Sample records for sensitivity temperature programmed

  1. Space Shuttle Orbiter flight heating rate measurement sensitivity to thermal protection system uncertainties

    NASA Technical Reports Server (NTRS)

    Bradley, P. F.; Throckmorton, D. A.

    1981-01-01

    A study was completed to determine the sensitivity of computed convective heating rates to uncertainties in the thermal protection system thermal model. Those parameters considered were: density, thermal conductivity, and specific heat of both the reusable surface insulation and its coating; coating thickness and emittance; and temperature measurement uncertainty. The assessment used a modified version of the computer program to calculate heating rates from temperature time histories. The original version of the program solves the direct one dimensional heating problem and this modified version of The program is set up to solve the inverse problem. The modified program was used in thermocouple data reduction for shuttle flight data. Both nominal thermal models and altered thermal models were used to determine the necessity for accurate knowledge of thermal protection system's material thermal properties. For many thermal properties, the sensitivity (inaccuracies created in the calculation of convective heating rate by an altered property) was very low.

  2. Microwave brightness temperature of a windblown sea

    NASA Technical Reports Server (NTRS)

    Hall, F. G.

    1972-01-01

    A mathematical model is developed for the apparent temperature of the sea at all microwave frequencies. The model is a numerical model in which both the clear water structure and white water are accounted for as a function of wind speed. The model produces results similar to Stogryn's model at 19.35 GHz for wind speeds less than 8 m/sec; it can use radiosonde data to calculate atmospheric effects and can incorporate an empirically determined antenna gain pattern. The corresponding computer program is of modular design and the logic of the main program is capable of treating a horizontally inhomogeneous surface or atmosphere. It is shown that a variation of microwave brightness temperature with zenith angle is necessary to produce the wind sensitivity of the horizontally polarized brightness temperature; the variation of sky temperature with frequency is sufficient to produce a frequency dependent wind sensitivity.

  3. Thermal Profiling of Residential Energy Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, A; Rajagopal, R

    This work describes a methodology for informing targeted demand-response (DR) and marketing programs that focus on the temperature-sensitive part of residential electricity demand. Our methodology uses data that is becoming readily available at utility companies-hourly energy consumption readings collected from "smart" electricity meters, as well as hourly temperature readings. To decompose individual consumption into a thermal-sensitive part and a base load (non-thermally-sensitive), we propose a model of temperature response that is based on thermal regimes, i.e., unobserved decisions of consumers to use their heating or cooling appliances. We use this model to extract useful benchmarks that compose thermal profiles ofmore » individual users, i.e., terse characterizations of the statistics of these users' temperature-sensitive consumption. We present example profiles generated using our model on real consumers, and show its performance on a large sample of residential users. This knowledge may, in turn, inform the DR program by allowing scarce operational and marketing budgets to be spent on the right users-those whose influencing will yield highest energy reductions-at the right time. We show that such segmentation and targeting of users may offer savings exceeding 100% of a random strategy.« less

  4. Temperature compensation via cooperative stability in protein degradation

    NASA Astrophysics Data System (ADS)

    Peng, Yuanyuan; Hasegawa, Yoshihiko; Noman, Nasimul; Iba, Hitoshi

    2015-08-01

    Temperature compensation is a notable property of circadian oscillators that indicates the insensitivity of the oscillator system's period to temperature changes; the underlying mechanism, however, is still unclear. We investigated the influence of protein dimerization and cooperative stability in protein degradation on the temperature compensation ability of two oscillators. Here, cooperative stability means that high-order oligomers are more stable than their monomeric counterparts. The period of an oscillator is affected by the parameters of the dynamic system, which in turn are influenced by temperature. We adopted the Repressilator and the Atkinson oscillator to analyze the temperature sensitivity of their periods. Phase sensitivity analysis was employed to evaluate the period variations of different models induced by perturbations to the parameters. Furthermore, we used experimental data provided by other studies to determine the reasonable range of parameter temperature sensitivity. We then applied the linear programming method to the oscillatory systems to analyze the effects of protein dimerization and cooperative stability on the temperature sensitivity of their periods, which reflects the ability of temperature compensation in circadian rhythms. Our study explains the temperature compensation mechanism for circadian clocks. Compared with the no-dimer mathematical model and linear model for protein degradation, our theoretical results show that the nonlinear protein degradation caused by cooperative stability is more beneficial for realizing temperature compensation of the circadian clock.

  5. Sensitivity of blackbody effective emissivity to wavelength and temperature: By genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejigu, E. K.; Liedberg, H. G.

    A variable-temperature blackbody (VTBB) is used to calibrate an infrared radiation thermometer (pyrometer). The effective emissivity (ε{sub eff}) of a VTBB is dependent on temperature and wavelength other than the geometry of the VTBB. In the calibration process the effective emissivity is often assumed to be constant within the wavelength and temperature range. There are practical situations where the sensitivity of the effective emissivity needs to be known and correction has to be applied. We present a method using a genetic algorithm to investigate the sensitivity of the effective emissivity to wavelength and temperature variation. Two matlab® programs are generated:more » the first to model the radiance temperature calculation and the second to connect the model to the genetic algorithm optimization toolbox. The effective emissivity parameter is taken as a chromosome and optimized at each wavelength and temperature point. The difference between the contact temperature (reading from a platinum resistance thermometer or liquid in glass thermometer) and radiance temperature (calculated from the ε{sub eff} values) is used as an objective function where merit values are calculated and best fit ε{sub eff} values selected. The best fit ε{sub eff} values obtained as a solution show how sensitive they are to temperature and wavelength parameter variation. Uncertainty components that arise from wavelength and temperature variation are determined based on the sensitivity analysis. Numerical examples are considered for illustration.« less

  6. STREAM TEMPERATURE SIMULATION OF FORESTED RIPARIAN AREAS: II. MODEL APPLICATION

    EPA Science Inventory

    The SHADE-HSPF modeling system described in a companion paper has been tested and applied to the Upper Grande Ronde (UGR) watershed in northeast Oregon. Sensitivities of stream temperature to the heat balance parameters in Hydrologic Simulation Program-FORTRAN (HSPF) and the ripa...

  7. Intermediate temperature cracking in HMA : phase 1 semi-circular bending (SCB) practicality evaluation.

    DOT National Transportation Integrated Search

    2017-02-01

    The Utah Department of Transportation has implemented a program to test the rutting and moisture : sensitivity of Dense Grade Asphalt. Under this program, asphalt mixes have become much harder and dryer in an : effort to minimize rutting potential. T...

  8. Sensitivity of potential evapotranspiration and simulated flow to varying meteorological inputs, Salt Creek watershed, DuPage County, Illinois

    USGS Publications Warehouse

    Whitbeck, David E.

    2006-01-01

    The Lamoreux Potential Evapotranspiration (LXPET) Program computes potential evapotranspiration (PET) using inputs from four different meteorological sources: temperature, dewpoint, wind speed, and solar radiation. PET and the same four meteorological inputs are used with precipitation data in the Hydrological Simulation Program-Fortran (HSPF) to simulate streamflow in the Salt Creek watershed, DuPage County, Illinois. Streamflows from HSPF are routed with the Full Equations (FEQ) model to determine water-surface elevations. Consequently, variations in meteorological inputs have potential to propagate through many calculations. Sensitivity of PET to variation was simulated by increasing the meteorological input values by 20, 40, and 60 percent and evaluating the change in the calculated PET. Increases in temperatures produced the greatest percent changes, followed by increases in solar radiation, dewpoint, and then wind speed. Additional sensitivity of PET was considered for shifts in input temperatures and dewpoints by absolute differences of ?10, ?20, and ?30 degrees Fahrenheit (degF). Again, changes in input temperatures produced the greatest differences in PET. Sensitivity of streamflow simulated by HSPF was evaluated for 20-percent increases in meteorological inputs. These simulations showed that increases in temperature produced the greatest change in flow. Finally, peak water-surface elevations for nine storm events were compared among unmodified meteorological inputs and inputs with values predicted 6, 24, and 48 hours preceding the simulated peak. Results of this study can be applied to determine how errors specific to a hydrologic system will affect computations of system streamflow and water-surface elevations.

  9. Dualchannel Fuel Control Program.

    DTIC Science & Technology

    1981-08-01

    Generator 1 S Fluidic Speed Sensor and Power Turbine Wheels T = 0.1 s (speed) Recuperator 15 to 19 s Fluidic Temperature Sensor (temperature) T = 0.7 s...tradeoff between the highest sensitivity obtainable (as small a gap as possi- ble) and the noise or output variations due to disc runout . In

  10. Integrated Data Collection Analysis (IDCA) Program - NaClO 3/Icing Sugar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of a mixture of NaClO 3 and icing sugar—NaClO 3/icing sugar mixture. The mixture was found to: be more sensitive than RDX but less sensitive than PETN in impact testing (180-grit sandpaper); be more sensitive than RDX and about the same sensitivity as PETN in BAM fiction testing; be less sensitive than RDX and PETN except for one participant found themore » mixture more sensitive than PETN in ABL ESD testing; and to have one to three exothermic features with the lowest temperature event occurring at ~ 160°C always observed in thermal testing. Variations in testing parameters also affected the sensitivity.« less

  11. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.

    PubMed

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-04-17

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.

  12. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization

    PubMed Central

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-01-01

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500

  13. Retrieval of surface temperature by remote sensing. [of earth surface using brightness temperature of air pollutants

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1976-01-01

    A simple procedure and computer program were developed for retrieving the surface temperature from the measurement of upwelling infrared radiance in a single spectral region in the atmosphere. The program evaluates the total upwelling radiance at any altitude in the region of the CO fundamental band (2070-2220 1/cm) for several values of surface temperature. Actual surface temperature is inferred by interpolation of the measured upwelling radiance between the computed values of radiance for the same altitude. Sensitivity calculations were made to determine the effect of uncertainty in various surface, atmospheric and experimental parameters on the inferred value of surface temperature. It is found that the uncertainties in water vapor concentration and surface emittance are the most important factors affecting the accuracy of the inferred value of surface temperature.

  14. Quantitative Assessment of Temperature Sensitivity of the South Fork Nooksack River under Future Climates using QUAL2Kw

    EPA Science Inventory

    The Total Maximum Daily Load (TMDL) program, established by the Clean Water Act, is used to establish limits on loading of pollutants from point and nonpoint sources necessary to achieve water quality standards. One important use of a temperature TMDL is to allocate thermal loads...

  15. Orbiting passive microwave sensor simulation applied to soil moisture estimation

    NASA Technical Reports Server (NTRS)

    Newton, R. W. (Principal Investigator); Clark, B. V.; Pitchford, W. M.; Paris, J. F.

    1979-01-01

    A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution.

  16. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city.

    PubMed

    Provençal, Simon; Bergeron, Onil; Leduc, Richard; Barrette, Nathalie

    2016-04-01

    The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices' sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI's stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

  17. Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city

    NASA Astrophysics Data System (ADS)

    Provençal, Simon; Bergeron, Onil; Leduc, Richard; Barrette, Nathalie

    2016-04-01

    The newly developed Universal Thermal Climate Index (UTCI), along with the physiological equivalent temperature (PET), the humidex (HX) and the wind chill index (WC), was calculated in Quebec City, Canada, a city with a strong seasonal climatic variability, over a 1-year period. The objective of this study is twofold: evaluate the operational benefits of implementing the UTCI for a climate monitoring program of public comfort and health awareness as opposed to relying on traditional and simple indices, and determine whether thermal comfort monitoring specific to dense urban neighborhoods is necessary to adequately fulfill the goals of the program. In order to do so, an analysis is performed to evaluate each of these indices' sensitivity to the meteorological variables that regulate them in different environments. Overall, the UTCI was found to be slightly more sensitive to mean radiant temperature, moderately more sensitive to humidity and much more sensitive to wind speed than the PET. This dynamic changed slightly depending on the environment and the season. In hot weather, the PET was found to be more sensitive to mean radiant temperature and therefore reached high values that could potentially be hazardous more frequently than the UTCI and the HX. In turn, the UTCI's stronger sensitivity to wind speed makes it a superior index to identify potentially hazardous weather in winter compared to the PET and the WC. Adopting the UTCI broadly would be an improvement over the traditionally popular HX and WC indices. The urban environment produced favorable conditions to sustain heat stress conditions, where the indices reached high values more frequently there than in suburban locations, which advocates for weather monitoring specific to denser urban areas.

  18. Inter-comparison of hydro-climatic regimes across northern catchments: snychronicity, resistance and resilience

    Treesearch

    Sean K. Carey; Doerthe Tetzlaff; Jan Seibert; Chris Soulsby; Jim Buttle; Hjalmar Laudon; Jeff McDonnell; Kevin McGuire; Daniel Caissie; Jamie Shanley; Mike Kennedy; Kevin Devito; John W. Pomeroy

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of...

  19. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck

    2014-12-01

    Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.

  20. Fecal Immunochemical Test (FIT) for Colon Cancer Screening: Variable Performance with Ambient Temperature

    PubMed Central

    Doubeni, Chyke A.; Jensen, Christopher D.; Fedewa, Stacey A.; Quinn, Virginia P.; Zauber, Ann G.; Schottinger, Joanne E.; Corley, Douglas A.; Levin, Theodore R.

    2017-01-01

    Introduction Fecal immunochemical tests (FITs) are widely used in colorectal cancer (CRC) screening, but hemoglobin degradation, due to exposure of the collected sample to high temperatures, could reduce test sensitivity. We examined the relation of ambient temperature exposure with FIT positivity rate and sensitivity. Methods This was a retrospective cohort study of patients 50 to 75 years in Kaiser Permanente Northern California’s CRC screening program, which began mailing FIT kits annually to screen-eligible members in 2007. Primary outcomes were FIT positivity rate and sensitivity to detect CRC. Predictors were month, season, and daily ambient temperatures of test result dates based on US National Oceanic and Atmospheric Administration data. Results Patients (n =472,542) completed 1,141,162 FITs. Weekly test positivity rate ranged from 2.6% to 8.0% (median, 4.4%) and varied significantly by month (June/July vs December/January rate ratio [RR] =0.79, 95% confidence interval [CI], 0.76 to 0.83) and season. FIT sensitivity was lower in June/July (74.5%; 95% CI, 72.5 to 76.6) than January/December (78.9%; 95% CI, 77.0 to 80.7). Conclusions FITs completed during high ambient temperatures had lower positivity rates and lower sensitivity. Changing kit design, specimen transportation practices, or avoiding periods of high ambient temperatures may help optimize FIT performance, but may also increase testing complexity and reduce patient adherence, requiring careful study. PMID:28076249

  1. Program Helps To Determine Chemical-Reaction Mechanisms

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Radhakrishnan, K.

    1995-01-01

    General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code developed for use in solving complex, homogeneous, gas-phase, chemical-kinetics problems. Provides for efficient and accurate chemical-kinetics computations and provides for sensitivity analysis for variety of problems, including problems involving honisothermal conditions. Incorporates mathematical models for static system, steady one-dimensional inviscid flow, reaction behind incident shock wave (with boundary-layer correction), and perfectly stirred reactor. Computations of equilibrium properties performed for following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. Written in FORTRAN 77 with exception of NAMELIST extensions used for input.

  2. Effects of electrostatic discharge on three cryogenic temperature sensor models

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Mott, Thomas B.

    2014-01-01

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox{trade mark, serif} resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox{trade mark, serif} temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox{trade mark, serif} temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox{trade mark, serif} sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  3. Cytological characterization of a thermo-sensitive cytoplasmic male-sterile wheat line having K-type cytoplasm of Aegilops kotschyi.

    PubMed

    Meng, Liying; Liu, Zihan; Zhang, Lingli; Hu, Gan; Song, Xiyue

    2016-12-01

    Male sterility is an important tool for obtaining crop heterosis. A thermo-sensitive cytoplasmic male-sterile (TCMS) line was developed recently using a new method based on tiller regeneration. In the present study, we explored the critical growth stages required to maintain thermo-sensitive male sterility in TCMS lines and found that fertility is associated with abnormal tapetal and microspore development. We investigated the fertility and cytology of temperature-treated plant anthers at various developmental stages. TCMS line KTM3315A exhibited thermo-sensitive male sterility in Zadoks growth stages 41-49 and 58-59. Morphologically, the line exhibited thermo-sensitive male sterility at 3-9 days before heading and at 3-6 days before flowering, and it was partially restored in three locations during spring and summer. TCMS line KTM3315A plants exhibited premature tapetal programmed cell death (PCD) from the early uninucleate stage of microspore development until the tapetal cells degraded completely. Microspore development was then blocked and the pollen abortion type was stainable abortion. Thus, male fertility in the line KTM3315A is sensitive to temperature and premature tapetal PCD is the main cause of pollen abortion, where it determines the starting period and affects male fertility conversion in K-type TCMS lines at certain temperatures.

  4. Dictyostelium discoideum mutants with temperature-sensitive defects in endocytosis

    PubMed Central

    1994-01-01

    We have isolated and characterized temperature-sensitive endocytosis mutants in Dictyostelium discoideum. Dictyostelium is an attractive model for genetic studies of endocytosis because of its high rates of endocytosis, its reliance on endocytosis for nutrient uptake, and tractable molecular genetics. Endocytosis-defective mutants were isolated by a fluorescence-activated cell sorting (FACS) as cells unable to take up a fluorescent marker. One temperature-sensitive mutant (indy1) was characterized in detail and found to exhibit a complete block in fluid phase endocytosis at the restrictive temperature, but normal rates of endocytosis at the permissive temperature. Likewise, a potential cell surface receptor that was rapidly internalized in wild-type cells and indy1 cells at the permissive temperature was poorly internalized in indy1 under restrictive conditions. Growth was also completely arrested at the restrictive temperature. The endocytosis block was rapidly induced upon shift to the restrictive temperature and reversed upon return to normal conditions. Inhibition of endocytosis was also specific, as other membrane-trafficking events such as phagocytosis, secretion of lysosomal enzymes, and contractile vacuole function were unaffected at the restrictive temperature. Because recycling and transport to late endocytic compartments were not affected, the site of the defect's action is probably at an early step in the endocytic pathway. Additionally, indy1 cells were unable to proceed through the normal development program at the restrictive temperature. Given the tight functional and growth phenotypes, the indy1 mutant provides an opportunity to isolate genes responsible for endocytosis in Dictyostelium by complementation cloning. PMID:7929583

  5. Error analysis of Dobson spectrophotometer measurements of the total ozone content

    NASA Technical Reports Server (NTRS)

    Holland, A. C.; Thomas, R. W. L.

    1975-01-01

    A study of techniques for measuring atmospheric ozone is reported. This study represents the second phase of a program designed to improve techniques for the measurement of atmospheric ozone. This phase of the program studied the sensitivity of Dobson direct sun measurements and the ozone amounts inferred from those measurements to variation in the atmospheric temperature profile. The study used the plane - parallel Monte-Carlo model developed and tested under the initial phase of this program, and a series of standard model atmospheres.

  6. Cytological characterization of a thermo-sensitive cytoplasmic male-sterile wheat line having K-type cytoplasm of Aegilops kotschyi

    PubMed Central

    Meng, Liying; Liu, Zihan; Zhang, Lingli; Hu, Gan; Song, Xiyue

    2016-01-01

    Male sterility is an important tool for obtaining crop heterosis. A thermo-sensitive cytoplasmic male-sterile (TCMS) line was developed recently using a new method based on tiller regeneration. In the present study, we explored the critical growth stages required to maintain thermo-sensitive male sterility in TCMS lines and found that fertility is associated with abnormal tapetal and microspore development. We investigated the fertility and cytology of temperature-treated plant anthers at various developmental stages. TCMS line KTM3315A exhibited thermo-sensitive male sterility in Zadoks growth stages 41–49 and 58–59. Morphologically, the line exhibited thermo-sensitive male sterility at 3–9 days before heading and at 3–6 days before flowering, and it was partially restored in three locations during spring and summer. TCMS line KTM3315A plants exhibited premature tapetal programmed cell death (PCD) from the early uninucleate stage of microspore development until the tapetal cells degraded completely. Microspore development was then blocked and the pollen abortion type was stainable abortion. Thus, male fertility in the line KTM3315A is sensitive to temperature and premature tapetal PCD is the main cause of pollen abortion, where it determines the starting period and affects male fertility conversion in K-type TCMS lines at certain temperatures. PMID:28163591

  7. Numerical Simulation of Pre-heated Confined PBX Charge Under Low Velocity

    NASA Astrophysics Data System (ADS)

    Hu, Cai; Wu, Yanqing; Huang, Fenglei; Liu, Yan; Explosion; damage Team

    2017-06-01

    Impact sensitivity and thermal safety are very important for explosive safety usage.To investigate the effect of thermal softening on impact sensitivity of HMX-based PBX, a finite element model aiming at pre-heated confined PBX charge sbujected to bullets impact has been established. The predicted ignition starting area of the explosive charge was evaluated based on volume strain and equivalent strain contours. It showed that the ignition starting area moves towards the center of the explosives from the surface with increase of heating temperature. The threshold velocity does not increase monotonically with the pre-heating temperature increases. Instead, the threshold velocity rises till 360 m/s when the cook-off temperature is lower than 75°, then decreases the increased temperature. The results imply that our PBX has the lowest impact sensitivity at about 75°. These numerical results agree very well with the corresponding experiment results conducted by Dai et al. The influence of thermal softening on the impact sensitivity has been analyzed. As the strength decreases, more impact energy will be absorbed. At the same time, shear resistance ability will be weaken and volume compression work may play a more important role to ignition. China National Nature Science Foundation (11572045), ``Science Challenging Program'' (JCKY2016212A501), opening fund from Safety ammunition research and Development Center (RMC2015B03).

  8. Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Freestream

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Canabal, Francisco; Tashakkor, Scott B.; Smith, Sheldon D.

    2011-01-01

    In support of launch vehicle base heating and pressure prediction efforts using the Loci-CHEM Navier-Stokes computational fluid dynamics solver, 35 numerical simulations of the NASA TND-1093 wind tunnel test have been modeled and analyzed. This test article is composed of four JP-4/LOX 500 lbf rocket motors exhausting into a Mach 2 - 3.5 wind tunnel at various ambient pressure conditions. These water-cooled motors are attached to a base plate of a standard missile forebody. We explore the base heating profiles for fully coupled finite-rate chemistry simulations, one-way coupled RAMP (Reacting And Multiphase Program using Method of Characteristics)-BLIMPJ (Boundary Layer Integral Matrix Program - Jet Version) derived solutions and variable and constant specific heat ratio frozen flow simulations. Variations in turbulence models, temperature boundary conditions and thermodynamic properties of the plume have been investigated at two ambient pressure conditions: 255 lb/sq ft (simulated low altitude) and 35 lb/sq ft (simulated high altitude). It is observed that the convective base heat flux and base temperature are most sensitive to the nozzle inner wall thermal boundary layer profile which is dependent on the wall temperature, boundary layer s specific energy and chemical reactions. Recovery shock dynamics and afterburning significantly influences convective base heating. Turbulence models and external nozzle wall thermal boundary layer profiles show less sensitivity to base heating characteristics. Base heating rates are validated for the highest fidelity solutions which show an agreement within +/-10% with respect to test data.

  9. COLD-PCR enriches low-level variant DNA sequences and increases the sensitivity of genetic testing.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Guha, Minakshi; Makrigiorgos, G Mike

    2014-01-01

    Detection of low-level mutations is important for cancer biomarker and therapy targets discovery, but reliable detection remains a technical challenge. The newly developed method of CO-amplification at Lower Denaturation temperature PCR (COLD-PCR) helps to circumvent this issue. This PCR-based technology preferentially enriches minor known or unknown variants present in samples with a high background of wild type DNA which often hampers the accurate identification of these minority alleles. This is a simple process that consists of lowering the temperature at the denaturation step during the PCR-cycling protocol (critical denaturation temperature, T c) and inducing DNA heteroduplexing during an intermediate step. COLD-PCR in its simplest forms does not need additional reagents or specific instrumentation and thus, can easily replace conventional PCR and at the same time improve the mutation detection sensitivity limit of downstream technologies. COLD-PCR can be applied in two basic formats: fast-COLD-PCR that can enrich T m-reducing mutations and full-COLD-PCR that can enrich all mutations, though it requires an intermediate cross-hybridization step that lengthens the thermocycling program. An improved version of full-COLD-PCR (improved and complete enrichment, ice-COLD-PCR) has also been described. Finally, most recently, we developed yet another form of COLD-PCR, temperature-tolerant-COLD-PCR, which gradually increases the denaturation temperature during the COLD-PCR reaction, enriching diverse targets using a single cycling program. This report describes practical considerations for application of fast-, full-, ice-, and temperature-tolerant-COLD-PCR for enrichment of mutations prior to downstream screening.

  10. Report on Lithium Ion Battery Trade Studies to Support the Exploration Technology Development Program (ETDP) Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Kissock, Barbara I.; Bennett, William R.

    2010-01-01

    This report documents the results of two system related analyses to support the Exploration Technology Development Program (ETDP) Energy Storage Project. The first study documents a trade study to determine the optimum Li-ion battery cell capacity for the ascent stage battery for the Altair lunar lander being developed under the Constellation Systems program. The battery cell capacity for the Ultra High Energy (UHE) Li-ion battery initially chosen as the target for development was 35 A-hr; this study concludes that a 19.4 A-hr cell capacity would be more optimum from a minimum battery mass perspective. The second study in this report is an assessment of available low temperature Li-ion battery cell performance data to determine whether lowering the operating temperature range of the Li-ion battery, in a rover application, could save overall system mass by eliminating thermal control system mass normally needed to maintain battery temperature within a tighter temperature limit than electronics or other less temperature sensitive components. The preliminary assessment for this second study indicates that the reduction in the thermal control system mass is negated by an increase in battery mass to compensate for the loss in battery capacity due to lower temperature operating conditions.

  11. Solar x ray astronomy rocket program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.

  12. Sensitivity Analysis of Weather Variables on Offsite Consequence Analysis Tools in South Korea and the United States.

    PubMed

    Kim, Min-Uk; Moon, Kyong Whan; Sohn, Jong-Ryeul; Byeon, Sang-Hoon

    2018-05-18

    We studied sensitive weather variables for consequence analysis, in the case of chemical leaks on the user side of offsite consequence analysis (OCA) tools. We used OCA tools Korea Offsite Risk Assessment (KORA) and Areal Location of Hazardous Atmospheres (ALOHA) in South Korea and the United States, respectively. The chemicals used for this analysis were 28% ammonia (NH₃), 35% hydrogen chloride (HCl), 50% hydrofluoric acid (HF), and 69% nitric acid (HNO₃). The accident scenarios were based on leakage accidents in storage tanks. The weather variables were air temperature, wind speed, humidity, and atmospheric stability. Sensitivity analysis was performed using the Statistical Package for the Social Sciences (SPSS) program for dummy regression analysis. Sensitivity analysis showed that impact distance was not sensitive to humidity. Impact distance was most sensitive to atmospheric stability, and was also more sensitive to air temperature than wind speed, according to both the KORA and ALOHA tools. Moreover, the weather variables were more sensitive in rural conditions than in urban conditions, with the ALOHA tool being more influenced by weather variables than the KORA tool. Therefore, if using the ALOHA tool instead of the KORA tool in rural conditions, users should be careful not to cause any differences in impact distance due to input errors of weather variables, with the most sensitive one being atmospheric stability.

  13. Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory

    PubMed Central

    Alster, Charlotte J.; Baas, Peter; Wallenstein, Matthew D.; Johnson, Nels G.; von Fischer, Joseph C.

    2016-01-01

    The activity of soil microbial extracellular enzymes is strongly controlled by temperature, yet the degree to which temperature sensitivity varies by microbe and enzyme type is unclear. Such information would allow soil microbial enzymes to be incorporated in a traits-based framework to improve prediction of ecosystem response to global change. If temperature sensitivity varies for specific soil enzymes, then determining the underlying causes of variation in temperature sensitivity of these enzymes will provide fundamental insights for predicting nutrient dynamics belowground. In this study, we characterized how both microbial taxonomic variation as well as substrate type affects temperature sensitivity. We measured β-glucosidase, leucine aminopeptidase, and phosphatase activities at six temperatures: 4, 11, 25, 35, 45, and 60°C, for seven different soil microbial isolates. To calculate temperature sensitivity, we employed two models, Arrhenius, which predicts an exponential increase in reaction rate with temperature, and Macromolecular Rate Theory (MMRT), which predicts rate to peak and then decline as temperature increases. We found MMRT provided a more accurate fit and allowed for more nuanced interpretation of temperature sensitivity in all of the enzyme × isolate combinations tested. Our results revealed that both the enzyme type and soil isolate type explain variation in parameters associated with temperature sensitivity. Because we found temperature sensitivity to be an inherent and variable property of an enzyme, we argue that it can be incorporated as a microbial functional trait, but only when using the MMRT definition of temperature sensitivity. We show that the Arrhenius metrics of temperature sensitivity are overly sensitive to test conditions, with activation energy changing depending on the temperature range it was calculated within. Thus, we propose the use of the MMRT definition of temperature sensitivity for accurate interpretation of temperature sensitivity of soil microbial enzymes. PMID:27909429

  14. Mapping TES Temperature Sensitivity and Current Sensitivity as a Function of Temperature, Current, and Magnetic Field with IV Curve and Complex Admittance Measurements

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Ambarish, C. V.; Gruenke, R.; Jaeckel, F. T.; Kripps, K. L.; McCammon, D.; Morgan, K. M.; Wulf, D.; Zhang, S.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Smith, S. J.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.

    2018-05-01

    We have specialized astronomical applications for X-ray microcalorimeters with superconducting transition edge sensors (TESs) that require exceptionally good TES performance, but which operate in the small-signal regime. We have therefore begun a program to carefully characterize the entire transition surface of TESs with and without the usual zebra stripes to see if there are reproducible local "sweet spots" where the performance is much better than average. These measurements require precise knowledge of the circuit parameters. Here, we show how the Shapiro effect can be used to precisely calibrate the value of the shunt resistor. We are also investigating the effects of stress and external magnetic fields to better understand reproducibility problems.

  15. Climate-sensitive urban design through Envi-Met simulation: case study in Kemayoran, Jakarta

    NASA Astrophysics Data System (ADS)

    Kusumastuty, K. D.; Poerbo, H. W.; Koerniawan, M. D.

    2018-03-01

    Indonesia as a tropical country which the character of its climate are hot and humid, the outdoor activity applications are often disrupted due to discomfort in thermal conditions. Massive construction of skyscrapers in urban areas are caused by the increase of human population leads to reduced green and infiltration areas that impact to environmental imbalances and triggering microclimate changes with rising air temperatures on the surface. The area that significantly experiences the rise of temperature in the Central Business District (CBD), which has need an analysis to create thermal comfort conditions to improve the ease of outdoor activities by an approach. This study aims to design the Kemayoran CBD through Climate Sensitive Urban Design especially in hot and humid tropical climate area and analyze thermal comfort level and optimal air conditioning in the outdoor area. This research used a quantitative method by generating the design using Climate Sensitive Urban Design principle through Envi-met 4.1 simulation program to find out the value of PMV, air temperature, wind speed and relative humidity conditions. The design area considers the configuration of buildings such as the distance between buildings, the average height, the orientation of the building, and the width of the road.

  16. Planetary quarantine program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A quantitative means was developed to investigate the sensitivity of current spacecraft sterilization plans to variations in D-values. A quantitative expression was derived to represent the distribution of D-values among a population of naturally occurring organisms. An investigation was made of (1) the inactivation of both Bacillus subtilis var. niger spores and Cape Kennedy soil spores by gamma-radiation at room temperature in a nitrogen environment, and (2) the thermoradiation resistance of Cape Kennedy soil spores at elevated temperatures below 125 C. The relation between standard survival experiments with bacterial spores in soils and results obtained on spacecraft surfaces is discussed. Sporocidal properties of aqueous formaldehyde can be increased by elevating the temperature.

  17. Optimal design of solidification processes

    NASA Technical Reports Server (NTRS)

    Dantzig, Jonathan A.; Tortorelli, Daniel A.

    1991-01-01

    An optimal design algorithm is presented for the analysis of general solidification processes, and is demonstrated for the growth of GaAs crystals in a Bridgman furnace. The system is optimal in the sense that the prespecified temperature distribution in the solidifying materials is obtained to maximize product quality. The optimization uses traditional numerical programming techniques which require the evaluation of cost and constraint functions and their sensitivities. The finite element method is incorporated to analyze the crystal solidification problem, evaluate the cost and constraint functions, and compute the sensitivities. These techniques are demonstrated in the crystal growth application by determining an optimal furnace wall temperature distribution to obtain the desired temperature profile in the crystal, and hence to maximize the crystal's quality. Several numerical optimization algorithms are studied to determine the proper convergence criteria, effective 1-D search strategies, appropriate forms of the cost and constraint functions, etc. In particular, we incorporate the conjugate gradient and quasi-Newton methods for unconstrained problems. The efficiency and effectiveness of each algorithm is presented in the example problem.

  18. Heat-Energy Analysis for Solar Receivers

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1982-01-01

    Heat-energy analysis program (HEAP) solves general heat-transfer problems, with some specific features that are "custom made" for analyzing solar receivers. Can be utilized not only to predict receiver performance under varying solar flux, ambient temperature and local heat-transfer rates but also to detect locations of hotspots and metallurgical difficulties and to predict performance sensitivity of neighboring component parameters.

  19. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.

    PubMed

    Preußner, Marco; Goldammer, Gesine; Neumann, Alexander; Haltenhof, Tom; Rautenstrauch, Pia; Müller-McNicoll, Michaela; Heyd, Florian

    2017-08-03

    The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Switchgrass (Panicum virgatum L.) Intraspecific Variation and Thermotolerance Classification Using in Vitro Seed Germination Assay

    DOE PAGES

    Seepaul, Ramdeo; Macoon, Bisoondat; Reddy, K. Raja; ...

    2011-01-01

    Cardinal temperatures for plant processes have been used for thermotolerance screening of genotypes, geoclimatic adaptability determination and phenological prediction. Current simulation models for switchgrass (Panicum virgatum L.) utilize single cardinal temperatures across genotypes for both vegetative and reproductive processes although in-tra-specific variation exists among genotypes. An experiment was conducted to estimate the cardinal temperatures for seed germination of 14 diverse switchgrass genotypes and to classify genotypes for temperature tolerance. Stratified seeds of each genotype were germinated at eight constant temperatures from 10 °C to 45 °C under a constant light intensity of 35 μmol m -2s -1 for 12 hdmore » -1. Germination was recorded at 6-h intervals in all treatments. Maximum seed germination (MSG) and germination rate (GR), estimated by fitting Sigmoidal function to germination-time series data, varied among genotypes. Quadratic and bilinear models best described the MSG and GR responses to temperature, respectively. The mean cardinal temperatures, T min, T opt, and T max, were 8.1, 26.6, and 45.1 °C for MSG and 11.1, 33.1, and 46.0 °C for GR, respectively. Cardinal temperatures for MSG and GR; however, varied significantly among genotypes. Genotypes were classified as sensitive (Cave-in-Rock, Dacotah, Expresso, Forestburg, Kanlow, Sunburst, Trailblazer, and Tusca), intermediate (Alamo, Blackwell, Carthage, Shawnee, and Shelter) and tolerant (Summer) to high temperature based on cumulative temperature response index (CTRI) estimated by summing individual response indices estimated from the MSG and GR cardinal temperatures. Similarly, genotypes were also classified as sensitive (Alamo, Blackwell, Carthage, Dacotah, Shawnee, Shelter and Summer), moderately sensitive (Cave-in-rock, Forestburg, Kanlow, Sunburst, and Tusca), moderately tolerant (Trailblazer), and tolerant (Expresso) to low temperatures. The cardinal temperature estimates would be useful to improve switchgrass models for field applications. Additionally, the identified cold- and heat-tolerant genotypes can be selected for niche environments and in switchgrass breeding programs to develop new genotypes for low and high temperature environments.« less

  1. Fabrication development for ODS-superalloy, air-cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Moracz, D. J.

    1984-01-01

    MA-600 is a gamma prime and oxide dispersion strengthened superalloy made by mechanical alloying. At the initiation of this program, MA-6000 was available as an experimental alloy only and did not go into production until late in the program. The objective of this program was to develop a thermal-mechanical-processing approach which would yield the necessary elongated grain structure and desirable mechanical properties after conventional press forging. Forging evaluations were performed to select optimum thermal-mechanical-processing conditions. These forging evaluations indicated that MA-6000 was extremely sensitive to die chilling. In order to conventionally hot forge the alloy, an adherent cladding, either the original extrusion can or a thick plating, was required to prevent cracking of the workpiece. Die design must reflect the requirement of cladding. MA-6000 was found to be sensitive to the forging temperature. The correct temperature required to obtain the proper grain structure after recrystallization was found to be between 1010-1065 C (1850-1950 F). The deformation level did not affect subsequent crystallization; however, sharp transition areas in tooling designs should be avoided in forming a blade shape because of the potential for grain structure discontinuities. Starting material to be used for forging should be processed so that it is capable of being zone annealed to a coarse elongated grain structure as bar stock. This conclusion means that standard processed bar materials can be used.

  2. SCARE: A post-processor program to MSC/NASTRAN for the reliability analysis of structural ceramic components

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.

    1985-01-01

    A computer program was developed for calculating the statistical fast fracture reliability and failure probability of ceramic components. The program includes the two-parameter Weibull material fracture strength distribution model, using the principle of independent action for polyaxial stress states and Batdorf's shear-sensitive as well as shear-insensitive crack theories, all for volume distributed flaws in macroscopically isotropic solids. Both penny-shaped cracks and Griffith cracks are included in the Batdorf shear-sensitive crack response calculations, using Griffith's maximum tensile stress or critical coplanar strain energy release rate criteria to predict mixed mode fracture. Weibull material parameters can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and fracture data. The reliability prediction analysis uses MSC/NASTRAN stress, temperature and volume output, obtained from the use of three-dimensional, quadratic, isoparametric, or axisymmetric finite elements. The statistical fast fracture theories employed, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  3. Gravity Wave Predictability and Dynamics in Deepwave

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.

    2015-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity waves that vertically propagate upward through the stratosphere will be addressed further in the presentation. We examine RF23 during DEEPWAVE, which sampled deep propagating gravity waves over Auckland and Macquarie Islands. We provide insight into the gravity wave dynamics through applying the COAMPS and its adjoint at high resolution.

  4. Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR)

    NASA Technical Reports Server (NTRS)

    Dillon-Townes, L. A.; Averill, R. D.

    1984-01-01

    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.

  5. Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Li, Dandan; Yu, Yang; Wen, Dianzhong

    2017-07-01

    Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors ({R}1, {R}2, {R}3 and {R}4) locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator (SOI) wafer by micro electromechanical system (MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity (TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/°C, respectively. Through varying the ratio of the base region resistances {r}1 and {r}2, the TCS for the sensor with the compensation circuit is -127 ppm/°C. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor. Project supported by the National Natural Science Foundation of China (No. 61471159), the Natural Science Foundation of Heilongjiang Province (No. F201433), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. 2015018), and the Special Funds for Science and Technology Innovation Talents of Harbin in China (No. 2016RAXXJ016).

  6. Refractory metals for ARPS AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svedberg, R.C.; Sievers, R.C.

    1998-07-01

    Alkali Metal Thermal-to-Electric Converter (AMTEC) cells for the Advanced Radioisotope Power Systems (ARPS) program are being developed with refractory metals and alloys as the basic structural materials. AMTEC cell efficiency increases with cell operating temperature. For space applications, long term reliability and high efficiency are essential and refractory metals were selected because of their high temperature strength, low vapor pressure, and compatibility with sodium. However, refractory metals are sensitive to oxygen, nitrogen and hydrogen contamination and refractory metal cells cannot be processed in air. Because of this sensitivity, new manufacturing and processing techniques are being developed. In addition to structuralmore » elements, development of other refractory metal components for the AMTEC cells, such as the artery and evaporator wicks, pinchoff tubes and feedthroughs are required. Changes in cell fabrication techniques and processing procedures being implemented to manufacture refractory metal cells are discussed.« less

  7. Air-Sea Enthalpy and Momentum Exchange at Major Hurricane Wind Speeds

    DTIC Science & Technology

    2010-06-01

    momentum fluxes. Hurricane simulations using the Navy Coupled Ocean / Atmosphere Mesoscale Prediction System are also sensitive to the surface flux and sea... Atmospheric Research NWP Numerical Weather Prediction NOAA National Oceanic and Atmospheric Administration PTH Pressure, Temperature, relative Humidity RE87... Oceanic and Atmospheric Administration for organizing the CBLAST field program and collecting the data used for this study. xx THIS PAGE

  8. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ping; Xiao, Limin; Wang, D. N.; Jin, Wei

    2006-12-01

    A long-period fiber-grating sensor with a high strain sensitivity of -7.6 pm/μɛ and a low temperature sensitivity of 3.91 pm/°C is fabricated by use of focused CO2 laser beam to carve periodic grooves on a large- mode-area photonic crystal fiber. Such a strain sensor can effectively reduce the cross-sensitivity between strain and temperature, and the temperature-induced strain error obtained is only 0.5 μɛ/°C without using temperature compensation.

  9. Sensitivity enhanced strain and temperature measurements based on FBG and frequency chirp magnification.

    PubMed

    Du, Jiangbing; He, Zuyuan

    2013-11-04

    In this work, highly sensitive measurements of strain and temperature have been demonstrated using a fiber Bragg grating (FBG) sensor with significantly enhance sensitivity by all-optical signal processing. The sensitivity enhancement is achieved by degenerated Four Wave Mixing (FWM) for frequency chirp magnification (FCM), which can be used for magnifying the wavelength drift of the FBG sensor induced by strain and temperature change. Highly sensitive measurements of static strain and temperature have been experimentally demonstrated with strain sensitivity of 5.36 pm/με and temperature sensitivity of 54.09 pm/°C. The sensitivity has been enhanced by a factor of five based on a 4-order FWM in a highly nonlinear fiber (HNLF).

  10. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  11. Temperature sensitive surfaces and methods of making same

    DOEpatents

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  12. Optimal cure cycle design for autoclave processing of thick composites laminates: A feasibility study

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.

    1985-01-01

    The thermal analysis and the calculation of thermal sensitivity of a cure cycle in autoclave processing of thick composite laminates were studied. A finite element program for the thermal analysis and design derivatives calculation for temperature distribution and the degree of cure was developed and verified. It was found that the direct differentiation was the best approach for the thermal design sensitivity analysis. In addition, the approach of the direct differentiation provided time histories of design derivatives which are of great value to the cure cycle designers. The approach of direct differentiation is to be used for further study, i.e., the optimal cycle design.

  13. Development of a HgCdTe photomixer and impedance matched GaAs FET amplifier

    NASA Technical Reports Server (NTRS)

    Shanley, J. F.; Paulauskas, W. A.; Taylor, D. R.

    1982-01-01

    A research program for the development of a 10.6 micron HgCdTe photodiode/GaAs field effect transistor amplifier package for use at cryogenic temperatures (77k). The photodiode/amplifier module achieved a noise equivalent power per unit bandwidth of 5.7 times 10 to the 20th power W/Hz at 2.0 GHz. The heterodyne sensitivity of the HgCdTe photodiode was improved by designing and building a low noise GaAs field effect transistor amplifier operating at 77K. The Johnson noise of the amplifier was reduced at 77K, and thus resulted in an increased photodiode heterodyne sensitivity.

  14. Heat Waves, Urban Vegetation, and Air Pollution

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Grote, R.; Butler, T. M.

