a shotgun sequencing strategy. In this paper, we address three fundamental problems in the area of biologically weighted sequences: (i) computation of repetitions, (ii) pattern matching, and (iii) computation of regularities. Our algorithms can be used as basic building blocks for more sophisticated algorithms applied on weighted sequences.

  16. Global methylation screening in the Arabidopsis thaliana and Mus musculus genome: applications of virtual image restriction landmark genomic scanning (Vi-RLGS)

    PubMed Central

    Matsuyama, Tomoki; Kimura, Makoto T.; Koike, Kuniaki; Abe, Tomoko; Nakano, Takeshi; Asami, Tadao; Ebisuzaki, Toshikazu; Held, William A.; Yoshida, Shigeo; Nagase, Hiroki

    2003-01-01

    Understanding the role of ‘epigenetic’ changes such as DNA methylation and chromatin remodeling has now become critical in understanding many biological processes. In order to delineate the global methylation pattern in a given genomic DNA, computer software has been developed to create a virtual image of restriction landmark genomic scanning (Vi-RLGS). When using a methylation- sensitive enzyme such as NotI as the restriction landmark, the comparison between real and in silico RLGS profiles of the genome provides a methylation map of genomic NotI sites. A methylation map of the Arabidopsis genome was created that could be confirmed by a methylation-sensitive PCR assay. The method has also been applied to the mouse genome. Although a complete methylation map has not been completed, a region of methylation difference between two tissues has been tested and confirmed by bisulfite sequencing. Vi-RLGS in conjunction with real RLGS will make it possible to develop a more complete map of genomic sites that are methylated or demethylated as a consequence of normal or abnormal development. PMID:12888509

  17. Four-dimensional guidance algorithms for aircraft in an air traffic control environment

    NASA Technical Reports Server (NTRS)

    Pecsvaradi, T.

    1975-01-01

    Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.

  18. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile, and accurate RNA structure analysis

    PubMed Central

    Smola, Matthew J.; Rice, Greggory M.; Busan, Steven; Siegfried, Nathan A.; Weeks, Kevin M.

    2016-01-01

    SHAPE chemistries exploit small electrophilic reagents that react with the 2′-hydroxyl group to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues based on the ability of reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as for simple model RNAs. This protocol describes the experimental steps, implemented over three days, required to perform SHAPE probing and construct multiplexed SHAPE-MaP libraries suitable for deep sequencing. These steps include RNA folding and SHAPE structure probing, mutational profiling by reverse transcription, library construction, and sequencing. Automated processing of MaP sequencing data is accomplished using two software packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE reactivity plots, and provides useful troubleshooting information, often within an hour. SuperFold uses these data to model RNA secondary structures, identify regions with well-defined structures, and visualize probable and alternative helices, often in under a day. We illustrate these algorithms with the E. coli thiamine pyrophosphate riboswitch, E. coli 16S rRNA, and HIV-1 genomic RNAs. SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual RNA motifs, rare components of complex RNA ensembles, and entire transcriptomes. The straightforward MaP strategy greatly expands the number, length, and complexity of analyzable RNA structures. PMID:26426499

  19. Face processing regions are sensitive to distinct aspects of temporal sequence in facial dynamics.

    PubMed

    Reinl, Maren; Bartels, Andreas

    2014-11-15

    Facial movement conveys important information for social interactions, yet its neural processing is poorly understood. Computational models propose that shape- and temporal sequence sensitive mechanisms interact in processing dynamic faces. While face processing regions are known to respond to facial movement, their sensitivity to particular temporal sequences has barely been studied. Here we used fMRI to examine the sensitivity of human face-processing regions to two aspects of directionality in facial movement trajectories. We presented genuine movie recordings of increasing and decreasing fear expressions, each of which were played in natural or reversed frame order. This two-by-two factorial design matched low-level visual properties, static content and motion energy within each factor, emotion-direction (increasing or decreasing emotion) and timeline (natural versus artificial). The results showed sensitivity for emotion-direction in FFA, which was timeline-dependent as it only occurred within the natural frame order, and sensitivity to timeline in the STS, which was emotion-direction-dependent as it only occurred for decreased fear. The occipital face area (OFA) was sensitive to the factor timeline. These findings reveal interacting temporal sequence sensitive mechanisms that are responsive to both ecological meaning and to prototypical unfolding of facial dynamics. These mechanisms are temporally directional, provide socially relevant information regarding emotional state or naturalness of behavior, and agree with predictions from modeling and predictive coding theory. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Distribution of Bartonella henselae Variants in Patients, Reservoir Hosts and Vectors in Spain

    PubMed Central

    Gil, Horacio; Escudero, Raquel; Pons, Inmaculada; Rodríguez-Vargas, Manuela; García-Esteban, Coral; Rodríguez-Moreno, Isabel; García-Amil, Cristina; Lobo, Bruno; Valcárcel, Félix; Pérez, Azucena; Jiménez, Santos; Jado, Isabel; Juste, Ramón; Segura, Ferrán; Anda, Pedro

    2013-01-01

    We have studied the diversity of B. henselae circulating in patients, reservoir hosts and vectors in Spain. In total, we have fully characterized 53 clinical samples from 46 patients, as well as 78 B. henselae isolates obtained from 35 cats from La Rioja and Catalonia (northeastern Spain), four positive cat blood samples from which no isolates were obtained, and three positive fleas by Multiple Locus Sequence Typing and Multiple Locus Variable Number Tandem Repeats Analysis. This study represents the largest series of human cases characterized with these methods, with 10 different sequence types and 41 MLVA profiles. Two of the sequence types and 35 of the profiles were not described previously. Most of the B. henselae variants belonged to ST5. Also, we have identified a common profile (72) which is well distributed in Spain and was found to persist over time. Indeed, this profile seems to be the origin from which most of the variants identified in this study have been generated. In addition, ST5, ST6 and ST9 were found associated with felines, whereas ST1, ST5 and ST8 were the most frequent sequence types found infecting humans. Interestingly, some of the feline associated variants never found on patients were located in a separate clade, which could represent a group of strains less pathogenic for humans. PMID:23874563

  1. Primer and platform effects on 16S rRNA tag sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay, Julien; Singh, Kanwar; Fern, Alison

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as wellmore » as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.« less

  2. Primer and platform effects on 16S rRNA tag sequencing

    DOE PAGES

    Tremblay, Julien; Singh, Kanwar; Fern, Alison; ...

    2015-08-04

    Sequencing of 16S rRNA gene tags is a popular method for profiling and comparing microbial communities. The protocols and methods used, however, vary considerably with regard to amplification primers, sequencing primers, sequencing technologies; as well as quality filtering and clustering. How results are affected by these choices, and whether data produced with different protocols can be meaningfully compared, is often unknown. Here we compare results obtained using three different amplification primer sets (targeting V4, V6–V8, and V7–V8) and two sequencing technologies (454 pyrosequencing and Illumina MiSeq) using DNA from a mock community containing a known number of species as wellmore » as complex environmental samples whose PCR-independent profiles were estimated using shotgun sequencing. We find that paired-end MiSeq reads produce higher quality data and enabled the use of more aggressive quality control parameters over 454, resulting in a higher retention rate of high quality reads for downstream data analysis. While primer choice considerably influences quantitative abundance estimations, sequencing platform has relatively minor effects when matched primers are used. In conclusion, beta diversity metrics are surprisingly robust to both primer and sequencing platform biases.« less

  3. Construction of a multiplex mutation hot spot PCR panel: the first step towards colorectal cancer genotyping on the GS Junior platform.

    PubMed

    Péterfia, Bálint; Kalmár, Alexandra; Patai, Árpád V; Csabai, István; Bodor, András; Micsik, Tamás; Wichmann, Barnabás; Egedi, Krisztina; Hollósi, Péter; Kovalszky, Ilona; Tulassay, Zsolt; Molnár, Béla

    2017-01-01

    Background: To support cancer therapy, development of low cost library preparation techniques for targeted next generation sequencing (NGS) is needed. In this study we designed and tested a PCR-based library preparation panel with limited target area for sequencing the top 12 somatic mutation hot spots in colorectal cancer on the GS Junior instrument. Materials and Methods: A multiplex PCR panel was designed to amplify regions of mutation hot spots in 12 selected genes ( APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53 ). Amplicons were sequenced on a GS Junior instrument using ligated and barcoded adaptors. Eight samples were sequenced in a single run. Colonic DNA samples (8 normal mucosa; 33 adenomas; 17 adenocarcinomas) as well as HT-29 and Caco-2 cell lines with known mutation profiles were analyzed. Variants found by the panel on APC, BRAF, KRAS and NRAS genes were validated by conventional sequencing. Results: In total, 34 kinds of mutations were detected including two novel mutations ( FBXW7 c.1740:C>G and SMAD4 c.413C>G) that have not been recorded in mutation databases, and one potential germline mutation ( APC ). The most frequently mutated genes were APC, TP53 and KRAS with 30%, 15% and 21% frequencies in adenomas and 29%, 53% and 29% frequencies in carcinomas, respectively. In cell lines, all the expected mutations were detected except for one located in a homopolymer region. According to re-sequencing results sensitivity and specificity was 100% and 92% respectively. Conclusions: Our NGS-based screening panel denotes a promising step towards low cost colorectal cancer genotyping on the GS Junior instrument. Despite the relatively low coverage, we discovered two novel mutations and obtained mutation frequencies comparable to literature data. Additionally, as an advantage, this panel requires less template DNA than sequence capture colon cancer panels currently available for the GS Junior instrument.

  4. BLAST and FASTA similarity searching for multiple sequence alignment.

    PubMed

    Pearson, William R

    2014-01-01

    BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.

  5. Transcriptomics analysis of the flowering regulatory genes involved in the herbicide resistance of Asia minor bluegrass (Polypogon fugax).

    PubMed

    Zhou, Fengyan; Zhang, Yong; Tang, Wei; Wang, Mei; Gao, Tongchun

    2017-12-06

    Asia minor bluegrass (Polypogon fugax, P. fugax), a weed that is both distributed across China and associated with winter crops, has evolved resistance to acetyl-CoA carboxylase (ACCase) herbicides, but the resistance mechanism remains unclear. The goal of this study was to analyze the transcriptome between resistant and sensitive populations of P. fugax at the flowering stage. Populations resistant and susceptible to clodinafop-propargyl showed distinct transcriptome profiles. A total of 206,041 unigenes were identified; 165,901 unique sequences were annotated using BLASTX alignment databases. Among them, 5904 unigenes were classified into 58 transcription factor families. Nine families were related to the regulation of plant growth and development and to stress responses. Twelve unigenes were differentially expressed between the clodinafop-propargyl-sensitive and clodinafop-propargyl-resistant populations at the early flowering stage; among those unigenes, three belonged to the ABI3VP1, BHLH, and GRAS families, while the remaining nine belonged to the MADS family. Compared with the clodinafop-propargyl-sensitive plants, the resistant plants exhibited different expression pattern of these 12 unigenes. This study identified differentially expressed unigenes related to ACCase-resistant P. fugax and thus provides a genomic resource for understanding the molecular basis of early flowering.

  6. A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis.

    PubMed

    Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan

    2008-12-01

    Protein remote homology detection and fold recognition are central problems in bioinformatics. Currently, discriminative methods based on support vector machine (SVM) are the most effective and accurate methods for solving these problems. A key step to improve the performance of the SVM-based methods is to find a suitable representation of protein sequences. In this paper, a novel building block of proteins called Top-n-grams is presented, which contains the evolutionary information extracted from the protein sequence frequency profiles. The protein sequence frequency profiles are calculated from the multiple sequence alignments outputted by PSI-BLAST and converted into Top-n-grams. The protein sequences are transformed into fixed-dimension feature vectors by the occurrence times of each Top-n-gram. The training vectors are evaluated by SVM to train classifiers which are then used to classify the test protein sequences. We demonstrate that the prediction performance of remote homology detection and fold recognition can be improved by combining Top-n-grams and latent semantic analysis (LSA), which is an efficient feature extraction technique from natural language processing. When tested on superfamily and fold benchmarks, the method combining Top-n-grams and LSA gives significantly better results compared to related methods. The method based on Top-n-grams significantly outperforms the methods based on many other building blocks including N-grams, patterns, motifs and binary profiles. Therefore, Top-n-gram is a good building block of the protein sequences and can be widely used in many tasks of the computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the prediction of protein binding sites.

  7. Full genome virus detection in fecal samples using sensitive nucleic acid preparation, deep sequencing, and a novel iterative sequence classification algorithm.

    PubMed

    Cotten, Matthew; Oude Munnink, Bas; Canuti, Marta; Deijs, Martin; Watson, Simon J; Kellam, Paul; van der Hoek, Lia

    2014-01-01

    We have developed a full genome virus detection process that combines sensitive nucleic acid preparation optimised for virus identification in fecal material with Illumina MiSeq sequencing and a novel post-sequencing virus identification algorithm. Enriched viral nucleic acid was converted to double-stranded DNA and subjected to Illumina MiSeq sequencing. The resulting short reads were processed with a novel iterative Python algorithm SLIM for the identification of sequences with homology to known viruses. De novo assembly was then used to generate full viral genomes. The sensitivity of this process was demonstrated with a set of fecal samples from HIV-1 infected patients. A quantitative assessment of the mammalian, plant, and bacterial virus content of this compartment was generated and the deep sequencing data were sufficient to assembly 12 complete viral genomes from 6 virus families. The method detected high levels of enteropathic viruses that are normally controlled in healthy adults, but may be involved in the pathogenesis of HIV-1 infection and will provide a powerful tool for virus detection and for analyzing changes in the fecal virome associated with HIV-1 progression and pathogenesis.

  8. Full Genome Virus Detection in Fecal Samples Using Sensitive Nucleic Acid Preparation, Deep Sequencing, and a Novel Iterative Sequence Classification Algorithm

    PubMed Central

    Cotten, Matthew; Oude Munnink, Bas; Canuti, Marta; Deijs, Martin; Watson, Simon J.; Kellam, Paul; van der Hoek, Lia

    2014-01-01

    We have developed a full genome virus detection process that combines sensitive nucleic acid preparation optimised for virus identification in fecal material with Illumina MiSeq sequencing and a novel post-sequencing virus identification algorithm. Enriched viral nucleic acid was converted to double-stranded DNA and subjected to Illumina MiSeq sequencing. The resulting short reads were processed with a novel iterative Python algorithm SLIM for the identification of sequences with homology to known viruses. De novo assembly was then used to generate full viral genomes. The sensitivity of this process was demonstrated with a set of fecal samples from HIV-1 infected patients. A quantitative assessment of the mammalian, plant, and bacterial virus content of this compartment was generated and the deep sequencing data were sufficient to assembly 12 complete viral genomes from 6 virus families. The method detected high levels of enteropathic viruses that are normally controlled in healthy adults, but may be involved in the pathogenesis of HIV-1 infection and will provide a powerful tool for virus detection and for analyzing changes in the fecal virome associated with HIV-1 progression and pathogenesis. PMID:24695106

  9. A Multisurface Interpersonal Circumplex Assessment of Rejection Sensitivity.

    PubMed

    Cain, Nicole M; De Panfilis, Chiara; Meehan, Kevin B; Clarkin, John F

    2017-01-01

    Individuals high in rejection sensitivity (RS) are at risk for experiencing high levels of interpersonal distress, yet little is known about the interpersonal profiles associated with RS. This investigation examined the interpersonal problems, sensitivities, and values associated with RS in 2 samples: 763 multicultural undergraduate students (Study 1) and 365 community adults (Study 2). In Study 1, high anxious RS was associated with socially avoidant interpersonal problems, whereas low anxious RS was associated with vindictive interpersonal problems. In Study 2, we assessed both anxious and angry expectations of rejection. Circumplex profile analyses showed that the high anxious RS group reported socially avoidant interpersonal problems, sensitivities to remoteness in others, and valuing connections with others, whereas the high angry RS group reported vindictive interpersonal problems, sensitivities to submissiveness in others, and valuing detached interpersonal behavior. Low anxious RS was related to domineering interpersonal problems, sensitivity to attention-seeking behavior, and valuing detached interpersonal behavior, whereas low angry RS was related to submissive interpersonal problems, sensitivity to attention-seeking behavior, and valuing receiving approval from others. Overall, results suggest that there are distinct interpersonal profiles associated with varying levels and types of RS.

  10. Magnetic flux density measurement with balanced steady state free precession pulse sequence for MREIT: a simulation study.

    PubMed

    Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol

    2009-01-01

    Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.

  11. Application of screened Coulomb potential in fitting DBV star PG 0112+104

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.

    2018-03-01

    With 78.7 d of observations for PG 0112+104, a pulsating DB star, from Campaign 8 of Kepler 2 mission, Hermes et al. made a detailed mode identification. A reliable mode identification, with 5 l = 1 modes, 3 l = 2 modes, and 3 l = 1 or 2 modes, was identified. Grids of DBV star models are evolved by WDEC with element diffusion effect of pure Coulomb potential and screened Coulomb potential. Fitting the identified modes of PG 0112+104 by the calculated ones, we studied the difference of element diffusion effect between adopting pure Coulomb potential and screened Coulomb potential. Our aim is to reduce the fitting error by studying new input physics. The starting models including their chemical composition profile are from white dwarf models evolved by MESA. They were calculated following the stellar evolution from the main sequence to the start of the white dwarf cooling sequences. The optimal parameters are basically consistent with that of previous spectroscopic and asteroseismological studies. The pure and screened Coulomb potential lead to different composition profiles of the C/O-He interface area. High k modes are very sensitive to the area. However, most of the observed modes for PG 0112+104 are low k modes. The σRMS taking the screened Coulomb potential is reduced by 4 per cent compared with taking the pure Coulomb potential when fitting the identified low k modes of PG 0112+104. Fitting the Kepler 2 data with our models improved the σRMS of the fit by 27 per cent.

  12. Application of Pyrosequencing® in Food Biodefense.

    PubMed

    Amoako, Kingsley Kwaku

    2015-01-01

    The perpetration of a bioterrorism attack poses a significant risk for public health with potential socioeconomic consequences. It is imperative that we possess reliable assays for the rapid and accurate identification of biothreat agents to make rapid risk-informed decisions on emergency response. The development of advanced methodologies for the detection of biothreat agents has been evolving rapidly since the release of the anthrax spores in the mail in 2001, and recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence-based approaches such as Pyrosequencing(®), which has the capability to determine short DNA stretches in real time using biotinylated PCR amplicons, have potential biodefense applications. Using markers from the virulence plasmids and chromosomal regions, my laboratory has demonstrated the power of this technology in the rapid, specific, and sensitive detection of B. anthracis spores and Yersinia pestis in food. These are the first applications for the detection of the two organisms in food. Furthermore, my lab has developed a rapid assay to characterize the antimicrobial resistance (AMR) gene profiles for Y. pestis using Pyrosequencing. Pyrosequencing is completed in about 60 min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence, thus enabling rapid risk-informed decisions to be made. A typical run yields 40-84 bp reads with 94-100 % identity to the expected sequence. It also provides a rapid method for determining the AMR profile as compared to the conventional plate method which takes several days. The method described is proposed as a novel detection system for potential application in food biodefense.

  13. miR-ID: A novel, circularization-based platform for detection of microRNAs

    PubMed Central

    Kumar, Pavan; Johnston, Brian H.; Kazakov, Sergei A.