    2014-12-01

    Fast-track programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting the existence of this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions from urban vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how global change induced heat waves affect emissions of volatile organic compounds (VOC) from urban vegetation and corresponding ground-level ozone levels. We also quantify other ecosystem services provided by urban vegetation (e.g., cooling and carbon storage) and their sensitivity to climate change. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the heat waves in 2003 and 2006. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  15. Three-dimensional solutions for the thermal buckling and sensitivity derivatives of temperature-sensitive multilayered angle-ply plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1992-01-01

    Analytic three-dimensional thermoelasticity solutions are presented for the thermal buckling of multilayered angle-ply composite plates with temperature-dependent thermoelastic properties. Both the critical temperatures and the sensitivity derivatives are computed. The sensitivity derivatives measure the sensitivity of the buckling response to variations in the different lamination and material parameters of the plate. The plates are assumed to have rectangular geometry and an antisymmetric lamination with respect to the middle plane. The temperature is assumed to be independent of the surface coordinates, but has an arbitrary symmetric variation through the thickness of the plate. The prebuckling deformations are accounted for. Numerical results are presented, for plates subjected to uniform temperature increase, showing the effects of temperature-dependent material properties on the prebuckling stresses, critical temperatures, and their sensitivity derivatives.

  16. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  17. Statistical sensitivity analysis of a simple nuclear waste repository model

    NASA Astrophysics Data System (ADS)

    Ronen, Y.; Lucius, J. L.; Blow, E. M.

    1980-06-01

    A preliminary step in a comprehensive sensitivity analysis of the modeling of a nuclear waste repository. The purpose of the complete analysis is to determine which modeling parameters and physical data are most important in determining key design performance criteria and then to obtain the uncertainty in the design for safety considerations. The theory for a statistical screening design methodology is developed for later use in the overall program. The theory was applied to the test case of determining the relative importance of the sensitivity of near field temperature distribution in a single level salt repository to modeling parameters. The exact values of the sensitivities to these physical and modeling parameters were then obtained using direct methods of recalculation. The sensitivity coefficients found to be important for the sample problem were thermal loading, distance between the spent fuel canisters and their radius. Other important parameters were those related to salt properties at a point of interest in the repository.

  18. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  19. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  20. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing drainage area. Combining spatially distributed time series of stream temperatures and EC with information about geology, landscape and climate provides insight into the underlying hydrological processes and allows for the identification of thermally sensitive regions and reaches.

  1. LENMODEL: A forward model for calculating length distributions and fission-track ages in apatite

    NASA Astrophysics Data System (ADS)

    Crowley, Kevin D.

    1993-05-01

    The program LENMODEL is a forward model for annealing of fission tracks in apatite. It provides estimates of the track-length distribution, fission-track age, and areal track density for any user-supplied thermal history. The program approximates the thermal history, in which temperature is represented as a continuous function of time, by a series of isothermal steps of various durations. Equations describing the production of tracks as a function of time and annealing of tracks as a function of time and temperature are solved for each step. The step calculations are summed to obtain estimates for the entire thermal history. Computational efficiency is maximized by performing the step calculations backwards in model time. The program incorporates an intuitive and easy-to-use graphical interface. Thermal history is input to the program using a mouse. Model options are specified by selecting context-sensitive commands from a bar menu. The program allows for considerable selection of equations and parameters used in the calculations. The program was written for PC-compatible computers running DOS TM 3.0 and above (and Windows TM 3.0 or above) with VGA or SVGA graphics and a Microsoft TM-compatible mouse. Single copies of a runtime version of the program are available from the author by written request as explained in the last section of this paper.

  2. Densified waste form and method for forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less

  3. HNS/Teflon, a new heat resistant explosive

    NASA Technical Reports Server (NTRS)

    Heller, H.; Bertram, A. L.

    1973-01-01

    HNS/Teflon (90/10) is a new pressed explosive developed for use in the Apollo program. The major advantages of HNS/Teflon are (1) excellent thermal stability at elevated temperatures, (2) superior resistance to sublimation at high temperatures and low pressures and (3) ease of molding powder preparation, pressing and machining. The impact sensitivity of HNS/Teflon is between that of Comp B and Comp A-3 while its explosive performance is about the same as TNT. Under the severe environmental conditions of the moon's surface, this explosive successfully performed its intended function of generating seismic waves in the Apollo ALSEP and LSPE experiments. (Modified author abstract)

  4. Introduction: Historical perspective on the HCMM program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    When some thermal radiation sensitive devices on U.S. meteorological satellites generated low resolution images showing temperature variations on Earth's land and sea surfaces during the middle 1960's, interest was aroused in the potential of thermal sensing in geology, agriculture, soil moisture, ground water, water temperature, and vegetation applications. The concept of using the property of thermal inertia to identify materials, particularly those of a geologic nature can be traced to the same time period that marks the flight of the first LANDSAT - Spacecraft systems and their performance, and capabilities are reviewed as well as achievements in hydrology, geology, agriculture, pedology, and urban climate effects applications.

  5. The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding

    PubMed Central

    Paupière, Marine J.; van Heusden, Adriaan W.; Bovy, Arnaud G.

    2014-01-01

    Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1–3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed. PMID:25271355

  6. The metabolic basis of pollen thermo-tolerance: perspectives for breeding.

    PubMed

    Paupière, Marine J; van Heusden, Adriaan W; Bovy, Arnaud G

    2014-09-30

    Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1-3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.

  7. A high-sensitivity temperature sensor based on Sagnac interferometer employing photonic crystal fiber fully filled with ethanol

    NASA Astrophysics Data System (ADS)

    Shi, Min; Li, Shuguang; Chen, Hailiang

    2018-06-01

    A high-sensitivity temperature sensor based on photonic crystal fiber Sagnac interferometer is proposed and studied. All holes of the PCF are filled with ethanol with capillarity. The cladding air holes are uniform arrangements. The two air holes around the core are removed to form new core modes with high birefringence. The sensitivities of the temperature can be up to -8.7657 and 16.8142 nm/°C when temperature rises from 45 to 75 °C and the fiber length is 5.05 cm. And when temperature rises from 10 to 45 °C, the sensitivity can reach -7.848 and 16.655 nm/°C with fiber length 2.11 cm. The performance of the selective-filled and the fully-filled PCF with temperature from 45 to 75 °C and fiber length 5.05 cm are analyzed and compared. The fully filling can better achieve PCF's sensing performance. The simple structure and high sensitivities make the temperature sensor easy to achieve. The temperature sensor with high sensitivities and good linearity has great application value for environmental temperature detecting.

  8. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming

    2018-04-01

    A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.

  9. Calibration test of the temperature and strain sensitivity coefficient in regional reference grating method

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Huang, Junbing; Wu, Hanping; Gu, Hongcan; Tang, Bo

    2014-12-01

    In order to verify the validity of the regional reference grating method in solve the strain/temperature cross sensitive problem in the actual ship structural health monitoring system, and to meet the requirements of engineering, for the sensitivity coefficients of regional reference grating method, national standard measurement equipment is used to calibrate the temperature sensitivity coefficient of selected FBG temperature sensor and strain sensitivity coefficient of FBG strain sensor in this modal. And the thermal expansion sensitivity coefficient of the steel for ships is calibrated with water bath method. The calibration results show that the temperature sensitivity coefficient of FBG temperature sensor is 28.16pm/°C within -10~30°C, and its linearity is greater than 0.999, the strain sensitivity coefficient of FBG strain sensor is 1.32pm/μɛ within -2900~2900μɛ whose linearity is almost to 1, the thermal expansion sensitivity coefficient of the steel for ships is 23.438pm/°C within 30~90°C, and its linearity is greater than 0.998. Finally, the calibration parameters are used in the actual ship structure health monitoring system for temperature compensation. The results show that the effect of temperature compensation is good, and the calibration parameters meet the engineering requirements, which provide an important reference for fiber Bragg grating sensor is widely used in engineering.

  10. Concept Demonstration of Dopant Selective Reactive Etching (DSRIE) in Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.

    2015-01-01

    Accurate quantification of combustor pressure dynamics for the primary purpose of experimental validation of computational fluid dynamics (CFD) codes requires the use of robust, reliable and sensitive pressure sensors that can resolve sub--pound-per-square-inch pressure levels in high temperature environments (i.e., combustor). The state of the art microfabricated piezoresistive silicon carbide (SiC) pressure sensors that we have developed are capable of operating reliably at 600 degrees Centigrade. This technology was used in support of the ARMD ISRP-ERA (NASA's Aeronautics Research Mission Directorate, Integrated System Research Project - Environmentally Responsible Aviation) program to quantify combustor thermoacoustic instabilities. The results showed that while the SiC pressure sensors survived the high temperature and measured instabilities, the diaphragm (force collector) was not thin enough to be sensitive in resolving sub-pound-per-square-inch pressures; 30 meters is the thinnest diaphragm achievable with conventional reactive ion etching (RIE) processes. Therefore, this precludes its use for sub-pound-per-square-inch pressure measurement with high fidelity. In order to effectively resolve sub-pound-per-square-inch pressures, a thinner more sensitive diaphragm (10 meters) is needed. To achieve this would require a new and innovative fabrication process technique.

  11. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  12. Crystallization of DNA-coated colloids

    PubMed Central

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  13. Force generation and temperature-jump and length-jump tension transients in muscle fibers.

    PubMed Central

    Davis, J S; Rodgers, M E

    1995-01-01

    Muscle tension rises with increasing temperature. The kinetics that govern the tension rise of maximally Ca(2+)-activated, skinned rabbit psoas fibers over a temperature range of 0-30 degrees C was characterized in laser temperature-jump experiments. The kinetic response is simple and can be readily interpreted in terms of a basic three-step mechanism of contraction, which includes a temperature-sensitive rapid preequilibrium(a) linked to a temperature-insensitive rate-limiting step and followed by a temperature-sensitive tension-generating step. These data and mechanism are compared and contrasted with the more complex length-jump Huxley-Simmons phases in which all states that generate tension or bear tension are perturbed. The rate of the Huxley-Simmons phase 4 is temperature sensitive at low temperatures but plateaus at high temperatures, indicating a change in rate-limiting step from a temperature-sensitive (phase 4a) to a temperature-insensitive reaction (phase 4b); the latter appears to correlate with the slow, temperature-insensitive temperature-jump relaxation. Phase 3 is absent in the temperature-jump, which excludes it from tension generation. We confirm that de novo tension generation occurs as an order-disorder transition during phase 2slow and the equivalent, temperature-sensitive temperature-jump relaxation. PMID:7612845

  14. High temperature sensitivity is intrinsic to voltage-gated potassium channels

    PubMed Central

    Yang, Fan; Zheng, Jie

    2014-01-01

    Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. DOI: http://dx.doi.org/10.7554/eLife.03255.001 PMID:25030910

  15. Vaccines Cold Chain Monitoring: A Cross Sectional Study at Three District In Indonesia

    NASA Astrophysics Data System (ADS)

    Saraswati, L. D.; Ginandjar, P.; Budiyono; Martini; Udiyono, A.; Kairul

    2018-02-01

    Vaccine cold chain is a procedure that is used to keep vaccines at a certain temperature. The aim was to describe the vaccine cold chain management of basic immunization program in health centers district. The study design descriptive observational. The samples was Health Centers (HCs); 12 HCs in Sarolangun Jambi Province, 16 HCs in Brebes Central Java Province, and 24 HCs in Temanggung Central Java Provice. Basic immunization vaccines were BCG, DPT-HB-HIB, Polio, and Measles. The results showed proportion of officers graduated from college in Sorolangun, Brebes, and Temanggung were 66.7%, 81.3%, and 52.0% respectively. Proportion of HC that did not have thermometer and fridge freeze was mostly found in Temanggung (52%) and in Sorolangun (91.7%). The heat-sensitive vaccines arranged near the evaporator mostly found in Temanggung (88%), while freeze-sensitive vaccines prepared away of the evaporator mostly in Brebes (100%). Freezer temperature recording chart is not available mostly found in Sorolangun and Brebes (50%), In Sorolangun 41.7% of the officers monitoring 2 times a day and mostly (91.7%) the refrigerator thermostat tape was not isolated. The officers did not perform daily maintenance (50%), weekly (66.7%), and montly (33.3%) mostly found in Sorolangun. From this study we can conclude there is no vaccine immunization program management in Sarolangun, Brebes, and Temanggung that managed according to Ministry of Health Regulations number 42/2013 on the Implementation of immunization. Improvement oversight, control over management of vaccine and management personal, also managing the temperature of the vaccine were recommended.

  16. Adsorption and photodecomposition of Mo(CO)[sub 6] on Si(111) 7[times]7: An infrared reflection absorption spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, L.J.; Buntin, S.A.; Chu, P.M.

    1994-02-15

    The adsorption and photodecomposition of Mo(CO)[sub 6] adsorbed on Si(111) 7[times]7 surfaces has been studied with Auger electron spectroscopy, temperature programmed desorption, low energy electron diffraction and infrared reflection absorption spectroscopy in a single external reflection configuration. The external-reflection technique is demonstrated to have adequate sensitivity to characterize submonolayer coverages of photogenerated Mo(CO)[sub [ital x

  17. Whole season compared to growth-stage resolved temperature trends: implications for US maize yield

    NASA Astrophysics Data System (ADS)

    Butler, E. E.; Mueller, N. D.; Huybers, P. J.

    2014-12-01

    The effect of temperature on maize yield has generally been considered using a single value for the entire growing season. We compare the effect of temperature trends on yield between two distinct models: a single temperature sensitivity for the whole season and a variable sensitivity across four distinct agronomic development stages. The more resolved variable-sensitivity model indicates roughly a factor of two greater influence of temperature on yield than that implied by the single-sensitivity model. The largest discrepancies occur in silking, which is demonstrated to be the most sensitive stage in the variable-sensitivity model. For instance, whereas median yields are observed to be only 53% of typical values during the hottest 1% of silking-stage temperatures, the single-sensitivity model over predicts median yields of 68% whereas the variable-sensitivity model more correctly predicts median yields of 61%. That the variable sensitivity model is also not capable of capturing the full extent of yield losses suggests that further refinement to represent the non-linear response would be useful. Results from the variable sensitivity model also indicate that management decisions regarding planting times, which have generally shifted toward earlier dates, have led to greater yield benefit than that implied by the single-sensitivity model. Together, the variation of both temperature trends and yield variability within growing stages calls for closer attention to how changes in management interact with changes in climate to ultimately affect yields.

  18. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.

    PubMed

    Santin, Joseph M; Watters, Kayla C; Putnam, Robert W; Hartzler, Lynn K

    2013-12-15

    The locus coeruleus (LC) is a chemoreceptive brain stem region in anuran amphibians and contains neurons sensitive to physiological changes in CO2/pH. The ventilatory and central sensitivity to CO2/pH is proportional to the temperature in amphibians, i.e., sensitivity increases with increasing temperature. We hypothesized that LC neurons from bullfrogs, Lithobates catesbeianus, would increase CO2/pH sensitivity with increasing temperature and decrease CO2/pH sensitivity with decreasing temperature. Further, we hypothesized that cooling would decrease, while warming would increase, normocapnic firing rates of LC neurons. To test these hypotheses, we used whole cell patch-clamp electrophysiology to measure firing rate, membrane potential (V(m)), and input resistance (R(in)) in LC neurons in brain stem slices from adult bullfrogs over a physiological range of temperatures during normocapnia and hypercapnia. We found that cooling reduced chemosensitive responses of LC neurons as temperature decreased until elimination of CO2/pH sensitivity at 10°C. Chemosensitive responses increased at elevated temperatures. Surprisingly, chemosensitive LC neurons increased normocapnic firing rate and underwent membrane depolarization when cooled and decreased normocapnic firing rate and underwent membrane hyperpolarization when warmed. These responses to temperature were not observed in nonchemosensitive LC neurons or neurons in a brain stem slice 500 μm rostral to the LC. Our results indicate that modulation of cellular chemosensitivity within the LC during temperature changes may influence temperature-dependent respiratory drive during acid-base disturbances in amphibians. Additionally, cold-activated/warm-inhibited LC neurons introduce paradoxical temperature sensitivity in respiratory control neurons of amphibians.

  19. Temperature sensitivity of soil organic carbon decomposition increased with mean carbon residence time: Field incubation and data assimilation.

    PubMed

    Zhou, Xuhui; Xu, Xia; Zhou, Guiyao; Luo, Yiqi

    2018-02-01

    Temperature sensitivity of soil organic carbon (SOC) decomposition is one of the major uncertainties in predicting climate-carbon (C) cycle feedback. Results from previous studies are highly contradictory with old soil C decomposition being more, similarly, or less sensitive to temperature than decomposition of young fractions. The contradictory results are partly from difficulties in distinguishing old from young SOC and their changes over time in the experiments with or without isotopic techniques. In this study, we have conducted a long-term field incubation experiment with deep soil collars (0-70 cm in depth, 10 cm in diameter of PVC tubes) for excluding root C input to examine apparent temperature sensitivity of SOC decomposition under ambient and warming treatments from 2002 to 2008. The data from the experiment were infused into a multi-pool soil C model to estimate intrinsic temperature sensitivity of SOC decomposition and C residence times of three SOC fractions (i.e., active, slow, and passive) using a data assimilation (DA) technique. As active SOC with the short C residence time was progressively depleted in the deep soil collars under both ambient and warming treatments, the residences times of the whole SOC became longer over time. Concomitantly, the estimated apparent and intrinsic temperature sensitivity of SOC decomposition also became gradually higher over time as more than 50% of active SOC was depleted. Thus, the temperature sensitivity of soil C decomposition in deep soil collars was positively correlated with the mean C residence times. However, the regression slope of the temperature sensitivity against the residence time was lower under the warming treatment than under ambient temperature, indicating that other processes also regulated temperature sensitivity of SOC decomposition. These results indicate that old SOC decomposition is more sensitive to temperature than young components, making the old C more vulnerable to future warmer climate. © 2017 John Wiley & Sons Ltd.

  20. Affordable MMICs for Air Force systems

    NASA Astrophysics Data System (ADS)

    Kemerley, Robert T.; Fayette, Daniel F.

    1991-05-01

    The paper deals with a program directed at demonstrating affordable MMIC chips - the microwave/mm-wave monolithic integrated circuit (MIMIC) program. Focus is placed on experiments involving the growth and characterization of III-V materials, and the design, fabrication, and evaluation of ICs in the 1 to 60 GHz frequency range, as well as efforts related to the reliability testing, failure analysis, and generation of qualified manufacture's list procedures for GaAs MMICs and modules. Attributes associated with GaAs-technology devices, quality, reliability, and performance in select environments are discussed, including the dependence of these structures over temperature ranges, electrostatic discharge sensitivity, and susceptibility to environmental stresses.

  1. Analysis of the temperature sensitivity of Japanese rubella vaccine strain TO-336.vac and its effect on immunogenicity in the guinea pig.

    PubMed

    Okamoto, Kiyoko; Ami, Yasushi; Suzaki, Yuriko; Otsuki, Noriyuki; Sakata, Masafumi; Takeda, Makoto; Mori, Yoshio

    2016-04-01

    The marker of Japanese domestic rubella vaccines is their lack of immunogenicity in guinea pigs. This has long been thought to be related to the temperature sensitivity of the viruses, but supporting evidence has not been described. In this study, we generated infectious clones of TO-336.vac, a Japanese domestic vaccine, TO-336.GMK5, the parental virus of TO-336.vac, and their mutants, and determined the molecular bases of their temperature sensitivity and immunogenicity in guinea pigs. The results revealed that Ser(1159) in the non-structural protein-coding region was responsible for the temperature sensitivity of TO-336.vac dominantly, while the structural protein-coding region affected the temperature sensitivity subordinately. The findings further suggested that the temperature sensitivity of TO-336.vac affected the antibody induction in guinea pigs after subcutaneous inoculation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Determining noise temperatures in beam waveguide systems

    NASA Technical Reports Server (NTRS)

    Imbriale, W.; Veruttipong, W.; Otoshi, T.; Franco, M.

    1994-01-01

    A new 34-m research and development antenna was fabricated and tested as a precursor to introducing beam waveguide (BWG) antennas and Ka-band (32 GHz) frequencies into the NASA/JPL Deep Space Network. For deep space use, system noise temperature is a critical parameter. There are thought to be two major contributors to noise temperature in a BWG system: the spillover past the mirrors, and the conductivity loss in the walls. However, to date, there are no generally accepted methods for computing noise temperatures in a beam waveguide system. An extensive measurement program was undertaken to determine noise temperatures in such a system along with a correspondent effort in analytic prediction. Utilizing a very sensitive radiometer, noise temperature measurements were made at the Cassegrain focus, an intermediate focal point, and the focal point in the basement pedestal room. Several different horn diameters were used to simulate different amounts of spillover past the mirrors. Two analytic procedures were developed for computing noise temperature, one utilizing circular waveguide modes and the other a semiempirical approach. The results of both prediction methods are compared to the experimental data.

  3. Interactions Between Mineral Surfaces, Substrates, Enzymes, and Microbes Result in Hysteretic Temperature Sensitivities and Microbial Carbon Use Efficiencies and Weaker Predicted Carbon-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Tang, J.

    2014-12-01

    We hypothesize that the large observed variability in decomposition temperature sensitivity and carbon use efficiency arises from interactions between temperature, microbial biogeochemistry, and mineral surface sorptive reactions. To test this hypothesis, we developed a numerical model that integrates the Dynamic Energy Budget concept for microbial physiology, microbial trait-based community structure and competition, process-specific thermodynamically ­­based temperature sensitivity, a non-linear mineral sorption isotherm, and enzyme dynamics. We show, because mineral surfaces interact with substrates, enzymes, and microbes, both temperature sensitivity and microbial carbon use efficiency are hysteretic and highly variable. Further, by mimicking the traditional approach to interpreting soil incubation observations, we demonstrate that the conventional labile and recalcitrant substrate characterization for temperature sensitivity is flawed. In a 4 K temperature perturbation experiment, our fully dynamic model predicted more variable but weaker carbon-climate feedbacks than did the static temperature sensitivity and carbon use efficiency model when forced with yearly, daily, and hourly variable temperatures. These results imply that current earth system models likely over-estimate the response of soil carbon stocks to global warming.

  4. Electrocutaneous sensitivity: effects of skin temperature.

    PubMed

    Larkin, W D; Reilly, J P

    1986-01-01

    The effect of human skin temperature on electrocutaneous sensitivity was examined using brief capacitive discharges. Stimuli were designed to ensure that sensory effects would be independent of skin resistance and would reflect underlying neural excitability as closely as possible. Skin temperature was manipulated by immersing the forearm in circulating hot or cold air. Detection thresholds on the arm and fingertip were raised by cooling, but were not altered by heating. Temperature-related sensitivity shifts were described by the same multiplicative factors for both threshold and suprathreshold levels. The temperature coefficient (Q10) for cutaneous sensitivity under these conditions was approximately 1.3.

  5. Predicting temperature drop rate of mass concrete during an initial cooling period using genetic programming

    NASA Astrophysics Data System (ADS)

    Bhattarai, Santosh; Zhou, Yihong; Zhao, Chunju; Zhou, Huawei

    2018-02-01

    Thermal cracking on concrete dams depends upon the rate at which the concrete is cooled (temperature drop rate per day) within an initial cooling period during the construction phase. Thus, in order to control the thermal cracking of such structure, temperature development due to heat of hydration of cement should be dropped at suitable rate. In this study, an attempt have been made to formulate the relation between cooling rate of mass concrete with passage of time (age of concrete) and water cooling parameters: flow rate and inlet temperature of cooling water. Data measured at summer season (April-August from 2009 to 2012) from recently constructed high concrete dam were used to derive a prediction model with the help of Genetic Programming (GP) software “Eureqa”. Coefficient of Determination (R) and Mean Square Error (MSE) were used to evaluate the performance of the model. The value of R and MSE is 0.8855 and 0.002961 respectively. Sensitivity analysis was performed to evaluate the relative impact on the target parameter due to input parameters. Further, testing the proposed model with an independent dataset those not included during analysis, results obtained from the proposed GP model are close enough to the real field data.

  6. A temperature-programmed X-ray photoelectron spectroscopy (TPXPS) study of chlorine adsorption and diffusion on Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Piao, H.; Adib, K.; Barteau, Mark A.

    2004-05-01

    Synchrotron-based temperature programmed X-ray photoelectron spectroscopy (TPXPS) has been used to investigate the surface chloridation of Ag(1 1 1) to monolayer coverages. At 100 K both atomic and molecular chlorine species are present on the surface; adsorption at 300 K or annealing the adlayer at 100 K to this temperature generates adsorbed Cl atoms. As the surface is heated from 300 to 600 K, chlorine atoms diffuse below the surface, as demonstrated by attenuation of the Cl2p signals in TPXPS experiments. Quantitative analysis of the extent of attenuation is consistent with chlorine diffusion below the topmost silver layer. For coverages in the monolayer and sub-monolayer regime, chlorine diffusion to and from the bulk appears not to be significant, in contrast to previous results obtained at higher chlorine loadings. Chlorine is removed from the surface at 650-780 K by desorption as AgCl. These results demonstrate that chlorine diffusion beneath the surface does occur at coverages and temperatures relevant to olefin epoxidation processes carried out on silver catalysts with chlorine promoters. The surface sensitivity advantages of synchrotron-based XPS experiments were critical to observing Cl diffusion to the sub-surface at low coverages.

  7. Influence of Soil Organic Matter Stabilization Mechanisms on Temperature Sensitivity of Soil Respiration

    NASA Astrophysics Data System (ADS)

    Gillabel, J.; de Gryze, S.; Six, J.; Merckx, R.

    2007-12-01

    Knowledge on the sensitivity of soil organic matter (SOM) respiration to changes in temperature is crucial for predicting future impacts of climate change on soil C stocks. Temperature sensitivity of respiration is determined by the chemical structure of the compound to be decomposed and by the availability of the organic matter for decomposers. Biochemically recalcitrant SOM has a higher temperature sensitivity than biochemically labile SOM. However, it is hypothesized that the stabilization of SOM by interaction with the soil matrix could be an important attenuating control on temperature sensitivity. We investigated the effect of different SOM stabilization mechanisms on temperature sensitivity of SOM respiration. Two main mechanisms were considered: chemical interactions of SOM with clay and silt particles, and physical protection inside aggregates. Soil samples from an agricultural silt loam soil were fractionated by wet-sieving into macroaggregates, microaggregates and silt+clay fractions. SOM stabilization in the silt+clay fraction occurs mainly chemically, whereas in aggregates physical protection of SOM is more important. Samples of each fraction and of bulk soil were incubated at two temperatures (20°C and 30°C) for one month. After 2% of total soil carbon was respired, temperature sensitivity was determined for respiration of the next 0.5% of total soil carbon. This was done by calculating a Q10 value as the ratio of the times needed at each temperature to respire that fraction of the soil C. This method allows determination of temperature sensitivity independent of C quality. Calculated Q10 values decreased in the order bulk soil > macroaggregates > microaggregates > silt+clay, with the difference between macroaggregate Q10 and silt+clay Q10 being the only significant difference. These results indicate that protection of SOM attenuates temperature sensitivity, with chemical protection (silt+clay) having a larger effect than physical protection (aggregates).

  8. Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study

    NASA Astrophysics Data System (ADS)

    Hansell, R. A.; Liou, K. N.; Ou, S. C.; Tsay, S. C.; Ji, Q.; Reid, J. S.

    2008-09-01

    Numerical simulations and sensitivity studies have been performed to assess the potential for using brightness temperature spectra from a ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the United Arab Emirates Unified Aerosol Experiment (UAE2) for detecting/retrieving mineral dust aerosol. A methodology for separating dust from clouds and retrieving the dust IR optical depths was developed by exploiting differences between their spectral absorptive powers in prescribed thermal IR window subbands. Dust microphysical models were constructed using in situ data from the UAE2 and prior field studies while composition was modeled using refractive index data sets for minerals commonly observed around the UAE region including quartz, kaolinite, and calcium carbonate. The T-matrix, finite difference time domain (FDTD), and Lorenz-Mie light scattering programs were employed to calculate the single scattering properties for three dust shapes: oblate spheroids, hexagonal plates, and spheres. We used the Code for High-resolution Accelerated Radiative Transfer with Scattering (CHARTS) radiative transfer program to investigate sensitivity of the modeled AERI spectra to key dust and atmospheric parameters. Sensitivity studies show that characterization of the thermodynamic boundary layer is crucial for accurate AERI dust detection/retrieval. Furthermore, AERI sensitivity to dust optical depth is manifested in the strong subband slope dependence of the window region. Two daytime UAE2 cases were examined to demonstrate the present detection/retrieval technique, and we show that the results compare reasonably well to collocated AERONET Sun photometer/MPLNET micropulse lidar measurements. Finally, sensitivity of the developed methodology to the AERI's estimated MgCdTe detector nonlinearity was evaluated.

  9. Temperature Sensitivities of Extracellular Enzyme Vmax and Km Across Thermal Environments

    NASA Astrophysics Data System (ADS)

    Allison, S. D.; Romero-Olivares, A.; Lu, Y.; Taylor, J.; Treseder, K. K.

    2017-12-01

    The magnitude and direction of carbon cycle feedbacks under climate warming remain uncertain due to insufficient knowledge about the temperature sensitivity of microbial processes in soil. Enzymatic rates could increase at higher temperatures, but this response is determined by multiple parameters that may change over time if soil microbes adapt to warming. We used the Michaelis-Menten relationship, the Arrhenius relationship, and biochemical transition state theory to construct hypotheses about the responses of extracellular enzyme Vmax and Km to temperature. Based on the Arrhenius relationship, we hypothesized that Vmax and Km would show positive temperature sensitivities. For enzymes from warmer environments, we expected to find lower Vmax, Km, and Km temperature sensitivity but higher Vmax temperature sensitivity. We tested these hypotheses with enzymes from isolates of the filamentous fungus Neurospora discreta collected around the globe and from decomposing leaf litter in a warming experiment in Alaskan boreal forest. Vmax and Km of most Neurospora extracellular enzymes were temperature sensitive with average Vmax Q10 ranging from 1.48 to 2.25 and Km Q10 ranging from 0.71 to 2.80. For both Vmax and Km, there was a tendency for the parameter to correlate negatively with its temperature sensitivity, a pattern predicted by biochemical theory. Also in agreement with theory, Vmax and Km were positively correlated for some enzymes. In contrast, there was little support for biochemical theory when comparing Vmax and Km across thermal environments. There was no relationship between temperature sensitivity of Vmax or Km and mean annual temperature of the isolation site for Neurospora strains. There was some evidence for greater Vmax under experimental warming in Alaskan litter, but the temperature sensitivities of Vmax and Km did not vary with warming as expected. We conclude that relationships among Vmax, Km, and temperature are largely consistent with biochemical theory, and our enzyme data should be useful for parameterizing trait-based models of microbial processes. However, theoretical predictions about adaptation to thermal environment were not supported by our data, suggesting that covarying edaphic and ecological factors may play a dominant role in soil enzyme responses to climate warming.

  10. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2

    PubMed Central

    Liu, Beiying; Qin, Feng

    2016-01-01

    Thermal TRP channels mediate temperature transduction and pain sensation. The vanilloid receptor TRPV2 is involved in detection of noxious heat in a subpopulation of high-threshold nociceptors. It also plays a critical role in development of thermal hyperalgesia, but the underlying mechanism remains uncertain. Here we analyze the heat sensitivity of the TRPV2 channel. Heat activation of the channel exhibits strong use dependence. Prior heat activation can profoundly alter its subsequent temperature responsiveness, causing decreases in both temperature activation threshold and slope sensitivity of temperature dependence while accelerating activation time courses. Notably, heat and agonist activations differ in cross use-dependence. Prior heat stimulation can dramatically sensitize agonist responses, but not conversely. Quantitative analyses indicate that the use dependence in heat sensitivity is pertinent to the process of temperature sensing by the channel. The use dependence of TRPV2 reveals that the channel can have a dynamic temperature sensitivity. The temperature sensing structures within the channel have multiple conformations and the temperature activation pathway is separate from the agonist activation pathway. Physiologically, the use dependence of TRPV2 confers nociceptors with a hypersensitivity to heat and thus provides a mechanism for peripheral thermal hyperalgesia. PMID:27074678

  11. Transitiometric analysis of solid II/solid I transition in anhydrous theophylline.

    PubMed

    Legendre, Bernard; Randzio, Stanislaw L

    2007-10-01

    For the first time, with the use of a high sensitivity, low heating rate, scanning transitiometry, it was possible to distinguish and characterise the polymorphic equilibrium transition between forms II and I in anhydrous theophylline. In this manner it was univocally proved, that forms II and I in theophylline are enantiotropically related. The temperature and enthalpy for that transition are as follows: T(trs)(II/I)=536.8+/-2.2K; Delta(trs)H(II/I)=1.99+/-0.09 kJ/mol. Making use of advantages of very slow heating rate and of a high energetic sensitivity of the transitiometer it was possible to observe in detail the polymorphic transition followed by melting of high temperature form I and to stop the solid I-liquid transition at a desired point of equilibrium. Such a solid I-liquid equilibrium could be stabilised and then displaced back to the crystallisation of form I with an adequate use of a precise temperature programming. In such a way a pure single phase of form I of theophylline was prepared. This fact was confirmed by X-ray powder diffraction patterns and calorimetric traces of fusion of the crystallised product. The temperature and enthalpy of the form I-liquid transition are as follows: T(fus)(I)=546.5+/-0.2K and Delta(fus)H(I)=29.37+/-0.29 kJ/mol.

  12. Techniques for Transition and Surface Temperature Measurements on Projectiles at Hypersonic Velocities- A Status Report

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2005-01-01

    A research effort to advance techniques for determining transition location and measuring surface temperatures on graphite-tipped projectiles in hypersonic flight in a ballistic range is described. Projectiles were launched at muzzle velocities of approx. 4.7 km/sec into air at pressures of 190-570 Torr. Most launches had maximum pitch and yaw angles of 2.5-5 degrees at pressures of 380 Torr and above and 3-6 degrees at pressures of 190-380 Torr. Arcjet-ablated and machined, bead-blasted projectiles were launched; special cleaning techniques had to be developed for the latter class of projectiles. Improved methods of using helium to remove the radiating gas cap around the projectiles at the locations where ICCD (intensified charge coupled device) camera images were taken are described. Two ICCD cameras with a wavelength sensitivity range of 480-870 nm have been used in this program for several years to obtain images. In the last year, a third camera, with a wavelength sensitivity range of 1.5-5 microns [in the infrared (IR)], has been added. ICCD and IR camera images of hemisphere nose and 70 degree sphere-cone nose projectiles at velocities of 4.0-4.7 km/sec are presented. The ICCD images clearly show a region of steep temperature rise indicative of transition from laminar to turbulent flow. Preliminary temperature data for the graphite projectile noses are presented.

  13. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Treesearch

    Bing Song; Shuli Niu; Ruise Luo; Yiqi Luo; Jiquan Chen; Guirui Yu; Janusz Olejnik; Georg Wohlfahrt; Gerard Kiely; Ako Noormets; Leonardo Montagnani; Alessandro Cescatti; Vincenzo Magliulo; Beverly Elizabeth Law; Magnus Lund; Andrej Varlagin; Antonio Raschi; Matthias Peichl; Mats B. Nilsson; Lutz Merbold

    2014-01-01

    Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and...

  14. Development of Designer Diamond Anvils for High Pressure-High-Temperature Experiments in Support of the Stockpile Stewardship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogesh K. Vohra

    The focus of this program at the University of Alabama at Birmingham (UAB) is to develop the next generation of designer diamond anvils that can perform simultaneous joule heating and temperature profile measurements in a diamond anvil cell. A series of tungsten-rhenium thermocouples will be fabricated onto to the anvil and encapsulated by a chemical vapor deposited diamond layer to allow for a complete temperature profile measurement across the anvil. The tip of the diamond anvil will be engineered to reduce the thermal conductivity so that the tungsten-heating coils can be deposited on top of this layer. Several different approachesmore » will be investigated to engineer the tip of the diamond anvil for reduction in thermal conductivity (a) isotopic mixture of 12C and 13C in the diamond layer, (b) doping of diamond with impurities (nitrogen and/or boron), and (c) growing diamond in a higher concentration of methane in hydrogen plasma. Under this academic alliance with Lawrence Livermore National Laboratory (LLNL), PI and his graduate students will use the lithographic and diamond polishing facility at LLNL. This proposed next generation of designer diamond anvils will allow multi-tasking capability with the ability to measure electrical, magnetic, structural and thermal data on actinide materials with unparallel sensitivity in support of the stockpile stewardship program.« less

  15. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    PubMed

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel Riza

    This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. Inmore » this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.« less

  17. The art of maturity modeling. Part 2. Alternative models and sensitivity analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waples, D.W.; Suizu, Masahiro; Kamata, Hiromi

    1992-01-01

    The sensitivity of exploration decisions to variations in several input parameters for maturity modeling was examined for the MITI Rumoi well, Hokkaido, Japan. Decisions were almost completely insensitive to uncertainties about formation age and erosional removal across some unconformities, but were more sensitive to changes in removal during unconformities which occurred near maximum paleotemperatures. Exploration decisions were not very sensitive to the choice of a particular kinetic model for hydrocarbon generation. Uncertainties in kerogen type and the kinetics of different kerogen types are more serious than differences among the various kinetic models. Results of modeling using the TTI method weremore » unsatisfactory. Thermal history and timing and amount of hydrocarbon generation estimated or calculated using the TTI method were greatly different from those obtained using a purely kinetic model. The authors strongly recommend use of the kinetic R{sub o} method instead of the TTI method. If they had lacked measured R{sub o} data, subsurface temperature data, or both, their confidence in the modeling results would have been sharply reduced. Conceptual models for predicting heat flow and thermal conductivity are simply too weak at present to allow one to carry out highly meaningful modeling unless the input is constrained by measured data. Maturity modeling therefore requires the use of more, not fewer, measured temperature and maturity data. The use of sensitivity analysis in maturity modeling is very important for understanding the geologic system, for knowing what level of confidence to place on the results, and for determining what new types of data would be most necessary to improve confidence. Sensitivity analysis can be carried out easily using a rapid, interactive maturity-modeling program.« less

  18. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience

    USGS Publications Warehouse

    Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; Kennedy, M.; Devito, K.; Pomeroy, J.W.

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. ?? 2010 John Wiley & Sons, Ltd.

  19. Long-term fertilization of a boreal Norway spruce forest increases the temperature sensitivity of soil organic carbon mineralization

    PubMed Central

    Coucheney, Elsa; Strömgren, Monika; Lerch, Thomas Z; Herrmann, Anke M

    2013-01-01

    Boreal ecosystems store one-third of global soil organic carbon (SOC) and are particularly sensitive to climate warming and higher nutrient inputs. Thus, a better description of how forest managements such as nutrient fertilization impact soil carbon (C) and its temperature sensitivity is needed to better predict feedbacks between C cycling and climate. The temperature sensitivity of in situ soil C respiration was investigated in a boreal forest, which has received long-term nutrient fertilization (22 years), and compared with the temperature sensitivity of C mineralization measured in the laboratory. We found that the fertilization treatment increased both the response of soil in situ CO2 effluxes to a warming treatment and the temperature sensitivity of C mineralization measured in the laboratory (Q10). These results suggested that soil C may be more sensitive to an increase in temperature in long-term fertilized in comparison with nutrient poor boreal ecosystems. Furthermore, the fertilization treatment modified the SOC content and the microbial community composition, but we found no direct relationship between either SOC or microbial changes and the temperature sensitivity of C mineralization. However, the relation between the soil C:N ratio and the fungal/bacterial ratio was changed in the combined warmed and fertilized treatment compared with the other treatments, which suggest that strong interaction mechanisms may occur between nutrient input and warming in boreal soils. Further research is needed to unravel into more details in how far soil organic matter and microbial community composition changes are responsible for the change in the temperature sensitivity of soil C under increasing mineral N inputs. Such research would help to take into account the effect of fertilization managements on soil C storage in C cycling numerical models. PMID:24455147

  20. SEE Sensitivity Analysis of 180 nm NAND CMOS Logic Cell for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focus on Single Event Effects caused by energetic particle strike on sensitive locations in CMOS NAND logic cell designed in 180nm technology node to be operated in space radiation environment. The generation of SE transients as well as upsets as function of LET of incident particle has been determined for logic devices onboard LEO and GEO satellites. The minimum magnitude pulse and pulse-width for threshold LET was determined to estimate the vulnerability /susceptibility of device for heavy ion strike. The impact of temperature, strike location and logic state of NAND circuit on total SEU/SET rate was estimated with physical mechanism simulations using Visual TCAD, Genius, runSEU program and Crad computer codes.

  1. Updated Chemical Kinetics and Sensitivity Analysis Code

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan

    2005-01-01

    An updated version of the General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code has become available. A prior version of LSENS was described in "Program Helps to Determine Chemical-Reaction Mechanisms" (LEW-15758), NASA Tech Briefs, Vol. 19, No. 5 (May 1995), page 66. To recapitulate: LSENS solves complex, homogeneous, gas-phase, chemical-kinetics problems (e.g., combustion of fuels) that are represented by sets of many coupled, nonlinear, first-order ordinary differential equations. LSENS has been designed for flexibility, convenience, and computational efficiency. The present version of LSENS incorporates mathematical models for (1) a static system; (2) steady, one-dimensional inviscid flow; (3) reaction behind an incident shock wave, including boundary layer correction; (4) a perfectly stirred reactor; and (5) a perfectly stirred reactor followed by a plug-flow reactor. In addition, LSENS can compute equilibrium properties for the following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static and one-dimensional-flow problems, including those behind an incident shock wave and following a perfectly stirred reactor calculation, LSENS can compute sensitivity coefficients of dependent variables and their derivatives, with respect to the initial values of dependent variables and/or the rate-coefficient parameters of the chemical reactions.

  2. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2.

    PubMed

    Liu, Beiying; Qin, Feng

    2016-04-12

    Thermal TRP channels mediate temperature transduction and pain sensation. The vanilloid receptor TRPV2 is involved in detection of noxious heat in a subpopulation of high-threshold nociceptors. It also plays a critical role in development of thermal hyperalgesia, but the underlying mechanism remains uncertain. Here we analyze the heat sensitivity of the TRPV2 channel. Heat activation of the channel exhibits strong use dependence. Prior heat activation can profoundly alter its subsequent temperature responsiveness, causing decreases in both temperature activation threshold and slope sensitivity of temperature dependence while accelerating activation time courses. Notably, heat and agonist activations differ in cross use-dependence. Prior heat stimulation can dramatically sensitize agonist responses, but not conversely. Quantitative analyses indicate that the use dependence in heat sensitivity is pertinent to the process of temperature sensing by the channel. The use dependence of TRPV2 reveals that the channel can have a dynamic temperature sensitivity. The temperature sensing structures within the channel have multiple conformations and the temperature activation pathway is separate from the agonist activation pathway. Physiologically, the use dependence of TRPV2 confers nociceptors with a hypersensitivity to heat and thus provides a mechanism for peripheral thermal hyperalgesia. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. [Thermo-sensitive period and critical temperature of fertility transition of thermo-photo-sensitive genic male sterile wheat].

    PubMed

    Zhang, Jiankui; Feng, Li; He, Liren; Yu, Guodong

    2003-01-01

    The thermo-sensitive period and the critical temperature of fertility transition of C49S, a principal thermo-photosensitive genic male sterile line in two-line hybrid wheat, was studied in the growth chambers for controlling temperature and photoperiod. The seeds were sown on different time for some years. The results showed that the thermo-sensitive period in fertility expression of C49S was from PMC formation stage to mature pollen stage, and there were two most sensitive stages to temperature on fertility expression. One was the PMC meiosis stage, and the other was the middle microspore stage. The critical temperatures evoking a complete male sterility were the mean minimum temperature at PMC meiosis stage (Tmin1), the mean temperature at microspore stage (T2) and the mean minimum temperature at microspore stage (Tmin2) lower than 8.5 degrees C, 13.5 degrees C and 10.5 degrees C, respectively. The critical temperatures keeping a nearly normal male fertility Tmin1 and T2 and Tmin2 were higher than 11.5 degrees C, 15.0 degrees C and 12.5 degrees C, respectively. The value as well as the conditions and the risks of thermo-photo-sensitive genic male sterile line of wheat applied to hybrid wheat were evaluated in this paper.

  4. Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant

    NASA Astrophysics Data System (ADS)

    Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Ali, Wan Khairuddin Wan

    2012-09-01

    The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant

  5. Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M.; Upchurch, Billy T.; Sealey, Bradley S.; Leighty, Bradley D.; Burkett, Cecil G., Jr.; Jalali, Amir

    1997-01-01

    Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.

  6. Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration

    NASA Astrophysics Data System (ADS)

    Alster, Charlotte J.; Koyama, Akihiro; Johnson, Nels G.; Wallenstein, Matthew D.; von Fischer, Joseph C.

    2016-06-01

    There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.

  7. Evaluation and characterization of the methane-carbon dioxide decomposition reaction

    NASA Technical Reports Server (NTRS)

    Davenport, R. J.; Schubert, F. H.; Shumar, J. W.; Steenson, T. S.

    1975-01-01

    A program was conducted to evaluate and characterize the carbon dioxide-methane (CO2-CH4) decomposition reaction, i.e., CO2 + CH4 = 2C + 2H2O. The primary objective was to determine the feasibility of applying this reaction at low temperatures as a technique for recovering the oxygen (O2) remaining in the CO2 which exits mixed with CH4 from a Sabatier CO2 reduction subsystem (as part of an air revitalization system of a manned spacecraft). A test unit was designed, fabricated, and assembled for characterizing the performance of various catalysts for the reaction and ultraviolet activation of the CH4 and CO2. The reactor included in the test unit was designed to have sufficient capacity to evaluate catalyst charges of up to 76 g (0.17 lb). The test stand contained the necessary instrumentation and controls to obtain the data required to characterize the performance of the catalysts and sensitizers tested: flow control and measurement, temperature control and measurement, product and inlet gas analysis, and pressure measurement. A product assurance program was performed implementing the concepts of quality control and safety into the program effort.

  8. Body temperature and cold sensation during and following exercise under temperate room conditions in cold-sensitive young trained females.

    PubMed

    Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-11-01

    We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n  = 7) and non-cold-sensitive (Control, n  = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.

  10. Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    Dyck, K. A.; Ravelo, A. C.

    2011-12-01

    How high will Earth's global average surface temperature ultimately rise as greenhouse gas concentrations increase in the future? One way to tackle this question is to compare contemporaneous temperature and greenhouse gas concentration data from paleoclimate records, while considering that other radiative forcing mechanisms (e.g. changes in the amount and distribution of incoming solar radiation associated with changes in the Earth's orbital configuration) also contribute to surface temperature change. Since the sensitivity of surface temperature varies with location and latitude, here we choose a central location representative of the west Pacific warm pool, far from upwelling regions or surface temperature gradients in order to minimize climate feedbacks associated with high-latitude regions or oceanic dynamics. The 'steady-state' or long-term temperature change associated with greenhouse gas radiative forcing is often labeled as equilibrium (or 'Earth system') climate sensitivity to the doubling of atmospheric greenhouse gas concentration. Climate models suggest that Earth system sensitivity does not change dramatically over times when CO2 was lower or higher than the modern atmospheric value. Thus, in our investigation of the changes in tropical SST, from the glacial to interglacial states when greenhouse gas forcing nearly doubled, we use Late Pleistocene paleoclimate records to constrain earth system sensitivity for the tropics. Here we use Mg/Ca-paleothermometry using the foraminifera G. ruber from ODP Site 871 from the past 500 kyr in the western Pacific warm pool to estimate tropical Pacific equilibrium climate sensitivity to a doubling of greenhouse gas concentrations to be ~4°C. This tropical SST sensitivity to greenhouse gas forcing is ~1-2°C higher than that predicted by climate models of past glacial periods or future warming for the tropical Pacific. Equatorial Pacific SST sensitivity may be higher than predicted by models for a number of reasons. First, models may not be adequately representing long-term deep ocean feedbacks. Second, models may incorrectly parameterize tropical cloud (or other short-term) feedback processes. Lastly, either paleo-temperature or radiative forcing may have been incorrectly estimated (e.g. through calibration of paleoclimate evidence for temperature change). Since theory suggests that surface temperature in the high latitudes is more sensitive to radiative forcing changes than surface temperature in the tropics, the results of this study also imply that globally averaged Earth system sensitivity to greenhouse gas concentrations may be higher than most climate models predict.

  11. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    NASA Astrophysics Data System (ADS)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  12. Breaking through the glass ceiling: the correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, T(g) (103 K). Layered films, consisting of CH(3)OH and CD(3)OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above T(g). The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  13. Isolation of Temperature-Sensitive Mutants of Arabidopsis thaliana That Are Defective in the Redifferentiation of Shoots.

    PubMed Central

    Yasutani, I.; Ozawa, S.; Nishida, T.; Sugiyama, M.; Komamine, A.

    1994-01-01

    Three temperature-sensitive mutants of Arabidopsis thaliana that were defective in the redifferentiation of shoots were isolated as tools for the study of organogenesis. M3 lines were constructed by harvesting M3 seeds separately from each M2 plant. Comparative examination of shoot redifferentiation in root explants of 2700 M3 lines at 22[deg]C (permissive temperature) and at 27[deg]C (restrictive temperature) led to the identification of seven temperature-sensitive mutant lines. Genetic tests of three of the seven mutant lines indicated that temperature-sensitive redifferentiation of shoots in these three lines resulted from single, nuclear, recessive mutations in three different genes, designated SRD1, SRD2, and SRD3. The morphology of root explants of srd mutants cultured at the restrictive temperature suggests that the products of these SRD genes function at different stages of the redifferentiation of shoots. PMID:12232244

  14. Primary research efforts on exploring the commercial possibilities of thin film growth and materials purification in space

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The progress made on research programs in the 1987 to 1988 year is reported. The research is aimed at producing thin film semiconductors and superconductor materials in space. Sophisticated vacuum chambers and equipment were attained for the epitaxial thin film growth of semiconductors, metals and superconductors. In order to grow the best possible epitaxial films at the lowest possible temperatures on earth, materials are being isoelectronically doped during growth. It was found that isoelectrically doped film shows the highest mobility in comparison with films grown at optimal temperatures. Success was also attained in growing epitaxial films of InSb on sapphire which show promise for infrared sensitive devices in the III-V semiconductor system.

  15. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  16. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  17. Sensitivity of surface temperature and atmospheric temperature to perturbations in the stratospheric concentration of ozone and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L. B.; Boughner, R. E.

    1976-01-01

    A radiative-convective model is proposed for estimating the sensitivity of the atmospheric radiative heating rates and atmospheric and surface temperatures to perturbations in the concentration of O3 and NO2 in the stratosphere. Contribution to radiative energy transfer within the atmosphere from H2O, CO2, O3, and NO2 is considered. It is found that the net solar radiation absorbed by the earth-atmosphere system decreases with a reduction in O3; if the reduction of O3 is accompanied by an increase in NO2, there is a compensating effect due to solar absorption by NO2. The surface temperature and atmospheric temperature decrease with decreasing stratospheric O3. Another major conclusion is the strong sensitivity of surface temperature to the vertical distribution of O3 within the atmosphere. The results should be considered as reflecting the sensitivity of the proposed model rather than the sensitivity of the actual earth-atmosphere system.

  18. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    NASA Technical Reports Server (NTRS)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  19. Identification of ribonucleotide reductase mutation causing temperature-sensitivity of herpes simplex virus isolates from whitlow by deep sequencing.

    PubMed

    Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu

    2015-06-01

    Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.

  20. Variable sensitivity of US maize yield to high temperatures across developmental stages

    NASA Astrophysics Data System (ADS)

    Butler, E. E.; Huybers, P. J.

    2013-12-01

    The sensitivity of maize to high temperatures has been widely demonstrated. Furthermore, field work has indicated that reproductive development stages are particularly sensitive to stress, but this relationship has not been quantified across a wide geographic region. Here, the relationship between maize yield and temperature variations is examined as a function of developmental stage. US state-level data from the National Agriculture Statistics Service provide dates for six growing stages: planting, silking, doughing, dented, mature, and harvested. Temperatures that correspond to each developmental stage are then inferred from a network of weather station observations interpolated to the county level, and a multiple linear regression technique is employed to estimate the sensitivity of county yield outcomes to variations in growing-degree days and an analogous measure of high temperatures referred to as killing-degree days. Uncertainties in the transition times between county-level growth stages are accounted for. Results indicate that the silking and dented stages are generally the most sensitive to killing degree days, with silking the most sensitive stage in the US South and dented the most sensitive in the US North. These variable patterns of sensitivity aid in interpreting which weather events are of greatest significance to maize yields and provide some insight into how shifts in planting time or changes in developmental timing would influence the risks associated with exposure to high temperatures.

  1. Visual Indicators on Vaccine Boxes as Early Warning Tools to Identify Potential Freeze Damage.

    PubMed

    Angoff, Ronald; Wood, Jillian; Chernock, Maria C; Tipping, Diane

    2015-07-01

    The aim of this study was to determine whether the use of visual freeze indicators on vaccines would assist health care providers in identifying vaccines that may have been exposed to potentially damaging temperatures. Twenty-seven sites in Connecticut involved in the Vaccine for Children Program participated. In addition to standard procedures, visual freeze indicators (FREEZEmarker ® L; Temptime Corporation, Morris Plains, NJ) were affixed to each box of vaccine that required refrigeration but must not be frozen. Temperatures were monitored twice daily. During the 24 weeks, all 27 sites experienced triggered visual freeze indicator events in 40 of the 45 refrigerators. A total of 66 triggered freeze indicator events occurred in all 4 types of refrigerators used. Only 1 of the freeze events was identified by a temperature-monitoring device. Temperatures recorded on vaccine data logs before freeze indicator events were within the 35°F to 46°F (2°C to 8°C) range in all but 1 instance. A total of 46,954 doses of freeze-sensitive vaccine were stored at the time of a visual freeze indicator event. Triggered visual freeze indicators were found on boxes containing 6566 doses (14.0% of total doses). Of all doses stored, 14,323 doses (30.5%) were of highly freeze-sensitive vaccine; 1789 of these doses (12.5%) had triggered indicators on the boxes. Visual freeze indicators are useful in the early identification of freeze events involving vaccines. Consideration should be given to including these devices as a component of the temperature-monitoring system for vaccines.

  2. Fiber-Optic Thermal Sensor for TiN Film Crack Monitoring

    PubMed Central

    Hsu, Hsiang-Chang; Hsieh, Tso-Sheng; Chen, Yi-Chian; Chen, Hung-En; Tsai, Liren

    2017-01-01

    The study focuses on the thermal and temperature sensitivity behavior of an optical fiber sensor device. In this article, a titanium nitride (TiN)-coated fiber Bragg grating (FBG) sensor fabricated using an ion beam sputtering system was investigated. The reflection spectra of the FBG sensor were tested using R-soft optical software to simulate the refractive index sensitivity. In these experiments, the temperature sensitivity of the TiN FBG was measured at temperatures ranging from 100 to 500 °C using an optical spectrum analyzer (OSA). The results showed that the temperature sensitivity of the proposed TiN FBG sensor reached 12.8 pm/°C for the temperature range of 100 to 300 °C and 20.8 pm/°C for the temperature range of 300 to 500 °C. Additionally, we found that the produced oxidation at temperatures of 400–500 °C caused a crack, with the crack becoming more and more obvious at higher and higher temperatures. PMID:29137131

  3. Activatable thermo-sensitive ICG encapsulated pluronic nanocapsules for temperature sensitive fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Nouizi, Farouk; Sampathkumaran, Uma; Zhu, Yue; Alam, Maksudul M.; Gulsen, Gultekin

    2015-03-01

    Fluorescent tomography has been hindered by poor tissue penetration and weak signal which results in poor spatial resolution and quantification accuracy. Recently, it has been reported that activatable temperature responsive fluorescent probes which respond to focused ultrasound heating can improve the resolution and quantification of fluorescent tomography in deep tissue. This has lead to a new imaging modality, "Temperature-modulated fluorescent tomography." This technique relies on activatable thermo-sensitive fluorescent nanocapsules for whose fluorescence quantum efficiency is temperature dependent. Within a 4-5° C temperature range, the fluorescent signal increase more than 10-fold. In this molecular probe, Indocyanine Green (ICG) is encapsulated inside the core of a thermo-reversible pluronic micelle. Here we show the fluorescence response and temperature range of the nanocapsules which have been optimized for a higher temperature range to be used for in vivo animal imaging. We report on the feasibility of these temperature-sensitive reversible nanocapsules for in vivo applications by studying the pharmacokinetics in a subcutaneous mouse tumor model in vivo.

  4. The influence of local spring temperature variance on temperature sensitivity of spring phenology.

    PubMed

    Wang, Tao; Ottlé, Catherine; Peng, Shushi; Janssens, Ivan A; Lin, Xin; Poulter, Benjamin; Yue, Chao; Ciais, Philippe

    2014-05-01

    The impact of climate warming on the advancement of plant spring phenology has been heavily investigated over the last decade and there exists great variability among plants in their phenological sensitivity to temperature. However, few studies have explicitly linked phenological sensitivity to local climate variance. Here, we set out to test the hypothesis that the strength of phenological sensitivity declines with increased local spring temperature variance, by synthesizing results across ground observations. We assemble ground-based long-term (20-50 years) spring phenology database (PEP725 database) and the corresponding climate dataset. We find a prevalent decline in the strength of phenological sensitivity with increasing local spring temperature variance at the species level from ground observations. It suggests that plants might be less likely to track climatic warming at locations with larger local spring temperature variance. This might be related to the possibility that the frost risk could be higher in a larger local spring temperature variance and plants adapt to avoid this risk by relying more on other cues (e.g., high chill requirements, photoperiod) for spring phenology, thus suppressing phenological responses to spring warming. This study illuminates that local spring temperature variance is an understudied source in the study of phenological sensitivity and highlight the necessity of incorporating this factor to improve the predictability of plant responses to anthropogenic climate change in future studies. © 2013 John Wiley & Sons Ltd.

  5. Development of a Pressure Sensitive Paint System with Correction for Temperature Variation

    NASA Technical Reports Server (NTRS)

    Simmons, Kantis A.

    1995-01-01

    Pressure Sensitive Paint (PSP) is known to provide a global image of pressure over a model surface. However, improvements in its accuracy and reliability are needed. Several factors contribute to the inaccuracy of PSP. One major factor is that luminescence is temperature dependent. To correct the luminescence of the pressure sensing component for changes in temperature, a temperature sensitive luminophore incorporated in the paint allows the user to measure both pressure and temperature simultaneously on the surface of a model. Magnesium Octaethylporphine (MgOEP) was used as a temperature sensing luminophore, with the pressure sensing luminophore, Platinum Octaethylporphine (PtOEP), to correct for temperature variations in model surface pressure measurements.

  6. High sensitivity long-period grating-based temperature monitoring using a wide wavelength range to 2.2 μm

    NASA Astrophysics Data System (ADS)

    Venugopalan, Thillainathan; Yeo, Teck L.; Sun, Tong; Grattan, Kenneth T. V.

    2006-12-01

    Temperature effects on the various cladding modes of a long-period grating (LPG) fabricated in B-Ge co-doped fibre have been investigated to create a high sensitivity measurement device. The temperature sensitivities of the attenuation bands of the LPG over the wavelength region 1.2-2.2 μm, for a grating with a 330 μm period, were obtained by monitoring the wavelength shift of each attenuation band, with a temperature increment of 20 °C, over the range from 23 °C to 140 °C. The attenuation band appearing over the 1.8-2.0 μm wavelength range has shown a nearly five times higher temperature sensitivity than that of lower order modes, and thus it shows significant promise for fibre optic temperature sensor applications.

  7. Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3

    PubMed Central

    Liu, Beiying; Qin, Feng

    2017-01-01

    Thermal transient receptor potential (TRP) channels, a group of ion channels from the transient receptor potential family, play important functions in pain and thermal sensation. These channels are directly activated by temperature and possess strong temperature dependence. Furthermore, their temperature sensitivity can be highly dynamic and use-dependent. For example, the vanilloid receptor transient receptor potential 3 (TRPV3), which has been implicated as a warmth detector, becomes responsive to warm temperatures only after intensive stimulation. Upon initial activation, the channel exhibits a high-temperature threshold in the noxious temperature range above 50 °C. This use dependence of heat sensitivity thus provides a mechanism for sensitization of thermal channels. However, how the channels acquire the use dependence remains unknown. Here, by comparative studies of chimeric channels between use-dependent and use-independent homologs, we have determined the molecular basis that underlies the use dependence of temperature sensitivity of TRPV3. Remarkably, the restoration of a single residue that is apparently missing in the use-dependent homologs could largely eliminate the use dependence of heat sensitivity of TRPV3. The location of the region suggests a mechanism of temperature-dependent gating of thermal TRP channels involving an intracellular region assembled around the TRP domain. PMID:28154143

  8. NIRCam Coronagraphic Observations of Disks and Planetary Systems

    NASA Astrophysics Data System (ADS)

    Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team

    2017-06-01

    The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.

  9. Study on temperature sensitivity of topological insulators based on long-period fiber grating

    NASA Astrophysics Data System (ADS)

    Luo, Jianhua; Zhao, Chenghai; Li, Jianbo; He, Mengdong

    2017-06-01

    Based on a long-period fiber grating, we conducted experimental research on the temperature sensitivity of topological insulators. The long-period fiber grating and topological insulators solution were encapsulated in a capillary tube using UV glue, and the temperature response was measured. Within a range of 35 to 75 centigrade, one resonance dip of a long-period fiber grating exhibits a redshift of 1.536 nm. The temperature sensitivity is about 7.7 times of an ordinary long-period fiber grating's sensitivity (0.005 nm/°C). A numerical simulation is also performed on the basis of the experiments.

  10. Complex interactions between climate change and toxicants: evidence that temperature variability increases sensitivity to cadmium.

    PubMed

    Kimberly, David A; Salice, Christopher J

    2014-07-01

    The Intergovernmental Panel on Climate Change projects that global climate change will have significant impacts on environmental conditions including potential effects on sensitivity of organisms to environmental contaminants. The objective of this study was to test the climate-induced toxicant sensitivity (CITS) hypothesis in which acclimation to altered climate parameters increases toxicant sensitivity. Adult Physa pomilia snails were acclimated to a near optimal 22 °C or a high-normal 28 °C for 28 days. After 28 days, snails from each temperature group were challenged with either low (150 μg/L) or high (300 μg/L) cadmium at each temperature (28 or 22 °C). In contrast to the CITS hypothesis, we found that acclimation temperature did not have a strong influence on cadmium sensitivity except at the high cadmium test concentration where snails acclimated to 28 °C were more cadmium tolerant. However, snails that experienced a switch in temperature for the cadmium challenge, regardless of the switch direction, were the most sensitive to cadmium. Within the snails that were switched between temperatures, snails acclimated at 28 °C and then exposed to high cadmium at 22 °C exhibited significantly greater mortality than those snails acclimated to 22 °C and then exposed to cadmium at 28 °C. Our results point to the importance of temperature variability in increasing toxicant sensitivity but also suggest a potentially complex cost of temperature acclimation. Broadly, the type of temporal stressor exposures we simulated may reduce overall plasticity in responses to stress ultimately rendering populations more vulnerable to adverse effects.

  11. Sensitivity cycling in physically dormant seeds of the Neotropical tree Senna multijuga (Fabaceae).

    PubMed

    Rodrigues-Junior, A G; Baskin, C C; Baskin, J M; Garcia, Q S

    2018-03-23

    Cycling of sensitivity to physical dormancy (PY) break has been documented in herbaceous species. However, it has not been reported in tree seeds, nor has the effect of seed size on sensitivity to PY-breaking been evaluated in any species. Thus, the aims of this study were to investigate how PY is broken in seeds of the tropical legume tree Senna multijuga, if seeds exhibit sensitivity cycling and if seed size affects induction into sensitivity. Dormancy and germination were evaluated in intact and scarified seeds from two collections of S. multijuga. The effects of temperature, moisture and seed size on induction of sensitivity to dormancy-breaking were assessed, and seasonal changes in germination and persistence of buried seeds were determined. Reversal of sensitivity was also investigated. Fresh seeds were insensitive to dormancy break at wet-high temperatures, and an increase in sensitivity occurred in buried seeds after they experienced low temperatures during winter (dry season). Temperatures ≤20 °C increased sensitivity, whereas temperatures ≥30 °C decreased it regardless of moisture conditions. Dormancy was broken in sensitive seeds by incubating them at 35 °C. Sensitivity could be reversed, and large seeds were more sensitive than small seeds to sensitivity induction. Seeds of S. multijuga exhibit sensitivity cycling to PY-breaking. Seeds become sensitive during winter and can germinate with the onset of the spring-summer rainy season in Brazil. Small seeds are slower to become sensitive than large ones, and this may be a mechanism by which germination is spread over time. Sensitive seeds that fail to germinate become insensitive during exposure to drought during summer. This is the first report of sensitivity cycling in a tree species. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  12. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    PubMed

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field.

  13. Development and application of a species sensitivity distribution for temperature-induced mortality in the aquatic environment.

    PubMed

    de Vries, Pepijn; Tamis, Jacqueline E; Murk, Albertinka J; Smit, Mathijs G D

    2008-12-01

    Current European legislation has static water quality objectives for temperature effects, based on the most sensitive species. In the present study a species sensitivity distribution (SSD) for elevated temperatures is developed on the basis of temperature sensitivity data (mortality) of 50 aquatic species. The SSD applies to risk assessment of heat discharges that are localized in space or time. As collected median lethal temperatures (LT50 values) for different species depend on the acclimation temperature, the SSD is also a function of the acclimation temperature. Data from a thermal discharge in The Netherlands are used to show the applicability of the developed SSD in environmental risk assessment. Although restrictions exist in the application of the developed SSD, it is concluded that the SSD approach can be applied to assess the effects of elevated temperature. Application of the concept of SSD to temperature changes allows harmonization of environmental risk assessment for stressors in the aquatic environment. When a synchronization of the assessment methods is achieved, the steps to integration of risks from toxic and nontoxic stressors can be made.

  14. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    PubMed Central

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  15. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate☆

    PubMed Central

    Chauhan, Veeren M.; Hopper, Richard H.; Ali, Syed Z.; King, Emma M.; Udrea, Florin; Oxley, Chris H.; Aylott, Jonathan W.

    2014-01-01

    A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 °C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol–gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 °C to 145 °C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. PMID:25844025

  16. Imbibition period as the critical temperature sensitive stage in germination of lima bean seeds.

    PubMed

    Pollock, B M; Toole, V K

    1966-02-01

    Lima bean seeds (Phaseolus lunatus L.) and excised embryonic axes can be injured during imbibition at temperatures below 25 degrees . The early imbibitional stage is critical; imbibition at 25 degrees followed by low temperature exposure does not cause injury. Sensitivity to chilling injury is conditioned by the pre-harvest seed history. Low vigor (bleached) seeds are most sensitive to injury, the effects of which can be intensified by restricted oxygen supply during early axis growth. The seed coat, by preventing water uptake, can permit the seed to avoid injury. This protective mechanism is most effective at low temperature and high moisture stress. Immediately following low temperature imbibition, injured axes lose organic materials, probably nucleotides. This organic leachate is a potential influence on soil microorganisms and, together with the temperature sensitivity, vigor, and seed coat effect undoubtedly is important in controlling the potential variability in germination shown by a seed population.

  17. Imbibition Period as the Critical Temperature Sensitive Stage in Germination of Lima Bean Seeds

    PubMed Central

    Pollock, B. M.; Toole, Vivian K.

    1966-01-01

    Lima bean seeds (Phaseolus lunatus L.) and excised embryonic axes can be injured during imbibition at temperatures below 25°. The early imbibitional stage is critical; imbibition at 25° followed by low temperature exposure does not cause injury. Sensitivity to chilling injury is conditioned by the pre-harvest seed history. Low vigor (bleached) seeds are most sensitive to injury, the effects of which can be intensified by restricted oxygen supply during early axis growth. The seed coat, by preventing water uptake, can permit the seed to avoid injury. This protective mechanism is most effective at low temperature and high moisture stress. Immediately following low temperature imbibition, injured axes lose organic materials, probably nucleotides. This organic leachate is a potential influence on soil microorganisms and, together with the temperature sensitivity, vigor, and seed coat effect undoubtedly is important in controlling the potential variability in germination shown by a seed population. Images PMID:16656243

  18. Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber.

    PubMed

    Wang, Ying; Wang, D N; Liao, C R; Hu, Tianyi; Guo, Jiangtao; Wei, Huifeng

    2013-02-01

    A temperature-insensitive micro Fabry-Pérot (FP) cavity based on simplified hollow-core (SHC) photonic crystal fiber (PCF) is demonstrated. Such a device is fabricated by splicing a section of SHC PCF with single mode fibers at both cleaved ends. An extremely low temperature sensitivity of ~0.273 pm/°C is obtained between room temperature and 900°C. By drilling vertical micro-channels using a femtosecond laser, the micro FP cavity can be filled with liquids and functions as a sensitive refractometer and the refractive index sensitivity obtained is ~851.3 nm/RIU (refractive index unit), which indicates an ultra low temperature cross-sensitivity of ~3.2×10(-7) RIU/°C.

  19. A factorial assessment of the sensitivity of the BATS land-surface parameterization scheme. [BATS (Biosphere-Atmosphere Transfer Scheme)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson-Sellers, A.

    Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology andmore » (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.« less

  20. Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors with Bioinspired Microstructured Adhesive.

    PubMed

    Oh, Ju Hyun; Hong, Soo Yeong; Park, Heun; Jin, Sang Woo; Jeong, Yu Ra; Oh, Seung Yun; Yun, Junyeong; Lee, Hanchan; Kim, Jung Wook; Ha, Jeong Sook

    2018-02-28

    In this study, we demonstrate the fabrication of a highly sensitive flexible temperature sensor with a bioinspired octopus-mimicking adhesive. A resistor-type temperature sensor consisting of a composite of poly(N-isopropylacrylamide) (pNIPAM)-temperature sensitive hydrogel, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, and carbon nanotubes exhibits a very high thermal sensitivity of 2.6%·°C -1 between 25 and 40 °C so that the change in skin temperature of 0.5 °C can be accurately detected. At the same time, the polydimethylsiloxane adhesive layer of octopus-mimicking rim structure coated with pNIPAM is fabricated through the formation of a single mold by utilizing undercut phenomenon in photolithography. The fabricated sensor shows stable and reproducible detection of skin temperature under repeated attachment/detachment cycles onto skin without any skin irritation for a long time. This work suggests a high potential application of our skin-attachable temperature sensor to wearable devices for medical and health-care monitoring.

  1. Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model.

    PubMed

    Noguchi, Ko; Yamori, Wataru; Hikosaka, Kouki; Terashima, Ichiro

    2015-07-01

    The temperature dependence of plant respiratory rate (R) changes in response to growth temperature. Here, we used a modified Arrhenius model incorporating the temperature dependence of activation energy (Eo ), and compared the temperature dependence of R between cold-sensitive and cold-tolerant species. We analyzed the temperature dependences of leaf CO2 efflux rate of plants cultivated at low (LT) or high temperature (HT). In plants grown at HT (HT plants), Eo at low measurement temperature varied among species, but Eo at growth temperature in HT plants did not vary and was comparable to that in plants grown at LT (LT plants), suggesting that the limiting process was similar at the respective growth temperatures. In LT plants, the integrated value of loge R, a measure of respiratory capacity, in cold-sensitive species was lower than that in cold-tolerant species. When plants were transferred from HT to LT, the respiratory capacity changed promptly after the transfer compared with the other parameters. These results suggest that a similar process limits R at different growth temperatures, and that the lower capacity of the respiratory system in cold-sensitive species may explain their low growth rate at LT. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. absorption sensor for sensitive temperature and species measurements in high-temperature gases

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Ren, W.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm-1) and combination υ 1 + υ 3 band (~3,610 cm-1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm-1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm-1, paired with the R(28) line near 3,633.08 cm-1. This combination yields high temperature sensitivity (ΔE" = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600-1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.

  3. Differential temperature preferences and thresholds among summer campers in Ontario's southern provincial parks: a Canadian case study in tourism climatology

    NASA Astrophysics Data System (ADS)

    Hewer, Micah J.; Scott, Daniel J.; Gough, William A.

    2017-08-01

    Weather and climate are important factors in relation to outdoor recreation and tourism. Camping and park visitation are weather sensitive activities very likely to be impacted by projected climate change. Temperature is the weather variable that has received the greatest attention within the tourism climatology literature and was the greatest predictor of park visitation within previous assessments. This study uses a stated climate preferences approach, relying on survey-based data, to explore differences for temperature preferences and thresholds among campers in Ontario parks. Statistically significant differences (at the 95% confidence level) in mean values for temperature preferences and thresholds were recorded based on various camper characteristics, such as the following: activity selection, age, gender, distance travelled, length of stay, life cycle stage, camping experience, and camping equipment. Swimmers preferred warmer day-time temperatures. Older campers preferred cooler temperatures and were more sensitive to heat stress, in the day and night time. Females preferred warmer temperatures and were less sensitive to heat stress during the night time. Campers who had travelled further distances to reach the park or planned to stay for longer periods were less sensitive to heat stress. Campers with children in their group preferred warmer temperatures and were less sensitive to heat stress, in the day and at night. Respondents with higher levels of camping experience preferred warmer temperatures at night. Tent campers were less sensitive to heat stress, in the day and at night. The results of this study have direct implications for previous and future climate change impact assessments on park visitation.

  4. Understanding Differences in Upper Stratospheric Ozone Response to Changes in Chlorine and Temperature as Computed Using CCMVal Models

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-01-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as chemistry and climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary for projections of changes in ozone depleting substances (ODSs) and greenhouse gases. In the upper stratosphere photochemical processes control ozone level, and ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. Simulations agree broadly but there are quantitative differences in the sensitivity of ozone to chlorine and to temperature. We obtain insight into these differences in sensitivity by examining the relationship between the upper stratosphere annual cycle of ozone and temperature as produced by a suite of models. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Differences in sensitivity are traced to differences in simulated temperature, ozone and reactive nitrogen when chlorine levels are close to background. This work shows that differences in the importance of specific processes underlie differences in simulated sensitivity of ozone to composition change. This suggests a) the multi-model mean is not a best estimate of the sensitivity of upper ozone to changes in ODSs and temperature; b) the spread of values is not an appropriate measure of uncertainty.

  5. Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system

    USGS Publications Warehouse

    Ely, D. Matthew

    2006-01-01

    Recharge is a vital component of the ground-water budget and methods for estimating it range from extremely complex to relatively simple. The most commonly used techniques, however, are limited by the scale of application. One method that can be used to estimate ground-water recharge includes process-based models that compute distributed water budgets on a watershed scale. These models should be evaluated to determine which model parameters are the dominant controls in determining ground-water recharge. Seven existing watershed models from different humid regions of the United States were chosen to analyze the sensitivity of simulated recharge to model parameters. Parameter sensitivities were determined using a nonlinear regression computer program to generate a suite of diagnostic statistics. The statistics identify model parameters that have the greatest effect on simulated ground-water recharge and that compare and contrast the hydrologic system responses to those parameters. Simulated recharge in the Lost River and Big Creek watersheds in Washington State was sensitive to small changes in air temperature. The Hamden watershed model in west-central Minnesota was developed to investigate the relations that wetlands and other landscape features have with runoff processes. Excess soil moisture in the Hamden watershed simulation was preferentially routed to wetlands, instead of to the ground-water system, resulting in little sensitivity of any parameters to recharge. Simulated recharge in the North Fork Pheasant Branch watershed, Wisconsin, demonstrated the greatest sensitivity to parameters related to evapotranspiration. Three watersheds were simulated as part of the Model Parameter Estimation Experiment (MOPEX). Parameter sensitivities for the MOPEX watersheds, Amite River, Louisiana and Mississippi, English River, Iowa, and South Branch Potomac River, West Virginia, were similar and most sensitive to small changes in air temperature and a user-defined flow routing parameter. Although the primary objective of this study was to identify, by geographic region, the importance of the parameter value to the simulation of ground-water recharge, the secondary objectives proved valuable for future modeling efforts. The value of a rigorous sensitivity analysis can (1) make the calibration process more efficient, (2) guide additional data collection, (3) identify model limitations, and (4) explain simulated results.

  6. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  7. HST/WFC3 Observations of Giant Hot Exoplanets

    NASA Technical Reports Server (NTRS)

    Deming, D.; Agol, E.; Burrows, A.; Charbonneau, D.; Clampin, M.; Desert, J.-M.; Gilliland, R.; Knutson, H.; Madhusudhan, N.; Mandell, A.; hide

    2011-01-01

    Low resolution thermal emission spectra of several dozen extrasolar planets have been measured using Spitzer, and HST observations of a few key exoplanets have reported molecular abundances via transmission spectroscopy. However, current models for the atmospheric structure of these worlds exhibit degeneracies wherein different combinations of temperature and molecular abundance profiles can fit the same Spitzer data. The advent of the IR capability on HST/WFC3 allows us to address this problem. We are currently obtaining transmission spectroscopy of the 1.4-micron water band in a sample of 13 planets, using the G141 grism on WFC3. This is the largest pure-exoplanet program ever executed on HST (115 orbits). Among the abundant molecules, only water absorbs significantly at 1.4-microns, and our measurement of water abundance will enable us to break the degeneracies in the Spitzer results with minimal model assumptions. We are also using the G141 grism to observe secondary eclipses for 7 very hot giant exoplanets at 1.S-microns, including several bright systems in the Kepler and CoRoT fields. The strong temperature sensitivity of the thermal continuum at 1.S-microns provides high leverage on atmospheric temperature for these worlds, again helping to break degeneracies in interpreting the Spitzer data. We here describe preliminary results for several exoplanets observed in this program.

  8. Dosimeter-Type NOx Sensing Properties of KMnO4 and Its Electrical Conductivity during Temperature Programmed Desorption

    PubMed Central

    Groβ, Andrea; Kremling, Michael; Marr, Isabella; Kubinski, David J.; Visser, Jacobus H.; Tuller, Harry L.; Moos, Ralf

    2013-01-01

    An impedimetric NOx dosimeter based on the NOx sorption material KMnO4 is proposed. In addition to its application as a low level NOx dosimeter, KMnO4 shows potential as a precious metal free lean NOx trap material (LNT) for NOx storage catalysts (NSC) enabling electrical in-situ diagnostics. With this dosimeter, low levels of NO and NO2 exposure can be detected electrically as instantaneous values at 380 °C by progressive NOx accumulation in the KMnO4 based sensitive layer. The linear NOx sensing characteristics are recovered periodically by heating to 650 °C or switching to rich atmospheres. Further insight into the NOx sorption-dependent conductivity of the KMnO4-based material is obtained by the novel eTPD method that combines electrical characterization with classical temperature programmed desorption (TPD). The NOx loading amount increases proportionally to the NOx exposure time at sorption temperature. The cumulated NOx exposure, as well as the corresponding NOx loading state, can be detected linearly by electrical means in two modes: (1) time-continuously during the sorption interval including NOx concentration information from the signal derivative or (2) during the short-term thermal NOx release. PMID:23549366

  9. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    PubMed Central

    Fuentes-Fuentes, Miguel A.; May-Arrioja, Daniel A.; Guzman-Sepulveda, José R.; Torres-Cisneros, Miguel; Sánchez-Mondragón, José J.

    2015-01-01

    A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC) of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF) highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors. PMID:26512664

  10. Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry

    NASA Astrophysics Data System (ADS)

    Lear, Caroline H.; Coxall, Helen K.; Foster, Gavin L.; Lunt, Daniel J.; Mawbey, Elaine M.; Rosenthal, Yair; Sosdian, Sindia M.; Thomas, Ellen; Wilson, Paul A.

    2015-11-01

    Antarctic continental-scale glaciation is generally assumed to have initiated at the Eocene-Oligocene Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature and global ice volume from 0 to 17 Ma using δ18O in conjunction with Mg/Ca records of the infaunal benthic foraminifer, O. umbonatus from Ocean Drilling Program (ODP) Site 806 (equatorial Pacific; ~2500 m). Considering uncertainties in core top calibrations and sensitivity to seawater Mg/Ca (Mg/Ca)sw, we produce a range of Mg/Ca-temperature-Mg/Casw calibrations. Our favored exponential temperature calibration is Mg/Ca = 0.66 ± 0.08 × Mg/Casw0.27±0.06 × e(0.114±0.02 × BWT) and our favored linear temperature calibration is Mg/Ca = (1.21 ± 0.04 + 0.12 ± 0.004 × BWT (bottom water temperature)) × (Mg/Casw-0.003±0.02) (stated errors are 2 s.e.). The equations are obtained by comparing O. umbonatus Mg/Ca for a Paleocene-Eocene section from Ocean Drilling Program (ODP) Site 690 (Weddell Sea) to δ18O temperatures, calculated assuming ice-free conditions during this peak warmth period of the Cenozoic. This procedure suggests negligible effect of Mg/Casw on the Mg distribution coefficient (DMg). Application of the new equations to the Site 806 record leads to the suggestion that global ice volume was greater than today after the Middle Miocene Climate Transition (~14 Ma). ODP Site 806 bottom waters cooled and freshened as the Pacific zonal sea surface temperature gradient increased, and climate cooled through the Pliocene, prior to the Plio-Pleistocene glaciation of the Northern Hemisphere. The records indicate a decoupling of deep water temperatures and global ice volume, demonstrating the importance of thresholds in the evolution of the Antarctic ice sheet.

  11. Validation and Sensitivity Analysis of a New Atmosphere-Soil-Vegetation Model.

    NASA Astrophysics Data System (ADS)

    Nagai, Haruyasu

    2002-02-01

    This paper describes details, validation, and sensitivity analysis of a new atmosphere-soil-vegetation model. The model consists of one-dimensional multilayer submodels for atmosphere, soil, and vegetation and radiation schemes for the transmission of solar and longwave radiations in canopy. The atmosphere submodel solves prognostic equations for horizontal wind components, potential temperature, specific humidity, fog water, and turbulence statistics by using a second-order closure model. The soil submodel calculates the transport of heat, liquid water, and water vapor. The vegetation submodel evaluates the heat and water budget on leaf surface and the downward liquid water flux. The model performance was tested by using measured data of the Cooperative Atmosphere-Surface Exchange Study (CASES). Calculated ground surface fluxes were mainly compared with observations at a winter wheat field, concerning the diurnal variation and change in 32 days of the first CASES field program in 1997, CASES-97. The measured surface fluxes did not satisfy the energy balance, so sensible and latent heat fluxes obtained by the eddy correlation method were corrected. By using options of the solar radiation scheme, which addresses the effect of the direct solar radiation component, calculated albedo agreed well with the observations. Some sensitivity analyses were also done for model settings. Model calculations of surface fluxes and surface temperature were in good agreement with measurements as a whole.

  12. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, Troy; McGregor, Douglas; Ugorowski, Phil

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chambermore » and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A project meeting was held at KSU to discuss the roles and responsibilities between INL and KSU for development of the HT MPFDs. Provide input to various irradiation programs for installation of the MPFD technology in irradiation tests. As documented in this report, FY15 funding has allowed the project to meet year one planned accomplishments to develop a HT MPFD that offers US MTR users enhanced capabilities for real-time measurement of flux and temperature with a single detector. In addition, the accomplishments of this project have attracted funding from other Department of Energy Office of Nuclear Energy (DOE-NE) programs for additional applications. The work in those programs will build on current activities completed in this NEETASI HT MPFD project, but the MPFD will be specifically tailored to meet their program needs.« less

  13. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  14. On-line calibration of high-response pressure transducers during jet-engine testing

    NASA Technical Reports Server (NTRS)

    Armentrout, E. C.

    1974-01-01

    Jet engine testing is reported concerned with the effect of inlet pressure and temperature distortions on engine performance and involves the use of numerous miniature pressure transducers. Despite recent improvements in the manufacture of miniature pressure transducers, they still exhibit sensitivity change and zero-shift with temperature and time. To obtain meaningful data, a calibration system is needed to determine these changes. A system has been developed which provides for computer selection of appropriate reference pressures selected from nine different sources to provide a two- or three-point calibration. Calibrations are made on command, before and sometimes after each data point. A unique no leak matrix valve design is used in the reference pressure system. Zero-shift corrections are measured and the values are automatically inserted into the data reduction program.

  15. Multidisciplinary Research Program in Atmospheric Science. [remote sensing

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    A theoretical analysis of the vertical resolving power of the High resolution Infrared Radiation Sounder (HIRS) and the Advanced Meteorological Temperature Sounder (AMTS) is carried out. The infrared transmittance weighting functions and associated radiative transfer kernels are analyzed through singular value decomposition. The AMTS was found to contain several more pieces of independent information than HIRS when the transmittances were considered, but the two instruments appeared to be much more similar when the temperature sensitive radiative transfer kernels were analyzed. The HIRS and AMTS instruments were also subjected to a thorough analysis. It was found that the two instruments should have very similar vertical resolving power below 500 mb but that AMTS should have superior resolving power above 200 mb. In the layer 200 to 500 mb the AMTS showed badly degraded spread function.

  16. Quantum metrology with a single spin-3/2 defect in silicon carbide

    NASA Astrophysics Data System (ADS)

    Soykal, Oney O.; Reinecke, Thomas L.

    We show that implementations for quantum sensing with exceptional sensitivity and spatial resolution can be made using the novel features of semiconductor high half-spin multiplet defects with easy-to-implement optical detection protocols. To achieve this, we use the spin- 3 / 2 silicon monovacancy deep center in hexagonal silicon carbide based on our rigorous derivation of this defect's ground state and of its electronic and optical properties. For a single VSi- defect, we obtain magnetic field sensitivities capable of detecting individual nuclear magnetic moments. We also show that its zero-field splitting has an exceptional strain and temperature sensitivity within the technologically desirable near-infrared window of biological systems. Other point defects, i.e. 3d transition metal or rare-earth impurities in semiconductors, may also provide similar opportunities in quantum sensing due to their similar high spin (S >= 3 / 2) configurations. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.

  17. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor.

    PubMed

    Efremov, Mikhail Yu; Nealey, Paul F

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  18. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    NASA Astrophysics Data System (ADS)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  19. The design of high precision temperature control system for InGaAs short-wave infrared detector

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-yun; Hu, Yadong; Ni, Chen; Huang, Lin; Zhang, Aiwen; Sun, Xiao-bing; Hong, Jin

    2018-02-01

    The InGaAs Short-wave infrared detector is a temperature-sensitive device. Accurate temperature control can effectively reduce the background signal and improve detection accuracy, detection sensitivity, and the SNR of the detection system. Firstly, the relationship between temperature and detection background, NEP is analyzed, the principle of TEC and formula between cooling power, cooling current and hot-cold interface temperature difference are introduced. Then, the high precision constant current drive circuit based on triode voltage control current, and an incremental algorithm model based on deviation tracking compensation and PID control are proposed, which effectively suppresses the temperature overshoot, overcomes the temperature inertia, and has strong robustness. Finally, the detector and temperature control system are tested. Results show that: the lower of detector temperature, the smaller the temperature fluctuation, the higher the detection accuracy and the detection sensitivity. The temperature control system achieves the high temperature control with the temperature control rate is 7 8°C/min and the temperature fluctuation is better than +/-0. 04°C.

  20. Body temperature sensitive micelles for MRI enhancement.

    PubMed

    Zhu, Xiaolei; Chen, Shizhen; Luo, Qing; Ye, Chaohui; Liu, Maili; Zhou, Xin

    2015-06-04

    A novel thermo-sensitive micelle contrast agent and its enhancement of MRI contrast with temperature are reported. The morphology changes sharply near 37 °C, resulting in a significant amplification of the CEST signal. This enables detection of small changes in body temperature.

  1. Effect of CO2 Solubility on Dissolution Rates of Minerals in Porous Media Imbibed with Brine: Actual Efficiency of CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Alizadeh Nomeli, M.; Riaz, A.