    2011-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression and have great potential as biomarkers, prognostic indicators, and therapeutic targets. Determining the expression patterns of these molecules is essential for elucidating their biogenesis, regulation, relation to disease, and response to therapy. Although PCR-based assays are commonly used for expression profiling of miRNAs, the small size, sequence heterogeneity, and (in some cases) end modifications of miRNAs constrain the performance of existing PCR methods. Here we introduce miR-ID, a novel method that avoids these constraints while providing superior sensitivity and sequence specificity at a lower cost. It also has the unique ability to differentiate unmodified small RNAs from those carrying 2′-OMe groups at their 3′-ends while detecting both forms. miR-ID is comprised of the following steps: (1) circularization of the miRNA by a ligase; (2) reverse transcription of the circularized miRNA (RTC), producing tandem repeats of a DNA sequence complementary to the miRNA; and (3) qPCR amplification of segments of this multimeric cDNA using 5′-overlapping primers and a nonspecific dye such as SYBR Green. No chemically modified probes (e.g., TaqMan) or primers (e.g., LNA) are required. The circular RNA and multimeric cDNA templates provide unmatched flexibility in the positioning of primers, which may include straddling the boundaries between these repetitive miRNA sequences. miR-ID is based on new findings that are themselves of general interest, including reverse transcription of small RNA circles and the use of 5′-overlapping primers for detection of repetitive sequences by qPCR. PMID:21169480

  14. Whole genome sequencing discriminates hepatocellular carcinoma with intrahepatic metastasis from multi-centric tumors.

    PubMed

    Furuta, Mayuko; Ueno, Masaki; Fujimoto, Akihiro; Hayami, Shinya; Yasukawa, Satoru; Kojima, Fumiyoshi; Arihiro, Koji; Kawakami, Yoshiiku; Wardell, Christopher P; Shiraishi, Yuichi; Tanaka, Hiroko; Nakano, Kaoru; Maejima, Kazuhiro; Sasaki-Oku, Aya; Tokunaga, Naoki; Boroevich, Keith A; Abe, Tetsuo; Aikata, Hiroshi; Ohdan, Hideki; Gotoh, Kunihito; Kubo, Michiaki; Tsunoda, Tatsuhiko; Miyano, Satoru; Chayama, Kazuaki; Yamaue, Hiroki; Nakagawa, Hidewaki

    2017-02-01

    Patients with hepatocellular carcinoma (HCC) have a high-risk of multi-centric (MC) tumor occurrence due to a strong carcinogenic background in the liver. In addition, they have a high risk of intrahepatic metastasis (IM). Liver tumors withIM or MC are profoundly different in their development and clinical outcome. However, clinically or pathologically discriminating between IM and MC can be challenging. This study investigated whether IM or MC could be diagnosed at the molecular level. We performed whole genome and RNA sequencing analyses of 49 tumors including two extra-hepatic metastases, and one nodule-in-nodule tumor from 23 HCC patients. Sequencing-based molecular diagnosis using somatic single nucleotide variation information showed higher sensitivity compared to previous techniques due to the inclusion of a larger number of mutation events. This proved useful in cases, which showed inconsistent clinical diagnoses. In addition, whole genome sequencing offered advantages in profiling of other genetic alterations, such as structural variations, copy number alterations, and variant allele frequencies, and helped to confirm the IM/MCdiagnosis. Divergent alterations between IM tumors with sorafenib treatment, long time-intervals, or tumor-in-tumor nodules indicated high intra-tumor heterogeneity, evolution, and clonal switching of liver cancers. It is important to analyze the differences between IM tumors, in addition to IM/MC diagnosis, before selecting a therapeutic strategy for multiple tumors in the liver. Whole genome sequencing of multiple liver tumors enabled the accuratediagnosis ofmulti-centric occurrence and intrahepatic metastasis using somatic single nucleotide variation information. In addition, genetic discrepancies between tumors help us to understand the physical changes during recurrence and cancer spread. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Utility of preoperative ferumoxtran-10 MRI to evaluate retroperitoneal lymph node metastasis in advanced cervical cancer: Results of ACRIN 6671/GOG 0233☆

    PubMed Central

    Atri, Mostafa; Zhang, Zheng; Marques, Helga; Gorelick, Jeremy; Harisinghani, Mukesh; Sohaib, Aslam; Koh, Dow-Mu; Raman, Steven; Gee, Michael; Choi, Haesun; Landrum, Lisa; Mannel, Robert; Chuang, Linus; Yu, Jian Qin (Michael); McCourt, Carolyn Kay; Gold, Michael

    2014-01-01

    Rationale and objectives To assess if ferumoxtran-10 (f-10) improves accuracy of MRI to detect lymph node (LN) metastasis in advanced cervical cancer. Materials and methods F-10 MRI component of an IRB approved HIPAA compliant ACRIN/GOG trial was analyzed. Patients underwent f-10 MRI followed by extra-peritoneal or laparoscopic pelvic and abdominal lymphadenectomy. F-10-sensitive sequences were T2* GRE sequences with TE of 12 and 21. Seven independent blinded readers reviewed f-10-insensitive sequences and all sequences in different sessions. Region correlations were performed between pathology and MRI for eight abdomen and pelvis regions. Sensitivity and specificity were calculated at participant level. Reference standard is based on pathology result of surgically removed LNs. Results Among 43 women enrolled in the trial between September 2007 and November 2009, 33 women (mean age 49 ± 11 years old) with advanced cervical cancer (12 IB2, 3 IIA, 15 IIB and 3 IIIB, 29 squamous cell carcinomas, 32 grade 2 or 3) were evaluable. Based on histopathology, LN metastasis was 39% in abdomen and 70% in pelvis. Sensitivity of all sequence review in pelvis, abdomen, and combined were 83%, 60%, and 86%, compared with 78%, 54%, and 80% for f-10 insensitive sequences (P: 0.24, 0.44 and 0.14, respectively). Mean diameter of the largest positive focus on histopathology was 13.7 mm in abdomen and 18.8 mm in pelvis (P = 0.018). Specificities of all sequence review in pelvis, abdomen, and combined were 48%, 75%, and 43%, compared with 75%, 83%, and 73% (P: 0.003, 0.14, 0.002 respectively) for f-10 insensitive sequences. Conclusion Addition of f-10 increased MRI sensitivity to detect LN metastasis in advanced cervical cancer. Increased sensitivity did not reach statistical significance and was at the expense of lower specificity. PMID:25774381

  16. Utility of preoperative ferumoxtran-10 MRI to evaluate retroperitoneal lymph node metastasis in advanced cervical cancer: Results of ACRIN 6671/GOG 0233.

    PubMed

    Atri, Mostafa; Zhang, Zheng; Marques, Helga; Gorelick, Jeremy; Harisinghani, Mukesh; Sohaib, Aslam; Koh, Dow-Mu; Raman, Steven; Gee, Michael; Choi, Haesun; Landrum, Lisa; Mannel, Robert; Chuang, Linus; Yu, Jian Qin Michael; McCourt, Carolyn Kay; Gold, Michael

    To assess if ferumoxtran-10 (f-10) improves accuracy of MRI to detect lymph node (LN) metastasis in advanced cervical cancer. F-10 MRI component of an IRB approved HIPAA compliant ACRIN/GOG trial was analyzed. Patients underwent f-10 MRI followed by extra-peritoneal or laparoscopic pelvic and abdominal lymphadenectomy. F-10-sensitive sequences were T2* GRE sequences with TE of 12 and 21. Seven independent blinded readers reviewed f-10-insensitive sequences and all sequences in different sessions. Region correlations were performed between pathology and MRI for eight abdomen and pelvis regions. Sensitivity and specificity were calculated at participant level. Reference standard is based on pathology result of surgically removed LNs. Among 43 women enrolled in the trial between September 2007 and November 2009, 33 women (mean age 49 ±11 years old) with advanced cervical cancer (12 IB2, 3 IIA, 15 IIB and 3 IIIB, 29 squamous cell carcinomas, 32 grade 2 or 3) were evaluable. Based on histopathology, LN metastasis was 39% in abdomen and 70% in pelvis. Sensitivity of all sequence review in pelvis, abdomen, and combined were 83%, 60%, and 86%, compared with 78%, 54%, and 80% for f-10 insensitive sequences ( P : 0.24, 0.44 and 0.14, respectively). Mean diameter of the largest positive focus on histopathology was 13.7 mm in abdomen and 18.8 mm in pelvis ( P = 0.018). Specificities of all sequence review in pelvis, abdomen, and combined were 48%, 75%, and 43%, compared with 75%, 83%, and 73% ( P : 0.003, 0.14, 0.002 respectively) for f-10 insensitive sequences. Addition of f-10 increased MRI sensitivity to detect LN metastasis in advanced cervical cancer. Increased sensitivity did not reach statistical significance and was at the expense of lower specificity.

  17. Denoising DNA deep sequencing data—high-throughput sequencing errors and their correction

    PubMed Central

    Laehnemann, David; Borkhardt, Arndt

    2016-01-01

    Characterizing the errors generated by common high-throughput sequencing platforms and telling true genetic variation from technical artefacts are two interdependent steps, essential to many analyses such as single nucleotide variant calling, haplotype inference, sequence assembly and evolutionary studies. Both random and systematic errors can show a specific occurrence profile for each of the six prominent sequencing platforms surveyed here: 454 pyrosequencing, Complete Genomics DNA nanoball sequencing, Illumina sequencing by synthesis, Ion Torrent semiconductor sequencing, Pacific Biosciences single-molecule real-time sequencing and Oxford Nanopore sequencing. There is a large variety of programs available for error removal in sequencing read data, which differ in the error models and statistical techniques they use, the features of the data they analyse, the parameters they determine from them and the data structures and algorithms they use. We highlight the assumptions they make and for which data types these hold, providing guidance which tools to consider for benchmarking with regard to the data properties. While no benchmarking results are included here, such specific benchmarks would greatly inform tool choices and future software development. The development of stand-alone error correctors, as well as single nucleotide variant and haplotype callers, could also benefit from using more of the knowledge about error profiles and from (re)combining ideas from the existing approaches presented here. PMID:26026159

  18. DNA Microarray Profiling of a Diverse Collection of Nosocomial Methicillin-Resistant Staphylococcus aureus Isolates Assigns the Majority to the Correct Sequence Type and Staphylococcal Cassette Chromosome mec (SCCmec) Type and Results in the Subsequent Identification and Characterization of Novel SCCmec-SCCM1 Composite Islands

    PubMed Central

    Brennan, Orla M.; Deasy, Emily C.; Rossney, Angela S.; Kinnevey, Peter M.; Ehricht, Ralf; Monecke, Stefan; Coleman, David C.

    2012-01-01

    One hundred seventy-five isolates representative of methicillin-resistant Staphylococcus aureus (MRSA) clones that predominated in Irish hospitals between 1971 and 2004 and that previously underwent multilocus sequence typing (MLST) and staphylococcal cassette chromosome mec (SCCmec) typing were characterized by spa typing (175 isolates) and DNA microarray profiling (107 isolates). The isolates belonged to 26 sequence type (ST)-SCCmec types and subtypes and 35 spa types. The array assigned all isolates to the correct MLST clonal complex (CC), and 94% (100/107) were assigned an ST, with 98% (98/100) correlating with MLST. The array assigned all isolates to the correct SCCmec type, but subtyping of only some SCCmec elements was possible. Additional SCCmec/SCC genes or DNA sequence variation not detected by SCCmec typing was detected by array profiling, including the SCC-fusidic acid resistance determinant Q6GD50/fusC. Novel SCCmec/SCC composite islands (CIs) were detected among CC8 isolates and comprised SCCmec IIA-IIE, IVE, IVF, or IVg and a ccrAB4-SCC element with 99% DNA sequence identity to SCCM1 from ST8/t024-MRSA, SCCmec VIII, and SCC-CI in Staphylococcus epidermidis. The array showed that the majority of isolates harbored one or more superantigen (94%; 100/107) and immune evasion cluster (91%; 97/107) genes. Apart from fusidic acid and trimethoprim resistance, the correlation between isolate antimicrobial resistance phenotype and the presence of specific resistance genes was ≥97%. Array profiling allowed high-throughput, accurate assignment of MRSA to CCs/STs and SCCmec types and provided further evidence of the diversity of SCCmec/SCC. In most cases, array profiling can accurately predict the resistance phenotype of an isolate. PMID:22869569

  19. Mining a database of single amplified genomes from Red Sea brine pool extremophiles—improving reliability of gene function prediction using a profile and pattern matching algorithm (PPMA)

    PubMed Central

    Grötzinger, Stefan W.; Alam, Intikhab; Ba Alawi, Wail; Bajic, Vladimir B.; Stingl, Ulrich; Eppinger, Jörg

    2014-01-01

    Reliable functional annotation of genomic data is the key-step in the discovery of novel enzymes. Intrinsic sequencing data quality problems of single amplified genomes (SAGs) and poor homology of novel extremophile's genomes pose significant challenges for the attribution of functions to the coding sequences identified. The anoxic deep-sea brine pools of the Red Sea are a promising source of novel enzymes with unique evolutionary adaptation. Sequencing data from Red Sea brine pool cultures and SAGs are annotated and stored in the Integrated Data Warehouse of Microbial Genomes (INDIGO) data warehouse. Low sequence homology of annotated genes (no similarity for 35% of these genes) may translate into false positives when searching for specific functions. The Profile and Pattern Matching (PPM) strategy described here was developed to eliminate false positive annotations of enzyme function before progressing to labor-intensive hyper-saline gene expression and characterization. It utilizes InterPro-derived Gene Ontology (GO)-terms (which represent enzyme function profiles) and annotated relevant PROSITE IDs (which are linked to an amino acid consensus pattern). The PPM algorithm was tested on 15 protein families, which were selected based on scientific and commercial potential. An initial list of 2577 enzyme commission (E.C.) numbers was translated into 171 GO-terms and 49 consensus patterns. A subset of INDIGO-sequences consisting of 58 SAGs from six different taxons of bacteria and archaea were selected from six different brine pool environments. Those SAGs code for 74,516 genes, which were independently scanned for the GO-terms (profile filter) and PROSITE IDs (pattern filter). Following stringent reliability filtering, the non-redundant hits (106 profile hits and 147 pattern hits) are classified as reliable, if at least two relevant descriptors (GO-terms and/or consensus patterns) are present. Scripts for annotation, as well as for the PPM algorithm, are available through the INDIGO website. PMID:24778629

  20. Rhythm sensitivity in macaque monkeys

    PubMed Central

    Selezneva, Elena; Deike, Susann; Knyazeva, Stanislava; Scheich, Henning; Brechmann, André; Brosch, Michael

    2013-01-01

    This study provides evidence that monkeys are rhythm sensitive. We composed isochronous tone sequences consisting of repeating triplets of two short tones and one long tone which humans perceive as repeating triplets of two weak and one strong beat. This regular sequence was compared to an irregular sequence with the same number of randomly arranged short and long tones with no such beat structure. To search for indication of rhythm sensitivity we employed an oddball paradigm in which occasional duration deviants were introduced in the sequences. In a pilot study on humans we showed that subjects more easily detected these deviants when they occurred in a regular sequence. In the monkeys we searched for spontaneous behaviors the animals executed concomitant with the deviants. We found that monkeys more frequently exhibited changes of gaze and facial expressions to the deviants when they occurred in the regular sequence compared to the irregular sequence. In addition we recorded neuronal firing and local field potentials from 175 sites of the primary auditory cortex during sequence presentation. We found that both types of neuronal signals differentiated regular from irregular sequences. Both signals were stronger in regular sequences and occurred after the onset of the long tones, i.e., at the position of the strong beat. Local field potential responses were also significantly larger for the durational deviants in regular sequences, yet in a later time window. We speculate that these temporal pattern-selective mechanisms with a focus on strong beats and their deviants underlie the perception of rhythm in the chosen sequences. PMID:24046732

  1. Next Generation Sequencing Technology and Genomewide Data Analysis: Perspectives for Retinal Research

    PubMed Central

    Chaitankar, Vijender; Karakülah, Gökhan; Ratnapriya, Rinki; Giuste, Felipe O.; Brooks, Matthew J.; Swaroop, Anand

    2016-01-01

    The advent of high throughput next generation sequencing (NGS) has accelerated the pace of discovery of disease-associated genetic variants and genomewide profiling of expressed sequences and epigenetic marks, thereby permitting systems-based analyses of ocular development and disease. Rapid evolution of NGS and associated methodologies presents significant challenges in acquisition, management, and analysis of large data sets and for extracting biologically or clinically relevant information. Here we illustrate the basic design of commonly used NGS-based methods, specifically whole exome sequencing, transcriptome, and epigenome profiling, and provide recommendations for data analyses. We briefly discuss systems biology approaches for integrating multiple data sets to elucidate gene regulatory or disease networks. While we provide examples from the retina, the NGS guidelines reviewed here are applicable to other tissues/cell types as well. PMID:27297499

  2. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    PubMed

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  3. PanFP: Pangenome-based functional profiles for microbial communities

    DOE PAGES

    Jun, Se -Ran; Hauser, Loren John; Schadt, Christopher Warren; ...

    2015-09-26

    For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost effective way to screen samples of interestmore » for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. As a result, we present a computational method called pangenome based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU s taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome s functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8 0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique in that any OTU building method can be used, as opposed to being limited to closed reference OTU picking strategies against specific reference sequence databases. In conclusion, we developed an automated computational method, which derives an inferred functional profile based on the 16S rRNA gene surveys of microbial communities. The inferred functional profile provides a cost effective way to study complex ecosystems through predicted comparative functional metagenomes and metadata analysis. All PanFP source code and additional documentation are freely available online at GitHub.« less

  4. PanFP: pangenome-based functional profiles for microbial communities.

    PubMed

    Jun, Se-Ran; Robeson, Michael S; Hauser, Loren J; Schadt, Christopher W; Gorin, Andrey A

    2015-09-26

    For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost-effective way to screen samples of interest for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. We present a computational method called pangenome-based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU's taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome's functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8-0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique in that any OTU building method can be used, as opposed to being limited to closed-reference OTU picking strategies against specific reference sequence databases. We developed an automated computational method, which derives an inferred functional profile based on the 16S rRNA gene surveys of microbial communities. The inferred functional profile provides a cost effective way to study complex ecosystems through predicted comparative functional metagenomes and metadata analysis. All PanFP source code and additional documentation are freely available online at GitHub ( https://github.com/srjun/PanFP ).

  5. Indexed variation graphs for efficient and accurate resistome profiling.

    PubMed

    Rowe, Will P M; Winn, Martyn D

    2018-05-14

    Antimicrobial resistance remains a major threat to global health. Profiling the collective antimicrobial resistance genes within a metagenome (the "resistome") facilitates greater understanding of antimicrobial resistance gene diversity and dynamics. In turn, this can allow for gene surveillance, individualised treatment of bacterial infections and more sustainable use of antimicrobials. However, resistome profiling can be complicated by high similarity between reference genes, as well as the sheer volume of sequencing data and the complexity of analysis workflows. We have developed an efficient and accurate method for resistome profiling that addresses these complications and improves upon currently available tools. Our method combines a variation graph representation of gene sets with an LSH Forest indexing scheme to allow for fast classification of metagenomic sequence reads using similarity-search queries. Subsequent hierarchical local alignment of classified reads against graph traversals enables accurate reconstruction of full-length gene sequences using a scoring scheme. We provide our implementation, GROOT, and show it to be both faster and more accurate than a current reference-dependent tool for resistome profiling. GROOT runs on a laptop and can process a typical 2 gigabyte metagenome in 2 minutes using a single CPU. Our method is not restricted to resistome profiling and has the potential to improve current metagenomic workflows. GROOT is written in Go and is available at https://github.com/will-rowe/groot (MIT license). will.rowe@stfc.ac.uk. Supplementary data are available at Bioinformatics online.

  6. Normalization, bias correction, and peak calling for ChIP-seq

    PubMed Central

    Diaz, Aaron; Park, Kiyoub; Lim, Daniel A.; Song, Jun S.