    2016-12-01

    A new model is developed for geochemical reactions to access dissolution rate of minerals in saline aquifers with respect to saturated concentration of dissolved CO2 as a function of parameters that are dynamically available during computer program execution such as pressure, temperature, and salinity. A general Arrhenius-type equation, with an explicit dependence on the pH of brine, is employed to determine the rates of mineral dissolution. The amount of dissolved CO2 is determined with the help of an accurate PVTx model for the temperature range of 50-100C and pressures up to 600 bar relevant to the geologic sequestration of CO2. We show how activity coefficients for a given salinity condition alters solubility, pH, and reaction rates. We further evaluate the significance of the pre-exponential factor and the reaction order associated with the modified Arrhenius equation to determine the sensitivity of the reaction rates as a function to the pH of the system. It is found that the model can reasonably reproduce experimental data with new parameters that we obtain from sensitivity studies. Using the new rate equation, we investigate geochemically induced alterations of fracture geometry due to mineral dissolution. Finally, we use our model to evaluate the effects of temperature, pressure, and salinity on the actual efficiency of CO2 storage.

  2. Development of a New ICT-Based Multisensor Blood Pressure Monitoring System for Use in Hemodynamic Biomarker-Initiated Anticipation Medicine for Cardiovascular Disease: The National IMPACT Program Project.

    PubMed

    Kario, Kazuomi; Tomitani, Naoko; Kanegae, Hiroshi; Yasui, Nobuhiko; Nishizawa, Masafumi; Fujiwara, Takeshi; Shigezumi, Takeya; Nagai, Ryozo; Harada, Hiroshi

    We have developed a multisensor home and ambulatory blood pressure (BP) monitoring system for monitoring 24-h central and brachial BP variability concurrent with physical activity (PA), temperature, and atmospheric pressure. The new BP monitoring system utilizes our recently developed biological and environmental signal monitoring Information Communication Technology/Internet of Things system, which can simultaneously monitor the environment (temperature, illumination, etc.) of different rooms in a house (entryway, bedroom, living room, bathing room, and toilet), and a wrist-type high-sensitivity actigraph for identifying the location of patients. By collecting both data on BP and environmental parameters, the system can assess the brachial and central hemodynamic BP reactivity profiles of patients, such as actisensitivity (BP change with PA), thermosensitivity (with temperature), and atmospheric sensitivity (with atmospheric pressure). We used this new system to monitor ambulatory BP variability in outpatients with one or more cardiovascular disease (CVD) risk factors both in summer and winter. Actisensitivity (the slope of the regression line of ambulatory BP against the log-physical activity) was higher in winter than summer. By multi-level analysis using the parameters monitored by this system, we estimated the ambulatory BPs under different conditions. The individual time-series big data collected by this system will contribute to anticipation medicine for CVD. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effect of short-term decrease in water temperature on body temperature and involvement of testosterone in steelhead and rainbow trout, Oncorhynchus mykiss.

    PubMed

    Miura, Go; Munakata, Arimune; Yada, Takashi; Schreck, Carl B; Noakes, David L G; Matsuda, Hiroyuki

    2013-09-01

    The Pacific salmonid species Oncorhynchus mykiss is separated into a migratory form (steelhead trout) and a non-migratory form (rainbow trout). A decrease in water temperature is likely a cue triggering downstream behavior in the migratory form, and testosterone inhibits onset of this behavior. To elucidate differences in sensitivity to water temperature decreases between the migratory and non-migratory forms and effect of testosterone on the sensitivity, we examined two experiments. In experiment 1, we compared changes in body temperature during a short-term decrease in water temperature between both live and dead steelhead and rainbow trout. In experiment 2, we investigated effects of testosterone on body temperature decrease in steelhead trout. Water temperature was decreased by 3°C in 30min. The body temperature of the steelhead decreased faster than that of the rainbow trout. In contrast, there was no significant difference in the decrease in body temperature between dead steelhead and rainbow trout specimens. The body temperature of the testosterone-treated steelhead trout decreased more slowly than that of control fish. Our results suggest that the migratory form is more sensitive to decreases in water temperature than the non-migratory form. Moreover, testosterone might play an inhibitory role in sensitivity to such decreases. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Radiocarbon Evidence That Millennial and Fast-Cycling Soil Carbon are Equally Sensitive to Warming

    NASA Astrophysics Data System (ADS)

    Vaughn, L. S.; Torn, M. S.; Porras, R. C.

    2017-12-01

    Within the century, the Arctic is expected to shift from a sink to a source of atmospheric CO2 due to climate-induced increases in soil carbon mineralization. The magnitude of this effect remains uncertain, due in large part to unknown temperature sensitivities of organic matter decomposition. In particular, the distribution of temperature sensitivities across soil carbon pools remains unknown. New experimental approaches are needed, because studies that fit multi-pool models to CO2 flux measurements may be sensitive to model assumptions, statistical effects, and non-steady-state changes in substrate availability or microbial activity. In this study, we developed a new methodology using natural abundance radiocarbon to evaluate temperature sensitivities across soil carbon pools. In two incubation experiments with soils from Barrow, AK, we (1) evaluated soil carbon age and decomposability, (2) disentangled the effects of temperature and substrate depletion on carbon mineralization, and (3) compared the temperature sensitivities of fast- and slow-cycling soil carbon pools. From a long-term incubation, both respired CO2 and the remaining soil organic matter were highly depleted in radiocarbon. At 20 cm depth, median Δ14C values were -167‰ in respired CO2 and -377‰ in soil organic matter, corresponding to turnover times of 1800 and 4800 years, respectively. Such negative Δ14C values indicate both storage and decomposition of old, stabilized carbon, while radiocarbon differences between the mineralized and non-mineralized fractions suggest that decomposability varies along a turnover time gradient. Applying a new analytical method combining CO2 flux and Δ14C, we found that fast- and slow-cycling carbon pools were equally sensitive to temperature, with a Q10 of 2 irrespective of turnover time. We conclude that in these Arctic soils, ancient soil carbon is vulnerable to warming under thawed, aerobic conditions. In contrast to many previous studies, we found no difference in temperature sensitivity of decomposition between fast- and slow-cycling pools. These findings suggest that in these soils, carbon stabilization mechanisms other than chemical recalcitrance mediate temperature sensitivities, and even old SOC will be readily decomposable as climate warms.

  5. Temperature dependence of 63Ni-Si betavoltaic microbattery.

    PubMed

    Yunpeng, Liu; Xiao, Guo; Zhangang, Jin; Xiaobin, Tang

    2018-05-01

    This paper theoretically presented the temperature effects on the 63 Ni-Si betavoltaic microbattery irradiated by a source with different thicknesses and activity densities at a temperature range 170-340K. Temperature dependences of the monolayer and interbedded 63 Ni-Si betavoltaics at 213.15-333.15K were tested with respect to calculations. Results showed that the higher the thickness, activity density, and average energy of the source, the lower is the betavoltaic performance responds to temperature. With the increase in temperature, the V oc and P max of the upper, lower, and interbedded betavoltaics decreased linearly at low temperatures and decreased exponentially at high temperatures in the experiment. As predicted, the measured V oc and P max sensitivities of the lower betavoltaic with 4.90mCi/cm 2 63 Ni, -2.230mV/K and -1.132%, respectively, were lower than those with 1.96mCi/cm 2 63 Ni, -2.490mV/K and -1.348%, respectively. Compared with the calculated results, the prepared betavoltaics had lower V oc sensitivity and higher P max sensitivity. In addition, the measured V oc sensitivity of the interbedded betavoltaic in series is equal to the sum of those of the upper and lower ones as predicted. Moreover, the measured P max sensitivity of the interbedded betavoltaic is equal to the average of those of the two monolayers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro

    The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10, defined as the increase of RE (or GPP) ratesmore » with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. Additionally, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.« less

  7. Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions.

    PubMed

    Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro; Wohlfahrt, Georg; Buchmann, Nina; Zhu, Juan; Chen, Guanhong; Moyano, Fernando; Pumpanen, Jukka; Hirano, Takashi; Takagi, Kentaro; Merbold, Lutz

    2017-06-08

    The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10 , defined as the increase of RE (or GPP) rates with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG ) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR ). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. In addition, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.

  8. Effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions

    DOE PAGES

    Zhang, Zhiyuan; Zhang, Renduo; Cescatti, Alessandro; ...

    2017-06-08

    The net ecosystem CO 2 exchange is the result of the imbalance between the assimilation process (gross primary production, GPP) and ecosystem respiration (RE). The aim of this study was to investigate temperature sensitivities of these processes and the effect of climate warming on the annual terrestrial net ecosystem CO 2 exchange globally in the boreal and temperate regions. A database of 403 site-years of ecosystem flux data at 101 sites in the world was collected and analyzed. Temperature sensitivities of rates of RE and GPP were quantified with Q 10, defined as the increase of RE (or GPP) ratesmore » with a temperature rise of 10 °C. Results showed that on the annual time scale, the intrinsic temperature sensitivity of GPP (Q 10sG) was higher than or equivalent to the intrinsic temperature sensitivity of RE (Q 10sR). Q 10sG was negatively correlated to the mean annual temperature (MAT), whereas Q 10sR was independent of MAT. The analysis of the current temperature sensitivities and net ecosystem production suggested that temperature rise might enhance the CO 2 sink of terrestrial ecosystems both in the boreal and temperate regions. Additionally, ecosystems in these regions with different plant functional types should sequester more CO 2 with climate warming.« less

  9. A review of the thermal sensitivity of the mechanics of vertebrate skeletal muscle.

    PubMed

    James, Rob S

    2013-08-01

    Environmental temperature varies spatially and temporally, affecting many aspects of an organism's biology. In ectotherms, variation in environmental temperature can cause parallel changes in skeletal muscle temperature, potentially leading to significant alterations in muscle performance. Endotherms can also undergo meaningful changes in skeletal muscle temperature that can affect muscle performance. Alterations in skeletal muscle temperature can affect contractile performance in both endotherms and ectotherms, changing the rates of force generation and relaxation, shortening velocity, and consequently mechanical power. Such alterations in the mechanical performance of skeletal muscle can in turn affect locomotory performance and behaviour. For instance, as temperature increases, a consequent improvement in limb muscle performance causes some lizard species to be more likely to flee from a potential predator. However, at lower temperatures, they are much more likely to stand their ground, show threatening displays and even bite. There is no consistent pattern in reported effects of temperature on skeletal muscle fatigue resistance. This review focuses on the effects of temperature variation on skeletal muscle performance in vertebrates, and investigates the thermal sensitivity of different mechanical measures of skeletal muscle performance. The plasticity of thermal sensitivity in skeletal muscle performance has been reviewed to investigate the extent to which individuals can acclimate to chronic changes in their thermal environment. The effects of thermal sensitivity of muscle performance are placed in a wider context by relating thermal sensitivity of skeletal muscle performance to aspects of vertebrate species distribution.

  10. Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels.

    PubMed

    Zhang, Wenming; Zhu, Sha; Bai, Yunping; Xi, Ning; Wang, Shaoyang; Bian, Yang; Li, Xiaowei; Zhang, Yucang

    2015-05-20

    The temperature/pH dual sensitivity reed hemicellulose-based hydrogels have been prepared through glow discharge electrolysis plasma (GDEP). The effect of different discharge voltages on the temperature and pH response performance of reed hemicellulose-based hydrogels was inspected, and the formation mechanism, deswelling behaviors of reed hemicellulose-based hydrogels were also discussed. At the same time, infrared spectroscopy (FT-IR), scanning differential thermal analysis (DSC) and scanning electron microscope (SEM) were adopted to characterize the structure, phase transformation behaviors and microstructure of hydrogels. It turned out to be that all reed hemicellulose-based hydrogels had a double sensitivity to temperature and pH, and their phase transition temperatures were all approximately 33 °C, as well as the deswelling dynamics met the first model. In addition, the hydrogel (TPRH-3), under discharge voltage 600 V, was more sensitive to temperature and pH and had higher deswelling ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    PubMed

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  12. Correlation of Rupture Life, Creep Rate, and Microstructure for Type 304 Stainless Steel

    NASA Technical Reports Server (NTRS)

    Swindeman, R. W.; Moteff, J.

    1983-01-01

    The stress and temperature sensitivites of the rupture life and secondary creep rate were examined in detail for a single heat of type 304 stainless steel (9T2796). Assuming that the rupture life has a power law stress dependency, relatively small differences in the stress exponent were observed over a broad range of stress and temperature. In contrast, large changes were observed for equivalent parameter for secondary creep rate. As a result of these differences, the Monkman-Grant correlation was sensitive to stress and temperature below 650 C. Metallurgical studies based on light and transmission electron microscopy suggested that the temperature and stress sensitivities of secondary creep rate at temperatures below 650 C were related to features of the substructure not present at higher temperature. Specifically, the presence of a fine dislocation network stabilized by precipitates altered the stress and temperature sensitivities relative to what might be expected from high temperature studies.

  13. Eutrophication exacerbates the impact of climate warming on lake methane emission.

    PubMed

    Sepulveda-Jauregui, Armando; Hoyos-Santillan, Jorge; Martinez-Cruz, Karla; Walter Anthony, Katey M; Casper, Peter; Belmonte-Izquierdo, Yadira; Thalasso, Frédéric

    2018-04-27

    Net methane (CH 4 ) emission from lakes depends on two antagonistic processes: CH 4 production (methanogenesis) and CH 4 oxidation (methanotrophy). It is unclear how climate warming will affect the balance between these processes, particularly among lakes of different trophic status. Here we show that methanogenesis is more sensitive to temperature than methanotrophy, and that eutrophication magnifies this temperature sensitivity. Using laboratory incubations of water and sediment from ten tropical, temperate and subarctic lakes with contrasting trophic states, ranging from oligotrophic to hypereutrophic, we explored the temperature sensitivity of methanogenesis and methanotrophy. We found that both processes presented a higher temperature sensitivity in tropical lakes, followed by temperate, and subarctic lakes; but more importantly, we found that eutrophication triggered a higher temperature sensitivity. A model fed by our empirical data revealed that increasing lake water temperature by 2 °C leads to a net increase in CH 4 emissions by 101-183% in hypereutrophic lakes and 47-56% in oligotrophic lakes. We conclude that climate warming will tilt the CH 4 balance towards higher lake emission and that this impact will be exacerbated by the eutrophication of the lakes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Temperature sensitivity of silicon nitride nanocoated long-period gratings working in various surrounding media

    NASA Astrophysics Data System (ADS)

    Smietana, M.; Bock, W. J.; Mikulic, P.

    2011-11-01

    This paper presents the temperature sensing properties of a silicon nitride (SiNx) nanocoated long-period grating (LPG). A high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited SiNx nanocoating was applied to tune the external refractive index (RI) sensitivity of LPGs written with UV and electric arc techniques in boron co-doped and standard germanium doped fibers, respectively. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as are required for optical sensors. Thanks to the high-RI SiNx nanocoating, which is less than 90 nm thick, it is possible to reduce RI sensitivity over a wide range (from nD = 1.333 to 1.479), simultaneously decreasing its cross-sensitivity to temperature. For the presented nanocoated LPGs, the temperature effect on resonance wavelength is linear and slightly dependent on the thermo-optic coefficient of the surrounding liquid. The other advantage of the nanocoating is that it makes the resonance clearly visible in the whole investigated external RI range. To the best of our knowledge, this work presents for the first time a nanocoating able to simultaneously tune the RI sensitivity and enable temperature measurements in high-RI liquids applied to LPGs.

  15. Microchip transponder thermometry for monitoring core body temperature of antelope during capture.

    PubMed

    Rey, Benjamin; Fuller, Andrea; Hetem, Robyn S; Lease, Hilary M; Mitchell, Duncan; Meyer, Leith C R

    2016-01-01

    Hyperthermia is described as the major cause of morbidity and mortality associated with capture, immobilization and restraint of wild animals. Therefore, accurately determining the core body temperature of wild animals during capture is crucial for monitoring hyperthermia and the efficacy of cooling procedures. We investigated if microchip thermometry can accurately reflect core body temperature changes during capture and cooling interventions in the springbok (Antidorcas marsupialis), a medium-sized antelope. Subcutaneous temperature measured with a temperature-sensitive microchip was a weak predictor of core body temperature measured by temperature-sensitive data loggers in the abdominal cavity (R(2)=0.32, bias >2 °C). Temperature-sensitive microchips in the gluteus muscle, however, provided an accurate estimate of core body temperature (R(2)=0.76, bias=0.012 °C). Microchips inserted into muscle therefore provide a convenient and accurate method to measure body temperature continuously in captured antelope, allowing detection of hyperthermia and the efficacy of cooling procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Time-dependent edge notch sensitivity of Inconel 718 sheet in the temperature range 900 to 1400 F (482 to 760 C)

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1972-01-01

    Time-dependent notch sensitivity of Inconel 718 sheet occurred at 900 to 1200 F when notched specimens were loaded below the yield strength, and tests on smooth specimens showed that small amounts of creep consumed large fractions of creep-rupture life. The severity of the notch sensitivity decreased with decreasing solution treatment temperature and increasing time and/or temperature of the aging treatment. Elimination of the notch sensitivity was correlated with a change in the dislocation mechanism from shearing to by-passing precipitate particles.

  17. A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor

    PubMed Central

    Algorri, José Francisco; Urruchi, Virginia; Bennis, Noureddine; Sánchez-Pena, José Manuel

    2014-01-01

    A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC) sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage's sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption. PMID:24721771

  18. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  19. Selective Intercultural Sensitivity to Different Sources of Cultural Identity: Study of Intercultural Sensitivity of Students at Teacher Education Programs of Georgia

    ERIC Educational Resources Information Center

    Tabatadze, Shalva; Gorgadze, Natia

    2018-01-01

    Purpose: The purpose of this paper is to assess the intercultural sensitivity of students in teacher educational programs at higher education institutes (HEIs) in Georgia. Design/methodology/approach: This research explored the intercultural sensitivity among 355 randomly selected students in teacher education programs at higher education…

  20. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    PubMed

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  1. DNA nanostructure-based fluorescence thermometer with silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Bu, Congcong; Mu, Lixuan; Cao, Xingxing; Chen, Min; She, Guangwei; Shi, Wensheng

    2018-07-01

    DNA nanostructure-based fluorescence thermometers were fabricated by linking fluorescent silver nanoclusters (AgNCs) and guanine-rich(G-rich)DNA chains via a thermally sensitive DNA stem-loop at terminals 5‧ and 3‧. Variations of temperature alter the distance between the AgNCs and G-rich DNA chain, affecting the interaction between them. As a result, the intensity of fluorescence emission from the AgNCs at 636 nm can be sensitively modulated. It was found that the intensity of such red emission is more temperature sensitive than the equivalent green emission at 543 nm; sensitivity of ‑3.6%/°C was achieved. Through variation of the melting temperature of the DNA stem-loop, the response temperature range of the thermometers could be readily adjusted. Novel DNA nanostructure-based fluorescence thermometers as described in this work are anticipated to be able to measure the temperature of biological systems at small scales—even a single cell.

  2. DNA nanostructure-based fluorescence thermometer with silver nanoclusters.

    PubMed

    Bu, Congcong; Mu, Lixuan; Cao, XIngxing; Chen, Min; She, Guangwei; Shi, Wensheng

    2018-04-27

    Linking the fluorescent silver nanoclusters (AgNCs) and guanine-rich(G-rich)DNA chains by the thermal sensitive DNA stem-loop at teminal 5' and 3', DNA nanostructure-based fluorescence thermometers were fabricated. The variations of the temperature alter the distance between AgNCs and G-rich DNA chain, which could affect the interaction between them. As a result, the intensity of fluorescence emission from AgNCs at 636 nm can be sensitively modulated. It was found that such red emission is more sensitive to the temperature comparing with its intrinsic green emission at 543 nm, and sensitivity of -3.6%/℃ was achieved. Varying the melting temperature of the DNA stem-loop could readily adjust the response temperature range of thermometers. Novel DNA nanostructure-based fluorescence thermometers in this work could be anticipated to measure the temperature of biological system, even a single cell. © 2018 IOP Publishing Ltd.

  3. GRCop-84 Rolling Parameter Study

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2008-01-01

    This report is a section of the final report on the GRCop-84 task of the Constellation Program and incorporates the results obtained between October 2000 and September 2005, when the program ended. NASA Glenn Research Center (GRC) has developed a new copper alloy, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb), for rocket engine main combustion chamber components that will improve rocket engine life and performance. This work examines the sensitivity of GRCop-84 mechanical properties to rolling parameters as a means to better define rolling parameters for commercial warm rolling. Experiment variables studied were total reduction, rolling temperature, rolling speed, and post rolling annealing heat treatment. The responses were tensile properties measured at 23 and 500 C, hardness, and creep at three stress-temperature combinations. Understanding these relationships will better define boundaries for a robust commercial warm rolling process. The four processing parameters were varied within limits consistent with typical commercial production processes. Testing revealed that the rolling-related variables selected have a minimal influence on tensile, hardness, and creep properties over the range of values tested. Annealing had the expected result of lowering room temperature hardness and strength while increasing room temperature elongations with 600 C (1112 F) having the most effect. These results indicate that the process conditions to warm roll plate and sheet for these variables can range over wide levels without negatively impacting mechanical properties. Incorporating broader process ranges in future rolling campaigns should lower commercial rolling costs through increased productivity.

  4. Design of a Programmable Gain, Temperature Compensated Current-Input Current-Output CMOS Logarithmic Amplifier.

    PubMed

    Ming Gu; Chakrabartty, Shantanu

    2014-06-01

    This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μm CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/°C (27 °C- 57°C), while consuming less than 100 nW of power.

  5. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhancemore » cell efficiency.« less

  6. Evidence that higher [CO2] increases tree growth sensitivity to temperature: a comparison of modern and paleo oaks

    Treesearch

    Steven L. Voelker; Michael C. Stambaugh; J. Renée Brooks; Frederick C. Meinzer; Barbara Lachenbruch; Richard P. Guyette

    2017-01-01

    To test tree growth-sensitivity to temperature under different ambient CO2 concentrations, we determined stem radial growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional...

  7. A cascade structure made by two types of gratings for simultaneous measurement of temperature and strain

    NASA Astrophysics Data System (ADS)

    Yan, Qi; Liu, Weiliang; Duan, Shujie; Sun, Cuiting; Zhang, Shuo; Han, Zhihang; Jin, Xiren; Zhao, Lei; Geng, Tao; Sun, Weimin; Yuan, Libo

    2018-05-01

    In this paper, a new cascade structure is presented to measure temperature and strain simultaneously. It is made of a CO2-laser-notched long-period fiber grating (CO2-LFPG) and a modular LFPG. Experiments prove that the temperature sensitivity of the modular LPFG is about 5 times lower than that of the CO2-LFPG. Before and after connecting the modular LPFG and the CO2-LPFG together, the experimental results indicate that the temperature and the strain sensitivities of them almost have no change and are retained. The temperature and the strain sensitivities of modular LPFG (resonance wavelength at 1258 nm) are -15.4 pm/°C and -1.2 pm/με, respectively. And the temperature and the strain sensitivities of CO2-LPFG (resonance wavelength at 1356 nm) are 58.3 pm/°C and -0.5 pm/με, respectively. Through the experiments, the feasibility of using the proposed sensor to measure strain and temperature simultaneously has been verified. Therefore, it is strongly believed that the proposed sensor can be used to achieve simultaneous measurement of strain and temperature.

  8. Analysis of multimode BDK doped POF gratings for temperature sensing

    NASA Astrophysics Data System (ADS)

    Luo, Yanhua; Wu, Wenxuan; Wang, Tongxin; Cheng, Xusheng; Zhang, Qijin; Peng, Gang-Ding; Zhu, Bing

    2012-10-01

    We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from -79.5 pm/°C to -104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from -0.097 nm/°C to -0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.

  9. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    NASA Astrophysics Data System (ADS)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant below the closed canopy of even-aged, pioneer trees a climax-species-rich understorey that will build the canopy of the mature forest. This study highlights that forest structure and species composition are both relevant for understanding the temperature sensitivity of wood production.

  10. Vulnerability of California specialty crops to projected mid-century temperature changes

    USDA-ARS?s Scientific Manuscript database

    Increasing global temperatures are likely to have major impacts on agriculture, but the effects will vary by crop and location. This paper describes the temperature sensitivity and exposure of selected specialty crops in California. We used literature synthesis to create several sensitivity indices ...

  11. An evaporative and engine-cycle model for fuel octane sensitivity prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, D.P.; Taylor, A.B.

    The Motor Octane Number (MON) ranks fuels by their chemical resistance to knock. Evaporative cooling coupled with fuel chemistry determine Research Octane Number (RON) antiknock ratings. It is shown in this study that fuel Octane sensitivity (numerically RON minus MON) is liked to an important difference between the two test methods; the RON test allows each fuel`s evaporative cooling characteristics to affect gas temperature, while the MON test generally eliminates this effect by pre-evaporation. In order to establish RON test charge temperatures, a computer model of fuel evaporation was adapted to Octane Engine conditions, and simulations were compared with realmore » Octane Test Engine measurements including droplet and gas temperatures. A novel gas temperature probe yielded data that corresponded well with model predictions. Tests spanned single component fuels and blends of isomers, n-paraffins, aromatics and alcohols. Commercially available automotive and aviation gasolines were also tested. A good correlation was observed between the computer predictions and measured temperature data across the range of pure fuels and blends. A numerical method to estimate the effect of precombustion temperature differences on Octane sensitivity was developed and applied to analyze these data, and was found to predict the widely disparate sensitivities of the tested fuels with accuracy. Data are presented showing mixture temperature histories of various tested fuels, and consequent sensitivity predictions. It is concluded that a fuel`s thermal-evaporative behavior gives rise to fuel Octane sensitivity as measured by differences between the RON and MON tests. This is demonstrated by the success, over a wide range of fuels, of the sensitivity predictor method describes. Evaporative cooling, must therefore be regarded as an important parameter affecting the general road performance of automobiles.« less

  12. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes

    PubMed Central

    Nottingham, Andrew T.; Whitaker, Jeanette; Turner, Benjamin L.; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-01-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of “cold-adapted” and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change. PMID:26955086

  13. Tundra biome research in Alaska: the structure and function of cold-dominated ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.; West, G.C.

    1970-11-01

    The objective of the Tundra Biome Program is to acquire a basic understanding of tundra, both alpine and arctic, and taiga. Collectively these are referred to as the cold-dominated ecosystems. The program's broad objectives are threefold: To develop a predictive understanding of how the wet arctic tundra ecosystem operates, particularly as exemplified in the Barrow, Alaska, area; to obtain the necessary data base from the variety of cold-dominated ecosystem types represented in the United States, so that their behavior can be modeled and simulated, and the results compared with similar studies underway in other circumpolar countries; to bring basic environmentalmore » knowledge to bear on problems of degradation, maintenance, and restoration of the temperature-sensitive and cold-dominated tundra/taiga ecosystems. (GRA)« less

  14. Fully digital programmable optical frequency comb generation and application.

    PubMed

    Yan, Xianglei; Zou, Xihua; Pan, Wei; Yan, Lianshan; Azaña, José

    2018-01-15

    We propose a fully digital programmable optical frequency comb (OFC) generation scheme based on binary phase-sampling modulation, wherein an optimized bit sequence is applied to phase modulate a narrow-linewidth light wave. Programming the bit sequence enables us to tune both the comb spacing and comb-line number (i.e., number of comb lines). The programmable OFCs are also characterized by ultra-flat spectral envelope, uniform temporal envelope, and stable bias-free setup. Target OFCs are digitally programmed to have 19, 39, 61, 81, 101, or 201 comb lines and to have a 100, 50, 20, 10, 5, or 1 MHz comb spacing. As a demonstration, a scanning-free temperature sensing system using a proposed OFC with 1001 comb lines was also implemented with a sensitivity of 0.89°C/MHz.

  15. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  16. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  17. Continued Development of a Global Heat Transfer Measurement System at AEDC Hypervelocity Wind Tunnel 9

    NASA Technical Reports Server (NTRS)

    Kurits, Inna; Lewis, M. J.; Hamner, M. P.; Norris, Joseph D.

    2007-01-01

    Heat transfer rates are an extremely important consideration in the design of hypersonic vehicles such as atmospheric reentry vehicles. This paper describes the development of a data reduction methodology to evaluate global heat transfer rates using surface temperature-time histories measured with the temperature sensitive paint (TSP) system at AEDC Hypervelocity Wind Tunnel 9. As a part of this development effort, a scale model of the NASA Crew Exploration Vehicle (CEV) was painted with TSP and multiple sequences of high resolution images were acquired during a five run test program. Heat transfer calculation from TSP data in Tunnel 9 is challenging due to relatively long run times, high Reynolds number environment and the desire to utilize typical stainless steel wind tunnel models used for force and moment testing. An approach to reduce TSP data into convective heat flux was developed, taking into consideration the conditions listed above. Surface temperatures from high quality quantitative global temperature maps acquired with the TSP system were then used as an input into the algorithm. Preliminary comparison of the heat flux calculated using the TSP surface temperature data with the value calculated using the standard thermocouple data is reported.

  18. The Development of Silicon Carbide Based Hydrogen and Hydrocarbon Sensors

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun

    1994-01-01

    Silicon carbide is a high temperature electronic material. Its potential for development of chemical sensors in a high temperature environment has not been explored. The objective of this study is to use silicon carbide as the substrate material for the construction of chemical sensors for high temperature applications. Sensors for the detection of hydrogen and hydrocarbon are developed in this program under the auspices of Lewis Research Center, NASA. Metal-semiconductor or metal-insulator-semiconductor structures are used in this development. Specifically, using palladium-silicon carbide Schottky diodes as gas sensors in the temperature range of 100 to 400 C are designed, fabricated and assessed. The effect of heat treatment on the Pd-SiC Schottky diode is examined. Operation of the sensors at 400 C demonstrate sensitivity of the sensor to hydrogen and hydrocarbons. Substantial progress has been made in this study and we believe that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures. However, the long term stability and operational life of the sensor need to be assessed. This aspect is an important part of our future continuing investigation.

  19. Response of Marine Taxa to Climate Variability in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Morley, J. W.; Pinsky, M. L.; Batt, R. D.

    2016-02-01

    Climate change has led to large-scale redistributions of marine taxa in many coastal regions around North America. Specifically, marine populations respond to spatial shifts in their preferred temperature conditions, or thermal envelope, as they shift across a seascape. The influence of climate change on the coastal fisheries of the southeast U.S. has been largely unexplored. We analyzed 25 years of trawl survey data (1990-2014) from the Southeast Area Monitoring and Assessment Program (SEAMAP), which samples the nearshore continental shelf of the South Atlantic Bight during spring, summer, and fall. Bottom temperatures exhibited no trend over this period and the assemblage showed no net shift north or south. However, taxa distributions were sensitive to interannual temperature variation. Annual projections of taxa thermal envelopes explained variation in centroid location for many species, particularly during spring. Accordingly, long-term latitudinal shifts in taxa-specific thermal envelopes, which trended to the north or south depending on the species, were highly correlated with centroid shifts during spring. One explanation for our results is that the phenology of taxa migration is adaptable to temperature variation. In particular, the inshore-offshore movement of species during spring and fall appears quite responsive to interannual temperature variability.

  20. A temperature monitor circuit with small voltage sensitivity using a topology-reconfigurable ring oscillator

    NASA Astrophysics Data System (ADS)

    Kishimoto, Tadashi; Ishihara, Tohru; Onodera, Hidetoshi

    2018-04-01

    In this paper, we propose a temperature monitor circuit that exhibits a small supply voltage sensitivity adopting a circuit topology of a reconfigurable ring oscillator. The circuit topology of the monitor is crafted such that the oscillation frequency is determined by the amount of subthreshold leakage current, which has an exponential dependence on temperature. Another important characteristic of the monitor is its small supply voltage sensitivity. The measured oscillation frequency of a test chip fabricated in a 65 nm CMOS process varies only 2.6% under a wide range of supply voltages from 0.4 to 1.0 V at room temperature. The temperature estimation error ranges from -0.3 to 0.4 °C over a temperature range of 10 to 100 °C.

  1. Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS

    DOE PAGES

    Brown, C. S.; Zhang, Hongbin

    2016-05-24

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  2. The microbial temperature sensitivity to warming is controlled by thermal adaptation and is independent of C-quality across a pan-continental survey

    NASA Astrophysics Data System (ADS)

    Berglund, Eva; Rousk, Johannes

    2017-04-01

    Climate models predict that warming will result in an increased loss of soil organic matter (SOM). However, field experiments suggest that although warming results in an immediate increase in SOM turnover, the effect diminishes over time. Although the use and subsequent turnover of SOM is dominated by the soil microbial community, the underlying physiology underpinning warming responses are not considered in current climate models. It has been suggested that a reduction in the perceived quality of SOM to the microbial community, and changes in the microbial thermal adaptation, could be important feed-backs to soil warming. Thus, studies distinguishing between temperature relationships and how substrate quality influences microbial decomposition are a priority. We examined microbial communities and temperature sensitivities along a natural climate gradient including 56 independent samples from across Europe. The gradient included mean annual temperatures (MAT) from ca -4 to 18 ˚ C, along with wide spans of environmental factors known to influence microbial communities, such as pH (4.0 to 8.8), nutrients (C/N from 7 to 50), SOM (from 4 to 94%), and plant communities, etc. The extensive ranges of environmental conditions resulted in wide ranges of substrate quality, indexed as microbial respiration per unit SOM, from 5-150 μg CO2g-1 SOM g-1 h-1. We hypothesised microbial communities to (1) be adapted to the temperature of their climate, leading to warm adapted bacterial communities that were more temperature sensitive (higher Q10s) at higher MAT; (2) have temperature sensitivities affected by the quality of SOM, with higher Q10s for lower quality SOM. To determine the microbial use of SOM and its dependence on temperature, we characterized microbial temperature dependences of bacterial growth (leu inc), fungal growth (ac-in-erg) and soil respiration in all 56 sites. Temperature dependences were determined using brief (ca. 1-2 h at 25˚ C) laboratory incubation experiments including temperatures from 0 to 35˚ C. Temperature relationships were modelled using the Ratkowsky model, and cardinal points including minimum temperature (Tmin) for growth and respiration along with temperature sensitivity (Q10) values were used as indices to compare sites. Microbial communities were cold-adapted in cold sites and warm-adapted in warm sites, as shown by Tmin values ranging from ca. -20 ˚ C to 0 ˚ C. For every 1˚ C rise in MAT, Tmin increased by 0.22˚ C and 0.28˚ C for bacteria and fungi, respectively. Soil respiration was less dependent on MAT, increasing 0.16 ˚ C per 1˚ C. Temperature dependence analyses grew stronger when regressed against summer temperatures, and weaker when regressed against winter temperatures. Hence, microbial communities adjusted their temperature dependence for growth more than for respiration, and higher temperatures had more impact than low temperatures did. The correlation between Tmin and MAT resulted in Q10s increasing with MAT, showing that microorganisms from cold regions were less temperature sensitive than those from warmer regions. For every 1˚ C increase in MAT, Q10 increased with 0.04 and 0.03 units for bacterial and fungal growth respectively, and 0.08 units for soil respiration. In contrast to previous studies, we found no relationship between temperature sensitivity and substrate quality. We demonstrate that the strongest driver of variation in microbial temperatures sensitivities (Q10s) is the microbial adaptation to its thermal environment. Surprisingly, the quality of SOM had no influence on the temperature sensitivity. This calls for a revision of the understanding for how microbial decomposers feed-back to climate warming. Specifically, the thermal adaptation of microbial communities need to be incorporated into climate models to capture responses to warming, while the quality of SOM can be ignored.

  3. Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems: Implications for models

    NASA Astrophysics Data System (ADS)

    Holland, Elisabeth A.; Neff, Jason C.; Townsend, Alan R.; McKeown, Becky

    2000-12-01

    Tropical ecosystems play a central role in the global carbon cycle. Large changes in tropical temperature over geologic time and the significant responses of tropical ecosystems to shorter-term variations such as El Niño/La Niña argue for a robust understanding of the temperature sensitivity of tropical decomposition. To examine the responsiveness of heterotrophic respiration to temperature, we measured rates of heterotrophic respiration from a wide range of tropical soils in a series of laboratory incubations. Under conditions of optimal soil water and nonlimiting substrate availability, heterotrophic respiration rose exponentially with rising temperature. The meanQ10measured across all temperature ranges in these short-term incubations was 2.37, but there was significant variation inQ10s across sites. The source of this variation could not be explained by soil carbon or nitrogen content, soil texture, site climate, or lignin to nitrogen ratio. At the beginning of the incubation, heterotrophic respiration increased exponentially with temperature for all sites, despite the fact that the fluxes differed by an order of magnitude. When substrate availability became limiting later in the incubation, the temperature response changed, and heterotrophic response declined above 35°C. The documented changes in temperature sensitivity with substrate availability argue for using temperature relationships developed under optimal conditions of substrate availability for models which include temperature regulation of heterotrophic respiration. To evaluate the significance of this natural variation in temperature control over decomposition, we used the Century ecosystem model gridded for the areas between the tropics of Cancer and Capricorn. These simulations used the mean and upper and lower confidence limits of the normalized exponential temperature response of our experimental studies. We found that systems with the lowest temperature sensitivity accumulated a total of 70 Pg more carbon in soil organic carbon and respired 5.5 Pg yr-1 less carbon compared to the systems with the highest sensitivity.

  4. Temperature sensitivity of methanogenesis in a thermokarst lake sediment core

    NASA Astrophysics Data System (ADS)

    Heslop, J. K.; Walter Anthony, K. M.; Grosse, G.; Anthony, P.; Bondurant, A.

    2016-12-01

    Little is known about temperature sensitivity of permafrost organic carbon (OC) mineralization over time scales of years to centuries following thaw. Due to their formation and thaw histories, taliks (thaw bulbs) beneath thermokarst lakes provide a unique natural laboratory from which to examine how permafrost thawed in saturated anaerobic conditions responds to changes in temperature following long periods of time since thaw. We anaerobically incubated samples from a 590 cm thermokarst lake sediment core near Fairbanks, Alaska at four temperatures (0, 3, 10, and 25 ºC) bracketing observed talik temperatures. We show that since initial thaw 400 yr BP CH4 production shifts from being most sensitive to at lower (0-3 ºC; Q10-EC=1.15E7) temperatures to being most sensitive at higher (10-25 ºC; Q10-EC=67) temperatures. Frozen sediments collected from beneath the talik, thawed at the commencement of the incubation, had significant (p ≤ 0.05) increases in CH4 production rates at lower temperatures but did not show significant CH4 production rate increases at higher temperatures (10-25 ºC). We hypothesize the thawing of sediments removed a major barrier to C mineralization, leading to rapid initial permafrost C mineralization and preferential mineralization of the most biolabile OC compounds. In contrast, sediments which had been thawed beneath the lake for longer periods of time did not experience statistically significant increases in CH4 production at lower temperatures (0-10 ºC), but had high temperature sensitivities at higher temperatures (10-25 ºC). We believe these rate increases are due to warmer temperatures in the experimental incubations crossing activation energy thresholds, allowing previously recalcitrant fractions of OC to be utilized, and/or the presence of different microbial communities adapted to thawed sediments. Recently-deposited sediments at shallow depths in the lake core experienced increases in CH4 production across all incubation temperatures (Q10-ST=4.4).

  5. Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness

    NASA Astrophysics Data System (ADS)

    Vendittozzi, Cristian; Felli, Ferdinando; Lupi, Carla

    2018-05-01

    Fiber optics with photo-imprinted Bragg grating have been studied in order to be used as temperature sensors in cryogenic applications. The main disadvantage presented by Fiber Bragg Grating (FBG) sensors is the significant drop in sensitivity as temperature decreases, mainly due to the critical lowering of the thermo-optic coefficient of the fiber and the very low thermal expansion coefficient (CTE) of fused silica at cryogenic temperatures. Thus, especially for the latter, it is important to enhance sensitivity to temperature by depositing a metal coating presenting higher CTE. In this work the thermal sensitivity of metal-coated FBG sensors has been evaluated by considering their elongation within temperature variations in the cryogenic range, as compared to bare fiber sensors. To this purpose, a theoretical model simulating elongation of metal-coated sensors has been developed. The model has been used to evaluate the behaviour of different metals which can be used as coating (Ni, Cu, Al, Zn, Pb and In). The optimal coating thickness has been calculated at different fixed temperature (from 5 K to 100 K) for each metal. It has been found that the metal coating effectiveness depends on thickness and operating temperature in accordance to our previous experimental work and theory suggest.

  6. Effect of annealing temperature and dopant concentration on the thermoluminescence sensitivity in LiF:Mg,Cu,Ag material.

    PubMed

    Yahyaabadi, Akram; Torkzadeh, Falamarz; Rezaei Ochbelagh, Dariush; Hosseini Pooya, Seyed Mahdi

    2018-04-24

    LiF:Mg,Cu,Ag is a new dosimetry material that is similar to LiF:Mg,Cu,P in terms of dosimetric properties. The effect of the annealing temperature in the range of 200 to 350°C on the thermoluminescence (TL) sensitivity and the glow curve structure of this material at different concentrations of silver (Ag) was investigated. It has been demonstrated that the optimum values of the annealing temperature and the Ag concentration are 240°C and 0.1 mol% for better sensitivity, respectively. The TL intensity decreases at annealing temperatures lower than 240°C or higher than 240°C, reaching a minimum at 300°C and then again increases for various Ag concentrations. It was observed that the glow curve structure altered and the area under the low temperature peak as well as the area under the main dosimetric peak decreased with increasing annealing temperature. The position of the main dosimetric peak moved in the direction of higher temperatures, but at 320 and 350°C annealing temperatures, it shifted to lower temperatures. It was also observed that the TL sensitivity could partially be recovered by a combined annealing procedure. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Role of Escherichia coli dnaA gene and its integrative suppression in M13 Coliphage DNA synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, S.; Stallions, D.R.

    An F/sup +/ derivative of Escherichia coli E508 thermosensitive in dnaA function (involved in DNA synthesis initiation), its revertant and an Hfr derivative of E508(ts) in which the temperature-sensitive phenotype is suppressed by integrative suppression have been compared for their ability to support M13 phage DNA synthesis at the nonpermissive temperature. Upon infection at the nonpermissive temperature, both the revertant and the Hfr strain support normal phage replication while the temperature-sensitive mutant does not. However, when infection is carried out at a permissive temperature and the temperature is shifted up after infection, phage synthesis occurs in the temperature-sensitive mutant also,more » but in lesser quantity than in the revertant strain. Analysis of intracellular labeled phage DNA indicates: (a) parental replicative form DNA synthesis is not dependent on dnaA function; (b) progeny replicative form DNA synthesis is strongly inhibited in the temperature-sensitive dnaA mutant at the nonpermissive temperature; (c) progeny single-strand DNA synthesis does not absolutely require dnaA function; (d) progeny single-strand DNA is present in the circular form. The implication of the host DNA replication in M13 DNA synthesis is discussed.« less

  8. Development of a large volume injection method using a programmed temperature vaporization injector - gas chromatography hyphenated to ICP-MS for the simultaneous determination of mercury, tin and lead species at ultra-trace levels in natural waters.

    PubMed

    Terán-Baamonde, J; Bouchet, S; Tessier, E; Amouroux, D

    2018-04-27

    The current EU legislation lays down Environmental Quality Standards (EQS) for 45 priority substances in surface waters; among them levels for (organo)metallic species of Hg, Sn and Pb are set between ng L -1 (for Hg and Sn) and μg L -1 (for Pb). To date, only a few analytical methods can reach these very restrictive limits and there is thus a need for comprehensive methods able to analyze these species down to these levels in natural waters. The aim of this work was to develop an online automated pre-concentration method using large volume injections with a Programmed Temperature Vaporization (PTV) injector fitted with a sorbent packed liner coupled to GC-ICP-MS to further improve the detection limits associated to this well-established method. The influence of several parameters such as the PTV transfer temperature and time, carrier gas flow rate and amount of packing material was investigated. Finally, the maximum volume injected through single or multiple injection modes was optimized to obtain the best compromise between chromatographic resolution and sensitivity. After optimization, very satisfactory results in terms of absolute and methodological detection limits were achieved, down to the pg L -1 level for all species studied. The potential of the method was exemplified by determining the concentrations of organometallic compounds in unpolluted river waters samples from the Adour river basin (SW France) and results were compared with conventional (splitless) GC-ICP-MS. The strength of this analytical method lies in the low detection limits reached for the simultaneous analysis of a wide group of organometallic compounds, and the potential to transfer this method to other gas chromatographic applications with inherent lower sensitivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  10. Using Dynamic Sensitivity Analysis to Assess Testability

    NASA Technical Reports Server (NTRS)

    Voas, Jeffrey; Morell, Larry; Miller, Keith

    1990-01-01

    This paper discusses sensitivity analysis and its relationship to random black box testing. Sensitivity analysis estimates the impact that a programming fault at a particular location would have on the program's input/output behavior. Locations that are relatively \\"insensitive" to faults can render random black box testing unlikely to uncover programming faults. Therefore, sensitivity analysis gives new insight when interpreting random black box testing results. Although sensitivity analysis is computationally intensive, it requires no oracle and no human intervention.