    2012-01-01

    Next-generation sequencing is rapidly transforming our ability to profile the transcriptional, genetic, and epigenetic states of a cell. In particular, sequencing DNA from the immunoprecipitation of protein-DNA complexes (ChIP-seq) and methylated DNA (MeDIP-seq) can reveal the locations of protein binding sites and epigenetic modifications. These approaches contain numerous biases which may significantly influence the interpretation of the resulting data. Rigorous computational methods for detecting and removing such biases are still lacking. Also, multi-sample normalization still remains an important open problem. This theoretical paper systematically characterizes the biases and properties of ChIP-seq data by comparing 62 separate publicly available datasets, using rigorous statistical models and signal processing techniques. Statistical methods for separating ChIP-seq signal from background noise, as well as correcting enrichment test statistics for sequence-dependent and sonication biases, are presented. Our method effectively separates reads into signal and background components prior to normalization, improving the signal-to-noise ratio. Moreover, most peak callers currently use a generic null model which suffers from low specificity at the sensitivity level requisite for detecting subtle, but true, ChIP enrichment. The proposed method of determining a cell type-specific null model, which accounts for cell type-specific biases, is shown to be capable of achieving a lower false discovery rate at a given significance threshold than current methods. PMID:22499706

  7. COBRA-Seq: Sensitive and Quantitative Methylome Profiling

    PubMed Central

    Varinli, Hilal; Statham, Aaron L.; Clark, Susan J.; Molloy, Peter L.; Ross, Jason P.

    2015-01-01

    Combined Bisulfite Restriction Analysis (COBRA) quantifies DNA methylation at a specific locus. It does so via digestion of PCR amplicons produced from bisulfite-treated DNA, using a restriction enzyme that contains a cytosine within its recognition sequence, such as TaqI. Here, we introduce COBRA-seq, a genome wide reduced methylome method that requires minimal DNA input (0.1–1.0 μg) and can either use PCR or linear amplification to amplify the sequencing library. Variants of COBRA-seq can be used to explore CpG-depleted as well as CpG-rich regions in vertebrate DNA. The choice of enzyme influences enrichment for specific genomic features, such as CpG-rich promoters and CpG islands, or enrichment for less CpG dense regions such as enhancers. COBRA-seq coupled with linear amplification has the additional advantage of reduced PCR bias by producing full length fragments at high abundance. Unlike other reduced representative methylome methods, COBRA-seq has great flexibility in the choice of enzyme and can be multiplexed and tuned, to reduce sequencing costs and to interrogate different numbers of sites. Moreover, COBRA-seq is applicable to non-model organisms without the reference genome and compatible with the investigation of non-CpG methylation by using restriction enzymes containing CpA, CpT, and CpC in their recognition site. PMID:26512698

  8. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades.

    PubMed

    Friedländer, Marc R; Mackowiak, Sebastian D; Li, Na; Chen, Wei; Rajewsky, Nikolaus

    2012-01-01

    microRNAs (miRNAs) are a large class of small non-coding RNAs which post-transcriptionally regulate the expression of a large fraction of all animal genes and are important in a wide range of biological processes. Recent advances in high-throughput sequencing allow miRNA detection at unprecedented sensitivity, but the computational task of accurately identifying the miRNAs in the background of sequenced RNAs remains challenging. For this purpose, we have designed miRDeep2, a substantially improved algorithm which identifies canonical and non-canonical miRNAs such as those derived from transposable elements and informs on high-confidence candidates that are detected in multiple independent samples. Analyzing data from seven animal species representing the major animal clades, miRDeep2 identified miRNAs with an accuracy of 98.6-99.9% and reported hundreds of novel miRNAs. To test the accuracy of miRDeep2, we knocked down the miRNA biogenesis pathway in a human cell line and sequenced small RNAs before and after. The vast majority of the >100 novel miRNAs expressed in this cell line were indeed specifically downregulated, validating most miRDeep2 predictions. Last, a new miRNA expression profiling routine, low time and memory usage and user-friendly interactive graphic output can make miRDeep2 useful to a wide range of researchers.

  9. Validation of a next-generation sequencing assay for clinical molecular oncology.

    PubMed

    Cottrell, Catherine E; Al-Kateb, Hussam; Bredemeyer, Andrew J; Duncavage, Eric J; Spencer, David H; Abel, Haley J; Lockwood, Christina M; Hagemann, Ian S; O'Guin, Stephanie M; Burcea, Lauren C; Sawyer, Christopher S; Oschwald, Dayna M; Stratman, Jennifer L; Sher, Dorie A; Johnson, Mark R; Brown, Justin T; Cliften, Paul F; George, Bijoy; McIntosh, Leslie D; Shrivastava, Savita; Nguyen, Tudung T; Payton, Jacqueline E; Watson, Mark A; Crosby, Seth D; Head, Richard D; Mitra, Robi D; Nagarajan, Rakesh; Kulkarni, Shashikant; Seibert, Karen; Virgin, Herbert W; Milbrandt, Jeffrey; Pfeifer, John D

    2014-01-01

    Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations at actionable loci. We present clinical validation of the assay and a detailed framework for design and validation of similar clinical assays. Deep sequencing of 78 tumor specimens (≥ 1000× average unique coverage across the capture region) achieved high sensitivity for detecting somatic variants at low allele fraction (AF). Validation revealed sensitivities and specificities of 100% for detection of single-nucleotide variants (SNVs) within coding regions, compared with SNP array sequence data (95% CI = 83.4-100.0 for sensitivity and 94.2-100.0 for specificity) or whole-genome sequencing (95% CI = 89.1-100.0 for sensitivity and 99.9-100.0 for specificity) of HapMap samples. Sensitivity for detecting variants at an observed 10% AF was 100% (95% CI = 93.2-100.0) in HapMap mixes. Analysis of 15 masked specimens harboring clinically reported variants yielded concordant calls for 13/13 variants at AF of ≥ 15%. The WUCaMP assay is a robust and sensitive method to detect somatic variants of clinical significance in molecular oncology laboratories, with reduced time and cost of genetic analysis allowing for strategic patient management. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. Time-Resolved Transposon Insertion Sequencing Reveals Genome-Wide Fitness Dynamics during Infection.

    PubMed

    Yang, Guanhua; Billings, Gabriel; Hubbard, Troy P; Park, Joseph S; Yin Leung, Ka; Liu, Qin; Davis, Brigid M; Zhang, Yuanxing; Wang, Qiyao; Waldor, Matthew K

    2017-10-03

    Transposon insertion sequencing (TIS) is a powerful high-throughput genetic technique that is transforming functional genomics in prokaryotes, because it enables genome-wide mapping of the determinants of fitness. However, current approaches for analyzing TIS data assume that selective pressures are constant over time and thus do not yield information regarding changes in the genetic requirements for growth in dynamic environments (e.g., during infection). Here, we describe structured analysis of TIS data collected as a time series, termed pattern analysis of conditional essentiality (PACE). From a temporal series of TIS data, PACE derives a quantitative assessment of each mutant's fitness over the course of an experiment and identifies mutants with related fitness profiles. In so doing, PACE circumvents major limitations of existing methodologies, specifically the need for artificial effect size thresholds and enumeration of bacterial population expansion. We used PACE to analyze TIS samples of Edwardsiella piscicida (a fish pathogen) collected over a 2-week infection period from a natural host (the flatfish turbot). PACE uncovered more genes that affect E. piscicida 's fitness in vivo than were detected using a cutoff at a terminal sampling point, and it identified subpopulations of mutants with distinct fitness profiles, one of which informed the design of new live vaccine candidates. Overall, PACE enables efficient mining of time series TIS data and enhances the power and sensitivity of TIS-based analyses. IMPORTANCE Transposon insertion sequencing (TIS) enables genome-wide mapping of the genetic determinants of fitness, typically based on observations at a single sampling point. Here, we move beyond analysis of endpoint TIS data to create a framework for analysis of time series TIS data, termed pattern analysis of conditional essentiality (PACE). We applied PACE to identify genes that contribute to colonization of a natural host by the fish pathogen Edwardsiella piscicida. PACE uncovered more genes that affect E. piscicida 's fitness in vivo than were detected using a terminal sampling point, and its clustering of mutants with related fitness profiles informed design of new live vaccine candidates. PACE yields insights into patterns of fitness dynamics and circumvents major limitations of existing methodologies. Finally, the PACE method should be applicable to additional "omic" time series data, including screens based on clustered regularly interspaced short palindromic repeats with Cas9 (CRISPR/Cas9). Copyright © 2017 Yang et al.

  11. Chemical genomic profiling via barcode sequencing to predict compound mode of action

    PubMed Central

    Piotrowski, Jeff S.; Simpkins, Scott W.; Li, Sheena C.; Deshpande, Raamesh; McIlwain, Sean; Ong, Irene; Myers, Chad L.; Boone, Charlie; Andersen, Raymond J.

    2015-01-01

    Summary Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds. PMID:25618354

  12. Temperature profiles of accretion discs around rapidly rotating strange stars in general relativity: A comparison with neutron stars

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Thampan, A. V.; Bombaci, I.

    2001-06-01

    We compute the temperature profiles of accretion discs around rapidly rotating strange stars, using constant gravitational mass equilibrium sequences of these objects, considering the full effect of general relativity. Beyond a certain critical value of stellar angular momentum (J), we observe the radius (r_orb) of the innermost stable circular orbit (ISCO) to increase with J (a property seen neither in rotating black holes nor in rotating neutron stars). The reason for this is traced to the crucial dependence of dr_orb/dJ on the rate of change of the radial gradient of the Keplerian angular velocity at r_orb with respect to J. The structure parameters and temperature profiles obtained are compared with those of neutron stars, as an attempt to provide signatures for distinguishing between the two. We show that when the full gamut of strange star equation of state models, with varying degrees of stiffness are considered, there exists a substantial overlap in properties of both neutron stars and strange stars. However, applying accretion disc model constraints to rule out stiff strange star equation of state models, we notice that neutron stars and strange stars exclusively occupy certain parameter spaces. This result implies the possibility of distinguishing these objects from each other by sensitive observations through future X-ray detectors.

  13. Improved detection of CXCR4-using HIV by V3 genotyping: application of population-based and "deep" sequencing to plasma RNA and proviral DNA.

    PubMed

    Swenson, Luke C; Moores, Andrew; Low, Andrew J; Thielen, Alexander; Dong, Winnie; Woods, Conan; Jensen, Mark A; Wynhoven, Brian; Chan, Dennison; Glascock, Christopher; Harrigan, P Richard

    2010-08-01

    Tropism testing should rule out CXCR4-using HIV before treatment with CCR5 antagonists. Currently, the recombinant phenotypic Trofile assay (Monogram) is most widely utilized; however, genotypic tests may represent alternative methods. Independent triplicate amplifications of the HIV gp120 V3 region were made from either plasma HIV RNA or proviral DNA. These underwent standard, population-based sequencing with an ABI3730 (RNA n = 63; DNA n = 40), or "deep" sequencing with a Roche/454 Genome Sequencer-FLX (RNA n = 12; DNA n = 12). Position-specific scoring matrices (PSSMX4/R5) (-6.96 cutoff) and geno2pheno[coreceptor] (5% false-positive rate) inferred tropism from V3 sequence. These methods were then independently validated with a separate, blinded dataset (n = 278) of screening samples from the maraviroc MOTIVATE trials. Standard sequencing of HIV RNA with PSSM yielded 69% sensitivity and 91% specificity, relative to Trofile. The validation dataset gave 75% sensitivity and 83% specificity. Proviral DNA plus PSSM gave 77% sensitivity and 71% specificity. "Deep" sequencing of HIV RNA detected >2% inferred-CXCR4-using virus in 8/8 samples called non-R5 by Trofile, and <2% in 4/4 samples called R5. Triplicate analyses of V3 standard sequence data detect greater proportions of CXCR4-using samples than previously achieved. Sequencing proviral DNA and "deep" V3 sequencing may also be useful tools for assessing tropism.

  14. CYTOKINE PROFILING FOR CHEMICAL RESPIRATORY SENSITIZERS

    EPA Science Inventory

    CYTOKINE PROFILING FOR CHEMICAL RESPIRATORY SENSITIZERS. LM Plitnick1, SE Loveless2, GS Ladics2, MP Holsapple3, MJ Selgrade4, DM Sailstad4 & RJ Smialowicz4. 1UNC, Chapel Hill, NC; 2DuPont Co., Haskell Laboratory, Newark, DE; 3Dow Chemical, Midland, MI & 4USEPA, NHEERL, RTP, NC.

  15. Selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis.

    PubMed

    Smola, Matthew J; Rice, Greggory M; Busan, Steven; Siegfried, Nathan A; Weeks, Kevin M

    2015-11-01

    Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistries exploit small electrophilic reagents that react with 2'-hydroxyl groups to interrogate RNA structure at single-nucleotide resolution. Mutational profiling (MaP) identifies modified residues by using reverse transcriptase to misread a SHAPE-modified nucleotide and then counting the resulting mutations by massively parallel sequencing. The SHAPE-MaP approach measures the structure of large and transcriptome-wide systems as accurately as can be done for simple model RNAs. This protocol describes the experimental steps, implemented over 3 d, that are required to perform SHAPE probing and to construct multiplexed SHAPE-MaP libraries suitable for deep sequencing. Automated processing of MaP sequencing data is accomplished using two software packages. ShapeMapper converts raw sequencing files into mutational profiles, creates SHAPE reactivity plots and provides useful troubleshooting information. SuperFold uses these data to model RNA secondary structures, identify regions with well-defined structures and visualize probable and alternative helices, often in under 1 d. SHAPE-MaP can be used to make nucleotide-resolution biophysical measurements of individual RNA motifs, rare components of complex RNA ensembles and entire transcriptomes.

  16. Selective ribosome profiling as a tool to study the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes

    PubMed Central

    Becker, Annemarie H.; Oh, Eugene; Weissman, Jonathan S.; Kramer, Günter; Bukau, Bernd

    2014-01-01

    A plethora of factors is involved in the maturation of newly synthesized proteins, including chaperones, membrane targeting factors, and enzymes. Many factors act cotranslationally through association with ribosome-nascent chain complexes (RNCs), but their target specificities and modes of action remain poorly understood. We developed selective ribosome profiling (SeRP) to identify substrate pools and points of RNC engagement of these factors. SeRP is based on sequencing mRNA fragments covered by translating ribosomes (general ribosome profiling, RP), combined with a procedure to selectively isolate RNCs whose nascent polypeptides are associated with the factor of interest. Factor–RNC interactions are stabilized by crosslinking, the resulting factor–RNC adducts are then nuclease-treated to generate monosomes, and affinity-purified. The ribosome-extracted mRNA footprints are converted to DNA libraries for deep sequencing. The protocol is specified for general RP and SeRP in bacteria. It was first applied to the chaperone trigger factor and is readily adaptable to other cotranslationally acting factors, including eukaryotic factors. Factor–RNC purification and sequencing library preparation takes 7–8 days, sequencing and data analysis can be completed in 5–6 days. PMID:24136347

  17. Random whole metagenomic sequencing for forensic discrimination of soils.

    PubMed

    Khodakova, Anastasia S; Smith, Renee J; Burgoyne, Leigh; Abarno, Damien; Linacre, Adrian

    2014-01-01

    Here we assess the ability of random whole metagenomic sequencing approaches to discriminate between similar soils from two geographically distinct urban sites for application in forensic science. Repeat samples from two parklands in residential areas separated by approximately 3 km were collected and the DNA was extracted. Shotgun, whole genome amplification (WGA) and single arbitrarily primed DNA amplification (AP-PCR) based sequencing techniques were then used to generate soil metagenomic profiles. Full and subsampled metagenomic datasets were then annotated against M5NR/M5RNA (taxonomic classification) and SEED Subsystems (metabolic classification) databases. Further comparative analyses were performed using a number of statistical tools including: hierarchical agglomerative clustering (CLUSTER); similarity profile analysis (SIMPROF); non-metric multidimensional scaling (NMDS); and canonical analysis of principal coordinates (CAP) at all major levels of taxonomic and metabolic classification. Our data showed that shotgun and WGA-based approaches generated highly similar metagenomic profiles for the soil samples such that the soil samples could not be distinguished accurately. An AP-PCR based approach was shown to be successful at obtaining reproducible site-specific metagenomic DNA profiles, which in turn were employed for successful discrimination of visually similar soil samples collected from two different locations.

  18. Gene Scanning of an Internalin B Gene Fragment Using High-Resolution Melting Curve Analysis as a Tool for Rapid Typing of Listeria monocytogenes

    PubMed Central

    Pietzka, Ariane T.; Stöger, Anna; Huhulescu, Steliana; Allerberger, Franz; Ruppitsch, Werner

    2011-01-01

    The ability to accurately track Listeria monocytogenes strains involved in outbreaks is essential for control and prevention of listeriosis. Because current typing techniques are time-consuming, cost-intensive, technically demanding, and difficult to standardize, we developed a rapid and cost-effective method for typing of L. monocytogenes. In all, 172 clinical L. monocytogenes isolates and 20 isolates from culture collections were typed by high-resolution melting (HRM) curve analysis of a specific locus of the internalin B gene (inlB). All obtained HRM curve profiles were verified by sequence analysis. The 192 tested L. monocytogenes isolates yielded 15 specific HRM curve profiles. Sequence analysis revealed that these 15 HRM curve profiles correspond to 18 distinct inlB sequence types. The HRM curve profiles obtained correlated with the five phylogenetic groups I.1, I.2, II.1, II.2, and III. Thus, HRM curve analysis constitutes an inexpensive assay and represents an improvement in typing relative to classical serotyping or multiplex PCR typing protocols. This method provides a rapid and powerful screening tool for simultaneous preliminary typing of up to 384 samples in approximately 2 hours. PMID:21227395

  19. Hybrid Capture-Based Comprehensive Genomic Profiling Identifies Lung Cancer Patients with Well-Characterized Sensitizing Epidermal Growth Factor Receptor Point Mutations That Were Not Detected by Standard of Care Testing.

    PubMed

    Suh, James H; Schrock, Alexa B; Johnson, Adrienne; Lipson, Doron; Gay, Laurie M; Ramkissoon, Shakti; Vergilio, Jo-Anne; Elvin, Julia A; Shakir, Abdur; Ruehlman, Peter; Reckamp, Karen L; Ou, Sai-Hong Ignatius; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M

    2018-03-14

    In our recent study, of cases positive for epidermal growth factor receptor ( EGFR ) exon 19 deletions using comprehensive genomic profiling (CGP), 17/77 (22%) patients with prior standard of care (SOC) EGFR testing results available were previously negative for exon 19 deletion. Our aim was to compare the detection rates of CGP versus SOC testing for well-characterized sensitizing EGFR point mutations (pm) in our 6,832-patient cohort. DNA was extracted from 40 microns of formalin-fixed paraffin-embedded sections from 6,832 consecutive cases of non-small cell lung cancer (NSCLC) of various histologies (2012-2015). CGP was performed using a hybrid capture, adaptor ligation-based next-generation sequencing assay to a mean coverage depth of 576×. Genomic alterations (pm, small indels, copy number changes and rearrangements) involving EGFR were recorded for each case and compared with prior testing results if available. Overall, there were 482 instances of EGFR exon 21 L858R (359) and L861Q (20), exon 18 G719X (73) and exon 20 S768I (30) pm, of which 103 unique cases had prior EGFR testing results that were available for review. Of these 103 cases, CGP identified 22 patients (21%) with sensitizing EGFR pm that were not detected by SOC testing, including 9/75 (12%) patients with L858R, 4/7 (57%) patients with L861Q, 8/20 (40%) patients with G719X, and 4/7 (57%) patients with S768I pm (some patients had multiple EGFR pm). In cases with available clinical data, benefit from small molecule inhibitor therapy was observed. CGP, even when applied to low tumor purity clinical-grade specimens, can detect well-known EGFR pm in NSCLC patients that would otherwise not be detected by SOC testing. Taken together with EGFR exon 19 deletions, over 20% of patients who are positive for EGFR -activating mutations using CGP are previously negative by SOC EGFR mutation testing, suggesting that thousands of such patients per year in the U.S. alone could experience improved clinical outcomes when hybrid capture-based CGP is used to inform therapeutic decisions. This study points out that genomic profiling, as based on hybrid capture next-generation sequencing, can identify lung cancer patients with point mutation in epidermal growth factor receptor (EGFR) missed by standard molecular testing who can likely benefit from anti-EGFR targeted therapy. Beyond the specific findings regarding false-negative point mutation testing for EGFR, this study highlights the need for oncologists and pathologists to be cognizant of the performance characteristics of testing deployed and the importance of clinical intuition in questioning the results of laboratory testing. © AlphaMed Press 2018.

  20. Bi-PROF

    PubMed Central

    Gries, Jasmin; Schumacher, Dirk; Arand, Julia; Lutsik, Pavlo; Markelova, Maria Rivera; Fichtner, Iduna; Walter, Jörn; Sers, Christine; Tierling, Sascha

    2013-01-01

    The use of next generation sequencing has expanded our view on whole mammalian methylome patterns. In particular, it provides a genome-wide insight of local DNA methylation diversity at single nucleotide level and enables the examination of single chromosome sequence sections at a sufficient statistical power. We describe a bisulfite-based sequence profiling pipeline, Bi-PROF, which is based on the 454 GS-FLX Titanium technology that allows to obtain up to one million sequence stretches at single base pair resolution without laborious subcloning. To illustrate the performance of the experimental workflow connected to a bioinformatics program pipeline (BiQ Analyzer HT) we present a test analysis set of 68 different epigenetic marker regions (amplicons) in five individual patient-derived xenograft tissue samples of colorectal cancer and one healthy colon epithelium sample as a control. After the 454 GS-FLX Titanium run, sequence read processing and sample decoding, the obtained alignments are quality controlled and statistically evaluated. Comprehensive methylation pattern interpretation (profiling) assessed by analyzing 102-104 sequence reads per amplicon allows an unprecedented deep view on pattern formation and methylation marker heterogeneity in tissues concerned by complex diseases like cancer. PMID:23803588

  1. VariantBam: filtering and profiling of next-generational sequencing data using region-specific rules.

    PubMed

    Wala, Jeremiah; Zhang, Cheng-Zhong; Meyerson, Matthew; Beroukhim, Rameen

    2016-07-01

    We developed VariantBam, a C ++ read filtering and profiling tool for use with BAM, CRAM and SAM sequencing files. VariantBam provides a flexible framework for extracting sequencing reads or read-pairs that satisfy combinations of rules, defined by any number of genomic intervals or variant sites. We have implemented filters based on alignment data, sequence motifs, regional coverage and base quality. For example, VariantBam achieved a median size reduction ratio of 3.1:1 when applied to 10 lung cancer whole genome BAMs by removing large tags and selecting for only high-quality variant-supporting reads and reads matching a large dictionary of sequence motifs. Thus VariantBam enables efficient storage of sequencing data while preserving the most relevant information for downstream analysis. VariantBam and full documentation are available at github.com/jwalabroad/VariantBam rameen@broadinstitute.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. 3′ terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing

    PubMed Central

    2013-01-01

    Background Post-transcriptional 3′ end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3′ RACE coupled with high-throughput sequencing to characterize the 3′ terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. Results The 3′ terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3′ terminus of an in vitro transcribed MRP RNA control and the differing 3′ terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). Conclusions 3′ RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3′ terminal sequences of noncoding RNAs. PMID:24053768

  3. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.

    PubMed

    Adalsteinsson, Viktor A; Ha, Gavin; Freeman, Samuel S; Choudhury, Atish D; Stover, Daniel G; Parsons, Heather A; Gydush, Gregory; Reed, Sarah C; Rotem, Denisse; Rhoades, Justin; Loginov, Denis; Livitz, Dimitri; Rosebrock, Daniel; Leshchiner, Ignaty; Kim, Jaegil; Stewart, Chip; Rosenberg, Mara; Francis, Joshua M; Zhang, Cheng-Zhong; Cohen, Ofir; Oh, Coyin; Ding, Huiming; Polak, Paz; Lloyd, Max; Mahmud, Sairah; Helvie, Karla; Merrill, Margaret S; Santiago, Rebecca A; O'Connor, Edward P; Jeong, Seong H; Leeson, Rachel; Barry, Rachel M; Kramkowski, Joseph F; Zhang, Zhenwei; Polacek, Laura; Lohr, Jens G; Schleicher, Molly; Lipscomb, Emily; Saltzman, Andrea; Oliver, Nelly M; Marini, Lori; Waks, Adrienne G; Harshman, Lauren C; Tolaney, Sara M; Van Allen, Eliezer M; Winer, Eric P; Lin, Nancy U; Nakabayashi, Mari; Taplin, Mary-Ellen; Johannessen, Cory M; Garraway, Levi A; Golub, Todd R; Boehm, Jesse S; Wagle, Nikhil; Getz, Gad; Love, J Christopher; Meyerson, Matthew

    2017-11-06

    Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.

  4. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    PubMed Central

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally valuable information related to amino acid depletion. Seq2logo aims at resolving these issues allowing the user to include sequence weighting to correct for data redundancy, pseudo counts to correct for low number of observations and different logotype representations each capturing different aspects related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein of interest. The output from the server is a sequence logo and a PSSM. Seq2Logo is available at http://www.cbs.dtu.dk/biotools/Seq2Logo (14 May 2012, date last accessed). PMID:22638583

  5. Generation of a total of 6483 expressed sequence tags from 60 day-old bovine whole fetus and fetal placenta.

    PubMed

    Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y

    2004-05-01

    Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.

  6. A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation

    PubMed Central

    Eddy, Sean R.

    2008-01-01

    Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236

  7. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.

    PubMed

    Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M

    2002-12-01

    AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.

  8. Classification of Ancient Mammal Individuals Using Dental Pulp MALDI-TOF MS Peptide Profiling

    PubMed Central

    Tran, Thi-Nguyen-Ny; Aboudharam, Gérard; Gardeisen, Armelle; Davoust, Bernard; Bocquet-Appel, Jean-Pierre; Flaudrops, Christophe; Belghazi, Maya; Raoult, Didier; Drancourt, Michel

    2011-01-01

    Background The classification of ancient animal corpses at the species level remains a challenging task for forensic scientists and anthropologists. Severe damage and mixed, tiny pieces originating from several skeletons may render morphological classification virtually impossible. Standard approaches are based on sequencing mitochondrial and nuclear targets. Methodology/Principal Findings We present a method that can accurately classify mammalian species using dental pulp and mass spectrometry peptide profiling. Our work was organized into three successive steps. First, after extracting proteins from the dental pulp collected from 37 modern individuals representing 13 mammalian species, trypsin-digested peptides were used for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The resulting peptide profiles accurately classified every individual at the species level in agreement with parallel cytochrome b gene sequencing gold standard. Second, using a 279–modern spectrum database, we blindly classified 33 of 37 teeth collected in 37 modern individuals (89.1%). Third, we classified 10 of 18 teeth (56%) collected in 15 ancient individuals representing five mammal species including human, from five burial sites dating back 8,500 years. Further comparison with an upgraded database comprising ancient specimen profiles yielded 100% classification in ancient teeth. Peptide sequencing yield 4 and 16 different non-keratin proteins including collagen (alpha-1 type I and alpha-2 type I) in human ancient and modern dental pulp, respectively. Conclusions/Significance Mass spectrometry peptide profiling of the dental pulp is a new approach that can be added to the arsenal of species classification tools for forensics and anthropology as a complementary method to DNA sequencing. The dental pulp is a new source for collagen and other proteins for the species classification of modern and ancient mammal individuals. PMID:21364886

  9. Rapid Identification and Subtyping of Helicobacter cinaedi Strains by Intact-Cell Mass Spectrometry Profiling with the Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Taniguchi, Takako; Sekiya, Ayumi; Higa, Mariko; Saeki, Yuji; Umeki, Kazumi; Okayama, Akihiko; Hayashi, Tetsuya

    2014-01-01

    Helicobacter cinaedi infection is recognized as an increasingly important emerging disease in humans. Although H. cinaedi-like strains have been isolated from a variety of animals, it is difficult to identify particular isolates due to their unusual phenotypic profiles and the limited number of biochemical tests for detecting helicobacters. Moreover, analyses of the 16S rRNA gene sequences are also limited due to the high levels of similarity among closely related helicobacters. This study was conducted to evaluate intact-cell mass spectrometry (ICMS) profiling using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) as a tool for the identification of H. cinaedi. A total of 68 strains of H. cinaedi isolated from humans, dogs, a cat, and hamsters were examined in addition to other Helicobacter species. The major ICMS profiles of H. cinaedi were identical and differed from those of Helicobacter bilis, which show >98% sequence similarity at the 16S rRNA sequence level. A phyloproteomic analysis of the H. cinaedi strains examined in this work revealed that human isolates formed a single cluster that was distinct from that of the animal isolates, with the exception of two strains from dogs. These phyloproteomic results agreed with those of the phylogenetic analysis based on the nucleotide sequences of the hsp60 gene. Because they formed a distinct cluster in both analyses, our data suggest that animal strains may not be a major source of infection in humans. In conclusion, the ICMS profiles obtained using a MALDI-TOF MS approach may be useful for the identification and subtyping of H. cinaedi. PMID:24153128

  10. SUPER-FOCUS: A tool for agile functional analysis of shotgun metagenomic data

    DOE PAGES

    Silva, Genivaldo Gueiros Z.; Green, Kevin T.; Dutilh, Bas E.; ...

    2015-10-09

    Analyzing the functional profile of a microbial community from unannotated shotgun sequencing reads is one of the important goals in metagenomics. Functional profiling has valuable applications in biological research because it identifies the abundances of the functional genes of the organisms present in the original sample, answering the question what they can do. Currently, available tools do not scale well with increasing data volumes, which is important because both the number and lengths of the reads produced by sequencing platforms keep increasing. Here, we introduce SUPER-FOCUS, SUbsystems Profile by databasE Reduction using FOCUS, an agile homology-based approach using a reducedmore » reference database to report the subsystems present in metagenomic datasets and profile their abundances. We tested SUPER-FOCUS with over 70 real metagenomes, the results showing that it accurately predicts the subsystems present in the profiled microbial communities, and is up to 1000 times faster than other tools.« less

  11. PROSPECT improves cis-acting regulatory element prediction by integrating expression profile data with consensus pattern searches

    PubMed Central

    Fujibuchi, Wataru; Anderson, John S. J.; Landsman, David

    2001-01-01

    Consensus pattern and matrix-based searches designed to predict cis-acting transcriptional regulatory sequences have historically been subject to large numbers of false positives. We sought to decrease false positives by incorporating expression profile data into a consensus pattern-based search method. We have systematically analyzed the expression phenotypes of over 6000 yeast genes, across 121 expression profile experiments, and correlated them with the distribution of 14 known regulatory elements over sequences upstream of the genes. Our method is based on a metric we term probabilistic element assessment (PEA), which is a ranking of potential sites based on sequence similarity in the upstream regions of genes with similar expression phenotypes. For eight of the 14 known elements that we examined, our method had a much higher selectivity than a naïve consensus pattern search. Based on our analysis, we have developed a web-based tool called PROSPECT, which allows consensus pattern-based searching of gene clusters obtained from microarray data. PMID:11574681

  12. Comprehensive Genome Profiling of Single Sperm Cells by Multiple Annealing and Looping-Based Amplification Cycles and Next-Generation Sequencing from Carriers of Robertsonian Translocation.

    PubMed

    Sha, Yanwei; Sha, Yankun; Ji, Zhiyong; Ding, Lu; Zhang, Qing; Ouyang, Honggen; Lin, Shaobin; Wang, Xu; Shao, Lin; Shi, Chong; Li, Ping; Song, Yueqiang

    2017-03-01

    Robertsonian translocation (RT) is a common cause for male infertility, recurrent pregnancy loss, and birth defects. Studying meiotic recombination in RT-carrier patients helps decipher the mechanism and improve the clinical management of infertility and birth defects caused by RT. Here we present a new method to study spermatogenesis on a single-gamete basis from two RT carriers. By using a combined single-cell whole-genome amplification and sequencing protocol, we comprehensively profiled the chromosomal copy number of 88 single sperms from two RT-carrier patients. With the profiled information, chromosomal aberrations were identified on a whole-genome, per-sperm basis. We found that the previously reported interchromosomal effect might not exist with RT carriers. It is suggested that single-cell genome sequencing enables comprehensive chromosomal aneuploidy screening and provides a powerful tool for studying gamete generation from patients carrying chromosomal diseases. © 2017 John Wiley & Sons Ltd/University College London.

  13. Relationships between residue Voronoi volume and sequence conservation in proteins.

    PubMed

    Liu, Jen-Wei; Cheng, Chih-Wen; Lin, Yu-Feng; Chen, Shao-Yu; Hwang, Jenn-Kang; Yen, Shih-Chung

    2018-02-01

    Functional and biophysical constraints can cause different levels of sequence conservation in proteins. Previously, structural properties, e.g., relative solvent accessibility (RSA) and packing density of the weighted contact number (WCN), have been found to be related to protein sequence conservation (CS). The Voronoi volume has recently been recognized as a new structural property of the local protein structural environment reflecting CS. However, for surface residues, it is sensitive to water molecules surrounding the protein structure. Herein, we present a simple structural determinant termed the relative space of Voronoi volume (RSV); it uses the Voronoi volume and the van der Waals volume of particular residues to quantify the local structural environment. RSV (range, 0-1) is defined as (Voronoi volume-van der Waals volume)/Voronoi volume of the target residue. The concept of RSV describes the extent of available space for every protein residue. RSV and Voronoi profiles with and without water molecules (RSVw, RSV, VOw, and VO) were compared for 554 non-homologous proteins. RSV (without water) showed better Pearson's correlations with CS than did RSVw, VO, or VOw values. The mean correlation coefficient between RSV and CS was 0.51, which is comparable to the correlation between RSA and CS (0.49) and that between WCN and CS (0.56). RSV is a robust structural descriptor with and without water molecules and can quantitatively reflect evolutionary information in a single protein structure. Therefore, it may represent a practical structural determinant to study protein sequence, structure, and function relationships. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Dramatic Differences in Gut Bacterial Densities Correlate with Diet and Habitat in Rainforest Ants.

    PubMed

    Sanders, Jon G; Lukasik, Piotr; Frederickson, Megan E; Russell, Jacob A; Koga, Ryuichi; Knight, Rob; Pierce, Naomi E

    2017-10-01

    Abundance is a key parameter in microbial ecology, and important to estimates of potential metabolite flux, impacts of dispersal, and sensitivity of samples to technical biases such as laboratory contamination. However, modern amplicon-based sequencing techniques by themselves typically provide no information about the absolute abundance of microbes. Here, we use fluorescence microscopy and quantitative polymerase chain reaction as independent estimates of microbial abundance to test the hypothesis that microbial symbionts have enabled ants to dominate tropical rainforest canopies by facilitating herbivorous diets, and compare these methods to microbial diversity profiles from 16S rRNA amplicon sequencing. Through a systematic survey of ants from a lowland tropical forest, we show that the density of gut microbiota varies across several orders of magnitude among ant lineages, with median individuals from many genera only marginally above detection limits. Supporting the hypothesis that microbial symbiosis is important to dominance in the canopy, we find that the abundance of gut bacteria is positively correlated with stable isotope proxies of herbivory among canopy-dwelling ants, but not among ground-dwelling ants. Notably, these broad findings are much more evident in the quantitative data than in the 16S rRNA sequencing data. Our results provide quantitative context to the potential role of bacteria in facilitating the ants' dominance of the tropical rainforest canopy, and have broad implications for the interpretation of sequence-based surveys of microbial diversity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. AmpliVar: mutation detection in high-throughput sequence from amplicon-based libraries.

    PubMed

    Hsu, Arthur L; Kondrashova, Olga; Lunke, Sebastian; Love, Clare J; Meldrum, Cliff; Marquis-Nicholson, Renate; Corboy, Greg; Pham, Kym; Wakefield, Matthew; Waring, Paul M; Taylor, Graham R

    2015-04-01

    Conventional means of identifying variants in high-throughput sequencing align each read against a reference sequence, and then call variants at each position. Here, we demonstrate an orthogonal means of identifying sequence variation by grouping the reads as amplicons prior to any alignment. We used AmpliVar to make key-value hashes of sequence reads and group reads as individual amplicons using a table of flanking sequences. Low-abundance reads were removed according to a selectable threshold, and reads above this threshold were aligned as groups, rather than as individual reads, permitting the use of sensitive alignment tools. We show that this approach is more sensitive, more specific, and more computationally efficient than comparable methods for the analysis of amplicon-based high-throughput sequencing data. The method can be extended to enable alignment-free confirmation of variants seen in hybridization capture target-enrichment data. © 2015 WILEY PERIODICALS, INC.

  16. Molecular and comparative analysis of Salmonella enterica Senftenberg from humans and animals using PFGE, MLST and NARMS

    PubMed Central

    2011-01-01

    Background Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. Results The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. Conclusion The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar. PMID:21708021

  17. Detection of drug-resistance mechanism of Pseudomonas aeruginosa developing from a sensitive strain to a persister during carbapenem treatment.

    PubMed

    Shen, J L; Fang, Y P

    2015-06-18

    We explored the mechanism of the development from sensitivity to resistance to carbapenem in Pseudomonas aeruginosa. Two P. aeruginosa strains were collected during treatment with carbapenem. Strain homology was investigated using pulsed-field gel electrophoresis. Porin oprD2 expression was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The minimum inhibitory concentrations (MICs) of imipenem and meropenem with or without MC207110 were determined using the agar dilution method. The expression level of efflux pump mRNA was tested using real-time polymerase chain reaction. Metallo-lactamases (MBLs) were screened using the EDTA-disk synergy test. Genes encoding MBLs were amplified and then analyzed by DNA sequencing. The two treated strains belonged to the same pulsed-field gel electrophoresis type. The SDS-PAGE profile of the P. aeruginosa strains revealed that the 46-kDa membrane protein OprD2 of IMP(R)MEM(R) type strains was lost, whereas OprD2 of 1 IMP(S)MEM(S) strain was normal. With or without MC207110 treatment, the MIC of carbapenem-resistant P. aeruginosa decreased by 4-fold, while the MIC of carbapenem-sensitive P. aeruginosa did not. Compared with the carbapenem-sensitive strain, MexX mRNA expression in the carbapenem-resistant strain increased by 102.5-fold, while the mRNA expression of other efflux pumps did not markedly increase. Neither carbapenem-resistant nor carbapenem-sensitive P. aeruginosa produced MBL. The mechanism of development from sensitivity to resistance of P. aeruginosa to carbapenem during carbapenem treatment is due to porin oprD2 loss and an increased expression level of MexXY-OprM.

  18. A single-molecule sequencing assay for the comprehensive profiling of T4 DNA ligase fidelity and bias during DNA end-joining.

    PubMed

    Potapov, Vladimir; Ong, Jennifer L; Langhorst, Bradley W; Bilotti, Katharina; Cahoon, Dan; Canton, Barry; Knight, Thomas F; Evans, Thomas C; Lohman, Gregory Js

    2018-05-08

    DNA ligases are key enzymes in molecular and synthetic biology that catalyze the joining of breaks in duplex DNA and the end-joining of DNA fragments. Ligation fidelity (discrimination against the ligation of substrates containing mismatched base pairs) and bias (preferential ligation of particular sequences over others) have been well-studied in the context of nick ligation. However, almost no data exist for fidelity and bias in end-joining ligation contexts. In this study, we applied Pacific Biosciences Single-Molecule Real-Time sequencing technology to directly sequence the products of a highly multiplexed ligation reaction. This method has been used to profile the ligation of all three-base 5'-overhangs by T4 DNA ligase under typical ligation conditions in a single experiment. We report the relative frequency of all ligation products with or without mismatches, the position-dependent frequency of each mismatch, and the surprising observation that 5'-TNA overhangs ligate extremely inefficiently compared to all other Watson-Crick pairings. The method can easily be extended to profile other ligases, end-types (e.g. blunt ends and overhangs of different lengths), and the effect of adjacent sequence on the ligation results. Further, the method has the potential to provide new insights into the thermodynamics of annealing and the kinetics of end-joining reactions.