  11. Constraining the Sensitivity of Amazonian Rainfall with Observations of Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dolman, A. J.; von Randow, C.; de Oliveira, G. S.; Martins, G.; Nobre, C. A.

    2016-12-01

    Earth System models generally do a poor job in predicting Amazonian rainfall, necessitating the need to look for observational constraints on their predictability. We use observed surface temperature and precipitation of the Amazon and a set of 21 CMIP5 models to derive an observational constraint of the sensitivity of rainfall to surface temperature (dP/dT). From first principles such a relation between the surface temperature of the earth and the amount of precipitation through the surface energy balance should exist, particularly in the tropics. When de-trended anomalies in surface temperature and precipitation from a set of datasets are plotted, a clear linear relation between surface temperature and precipitation appears. CMIP5 models show a similar relation with relatively cool models having a larger sensitivity, producing more rainfall. Using the ensemble of models and the observed surface temperature we were able to derive an emerging constraint, reducing the dPdt sensitivity of the CMIP5 model from -0.75 mm day-1 0C-1 (+/- 0.54 SD) to -0.77 mm day-1 0C-1 with a reduced uncertainty of about a factor 5. dPdT from the observation is -0.89 mm day-1 0C-1 . We applied the method to wet and dry season separately noticing that in the wet season we shifted the mean and reduced uncertainty, while in the dry season we very much reduced uncertainty only. The method can be applied to other model simulations such as specific deforestation scenarios to constrain the sensitivity of rainfall to surface temperature. We discuss the implications of the constrained sensitivity for future Amazonian predictions.

  12. Quantitative Assessment of Temperature Sensitivity of the ...

    EPA Pesticide Factsheets

    The Total Maximum Daily Load (TMDL) program, established by the Clean Water Act, is used to establish limits on loading of pollutants from point and nonpoint sources necessary to achieve water quality standards. One important use of a temperature TMDL is to allocate thermal loads to achieve water temperature criteria established for the protection of cold water fisheries. The pollutant in this case is thermal load and allocations to reduce the load often involve restoration of stream shading, which reduces the solar input. While many temperature TMDLs have been established, the supporting analyses have generally assumed a stationary climate under which historical data on flow and air temperature can serve as an adequate guide to future conditions. Projected changes in climate over the 21st century contradict this assumption. Air temperature is expected to increase in most parts of the US, accompanied in many areas by seasonal shifts in the timing and amount of precipitation, which in turn will alter stream flow. This study evaluates the implications of climate change for the water temperature TMDL developed for the South Fork Nooksack River in northwest Washington by the Department of Ecology, where multiple water body segments exceed temperature criteria established for the protection of cold water salmonid populations (Ecology, 2016). The purpose of this report is to provide a “companion technical methods manual” as documentation for the draft SFNR tempera

  13. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii.

    PubMed

    Li, Jianwei; Handler, Alfred M

    2017-09-28

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2), using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) homology-directed repair gene-editing. Ds-tra-2 ts2 mutants developed as normal fertile XX and XY adults at permissive temperatures below 20 °C, but at higher restrictive temperatures (26 to 29 °C) chromosomal XX females developed as sterile intersexuals with a predominant male phenotype, while XY males developed with normal morphology, but were sterile. The temperature-dependent function of the Ds-TRA-2 ts2 protein was also evident by the up- and down-regulation of female-specific Ds-Yolk protein 1 (Ds-Yp1) gene expression by temperature shifts during adulthood. This study confirmed the temperature-dependent function of a gene-edited mutation and provides a new method for the more general creation of conditional mutations for functional genomic analysis in insects, and other organisms. Furthermore, it provides a temperature-dependent system for creating sterile male populations useful for enhancing the efficacy of biologically-based programs, such as the sterile insect technique (SIT), to control D. suzukii and other insect pest species of agricultural and medical importance.

  14. A thermal-sensitive device fabricated with diamond film and a planar microelectrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changzhi Gu; Zengsun Jin; Xianyi Lu

    1995-12-31

    Polycrystalline diamond film were deposited by means of the hot filament CVD technique (HFCVD) onto a planar interdigital Ti microelectrode arrays, and forming a thermal-sensitive device, The resistor changes of diamond film caused by temperature are shown to be sensitive, reproducible, rapid and stable thermal-sensitive device. The characteristics of thermal-sensitive for this device was study. Functionalized diamond film deposited onto planar microelectrode arrays can easily detect temperature from 20{degrees}C to 700{degrees}C.

  15. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marc Cremer; Kirsi St. Marie; Dave Wang

    2003-04-30

    This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flowmore » controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD simulations of the single wall fired unit were presented in a technical paper entitled, ''CFD Investigation of the Sensitivity of Furnace Operational Conditions to Burner Flow Controls,'' presented at the 28th International Technical Conference on Coal Utilization and Fuel Systems in Clearwater, FL March 9-14, 2003. In addition to the work completed on the single wall fired unit, the project team made the selection of a 580 MW opposed wall fired unit to be the subject of evaluation in this program. Work is in progress to update the baseline model of this unit so that the parametric simulations can be initiated.« less

  16. Does the hybrid light source (LED/laser) influence temperature variation on the enamel surface during 35% hydrogen peroxide bleaching? A randomized clinical trial.

    PubMed

    de Freitas, Patricia Moreira; Menezes, Andressa Nery; da Mota, Ana Carolina Costa; Simões, Alyne; Mendes, Fausto Medeiros; Lago, Andrea Dias Neves; Ferreira, Leila Soares; Ramos-Oliveira, Thayanne Monteiro

    2016-01-01

    The present study investigated how a hybrid light source (LED/laser) influences temperature variation on the enamel surfaces during 35% hydrogen peroxide (HP) bleaching. Effects on the whitening effectiveness and tooth sensitivity were analyzed. Twenty-two volunteers were randomly assigned to two different treatments in a split-mouth experimental model: group 1 (control), 35% HP; group 2 (experimental), 35% HP + LED/laser. Color evaluation was performed before treatment, and 7 and 14 days after completion of bleaching, using a color shade scale. Tooth sensitivity was assessed using a visual analog scale (VAS; before, immediately, and 24 hours after bleaching). During the bleaching treatment, thermocouple channels positioned on the tooth surfaces recorded the temperature. Data on color and temperature changes were subjected to statistical analysis (α = 5%). Tooth sensitivity data were evaluated descriptively. Groups 1 and 2 showed mean temperatures (± standard deviation) of 30.7 ± 1.2 °C and 34.1 ± 1.3 °C, respectively. It was found that there were statistically significant differences between the groups, with group 2 showing higher mean variation (P < .0001). The highest temperature variation occurred for group 2, with an increase of 5.3 °C at the enamel surface. The color change results showed no differences in bleaching between the two treatment groups (P = .177). The variation of the average temperature during the treatments was not statistically associated with color variation (P = .079). Immediately after bleaching, it was found that 36.4% of the subjects in group 2 had mild to moderate sensitivity. In group 1, 45.5% showed moderate sensitivity. In both groups, the sensitivity ceased within 24 hours. Hybrid light source (LED/ laser) influences temperature variation on the enamel surface during 35% HP bleaching and is not related to greater tooth sensitivity.

  17. Development of a database-driven system for simulating water temperature in the lower Yakima River main stem, Washington, for various climate scenarios

    USGS Publications Warehouse

    Voss, Frank; Maule, Alec

    2013-01-01

    A model for simulating daily maximum and mean water temperatures was developed by linking two existing models: one developed by the U.S. Geological Survey and one developed by the Bureau of Reclamation. The study area included the lower Yakima River main stem between the Roza Dam and West Richland, Washington. To automate execution of the labor-intensive models, a database-driven model automation program was developed to decrease operation costs, to reduce user error, and to provide the capability to perform simulations quickly for multiple management and climate change scenarios. Microsoft© SQL Server 2008 R2 Integration Services packages were developed to (1) integrate climate, flow, and stream geometry data from diverse sources (such as weather stations, a hydrologic model, and field measurements) into a single relational database; (2) programmatically generate heavily formatted model input files; (3) iteratively run water temperature simulations; (4) process simulation results for export to other models; and (5) create a database-driven infrastructure that facilitated experimentation with a variety of scenarios, node permutations, weather data, and hydrologic conditions while minimizing costs of running the model with various model configurations. As a proof-of-concept exercise, water temperatures were simulated for a "Current Conditions" scenario, where local weather data from 1980 through 2005 were used as input, and for "Plus 1" and "Plus 2" climate warming scenarios, where the average annual air temperatures used in the Current Conditions scenario were increased by 1degree Celsius (°C) and by 2°C, respectively. Average monthly mean daily water temperatures simulated for the Current Conditions scenario were compared to measured values at the Bureau of Reclamation Hydromet gage at Kiona, Washington, for 2002-05. Differences ranged between 1.9° and 1.1°C for February, March, May, and June, and were less than 0.8°C for the remaining months of the year. The difference between current conditions and measured monthly values for the two warmest months (July and August) were 0.5°C and 0.2°C, respectively. The model predicted that water temperature generally becomes less sensitive to air temperature increases as the distance from the mouth of the river decreases. As a consequence, the difference between climate warming scenarios also decreased. The pattern of decreasing sensitivity is most pronounced from August to October. Interactive graphing tools were developed to explore the relative sensitivity of average monthly and mean daily water temperature to increases in air temperature for model output locations along the lower Yakima River main stem.

  18. Temperature sensitivity of ligand-gated ion channels: ryanodine receptor case

    NASA Astrophysics Data System (ADS)

    Iaparov, B. I.; Moskvin, A. S.; Solovyova, O. E.

    2017-11-01

    Temperature influences all biochemical processes, in particular, excitation-contraction coupling(ECC) in cardiac cells. In this work we propose a theoretical explanation of temperature effects on an isolated ryanodine receptor calcium release channel (RyR channel) within the electron-conformational (EC) model. We show that the EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunnelling “open ↔ closed” transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyR channels. Interestingly that a small change of the activation energy for the “internal” friction can make an ion channel either heat-inhibited or heat-activated while the “external” friction doesn’t play a key role in temperature sensitivity: neglect of “external” friction doesn’t change the channel’s temperature sensitivity qualitatively.

  19. A fiber Bragg grating--bimetal temperature sensor for solar panel inverters.

    PubMed

    Ismail, Mohd Afiq; Tamchek, Nizam; Hassan, Muhammad Rosdi Abu; Dambul, Katrina D; Selvaraj, Jeyrai; Rahim, Nasrudin Abd; Sandoghchi, Reza; Adikan, Faisal Rafiq Mahamd

    2011-01-01

    This paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.

  20. MRI monitoring of focused ultrasound sonications near metallic hardware.

    PubMed

    Weber, Hans; Ghanouni, Pejman; Pascal-Tenorio, Aurea; Pauly, Kim Butts; Hargreaves, Brian A

    2018-07-01

    To explore the temperature-induced signal change in two-dimensional multi-spectral imaging (2DMSI) for fast thermometry near metallic hardware to enable MR-guided focused ultrasound surgery (MRgFUS) in patients with implanted metallic hardware. 2DMSI was optimized for temperature sensitivity and applied to monitor focus ultrasound surgery (FUS) sonications near metallic hardware in phantoms and ex vivo porcine muscle tissue. Further, we evaluated its temperature sensitivity for in vivo muscle in patients without metallic hardware. In addition, we performed a comparison of temperature sensitivity between 2DMSI and conventional proton-resonance-frequency-shift (PRFS) thermometry at different distances from metal devices and different signal-to-noise ratios (SNR). 2DMSI thermometry enabled visualization of short ultrasound sonications near metallic hardware. Calibration using in vivo muscle yielded a constant temperature sensitivity for temperatures below 43 °C. For an off-resonance coverage of ± 6 kHz, we achieved a temperature sensitivity of 1.45%/K, resulting in a minimum detectable temperature change of ∼2.5 K for an SNR of 100 with a temporal resolution of 6 s per frame. The proposed 2DMSI thermometry has the potential to allow MR-guided FUS treatments of patients with metallic hardware and therefore expand its reach to a larger patient population. Magn Reson Med 80:259-271, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Fiber specklegram sensors sensitivities at high temperatures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Lomer, M.; Lopez-Higuera, J. M.

    2015-09-01

    In this work, the sensitivity of Fiber Specklegram Sensors to high temperatures (up to 800ºC) have been studied. Two multimode silica fibers have been introduced into a tubular furnace while a HeNe laser source was launched into a fiber edge, projecting speckle patterns to a commercial webcam. A computer generated different heating and cooling sweeps while the specklegram evolution was recorded. The achieved results exhibit a remarkably linearity in FSS's sensitivity for temperatures under 800ºC, following the thermal expansion of fused silica.

  2. How two types of fluctuating temperature affect the growth of Fusarium solani

    Treesearch

    Keith F. Jensen; Phillip E. Reynolds

    1969-01-01

    Growth of six isolates of Fusarium solani on potato dextrose agar was determined with (1) continually changing temperature programs, (2) programs consisting of two alternating constant temperatures, and (3) a constant temperature program. All programs had a mean of 70º F. Growth increased with an increase in temperature fluctuation of 10 or...

  3. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  4. Specific temperature-induced perturbations of secondary mRNA structures are associated with the cold-adapted temperature-sensitive phenotype of influenza A virus.

    PubMed

    Chursov, Andrey; Kopetzky, Sebastian J; Leshchiner, Ignaty; Kondofersky, Ivan; Theis, Fabian J; Frishman, Dmitrij; Shneider, Alexander

    2012-10-01

    For decades, cold-adapted, temperature-sensitive (ca/ts) strains of influenza A virus have been used as live attenuated vaccines. Due to their great public health importance it is crucial to understand the molecular mechanism(s) of cold adaptation and temperature sensitivity that are currently unknown. For instance, secondary RNA structures play important roles in influenza biology. Thus, we hypothesized that a relatively minor change in temperature (32-39°C) can lead to perturbations in influenza RNA structures and, that these structural perturbations may be different for mRNAs of the wild type (wt) and ca/ts strains. To test this hypothesis, we developed a novel in silico method that enables assessing whether two related RNA molecules would undergo (dis)similar structural perturbations upon temperature change. The proposed method allows identifying those areas within an RNA chain where dissimilarities of RNA secondary structures at two different temperatures are particularly pronounced, without knowing particular RNA shapes at either temperature. We identified such areas in the NS2, PA, PB2 and NP mRNAs. However, these areas are not identical for the wt and ca/ts mutants. Differences in temperature-induced structural changes of wt and ca/ts mRNA structures may constitute a yet unappreciated molecular mechanism of the cold adaptation/temperature sensitivity phenomena.

  5. Low-temperature-sensitive relative humidity sensor based on tapered square no-core fiber coated with SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Miao, Yinping; Ma, Xixi; He, Yong; Zhang, Hongmin; Zhang, Hao; Song, Binbin; Liu, Bo; Yao, Jianquan

    2016-05-01

    A low-temperature-sensitive relative humidity (RH) sensor based on multimode interference effects has been proposed. The sensor consists of a section of tapered square no-core fiber (TSNCF) coated with SiO2 nanoparticles which is fabricated by splicing the TSNCF with two single-mode fibers (SMFs). The refractive index of SiO2 nanoparticles changes with the variation of environmental humidity levels. Characteristics of the transmission spectral have been investigated under different humidity levels. The wavelength shifts up to 10.2 nm at 1410 nm and 11.5 nm at 1610 nm for a RH range of 43.6-98.6% have been experimentally achieved, and the corresponding sensitivities reach 456.21 pm/%RH and 584.2 pm/%RH for a RH range of 83-96.6%, respectively. The temperature response of the proposed sensor has also been experimentally investigated. Due to the fact that the sensing head is made of a pure silica rod with a low thermal expansion coefficient and the thermo-optic coefficient, the transmission spectrum shows a low temperature sensitivity of about 6 pm/°C for an environmental temperature of 20.9-80 °C, which is a desirable merit to resolve the temperature cross sensitivity. Therefore, the proposed sensor could be applied to breath analysis applications with low temperature fluctuations.

  6. Relationship of mechanical characteristics and microstructural features to the time-dependent edge notch sensitivity of inconel 718 sheet

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.

    1971-01-01

    Time-dependent notch sensitivity of Inconel 718 sheet was observed at 900 F to 1200 F (482 - 649 C). It occurred when edge-notched specimens were loaded below the yield strength and smooth specimen tests showed that small amounts of creep consumed large rupture life fractions. The severity of the notch sensitivity was reduced by decreasing the solution temperature, increasing the time and/or temperature of aging and increasing the test temperature to 1400 F (760 C). Elimination of time-dependent notch sensitivity correlated with a change in dislocation motion mechanism from shearing to by-passing precipitate particles.

  7. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  8. A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.

    Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less

  9. A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems

    DOE PAGES

    Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.

    2018-04-23

    Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less

  10. Temperature insensitive bending sensor based on in-line Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Yu, Yongqin; Xu, Xiaomei; Huang, Quandong; Ou, Zhilong; Wang, Jishun; Yan, Peiguang; Du, Chenlin

    2014-09-01

    A simple and compact fiber bending sensor based on the Mach-Zehnder interferometer was proposed. A photonic crystal fiber (PCF) with a length of 10 mm was spliced by collapsing air holes with two conventional single mode fibers to consist of an all fiber bending sensor. The sensitivity of 0.53 nm/m-1 was obtained at 1586 nm for the curvature range from 0 to 8.514 m-1. The temperature sensitivity was very low. The measurement error due to the temperature effect was about 8.68×10-3 m-1/°c, and the temperature effect in the curvature measurement could be ignored. This device can avoid the cross sensitivity of the temperature in the curvature measurement.

  11. Temperature insensitive curvature sensor based on cascading photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Fu, Guangwei; Li, Yunpu; Fu, Xinghu; Jin, Wa; Bi, Weihong

    2018-03-01

    A temperature insensitive curvature sensor is proposed based on cascading photonic crystal fiber. Using the arc fusion splicing method, this sensor is fabricated by cascading together a single-mode fiber (SMF), a three layers air holes structure of photonic crystal fiber (3PCF), a five layers air holes structure of photonic crystal fiber (5PCF) and a SMF in turn. So the structure SMF-3PCF-5PCF-SMF can be obtained with a total length of 20 mm. During the process of fabrication, the splicing machine parameters and the length of each optical fiber are adjusted to obtain a high sensitivity curvature sensor. The experimental results show that the curvature sensitivity is -8.40 nm/m-1 in the curvature variation range of 0-1.09 m-1, which also show good linearity. In the range of 30-90 °C, the temperature sensitivity is only about 3.24 pm/°C, indicating that the sensor is not sensitive to temperature. The sensor not only has the advantages of easy fabricating, simple structure, high sensitivity but also can solve the problem of temperature measurement cross sensitivity, so it can be used for different areas including aerospace, large-scale bridge, architectural structure health monitoring and so on.

  12. Evidence that tRNA modifying enzymes are important in vivo targets for 5-fluorouracil in yeast

    PubMed Central

    Gustavsson, Marie; Ronne, Hans

    2008-01-01

    We have screened a collection of haploid yeast knockout strains for increased sensitivity to 5-fluorouracil (5-FU). A total of 138 5-FU sensitive strains were found. Mutants affecting rRNA and tRNA maturation were particularly sensitive to 5-FU, with the tRNA methylation mutant trm10 being the most sensitive mutant. This is intriguing since trm10, like many other tRNA modification mutants, lacks a phenotype under normal conditions. However, double mutants for nonessential tRNA modification enzymes are frequently temperature sensitive, due to destabilization of hypomodified tRNAs. We therefore tested if the sensitivity of our mutants to 5-FU is affected by the temperature. We found that the cytotoxic effect of 5-FU is strongly enhanced at 38°C for tRNA modification mutants. Furthermore, tRNA modification mutants show similar synthetic interactions for temperature sensitivity and sensitivity to 5-FU. A model is proposed for how 5-FU kills these mutants by reducing the number of tRNA modifications, thus destabilizing tRNA. Finally, we found that also wild-type cells are temperature sensitive at higher concentrations of 5-FU. This suggests that tRNA destabilization contributes to 5-FU cytotoxicity in wild-type cells and provides a possible explanation why hyperthermia can enhance the effect of 5-FU in cancer therapy. PMID:18314501

  13. Temperature dependence of the plastic scintillator detector for DAMPE

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Min; Yu, Yu-Hong; Sun, Zhi-Yu; Yue, Ke; Yan, Duo; Zhang, Yong-Jie; Zhou, Yong; Fang, Fang; Huang, Wen-Xue; Chen, Jun-Ling

    2017-01-01

    The Plastic Scintillator Detector (PSD) is one of the main sub-detectors in the DArk Matter Particle Explorer (DAMPE) project. It will be operated over a large temperature range from -10 to 30 °C, so the temperature effect of the whole detection system should be studied in detail. The temperature dependence of the PSD system is mainly contributed by the three parts: the plastic scintillator bar, the photomultiplier tube (PMT), and the Front End Electronics (FEE). These three parts have been studied in detail and the contribution of each part has been obtained and discussed. The temperature coefficient of the PMT is -0.320(±0.033)%/°C, and the coefficient of the plastic scintillator bar is -0.036(±0.038)%/°C. This result means that after subtracting the FEE pedestal, the variation of the signal amplitude of the PMT-scintillator system due to temperature mainly comes from the PMT, and the plastic scintillator bar is not sensitive to temperature over the operating range. Since the temperature effect cannot be ignored, the temperature dependence of the whole PSD has been also studied and a correction has been made to minimize this effect. The correction result shows that the effect of temperature on the signal amplitude of the PSD system can be suppressed. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-3) and Youth Innovation Promotion Association, CAS

  14. Resonance analysis of a high temperature piezoelectric disc for sensitivity characterization.

    PubMed

    Bilgunde, Prathamesh N; Bond, Leonard J

    2018-07-01

    Ultrasonic transducers for high temperature (200 °C+) applications are a key enabling technology for advanced nuclear power systems and in a range of chemical and petro-chemical industries. Design, fabrication and optimization of such transducers using piezoelectric materials remains a challenge. In this work, experimental data-based analysis is performed to investigate the fundamental causal factors for the resonance characteristics of a piezoelectric disc at elevated temperatures. The effect of all ten temperature-dependent piezoelectric constants (ε 33 , ε 11 , d 33 , d 31 , d 15 , s 11 , s 12 , s 13 , s 33 , s 44 ) is studied numerically on both the radial and thickness mode resonances of a piezoelectric disc. A sensitivity index is defined to quantify the effect of each of the temperature-dependent coefficients on the resonance modes of the modified lead zirconium titanate disc. The temperature dependence of s 33 showed highest sensitivity towards the thickness resonance mode followed by ε 33 , s 11 , s 13 , s 12 , d 31 , d 33 , s 44 , ε 11 , and d 15 in the decreasing order of the sensitivity index. For radial resonance modes, the temperature dependence of ε 33 showed highest sensitivity index followed by s 11 , s 12 and d 31 coefficient. This numerical study demonstrates that the magnitude of d 33 is not the sole factor that affects the resonance characteristics of the piezoelectric disc at high temperatures. It appears that there exists a complex interplay between various temperature dependent piezoelectric coefficients that causes reduction in the thickness mode resonance frequencies which is found to be agreement in with the experimental data at an elevated temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Output power stability of a HCN laser using a stepping motor for the EAST interferometer system

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.

    2015-11-01

    The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.

  16. Sensitivity of gap symmetry to an incipient band: Application to iron based superconductors

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek; Scalapino, Douglas; Maier, Thomas

    Observation of high temperature superconductivity in iron-based superconductors with a submerged hole band has attracted wide interest. A spin fluctuation mediated pairing mechanism has been proposed as a possible explanation for the high transition temperatures observed in these systems. Here we discuss the importance of the submerged band in the context of the gap symmetry. We show that the incipient band can lead to an attractive pairing interaction and thus have significant effects on the pairing symmetry. We propose a framework to include the effect of the incipient band in the standard multi-orbital spin-fluctuation theories which are widely used for studying various iron-based superconductors. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  17. Ulysses, one year after the launch

    NASA Astrophysics Data System (ADS)

    Petersen, H.

    1991-12-01

    Ulysses is currently one year underway in a huge heliocentric orbit. A late change in some of the blankets' external material was required to prevent electrical charging due to contamination by nozzle outgassing products. Test results are shown, governing various ranges of plasma parameters and sample temperatures. Even clean materials show a few volts charging due to imperfections in the conductive film. Thermal environment in the Shuttle cargo bay proved to be slightly different from prelaunch predictions: less warm with doors closed, and less cold with doors opened. Temperatures experienced in orbit are nominal. A problem was caused by a complex interaction of a Sun induced thermal gradient in a sensitive boom on the dynamic stability of the spacecraft. A user interface program was an invaluable tool to ease computations with the mathematical models, eliminate error risk and provide configuration control.

  18. Culturally Sensitive Parent Education: A Critical Review of Quantitative Research.

    ERIC Educational Resources Information Center

    Gorman, Jean Cheng; Balter, Lawrence

    1997-01-01

    Critically reviews the quantitative literature on culturally sensitive parent education programs, discussing issues of research methodology and program efficacy in producing change among ethnic minority parents and their children. Culturally sensitive programs for African American and Hispanic families are described in detail. Methodological flaws…

  19. Use of fugacity model to analyze temperature-dependent removal of micro-contaminants in sewage treatment plants.

    PubMed

    Thompson, Kelly; Zhang, Jianying; Zhang, Chunlong

    2011-08-01

    Effluents from sewage treatment plants (STPs) are known to contain residual micro-contaminants including endocrine disrupting chemicals (EDCs) despite the utilization of various removal processes. Temperature alters the efficacy of removal processes; however, experimental measurements of EDC removal at various temperatures are limited. Extrapolation of EDC behavior over a wide temperature range is possible using available physicochemical property data followed by the correction of temperature dependency. A level II fugacity-based STP model was employed by inputting parameters obtained from the literature and estimated by the US EPA's Estimations Programs Interface (EPI) including EPI's BIOWIN for temperature-dependent biodegradation half-lives. EDC removals in a three-stage activated sludge system were modeled under various temperatures and hydraulic retention times (HRTs) for representative compounds of various properties. Sensitivity analysis indicates that temperature plays a significant role in the model outcomes. Increasing temperature considerably enhances the removal of β-estradiol, ethinyestradiol, bisphenol, phenol, and tetrachloroethylene, but not testosterone with the highest biodegradation rate. The shortcomings of BIOWIN were mitigated by the correction of highly temperature-dependent biodegradation rates using the Arrhenius equation. The model predicts well the effects of operating temperature and HRTs on the removal via volatilization, adsorption, and biodegradation. The model also reveals that an impractically long HRT is needed to achieve a high EDC removal. The STP model along with temperature corrections is able to provide some useful insight into the different patterns of STP performance, and useful operational considerations relevant to EDC removal at winter low temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Evidence that higher [CO2] increases tree growth sensitivity to temperature: a comparison of modern and paleo oaks

    EPA Science Inventory

    Aim: To test the growth-sensitivity to temperature under different ambient CO2 concentrations, we determined paleo tree growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatia...

  1. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest

    Treesearch

    Charles Luce; Brian Staab; Marc Kramer; Seth Wenger; Dan Isaak; Callie McConnell

    2014-01-01

    Estimating the thermal response of streams to a warming climate is important for prioritizing native fish conservation efforts. While there are plentiful estimates of air temperature responses to climate change, the sensitivity of streams, particularly small headwater streams, to warming temperatures is less well understood. A substantial body of literature correlates...

  2. Precise Temperature Measurement for Increasing the Survival of Newborn Babies in Incubator Environments

    PubMed Central

    Frischer, Robert; Penhaker, Marek; Krejcar, Ondrej; Kacerovsky, Marian; Selamat, Ali

    2014-01-01

    Precise temperature measurement is essential in a wide range of applications in the medical environment, however the regarding the problem of temperature measurement inside a simple incubator, neither a simple nor a low cost solution have been proposed yet. Given that standard temperature sensors don't satisfy the necessary expectations, the problem is not measuring temperature, but rather achieving the desired sensitivity. In response, this paper introduces a novel hardware design as well as the implementation that increases measurement sensitivity in defined temperature intervals at low cost. PMID:25494352

  3. Phenol-Formaldehyde Resin for Optical-Chemical Temperature Sensing.

    PubMed

    Claucherty, Steven; Sakaue, Hirotaka

    2018-05-30

    The application of phenol-formaldehyde (PF) resin as an optical temperature sensor is investigated. Recent developments in optical luminescent sensors allow for global measurements to be made over the surface of a test article, extending beyond conventional point measurements. Global temperature distributions are particularly helpful when validating computational models or when mapping temperature over complex geometries, and can be used to calculate surface heat flux values. Temperature-sensitive paint (TSP) is a novel chemical approach to obtaining these global temperature measurements, but there are still challenges to overcome to make it a reliable tool. A sensor with a wide range of temperature sensitivity is desired to provide the maximum amount of utility, especially for tests spanning large temperature gradients. Naturally luminescent materials such as PF resin provide an attractive alternative to chemical sensor coatings, and PF resin is studied for this reason. Static tests of different PF resin samples are conducted using two binder materials to strengthen the material: cloth and paper. The material shows temperature sensitivities up to -0.8%/K, demonstrating the usefulness of PF resin as a temperature sensor.

  4. Responses to High Seawater Temperatures in Zooxanthellate Octocorals

    PubMed Central

    Sammarco, Paul W.; Strychar, Kevin B.

    2013-01-01

    Increases in Sea Surface Temperatures (SSTs) as a result of global warming have caused reef-building scleractinian corals to bleach worldwide, a result of the loss of obligate endosymbiotic zooxanthellae. Since the 1980’s, bleaching severity and frequency has increased, in some cases causing mass mortality of corals. Earlier experiments have demonstrated that zooxanthellae in scleractinian corals from three families from the Great Barrier Reef, Australia (Faviidae, Poritidae, and Acroporidae) are more sensitive to heat stress than their hosts, exhibiting differential symptoms of programmed cell death – apoptosis and necrosis. Most zooxanthellar phylotypes are dying during expulsion upon release from the host. The host corals appear to be adapted or exapted to the heat increases. We attempt to determine whether this adaptation/exaptation occurs in octocorals by examining the heat-sensitivities of zooxanthellae and their host octocoral alcyonacean soft corals – Sarcophyton ehrenbergi (Alcyoniidae), Sinularia lochmodes (Alcyoniidae), and Xenia elongata (Xeniidae), species from two different families. The soft coral holobionts were subjected to experimental seawater temperatures of 28, 30, 32, 34, and 36°C for 48 hrs. Host and zooxanthellar cells were examined for viability, apoptosis, and necrosis (in hospite and expelled) using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). As experimental temperatures increased, zooxanthellae generally exhibited apoptotic and necrotic symptoms at lower temperatures than host cells and were expelled. Responses varied species-specifically. Soft coral hosts were adapted/exapted to higher seawater temperatures than their zooxanthellae. As with the scleractinians, the zooxanthellae appear to be the limiting factor for survival of the holobiont in the groups tested, in this region. These limits have now been shown to operate in six species within five families and two orders of the Cnidaria in the western Pacific. We hypothesize that this relationship may have taxonomic implications for other obligate zooxanthellate cnidarians subject to bleaching. PMID:23405104

  5. Responses to high seawater temperatures in zooxanthellate octocorals.

    PubMed

    Sammarco, Paul W; Strychar, Kevin B

    2013-01-01

    Increases in Sea Surface Temperatures (SSTs) as a result of global warming have caused reef-building scleractinian corals to bleach worldwide, a result of the loss of obligate endosymbiotic zooxanthellae. Since the 1980's, bleaching severity and frequency has increased, in some cases causing mass mortality of corals. Earlier experiments have demonstrated that zooxanthellae in scleractinian corals from three families from the Great Barrier Reef, Australia (Faviidae, Poritidae, and Acroporidae) are more sensitive to heat stress than their hosts, exhibiting differential symptoms of programmed cell death - apoptosis and necrosis. Most zooxanthellar phylotypes are dying during expulsion upon release from the host. The host corals appear to be adapted or exapted to the heat increases. We attempt to determine whether this adaptation/exaptation occurs in octocorals by examining the heat-sensitivities of zooxanthellae and their host octocoral alcyonacean soft corals - Sarcophyton ehrenbergi (Alcyoniidae), Sinularia lochmodes (Alcyoniidae), and Xenia elongata (Xeniidae), species from two different families. The soft coral holobionts were subjected to experimental seawater temperatures of 28, 30, 32, 34, and 36°C for 48 hrs. Host and zooxanthellar cells were examined for viability, apoptosis, and necrosis (in hospite and expelled) using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). As experimental temperatures increased, zooxanthellae generally exhibited apoptotic and necrotic symptoms at lower temperatures than host cells and were expelled. Responses varied species-specifically. Soft coral hosts were adapted/exapted to higher seawater temperatures than their zooxanthellae. As with the scleractinians, the zooxanthellae appear to be the limiting factor for survival of the holobiont in the groups tested, in this region. These limits have now been shown to operate in six species within five families and two orders of the Cnidaria in the western Pacific. We hypothesize that this relationship may have taxonomic implications for other obligate zooxanthellate cnidarians subject to bleaching.

  6. Thermoacoustic and photoacoustic sensing of temperature.

    PubMed

    Pramanik, Manojit; Wang, Lihong V

    2009-01-01

    We present a novel temperature-sensing technique using thermoacoustic and photoacoustic measurements. This noninvasive method has been demonstrated using a tissue phantom to have high temporal resolution and temperature sensitivity. Because both photoacoustic and thermoacoustic signal amplitudes depend on the temperature of the source object, the signal amplitudes can be used to monitor the temperature. A temperature sensitivity of 0.15 degrees C was obtained at a temporal resolution as short as 2 s, taking the average of 20 signals. The deep-tissue imaging capability of this technique can potentially lead us to in vivo temperature monitoring in thermal or cryogenic applications.

  7. Effects of Temperature and Supply Voltage on SEU- and SET-Induced Errors in Bulk 40-nm Sequential Circuits

    NASA Astrophysics Data System (ADS)

    Chen, R. M.; Diggins, Z. J.; Mahatme, N. N.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Zhang, H.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.

    2017-08-01

    The single-event sensitivity of bulk 40-nm sequential circuits is investigated as a function of temperature and supply voltage. An overall increase in SEU cross section versus temperature is observed at relatively high supply voltages. However, at low supply voltages, there is a threshold temperature beyond which the SEU cross section decreases with further increases in temperature. Single-event transient induced errors in flip-flops also increase versus temperature at relatively high supply voltages and are more sensitive to temperature variation than those caused by single-event upsets.

  8. Preparation of dual-stimuli-responsive liposomes using methacrylate-based copolymers with pH and temperature sensitivities for precisely controlled release.

    PubMed

    Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji

    2017-07-01

    Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response

    PubMed Central

    Nakano, Masahiro; Arai, Yoshiyuki; Kotera, Ippei; Okabe, Kohki; Kamei, Yasuhiro; Nagai, Takeharu

    2017-01-01

    Temperature is a fundamental physical parameter that plays an important role in biological reactions and events. Although thermometers developed previously have been used to investigate several important phenomena, such as heterogeneous temperature distribution in a single living cell and heat generation in mitochondria, the development of a thermometer with a sensitivity over a wide temperature range and rapid response is still desired to quantify temperature change in not only homeotherms but also poikilotherms from the cellular level to in vivo. To overcome the weaknesses of the conventional thermometers, such as a limitation of applicable species and a low temporal resolution, owing to the narrow temperature range of sensitivity and the thermometry method, respectively, we developed a genetically encoded ratiometric fluorescent temperature indicator, gTEMP, by using two fluorescent proteins with different temperature sensitivities. Our thermometric method enabled a fast tracking of the temperature change with a time resolution of 50 ms. We used this method to observe the spatiotemporal temperature change between the cytoplasm and nucleus in cells, and quantified thermogenesis from the mitochondria matrix in a single living cell after stimulation with carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, which was an uncoupler of oxidative phosphorylation. Moreover, exploiting the wide temperature range of sensitivity from 5°C to 50°C of gTEMP, we monitored the temperature in a living medaka embryo for 15 hours and showed the feasibility of in vivo thermometry in various living species. PMID:28212432

  10. Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Wu, Junjun; Li, Shuguang; shi, Min; Feng, Xinxing

    2018-07-01

    A high sensitivity photonic crystal fiber (PCF) temperature sensor based on surface plasmon resonance is proposed and evaluated using the finite element method. Besides, the coupling phenomenon is studied. The gold layer deposited on the polishing surface of D-shape PCF is used as the metal to stimulate surface plasma, which can improves the sensitivity. Through exquisite design, the birefringence of the fiber is improved, which makes the loss of y-polarization far greater than the loss of x-polarization. The D-shape fiber avoids filling metal and liquid into the air-holes, which can contact with fluid directly to feel temperature. When the phase matching condition is satisfied, the core mode will couple with the surface plasma mode. The resonance position of y-polarization is very sensitive to the temperature change. The simulation shows that the PCF has high sensitivity of 36.86 nm/°C in y-polarization and wide detection that from 10 °C to 85 °C.

  11. High-sensitivity cryogenic temperature sensors using pressurized fiber Bragg gratings

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; DeHaven, Stanton L.

    2006-01-01

    Cryogenic temperature sensing was studied using a pressurized fiber Bragg grating (PFBG). The PFBG was obtained by simply applying a small diametric load to a regular fiber Bragg grating (FBG), which was coated with polyimide of a thickness of 11 micrometers. The Bragg wavelength of the PFBG was measured at temperatures from 295 to 4.2 K. A pressure-induced transition occurred at 200 K during the cooling cycle. As a result the temperature sensitivity of the PFBG was found to be nonlinear but reach 24 pm/K below 200 K, more than three times the regular FBG. For the temperature change from 80 K to 10 K, the PFBG has a total Bragg wavelength shift of about 470 pm, 10 times more than the regular FBG. From room temperature to liquid helium temperature the PFBG gives a total wavelength shift of 3.78 nm, compared to the FBG of 1.51 nm. The effect of the coating thickness on the temperature sensitivity of the gratings is also discussed.

  12. High-sensitivity Cryogenic Temperature Sensors using Pressurized Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; DeHaven, Stanton L.

    2006-01-01

    Cryogenic temperature sensing was studied using a pressurized fiber Bragg grating (PFBG). The PFBG was obtained by simply applying a small diametric load to a regular fiber Bragg grating (FBG), which was coated with polyimide of a thickness of 11 micrometers. The Bragg wavelength of the PFBG was measured at temperatures from 295 to 4.2 K. A pressure-induced transition occurred at 200 K during the cooling cycle. As a result the temperature sensitivity of the PFBG was found to be nonlinear but reach 24 pm/K below 200 K, more than three times the regular FBG. For the temperature change from 80 K to 10 K, the PFBG has a total Bragg wavelength shift of about 470 pm, 10 times more than the regular FBG. From room temperature to liquid helium temperature the PFBG gives a total wavelength shift of 3.78 nm, compared to the FBG of 1.51 nm. The effect of the coating thickness on the temperature sensitivity of the gratings is also discussed.

  13. Fast, high sensitivity dewpoint hygrometer

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    1998-01-01

    A dewpoint/frostpoint hygrometer that uses a surface moisture-sensitive sensor as part of an RF oscillator circuit with feedback control of the sensor temperature to maintain equilibrium at the sensor surface between ambient water vapor and condensed water/ice. The invention is preferably implemented using a surface acoustic wave (SAW) device in an RF oscillator circuit configured to generate a condensation-dependent output signal, a temperature sensor to measure the temperature of the SAW device and to distinguish between condensation-dependent and temperature-dependent signals, a temperature regulating device to control the temperature of the SAW device, and a feedback control system configured to keep the condensation-dependent signal nearly constant over time in the presence of time-varying humidity, corrected for temperature. The effect of this response is to heat or cool the surface moisture-sensitive device, which shifts the equilibrium with respect to evaporation and condensation at the surface of the device. The equilibrium temperature under feedback control is a measure of dewpoint or frostpoint.

  14. Effects of increased temperature on metabolic activity and oxidative stress in the first life stages of marble trout (Salmo marmoratus).

    PubMed

    Simčič, Tatjana; Jesenšek, Dušan; Brancelj, Anton

    2015-08-01

    Climate change may result in future alterations in thermal regime which could markedly affect the early developmental stages of cold water fish due to their expected high sensitivity to increasing temperature. In the present study, the effect of temperature increase of 2, 4 and 6°C on the oxygen consumption rate (R), the activity of respiratory electron transport system (ETS) and oxidative stress have been studied in four developmental stages of the marble trout (Salmo marmoratus)-eyed eggs, yolk-sac larvae and juveniles of 1 and 3 months. Oxygen consumption rate and ETS activity increased with level of development and with temperature in all four stages. ETS/R ratios decreased during development and correlated with temperature in eyed eggs, larvae and juveniles of 1 month, but not in juveniles of 3 months. Low ETS/R ratios at higher temperatures indicate stress response in eyed eggs, the most temperature sensitive developmental stage. Catalase (CAT) and glutathione reductase (GR) activities increased during development, but responded differently to elevated temperature in the different developmental stages. Stress in eyed eggs, caused by higher temperatures, resulted in increased oxygen consumption rate and increased activities of CAT and GR. Larvae were sensitive to increased temperature only at the highest experimental temperature of 16°C. Increased temperature did not stress the metabolism of the juveniles, since they were able to compensate their metabolic activity. The earlier developmental stages of marble trout are thus more sensitive to temperature increase than juveniles and therefore more endangered by higher water temperatures. This is the first report connecting oxygen consumption, ETS activity and ETS/R ratio with the activities of antioxidant enzymes in relation to increased temperature in salmonids.

  15. Hollow glass microsphere-structured Fabry-Perot interferometric sensor for highly sensitive temperature measurement

    NASA Astrophysics Data System (ADS)

    Cheng, Junna; Zhou, Ciming; Fan, Dian; Ou, Yiwen

    2017-04-01

    We propose and demonstrate a miniature Fabry-Perot (F-P) interferometric sensor based on a hollow glass microsphere (HGM) for highly sensitive temperature measurement. The sensor head is fabricated by sticking a HGM on the end face of a single-mode fiber, and it consists of a short air F-P cavity between the front and the rear surfaces of the HGM. A sensor with 135.7280-μm cavity length was tested for temperature measurement from -5 °C to 50 °C. The obtained sensitivity reached up to 24.5 pm/°C and the variation rate of the HGM- F-P's cavity length was2.1 nm/°C. The advantages of compact size, easy fabrication and low cost make the sensor suitable for highly sensitive temperature sensing.

  16. Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity.

    PubMed

    Qiu, Sun-jie; Chen, Ye; Xu, Fei; Lu, Yan-qing

    2012-03-01

    We fabricate a simple, compact, and stable temperature sensor based on a liquid-sealed photonic crystal fiber (PCF) in-line nonpolarimetric modal interferometer. Different from other reported PCF devices, it does not need expensive polarimetric devices, and the liquid is sealed in one fiber. The device consists of a stub of isopropanol-filled PCF spliced between standard single-mode fibers. The temperature sensitivity (-166 pm/°C) increases over an order of magnitude compared with those of the previous sensors based on air-sealed PCF interferometers built via fusion splicing with the same mechanism. In addition, the refractive index sensitivity also increases. Higher temperature sensitivity can be realized by infiltrating some liquid having a higher thermo-optic coefficient into the microholes of the PCF. © 2012 Optical Society of America

  17. Analysis of Er{sup 3+} and Ho{sup 3+} codoped fluoroindate glasses as wide range temperature sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro-Gonzalez, P., E-mail: patharo@ull.es; Leon-Luis, S.F.; Gonzalez-Perez, S.