  19. Nicotine pharmacokinetic profiles of the Tobacco Heating System 2.2, cigarettes and nicotine gum in Japanese smokers.

    PubMed

    Brossard, Patrick; Weitkunat, Rolf; Poux, Valerie; Lama, Nicola; Haziza, Christelle; Picavet, Patrick; Baker, Gizelle; Lüdicke, Frank

    2017-10-01

    Two open-label randomized cross-over studies in Japanese smokers investigated the single-use nicotine pharmacokinetic profile of the Tobacco Heating System (THS) 2.2, cigarettes (CC) and nicotine replacement therapy (Gum). In each study, one on the regular and one on the menthol variants of the THS and CC, both using Gum as reference, 62 subjects were randomized to four sequences: Sequence 1: THS - CC (n = 22); Sequence 2: CC - THS (n = 22); Sequence 3: THS - Gum (n = 9); Sequence 4: Gum - THS (n = 9). Plasma nicotine concentrations were measured in 16 blood samples collected over 24 h after single use. Maximal nicotine concentration (C max ) and area under the curve from start of product use to time of last quantifiable concentration (AUC 0-last ) were similar between THS and CC in both studies, with ratios varying from 88 to 104% for C max and from 96 to 98% for AUC 0-last . Urge-to-smoke total scores were comparable between THS and CC. The THS nicotine pharmacokinetic profile was close to CC, with similar levels of urge-to-smoke. This suggests that THS can satisfy smokers and be a viable alternative to cigarettes for adult smokers who want to continue using tobacco. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Local Renyi entropic profiles of DNA sequences.

    PubMed

    Vinga, Susana; Almeida, Jonas S

    2007-10-16

    In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at http://kdbio.inesc-id.pt/~svinga/ep/. The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures.

  1. Local Renyi entropic profiles of DNA sequences

    PubMed Central

    Vinga, Susana; Almeida, Jonas S

    2007-01-01

    Background In a recent report the authors presented a new measure of continuous entropy for DNA sequences, which allows the estimation of their randomness level. The definition therein explored was based on the Rényi entropy of probability density estimation (pdf) using the Parzen's window method and applied to Chaos Game Representation/Universal Sequence Maps (CGR/USM). Subsequent work proposed a fractal pdf kernel as a more exact solution for the iterated map representation. This report extends the concepts of continuous entropy by defining DNA sequence entropic profiles using the new pdf estimations to refine the density estimation of motifs. Results The new methodology enables two results. On the one hand it shows that the entropic profiles are directly related with the statistical significance of motifs, allowing the study of under and over-representation of segments. On the other hand, by spanning the parameters of the kernel function it is possible to extract important information about the scale of each conserved DNA region. The computational applications, developed in Matlab m-code, the corresponding binary executables and additional material and examples are made publicly available at . Conclusion The ability to detect local conservation from a scale-independent representation of symbolic sequences is particularly relevant for biological applications where conserved motifs occur in multiple, overlapping scales, with significant future applications in the recognition of foreign genomic material and inference of motif structures. PMID:17939871

  2. Sequence stratigraphy of the subaqueous Changjiang (Yangtze River) delta since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Xu, Taoyu; Wang, Guoqing; Shi, Xuefa; Wang, Xin; Yao, Zhengquan; Yang, Gang; Fang, Xisheng; Qiao, Shuqing; Liu, Shengfa; Wang, Xuchen; Zhao, Quanhong

    2016-01-01

    This study focuses on sedimentary research at the subaqueous Changjiang (Yangtze River) delta, based on five high-resolution seismic profiles and seven borehole cores with accurate AMS 14C datings. Three distinct seismic units were identified from the seismic profiles according to seismic reflection characteristics, and five sedimentary facies were recognized from borehole cores. These facies constituted a fining upward sedimentary sequence in relation to postglacial sea-level transgression. Three sequence surfaces (sequence boundary (SB), transgressive surface (TS), and maximum flooding surface (MFS)) demarcate the boundaries between early transgressive system tract (E-TST), late transgressive system tract (L-TST), early highstand system tract (E-HST) and late highstand system tract (L-HST), which constitute the sixth order sequence. These system tracts were developed coevally with postglacial sea-level rise. E-TST (~ 19-12 ka BP) corresponds to an incised-valley infilling in the early stages of postglacial transgression whereas L-TST (~ 12-7.5 ka BP) was formed during the last stage of postglacial transgression. The progradational structure of L-TST reflected in seismic profiles is possibly related to the intensification of the East Asian summer monsoon. E-HST (~ 7.5-2 ka BP) was deposited in response to the highstand after maximum postglacial transgression was reached, while L-HST (~ 2 ka BP-present) was initiated by accelerated progradation of the Changjiang delta.

  3. Investigation of the Short-Time Variability of Tropical Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Randriambelo, Tantely; Baray, Jean-Luc; Baldy, Serge; Thompson, Anne M.; Oltmans, Samuel; Keckhut, Philippe

    2003-01-01

    Since 1998, a ground based tropospheric ozone lidar has been running at Reunion Island and has been involved with a daily measurement campaign that was performed in the latter part of the biomass burning season, during November-December 1999. The averaged ozone profile obtained during November-December 1 999 agrees well with averaged ozone profile obtained from ozonesondes launch at Reunion during November-December (1992- 2001). Comparing weekly sonde launches (part of the Southern Hemisphere Additional Ozonesondes: SHADOZ program) with the daily ground-based lidar observations shows that some striking features of the day to day variability profiles are not observed in the sonde measurements. Ozone profiles respond to the nature of disturbances which vary from the one day to the next. The vertical ozone distribution at Reunion is examined as a function of prevailing atmospheric circulation. Backtrajectories show that most of the enhanced ozone crossed over biomass burning and convectively active regions in Madagascar and the southern African continent. The analyses of the meteorological data show that ozone stratification profiles are in agreement with the movement of the synoptical situations in November-December 1999. Three different sequences of transport are explained using wind fields. The first sequence from 23 to 25 November is characterized by Northerly transport, the second sequence from 26 to 30 November, the air masses are influenced by meridional transport. The third sequence from 2 to 6 December is characterized by westerly transport associated with the subtropical jet stream. The large standard deviations of lidar profiles in the middle and upper troposphere are in agreement with the upper wind variabilities which evidence passing ridge and trough disturbances. During the transition period between the dry season and the wet season, multiple ozone sources including stratosphere-troposphere exchanges, convection and biomass burning contribute to tropospheric ozone at Reunion Island through sporadic events characterized by a large spatial and temporal variability.

  4. Computational Analysis of Epidermal Growth Factor Receptor Mutations Predicts Differential Drug Sensitivity Profiles toward Kinase Inhibitors.

    PubMed

    Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna

    2018-05-01

    A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  5. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization

    PubMed Central

    Hensing, Thomas; Schrock, Alexa B.; Allen, Justin; Sanford, Eric; Gowen, Kyle; Kulkarni, Atul; He, Jie; Suh, James H.; Lipson, Doron; Elvin, Julia A.; Yelensky, Roman; Chalmers, Zachary; Chmielecki, Juliann; Peled, Nir; Klempner, Samuel J.; Firozvi, Kashif; Frampton, Garrett M.; Molina, Julian R.; Menon, Smitha; Brahmer, Julie R.; MacMahon, Heber; Nowak, Jan; Ou, Sai-Hong Ignatius; Zauderer, Marjorie; Ladanyi, Marc; Zakowski, Maureen; Fischbach, Neil; Ross, Jeffrey S.; Stephens, Phil J.; Miller, Vincent A.; Wakelee, Heather

    2016-01-01

    Introduction. For patients with non-small cell lung cancer (NSCLC) to benefit from ALK inhibitors, sensitive and specific detection of ALK genomic rearrangements is needed. ALK break-apart fluorescence in situ hybridization (FISH) is the U.S. Food and Drug Administration approved and standard-of-care diagnostic assay, but identification of ALK rearrangements by other methods reported in NSCLC cases that tested negative for ALK rearrangements by FISH suggests a significant false-negative rate. We report here a large series of NSCLC cases assayed by hybrid-capture-based comprehensive genomic profiling (CGP) in the course of clinical care. Materials and Methods. Hybrid-capture-based CGP using next-generation sequencing was performed in the course of clinical care of 1,070 patients with advanced lung cancer. Each tumor sample was evaluated for all classes of genomic alterations, including base-pair substitutions, insertions/deletions, copy number alterations and rearrangements, as well as fusions/rearrangements. Results. A total of 47 patients (4.4%) were found to harbor ALK rearrangements, of whom 41 had an EML4-ALK fusion, and 6 had other fusion partners, including 3 previously unreported rearrangement events: EIF2AK-ALK, PPM1B-ALK, and PRKAR1A-ALK. Of 41 patients harboring ALK rearrangements, 31 had prior FISH testing results available. Of these, 20 were ALK FISH positive, and 11 (35%) were ALK FISH negative. Of the latter 11 patients, 9 received crizotinib based on the CGP results, and 7 achieved a response with median duration of 17 months. Conclusion. Comprehensive genomic profiling detected canonical ALK rearrangements and ALK rearrangements with noncanonical fusion partners in a subset of patients with NSCLC with previously negative ALK FISH results. In this series, such patients had durable responses to ALK inhibitors, comparable to historical response rates for ALK FISH-positive cases. Implications for Practice: Comprehensive genomic profiling (CGP) that includes hybrid capture and specific baiting of intron 19 of ALK is a highly sensitive, alternative method for identification of drug-sensitive ALK fusions in patients with non-small cell lung cancer (NSCLC) who had previously tested negative using standard ALK fluorescence in situ hybridization (FISH) diagnostic assays. Given the proven benefit of treatment with crizotinib and second-generation ALK inhibitors in patients with ALK fusions, CGP should be considered in patients with NSCLC, including those who have tested negative for other alterations, including negative results using ALK FISH testing. PMID:27245569

  6. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization.

    PubMed

    Ali, Siraj M; Hensing, Thomas; Schrock, Alexa B; Allen, Justin; Sanford, Eric; Gowen, Kyle; Kulkarni, Atul; He, Jie; Suh, James H; Lipson, Doron; Elvin, Julia A; Yelensky, Roman; Chalmers, Zachary; Chmielecki, Juliann; Peled, Nir; Klempner, Samuel J; Firozvi, Kashif; Frampton, Garrett M; Molina, Julian R; Menon, Smitha; Brahmer, Julie R; MacMahon, Heber; Nowak, Jan; Ou, Sai-Hong Ignatius; Zauderer, Marjorie; Ladanyi, Marc; Zakowski, Maureen; Fischbach, Neil; Ross, Jeffrey S; Stephens, Phil J; Miller, Vincent A; Wakelee, Heather; Ganesan, Shridar; Salgia, Ravi

    2016-06-01

    For patients with non-small cell lung cancer (NSCLC) to benefit from ALK inhibitors, sensitive and specific detection of ALK genomic rearrangements is needed. ALK break-apart fluorescence in situ hybridization (FISH) is the U.S. Food and Drug Administration approved and standard-of-care diagnostic assay, but identification of ALK rearrangements by other methods reported in NSCLC cases that tested negative for ALK rearrangements by FISH suggests a significant false-negative rate. We report here a large series of NSCLC cases assayed by hybrid-capture-based comprehensive genomic profiling (CGP) in the course of clinical care. Hybrid-capture-based CGP using next-generation sequencing was performed in the course of clinical care of 1,070 patients with advanced lung cancer. Each tumor sample was evaluated for all classes of genomic alterations, including base-pair substitutions, insertions/deletions, copy number alterations and rearrangements, as well as fusions/rearrangements. A total of 47 patients (4.4%) were found to harbor ALK rearrangements, of whom 41 had an EML4-ALK fusion, and 6 had other fusion partners, including 3 previously unreported rearrangement events: EIF2AK-ALK, PPM1B-ALK, and PRKAR1A-ALK. Of 41 patients harboring ALK rearrangements, 31 had prior FISH testing results available. Of these, 20 were ALK FISH positive, and 11 (35%) were ALK FISH negative. Of the latter 11 patients, 9 received crizotinib based on the CGP results, and 7 achieved a response with median duration of 17 months. Comprehensive genomic profiling detected canonical ALK rearrangements and ALK rearrangements with noncanonical fusion partners in a subset of patients with NSCLC with previously negative ALK FISH results. In this series, such patients had durable responses to ALK inhibitors, comparable to historical response rates for ALK FISH-positive cases. Comprehensive genomic profiling (CGP) that includes hybrid capture and specific baiting of intron 19 of ALK is a highly sensitive, alternative method for identification of drug-sensitive ALK fusions in patients with non-small cell lung cancer (NSCLC) who had previously tested negative using standard ALK fluorescence in situ hybridization (FISH) diagnostic assays. Given the proven benefit of treatment with crizotinib and second-generation ALK inhibitors in patients with ALK fusions, CGP should be considered in patients with NSCLC, including those who have tested negative for other alterations, including negative results using ALK FISH testing. ©AlphaMed Press.

  7. Associations of Nasopharyngeal Metabolome and Microbiome with Severity among Infants with Bronchiolitis. A Multiomic Analysis.

    PubMed

    Stewart, Christopher J; Mansbach, Jonathan M; Wong, Matthew C; Ajami, Nadim J; Petrosino, Joseph F; Camargo, Carlos A; Hasegawa, Kohei

    2017-10-01

    Bronchiolitis is the most common lower respiratory infection in infants; however, it remains unclear which infants with bronchiolitis will develop severe illness. In addition, although emerging evidence indicates associations of the upper-airway microbiome with bronchiolitis severity, little is known about the mechanisms linking airway microbes and host response to disease severity. To determine the relations among the nasopharyngeal airway metabolome profiles, microbiome profiles, and severity in infants with bronchiolitis. We conducted a multicenter prospective cohort study of infants (age <1 yr) hospitalized with bronchiolitis. By applying metabolomic and metagenomic (16S ribosomal RNA gene and whole-genome shotgun sequencing) approaches to 144 nasopharyngeal airway samples collected within 24 hours of hospitalization, we determined metabolome and microbiome profiles and their association with higher severity, defined by the use of positive pressure ventilation (i.e., continuous positive airway pressure and/or intubation). Nasopharyngeal airway metabolome profiles significantly differed by bronchiolitis severity (P < 0.001). Among 254 metabolites identified, a panel of 25 metabolites showed high sensitivity (84%) and specificity (86%) in predicting the use of positive pressure ventilation. The intensity of these metabolites was correlated with relative abundance of Streptococcus pneumoniae. In the pathway analysis, sphingolipid metabolism was the most significantly enriched subpathway in infants with positive pressure ventilation use compared with those without (P < 0.001). Enrichment of sphingolipid metabolites was positively correlated with the relative abundance of S. pneumoniae. Although further validation is needed, our multiomic analyses demonstrate the potential of metabolomics to predict bronchiolitis severity and better understand microbe-host interaction.

  8. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    PubMed

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light.

  9. Using high-sensitivity sequencing for the detection of mutations in BTK and PLCγ2 genes in cellular and cell-free DNA and correlation with progression in patients treated with BTK inhibitors.

    PubMed

    Albitar, Adam; Ma, Wanlong; DeDios, Ivan; Estella, Jeffrey; Ahn, Inhye; Farooqui, Mohammed; Wiestner, Adrian; Albitar, Maher

    2017-03-14

    Patients with chronic lymphocytic leukemia (CLL) that develop resistance to Bruton tyrosine kinase (BTK) inhibitors are typically positive for mutations in BTK or phospholipase c gamma 2 (PLCγ2). We developed a high sensitivity (HS) assay utilizing wild-type blocking polymerase chain reaction achieved via bridged and locked nucleic acids. We used this high sensitivity assay in combination with Sanger sequencing and next generation sequencing (NGS) and tested cellular DNA and cell-free DNA (cfDNA) from patients with CLL treated with the BTK inhibitor, ibrutinib. We also tested ibrutinib-naïve patients with CLL. HS testing achieved 100x greater sensitivity than Sanger. HS Sanger sequencing was capable of detecting < 1 mutant allele in background of 1000 wild-type alleles (1:1000). Similar sensitivity was achieved with HS NGS. No BTK or PLCγ2 mutations were detected in any of the 44 ibrutinib-naïve CLL patients. We demonstrate that without the HS testing 56% of positive samples would have been missed for BTK and 85% of PLCγ2 would have been missed. With the use of HS, we were able to detect multiple mutant clones in the same sample in 37.5% of patients; most would have been missed without HS testing. We also demonstrate that with HS sequencing, plasma cfDNA is more reliable than cellular DNA in detecting mutations. Our studies indicate that wild-type blocking and HS sequencing is necessary for proper and early detection of BTK or PLCγ2 mutations in monitoring patients treated with BTK inhibitors. Furthermore, cfDNA from plasma is very reliable sample-type for testing.

  10. Mixed-complexity artificial grammar learning in humans and macaque monkeys: evaluating learning strategies.

    PubMed

    Wilson, Benjamin; Smith, Kenny; Petkov, Christopher I

    2015-03-01

    Artificial grammars (AG) can be used to generate rule-based sequences of stimuli. Some of these can be used to investigate sequence-processing computations in non-human animals that might be related to, but not unique to, human language. Previous AG learning studies in non-human animals have used different AGs to separately test for specific sequence-processing abilities. However, given that natural language and certain animal communication systems (in particular, song) have multiple levels of complexity, mixed-complexity AGs are needed to simultaneously evaluate sensitivity to the different features of the AG. Here, we tested humans and Rhesus macaques using a mixed-complexity auditory AG, containing both adjacent (local) and non-adjacent (longer-distance) relationships. Following exposure to exemplary sequences generated by the AG, humans and macaques were individually tested with sequences that were either consistent with the AG or violated specific adjacent or non-adjacent relationships. We observed a considerable level of cross-species correspondence in the sensitivity of both humans and macaques to the adjacent AG relationships and to the statistical properties of the sequences. We found no significant sensitivity to the non-adjacent AG relationships in the macaques. A subset of humans was sensitive to this non-adjacent relationship, revealing interesting between- and within-species differences in AG learning strategies. The results suggest that humans and macaques are largely comparably sensitive to the adjacent AG relationships and their statistical properties. However, in the presence of multiple cues to grammaticality, the non-adjacent relationships are less salient to the macaques and many of the humans. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening

    PubMed Central

    Tyner, Jeffrey W.; Yang, Wayne F.; Bankhead, Armand; Fan, Guang; Fletcher, Luke B.; Bryant, Jade; Glover, Jason M.; Chang, Bill H.; Spurgeon, Stephen E.; Fleming, William H.; Kovacsovics, Tibor; Gotlib, Jason R.; Oh, Stephen T.; Deininger, Michael W.; Zwaan, C. Michel; Den Boer, Monique L.; van den Heuvel-Eibrink, Marry M.; O’Hare, Thomas; Druker, Brian J.; Loriaux, Marc M.