    2011-07-15

    Graphical abstract: The sensor sensitivity as a function of the temperature of erbium and holmium doped fluoroindate glasses. A wide temperature range from 20 K to 425 K is covered with a sensitivity larger than 0.0005. Highlights: {yields} The FIR technique has been carried out in fluoroindate glass sample. {yields} The Er doped fluoroindate sample has a maximum sensitivity of 0.0028 K{sup -1} at 425 K. {yields} The Ho doped fluoroindate sample has a maximum sensitivity of 0.0036 K{sup -1} at 59 K. -- Abstract: The fluorescence intensity ratio technique for two fluoroindate glass samples has been carried out. Themore » green emissions at 523 nm and at 545 nm in a 0.1 mol% of Er{sup 3+} doped fluoroindate glass was studied in a wide range of temperature from 125 K to 425 K with a maximum sensitivity of 0.0028 K{sup -1} for 425 K. In a sample doped with 0.1 mol% of Ho{sup 3+} the emissions at 545 nm and at 750 nm were analyzed as a function of temperature from 20 K to 300 K obtaining a maximum sensitivity of 0.0036 K{sup -1} at 59 K. Using both fluoroindate glass samples a wide temperature range from 20 K to 425 K is easily covered pumping with two low-cost diode laser at 406 nm and 473 nm.« less

  18. The Temperature Optima and Temperature Sensitivity of Soil Respiration Explained By Macromolecular Rate Theory (MMRT).

    NASA Astrophysics Data System (ADS)

    Schipper, L. A.; O'Neill, T.; Arcus, V. L.

    2014-12-01

    One of the most fundamental factors controlling all biological and chemical processes is changing temperature. Temperature dependence was originally described by the Arrhenius function in the 19th century. This function provides an excellent description of chemical reaction rates. However, the Arrhenius function does not predict the temperature optimum of biological rates that is clearly evident in laboratory and field measurements. Previously, the temperature optimum of biological processes has been ascribed to denaturation of enzymes but the observed temperature optima in soil are often rather modest, occurring at about 40-50°C and generally less than recognised temperatures for protein unfolding. We have modified the Arrhenius function incorporating a temperature-dependent activation energy derived directly from first principles from thermodynamics of macromolecules. MacroMolecular Rate Theory (MMRT) accounts for large changes in the flexibility of enzymes during catalysis that result in changes in heat capacity (ΔC‡p) of the enzyme during the reaction. MMRT predicts an initially Arrhenius-like response followed by a temperature optimum without the need for enzyme denaturation (Hobbs et al., 2013. ACS Chemical Biology. 8: 2388-2393). Denaturation, of course, occurs at much higher temperatures. We have shown that MMRT fits biogeochemical data collected from laboratory and field studies with important implications for changes in absolute temperature sensitivity as temperature rises (Schipper et al., 2014. Global Change Biology). As the temperature optimum is approached the absolute temperature sensitivity of biological processes decreases to zero. Consequently, the absolute temperature-sensitivity of soil biological processes depends on both the change in ecosystem temperature and the temperature optimum of the biological process. MMRT also very clearly explains why Q10 values decline with increasing temperature more quickly than would be predicted from the Arrhenius function. Temperature optima of many soil biological processes including respiration are very poorly documented but would lead to a better understanding of how soil systems will respond to increasing global temperatures.

  19. Analysis of temperature influence on the informative parameters of single-coil eddy current sensors

    NASA Astrophysics Data System (ADS)

    Borovik, S. Yu.; Kuteynikova, M. M.; Sekisov, Yu. N.; Skobelev, O. P.

    2017-07-01

    This paper describes the study of temperature in the flowing part of a turbine on the informative parameters (equivalent inductances of primary windings of matching transformers) of single-coil eddy-current sensors with a sensitive element in the form of a conductor section, which are used as part of automation systems for testing gas-turbine engines. In this case, the objects of temperature influences are both sensors and controlled turbine blades. The existing model of electromagnetic interaction of a sensitive element with the end part of a controlled blade is used to obtain quantitative estimates of temperature changes of equivalent inductances of sensitive elements and primary windings of matching transformers. This model is also used to determine the corresponding changes of the informative parameter of the sensor in the process of experimental studies of temperature influences on it (in the absence of blades in the sensitive region). This paper also presents transformations in the form of relationships of informative parameters with radial and axial displacements at normal (20 °C) and nominal (1000 °C) temperatures, and their difference is used to determine the families of dominant functions of temperature, which characterize possible temperature errors for any radial and axial displacements in the ranges of their variation.

  20. Theoretical analysis and coating thickness determination of a dual layer metal coated FBG sensor for sensitivity enhancement at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ramalingam, Rajinikumar; Atrey, M. D.

    2017-12-01

    Use of Fiber Bragg Grating (FBG) sensor is very appealing for sensing low temperature and strain in superconducting magnets because of their miniature size and the possibility of accommodating many sensors in a single fiber. The main drawback is their low intrinsic thermal sensitivity at low temperatures below 120 K. Approaching cryogenic temperatures, temperature changes lower than a few degrees Kelvin cannot be resolved, since they do not cause an appreciable shift of the wavelength diffracted by a bare FBG sensor. To improve the thermal sensitivity and thermal inertia below 77 K, the Bare FBG (BFBG) sensor can be coated with high thermal expansion coefficient materials. In this work, different metal were considered for coating the FBG sensor. For theoretical investigation, a double layered circular thick wall tube model has been considered to study the effect on sensitivity due to the mechanical properties like Young’s modulus, Thermal expansion coefficient, Poisson’s ratio of selected materials at a various cryogenic temperatures. The primary and the secondary coating thickness for a dual layer metal coated FBG sensor have been determined from the above study. The sensor was then fabricated and tested at cryogenic temperature range from 4-300 K. The cryogenic temperature characteristics of the tested sensors are reported.

  1. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    PubMed Central

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  2. Species-specific temperature sensitivity of TRPA1

    PubMed Central

    Laursen, Willem J; Anderson, Evan O; Hoffstaetter, Lydia J; Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-01-01

    Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector of low-intensity heat for prey localization. Exploring the variation of TRPA1 functions among species provides evolutionary insight into molecular mechanisms that fine-tune thermal and chemical sensitivity, and offers an opportunity to address basic principles of temperature gating in ion channels. A decade of research has yielded a number of hypotheses describing physiological roles of TRPA1, modulators of its activity, and biophysical principles of gating. This review surveys the diversity of TRPA1 adaptations across evolutionary taxa and explores possible mechanisms of TRPA1 activation. PMID:27227025

  3. Novel chitosan derivative for temperature and ultrasound dual-sensitive liposomal microbubble gel.

    PubMed

    Chen, Daquan; Yu, Hongyun; Mu, Hongjie; Wei, Junhua; Song, Zhenkun; Shi, Hong; Liang, Rongcai; Sun, Kaoxiang; Liu, Wanhui

    2013-04-15

    In this study, a novel liposome-loaded microbubble gel based on N-cholesteryl hemisuccinate-O-sulfate chitosan (NCHOSC) was designed. The structure of the NCHOSC was characterized by FTIR and (1)H NMR. The liposomal microbubble gel based on NCHOSC with a high encapsulation efficiency of curcumin was formed and improved the solubility of curcumin. The diameter of most liposomal microbubble was about 950 nm. The temperature-sensitive CS/GP gel could be formulated at room temperature and would form a gel at body temperature. Simultaneously, the ultrasound-sensitive induced release of curcumin was 85% applying ultrasound. The results of cytotoxicity assay indicated that encapsulated curcumin in Cur-LM or Cur-LM-G was less toxic. The anti-tumor efficacy in vivo suggested that Cur-LM-G by ultrasound suppressed tumor growth most efficiently. These findings have shed some light on the potential NCHOSC material used to liposome-loaded microbubble gel for temperature and ultrasound dual-sensitive drug delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy

    PubMed Central

    Ta, Terence; Porter, Tyrone M.

    2016-01-01

    Liposomes are a promising class of nanomedicine with the potential to provide site-specific chemotherapy, thus improving the quality of cancer patient care. First-generation liposomes have emerged as one of the first nanomedicines used clinically for localized delivery of chemotherapy. Second-generation liposomes, i.e. stimuli-responsive liposomes, have the potential to not only provide site-specific chemotherapy, but also triggered drug release and thus greater spatial and temporal control of therapy. Temperature-sensitive liposomes are an especially attractive option, as tumors can be heated in a controlled and predictable manner with external energy sources. Traditional thermosensitive liposomes are composed of lipids that undergo a gel-to-liquid phase transition at several degrees above physiological temperature. More recently, temperature-sensitization of liposomes has been demonstrated with the use of lysolipids and synthetic temperature-sensitive polymers. The design, drug release behavior, and clinical potential of various temperature-sensitive liposomes, as well as the various heating modalities used to trigger release, are discussed in this review. PMID:23583706

  5. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release.

    PubMed

    Zhang, Wei; Jin, Xin; Li, Heng; Zhang, Run-Run; Wu, Cheng-Wei

    2018-04-15

    Hydrogels based on chitosan/hyaluronic acid/β-sodium glycerophosphate demonstrate injectability, body temperature sensitivity, pH sensitive drug release and adhesion to cancer cell. The drug (doxorubicin) loaded hydrogel precursor solutions are injectable and turn to hydrogels when the temperature is increased to body temperature. The acidic condition (pH 4.00) can trigger the release of drug and the cancer cell (Hela) can adhere to the surface of the hydrogels, which will be beneficial for tumor site-specific administration of drug. The mechanical strength, the gelation temperature, and the drug release behavior can be tuned by varying hyaluronic acid content. The mechanisms were characterized using dynamic mechanical analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and fluorescence microscopy. The carboxyl group in hyaluronic acid can form the hydrogen bondings with the protonated amine in chitosan, which promotes the increase of mechanical strength of the hydrogels and depresses the initial burst release of drug from the hydrogel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. All-fiber Mach-Zehnder interferometer for tunable two quasi-continuous points' temperature sensing in seawater.

    PubMed

    Liu, Tianqi; Wang, Jing; Liao, Yipeng; Wang, Xin; Wang, Shanshan

    2018-04-30

    An all-fiber Mach-Zehnder interferometer (MZI) for two quasi-continuous points' temperature sensing in seawater is proposed. Based on the beam propagation theory, transmission spectrum is designed to present two sets of clear and independent interferences. Following this design, MZI is fabricated and two points' temperature sensing in seawater are demonstrated with sensitivities of 42.69pm/°C and 39.17pm/°C, respectively. By further optimization, sensitivity of 80.91pm/°C can be obtained, which is 3-10 times higher than fiber Bragg gratings and microfiber resonator, and higher than almost all similar MZI based temperature sensors. In addition, factors affecting sensitivities are also discussed and verified in experiment. The two points' temperature sensing demonstrated here show advantages of simple and compact construction, robust structure, easy fabrication, high sensitivity, immunity to salinity and tunable distance of 1-20 centimeters between two points, which may provide references for macroscopic oceanic research and other sensing applications based on MZIs.

  7. Reducing the loss of vaccines from accidental freezing in the cold chain: the experience of continuous temperature monitoring in Tunisia.

    PubMed

    Lloyd, John; Lydon, Patrick; Ouhichi, Ramzi; Zaffran, Michel

    2015-02-11

    Accidental freezing of vaccines is a growing threat and a real risk for national immunization programs when the potency of many vaccines can be compromised if these are exposed to sub-zero temperatures in the cold chain. In Tunisia, this issue is compounded by using sub-standard domestic cold chain equipment instead of equipping the program with medical refrigerators designed specifically for storing vaccines and temperature sensitive pharmaceuticals. Against this backdrop, this paper presents the findings of a demonstration project conducted in Tunisia in 2012 that tested the impact of introducing several freeze prevention solutions to mitigate the risk of accidental freezing of vaccines. The main finding is that, despite the continued use of underperforming domestic refrigerators, continuous temperature monitoring using new technologies combined with other technological interventions significantly reduced the prevalence of accidental exposure to freezing temperatures. These improvements were noticed for cold chain storage at regional, district and health center levels, and during the transport legs that were part of the demonstration conducted in the regions of Kasserine in the South-Eastern part of Tunisia. Subsequent to introducing these freeze prevention solutions, the incidence of freeze alarms was reduced and the percent of time the temperatures dropped below the 2 °C recommended threshold. The incidence of freeze alarms at health center level was reduced by 40%. Lastly, the solutions implemented reduced risk of freezing during transport from 13.8% to 1.7%. Although the solution implemented is not optimal in the longer term because domestic refrigerators are used extensively in district stores and health centers, the risk of accidental freezing is significantly reduced by introducing the practice of continuous temperature monitoring as a standard. The management of the cold chain equipment was strengthened as a result which helps protect the potency of vaccines to the areas of most difficult access. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Responsiveness to thyroid hormone and to ambient temperature underlies differences between brown adipose tissue and skeletal muscle thermogenesis in a mouse model of diet-induced obesity.

    PubMed

    Ueta, Cintia B; Olivares, Emerson L; Bianco, Antonio C

    2011-09-01

    Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism.

  9. Responsiveness to Thyroid Hormone and to Ambient Temperature Underlies Differences Between Brown Adipose Tissue and Skeletal Muscle Thermogenesis in a Mouse Model of Diet-Induced Obesity

    PubMed Central

    Ueta, Cintia B.; Olivares, Emerson L.

    2011-01-01

    Thyroid hormone accelerates energy expenditure (EE) and is critical for cold-induced thermogenesis. To define the metabolic role played by thyroid hormone in the dissipation of calories from diet, hypothyroid mice were studied for 60 d in a comprehensive lab animal monitoring system. Hypothyroidism decreased caloric intake and body fat while down-regulating genes in the skeletal muscle but not brown adipose tissue thermogenic programs, without affecting daily EE. Only at thermoneutrality (30 C) did hypothyroid mice exhibit slower rate of EE, indicating a metabolic response to hypothyroidism that depends on ambient temperature. A byproduct of this mechanism is that at room temperature (22 C), hypothyroid mice are protected against diet-induced obesity, i.e. only at thermoneutrality did hypothyroid mice become obese when placed on a high-fat diet (HFD). This is in contrast to euthyroid controls, which on a HFD gained more body weight and fat at any temperature while activating the brown adipose tissue and accelerating daily EE but not the skeletal muscle thermogenic program. In the liver of euthyroid controls, HFD caused an approximately 5-fold increase in triglyceride content and expression of key metabolic genes, whereas acclimatization to 30 C cut triglyceride content by half and normalized gene expression. However, in hypothyroid mice, HFD-induced changes in liver persisted at 30 C, resulting in marked liver steatosis. Acclimatization to thermoneutrality dramatically improves glucose homeostasis, but this was not affected by hypothyroidism. In conclusion, hypothyroid mice are metabolically sensitive to environmental temperature, constituting a mechanism that defines resistance to diet-induced obesity and hepatic lipid metabolism. PMID:21771890

  10. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE PAGES

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli; ...

    2018-02-04

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  11. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  12. Characterization and Quantification of Uncertainty in the NARCCAP Regional Climate Model Ensemble and Application to Impacts on Water Systems

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.; Sain, S. R.; McGinnis, S. A.; Steinschneider, S.; Brown, C. M.

    2015-12-01

    In this talk we present the development of a joint Bayesian Probabilistic Model for the climate change results of the North American Regional Climate Change Assessment Program (NARCCAP) that uses a unique prior in the model formulation. We use the climate change results (joint distribution of seasonal temperature and precipitation changes (future vs. current)) from the global climate models (GCMs) that provided boundary conditions for the six different regional climate models used in the program as informative priors for the bivariate Bayesian Model. The two variables involved are seasonal temperature and precipitation over sub-regions (i.e., Bukovsky Regions) of the full NARCCAP domain. The basic approach to the joint Bayesian hierarchical model follows the approach of Tebaldi and Sansó (2009). We compare model results using informative (i.e., GCM information) as well as uninformative priors. We apply these results to the Water Evaluation and Planning System (WEAP) model for the Colorado Springs Utility in Colorado. We investigate the layout of the joint pdfs in the context of the water model sensitivities to ranges of temperature and precipitation results to determine the likelihoods of future climate conditions that cannot be accommodated by possible adaptation options. Comparisons may also be made with joint pdfs formed from the CMIP5 collection of global climate models and empirically downscaled to the region of interest.

  13. Space shuttle orbit maneuvering engine, reusable thrust chamber program. Task 6: Data dump hot fuel element investigation

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1974-01-01

    An evaluation of reusable thrust chambers for the space shuttle orbit maneuvering engine was conducted. Tests were conducted using subscale injector hot-fire procedures for the injector configurations designed for a regenerative cooled engine. The effect of operating conditions and fuel temperature on combustion chamber performance was determined. Specific objectives of the evaluation were to examine the optimum like-doublet element geometry for operation at conditions consistent with a fuel regeneratively cooled engine (hot fuel, 200 to 250 F) and the sensitivity of the triplet injector element to hot fuels.

  14. Columbia: The first 5 flights entry heating data series. Volume 1: An overview

    NASA Technical Reports Server (NTRS)

    Williams, S. D.

    1984-01-01

    Entry heating flight data and wind tunnel data on the lower windward and upper lee side centerline, lower wing 50% and 80% semi-spans, side fuselage and payload bay door, Z-400 and 440 trace aft of X/L=0.2, and OMS Pod trace 3, are presented for the first five flights of the space shuttle orbiter. Heating rate distributions are presented in terms of normalized shock Reynolds number to show the sensitivity of heating to these parameters. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program.

  15. Factors affecting miniature Izod impact strength of tungsten-fiber-metal-matrix

    NASA Technical Reports Server (NTRS)

    Winsa, E. A.; Petrasek, D. W.

    1973-01-01

    The miniature Izod and Charpy impact strengths of copper, copper-nickel, and nickel-base superalloy uniaxially reinforced with continuous tungsten fibers were studied. In most cases, impact strength was increased by increasing fiber or matrix toughness, decreasing fibermatrix reaction, increasing test temperature, hot working, or heat treating. Notch sensitivity was reduced by increasing fiber content or matrix toughness. An equation relating impact strength to fiber and matrix properties and fiber content was developed. Program results imply that tungsten alloy-fiber/superalloy matrix composites can be made with adequate impact resistance for turbine blade or vane applications.

  16. Technical note: Assessment of milk temperature measured by automatic milking systems as an indicator of body temperature and fever in dairy cows.

    PubMed

    Pohl, A; Heuwieser, W; Burfeind, O

    2014-07-01

    The objective of this study was to evaluate whether milk temperature (MT) measured by automatic milking system (AMS) is a reliable indicator of body temperature of dairy cows and whether cows with fever could be detected. Data loggers (Minilog 8, Vemco Ltd., Halifax, NS, Canada) measuring body temperature were inserted for 7 ± 1 d into the vaginal cavity of 31 dairy cows and programmed to take 1 reading/min. Milk temperature was recorded at each milking event by the AMS, and values from the vaginal loggers were paired with the corresponding MT. The correlation (r) between vaginal temperature (VT) and MT was 0.52. Vaginal temperature was higher (39.1 ± 0.4°C) than MT (38.6 ± 0.7°C) with a mean difference of 0.5 ± 0.6°C. The ability of MT to identify cows with fever was assessed using 2 approaches. In the first approach, VT could indicate fever at any time of the day, whereas MT could display fever only during the milking events of a given day. Different definitions of fever based on thresholds of VT and duration exceeding these thresholds were constructed. Different thresholds of MT were tested to distinguish between cows with and without fever. The combination of 39.0°C as a threshold for MT and 39.5°C for at least 2h/d as a threshold for VT resulted in the highest combination of sensitivity (0.65) and specificity (0.65). In the second approach, we evaluated whether MT could identify cows with fever at a given milking event. A threshold of MT >38.7°C delivered the best combination of sensitivity (0.77) and specificity (0.66) when fever was defined as VT ≥39.5°C. Therefore, MT measured by AMS can be indicative of fever in dairy cows to a limited extent. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: A multi-model comparison

    USGS Publications Warehouse

    Tucker, Colin; Reed, Sasha C.

    2016-01-01

    Arid and semiarid ecosystems (drylands) may dominate the trajectory of biosphere-to-atmosphere carbon (C) flux over the coming century. Accordingly, understanding dryland CO2 efflux controls is important for understanding C cycling at the global-scale: key unknowns regarding how temperature and moisture interact to regulate dryland C cycling remain. Further, the patchiness of dryland vegetation can create ‘islands of fertility’, with spatially heterogeneous rates of soil respiration (Rs). At our study site in southeastern Utah, USA we added or removed litter (0 to 650% of control) in paired plots that were either associated with a shrub or with interspaces between vascular plants. We measured Rs, soil temperature, and water content (θ) on eight sampling dates between October 2013 and November 2014. Rs was highest following monsoon rains in late summer when soil temperature was ~30°C. During mid-summer, Rs was low, associated with high soil temperatures (>40°C), resulting in an apparent negative temperature sensitivity of Rs at high temperatures, and positive temperature sensitivity at low-moderate temperatures. We used Bayesian statistical methods to compare multiple competing models capturing a wide range of hypothesized relationships between temperature, moisture, and Rs. The best fit model indicates apparent negative temperature sensitivity of soil respiration at high temperatures reflects the control of soil moisture – not high temperatures – in limiting Rs. The modeled Q10 ranged from 2.7 at 5°C to 1.4 at 45°C. Litter addition had no effect on temperature sensitivity or reference respiration (Rref = Rs at 20°C and optimum moisture) beneath shrubs, and little effect on Rref in interspaces, yet Rref was 1.5 times higher beneath shrubs than in interspaces. Together, these results suggest reduced Rs often observed at high temperatures in drylands is dominated by the control of moisture, and that variable litter inputs – at least over the short-term – exert minimal control over Rs.

  18. Estimating the Triple-Point Isotope Effect and the Corresponding Uncertainties for Cryogenic Fixed Points

    NASA Astrophysics Data System (ADS)

    Tew, W. L.

    2008-02-01

    The sensitivities of melting temperatures to isotopic variations in monatomic and diatomic atmospheric gases using both theoretical and semi-empirical methods are estimated. The current state of knowledge of the vapor-pressure isotope effects (VPIE) and triple-point isotope effects (TPIE) is briefly summarized for the noble gases (except He), and for selected diatomic molecules including oxygen. An approximate expression is derived to estimate the relative shift in the melting temperature with isotopic substitution. In general, the magnitude of the effects diminishes with increasing molecular mass and increasing temperature. Knowledge of the VPIE, molar volumes, and heat of fusion are sufficient to estimate the temperature shift or isotopic sensitivity coefficient via the derived expression. The usefulness of this approach is demonstrated in the estimation of isotopic sensitivities and uncertainties for triple points of xenon and molecular oxygen for which few documented estimates were previously available. The calculated sensitivities from this study are considerably higher than previous estimates for Xe, and lower than other estimates in the case of oxygen. In both these cases, the predicted sensitivities are small and the resulting variations in triple point temperatures due to mass fractionation effects are less than 20 μK.

  19. The influence of adhesive on fiber Bragg grating strain sensor

    NASA Astrophysics Data System (ADS)

    Chen, Jixuan; Gong, Huaping; Jin, Shangzhong; Li, Shuhua

    2009-08-01

    A fiber Bragg grating (FBG) sensor was fixed on the uniform strength beam with three adhesives, which were modified acrylate, glass glue and epoxy resin. The influence of adhesive on FBG strain sensor was investigated. The strain of FBG sensor was varied by loading weight to the uniform strength beam. The wavelength shift of the FBG sensor fixed by the three kinds of adhesive were measured with different weight at the temperatures 0°C, 10°C, 20°C, 30°C, 40°C. The linearity, sensitivity and their stability at different temperature of FBG sensor which fixed by every kind of adhesives were analyzed. The results show that, the FBG sensor fixed by the modified acrylate has a high linearity, and the linear correlation coefficient is 0.9996. It also has a high sensitivity which is 0.251nm/kg. The linearity and the sensitivity of the FBG sensor have a high stability at different temperatures. The FBG sensor fixed by the glass glue also has a high linearity, and the linear correlation coefficient is 0.9986, but it has a low sensitivity which is only 0.041nm/kg. The linearity and the sensitivity of the FBG sensor fixed by the glass glue have a high stability at different temperatures. When the FBG sensor is fixed by epoxy resin, the sensitivity and linearity is affected significantly by the temperature. When the temperature changes from 0°C to 40°C, the sensitivity decreases from 0.302nm/kg to 0.058nm/kg, and the linear correlation coefficient decreases from 0.9999 to 0.9961.

  20. MODIS and GIMMS Inferred Northern Hemisphere Spring Greenup in Responses to Preseason Climate

    NASA Astrophysics Data System (ADS)

    Xu, X.; Riley, W. J.; Koven, C.; Jia, G.

    2017-12-01

    We compare the discrepancies in Normalized Difference Vegetation Index (NDVI) inferred spring greenup (SG) between Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) instruments carried by the Global Inventory Monitoring and Modeling Studies (GIMMS) in North Hemisphere. The interannual variation of SG inferred by MODIS and GIMMS NDVI is well correlated in the mid to high latitudes. However, the presence of NDVI discrepancies leads to discrepancies in SG with remarkable latitudinal characteristics. MODIS NDVI inferred later SG in the high latitude while earlier SG in the mid to low latitudes, in comparison to GIMMS NDVI inferred SG. MODIS NDVI inferred SG is better correlated to preseason climate. Interannual variation of SG is only sensitive to preseason temperature. The GIMMS SG to temperature sensitivity over two periods implied that the inter-biome SG to temperature sensitivity is relatively stable, but SG to temperature sensitivity decreased over time. Over the same period, MODIS SG to temperature sensitivity is much higher than GIMMS. This decreased sensitivity demonstrated the findings from previous studies with continuous GIMMS NDVI analysis that vegetation growth (indicated by growing season NDVI) to temperature sensitivity is reduced over time and SG advance trend ceased after 2000s. Our results also explained the contradictive findings that SG advance accelerated after 2000s according to the merged GIMMS and MODIS NDVI time series. Despite the found discrepancies, without ground data support, the quality of NDVI and its inferred SG cannot be effectively evaluated. The discrepancies and uncertainties in different NDVI products and its inferred SG may bias the scientific significance of climate-vegetation relationship. The different NDVI products when used together should be first evaluated and harmonized.

  1. Pressure- and Temperature-Sensitive Paint at 0.3-m Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Goodman, Kyle Z.

    2015-01-01

    Recently both Pressure- and Temperature-Sensitive Paint experiments were conducted at cryogenic conditions in the 0.3-m Transonic Cryogenic Tunnel at NASA Langley Research Center. This represented a re-introduction of the techniques to the facility after more than a decade, and provided a means to upgrade the measurements using newer technology as well as demonstrate that the techniques were still viable in the facility. Temperature-Sensitive Paint was employed on a laminar airfoil for transition detection and Pressure-Sensitive Paint was employed on a supercritical airfoil. This report will detail the techniques and their unique challenges that need to be overcome in cryogenic environments. In addition, several optimization strategies will also be discussed.

  2. Quantitative analysis of the thermal requirements for stepwise physical dormancy-break in seeds of the winter annual Geranium carolinianum (Geraniaceae)

    PubMed Central

    Gama-Arachchige, N. S.; Baskin, J. M.; Geneve, R. L.; Baskin, C. C.

    2013-01-01

    Background and Aims Physical dormancy (PY)-break in some annual plant species is a two-step process controlled by two different temperature and/or moisture regimes. The thermal time model has been used to quantify PY-break in several species of Fabaceae, but not to describe stepwise PY-break. The primary aims of this study were to quantify the thermal requirement for sensitivity induction by developing a thermal time model and to propose a mechanism for stepwise PY-breaking in the winter annual Geranium carolinianum. Methods Seeds of G. carolinianum were stored under dry conditions at different constant and alternating temperatures to induce sensitivity (step I). Sensitivity induction was analysed based on the thermal time approach using the Gompertz function. The effect of temperature on step II was studied by incubating sensitive seeds at low temperatures. Scanning electron microscopy, penetrometer techniques, and different humidity levels and temperatures were used to explain the mechanism of stepwise PY-break. Key Results The base temperature (Tb) for sensitivity induction was 17·2 °C and constant for all seed fractions of the population. Thermal time for sensitivity induction during step I in the PY-breaking process agreed with the three-parameter Gompertz model. Step II (PY-break) did not agree with the thermal time concept. Q10 values for the rate of sensitivity induction and PY-break were between 2·0 and 3·5 and between 0·02 and 0·1, respectively. The force required to separate the water gap palisade layer from the sub-palisade layer was significantly reduced after sensitivity induction. Conclusions Step I and step II in PY-breaking of G. carolinianum are controlled by chemical and physical processes, respectively. This study indicates the feasibility of applying the developed thermal time model to predict or manipulate sensitivity induction in seeds with two-step PY-breaking processes. The model is the first and most detailed one yet developed for sensitivity induction in PY-break. PMID:23456728

  3. Advances in the Breeding and Genetics of Heat Tolerance to Alleviate the Effects of Climate Change, with a Focus on Common Bean

    USDA-ARS?s Scientific Manuscript database

    Crop plants are broadly sensitive to high ambient temperatures during reproductive development while breeding efforts are helping to alleviate the impact of heat stress. Common bean, Phaseolus vulgaris L., is sensitive to moderately high ambient temperature, where temperatures greater than 25C have ...

  4. Static gas expansion cooler

    DOEpatents

    Guzek, J.C.; Lujan, R.A.

    1984-01-01

    Disclosed is a cooler for television cameras and other temperature sensitive equipment. The cooler uses compressed gas ehich is accelerated to a high velocity by passing it through flow passageways having nozzle portions which expand the gas. This acceleration and expansion causes the gas to undergo a decrease in temperature thereby cooling the cooler body and adjacent temperature sensitive equipment.

  5. The effect of temperature on the sensitivity of Daphnia magna to cyanobacteria is genus dependent.

    PubMed

    Hochmuth, Jennifer D; De Schamphelaere, Karel A C

    2014-10-01

    In the present study, the authors investigated the effects of 6 different genera of cyanobacteria on multiple endpoints of Daphnia magna in a 21-d life table experiment conducted at 3 different temperatures (15 °C, 19 °C, and 23 °C). The specific aims were to test if the effect of temperature on Daphnia's sensitivity to cyanobacteria differed among different cyanobacteria and if the rank order from most to least harmful cyanobacteria to Daphnia reproduction changed or remained the same across the studied temperature range. Overall, the authors observed a decrease in harmful effects on reproduction with increasing temperature for Microcystis, Nodularia, and Aphanizomenon, and an increase in harmful effects with increasing temperature for Anabaena and Oscillatoria. No effect of temperature was observed on Daphnia sensitivity to Cylindrospermopsis. Harmful effects of Microcystis and Nodularia on reproduction appear to be mirrored by a decrease in length. On the other hand, harmful effects of Anabaena, Aphanizomenon, and Oscillatoria on reproduction were correlated with a decrease in intrinsic rate of natural increase, which was matched by a later onset of reproduction in exposures to Oscillatoria. In addition, the results suggest that the cyanobacteria rank order of harmfulness may change with temperature. Higher temperatures may increase the sensitivity of D. magna to the presence of some cyanobacteria (Anabaena and Oscillatoria) in their diet, whereas the harmful effects of others (Microcystis, Nodularia, and Aphanizomenon) may be reduced by higher temperatures. © 2014 SETAC.

  6. Determination of nitrosourea compounds in brain tissue by gas chromatography and electron capture detection.

    PubMed

    Hassenbusch, S J; Colvin, O M; Anderson, J H

    1995-07-01

    A relatively simple, high-sensitivity gas chromatographic assay is described for nitrosourea compounds, such as BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea] and MeCCNU [1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea], in small biopsy samples of brain and other tissues. After extraction with ethyl acetate, secondary amines in BCNU and MeCCNU are derivatized with trifluoroacetic anhydride. Compounds are separated and quantitated by gas chromatography using a capillary column with temperature programming and an electron capture detector. Standard curves of BCNU indicate a coefficient of variance of 0.066 +/- 0.018, a correlation coefficient of 0.929, and an extraction efficiency from whole brain of 68% with a minimum detectable amount of 20 ng in 5-10 mg samples. The assay has been facile and sensitive in over 1000 brain biopsy specimens after intravenous and intraarterial infusions of BCNU.

  7. DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-TEMPERATURE GAS-COOLED TEST REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterbentz, James; Bayless, Paul; Strydom, Gerhard

    2016-11-01

    Uncertainty and sensitivity analysis is an indispensable element of any substantial attempt in reactor simulation validation. The quantification of uncertainties in nuclear engineering has grown more important and the IAEA Coordinated Research Program (CRP) on High-Temperature Gas Cooled Reactor (HTGR) initiated in 2012 aims to investigate the various uncertainty quantification methodologies for this type of reactors. The first phase of the CRP is dedicated to the estimation of cell and lattice model uncertainties due to the neutron cross sections co-variances. Phase II is oriented towards the investigation of propagated uncertainties from the lattice to the coupled neutronics/thermal hydraulics core calculations.more » Nominal results for the prismatic single block (Ex.I-2a) and super cell models (Ex.I-2c) have been obtained using the SCALE 6.1.3 two-dimensional lattice code NEWT coupled to the TRITON sequence for cross section generation. In this work, the TRITON/NEWT-flux-weighted cross sections obtained for Ex.I-2a and various models of Ex.I-2c is utilized to perform a sensitivity analysis of the MHTGR-350 core power densities and eigenvalues. The core solutions are obtained with the INL coupled code PHISICS/RELAP5-3D, utilizing a fixed-temperature feedback for Ex. II-1a.. It is observed that the core power density does not vary significantly in shape, but the magnitude of these variations increases as the moderator-to-fuel ratio increases in the super cell lattice models.« less

  8. Extracerebral deep-body cold sensitivity in the Pekin duck.

    PubMed

    Inomoto, T; Simon, E

    1981-09-01

    Pekin ducks, in which cerebral cold sensitivity is negligible, were submitted to general body cooling at warm, thermoneutral, and cold ambient temperature (Ta) with an intestinal thermode. In some animals, hypothermia was enhanced by additional hypothalamic cooling that suppressed cold defense. In other animals, the spinal cord was cooled, either selectively or during intestinal cooling. From core temperature (Tc) and metabolic heat production (M) an overall cold sensitivity of about -5 to -6 W . kg-1 . degrees C-1 was determined at thermoneutrality. Maximum M amounted to four to five times the resting M of 3.8 W . kg-1 and was attained when Tc fell by 2.5 degrees C or more. In the cold, threshold Tc for the activation of M was elevated; overall cold sensitivity remained constant. In the warmth, threshold Tc was lowered; overall cold sensitivity was reduced, if mean skin temperature (Tsk) remained at aout 39 degrees C or higher. Spinal cold sensitivity amounted to about -0.25 W . kg-1 . degrees C-1 at normal Tc and thermoneutral and warm Ta; it increased to aout -0.50 W . kg-1 . degrees C-1 in the cold and during hypothermia. Peripheral cold sensitivity was estimated from Tsk and M as -0.4 to -0.8 W . kg-1 . degrees C-1. It is concluded that overall cold sensitivity in ducks mainly depends on deep-body temperature sensors outside of the central nervous system.

  9. The temperature and tension characteristics of the FBGs embedded in the polythene sheath of an optical cable

    NASA Astrophysics Data System (ADS)

    Chen, Guanghui; Zhao, Ming; Sha, Jianbo; Zhang, Jun; Wu, Bingyan; Lin, Chen; Zhang, Mingliang; Gao, Kan

    2015-10-01

    The five of FBG were embedded in the PE sheath of a tether optical cable, which has about 18mm diameter and 7000mm length. The temperature and tension characteristics of the FBGs embedded in the polythene (PE) sheath had been demonstrated quantitatively. The Bragg wavelength of the embedded FBG shift linearly with the change of pulling force loaded on the tether optical cable and its tension sensitivity is about 3.75 pm/kg. The results of temperature experiment suggest the embedded FBG have been sensitized by PE material, so that its temperature sensitivity increase from 9.37pm/°C to about 12.51pm/°C.

  10. Arrays of membrane isolated yttrium-barium-copper-oxide kinetic inductance bolometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindeman, M. A., E-mail: mark.a.lindeman@jpl.nasa.gov; Bonetti, J. A.; Bumble, B.

    We are developing of arrays of membrane isolated resonator-bolometers, each with a kinetic inductance device (KID) to measure the temperature of the membrane. The KIDs are fabricated out of the high temperature superconductor YBCO to allow operation at relatively high temperatures. The bolometers are designed to offer higher sensitivity than sensors operating at 300 K, but they require less expensive and lighter weight cooling than even more sensitive conventional superconducting detectors operating at lower temperatures. The bolometer arrays are applicable as focal planes in infrared imaging spectrometers, such as for planetary science missions or earth observing satellites. We describe the devicesmore » and present measurements of their sensitivity.« less

  11. Bearing tester data compilation, analysis, and reporting and bearing math modeling

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A test condition data base was developed for the Bearing and Seal Materials Tester (BSMT) program which permits rapid retrieval of test data for trend analysis and evaluation. A model was developed for the Space shuttle Main Engine (SSME) Liquid Oxygen (LOX) turbopump shaft/bearing system. The model was used to perform parametric analyses to determine the sensitivity of bearing operating characteristics and temperatures to variations in: axial preload, contact friction, coolant flow and subcooling, heat transfer coefficients, outer race misalignments, and outer race to isolator clearances. The bearing program ADORE (Advanced Dynamics of Rolling Elements) was installed on the UNIVAC 1100/80 computer system and is operational. ADORE is an advanced FORTRAN computer program for the real time simulation of the dynamic performance of rolling bearings. A model of the 57 mm turbine-end bearing is currently being checked out. Analyses were conducted to estimate flow work energy for several flow diverter configurations and coolant flow rates for the LOX BSMT.

  12. Real versus Artificial Variation in the Thermal Sensitivity of Biological Traits.

    PubMed

    Pawar, Samraat; Dell, Anthony I; Savage, Van M; Knies, Jennifer L

    2016-02-01

    Whether the thermal sensitivity of an organism's traits follows the simple Boltzmann-Arrhenius model remains a contentious issue that centers around consideration of its operational temperature range and whether the sensitivity corresponds to one or a few underlying rate-limiting enzymes. Resolving this issue is crucial, because mechanistic models for temperature dependence of traits are required to predict the biological effects of climate change. Here, by combining theory with data on 1,085 thermal responses from a wide range of traits and organisms, we show that substantial variation in thermal sensitivity (activation energy) estimates can arise simply because of variation in the range of measured temperatures. Furthermore, when thermal responses deviate systematically from the Boltzmann-Arrhenius model, variation in measured temperature ranges across studies can bias estimated activation energy distributions toward higher mean, median, variance, and skewness. Remarkably, this bias alone can yield activation energies that encompass the range expected from biochemical reactions (from ~0.2 to 1.2 eV), making it difficult to establish whether a single activation energy appropriately captures thermal sensitivity. We provide guidelines and a simple equation for partially correcting for such artifacts. Our results have important implications for understanding the mechanistic basis of thermal responses of biological traits and for accurately modeling effects of variation in thermal sensitivity on responses of individuals, populations, and ecological communities to changing climatic temperatures.

  13. Advanced high temperature static strain sensor development

    NASA Technical Reports Server (NTRS)

    Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.

    1986-01-01

    An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.

  14. Advanced high temperature static strain sensor development

    NASA Astrophysics Data System (ADS)

    Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.

    1986-08-01

    An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.

  15. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability.

    PubMed

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2017-02-15

    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  16. Phase Interrogation Used for a Wireless Passive Pressure Sensor in an 800 °C High-Temperature Environment

    PubMed Central

    Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun

    2015-01-01

    A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment. PMID:25690546

  17. Critical processes and parameters in the development of accident tolerant fuels drop-in capsule irradiation tests

    DOE PAGES

    Barrett, K. E.; Ellis, K. D.; Glass, C. R.; ...

    2015-12-01

    The goal of the Accident Tolerant Fuel (ATF) program is to develop the next generation of Light Water Reactor (LWR) fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. An irradiation test series has been defined to assess the performance of proposed ATF concepts under normal LWR operating conditions. The Phase I ATF irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL). Design, analysis, and fabrication processes formore » ATR drop-in capsule experiment preparation are presented in this paper to demonstrate the importance of special design considerations, parameter sensitivity analysis, and precise fabrication and inspection techniques for figure innovative materials used in ATF experiment assemblies. A Taylor Series Method sensitivity analysis approach was used to identify the most critical variables in cladding and rodlet stress, temperature, and pressure calculations for design analyses. The results showed that internal rodlet pressure calculations are most sensitive to the fission gas release rate uncertainty while temperature calculations are most sensitive to cladding I.D. and O.D. dimensional uncertainty. The analysis showed that stress calculations are most sensitive to rodlet internal pressure uncertainties, however the results also indicated that the inside radius, outside radius, and internal pressure were all magnified as they propagate through the stress equation. This study demonstrates the importance for ATF concept development teams to provide the fabricators as much information as possible about the material properties and behavior observed in prototype testing, mock-up fabrication and assembly, and chemical and mechanical testing of the materials that may have been performed in the concept development phase. Special handling, machining, welding, and inspection of materials, if known, should also be communicated to the experiment fabrication and inspection team.« less

  18. High operating temperature IR-modules with reduced pitch for SWaP sensitive applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Wendler, J.; Lutz, H.; Rutzinger, S.; Ihle, T.; Ziegler, J.; Rühlich, I.

    2011-06-01

    Low size, weight and power (SWaP) are the most critical requirements for portable thermal imagers like weapon sights or handheld observations devices. On the other hand due to current asymmetrical conflicts there are high requirements for the e/o performance of these devices providing the ability to distinguish between combatants and non-combatants in adequate ranges. Despite of all the success with uncooled technology, such requirements usually still require cooled detectors. AIM has developed a family of thermal weapon sights called HuntIR and RangIR based on high performance cooled IR-modules which are used e.g. in the infantryman of the future program of the German army (IdZ). The specific capability of these devices is a high ID range >1500m for tank targets being suitable in use as thermal sights for .50 cal rifles like the G82, targeting units for the 40mm AGL or for night observation. While such ranges sound far beyond the operational needs in urban operations, the a.m. specific needs of asymmetric warfare require sometimes even more range performance. High operating temperature (HOT) is introduced in the AIM MCT 640x512/15μm MWIR or LWIR modules for further reduction of cooler power consumption, shorter cooldown times and higher MTTF. As a key component to keep performance while further reducing SWaP AIM is developing a new cooled MCT IR-module with reduced pitch of 12 μm operating at a temperature >120 K. The module will provide full TV format with 640x480 elements sensitive in the MWIR spectral band. The paper will show recent results of AIM IR-modules with high operating temperature and the impact of design regarding the IR-module itself and thermal sights making use of it.

  19. Determination and experimental verification of high-temperature SAW orientations on langatate.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2012-02-01

    Langatate (LGT) is a member of the langasite family of crystals appropriate for high-temperature frequency control and sensing applications. This paper identifies multiple LGT SAW orientations for use at high temperature, specifically in the 400°C to 900°C range. Orientations with low sensitivity to temperature are desired for frequency control devices and many sensors, conversely large temperature sensitivity is a benefit for temperature sensors. The LGT SAW temperature behavior has been calculated for orientations sweeping the Euler angles (0°, Θ, ψ), (90°, Θ, ψ), and (ψ, 90°, ψ), based on newly identified high-temperature elastic constants and temperature coefficients for this material. The temperature coefficient of delay (TCD) and total frequency change over the temperature range were analyzed from 400°C to 900°C. Multiple SAW orientations were identified with zero-TCD between 400°C and 500°C. Although no orientations that have turn-over temperatures above 500°C were identified, several have low frequency variation with temperature, of the order of -0.8% over the range 400°C to 800°C. Temperature-sensitive orientations with TCD up to 75 ppm/°C at 900°C were identified, with potential for high-temperature sensor applications. The reported predictions are shown to agree with measured behavior of LGT SAW delay lines fabricated along 6 orientations in the (90°, 23°, ψ) plane. In addition, this work demonstrates that concurrently operated LGT SAW devices fabricated on the same wafer provide means of temperature sensing. In particular, the measured frequency difference between delay lines oriented along (90°, 23°, 0°) and (90°, 23°, 48°) has fractional temperature sensitivity that ranges from -172 ppm/°C at 25°C to -205 ppm/°C at 900°C.