    2012-01-01

    Kinases are dysregulated in most cancer but the frequency of specific kinase mutations is low, indicating a complex etiology in kinase dysregulation. Here we report a strategy to rapidly identify functionally important kinase targets, irrespective of the etiology of kinase pathway dysregulation, ultimately enabling a correlation of patient genetic profiles to clinically effective kinase inhibitors. Our methodology assessed the sensitivity of primary leukemia patient samples to a panel of 66 small-molecule kinase inhibitors over 3 days. Screening of 151 leukemia patient samples revealed a wide diversity of drug sensitivities, with 70% of the clinical specimens exhibiting hypersensitivity to one or more drugs. From this data set, we developed an algorithm to predict kinase pathway dependence based on analysis of inhibitor sensitivity patterns. Applying this algorithm correctly identified pathway dependence in proof-of-principle specimens with known oncogenes, including a rare FLT3 mutation outside regions covered by standard molecular diagnostic tests. Interrogation of all 151 patient specimens with this algorithm identified a diversity of gene targets and signaling pathways that could aid prioritization of deep sequencing data sets, permitting a cumulative analysis to understand kinase pathway dependence within leukemia subsets. In a proof-of-principle case, we showed that in vitro drug sensitivity could predict both a clinical response and the development of drug resistance. Taken together, our results suggested that drug target scores derived from a comprehensive kinase inhibitor panel could predict pathway dependence in cancer cells while simultaneously identifying potential therapeutic options. PMID:23087056

  12. Salt-Stress Response Mechanisms Using de Novo Transcriptome Sequencing of Salt-Tolerant and Sensitive Corchorus spp. Genotypes

    PubMed Central

    Yang, Zemao; Lu, Ruike; Dai, Zhigang; Yan, An; Tang, Qing; Cheng, Chaohua; Xu, Ying; Yang, Wenting; Su, Jianguang

    2017-01-01

    High salinity is a major environmental stressor for crops. To understand the regulatory mechanisms underlying salt tolerance, we conducted a comparative transcriptome analysis between salt-tolerant and salt-sensitive jute (Corchorus spp.) genotypes in leaf and root tissues under salt stress and control conditions. In total, 68,961 unigenes were identified. Additionally, 11,100 unigenes (including 385 transcription factors (TFs)) exhibited significant differential expression in salt-tolerant or salt-sensitive genotypes. Numerous common and unique differentially expressed unigenes (DEGs) between the two genotypes were discovered. Fewer DEGs were observed in salt-tolerant jute genotypes whether in root or leaf tissues. These DEGs were involved in various pathways, such as ABA signaling, amino acid metabolism, etc. Among the enriched pathways, plant hormone signal transduction (ko04075) and cysteine/methionine metabolism (ko00270) were the most notable. Eight common DEGs across both tissues and genotypes with similar expression profiles were part of the PYL-ABA-PP2C (pyrabactin resistant-like/regulatory components of ABA receptors-abscisic acid-protein phosphatase 2C). The methionine metabolism pathway was only enriched in salt-tolerant jute root tissue. Twenty-three DEGs were involved in methionine metabolism. Overall, numerous common and unique salt-stress response DEGs and pathways between salt-tolerant and salt-sensitive jute have been discovered, which will provide valuable information regarding salt-stress response mechanisms and help improve salt-resistance molecular breeding in jute. PMID:28927022

  13. Microbial Communities in the Surface Mucopolysaccharide Layer and the Black Band Microbial Mat of Black Band-Diseased Siderastrea siderea

    PubMed Central

    Sekar, Raju; Mills, DeEtta K.; Remily, Elizabeth R.; Voss, Joshua D.; Richardson, Laurie L.

    2006-01-01

    Microbial community profiles and species composition associated with two black band-diseased colonies of the coral Siderastrea siderea were studied by 16S rRNA-targeted gene cloning, sequencing, and amplicon-length heterogeneity PCR (LH-PCR). Bacterial communities associated with the surface mucopolysaccharide layer (SML) of apparently healthy tissues of the infected colonies, together with samples of the black band disease (BBD) infections, were analyzed using the same techniques for comparison. Gene sequences, ranging from 424 to 1,537 bp, were retrieved from all positive clones (n = 43 to 48) in each of the four clone libraries generated and used for comparative sequence analysis. In addition to LH-PCR community profiling, all of the clone sequences were aligned with LH-PCR primer sequences, and the theoretical lengths of the amplicons were determined. Results revealed that the community profiles were significantly different between BBD and SML samples. The SML samples were dominated by γ-proteobacteria (53 to 64%), followed by β-proteobacteria (18 to 21%) and α-proteobacteria (5 to 11%). In contrast, both BBD clone libraries were dominated by α-proteobacteria (58 to 87%), followed by verrucomicrobia (2 to 10%) and 0 to 6% each of δ-proteobacteria, bacteroidetes, firmicutes, and cyanobacteria. Alphaproteobacterial sequence types related to the bacteria associated with toxin-producing dinoflagellates were observed in BBD clone libraries but were not found in the SML libraries. Similarly, sequences affiliated with the family Desulfobacteraceae and toxin-producing cyanobacteria, both believed to be involved in BBD pathogenesis, were found only in BBD libraries. These data provide evidence for an association of numerous toxin-producing heterotrophic microorganisms with BBD of corals. PMID:16957217

  14. Sites Inferred by Metabolic Background Assertion Labeling (SIMBAL): adapting the Partial Phylogenetic Profiling algorithm to scan sequences for signatures that predict protein function

    PubMed Central

    2010-01-01

    Background Comparative genomics methods such as phylogenetic profiling can mine powerful inferences from inherently noisy biological data sets. We introduce Sites Inferred by Metabolic Background Assertion Labeling (SIMBAL), a method that applies the Partial Phylogenetic Profiling (PPP) approach locally within a protein sequence to discover short sequence signatures associated with functional sites. The approach is based on the basic scoring mechanism employed by PPP, namely the use of binomial distribution statistics to optimize sequence similarity cutoffs during searches of partitioned training sets. Results Here we illustrate and validate the ability of the SIMBAL method to find functionally relevant short sequence signatures by application to two well-characterized protein families. In the first example, we partitioned a family of ABC permeases using a metabolic background property (urea utilization). Thus, the TRUE set for this family comprised members whose genome of origin encoded a urea utilization system. By moving a sliding window across the sequence of a permease, and searching each subsequence in turn against the full set of partitioned proteins, the method found which local sequence signatures best correlated with the urea utilization trait. Mapping of SIMBAL "hot spots" onto crystal structures of homologous permeases reveals that the significant sites are gating determinants on the cytosolic face rather than, say, docking sites for the substrate-binding protein on the extracellular face. In the second example, we partitioned a protein methyltransferase family using gene proximity as a criterion. In this case, the TRUE set comprised those methyltransferases encoded near the gene for the substrate RF-1. SIMBAL identifies sequence regions that map onto the substrate-binding interface while ignoring regions involved in the methyltransferase reaction mechanism in general. Neither method for training set construction requires any prior experimental characterization. Conclusions SIMBAL shows that, in functionally divergent protein families, selected short sequences often significantly outperform their full-length parent sequence for making functional predictions by sequence similarity, suggesting avenues for improved functional classifiers. When combined with structural data, SIMBAL affords the ability to localize and model functional sites. PMID:20102603

  15. Same-day genomic and epigenomic diagnosis of brain tumors using real-time nanopore sequencing.

    PubMed

    Euskirchen, Philipp; Bielle, Franck; Labreche, Karim; Kloosterman, Wigard P; Rosenberg, Shai; Daniau, Mailys; Schmitt, Charlotte; Masliah-Planchon, Julien; Bourdeaut, Franck; Dehais, Caroline; Marie, Yannick; Delattre, Jean-Yves; Idbaih, Ahmed

    2017-11-01

    Molecular classification of cancer has entered clinical routine to inform diagnosis, prognosis, and treatment decisions. At the same time, new tumor entities have been identified that cannot be defined histologically. For central nervous system tumors, the current World Health Organization classification explicitly demands molecular testing, e.g., for 1p/19q-codeletion or IDH mutations, to make an integrated histomolecular diagnosis. However, a plethora of sophisticated technologies is currently needed to assess different genomic and epigenomic alterations and turnaround times are in the range of weeks, which makes standardized and widespread implementation difficult and hinders timely decision making. Here, we explored the potential of a pocket-size nanopore sequencing device for multimodal and rapid molecular diagnostics of cancer. Low-pass whole genome sequencing was used to simultaneously generate copy number (CN) and methylation profiles from native tumor DNA in the same sequencing run. Single nucleotide variants in IDH1, IDH2, TP53, H3F3A, and the TERT promoter region were identified using deep amplicon sequencing. Nanopore sequencing yielded ~0.1X genome coverage within 6 h and resulting CN and epigenetic profiles correlated well with matched microarray data. Diagnostically relevant alterations, such as 1p/19q codeletion, and focal amplifications could be recapitulated. Using ad hoc random forests, we could perform supervised pan-cancer classification to distinguish gliomas, medulloblastomas, and brain metastases of different primary sites. Single nucleotide variants in IDH1, IDH2, and H3F3A were identified using deep amplicon sequencing within minutes of sequencing. Detection of TP53 and TERT promoter mutations shows that sequencing of entire genes and GC-rich regions is feasible. Nanopore sequencing allows same-day detection of structural variants, point mutations, and methylation profiling using a single device with negligible capital cost. It outperforms hybridization-based and current sequencing technologies with respect to time to diagnosis and required laboratory equipment and expertise, aiming to make precision medicine possible for every cancer patient, even in resource-restricted settings.

  16. MethylMeter(®): bisulfite-free quantitative and sensitive DNA methylation profiling and mutation detection in FFPE samples.

    PubMed

    McCarthy, David; Pulverer, Walter; Weinhaeusel, Andreas; Diago, Oscar R; Hogan, Daniel J; Ostertag, Derek; Hanna, Michelle M

    2016-06-01

    Development of a sensitive method for DNA methylation profiling and associated mutation detection in clinical samples. Formalin-fixed and paraffin-embedded tumors received by clinical laboratories often contain insufficient DNA for analysis with bisulfite or methylation sensitive restriction enzymes-based methods. To increase sensitivity, methyl-CpG DNA capture and Coupled Abscription PCR Signaling detection were combined in a new assay, MethylMeter(®). Gliomas were analyzed for MGMT methylation, glioma CpG island methylator phenotype and IDH1 R132H. MethylMeter had 100% assay success rate measuring all five biomarkers in formalin-fixed and paraffin-embedded tissue. MGMT methylation results were supported by survival and mRNA expression data. MethylMeter is a sensitive and quantitative method for multitarget DNA methylation profiling and associated mutation detection. The MethylMeter-based GliomaSTRAT assay measures methylation of four targets and one mutation to simultaneously grade gliomas and predict their response to temozolomide. This information is clinically valuable in management of gliomas.

  17. Identifying sources of tick blood meals using unidentified tandem mass spectral libraries.

    PubMed

    Önder, Özlem; Shao, Wenguang; Kemps, Brian D; Lam, Henry; Brisson, Dustin

    2013-01-01

    Rapid and reliable identification of the vertebrate species on which a disease vector previously parasitized is imperative to study ecological factors that affect pathogen distribution and can aid the development of public health programs. Here we describe a proteome profiling technique designed to identify the source of blood meals of haematophagous arthropods. This method employs direct spectral matching and thus does not require a priori knowledge of any genetic or protein sequence information. Using this technology, we detect remnants of blood in blacklegged ticks (Ixodes scapularis) and correctly determine the vertebrate species from which the blood was derived, even 6 months after the tick had fed. This biological fingerprinting methodology is sensitive, fast, cost-effective and can potentially be adapted for other biological and medical applications when existing genome-based methods are impractical or ineffective.

  18. Sensitive and Specific Target Sequences Selected from Retrotransposons of Schistosoma japonicum for the Diagnosis of Schistosomiasis

    PubMed Central

    Xu, Jing; Zhu, Xing-Quan; Wang, Sheng-Yue; Xia, Chao-Ming

    2012-01-01

    Background Schistosomiasis japonica is a serious debilitating and sometimes fatal disease. Accurate diagnostic tests play a key role in patient management and control of the disease. However, currently available diagnostic methods are not ideal, and the detection of the parasite DNA in blood samples has turned out to be one of the most promising tools for the diagnosis of schistosomiasis. In our previous investigations, a 230-bp sequence from the highly repetitive retrotransposon SjR2 was identified and it showed high sensitivity and specificity for detecting Schistosoma japonicum DNA in the sera of rabbit model and patients. Recently, 29 retrotransposons were found in S. japonicum genome by our group. The present study highlighted the key factors for selecting a new perspective sensitive target DNA sequence for the diagnosis of schistosomiasis, which can serve as example for other parasitic pathogens. Methodology/Principal Findings In this study, we demonstrated that the key factors based on the bioinformatic analysis for selecting target sequence are the higher genome proportion, repetitive complete copies and partial copies, and active ESTs than the others in the chromosome genome. New primers based on 25 novel retrotransposons and SjR2 were designed and their sensitivity and specificity for detecting S. japonicum DNA were compared. The results showed that a new 303-bp sequence from non-long terminal repeat (LTR) retrotransposon (SjCHGCS19) had high sensitivity and specificity. The 303-bp target sequence was amplified from the sera of rabbit model at 3 d post-infection by nested-PCR and it became negative at 17 weeks post-treatment. Furthermore, the percentage sensitivity of the nested-PCR was 97.67% in 43 serum samples of S. japonicum-infected patients. Conclusions/Significance Our findings highlighted the key factors based on the bioinformatic analysis for selecting target sequence from S. japonicum genome, which provide basis for establishing powerful molecular diagnostic techniques that can be used for monitoring early infection and therapy efficacy to support schistosomiasis control programs. PMID:22479661

  19. Prevalence and Characterization of Oxacillin Susceptible mecA-Positive Clinical Isolates of Staphylococcus aureus Causing Bovine Mastitis in India.

    PubMed

    Mistry, Hiral; Sharma, Paresh; Mahato, Sudipta; Saravanan, R; Kumar, P Anand; Bhandari, Vasundhra

    2016-01-01

    Bovine mastitis caused by multidrug resistant Staphylococcus aureus is a huge problem reported worldwide, resulting in prolonged antibiotic treatment and death of livestock. The current study is focused on surveillance of antibiotic susceptibility along with genotypic and phenotypic characterization of the pathogenic S. aureus strains causing mastitis in India. One hundred and sixty seven milk samples were collected from mastitis-affected cows from different farms in India resulting in thirty nine isolated S. aureus strains. Antibiotic sensitivity profiling revealed the majority of the strains (n = 24) to be multidrug resistant and eleven strains showed reduced susceptibility to vancomycin (MICs = 2μg/ml). All strains were oxacillin sensitive, but 19 strains were positive for the mecA gene, which revealed the occurrence of oxacillin susceptible mecA positive strains (OS-MRSA) for the first time from India. Additionally, 32 strains were positive for the pvl gene, a virulence determinant; of these 17 were also OS-MRSA strains. Molecular characterization based on multilocus sequence typing (MLST), spa typing, agr typing and SCCmec classification revealed strains belonging to different groups. Moreover, strains showed spa types (t2526, t9602) and MLST sequence types, ST-72, ST-88 and ST-239 which have been earlier reported in human infections. The prevalence of OS-MRSA strains indicates the importance of including both the genetic and phenotypic tests in characterizing S. aureus strains. Increased genotypic variability with strain related to human infections and pvl positive isolates indicates a worrisome situation with the possibility of bilateral transfer.

  20. High-resolution melting-curve (HRM) analysis for C. meleagridis identification in stool samples.

    PubMed

    Chelbi, Hanen; Essid, Rym; Jelassi, Refka; Bouzekri, Nesrine; Zidi, Ines; Ben Salah, Hamza; Mrad, Ilhem; Ben Sghaier, Ines; Abdelmalek, Rym; Aissa, Sameh; Bouratbine, Aida; Aoun, Karim

    2018-02-01

    Cryptosporidiosis represents a major public health problem. This infection, caused by a protozoan parasite of the genus Cryptosporidium, has been reported worldwide as a frequent cause of diarrhoea. In the immunocompetent host, the typical watery diarrhea can be self-limiting. However, it is severe and chronic, in the immunocompromised host and may cause death. Cryptosporidium spp. are coccidians, which complete their life cycle in both humans and animals. The two species C. hominis and C. parvum are the major cause of human infection. Compared to studies on C. hominis and C. parvum, only a few studies have developed methods to identify C. meleagridis. To develop a new real time PCR-coupled High resolution melting assay allowing the detection for C. meleagridis, in addition of the other dominant species (C. hominis and C. parvum). The polymorphic sequence on the dihydrofolate reductase gene (DHFR) of three species was sequenced to design primers pair and establish a sensitive real-time PCR coupled to a high-resolution melting-curve (HRM) analysis method, allowing the detection of Cryptosporidium sp. and discrimination between three prevalent species in Tunisia. We analyzed a collection of 42 archived human isolates of the three studied species. Real-time PCR coupled to HRM assay allowed detection of Cryptosporidium, using the new designed primers, and basing on melting profile, we can distinguish C. meleagridis species in addition to C. parvum and C. hominis. We developed a qPCR-HRM assay that allows Cryptosporidium genotyping. This method is sensitive and able to distinguish three Cryptosporidium species. Copyright © 2017. Published by Elsevier Ltd.

  1. A Single Lab Test to Aid Pierre Robin Sequence Severity Diagnosis.

    PubMed

    Fahradyan, Artur; Azadgoli, Beina; Tsuha, Michaela; Urata, Mark M; Francis, Stacey H

    2018-01-01

    The workup of patients with Pierre Robin sequence (PRS) consists of a physical examination, O 2 saturation, and polysomnography to determine the severity of respiratory obstruction and need for surgery. We suggest that capillary blood gas (CBG) may be a better physiologic representation of airway obstruction and should be routinely used in the management of patients with PRS. This is a multicenter study based on a retrospective review of medical records. The study was performed at tertiary care centers. Patients with PRS <1 year old underwent mandibular distraction osteogenesis. Using successful treatment outcome as a reference standard, receiver operating characteristic (ROC) curve was used to determine the accuracy of the diagnostic test and values for the best sensitivity and specificity to determine the need for surgical intervention. Of 73 patients, 48 had sporadic PRS, 23 had syndromes, 2 had micrognathia, not otherwise specified. Mandibular distraction osteogenesis was performed in 62 patients at a mean age of 39 days. The mean initial Apnea-Hypopnea Index (AHI) in nonsurgical versus surgical groups was 10 versus 31 ( P = .063), pH 7.41 versus 7.34 ( P = .003), pCO 2 43 versus 56 ( P < .001), and HCO 3 27 versus 30 ( P = .022). The ROC curve showed that pCO 2 of 49.5 has the best specificity (100%) and sensitivity (72.6%) profile in terms of need for definitive airway. A simple CBG heel stick may better predict the physiologic effects of obstructive apnea; therefore, it should be added to the algorithm of PRS workup.

  2. Temporal Profile of Functional Visual Rehabilitative Outcomes Modulated by Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Plow, Ela B.; Obretenova, Souzana N.; Jackson, Mary Lou; Merabet, Lotfi B.

    2012-01-01

    Objectives We have previously reported that transcranial direct current stimulation (tDCS) delivered to the occipital cortex enhances visual functional recovery when combined with 3 months of computer-based rehabilitative training in patients with hemianopia. The principal objective of this study was to evaluate the temporal sequence of effects of tDCS on visual recovery as they appear over the course of training and across different indicators of visual function. Methods Primary objective outcome measures were i) shifts in visual field border and ii) stimulus detection accuracy within the affected hemifield. These were compared between patients randomized to either vision restoration therapy (VRT) combined with active tDCS or VRT paired with sham tDCS. Training comprised of 2 half hour sessions, 3 times a week for 3 months. Primary outcome measures were collected at baseline (pretest), monthly interim intervals, and at posttest (3 months). As secondary outcome measures, contrast sensitivity and reading performance were collected at pretest and posttest time-points only. Results Active tDCS combined with VRT accelerated the recovery of stimulus detection as between-group differences appeared within the first month of training. In contrast, a shift in the visual field border was only evident at posttest (after 3 months of training). TDCS did not affect contrast sensitivity or reading performance. Conclusions These results suggest that tDCS may differentially affect the magnitude and sequence of visual recovery in a manner that is task- specific to the type of visual rehabilitative training strategy employed. PMID:22376226

  3. Staphylococcus aureus in Some Brazilian Dairy Industries: Changes of Contamination and Diversity

    PubMed Central

    Dittmann, Karen K.; Chaul, Luíza T.; Lee, Sarah H. I.; Corassin, Carlos H.; Fernandes de Oliveira, Carlos A.; Pereira De Martinis, Elaine C.; Alves, Virgínia F.; Gram, Lone; Oxaran, Virginie

    2017-01-01

    Staphylococcus aureus, a major food-poisoning pathogen, is a common contaminant in dairy industries worldwide, including in Brazil. We determined the occurrence of S. aureus in five dairies in Brazil over 8 months. Of 421 samples, 31 (7.4%) were positive for S. aureus and prevalence varied from 0 to 63.3% between dairies. Sixty-six isolates from the 31 samples were typed by Multi-Locus Sequence Typing to determine if these isolates were persistent or continuously reintroduced. Seven known sequence types (STs), ST1, ST5, ST30, ST97, ST126, ST188 and ST398, and four new ST were identified, ST3531, ST3540, ST3562 and ST3534. Clonal complex (CC) 1 (including the four new ST), known as an epidemic clone, was the dominant CC. However, there were no indications of persistence of particular ST. The resistance toward 11 antibiotic compounds was assessed. Twelve profiles were generated with 75.8% of strains being sensitive to all antibiotic classes and no Methicillin-resistant S. aureus (MRSA) strains were found. The enterotoxin-encoding genes involved in food-poisoning, e.g., sea, sed, see, and seg were targeted by PCR. The two toxin-encoding genes, sed and see, were not detected. Only three strains (4.5%) harbored seg and two of these also harbored sea. Despite the isolates being Methicillin-sensitive S. aureus (MSSA), the presence of CC1 clones in the processing environment, including some harboring enterotoxin encoding genes, is of concern and hygiene must have high priority to reduce contamination. PMID:29123505

  4. Diversity of Bradyrhizobium strains nodulating Lupinus micranthus on both sides of the Western Mediterranean: Algeria and Spain.

    PubMed

    Bourebaba, Yasmina; Durán, David; Boulila, Farida; Ahnia, Hadjira; Boulila, Abdelghani; Temprano, Francisco; Palacios, José M; Imperial, Juan; Ruiz-Argüeso, Tomás; Rey, Luis

    2016-06-01

    Lupinus micranthus is a lupine distributed in the Mediterranean basin whose nitrogen fixing symbiosis has not been described in detail. In this study, 101 slow-growing nodule isolates were obtained from L. micranthus thriving in soils on both sides of the Western Mediterranean. The diversity of the isolates, 60 from Algeria and 41 from Spain, was addressed by multilocus sequence analysis of housekeeping genes (16S rRNA, atpD, glnII and recA) and one symbiotic gene (nodC). Using genomic fingerprints from BOX elements, 37 different profiles were obtained (22 from Algeria and 15 from Spain). Phylogenetic analysis based on 16S rRNA and concatenated atpD, glnII and recA sequences of a representative isolate of each BOX profile displayed a homogeneous distribution of profiles in six different phylogenetic clusters. All isolates were taxonomically ascribed to the genus Bradyrhizobium. Three clusters comprising 24, 6, and 4 isolates, respectively, accounted for most of the profiles. The largest cluster was close to the Bradyrhizobium canariense lineage, while the other two were related to B. cytisi/B. rifense. The three remaining clusters included only one isolate each, and were close to B. canariense, B. japonicum and B. elkanii species, respectively. In contrast, phylogenetic clustering of BOX profiles based on nodC sequences yielded only two phylogenetic groups. One of them included all the profiles except one, and belonged to symbiovar genistearum. The remaining profile, constituted by a strain related to B. elkanii, was not related to any well-defined symbiotic lineage, and may constitute both a new symbiovar and a new genospecies. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Molecular Phylogenetics of Centrocestus formosanus (Digenea: Heterophyidae) Originated from Freshwater Fish from Chiang Mai Province, Thailand.

    PubMed

    Wongsawad, Chalobol; Wongsawad, Pheravut; Sukontason, Kom; Maneepitaksanti, Worawit; Nantarat, Nattawadee

    2017-02-01

    This study aimed to investigate the morphology and reconstruct the phylogenetic relationships of Centrocestus formosanus originating from 5 species of freshwater fish, i.e., Esomus metallicus, Puntius brevis, Anabas testudineus, Parambassis siamensis , and Carassius auratus , in Chiang Mai province, Thailand. Sequence-related amplified polymorphism (SRAP) and phylogeny based on internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (CO1) were performed. The results showed similar morphologies of adult C. formosanus from day 5 after infection in chicks. C. formosanus originated from 4 species of freshwater fish had the same number of circumoral spines on the oral sucker, except for those from C. auratus which revealed 34 circumoral spines. The phylogenetic tree obtained from SRAP profile and the combination of ITS2 and CO1 sequence showed similar results that were correlated with the number of circumoral spines in adult worms. Genetic variability of C. formosanus also occurred in different species of freshwater fish hosts. However, more details of adult worm morphologies and more sensitive genetic markers are needed to confirm the species validity of C. formosanus with 34 circumoral spines originating from C. auratus in the future.

  6. Molecular Phylogenetics of Centrocestus formosanus (Digenea: Heterophyidae) Originated from Freshwater Fish from Chiang Mai Province, Thailand

    PubMed Central

    Wongsawad, Chalobol; Wongsawad, Pheravut; Sukontason, Kom; Maneepitaksanti, Worawit; Nantarat, Nattawadee

    2017-01-01

    This study aimed to investigate the morphology and reconstruct the phylogenetic relationships of Centrocestus formosanus originating from 5 species of freshwater fish, i.e., Esomus metallicus, Puntius brevis, Anabas testudineus, Parambassis siamensis, and Carassius auratus, in Chiang Mai province, Thailand. Sequence-related amplified polymorphism (SRAP) and phylogeny based on internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (CO1) were performed. The results showed similar morphologies of adult C. formosanus from day 5 after infection in chicks. C. formosanus originated from 4 species of freshwater fish had the same number of circumoral spines on the oral sucker, except for those from C. auratus which revealed 34 circumoral spines. The phylogenetic tree obtained from SRAP profile and the combination of ITS2 and CO1 sequence showed similar results that were correlated with the number of circumoral spines in adult worms. Genetic variability of C. formosanus also occurred in different species of freshwater fish hosts. However, more details of adult worm morphologies and more sensitive genetic markers are needed to confirm the species validity of C. formosanus with 34 circumoral spines originating from C. auratus in the future. PMID:28285504

  7. CYTOKINE MRNA PROFILES FOR ISOCYANATES WITH KNOWN AND UNKNOWN POTENTIAL TO INDUCE RESPIRATORY SENSITIZATION

    EPA Science Inventory

    Cytokine mRNA Profiles for Isocyanates with Known and Unknown Potential to Induce Respiratory Sensitization. Plitnick, L.M., Loveless, S.E., Ladics, G.S., Holsapple, M.P., Smialowicz, R.J., Woolhiser, M.R., Anderson, P.K., Smith, C., Sailstad, D.M. and Selgrade, M.J.K (2002) Tox...

  8. How Is Interreligious Sensitivity Related to Finnish Pupils' Religiousness Profiles?

    ERIC Educational Resources Information Center

    Kuusisto, Elina; Kuusisto, Arniika; Kallioniemi, Arto

    2016-01-01

    This paper examines, through a non-probability sample of 451 Finnish lower secondary-school pupils belonging to the 15- to 16-year-old age group, how interreligious sensitivity is related to religiousness profiles of Finnish youth. The data were gathered in two geographical locations: Helsinki, Finland's capital, and a smaller municipality in the…

  9. Identification of a 'Candidatus Phytoplasma hispanicum'-related strain, associated with yellows-type diseases, in smoke-tree sharpshooter (Homalodisca liturata Ball).

    PubMed

    Servín-Villegas, Rosalía; Caamal-Chan, Maria Goretty; Chavez-Medina, Alicia; Loera-Muro, Abraham; Barraza, Aarón; Medina-Hernández, Diana; Holguín-Peña, Ramón Jaime

    2018-04-11

    The 16SrXIII group from phytoplasma bacteria were identified in salivary glands from Homalodisca liturata, which were collected in El Comitán on the Baja California peninsula in Mexico. We were able to positively identify 15 16S rRNA gene sequences with the corresponding signature sequence of 'CandidatusPhytoplasma' (CAAGAYBATKATGTKTAGCYGGDCT) and in silico restriction fragment length polymorphism (RFLP) profiles (F value estimations) coupled with a phylogenetic analysis to confirm their relatedness to 'CandidatusPhytoplasma hispanicum', which in turn belongs to the 16SrXIII group. A restriction analysis was carried out with AluI and EcoRI to confirm that the five sequences belongs to subgroup D. The rest of the sequences did not exhibit any known RFLP profile related to a subgroup reported in the 16SrXIII group.

  10. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues

    PubMed Central

    Lee, Je Hyuk; Daugharthy, Evan R.; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C.; Terry, Richard; Turczyk, Brian M.; Yang, Joyce L.; Lee, Ho Suk; Aach, John; Zhang, Kun; Church, George M.

    2014-01-01

    RNA sequencing measures the quantitative change in gene expression over the whole transcriptome, but it lacks spatial context. On the other hand, in situ hybridization provides the location of gene expression, but only for a small number of genes. Here we detail a protocol for genome-wide profiling of gene expression in situ in fixed cells and tissues, in which RNA is converted into cross-linked cDNA amplicons and sequenced manually on a confocal microscope. Unlike traditional RNA-seq our method enriches for context-specific transcripts over house-keeping and/or structural RNA, and it preserves the tissue architecture for RNA localization studies. Our protocol is written for researchers experienced in cell microscopy with minimal computing skills. Library construction and sequencing can be completed within 14 d, with image analysis requiring an additional 2 d. PMID:25675209

  11. Mechanisms controlling the complete accretionary beach state sequence

    NASA Astrophysics Data System (ADS)

    Dubarbier, Benjamin; Castelle, Bruno; Ruessink, Gerben; Marieu, Vincent

    2017-06-01

    Accretionary downstate beach sequence is a key element of observed nearshore morphological variability along sandy coasts. We present and analyze the first numerical simulation of such a sequence using a process-based morphodynamic model that solves the coupling between waves, depth-integrated currents, and sediment transport. The simulation evolves from an alongshore uniform barred beach (storm profile) to an almost featureless shore-welded terrace (summer profile) through the highly alongshore variable detached crescentic bar and transverse bar/rip system states. A global analysis of the full sequence allows determining the varying contributions of the different hydro-sedimentary processes. Sediment transport driven by orbital velocity skewness is critical to the overall onshore sandbar migration, while gravitational downslope sediment transport acts as a damping term inhibiting further channel growth enforced by rip flow circulation. Accurate morphological diffusivity and inclusion of orbital velocity skewness opens new perspectives in terms of morphodynamic modeling of real beaches.

  12. Immuno-affinity Capture Followed by TMPP N-Terminus Tagging to Study Catabolism of Therapeutic Proteins.

    PubMed

    Kullolli, Majlinda; Rock, Dan A; Ma, Ji

    2017-02-03

    Characterization of in vitro and in vivo catabolism of therapeutic proteins has increasingly become an integral part of discovery and development process for novel proteins. Unambiguous and efficient identification of catabolites can not only facilitate accurate understanding of pharmacokinetic profiles of drug candidates, but also enables follow up protein engineering to generate more catabolically stable molecules with improved properties (pharmacokinetics and pharmacodynamics). Immunoaffinity capture (IC) followed by top-down intact protein analysis using either matrix-assisted laser desorption/ionization or electrospray ionization mass spectrometry analysis have been the primary methods of choice for catabolite identification. However, the sensitivity and efficiency of these methods is not always sufficient for characterization of novel proteins from complex biomatrices such as plasma or serum. In this study a novel bottom-up targeted protein workflow was optimized for analysis of proteolytic degradation of therapeutic proteins. Selective and sensitive tagging of the alpha-amine at the N-terminus of proteins of interest was performed by immunoaffinity capture of therapeutic protein and its catabolites followed by on-bead succinimidyloxycarbonylmethyl tri-(2,4,6-trimethoxyphenyl N-terminus (TMPP-NTT) tagging. The positively charged hydrophobic TMPP tag facilitates unambiguous sequence identification of all N-terminus peptides from complex tryptic digestion samples via data dependent liquid chromatgraphy-tandem mass spectroscopy. Utility of the workflow was illustrated by definitive analysis of in vitro catabolic profile of neurotensin human Fc (NTs-huFc) protein in mouse serum. The results from this study demonstrated that the IC-TMPP-NTT workflow is a simple and efficient method for catabolite formation in therapeutic proteins.

  13. The Intolerance of Regulatory Sequence to Genetic Variation Predicts Gene Dosage Sensitivity

    PubMed Central

    Wang, Quanli; Halvorsen, Matt; Han, Yujun; Weir, William H.; Allen, Andrew S.; Goldstein, David B.

    2015-01-01

    Noncoding sequence contains pathogenic mutations. Yet, compared with mutations in protein-coding sequence, pathogenic regulatory mutations are notoriously difficult to recognize. Most fundamentally, we are not yet adept at recognizing the sequence stretches in the human genome that are most important in regulating the expression of genes. For this reason, it is difficult to apply to the regulatory regions the same kinds of analytical paradigms that are being successfully applied to identify mutations among protein-coding regions that influence risk. To determine whether dosage sensitive genes have distinct patterns among their noncoding sequence, we present two primary approaches that focus solely on a gene’s proximal noncoding regulatory sequence. The first approach is a regulatory sequence analogue of the recently introduced residual variation intolerance score (RVIS), termed noncoding RVIS, or ncRVIS. The ncRVIS compares observed and predicted levels of standing variation in the regulatory sequence of human genes. The second approach, termed ncGERP, reflects the phylogenetic conservation of a gene’s regulatory sequence using GERP++. We assess how well these two approaches correlate with four gene lists that use different ways to identify genes known or likely to cause disease through changes in expression: 1) genes that are known to cause disease through haploinsufficiency, 2) genes curated as dosage sensitive in ClinGen’s Genome Dosage Map, 3) genes judged likely to be under purifying selection for mutations that change expression levels because they are statistically depleted of loss-of-function variants in the general population, and 4) genes judged unlikely to cause disease based on the presence of copy number variants in the general population. We find that both noncoding scores are highly predictive of dosage sensitivity using any of these criteria. In a similar way to ncGERP, we assess two ensemble-based predictors of regional noncoding importance, ncCADD and ncGWAVA, and find both scores are significantly predictive of human dosage sensitive genes and appear to carry information beyond conservation, as assessed by ncGERP. These results highlight that the intolerance of noncoding sequence stretches in the human genome can provide a critical complementary tool to other genome annotation approaches to help identify the parts of the human genome increasingly likely to harbor mutations that influence risk of disease. PMID:26332131

  14. Seasonal dynamics alter taxonomical and functional microbial profiles in Pampa biome soils under natural grasslands

    PubMed Central

    Barboza, Anthony Diego Muller; Pylro, Victor Satler; Jacques, Rodrigo Josemar Seminot; Gubiani, Paulo Ivonir; de Quadros, Fernando Luiz Ferreira; da Trindade, Júlio Kuhn; Triplett, Eric W.

    2018-01-01

    Soil microbial communities’ assembly is strongly tied to changes in temperature and moisture. Although microbial functional redundancy seems to overcome taxonomical composition changes, the sensitivity and resilience of soil microbial communities from subtropical regions in response to seasonal variations are still poorly understood. Thus, the development of new strategies for biodiversity conservation and sustainable management require a complete understanding of the soil abiotic process involved in the selection of microbial taxa and functions. In this work, we used state of the art molecular methodologies (Next Generation Sequencing) to compare the taxonomic (metataxonomics) and functional (metatranscriptomics) profiles among soil samples from two subtropical natural grasslands located in the Pampa biome, Brazil, in response to short-term seasonal variations. Our data suggest that grasslands maintained a stable microbial community membership along the year with oscillation in abundance. Apparently soil microbial taxa are more susceptible to natural climatic disturbances while functions are more stable and change with less intensity along the year. Finally, our data allow us to conclude that the most abundant microbial groups and functions were shared between seasons and locations reflecting the existence of a stable taxonomical and functional core microbiota.

  15. Reclassification of Pseudomonas mephitica Claydon and Hammer 1939 as a later heterotypic synonym of Janthinobacterium lividum (Eisenberg 1891) De Ley et al. 1978.

    PubMed

    Kämpfer, Peter; Falsen, Enevold; Busse, Hans-Jürgen

    2008-01-01

    Pseudomonas mephitica CCUG 2513(T) has been reinvestigated to clarify its taxonomic position. 16S rRNA gene sequence comparisons demonstrated that this strain clusters phylogenetically closely with Janthinobacterium lividum (99.8% sequence similarity to the type strain). Investigation of fatty acid patterns, polar lipid profiles, polyamine patterns and quinone systems supported this delineation. Substrate utilization profiles and biochemical characteristics displayed no differences from the type strain of J. lividum, CCUG 2344(T). Therefore, the reclassification of Pseudomonas mephitica as a later heterotypic synonym of Janthinobacterium lividum is proposed, based upon the estimated phylogenetic position derived from 16S rRNA gene sequence data and chemotaxonomic and biochemical data.

  16. Sequencing Structural Variants in Cancer for Precision Therapeutics.

    PubMed

    Macintyre, Geoff; Ylstra, Bauke; Brenton, James D

    2016-09-01

    The identification of mutations that guide therapy selection for patients with cancer is now routine in many clinical centres. The majority of assays used for solid tumour profiling use DNA sequencing to interrogate somatic point mutations because they are relatively easy to identify and interpret. Many cancers, however, including high-grade serous ovarian, oesophageal, and small-cell lung cancer, are driven by somatic structural variants that are not measured by these assays. Therefore, there is currently an unmet need for clinical assays that can cheaply and rapidly profile structural variants in solid tumours. In this review we survey the landscape of 'actionable' structural variants in cancer and identify promising detection strategies based on massively-parallel sequencing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    USDA-ARS?s Scientific Manuscript database

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  18. Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing.

    PubMed

    Mu, Wenbo; Lu, Hsiao-Mei; Chen, Jefferey; Li, Shuwei; Elliott, Aaron M

    2016-11-01

    Next-generation sequencing (NGS) has rapidly replaced Sanger sequencing as the method of choice for diagnostic gene-panel testing. For hereditary-cancer testing, the technical sensitivity and specificity of the assay are paramount as clinicians use results to make important clinical management and treatment decisions. There is significant debate within the diagnostics community regarding the necessity of confirming NGS variant calls by Sanger sequencing, considering that numerous laboratories report having 100% specificity from the NGS data alone. Here we report our results from 20,000 hereditary-cancer NGS panels spanning 47 genes, in which all 7845 nonpolymorphic variants were Sanger- sequenced. Of these, 98.7% were concordant between NGS and Sanger sequencing and 1.3% were identified as NGS false-positives, located mainly in complex genomic regions (A/T-rich regions, G/C-rich regions, homopolymer stretches, and pseudogene regions). Simulating a false-positive rate of zero by adjusting the variant-calling quality-score thresholds decreased the sensitivity of the assay from 100% to 97.8%, resulting in the missed detection of 176 Sanger-confirmed variants, the majority in complex genomic regions (n = 114) and mosaic mutations (n = 7). The data illustrate the importance of setting quality thresholds for panel testing only after thousands of samples have been processed and the necessity of Sanger confirmation of NGS variants to maintain the highest possible sensitivity. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Comparison between Deflection and Vibration Characteristics of Rectangular and Trapezoidal profile Microcantilevers

    PubMed Central

    Ansari, Mohd. Zahid; Cho, Chongdu; Kim, Jooyong; Bang, Booun

    2009-01-01

    Arrays of microcantilevers are increasingly being used as physical, biological, and chemical sensors in various applications. To improve the sensitivity of microcantilever sensors, this study analyses and compares the deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Three models of each profile are investigated. The cantilevers are analyzed for maximum deflection, fundamental resonant frequency and maximum stress. The surface stress is modelled as in-plane tensile force applied on the top edge of the microcantilevers. A commercial finite element analysis software ANSYS is used to analyze the designs. Results show paddled trapezoidal profile microcantilevers have better sensitivity. PMID:22574041

  20. Refractive collimation beam shaper design and sensitivity analysis using a free-form profile construction method.

    PubMed

    Tsai, Chung-Yu

    2017-07-01

    A refractive laser beam shaper comprising two free-form profiles is presented. The profiles are designed using a free-form profile construction method such that each incident ray is directed in a certain user-specified direction or to a particular point on the target surface so as to achieve the required illumination distribution of the output beam. The validity of the proposed design method is demonstrated by means of ZEMAX simulations. The method is mathematically straightforward and easily implemented in computer code. It thus provides a convenient tool for the design and sensitivity analysis of laser beam shapers and similar optical components.