  20. Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior, and resting metabolic rate in a lizard.

    PubMed

    Artacho, Paulina; Jouanneau, Isabelle; Le Galliard, Jean-François

    2013-01-01

    Studies of the relationship of performance and behavioral traits with environmental factors have tended to neglect interindividual variation even though quantification of this variation is fundamental to understanding how phenotypic traits can evolve. In ectotherms, functional integration of locomotor performance, thermal behavior, and energy metabolism is of special interest because of the potential for coadaptation among these traits. For this reason, we analyzed interindividual variation, covariation, and repeatability of the thermal sensitivity of maximal sprint speed, preferred body temperature, thermal precision, and resting metabolic rate measured in ca. 200 common lizards (Zootoca vivipara) that varied by sex, age, and body size. We found significant interindividual variation in selected body temperatures and in the thermal performance curve of maximal sprint speed for both the intercept (expected trait value at the average temperature) and the slope (measure of thermal sensitivity). Interindividual differences in maximal sprint speed across temperatures, preferred body temperature, and thermal precision were significantly repeatable. A positive relationship existed between preferred body temperature and thermal precision, implying that individuals selecting higher temperatures were more precise. The resting metabolic rate was highly variable but was not related to thermal sensitivity of maximal sprint speed or thermal behavior. Thus, locomotor performance, thermal behavior, and energy metabolism were not directly functionally linked in the common lizard.

  1. The temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon.

    PubMed

    Tang, Jie; Cheng, Hao; Fang, Changming

    2017-01-01

    The response of resistant soil organic matter to temperature change is crucial for predicting climate change impacts on C cycling in terrestrial ecosystems. However, the response of the decomposition of different soil organic carbon (SOC) fractions to temperature is still under debate. To investigate whether the labile and resistant SOC components have different temperature sensitivities, soil samples were collected from three forest and two grass land sites, along with a gradient of latitude from 18°40'to 43°17'N and elevation from 600 to 3510 m across China, and were incubated under changing temperature (from 12 to 32 oC) for at least 260 days. Soil respiration rates were positively related to the content of soil organic carbon and soil microbial carbon. The temperature sensitivity of soil respiration, presented as Q10 value, varies from 1.93 ± 0.15 to 2.60 ± 0.21. During the incubation, there were no significant differences between the Q10 values of soil samples from different layers of the same site, nor a clear pattern of Q10 values along with the gradient of latitude. The result of this study does not support current opinion that resistant soil carbon decomposition is more sensitive to temperature change than labile soil carbon.

  2. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  3. Sensitivity-enhanced optical temperature sensor with cascaded LPFGs

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasuhiro; Miyoshi, Yuji; Ohashi, Masaharu

    2011-12-01

    We propose a new structure of optical fiber temperature sensor with cascaded long-period fiber gratings (LPFGs) and investigate the temperature dependent loss of cascaded LFPGs. Each of the cascaded LPFGs has the same resonance wavelength with the same temperature change, because the cascaded LPFGs are made of a heat-shrinkable tube and a screw. The total resonance loss of proposed cascaded LPFGs shows higher temperature sensitivity than that of a single LPFG. The thermal coefficient of 4-cascaded LPFG also shows more than 4 times larger than that of a single one.

  4. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G [Boston, MA; Sundar, Vikram C [New York, NY

    2008-02-05

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties

  5. Risk-based screening combined with a PCR-based test for group B streptococci diminishes the use of antibiotics in laboring women.

    PubMed

    Khalil, Mohammed R; Uldbjerg, Niels; Thorsen, Poul B; Henriksen, Birgitte; Møller, Jens K

    2017-08-01

    To assess the performance of a polymerase chain reaction - group B streptococci test (PCR-GBS test) - in deciding antibiotic prophylaxis in term laboring women. In this observational study, we enrolled 902 unselected Danish term pregnant women. During labor, midwives obtained vaginal swabs that were used for both GBS cultures (reference standard) and for the PCR-GBS test. Furthermore, we recorded the presence of risk factors for EOGBS (Early Onset Group B Streptococcal disease): (1) Bacteriuria during current pregnancy, (2) Prior infant with EOGBS (3) Temperature above 38.0°C during labor, and (4) Rupture of membranes ≥18h. The prevalence of GBS carriers was 12% (104 of 902), the sensitivity of the PCR-GBS test 83% (86 of 104), and the specificity 97% (774 of 798). Among the 108 with one or more EOGBS-risk factors, GBS was present in 23% (25 of 108), the sensitivity 92% (23 of 25), and the specificity 89% (74 of 83). In programs that aim to treat all laboring women with vaginal GBS-colonization (12% in the present study) with penicillin, the PCR-GBS will perform well (sensitivity 83% and specificity 97%). In programs aiming to treat only GBS-carriers among those with risk factors of EOGBS, a reduction of penicillin usage by two-thirds from 12% to 4% may be possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Electrochemical high-temperature gas sensors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  7. Evidence that higher CO2 increases tree growth sensitivity to ...

    EPA Pesticide Factsheets

    Aim: To test the growth-sensitivity to temperature under different ambient CO2 concentrations, we determined paleo tree growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional range. During the deglacial period, [CO2] averaged about 230 ppm, whereas modern [CO2] averaged about 330 ppm.Location: Paleo oaks were sampled from Northern Missouri, USA. The paleo temperature reconstruction was from a lake in Northern Illinois, USA. Data used to quantify the growth-sensitivity to temperature for modern oaks were collected across the Great Plains, Midwest and Upper Great Lakes regions.Methods: Growth data were from 53 paleo bur oak log cross-sections collected in Missouri that were preserved in river and stream sediments. These oaks were radiocarbon-dated to between 10.5 and 13.3 cal kyr BP, which spans rapid warming during the last deglaciation. Growth data from modern bur oaks were obtained from increment core collections paired with USDA Forest Service Forest Inventory and Analysis data. Paleotemperatures were obtained from a high-resolution pollen-based reconstruction and modern temperatures were obtained from gridded meteorological data. Results: Growth-sensitivity to temperature (i.e. the slope of growth rate versus temperature) was significantly greater for modern oaks growing at an average [CO2

  8. Simultaneous measurement of magnetic field and temperature based on an etched TCFMI cascaded with an FBG

    NASA Astrophysics Data System (ADS)

    Yan, Guofeng; Zhang, Liang; He, Sailing

    2016-04-01

    In this paper, a dual-parameter measurement scheme based on an etched thin core fiber modal interferometer (TCMI) cascaded with a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of magnetic field and temperature. The magnetic field and temperature responses of the packaged TCFMI were first investigated, which showed that the magnetic field sensitivity could be highly enhanced by decreasing of the TCF diameter and the temperature-cross sensitivities were up to 3-7 Oe/°C at 1550 nm. Then, the theoretical analysis and experimental demonstration of the proposed dual-parameter sensing scheme were conducted. Experimental results show that, the reflection of the FBG has a magnetic field intensity and temperature sensitivities of -0.017 dB/Oe and 0.133 dB/°C, respectively, while the Bragg wavelength of the FBG is insensitive to magnetic field and has a temperature sensitivity of 13.23 pm/°C. Thus by using the sensing matrix method, the intensity of the magnetic field and the temperature variance can be measured, which enables magnetic field sensing under strict temperature environments. In the on-off time response test, the fabricated sensor exhibited high repeatability and short response time of ∼19.4 s. Meanwhile the reflective sensing probe type is more compact and practical for applications in hard-to-reach conditions.

  9. Phenotypic characterization of adenovirus type 12 temperature-sensitive mutants in productive infection and transformation.

    PubMed

    Hama, S; Kimura, G

    1980-01-01

    Eleven temperature-sensitive mutants of adenovirus type 12, capable of forming plaques in human cells at 33 C but not at 39.5 C, were isolated from a stock of a wild-type strain after treatment with either nitrous acid or hydroxylamine. Complementation tests in doubly infected human cells permitted a tentative assignment of eight of these mutants to six complementation groups. Temperature-shift experiments revealed that one mutant is affected early and most of the other mutants are affected late. Only the early mutant, H12ts505, was temperature sensitive in viral DNA replication. Infectious virions of all the mutants except H12ts505 and two of the late mutants produced at 33 C, appeared to be more heat labile than those of the wild type. Only H12ts505 was temperature sensitive for the establishment of transformation of rat 3Y1 cells. One of the late mutants (H12ts504) had an increased transforming ability at the permissive temperature. Results of temperature-shift transformation experiments suggest that a viral function affected in H12ts505 is required for "initiation" of transformation. Some of the growth properties of H12ts505-transformed cells were also temperature dependent, suggesting that a functional expression of a gene mutation in H12ts505 is required to maintain at least some aspects of the transformed state.

  10. Sensing the heat with TRPM3.

    PubMed

    Vriens, Joris; Voets, Thomas

    2018-05-01

    Heat sensation, the ability to detect warm and noxious temperatures, is an ancient and indispensable sensory process. Noxious temperatures can have detrimental effects on the physiology and integrity of cells, and therefore, the detection of environmental hot temperatures is absolutely crucial for survival. Temperature-sensitive ion channels, which conduct ions in a highly temperature-dependent manner, have been put forward as molecular thermometers expressed at the endings of sensory neurons. In particular, several temperature-sensitive members of the transient receptor potential (TRP) superfamily of ion channels have been identified, and a multitude of in vivo studies have shown that the capsaicin-sensitive TRPV1 channel plays a key role as a noxious heat sensor. However, Trpv1-deficient mice display a residual heat sensitivity suggesting the existence of additional heat sensor(s). In this chapter, we provide evidence for the role of the non-selective calcium-permeable TRPM3 ion channel as an additional heat sensor that acts independently of TRPV1, and give an update of the modulation of this channel by various molecular mechanisms. Finally, we compare antagonists of TRPM3 to specific blockers of TRPV1 as potential analgesic drugs to treat pathological pain.

  11. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  12. Temperature sensors based on multimode chalcogenide fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Zeng, Jianghui; Zhu, Liang; Yang, Dandan; Zhang, Peiqing; Xu, Yinsheng; Wang, Xunsi; Nie, Qiuhua; Dai, Shixun

    2018-04-01

    In this work, a theoretical study was conducted on temperature sensing in Ge-Sb-Se multimode fibre Bragg grating (MM-FBG). The sensing characteristics of the designed MM-FBGs with different fibre parameters and operating wavelengths were calculated using a coupled model method. The temperature sensitivity of this MM-FBG was found to improve significantly by shifting the operating wavelength from telecom range to mid-infrared (MIR) and utilizing the wide transmission range of Ge-Sb-Se glasses. The temperature sensitivity of the proposed Ge-Sb-Se MM-FBG was calculated to be 0.0758 nm/°C at 1550 nm, which is 7.58 times higher than silica FBGs at 1550 nm, and the temperature sensitivity was calculated to be more than 0.16 nm/°C at 3390 nm, which is 2.2 times higher than that at 1550 nm. In addition, the proposed MM-FBGs provided multi-peak information, and the sensitivity of each peak was calculated to be comparable to the single-mode FBG. The proposed Ge-Sb-Se MM-FBG has great potential for temperature sensing in MIR because of its advantages of simple preparation, high coupling efficiency, multi-peak information and wide working window.

  13. Wheat seed weight and quality differ temporally in sensitivity to warm or cool conditions during seed development and maturation

    PubMed Central

    Nasehzadeh, M

    2017-01-01

    Abstract Background and aims Short periods of extreme temperature may affect wheat (Triticum aestivum) seed weight, but also quality. Temporal sensitivity to extreme temperature during seed development and maturation was investigated. Methods Plants of ‘Tybalt’ grown at ambient temperature were moved to growth cabinets at 29/20°C or 34/20°C (2010), or 15/10°C or 34/20°C (2011), for successive 7-d periods from 7 DAA (days after anthesis) onwards, and also 7–65 DAA in 2011. Seed samples were harvested serially and moisture content, weight, ability to germinate, subsequent longevity in air-dry storage and bread-making quality were determined. Key Results High temperature (34/20°C) reduced final seed weight, with greatest temporal sensitivity at 7–14 or 14–21 DAA. Several aspects of bread-making quality were also most sensitive to high temperature then, but whereas protein quality decreased protein and sulphur concentrations improved. Early exposure to high temperature provided earlier development of ability to germinate and tolerate desiccation, but had little effect on maximum germination capacity. All treatments at 15/10°C resulted in ability to germinate declining between 58 and 65 DAA. Early exposure to high temperature hastened improvement in seed storage longevity, but the subsequent decline in late maturation preceded that in the control. Long (7–65 DAA) exposure to 15/10°C disrupted the development of seed longevity, with no improvement after seed filling ended. Longevity improved during maturation drying in other treatments. Early (7–14 DAA) exposure to high temperature reduced and low temperature increased subsequent longevity at harvest maturity, whereas late (35 or 42–49 DAA) exposure to high temperature increased and low temperature reduced it. Conclusions Temporal sensitivity to extreme temperature was detected. It varied considerably amongst the contrasting seed variables investigated. Subsequent seed longevity at harvest maturity responded negatively to temperature early in development, but positively later in development and throughout maturation. PMID:28637252

  14. Interpersonal sensitivity, coping ways and automatic thoughts of nursing students before and after a cognitive-behavioral group counseling program.

    PubMed

    Hiçdurmaz, Duygu; Öz, Fatma

    2016-01-01

    In order to provide optimal professional care to patients, nurses must possess a positive self-image and professional identity. High interpersonal sensitivity, coping problems and dysfunctional automatic thoughts can prevent nursing students to be self-confident and successful nurses. Helping nursing students experiencing interpersonal sensitivity problems via cognitive-behavioral counseling strategies can contribute to shape good nurses. This study aims to evaluate interpersonal sensitivity, ways of coping and automatic thoughts of nursing students before and after a cognitive behavioral group counseling program. An intervention study with 43 nursing students. Measurements were done before the counseling program, at the end of the program and 4.5months after the program. The students were chosen from a faculty of nursing in Turkey. 43 second and third year nursing students who were experiencing interpersonal sensitivity problems constituted the sample. Brief Symptom Inventory, Ways of Coping Inventory and Automatic Thoughts Questionnaire were used for data collection. The students' scores of "interpersonal sensitivity", "hopeless" and "submissive" copings and "automatic thoughts" were significantly lower at the end of and 4.5months after the program than the scores before the program (Interpersonal sensitivity F=52.903, p=0.001; hopeless approach F=19.213, p=0.001; submissive approach F=4.326, p=0.016; automatic thoughts F=45.471, p=0.001). Scores of "self-confident", "optimistic" and "seeking social support" copings were higher at the end of and 4.5months after the program than the scores before the program (Self confident F=11.640, p=0.001; optimistic F=10.860, p=0.001; seeking social support F=10.411, p=0.001). This program helped the students to have better results at interpersonal sensitivity, ways of coping and automatic thoughts at the end of and 4.5 months after the program. We have reached the aim of the study. We suggest that such counseling programs should be regular and integrated into the services provided for students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Solid-phase microextraction with temperature-programmed desorption for the analysis of iodination disinfection byproducts.

    PubMed

    Frazey, P A; Barkley, R M; Sievers, R E

    1998-02-01

    An analytical approach for the determination of chlorination and iodination disinfection byproducts based on solid-phase microextraction (SPME) was developed. Solid-phase microextraction presents a simple, rapid, sensitive, and solvent-free approach to sample preparation in which analytes in either air or water matrixes are extracted into the polymeric coating of an optical fiber. Analytes are subsequently thermally desorbed in the injection port of a gas chromatograph for separation, detection, and quantitation. Thermal degradation of iodoform was observed during desorption from a polyacrylate fiber in initial GC/MS and GC/ECD experiments. Experiments were designed to determine SPME conditions that would allow quantification without significant degradation of analytes. Isothermal and temperature-programmed thermal desorptions were evaluated for efficacy in transferring analytes with wide-ranging volatilities and thermal stabilities into chromatographic analysis columns. A temperature-programmed desorption (TPD) (120-200 degrees C at 5 degrees C/min with an on-column injection port or 150-200 degrees C at 25 degrees C/min with a split/splitless injection port) was able to efficiently remove analytes with wide-ranging volatilities without causing thermal degradation. The SPME-TPD method was linear over 2-3 orders of magnitude with an electron capture detector and detection limits were in the submicrogram per liter range. Precision and detection limits for selected trihalomethanes were comparable to those of EPA method 551. Extraction efficiencies were not affected by the presence of 10 mg/L soap, 15 mg/L sodium iodide, and 6000 mg/L sodium thiosulfate. The SPME-TPD technique was applied to the determination of iodination disinfection byproducts from individual precursor compounds using GC/MS and to the quantitation of iodoform at trace levels in a water recycle system using GC/ECD.

  16. Selected Heat-Sensitive Antibiotics Are Not Inactivated During Polymethylmethacrylate Curing and Can Be Used in Cement Spacers for Periprosthetic Joint Infection.

    PubMed

    Carli, Alberto V; Sethuraman, Arvinth S; Bhimani, Samrath J; Ross, Frederick P; Bostrom, Mathias P G

    2018-06-01

    Antibiotic use in polymethylmethacrylate (PMMA) spacers has historically been limited to those which are "heat-stable" and thus retain their antimicrobial properties after exposure to the high temperatures which occur during PMMA curing. This study examines the requirement of "heat stability" by measuring temperatures of Palacos and Simplex PMMA as they cure inside commercial silicone molds of the distal femur and proximal tibia. Temperature probes attached to thermocouples were placed at various depths inside the molds and temperatures were recorded for 20 minutes after PMMA introduced and a temperature curve for each PMMA product was determined. A "heat-stable" antibiotic, vancomycin, and a "heat-sensitive" antibiotic, ceftazidime, were placed in a programmable thermocycler and exposed to the same profile of PMMA curing temperatures. Antimicrobial activity against Staphylococcus aureus was compared for heat-treated antibiotics vs room temperature controls. Peak PMMA temperatures were significantly higher in tibial (115.2°C) vs femoral (85.1°C; P < .001) spacers. In the hottest spacers, temperatures exceeded 100°C for 3 minutes. Simplex PMMA produced significantly higher temperatures (P < .05) compared with Palacos. Vancomycin bioactivity did not change against S aureus with heat exposure. Ceftazidime bioactivity did not change when exposed to femoral temperature profiles and was reduced only 2-fold with tibial profiles. The curing temperatures of PMMA in knee spacers are not high enough or maintained long enough to significantly affect the antimicrobial efficacy of ceftazidime, a known "heat-sensitive" antibiotic. Future studies should investigate if more "heat-sensitive" antibiotics could be used clinically in PMMA spacers. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a larger increase in accuracy for SW cloud radiative forcing vs temperature, and from a lower confounding noise from natural variability in the cloud radiative forcing variable compared to temperature. In particular, global average temperature is much more sensitive to the climate noise of ENSO cycles.

  18. Experimental study on cross-sensitivity of temperature and vibration of embedded fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Ye, Meng-li; Liu, Shu-liang; Deng, Yan

    2018-03-01

    In view of the principle for occurrence of cross-sensitivity, a series of calibration experiments are carried out to solve the cross-sensitivity problem of embedded fiber Bragg gratings (FBGs) using the reference grating method. Moreover, an ultrasonic-vibration-assisted grinding (UVAG) model is established, and finite element analysis (FEA) is carried out under the monitoring environment of embedded temperature measurement system. In addition, the related temperature acquisition tests are set in accordance with requirements of the reference grating method. Finally, comparative analyses of the simulation and experimental results are performed, and it may be concluded that the reference grating method may be utilized to effectively solve the cross-sensitivity of embedded FBGs.

  19. The heat-transfer method: a versatile low-cost, label-free, fast, and user-friendly readout platform for biosensor applications.

    PubMed

    van Grinsven, Bart; Eersels, Kasper; Peeters, Marloes; Losada-Pérez, Patricia; Vandenryt, Thijs; Cleij, Thomas J; Wagner, Patrick

    2014-08-27

    In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology.

  20. Temperature dependent of IVR investigated by steady-state and time-frequency resolved CARS for liquid nitrobenzene and nitromethane

    NASA Astrophysics Data System (ADS)

    Yang, Yanqiang; Zhu, Gangbei; Yan, Lin; Liu, Xiaosong; Yang's Ultrafast Spectroscopy Group Team

    2017-06-01

    Intramolecular vibrational energy redistribution (IVR) is important process in thermal decomposition, shock chemistry and photochemistry. Anti-Stokes Raman scattering is sensitive to the vibrational population in excited states because only vibrational excited states are responsible to the anti-Stokes Raman scattering, does not vibrational ground states. In this report, steady-state anti-Stokes Raman spectroscopy and broad band ultrafast coherent anti-Stokes Raman scattering (CARS) are performed. The steady-state anti-Stokes Raman spectroscopy shows temperature dependent of vibrational energy redistribution in vibrational excited-state molecule, and reveal that, in liquid nitrobenzene, with temperature increasing, vibrational energy is mainly redistributed in NO2 symmetric stretching mode, and phenyl ring stretching mode of νCC. For liquid nitromethane, it is found that, with temperature increasing, vibrational energy concentrate in CN stretching mode and methyl umbrella vibrational mode. In the broad band ultrafast CARS experiment, multiple vibrational modes are coherently excited to vibrational excited states, and the time-frequency resolved CARS spectra show the coincident IVR processes. This work is supported by the National Natural Science Foundation of China (Grant Numbers 21673211 and 11372053), and the Science Challenging Program (Grant Number JCKY2016212A501).

  1. Investigation of the reaction of 5Al-2.5Sn titanium with hydrogen at subzero temperature

    NASA Technical Reports Server (NTRS)

    Williams, D. N.; Wood, R. A.

    1972-01-01

    An investigation of the effect of temperature on the surface hydriding reaction of 5Al-2.5Sn titanium exposed to hydrogen at 250 psig was made. The temperature range studied extended from 160 F to -160 F. Reaction conditions were controlled so as to expose a vacuum-cleaned, oxide-free alloy surface to an ultrapure hydrogen atmosphere. Reaction times up to 1458 hours were studied. The hydriding reaction was extremely sensitive to experimental variables and the reproducibility of reaction behavior was poor. However, it was demonstrated that the reaction proceeded quite rapidly at 160 F; as much as 1 mil surface hydriding being observed after exposure for 162 hours. The amount of hydriding appeared to decrease with decreasing temperature at 75 F, -36 F, and -76 F. No surface hydriding was detected either by vacuum fusion analysis or by metallographic examination after exposure for 1458 hours at -110 F or -160 F. Tensile properties were unaffected by surface hydriding of the severity developed in this program (up to 1 mil thick) as determined by slow strain rate testing of hydrided sheet tensile samples.

  2. Development of measurement simulation of the laser dew-point hygrometer using an optical fiber cable

    NASA Astrophysics Data System (ADS)

    Matsumoto, Shigeaki

    2005-02-01

    In order to improve the initial and the response times of the Laser Dew-Point Hygrometer (LDH), the measurement simulation was developed on the basis of the loop computation of the surface temperature of a gold plate for dew depostition, the quantity of deposited dew and the intensity of scattered light from the surface of the plate at time interval of 5 sec during measurement. A more detailed relationship between the surface temperature of the plate and the cooling current, and the time constant of the integrator in the control circuit of the LDH were introduced in the simulation program as a function of atmospheric temperature. The simulation was more close to the actual measurement by the LDH. The simulation results indicated the possibility of improving both the times of teh LDH by the increase of the sensitivity of dew and that of the mass transfer coefficient of dew deposited on the plate surface. It was concluded that the initial and the response times could be improved to below 100sec and 120 sec, respectively in the dew-point range at room temperature, that are almost half of the those times of the original LDH.

  3. Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton.

    PubMed

    Song, Guicheng; Wang, Miaomiao; Zeng, Bin; Zhang, Jing; Jiang, Chenliang; Hu, Qirui; Geng, Guangtao; Tang, Canming

    2015-05-01

    Pollen tube growth in styles was strongly inhibited by temperature above 35 °C, and the yield of cotton decreased because of the adverse effect of high temperatures during square development. High-temperature stress during flowering influences the square development of upland cotton (Gossypium hirsutum L.) and cotton yield. Although it is well known that square development is sensitive to high temperature, high-temperature sensitive stages of square development and the effects of high temperature on pollen tube growth in the styles are unknown. The effect of high temperature on anther development corresponding to pollen vigor is unknown during anther development. The objectives of this study were to identify the stages of square development that are sensitive to high temperatures (37/30 and 40/34 °C), to determine whether the abnormal development of squares influenced by high temperature is responsible for the variation in the in vitro germination percent of pollen grains at anthesis, to identify the effect of high temperature on pollen germination in the styles, and to determine pollen thermotolerance heterosis. Our results show that the stages from the sporogenous cell to tetrad stage (square length <6.0 mm) were the most sensitive to high temperature, and the corresponding pollen viability at anthesis was consistent with the changes in the square development stage. Pollen tube growth in the styles was strongly inhibited by temperature above 35 °C, and the yield of cotton decreased because of the effect of high temperature during square development. The thermotolerance of hybrid F1 pollen showed heterosis, and pollen viability could be used as a criterion for screening for high-temperature tolerance cultivars. These results can be used in breeding to develop new cotton cultivars that can withstand high-temperature conditions, particularly in a future warmer climate.

  4. Use of essential gene, encoding prophobilinogen deaminase from extreme psychrophilic Colwellia sp. C1, to generate temperature-sensitive strain of Francisella novicida.

    PubMed

    Pankowski, J A

    2016-08-01

    Previously, several essential genes from psychrophilic bacteria have been substituted for their homologues in mesophilic bacterial pathogens to make the latter temperature sensitive. It has been noted that an essential ligA gene from an extreme psychrophile, Colwellia sp. C1, yielded a gene product that is inactivated at 27°C, the lowest that has been observed for any psychrophilic enzyme, and hypothesized that other essential proteins of that strain would also have low inactivation temperatures. This work describes the partial sequencing of the genome of Colwellia sp. C1 strain and the identification of 24 open reading frames encoding homologues of highly conserved bacterial essential genes. The gene encoding porphobilinogen deaminase (hemC), which is involved in the pathway of haem synthesis, has been tested for its ability to convert Francisella novicida into a temperature-sensitive strain. The hybrid strain carrying the C1-derived hemC gene exhibited a temperature-sensitive phenotype with a restrictive temperature of 36°C. These results support the conclusion that Colwellia sp. C1 is a rich source of heat-labile enzymes. The issue of biosafety is often raised when it comes to work with pathogenic organisms. The main concern is caused by the risk of researchers being exposed to infectious doses of dangerous microbes. This paper analyses essential genes identified in partial genomic sequence of the psychrophilic bacterium Collwelia sp. C1. These sequences can be used as a mean of generating temperature-sensitive strains of pathogenic bacteria. Such strains are incapable of surviving at the temperature of human body. This means they could be applied as vaccines or for safer work with dangerous organisms. © 2016 The Society for Applied Microbiology.

  5. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  6. Effects of Temperature on Auditory Sensitivity in Eurythermal Fishes: Common Carp Cyprinus carpio (Family Cyprinidae) versus Wels Catfish Silurus glanis (Family Siluridae)

    PubMed Central

    Maiditsch, Isabelle Pia; Ladich, Friedrich

    2014-01-01

    Background In ectothermal animals such as fish, -temperature affects physiological and metabolic processes. This includes sensory organs such as the auditory system. The reported effects of temperature on hearing in eurythermal otophysines are contradictory. We therefore investigated the effect on the auditory system in species representing two different orders. Methodology/Principal Findings Hearing sensitivity was determined using the auditory evoked potentials (AEP) recording technique. Auditory sensitivity and latency in response to clicks were measured in the common carp Cyprinus carpio (order Cypriniformes) and the Wels catfish Silurus glanis (order Siluriformes) after acclimating fish for at least three weeks to two different water temperatures (15°C, 25°C and again 15°C). Hearing sensitivity increased with temperature in both species. Best hearing was detected between 0.3 and 1 kHz at both temperatures. The maximum increase occurred at 0.8 kHz (7.8 dB) in C. carpio and at 0.5 kHz (10.3 dB) in S. glanis. The improvement differed between species and was in particular more pronounced in the catfish at 4 kHz. The latency in response to single clicks was measured from the onset of the sound stimulus to the most constant positive peak of the AEP. The latency decreased at the higher temperature in both species by 0.37 ms on average. Conclusions/Significance The current study shows that higher temperature improves hearing (lower thresholds, shorter latencies) in eurythermal species from different orders of otophysines. Differences in threshold shifts between eurythermal species seem to reflect differences in absolute sensitivity at higher frequencies and they furthermore indicate differences to stenothermal (tropical) species. PMID:25255456

  7. Effects of temperature on Anoplophora glabripennis (Coleoptera: Cerambycidae) larvae and pupae.

    PubMed

    Keena, M A; Moore, P M

    2010-08-01

    Developmental thresholds, degree-days for development, larval weights, and head capsule widths for each larval instar and the pupal stage of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) were studied at eight constant temperatures (5, 10, 15, 20, 25, 30, 35, and 40°C) for two source populations (Ravenswood, Chicago, IL [IL], and Bayside, Queens, NY [NY]). The estimated lower threshold temperature for development of instars 1-5 and the pupal stage was near 10°C and was near 12°C for the higher instars. Developmental rate was less temperature sensitive for instars 5-9 compared with instars 1-4. Development for all but the first instar was inhibited at constant temperatures >30°C, and all instars failed to develop at 40°C. Although the two source populations had similar responses to temperature, IL larvae were heavier than those from NY. Temperature and its influence on larval weight had profound impacts on whether a larva proceeded to pupation. Based on the temperature effects detailed here, larval development and pupation should be possible in most of the continental United States where suitable hosts are available. These data can be used to develop a degree-day model to estimate beetle phenology; however, at least 2°C should be added to air temperatures to adjust for the mediation of temperature by the wood. These data provide a basis for predicting the potential geographical range of this species and for developing phenological models to predict the timing of immature stages, both of which are important for management programs.

  8. Photonic crystal fiber long-period gratings for structural monitoring and chemical sensing

    NASA Astrophysics Data System (ADS)

    Tang, Jaw-Luen; Wang, Jian-Neng

    2008-03-01

    We present a simple, low-cost, temperature- and strain-insensitive long-period gratings (LPGs) written in photonic crystal fibers (PCFs) that can be used as sensitive chemical solution sensors or bend sensors for a variety of industrial applications, including civil engineering, aircraft, chemistry, food industry, and biosensing. Three different configurations of PCFs have been used for this study, including a polarization maintaining PCF, a large mode area PCF and an endlessly single mode PCF. These LPGs have been characterized for their sensitivity to temperature, strain, bending, and surrounding refractive index. Transmission spectra of the LPGs were found to exhibit negligible temperature and strain sensitivities, whereas possessing usable sensitivity to refractive index and bending. This type of PCF sensor could in principle be designed for optimum sensitivity to desired measurand(s), while minimizing or removing undesirable cross-sensitivities. The unique sensing features of PCFs are particularly suited for a wide variety of applications in smart structures, embedded materials, telecommunications and sensor systems.

  9. Design and fabrication of a differential scanning nanocalorimeter

    NASA Astrophysics Data System (ADS)

    Zuo, Lei; Chen, Xiaoming; Yu, Shifeng; Lu, Ming

    2017-02-01

    This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 µK. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterized through the measurement of current-voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. The noise test together with the simulation show the device is promising for micro 10 µK temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C. S.; Zhang, Hongbin

    Uncertainty quantification and sensitivity analysis are important for nuclear reactor safety design and analysis. A 2x2 fuel assembly core design was developed and simulated by the Virtual Environment for Reactor Applications, Core Simulator (VERA-CS) coupled neutronics and thermal-hydraulics code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). An approach to uncertainty quantification and sensitivity analysis with VERA-CS was developed and a new toolkit was created to perform uncertainty quantification and sensitivity analysis with fourteen uncertain input parameters. Furthermore, the minimum departure from nucleate boiling ratio (MDNBR), maximum fuel center-line temperature, and maximum outer clad surfacemore » temperature were chosen as the selected figures of merit. Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis and coolant inlet temperature was consistently the most influential parameter. We used parameters as inputs to the critical heat flux calculation with the W-3 correlation were shown to be the most influential on the MDNBR, maximum fuel center-line temperature, and maximum outer clad surface temperature.« less

  11. Energy metabolism in isolated chick (Gallus domesticus) gastrocnemius and tilapia (Tilapia mossambica) epaxial muscle at various temperatures in vitro.

    PubMed

    Suzuki, E Y; Early, R J; Patterson, P H

    1994-09-01

    Muscle respiration experiments on inhibitor dosage (experiment 1), muscle preparation (tendons removed vs. unstretched vs. stretched muscles; chick muscle only; experiment 2) and media temperature (26.5, 32, 37, 42 degrees C; experiment 3) were conducted on chick (Gallus domesticus) gastrocnemius and tilapia (Tilapia mossambica) epaxial muscle in vitro. Experiment 1: The dosage of cycloheximide and ouabain required for maximum inhibition of protein synthesis and Na+,K+ ATPase, respectively, in chick and tilapia muscle was approximately 6 x 10(-5) M. Experiment 2: Removing the tendons of chick muscle decreased (% inhibition, P = 0.05) cycloheximide-sensitive respiration compared to stretched and unstretched muscles (tendons intact). However, muscle preparation had little influence on ouabain-sensitive respiration. Experiment 3: Cycloheximide-sensitive respiration tended to increase (microliter O2/mg DNA.hr, P = 0.054) with media temperature in tilapia muscle. Chick muscle was less responsive in this respect. Ouabain-sensitive respiration increased at lower temperature in chick muscle (% inhibition, cubic relationship, P = 0.001) and at higher temperature in tilapia muscle (% inhibition, quadratic relationship, P = 0.0002).

  12. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application

    NASA Astrophysics Data System (ADS)

    Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.

    2016-10-01

    We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.

  13. Sensitivities of seismic velocities to temperature, pressure and composition in the lower mantle

    NASA Astrophysics Data System (ADS)

    Trampert, Jeannot; Vacher, Pierre; Vlaar, Nico

    2001-08-01

    We calculated temperature, pressure and compositional sensitivities of seismic velocities in the lower mantle using latest mineral physics data. The compositional variable refers to the volume proportion of perovskite in a simplified perovskite-magnesiowüstite mantle assemblage. The novelty of our approach is the exploration of a reasonable range of input parameters which enter the lower mantle extrapolations. This leads to realistic error bars on the sensitivities. Temperature variations can be inferred throughout the lower mantle within a good degree of precision. Contrary to the uppermost mantle, modest compositional changes in the lower mantle can be detected by seismic tomography, with a larger uncertainty though. A likely trade-off between temperature and composition will be largely determined by uncertainties in tomography itself. Given current sources of uncertainties on recent data, anelastic contributions to the temperature sensitivities (calculated using Karato's approach) appear less significant than previously thought. Recent seismological determinations of the ratio of relative S to P velocity heterogeneity can be entirely explain by thermal effects, although isolated spots beneath Africa and the Central Pacific in the lowermost mantle may ask for a compositional origin.

  14. Optimum sensitivity derivatives of objective functions in nonlinear programming

    NASA Technical Reports Server (NTRS)

    Barthelemy, J.-F. M.; Sobieszczanski-Sobieski, J.

    1983-01-01

    The feasibility of eliminating second derivatives from the input of optimum sensitivity analyses of optimization problems is demonstrated. This elimination restricts the sensitivity analysis to the first-order sensitivity derivatives of the objective function. It is also shown that when a complete first-order sensitivity analysis is performed, second-order sensitivity derivatives of the objective function are available at little additional cost. An expression is derived whose application to linear programming is presented.

  15. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure

    PubMed Central

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-01-01

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas. PMID:27136564

  16. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure.

    PubMed

    Xia, Ji; Wang, Fuyin; Luo, Hong; Wang, Qi; Xiong, Shuidong

    2016-04-29

    Based on the characteristic magnetic-controlled refractive index property, in this paper, a magnetic fluid is used as a sensitive medium to detect the magnetic field in the fiber optic Fabry-Perot (FP) cavity. The temperature compensation in fiber Fabry-Perot magnetic sensor is demonstrated and achieved. The refractive index of the magnetic fluid varies with the applied magnetic field and external temperature, and a cross-sensitivity effect of the temperature and magnetic field occurs in the Fabry-Perot magnetic sensor and the accuracy of magnetic field measurements is affected by the thermal effect. In order to overcome this problem, we propose a modified sensor structure. With a fiber Bragg grating (FBG) written in the insert fiber end of the Fabry-Perot cavity, the FBG acts as a temperature compensation unit for the magnetic field measurement and it provides an effective solution to the cross-sensitivity effect. The experimental results show that the sensitivity of magnetic field detection improves from 0.23 nm/mT to 0.53 nm/mT, and the magnetic field measurement resolution finally reaches 37.7 T. The temperature-compensated FP-FBG magnetic sensor has obvious advantages of small volume and high sensitivity, and it has a good prospect in applications in the power industry and national defense technology areas.

  17. Forecasting the future risk of Barmah Forest virus disease under climate change scenarios in Queensland, Australia.

    PubMed

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000-2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland.

  18. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4+

    PubMed Central

    Ranatunga, Nimna S.; Forsburg, Susan L.

    2016-01-01

    The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+. Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure. PMID:27473316

  19. SU-E-T-112: Experimental Characterization of a Novel Thermal Reservoir for Consistent and Accurate Annealing of High-Sensitivity TLDs.

    PubMed

    Donahue, W; Bongiorni, P; Hearn, R; Rodgers, J; Nath, R; Chen, Z

    2012-06-01

    To develop and characterize a novel thermal reservoir for consistent and accurate annealing of high-sensitivity thermoluminescence dosimeters (TLD-100H) for dosimetry of brachytherapy sources. The sensitivity of TLD-100H is about 18 times that of TLD-100 which has clear advantages in for interstitial brachytherapy sources. However, the TLD-100H requires a short high temperature annealing cycle (15 min.) and opening and closing the oven door causes significant temperature fluctuations leading to unreliable measurements. A new thermal reservoir made of aluminum alloy was developed to provide stable temperature environment in a standard hot air oven. The thermal reservoir consisted of a 20 cm × 20 cm × 8 cm Al block with a machine-milled chamber in the middle to house the aluminum TLD holding tray. The thermal reservoir was placed inside the oven until it reaches thermal equilibrium with oven chamber. The temperatures of the oven chamber, heat reservoir, and TLD holding tray were monitored by two independent thermo-couples which interfaced digitally to a control computer. A LabView interface was written for monitoring and recording the temperatures in TLD holding tray, the thermal reservoir, and oven chamber. The temperature profiles were measured as a function of oven-door open duration. The settings for oven chamber temperature and oven door open-close duration were optimized to achieve a stable temperature of 240 0C in the TLD holding tray. Complete temperature profiles of the TLD annealing tray over the entire annealing process were obtained. A LabView interface was written for monitoring and recording the temperatures in TLD holding The use of the thermal reservoir has significantly reduced the temperature fluctuations caused by the opening of oven door when inserting the TLD holding tray into the oven chamber. It has enabled consistent annealing of high-sensitivity TLDs. A comprehensive characterization of a custom-built novel thermal reservoir for annealing high-sensitivity TLD has been carried out. It enabled consistent and accurate annealing of high- sensitivity TLDs which could significantly improve the efficiency of brachytherapy source characterizations. Supported in part by NIH grant R01-CA134627. © 2012 American Association of Physicists in Medicine.

  20. Optical temperature compensation schemes of spectral modulation sensors for aircraft engine control

    NASA Astrophysics Data System (ADS)

    Berkcan, Ertugrul

    1993-02-01

    Optical temperature compensation schemes for the ratiometric interrogation of spectral modulation sensors for source temperature robustness are presented. We have obtained better than 50 - 100X decrease of the temperature coefficient of the sensitivity using these types of compensation. We have also developed a spectrographic interrogation scheme that provides increased source temperature robustness; this affords a significantly improved accuracy over FADEC temperature ranges as well as temperature coefficient of the sensitivity that is substantially and further reduced. This latter compensation scheme can be integrated in a small E/O package including the detection, analog and digital signal processing. We find that these interrogation schemes can be used within a detector spatially multiplexed architecture.

  1. 3D printed sensing patches with embedded polymer optical fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.; Nielsen, K.; Bang, O.

    2016-05-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.

  2. High-temperature microphone system. [for measuring pressure fluctuations in gases at high temperature

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1979-01-01

    Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus.

  3. Mars Thermospheric Temperature Sensitivity to Solar EUV Forcing from the MAVEN EUV Monitor

    NASA Astrophysics Data System (ADS)

    Thiemann, Ed; Eparvier, Francis; Andersson, Laila; Pilinski, Marcin; Chamberlin, Phillip; Fowler, Christopher; MAVEN Extreme Ultraviolet Monitor Team, MAVEN Langmuir Probe and Waves Team

    2017-10-01

    Solar extreme ultraviolet (EUV) radiation is the primary heat source for the Mars thermosphere, and the primary source of long-term temperature variability. The Mars obliquity, dust cycle, tides and waves also drive thermospheric temperature variability; and it is important to quantify the role of each in order to understand processes in the upper atmosphere today and, ultimately, the evolution of Mars climate over time. Although EUV radiation is the dominant heating mechanism, accurately measuring the thermospheric temperature sensitivity to EUV forcing has remained elusive, in part, because Mars thermospheric temperature varies dramatically with latitude and local time (LT), ranging from 150K on the nightside to 300K on the dayside. It follows that studies of thermospheric variability must control for location.Instruments onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter have begun to characterize thermospheric temperature sensitivity to EUV forcing. Bougher et al. [2017] used measurements from the Imaging Ultraviolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) to characterize solar activity trends in the thermosphere with some success. However, aside from restricting measurements to solar zenith angles (SZAs) below 75 degrees, they were unable to control for latitude and LT because repeat-track observations from either instrument were limited or unavailable.The MAVEN EUV Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These new density measurements are ideal for tracking the long-term thermospheric temperature variability because they are inherently constrained to either 06:00 or 18:00 LT, and the orbit has precessed to include a range of ecliptic latitudes, a number of which have been revisited multiple times over 2.5 years. In this study we present, for the first-time, measurements of thermospheric temperature sensitivity to EUV forcing derived from the EUVM measurements. These results include sensitives measured at the poles and near the equator for both terminators; therefore, we will also discuss the role of latitude on EUV temperature sensitivity.

  4. Development and Validation of a Gas Chromatography Method for Quality Control of Residual Solvents in Azilsartan Bulk Drugs.

    PubMed

    Guan, Jin; Min, Jie; Yan, Feng; Xu, Wen-Ya; Shi, Shuang; Wang, Si-Lin

    2017-04-01

    A new gas chromatographic method for the simultaneous determination of six organic residual solvents (acetonitrile, tetrahydrofuran, ethanol, acetone, 2-propanol and ethyl acetate) in azilsartan bulk drug is described. The chromatographic determination was achieved on an OV-624 capillary column employing programmed temperature within 21 min. The validation was carried out according to International Conference on Harmonization validation guidelines. The method was shown to be specific (no interference in the blank solution), sensitive (Limit of detection can achieve 1.5 μg/mL), precise (relative standard deviation of repeatability and intermediate precision ≤5.0%), linear (r≥ 0.999), accurate (recoveries range from 98.8% to 107.8%) and robust (carrier gas flow from 2.7 to 3.3 mL/min, initial oven temperature from 35°C to 45°C, temperature ramping rate from 19°C/min to 21°C/min, final oven temperature from 145°C to 155°C, injector temperature from 190°C to 210°C and detector temperature from 240°C to 260°C did not significantly affect the system suitability, test parameters and peak areas). This extensively validated method has been applied to the determination of residual solvents in real azilsartan bulk samples. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Climate Sensitivity of Water Yield for a Small Boreal Headwater Watershed in North-Central Minnesota

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Hess, J.; Sebestyen, S. D.