  1. cWINNOWER algorithm for finding fuzzy dna motifs

    NASA Technical Reports Server (NTRS)

    Liang, S.; Samanta, M. P.; Biegel, B. A.

    2004-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if a clique consisting of a sufficiently large number of mutated copies of the motif (i.e., the signals) is present in the DNA sequence. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum detectable clique size qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12,000 for (l, d) = (15, 4). Copyright Imperial College Press.

  2. cWINNOWER Algorithm for Finding Fuzzy DNA Motifs

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan

    2003-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum number of detectable motifs qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc, by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12000 for (l,d) = (15,4).

  3. Baculovirus induced transcripts in hemocytes from Heliothis virescens

    USDA-ARS?s Scientific Manuscript database

    Using RNA-sequencing digital difference expression profiling methods we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcri...

  4. Preoperative detection of malignant liver tumors: Comparison of 3D-T2-weighted sequences with T2-weighted turbo spin-echo and single shot T2 at 1.5 T.

    PubMed

    Barat, Maxime; Soyer, Philippe; Dautry, Raphael; Pocard, Marc; Lo-Dico, Rea; Najah, Haythem; Eveno, Clarisse; Cassinotto, Christophe; Dohan, Anthony

    2018-03-01

    To assess the performances of three-dimensional (3D)-T2-weighted sequences compared to standard T2-weighted turbo spin echo (T2-TSE), T2-half-Fourier acquisition single-shot turbo spin-echo (T2-HASTE), diffusion weighted imaging (DWI) and 3D-T1-weighted VIBE sequences in the preoperative detection of malignant liver tumors. From 2012 to 2015, all patients of our institution undergoing magnetic resonance imaging (MRI) examination for suspected malignant liver tumors were prospectively included. Patients had contrast-enhanced 3D-T1-weighted, DWI, 3D-T2-SPACE, T2-HASTE and T2-TSE sequences. Imaging findings were compared with those obtained at follow-up, surgery and histopathological analysis. Sensitivities for the detection of malignant liver tumors were compared for each sequence using McNemar test. A subgroup analysis was conducted for HCCs. Image artifacts were analyzed and compared using Wilcoxon paired signed rank-test. Thirty-three patients were included: 13 patients had 40 hepatocellular carcinomas (HCC) and 20 had 54 liver metastases. 3D-T2-weighted sequences had a higher sensitivity than T2-weighted TSE sequences for the detection of malignant liver tumors (79.8% versus 68.1%; P < 0.001). The difference did not reach significance for HCC. T1-weighted VIBE and DWI had a higher sensitivity than T2-weighted sequences. 3D-T2-weighted-SPACE sequences showed significantly less artifacts than T2-weitghted TSE. 3D-T2-weighted sequences show very promising performances for the detection of liver malignant tumors compared to T2-weighted TSE sequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Pseudomonas sp. strain CA5 (a selenite-reducing bacterium) 16S rRNA gene complete sequence. National Institute of Health, National Center for Biotechnology Information, GenBank sequence. Accession FJ422810.1.

    USDA-ARS?s Scientific Manuscript database

    This study used 1321 base pair 16S rRNA gene sequence methods to confirm the phylogenetic position of a soil isolate as a bacterium belonging to the genus Pesudomonas sp. Morphological, biochemical characteristics, and fatty acid profiles are consistent with the 16S rRNA gene sequence identification...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Se -Ran; Hauser, Loren John; Schadt, Christopher Warren

    For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost effective way to screen samples of interestmore » for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. As a result, we present a computational method called pangenome based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU s taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome s functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8 0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique in that any OTU building method can be used, as opposed to being limited to closed reference OTU picking strategies against specific reference sequence databases. In conclusion, we developed an automated computational method, which derives an inferred functional profile based on the 16S rRNA gene surveys of microbial communities. The inferred functional profile provides a cost effective way to study complex ecosystems through predicted comparative functional metagenomes and metadata analysis. All PanFP source code and additional documentation are freely available online at GitHub.« less

  7. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.

    PubMed

    Jäger, Marten; Ott, Claus-Eric; Grünhagen, Johannes; Hecht, Jochen; Schell, Hanna; Mundlos, Stefan; Duda, Georg N; Robinson, Peter N; Lienau, Jasmin

    2011-03-24

    The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism.

  8. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing

    PubMed Central

    2011-01-01

    Background The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Results Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Conclusions Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism. PMID:21435219

  9. Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis.

    PubMed

    Däumer, Martin; Kaiser, Rolf; Klein, Rolf; Lengauer, Thomas; Thiele, Bernhard; Thielen, Alexander

    2011-05-13

    Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4) variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS) detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage. Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno[coreceptor]. Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno[coreceptor] (10%), and defining a minority cutoff of 5%, the results were concordant in all but one isolate. The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.

  10. Total Extracellular Small RNA Profiles from Plasma, Saliva, and Urine of Healthy Subjects

    PubMed Central

    Yeri, Ashish; Courtright, Amanda; Reiman, Rebecca; Carlson, Elizabeth; Beecroft, Taylor; Janss, Alex; Siniard, Ashley; Richholt, Ryan; Balak, Chris; Rozowsky, Joel; Kitchen, Robert; Hutchins, Elizabeth; Winarta, Joseph; McCoy, Roger; Anastasi, Matthew; Kim, Seungchan; Huentelman, Matthew; Van Keuren-Jensen, Kendall

    2017-01-01

    Interest in circulating RNAs for monitoring and diagnosing human health has grown significantly. There are few datasets describing baseline expression levels for total cell-free circulating RNA from healthy control subjects. In this study, total extracellular RNA (exRNA) was isolated and sequenced from 183 plasma samples, 204 urine samples and 46 saliva samples from 55 male college athletes ages 18–25 years. Many participants provided more than one sample, allowing us to investigate variability in an individual’s exRNA expression levels over time. Here we provide a systematic analysis of small exRNAs present in each biofluid, as well as an analysis of exogenous RNAs. The small RNA profile of each biofluid is distinct. We find that a large number of RNA fragments in plasma (63%) and urine (54%) have sequences that are assigned to YRNA and tRNA fragments respectively. Surprisingly, while many miRNAs can be detected, there are few miRNAs that are consistently detected in all samples from a single biofluid, and profiles of miRNA are different for each biofluid. Not unexpectedly, saliva samples have high levels of exogenous sequence that can be traced to bacteria. These data significantly contribute to the current number of sequenced exRNA samples from normal healthy individuals. PMID:28303895

  11. ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles

    PubMed Central

    Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G.; Gelly, Jean-Christophe

    2016-01-01

    Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation —with Protein Blocks—, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the ‘Hard’ category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/. PMID:27319297

  12. ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles.

    PubMed

    Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G; Gelly, Jean-Christophe

    2016-06-20

    Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation -with Protein Blocks-, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the 'Hard' category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/.

  13. Genetic structure of Eurasian and North American Leymus (Triticeae) wildryes assessed by chloroplast DNA sequences and AFLP profiles

    Treesearch

    C. Mae Culumber; Steve R. Larson; Kevin B. Jensen; Thomas A. Jones

    2011-01-01

    Leymus is a genomically defined allopolyploid of genus Triticeae with two distinct subgenomes. Chloroplast DNA sequences of Eurasian and North American species are distinct and polyphyletic. However, phylogenies derived from chloroplast and nuclear DNA sequences are confounded by polyploidy and lack of polymorphism among many taxa. The AFLP technique can resolve...

  14. Molecular-genetic profiling and high-throughput in vitro drug screening in NUT midline carcinoma—an aggressive and fatal disease

    PubMed Central

    Stirnweiss, Anja; Oommen, Joyce; Kotecha, Rishi S.; Kees, Ursula R.; Beesley, Alex H.

    2017-01-01

    NUT midline carcinoma (NMC) is a rare and aggressive cancer, with survival typically less than seven months, that can arise in people of any age. Genetically, NMC is defined by the chromosomal fusion of NUTM1 with a chromatin-binding partner, typically the bromodomain-containing protein BRD4. However, little is known about other genetic aberrations in this disease. In this study, we used a unique panel of cell lines to describe the molecular-genetic features of NMC. Next-generation sequencing identified a recurring high-impact mutation in the DNA-helicase gene RECQL5 in 75% of lines studied, and biological signals from mutation-signature and network analyses consistent with a general failure in DNA-repair. A high-throughput drug screen confirmed that microtubule inhibitors, topoisomerase inhibitors and anthracyclines are highly cytotoxic in the majority of NMC lines, and that cell lines expressing the BRD4-NUTM1 (exon11:exon2) variant are an order of magnitude more responsive to bromodomain inhibitors (iBETs) on average than those with other BRD4-NUTM1 translocation variants. We also identified a highly significant correlation between iBET and aurora kinase inhibitor efficacy in this study. Integration of exome sequencing, transcriptome, and drug sensitivity profiles suggested that aberrant activity of the nuclear receptor co-activator NCOA3 may correlate with poor response to iBETs. In conclusion, our data emphasize the heterogeneity of NMC and highlights genetic aberrations that could be explored to improve therapeutic strategies. The novel finding of a recurring RECQL5 mutation, together with recent reports of chromoplexy in this disease, suggests that DNA-repair pathways are likely to play a central role in NMC tumorigenesis. PMID:29348827

  15. Development and Validation of PCR Primers To Assess the Diversity of Clostridium spp. in Cheese by Temporal Temperature Gradient Gel Electrophoresis

    PubMed Central

    Le Bourhis, Anne-Gaëlle; Saunier, Katiana; Doré, Joël; Carlier, Jean-Philippe; Chamba, Jean-François; Popoff, Michel-Robert; Tholozan, Jean-Luc

    2005-01-01

    A nested-PCR temporal temperature gradient gel electrophoresis (TTGE) approach was developed for the detection of bacteria belonging to phylogenetic cluster I of the genus Clostridium (the largest clostridial group, which represents 25% of the currently cultured clostridial species) in cheese suspected of late blowing. Primers were designed based on the 16S rRNA gene sequence, and the specificity was confirmed in PCRs performed with DNAs from cluster I and non-cluster I species as the templates. TTGE profiles of the PCR products, comprising the V5-V6 region of the 16S rRNA gene, allowed us to distinguish the majority of cluster I species. PCR-TTGE was applied to analyze commercial cheeses with defects. All cheeses gave a signal after nested PCR, and on the basis of band comigration with TTGE profiles of reference strains, all the bands could be assigned to a clostridial species. The direct identification of Clostridium spp. was confirmed by sequencing of excised bands. C. tyrobutyricum and C. beijerinckii contaminated 15 and 14 of the 20 cheese samples tested, respectively, and C. butyricum and C. sporogenes were detected in one cheese sample. Most-probable-number counts and volatile fatty acid were determined for comparison purposes. Results obtained were in agreement, but only two species, C. tyrobutyricum and C. sporogenes, could be isolated by the plating method. In all cheeses with a high amount of butyric acid (>100 mg/100 g), the presence of C. tyrobutyricum DNA was confirmed by PCR-TTGE, suggesting the involvement of this species in butyric acid fermentation. These results demonstrated the efficacy of the PCR-TTGE method to identify Clostridium in cheeses. The sensitivity of the method was estimated to be 100 CFU/g. PMID:15640166

  16. Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy

    PubMed Central

    2011-01-01

    Background DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting to evaluate their advantages and disadvantages for use in gene therapy and gene discovery. Results We have observed that (1) the Tol2 transposase (but not piggyBac) is highly sensitive to molecular engineering; (2) the piggyBac donor with only the 40 bp 3'-and 67 bp 5'-terminal repeat domain is sufficient for effective transposition; and (3) a small amount of piggyBac transposases results in robust transposition suggesting the piggyBac transpospase is highly active. Performing genome-wide target profiling on data sets obtained by retrieving chromosomal targeting sequences from individual clones, we have identified several piggyBac and Tol2 hotspots and observed that (4) piggyBac and Tol2 display a clear difference in targeting preferences in the human genome. Finally, we have observed that (5) only sites with a particular sequence context can be targeted by either piggyBac or Tol2. Conclusions The non-overlapping targeting preference of piggyBac and Tol2 makes them complementary research tools for manipulating mammalian genomes. PiggyBac is the most promising transposon-based vector system for achieving site-specific targeting of therapeutic genes due to the flexibility of its transposase for being molecularly engineered. Insights from this study will provide a basis for engineering piggyBac transposases to achieve site-specific therapeutic gene targeting. PMID:21447194

  17. Evaluation of a dried blood and plasma collection device, SampleTanker(®), for HIV type 1 drug resistance genotyping in patients receiving antiretroviral therapy.

    PubMed

    Diallo, Karidia; Lehotzky, Erica; Zhang, Jing; Zhou, Zhiyong; de Rivera, Ivette Lorenzana; Murillo, Wendy E; Nkengasong, John; Sabatier, Jennifer; Zhang, Guoqing; Yang, Chunfu

    2014-01-01

    Whatman 903 filter paper is the only filter paper that has been used for HIV drug resistance (HIVDR) genotyping in resource-limited settings. In this study, we evaluated another dried blood specimen collection device, termed SampleTanker(®) (ST), for HIVDR genotyping. Blood specimens from 123 antiretroviral therapy (ART)-experienced patients were used to prepare ST whole blood and ST plasma specimens; they were then stored at ambient temperature for 2 or 4 weeks. The remaining plasma specimens were stored at -80°C and used as frozen plasma controls. Frozen plasma viral load (VL) was determined using the Roche Amplicor HIV-1 Monitor test, v.1.5 and 50 specimens with VL ≥3.00 log10 copies/ml were genotyped using the broadly sensitive genotyping assay. The medium VL for the 50 frozen plasma specimens with VL ≥3.00 log10 was 3.58 log10 copies/ml (IQR: 3.32-4.11) and 96.0% (48/50) of them were genotyped. Comparing to frozen plasma specimens, significantly lower genotyping rates were obtained from ST whole blood (48.98% and 42.85%) and ST plasma specimens (36.0% and 36.0%) stored at ambient temperature for 2 and 4 weeks, respectively (p<0.001). Nucleotide sequence identity and resistance profile analyses between the matched frozen plasma and ST whole blood or ST plasma specimens revealed high nucleotide sequence identities and concordant resistance profiles (98.1% and 99.0%, and 96.6% and 98.9%, respectively). Our results indicate that with the current design, the ST may not be the ideal dried blood specimen collection device for HIVDR monitoring for ART patients in resource-limited settings.

  18. High-resolution community profiling of arbuscular mycorrhizal fungi.

    PubMed

    Schlaeppi, Klaus; Bender, S Franz; Mascher, Fabio; Russo, Giancarlo; Patrignani, Andrea; Camenzind, Tessa; Hempel, Stefan; Rillig, Matthias C; van der Heijden, Marcel G A

    2016-11-01

    Community analyses of arbuscular mycorrhizal fungi (AMF) using ribosomal small subunit (SSU) or internal transcribed spacer (ITS) DNA sequences often suffer from low resolution or coverage. We developed a novel sequencing based approach for a highly resolving and specific profiling of AMF communities. We took advantage of previously established AMF-specific PCR primers that amplify a c. 1.5-kb long fragment covering parts of SSU, ITS and parts of the large ribosomal subunit (LSU), and we sequenced the resulting amplicons with single molecule real-time (SMRT) sequencing. The method was applicable to soil and root samples, detected all major AMF families and successfully discriminated closely related AMF species, which would not be discernible using SSU sequences. In inoculation tests we could trace the introduced AMF inoculum at the molecular level. One of the introduced strains almost replaced the local strain(s), revealing that AMF inoculation can have a profound impact on the native community. The methodology presented offers researchers a powerful new tool for AMF community analysis because it unifies improved specificity and enhanced resolution, whereas the drawback of medium sequencing throughput appears of lesser importance for low-diversity groups such as AMF. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Single-Cell Sequencing for Precise Cancer Research: Progress and Prospects.

    PubMed

    Zhang, Xiaoyan; Marjani, Sadie L; Hu, Zhaoyang; Weissman, Sherman M; Pan, Xinghua; Wu, Shixiu

    2016-03-15

    Advances in genomic technology have enabled the faithful detection and measurement of mutations and the gene expression profile of cancer cells at the single-cell level. Recently, several single-cell sequencing methods have been developed that permit the comprehensive and precise analysis of the cancer-cell genome, transcriptome, and epigenome. The use of these methods to analyze cancer cells has led to a series of unanticipated discoveries, such as the high heterogeneity and stochastic changes in cancer-cell populations, the new driver mutations and the complicated clonal evolution mechanisms, and the novel identification of biomarkers of variant tumors. These methods and the knowledge gained from their utilization could potentially improve the early detection and monitoring of rare cancer cells, such as circulating tumor cells and disseminated tumor cells, and promote the development of personalized and highly precise cancer therapy. Here, we discuss the current methods for single cancer-cell sequencing, with a strong focus on those practically used or potentially valuable in cancer research, including single-cell isolation, whole genome and transcriptome amplification, epigenome profiling, multi-dimensional sequencing, and next-generation sequencing and analysis. We also examine the current applications, challenges, and prospects of single cancer-cell sequencing. ©2016 American Association for Cancer Research.

  20. Molecular studies on larvae of Pseudoterranova parasite of Trichiurus lepturus Linnaeus, 1758 and Pomatomus saltatrix (Linnaeus, 1766) off Brazilian waters.

    PubMed

    Borges, Juliana N; Cunha, Luiz F G; Miranda, Daniele F; Monteiro-Neto, Cassiano; Santos, Cláudia P

    2015-12-01

    Pseudoterranova larvae parasitizing cutlassfish Trichiurus lepturus and bluefish Pomatomus saltatrix from Southwest Atlantic coast of Brazil were studied in this work by morphological, ultrastructural and molecular approaches. The genetic analysis were performed for the ITS2 intergenic region specific for Pseudoterranova decipiens, the partial 28S (LSU) of ribosomal DNA and the mtDNA cox-1 region. We obtained results for the 28S region and mtDNA cox-1 that was amplified using the polymerase chain reaction and sequenced to evaluate the phylogenetic relationships between sequences of this study and sequences from the GenBank. The morphological profile indicated that all the nine specimens collected from both fish were L3 larvae of Pseudoterranova sp. The genetic profile confirmed the generic level but due to the absence of similar sequences for adult parasites on GenBank for the regions amplifyied, it was not possible to identify them to the species level. The sequences obtained presented 89% of similarity with Pseudoterranova decipiens (28S sequences) and Contracaecum osculatum B (mtDNA cox-1). The low similarity allied to the fact that the amplification with the specific primer for P. decipiens didn't occur, lead us to conclude that our sequences don't belong to P. decipiens complex.

Top