    2017-12-01

    We calibrated the Hydrologic Simulation Program Fortran (HSPF) model to a 9.7 ha forested watershed, designated S2, located at the Marcell experimental forest in north-central Minnesota. The S2 watershed, like the other five experimental watersheds at the same location have been monitored since 1955. The watershed is composed of forested upland hillslopes that connect to a 3.2 ha raised bog area. Streamflow is measured at a v-notch weir at the outlet of the bog area. The HSPF model was calibrated to outflow for water years 1991 to 1995 (NSEdaily=0.80), and validated for water years 1996 to 2000 (NSEdaily=0.71). Watershed sensitivity to climate and water budget reaction to climate change scenarios were evaluated using, first, a simple empirical elasticity measure between runoff and precipitation utilizing the long-term monitoring records. Elasticity between these two variables in the S2 watershed was e(q) = 2.05, meaning for each 1% change in precipitation, there is a 2.05% change in runoff. A two parameter elasticity measure using precipitation and temperature was also used to predict how climate shifts in temperature and precipitation will impact runoff in the watershed. Annual estimated water budget was plotted with temperature and precipitation deviation from average to produce a 3-D map depicting the watershed two parameter elasticity. Watershed sensitivity was also evaluated using the HSPF model with climate inputs derived from an ensemble of 22 downscaled climate models reflecting the least and most extreme carbon emission scenarios. For the HSPF model inputs, observed daily temperature and precipitation data were adjusted using monthly shifts in average precipitation and temperature derived from the climate models to arrive at daily weather time series for the periods 2020-2050 and 2070-2100. For the HSPF outputs, the least and most extreme carbon emission scenarios showed a decrease in water yield of 9% and 11%, respectively in the 2020-2050 period and 9% and 43% respectively in the 2070-2100 period. The reduction in water yield is explained by increasing ET rates, even though precipitation increases and groundwater recharge decreases. All scenarios and time periods show an increase in flows for December through March and a decrease for May through October.

  6. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground station, and NOAA ESRL high-resolution Optimum Interpolation SST (OISST). Precise understanding of the influence these auxiliary inputs have on final satellite-based Ts retrievals may help guide refinement in ɛs characterization and NWP development, e.g., future Goddard Earth Observing System Data Assimilation System versions.

  7. Accounting for groundwater in stream fish thermal habitat responses to climate change

    USGS Publications Warehouse

    Snyder, Craig D.; Hitt, Nathaniel P.; Young, John A.

    2015-01-01

    Forecasting climate change effects on aquatic fauna and their habitat requires an understanding of how water temperature responds to changing air temperature (i.e., thermal sensitivity). Previous efforts to forecast climate effects on brook trout habitat have generally assumed uniform air-water temperature relationships over large areas that cannot account for groundwater inputs and other processes that operate at finer spatial scales. We developed regression models that accounted for groundwater influences on thermal sensitivity from measured air-water temperature relationships within forested watersheds in eastern North America (Shenandoah National Park, USA, 78 sites in 9 watersheds). We used these reach-scale models to forecast climate change effects on stream temperature and brook trout thermal habitat, and compared our results to previous forecasts based upon large-scale models. Observed stream temperatures were generally less sensitive to air temperature than previously assumed, and we attribute this to the moderating effect of shallow groundwater inputs. Predicted groundwater temperatures from air-water regression models corresponded well to observed groundwater temperatures elsewhere in the study area. Predictions of brook trout future habitat loss derived from our fine-grained models were far less pessimistic than those from prior models developed at coarser spatial resolutions. However, our models also revealed spatial variation in thermal sensitivity within and among catchments resulting in a patchy distribution of thermally suitable habitat. Habitat fragmentation due to thermal barriers therefore may have an increasingly important role for trout population viability in headwater streams. Our results demonstrate that simple adjustments to air-water temperature regression models can provide a powerful and cost-effective approach for predicting future stream temperatures while accounting for effects of groundwater.

  8. Cumulative effects of heat exposure and storage conditions of Oxytocin-in-Uniject in rural Ghana: implications for scale up

    PubMed Central

    Mullany, Luke C; Newton, Sam; Afari-Asiedu, Samuel; Adiibokah, Edward; Agyemang, Charlotte T; Cofie, Patience; Brooke, Steve; Owusu-Agyei, Seth; Stanton, Cynthia K

    2014-01-01

    ABSTRACT Objective: Postpartum hemorrhage can be reduced substantially in home deliveries attended by community-based workers by using Oxytocin-in-Uniject (OIU) devices affixed with temperature-time indicators. We characterized the distribution of time to discard of these devices when stored under normal field conditions in Ghana. Methods: Two drug storage simulation studies were conducted in rural Ghana in 2011 and 2012. Devices were transported under refrigeration from manufacture (Argentina) to storage at the study site. Twenty-three field workers each stored at home (unrefrigerated) 25 OIU devices and monitored them daily to record: (1) time to transition from usable to unusable, and (2) continuous digital ambient temperature to determine heat exposure over the simulation period. Time to discard was estimated and compared with mean kinetic temperature exposure of the devices during the shipment and storage phases and with characteristics of the storage locations using Weibull regression models. We used the time to discard distributions in a Monte Carlo simulation to estimate wastage rates in a hypothetical program setting. Results: Time for shipment and transfer to long-term refrigerated storage and mean kinetic temperature during the shipment phase was 8.6 days/10.3°C and 13.4 days/12.1°C, for the first and second simulation studies, respectively. Median (range) time to discard when stored under field conditions (unrefrigerated) was 43 (6 to 59) days and 33 (14 to 50) days, respectively. Mean time to discard was 10.0 days shorter in the second simulation, during which mean kinetic temperature exposure was 3.9°C higher. Simulating a monthly distribution system and assuming typical usage, predicted wastage of product was less than 10%. Conclusion: The time to discard of devices was highly sensitive to small changes in temperature exposure. Under field conditions typical in rural Ghana, OIU packages will have a half-life of approximately 30 to 40 days based on the temperature monitor used during the study. Program managers will need to carefully consider variations in both ambient temperature and rate of use to allocate the appropriate supply level that will maximize coverage and minimize stock loss. PMID:25276588

  9. Cumulative effects of heat exposure and storage conditions of Oxytocin-in-Uniject in rural Ghana: implications for scale up.

    PubMed

    Mullany, Luke C; Newton, Sam; Afari-Asiedu, Samuel; Adiibokah, Edward; Agyemang, Charlotte T; Cofie, Patience; Brooke, Steve; Owusu-Agyei, Seth; Stanton, Cynthia K

    2014-08-01

    Postpartum hemorrhage can be reduced substantially in home deliveries attended by community-based workers by using Oxytocin-in-Uniject (OIU) devices affixed with temperature-time indicators. We characterized the distribution of time to discard of these devices when stored under normal field conditions in Ghana. Two drug storage simulation studies were conducted in rural Ghana in 2011 and 2012. Devices were transported under refrigeration from manufacture (Argentina) to storage at the study site. Twenty-three field workers each stored at home (unrefrigerated) 25 OIU devices and monitored them daily to record: (1) time to transition from usable to unusable, and (2) continuous digital ambient temperature to determine heat exposure over the simulation period. Time to discard was estimated and compared with mean kinetic temperature exposure of the devices during the shipment and storage phases and with characteristics of the storage locations using Weibull regression models. We used the time to discard distributions in a Monte Carlo simulation to estimate wastage rates in a hypothetical program setting. Time for shipment and transfer to long-term refrigerated storage and mean kinetic temperature during the shipment phase was 8.6 days/10.3°C and 13.4 days/12.1°C, for the first and second simulation studies, respectively. Median (range) time to discard when stored under field conditions (unrefrigerated) was 43 (6 to 59) days and 33 (14 to 50) days, respectively. Mean time to discard was 10.0 days shorter in the second simulation, during which mean kinetic temperature exposure was 3.9°C higher. Simulating a monthly distribution system and assuming typical usage, predicted wastage of product was less than 10%. The time to discard of devices was highly sensitive to small changes in temperature exposure. Under field conditions typical in rural Ghana, OIU packages will have a half-life of approximately 30 to 40 days based on the temperature monitor used during the study. Program managers will need to carefully consider variations in both ambient temperature and rate of use to allocate the appropriate supply level that will maximize coverage and minimize stock loss.

  10. Micro-structured optical fiber sensor for simultaneous measurement of temperature and refractive index

    NASA Astrophysics Data System (ADS)

    Liu, Ying-gang; Liu, Xin; Ma, Cheng-ju; Zhou, Yu-min

    2018-03-01

    Through using micro-machining method for optical fiber sensor, a kind of miniature, compact and composite structural all-fiber sensor is presented. Based on manufacturing two micro-holes with certain distance in ordinary single-mode fiber Bragg grating (FBG) by excimer laser processing technique, we fabricate a dual Fabry-Perot-FBG (FP-FBG) composite fiber interferometric sensor, which can be used in simultaneous measurement for liquid's refractive index (RI) and temperature change. Due to every micro-hole and the dual micro-holes in fiber acting as different Fabry-Perot (FP) cavities, this kind of sensor has not only different RI sensitivities but also different temperature sensitivities, which are corresponding to the wavelength shifts of the fine interference fringes and spectral envelope, respectively. The experimental results show that the spectral wavelength shift keep better linear response for temperature and RI change, so that we can select the higher temperature and RI sensitivities as well as the analyzed sensitivities of FBG to utilize them for constituting a sensitivity coefficients matrix. Finally, the variations of liquid's temperature and RI are detected effectively, and the resolutions can reach to 0.1 °C and 1.0 ×10-5 RIU. These characteristics are what other single-type sensors don't have, so that this kind of all-fiber dual FP-FBG composite fiber interferometric sensor can be used in extremely tiny liquid environment for measuring different physical quantities simultaneously.

  11. Bronchoconstriction induced by increasing airway temperature in ovalbumin-sensitized rats: role of tachykinins.

    PubMed

    Hsu, Chun-Chun; Lin, Ruei-Lung; Lin, You Shuei; Lee, Lu-Yuan

    2013-09-01

    This study was carried out to determine the effect of allergic inflammation on the airway response to increasing airway temperature. Our results showed the following: 1) In Brown-Norway rats actively sensitized by ovalbumin (Ova), isocapnic hyperventilation with humidified warm air (HWA) for 2 min raised tracheal temperature (Ttr) from 33.4 ± 0.6°C to 40.6 ± 0.1°C, which induced an immediate and sustained (>10 min) increase in total pulmonary resistance (Rl) from 0.128 ± 0.004 to 0.212 ± 0.013 cmH2O·ml(-1)·s (n = 6, P < 0.01). In sharp contrast, the HWA challenge caused the same increase in Ttr but did not generate any increase in Rl in control rats. 2) The increase in Rl in sensitized rats was reproducible when the same HWA challenge was repeated 60-90 min later. 3) This bronchoconstrictive effect was temperature dependent: a slightly smaller increase in peak Ttr (39.6 ± 0.2°C) generated a significant but smaller increase in Rl in sensitized rats. 4) The HWA-induced bronchoconstriction was not generated by the humidity delivered by the HWA challenge alone, because the same water content delivered by saline aerosol at room temperature had no effect. 5) The HWA-evoked increase in Rl in sensitized rats was not blocked by atropine but was completely prevented by pretreatment either with a combination of neurokinin (NK)-1 and NK-2 antagonists or with formoterol, a β2 agonist, before the HWA challenge. This study showed that increasing airway temperature evoked a pronounced and reversible increase in airway resistance in sensitized rats and that tachykinins released from the vagal bronchopulmonary C-fiber endings were primarily responsible.

  12. Precipitation Behavior and Quenching Sensitivity of a Spray Deposited Al-Zn-Mg-Cu-Zr Alloy

    PubMed Central

    Lei, Qian; Xiao, Zhu; Wang, Mingpu

    2017-01-01

    Precipitation behavior and the quenching sensitivity of a spray deposited Al-Zn-Mg-Cu-Zr alloy during isothermal heat treatment have been studied systematically. Results demonstrate that both the hardness and the ultimate tensile strength of the studied alloy decreased with the isothermal treatment time at certain temperatures. More notably, the hardness decreases rapidly after the isothermal heat treatment. During isothermal heat treatment processing, precipitates readily nucleated in the medium-temperature zone (250–400 °C), while the precipitation nucleation was scarce in the low-temperature zone (<250 °C) and in the high-temperature zone (>400 °C). Precipitates with sizes of less than ten nanometers would contribute a significant increase in yield strength, while the ones with a larger size than 300 nm would contribute little strengthening effect. Quenching sensitivity is high in the medium-temperature zone (250–400 °C), and corresponding time-temperature-property (TTP) curves of the studied alloy have been established. PMID:28925964

  13. Isolation and analysis of a mammalian temperature-sensitive mutant defective in G2 functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineo, C.; Murakami, Y.; Ishimi, Y.

    1986-11-01

    A temperature-sensitive (ts) mutant, designated tsFT210, was isolated from a mouse mammary carcinoma cell line, FM3A. The tsFT210 cells grew normally at 33/sup 0/C (permissive temperature), but more than 80% of the cells were arrested at the G2 phase at 39/sup 0/C (non-permissive temperature) as revealed by flow-microfluorimetric analysis. DNA replication and synthesis of other macromolecules by this mutant seemed to be normal at 39/sup 0/C for at least 10h. However, in this mutant, hyperphosphorylation of H1 histone from the G2 to M phase, which occurs in the normal cell cycle, could not be detected at the non-permissive temperature. Thismore » suggests that a gene product which is temperature-sensitive in tsFT210 cells is necessary for hyperphosphorylation of H1 histone and that this gene product may be related to chromosome condensation.« less

  14. Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs

    NASA Astrophysics Data System (ADS)

    Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan

    2013-12-01

    Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Anirban; Patra, Puneet Kumar; Bhattacharya, Baidurya, E-mail: baidurya@civil.iitkgp.ernet.in

    A nanomechanical resonator based sensor works by detecting small changes in the natural frequency of the device in presence of external agents. In this study, we address the length and the temperature-dependent sensitivity of precompressed armchair Boron-Nitride nanotubes towards their use as sensors. The vibrational data, obtained using molecular dynamics simulations, are analyzed for frequency content through the fast Fourier transformation. As the temperature of the system rises, the vibrational spectrum becomes noisy, and the modal frequencies show a red-shift irrespective of the length of the nanotube, suggesting that the nanotube based sensors calibrated at a particular temperature may notmore » function desirably at other temperatures. Temperature-induced noise becomes increasingly pronounced with the decrease in the length of the nanotube. For the shorter nanotube at higher temperatures, we observe multiple closely spaced peaks near the natural frequency, that create a masking effect and reduce the sensitivity of detection. However, longer nanotubes do not show these spurious frequencies, and are considerably more sensitive than the shorter ones.« less

  16. Performance sensitivity analysis of Department of Energy-Chrysler upgraded automotive gas turbine engine, S/N 5-4

    NASA Technical Reports Server (NTRS)

    Johnsen, R. L.

    1979-01-01

    The performance sensitivity of a two-shaft automotive gas turbine engine to changes in component performance and cycle operating parameters was examined. Sensitivities were determined for changes in turbomachinery efficiency, compressor inlet temperature, power turbine discharge temperature, regenerator effectiveness, regenerator pressure drop, and several gas flow and heat leaks. Compressor efficiency was found to have the greatest effect on system performance.

  17. Demonstration of SiC Pressure Sensors at 750 C

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2014-01-01

    We report the first demonstration of MEMS-based 4H-SiC piezoresistive pressure sensors tested at 750 C and in the process confirmed the existence of strain sensitivity recovery with increasing temperature above 400 C, eventually achieving near or up to 100% of the room temperature values at 750 C. This strain sensitivity recovery phenomenon in 4H-SiC is uncharacteristic of the well-known monotonic decrease in strain sensitivity with increasing temperature in silicon piezoresistors. For the three sensors tested, the room temperature full-scale output (FSO) at 200 psig ranged between 29 and 36 mV. Although the FSO at 400 C dropped by about 60%, full recovery was achieved at 750 C. This result will allow the operation of SiC pressure sensors at higher temperatures, thereby permitting deeper insertion into the engine combustion chamber to improve the accurate quantification of combustor dynamics.

  18. Temperature requirements for initiation of RNA-dependent RNA polymerization.

    PubMed

    Yang, Hongyan; Gottlieb, Paul; Wei, Hui; Bamford, Dennis H; Makeyev, Eugene V

    2003-09-30

    To continue the molecular characterization of RNA-dependent RNA polymerases of dsRNA bacteriophages (Cystoviridae), we purified and biochemically characterized the wild-type (wt) and a temperature-sensitive (ts) point mutant of the polymerase subunit (Pol) from bacteriophage phi12. Interestingly, initiation by both wt and the ts phi12 Pol was notably more sensitive to increased temperatures than the elongation step, the absolute value of the nonpermissive temperature being lower for the ts enzyme. Experiments with the Pol subunit of related cystovirus phi6 revealed a similar differential sensitivity of the initiation and elongation steps. This is consistent with the previous result showing that de novo initiation by RdRp from dengue virus is inhibited at elevated temperatures, whereas the elongation phase is relatively thermostable. Overall, these data suggest that de novo RNA-dependent RNA synthesis in many viral systems includes a specialized thermolabile state of the RdRp initiation complex.

  19. A simultaneous pressure and temperature sensor based on a superstructure fiber grating

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Min; Liu, Wen-Fung; Fu, Ming-Yue; Sheng, Hao-Jan; Bor, Sheau-Shung; Tien, Chuen-Lin

    2004-12-01

    We demonstrated that a high-sensitivity fiber sensor based on a superstructure fiber grating (SFG) can simultaneously measure the pressure and temperature by encapsulating the grating in a polymer-half-filled metal cylinder, in which there are two openings on opposite sides of the wall filled with the polymer to sense the pressure. The mechanism of sensing pressure is to transfer the pressure into the axial extended-strain. According to the optical characteristics of an SFG composed of a fiber Bragg grating (FBG) and long period grating (LPG), the various pressure and temperature will cause the variation of the center-wavelength and reflection simultaneously. Thus, the sensor can be used for the measurement both of the pressure and temperature. The pressure sensitivity of 2.28×10-2MPa-1 and the temperature sensitivity both of 0.015nm/°C and -0.143dB/°C are obtained.

  20. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  1. Fibre Bragg grating encapted with no-core fibre sensors for SRI and temperature monitoring

    NASA Astrophysics Data System (ADS)

    Daud, S.; Amiri, I. S.; Noorden, A. F. A.; Ali, J.; Yupapin, P.

    2018-06-01

    In this work, a Fibre Bragg grating (FBG) encapted with no-core fibre (NCF) as surrounding refractive index (SRI) and temperature sensors are practically demonstrated. A FBG with 1550 nm wavelength was attached with 5 cm length of no-core fibre (NCF) is used as SRI and temperature sensing probe. The change of temperature and SRI induced the wavelength shift in FBG. The wavelength shift in FBG reacts directly proportional to the temperature with a sensitivity of while the sensitivity of NCF was measured as 13.13 pm °C-1.

  2. Fiber Bragg grating cryogenic temperature sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjay; Mizunami, Toru; Yamao, Takashi; Shimomura, Teruo

    1996-09-01

    Temperature sensing to as low as 80 K was demonstrated with 1.55- mu m fiber Bragg gratings. The gratings were bonded on substrates to increase sensitivity, and a shift of the reflection wavelength was measured. The temperature sensitivity was 0.02 nm/K at 100 K when an aluminum substrate was used and 0.04 nm/K at 100 K when a poly(methyl methacrylate) substrate was used. These values are smaller than those at room temperature because of the nonlinearity of both the thermal expansion and the thermo-optic effect. Extension to the liquid helium temperature is also discussed.

  3. Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Li, Tao; Hu, Limin; Qian, Wenwen; Zhang, Quanyao; Jin, Shangzhong

    2012-11-01

    A temperature-independent highly-sensitive curvature sensor by using a tapered-photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered-PCF between two standard single mode fibers (SMFs) with the air holes of the PCF in the fusion splicing region being fully collapsed. The tapering of PCF is found to enhance the sensitivity significantly. Large curvature sensitivities of 2.81 dB/m-1 and 8.35 dB/m-1 are achieved in the measurement ranges of 0.36-0.87 m-1 and 0.87-1.34 m-1, respectively, with the resolution of 0.0012 m-1 being guaranteed. The proposed sensor also shows negligible temperature sensitivity less than 0.006 dB/°C.

  4. Sensitivity Analysis Applied to Atomic Data Used for X-ray Spectrum Synthesis

    NASA Technical Reports Server (NTRS)

    Kallman, Tim

    2006-01-01

    A great deal of work has been devoted to the accumulation of accurate quantities describing atomic processes for use in analysis of astrophysical spectra. But in many situations of interest the interpretation of a quantity which is observed, such as a line flux, depends on the results of a modeling- or spectrum synthesis code. The results of such a code depends in turn 011 many atomic rates or cross sections, and the sensitivity of the observable quantity on the various rates and cross sections may be non-linear and if so cannot easily be derived analytically. In such cases the most practical approach to understanding the sensitivity of observables to atomic cross sections is to perform numerical experiments, by calculating models with various rates perturbed by random (but known) factors. In addition, it is useful to compare the results of such experiments with some sample observations, in order to focus attention on the rates which are of the greatest relevance to real observations. In this paper I will present some attempts to carry out this program, focussing on two sample datasets taken with the Chandra HETG. I will discuss the sensitivity of synthetic spectra to atomic data affecting ionization balance, temperature, and line opacity or emissivity, and discuss the implications for the ultimate goal of inferring astrophysical parameters.

  5. Sensitivity Analysis Applied to Atomic Data Used for X-ray Spectrum Synthesis

    NASA Technical Reports Server (NTRS)

    Kallman, Tim

    2006-01-01

    A great deal of work has been devoted to the accumulation of accurate quantities describing atomic processes for use in analysis of astrophysical spectra. But in many situations of interest the interpretation of a quantity which is observed, such as a line flux, depends on the results of a modeling- or spectrum synthesis code. The results of such a code depends in turn on many atomic rates or cross sections, and the sensitivity of the observable quantity on the various rates and cross sections may be non-linear and if so cannot easily be derived analytically. In such cases the most practical approach to understanding the sensitivity of observables to atomic cross sections is to perform numerical experiments, by calculating models with various rates perturbed by random (but known) factors. In addition, it is useful to compare the results of such experiments with some sample observations, in order to focus attention on the rates which are of the greatest relevance to real observations. In this paper I will present some attempts to carry out this program, focussing on two sample datasets taken with the Chandra HETG. I will discuss the sensitivity of synthetic spectra to atomic data affecting ionization balance, temperature, and line opacity or emissivity, and discuss the implications for the ultimate goal of inferring astrophysical parameters.

  6. The Sensitivity of Regional Precipitation to Global Temperature Change and Forcings

    NASA Astrophysics Data System (ADS)

    Tebaldi, C.; O'Neill, B. C.; Lamarque, J. F.

    2016-12-01

    Global policies are most commonly formulated in terms of climate targets, like the much talked about 1.5° and 2°C warming thresholds identified as critical by the recent Paris agreements. But what does a target defined in terms of a globally averaged quantity mean in terms of expected regional changes? And, in particular, what should we expect in terms of significant changes in precipitation over specific regional domains for these and other incrementally different global goals? In this talk I will summarize the result of an analysis that aimed at characterizing the sensitivity of regional temperatures and precipitation amounts to changes in global average temperature. The analysis uses results from a multi-model ensemble (CMIP5), which allows us to address structural uncertainty in future projections, a type of uncertainty particularly relevant when considering precipitation changes. I will show what type of changes in global temperature and forcing levels bring about significant and pervasive changes in regional precipitation, contrasting its sensitivity to that of regional temperature changes. Because of the large internal variability of regional precipitation, I will show that significant changes in average regional precipitation can be detected only for fairly large separations (on the order of 2.5° or 3°C) in global average temperature levels, differently from the much higher sensitivity shown by regional temperatures.

  7. Event-based stormwater management pond runoff temperature model

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.

    2016-09-01

    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  8. Our contaminated atmosphere: The danger of climate change, phases 1 and 2. [effect of atmospheric particulate matter on surface temperature and earth's radiation budget

    NASA Technical Reports Server (NTRS)

    Cimorelli, A. J.; House, F. B.

    1974-01-01

    The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.

  9. A CMC database for use in the next generation launch vehicles (rockets)

    NASA Astrophysics Data System (ADS)

    Mahanta, Kamala

    1994-10-01

    Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.

  10. Enthalpy of sublimation as measured using a silicon oscillator

    NASA Astrophysics Data System (ADS)

    Shakeel, Hamza; Pomeroy, J. M.

    In this study, we report the enthalpy of sublimation of common gases (nitrogen, oxygen, argon, carbon dioxide, neon, krypton, xenon, and water vapor) using a large area silicon oscillator with a sub-ng (~0.027 ng/cm2) mass sensitivity. The double paddle oscillator design enables high frequency stability (17 ppb) at cryogenic temperatures and provides a consistent technique for enthalpy measurements. The enthalpies of sublimation are derived from the rate of mass loss during programmed thermal desorption and are detected as a change in the resonance frequency of the self-tracking oscillator. These measured enthalpy values show excellent agreement with the accepted literature values.

  11. A CMC database for use in the next generation launch vehicles (rockets)

    NASA Technical Reports Server (NTRS)

    Mahanta, Kamala

    1994-01-01

    Ceramic matrix composites (CMC's) are being envisioned as the state-of-the-art material capable of handling the tough structural and thermal demands of advanced high temperature structures for programs such as the SSTO (Single Stage to Orbit), HSCT (High Speed Civil Transport), etc. as well as for evolution of the industrial heating systems. Particulate, whisker and continuous fiber ceramic matrix (CFCC) composites have been designed to provide fracture toughness to the advanced ceramic materials which have a high degree of wear resistance, hardness, stiffness, and heat and corrosion resistance but are notorious for their brittleness and sensitivity to microscopic flaws such as cracks, voids and impurity.

  12. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds for temperature and duration

    PubMed Central

    Prasad, P. V. V.; Djanaguiraman, Maduraimuthu; Perumal, Ramasamy; Ciampitti, Ignacio A.

    2015-01-01

    Sorghum [Sorghum bicolor (L.) Moench] yield formation is severely affected by high temperature stress during reproductive stages. This study pursues to (i) identify the growth stage(s) most sensitive to high temperature stress during reproductive development, (ii) determine threshold temperature and duration of high temperature stress that decreases floret fertility and individual grain weight, and (iii) quantify impact of high daytime temperature during floret development, flowering and grain filling on reproductive traits and grain yield under field conditions. Periods between 10 and 5 d before anthesis; and between 5 d before- and 5 d after-anthesis were most sensitive to high temperatures causing maximum decreases in floret fertility. Mean daily temperatures >25°C quadratically decreased floret fertility (reaching 0% at 37°C) when imposed at the start of panicle emergence. Temperatures ranging from 25 to 37°C quadratically decreased individual grain weight when imposed at the start of grain filling. Both floret fertility and individual grain weights decreased quadratically with increasing duration (0–35 d or 49 d during floret development or grain filling stage, respectively) of high temperature stress. In field conditions, imposition of temperature stress (using heat tents) during floret development or grain filling stage also decreased floret fertility, individual grain weight, and grain weight per panicle. PMID:26500664

  13. Sensitivity of Great Lakes Ice Cover to Air Temperature

    NASA Astrophysics Data System (ADS)

    Austin, J. A.; Titze, D.

    2016-12-01

    Ice cover is shown to exhibit a strong linear sensitivity to air temperature. Upwards of 70% of ice cover variability on all of the Great Lakes can be explained in terms of air temperature, alone, and nearly 90% of ice cover variability can be explained in some lakes. Ice cover sensitivity to air temperature is high, and a difference in seasonally-averaged (Dec-May) air temperature on the order of 1°C to 2°C can be the difference between a low-ice year and a moderate- to high- ice year. The total amount of seasonal ice cover is most influenced by air temperatures during the meteorological winter, contemporaneous with the time of ice formation. Air temperature conditions during the pre-winter conditioning period and during the spring melting period were found to have less of an impact on seasonal ice cover. This is likely due to the fact that there is a negative feedback mechanism when heat loss goes toward cooling the lake, but a positive feedback mechanism when heat loss goes toward ice formation. Ice cover sensitivity relationships were compared between shallow coastal regions of the Great Lakes and similarly shallow smaller, inland lakes. It was found that the sensitivity to air temperature is similar between these coastal regions and smaller lakes, but that the absolute amount of ice that forms varies significantly between small lakes and the Great Lakes, and amongst the Great Lakes themselves. The Lake Superior application of the ROMS three-dimensional hydrodynamic numerical model verifies a deterministic linear relationship between air temperature and ice cover, which is also strongest around the period of ice formation. When the Lake Superior bathymetry is experimentally adjusted by a constant vertical multiplier, average lake depth is shown to have a nonlinear relationship with seasonal ice cover, and this nonlinearity may be associated with a nonlinear increase in the lake-wide volume of the surface mixed layer.

  14. Autumn temperature and carbon balance of a boreal Scots pine forest in Southern Finland

    NASA Astrophysics Data System (ADS)

    Vesala, T.; Launiainen, S.; Kolari, P.; Pumpanen, J.; Sevanto, S.; Hari, P.; Nikinmaa, E.; Kaski, P.; Mannila, H.; Ukkonen, E.; Piao, S. L.; Ciais, P.

    2010-01-01

    We analyzed the dynamics of carbon balance components: gross primary production (GPP) and total ecosystem respiration (TER), of a boreal Scots pine forest in Southern Finland. The main focus is on investigations of environmental drivers of GPP and TER and how they affect the inter-annual variation in the carbon balance in autumn (September-December). We used standard climate data and CO2 exchange measurements collected by the eddy covariance (EC) technique over 11 years. EC data revealed that increasing autumn temperature significantly enhances TER: the temperature sensitivity was 9.5 gC m-2 °C-1 for the period September-October (early autumn when high radiation levels still occur) and 3.8 gC m-2 °C-1 for November-December (late autumn with suppressed radiation level). The cumulative GPP was practically independent of the temperature in early autumn. In late autumn, air temperature could explain part of the variation in GPP but the temperature sensitivity was very weak, less than 1 gC m-2 °C-1. Two models, a stand photosynthesis model (COCA) and a global vegetation model (ORCHIDEE), were used for estimating stand GPP and its sensitivity to the temperature. The ORCHIDEE model was tested against the observations of GPP derived from EC data. The stand photosynthesis model COCA predicted that under a predescribed 3-6 °C temperature increase, the temperature sensitivity of 4-5 gC m-2 °C-1 in GPP may appear in early autumn. The analysis by the ORCHIDEE model revealed the model sensitivity to the temporal treatment of meteorological forcing. The model predictions were similar to observed ones when the site level 1/2-hourly time step was applied, but the results calculated by using daily meteorological forcing, interpolated to 1/2-hourly time step, were biased. This is due to the nonlinear relationship between the processes and the environmental factors.

  15. Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures.

    PubMed

    Wang, Yufeng; Zhang, Jianhui; Shi, Xiaoliang; Peng, Yu; Li, Ping; Lin, Dongzhi; Dong, Yanjun; Teng, Sheng

    2016-09-01

    Chloroplasts are essential for photosynthesis and play critical roles in plant development. In this study, we characterized the temperature-sensitive chlorophyll-deficient rice mutant tcd5, which develops albino leaves at low temperatures (20 °C) and normal green leaves at high temperatures (32 °C). The development of chloroplasts and etioplasts is impaired in tcd5 plants at 20 °C, and the temperature-sensitive period for the albino phenotype is the P4 stage of leaf development. The development of thylakoid membranes is arrested at the mid-P4 stage in tcd5 plants at 20 °C. We performed positional cloning of TCD5 and then complementation and knock-down experiments, and the results showed that the transcript LOC_Os05g34040.1 from the LOC_Os05g34040 gene corresponded to the tcd5 phenotype. TCD5 encodes a conserved plastid-targeted monooxygenase family protein which has not been previously reported associated with a temperature-sensitive albino phenotype in plants. TCD5 is abundantly expressed in young leaves and immature spikes, and low temperatures increased this expression. The transcription of some genes involved in plastid transcription/translation and photosynthesis varied in the tcd5 mutant. Although the phenotype and temperature dependence of the TCD5 orthologous mutant phenotype were different in rice and Arabidopsis, OsTCD5 could rescue the phenotype of the Arabidopsis mutant, suggesting that TCD5 function is conserved between monocots and dicots. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Demonstration of an efficient cooling approach for SBIRS-Low

    NASA Astrophysics Data System (ADS)

    Nieczkoski, S. J.; Myers, E. A.

    2002-05-01

    The Space Based Infrared System-Low (SBIRS-Low) segment is a near-term Air Force program for developing and deploying a constellation of low-earth orbiting observation satellites with gimbaled optics cooled to cryogenic temperatures. The optical system design and requirements present unique challenges that make conventional cooling approaches both complicated and risky. The Cryocooler Interface System (CIS) provides a remote, efficient, and interference-free means of cooling the SBIRS-Low optics. Technology Applications Inc. (TAI), through a two-phase Small Business Innovative Research (SBIR) program with Air Force Research Laboratory (AFRL), has taken the CIS from initial concept feasibility through the design, build, and test of a prototype system. This paper presents the development and demonstration testing of the prototype CIS. Prototype system testing has demonstrated the high efficiency of this cooling approach, making it an attractive option for SBIRS-Low and other sensitive optical and detector systems that require low-impact cryogenic cooling.

  17. Evaluation and study of advanced optical contamination, deposition, measurement, and removal techniques. [including computer programs and ultraviolet reflection analysis

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.; Allen, T. H.; Dillow, C. F.

    1975-01-01

    A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.

  18. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    PubMed Central

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  19. Pressure and Temperature Sensitive Paint Field System

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Obara, Clifford J.; Amer, Tahani R.; Faulcon, Nettie D.; Carmine, Michael T.; Burkett, Cecil G.; Pritchard, Daniel W.; Oglesby, Donald M.

    2004-01-01

    This report documents the Pressure and Temperature Sensitive Paint Field System that is used to provide global surface pressure and temperature measurements on models tested in Langley wind tunnels. The system was developed and is maintained by Global Surface Measurements Team personnel of the Data Acquisition and Information Management Branch in the Research Facilities Services Competency. Descriptions of the system hardware and software are presented and operational procedures are detailed.

  20. Curvature and Temperature Measurement Based on a Few-Mode PCF Formed M-Z-I and an Embedded FBG.

    PubMed

    Liu, Hui; Yang, Hangzhou; Qiao, Xueguang; Wang, Yongqiang; Liu, Xiaochong; Lee, Yen-Sian; Lim, Kok-Sing; Ahmad, Harith

    2017-07-27

    We have experimentally demonstrated an optical fiber Mach-Zehnder interferometer (MZI) structure formed by a few-mode photonic crystal fiber (PCF) for curvature measurement and inscribed a fiber Bragg grating (FBG) in the PCF for the purpose of simultaneously measuring temperature. The structure consists of a PCF sandwiched between two multi-mode fibers (MMFs). Bending experimental results show that the proposed sensor has a sensitivity of -1.03 nm/m -1 at a curvature range from 10 m -1 to 22.4 m -1 , and the curvature sensitivity of the embedded FBG was -0.003 nm/m -1 . Temperature response experimental results showed that the MZI's wavelength, λ a , has a sensitivity of 60.3 pm/°C, and the FBG's Bragg wavelength, λ b , has sensitivity of 9.2 pm/°C in the temperature range of 8 to 100 °C. As such, it can be used for simultaneous measurement of curvature and temperature over ranges of 10 m -1 to 22.4 m -1 and 8 °C to 100 °C, respectively. The results show that the embedded FBG can be a good indicator to compensate the varying ambient temperature during a curvature measurement.

  1. XMM-Newton X-ray Observatory Guest Observer program (AO-1) at CASA

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2003-01-01

    In this research program, we obtained and analyzed X-ray observations of the Wolf-Rayet (WR) star WR 110 (HD 165688) using the XMM-Newton space-based observatory. Radio observations were also obtained using the Very Large Array (VLA) radio telescope located in New Mexico and operated by the Natl. Radio Astronomy Observatory (NRAO). This star was targeted for observations primarily because it is believed to be a single WR star without a companion. Single WR stars are thought to emit X-rays from cool plasma in shocks distributed throughout their powerful stellar winds. However, there has been little observational work done to test this idea since single WR stars are relatively weak X-ray sources and have been difficult to detect with previous generation telescopes. The launch of XMM-Newton provides a new telescope that is much more sensitive than its predecessors, allowing single WR stars to be studied in detail for the first time. X-ray emission was clearly detected from WR 110. Analysis of its spectrum yields a surprising result. Its X-ray emitting plasma is distributed over a range of temperatures and is dominated by relatively cool plasma with a characteristic temperature T is approximately 6 million K. Such plasma can be explained by existing theoretical wind shock models. However, the spectrum also shows hotter plasma whose temperature is uncertain but is thought to be in excess of T approximately 30 million K. The origin of this hotter plasma is yet unknown, but possible mechanisms are identified

  2. Thermographic analysis of surface damage in teeth

    NASA Astrophysics Data System (ADS)

    Conde-Contreras, M.; Bante-Guerra, J.; Hernandez-Garcia, E.; Hernandez, A. M.; Trujillo, S.; Quintana, P.; Alvarado-Gil, J. J.

    2008-02-01

    The analysis of the surface of teeth is an important field of research and technological development due to the importance of dental pieces in health and aesthetics. The presence of cracks as well as the etching effects on teeth surface, due to different chemical agents, affects not only the appearance of teeth but its integrity. In this work, laser thermography analysis of dental pieces with damage in the form of cracks is presented. The technique consists in the illumination of the surface at the center of the sample, using a 300 mW pulsed solid state laser beam focused with a gradium lens, and monitoring the spatial and temporal distribution of the temperature field. The heating of the sample is monitored using a focal plane array infrared camera, sensitive in the spectral range 7.5-13 μm with a noise equivalent temperature difference of 0.12°C. The data acquisition was performed by the PC firewire port using a PCI-8254R card and a home-made program in Labview 8.0 was used for data acquisition. The images were processed in a home-made linux program to obtain the experimental table values. Our results are compared with position and frequency scans obtained by infrared photothermal radiometry. It is shown that the crack in the tooth appears as an increase in the photothermal signal. In contrast, the thermographic image shows a more detailed structure in which close to the crack the temperature increases, but at the crack the signal falls.

  3. The honey insertion cladding to improve the sensitivity of temperature polymer optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Arwani, M.; Kuswanto, H.

    2018-04-01

    The sensitivity of temperature polymer optical fiber (POF) sensor has been studied. Part of cladding (9 cm) was substituted with honey. Polymer cladding was stripped mechanically and the honey inserted into the tube. Plastic gel closed the two end sides of the tubes. The optical power output was detected by Optical Power Meter (OPM). Honey cladding and temperature changing effect to the internal reflection and optical fiber output intensity. Highest output intensity changing at 20°C was shown by optical fiber coated by longan honey as cladding. The range of 10-50° C, as the rise of surroundings temperature, the attenuation was getting smaller. Best sensitivity was fiber with sensing part coated by Longan honey. Best linearity was sensing fiber with sensing part coated by Pracimantoro honey.

  4. Effects of programming and healing temperatures on the healing efficiency of a confined healable polymer composite

    NASA Astrophysics Data System (ADS)

    Yougoubare, Y. Quentin; Pang, Su-Seng

    2014-02-01

    In previous work, a biomimetic close-then-heal (CTH) healing mechanism was proposed and validated to repeatedly heal wide-open cracks in load carrying engineering structures by using constrained expansion of compression programmed thermoset shape memory polymers (SMPs). In this study, the effects on healing efficiencies of variation of temperature during both thermomechanical programming and shape recovery (healing) under three-dimensional (3D) confinement are evaluated. The polymer considered is a polystyrene shape memory polymer with 6% by volume of thermoplastic particle additives (copolyester) dispersed in the matrix. In addition to the programming and healing temperatures, some of the parameters investigated include the flexural strength, crack width and elemental composition at the crack interface. It is observed that while increase of the programming temperature is slightly beneficial to strength recovery, most of the strength recovered and damage repair are strongly dependent on the healing temperature. The best healing efficiency (63%) is achieved by a combination of a programming temperature above the glass transition temperature of the polymer and a healing temperature above the bonding point of the copolyester.

  5. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax)

    PubMed Central

    Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    Abstract The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (UCAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species. PMID:27382468

  6. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax).

    PubMed

    Ozolina, Karlina; Shiels, Holly A; Ollivier, Hélène; Claireaux, Guy

    2016-01-01

    The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower U CAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.

  7. Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales.

    PubMed

    Gilman, Sarah E; Wethey, David S; Helmuth, Brian

    2006-06-20

    Global climate change is expected to have broad ecological consequences for species and communities. Attempts to forecast these consequences usually assume that changes in air or water temperature will translate into equivalent changes in a species' organismal body temperature. This simple change is unlikely because an organism's body temperature is determined by a complex series of interactions between the organism and its environment. Using a biophysical model, validated with 5 years of field observations, we examined the relationship between environmental temperature change and body temperature of the intertidal mussel Mytilus californianus over 1,600 km of its geographic distribution. We found that at all locations examined simulated changes in air or water temperature always produced less than equivalent changes in the daily maximum mussel body temperature. Moreover, the magnitude of body temperature change was highly variable, both within and among locations. A simulated 1 degrees C increase in air or water temperature raised the maximum monthly average of daily body temperature maxima by 0.07-0.92 degrees C, depending on the geographic location, vertical position, and temperature variable. We combined these sensitivities with predicted climate change for 2100 and calculated increases in monthly average maximum body temperature of 0.97-4.12 degrees C, depending on location and climate change scenario. Thus geographic variation in body temperature sensitivity can modulate species' experiences of climate change and must be considered when predicting the biological consequences of climate change.

  8. Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucivero, Vito Giovanni, E-mail: vito-giovanni.lucivero@icfo.es; Anielski, Pawel; Gawlik, Wojciech

    2014-11-15

    We report a photon shot-noise-limited (SNL) optical magnetometer based on amplitude modulated optical rotation using a room-temperature {sup 85}Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-temperature sensitivity of 70 fT/√(Hz) at 7.6 μT. Experimental scaling of noise with optical power, in agreement with theoretical predictions, confirms the SNL behaviour from 5 μT to 75 μT. The combination of best-in-class sensitivity and SNL operation makes the system a promising candidate for application of squeezed light to a state-of-the-art atomic sensor.

  9. High-sensitivity temperature sensor based on highly-birefringent microfiber

    NASA Astrophysics Data System (ADS)

    Sun, Li-Peng; Li, Jie; Jin, Long; Gao, Shuai; Tian, Zhuang; Ran, Yang; Guan, Bai-Ou

    2013-09-01

    We demonstrate an ultrasensitive temperature sensor by sealing a highly-birefringent microfiber into an alcoholinfiltrated copper capillary. With a Sagnac loop configuration, the interferometric spectrum is strongly dependent on the external refractive index (RI) with sensitivity of 36800nm/RIU around RI=1.356. As mainly derived from the ultrahigh RI sensitivity, the temperature response can reach as high as -14.72 nm/°C in the range of 30.9-36.9 °C. The measured response time is ~8s, as determined by the heat-conducting characteristic of the device and the diameter of the copper capillary. Our sensor is featured with low cost, easy fabrication and robustness.

  10. Low-Speed Pressure Sensitive Paint Studies

    NASA Technical Reports Server (NTRS)

    Owen, Brown; Mehta, Rabindra; Nixon, David (Technical Monitor)

    1998-01-01

    A series of low speed (M less than 0.2) experiments using University of Washington Fib-07 Pressure Sensitive Paint (PSP) have been conducted at NASA Ames on a NACA 0012 airfoil. Significant improvements in results have been shown: PSP calibration errors of the improved data (with pressure taps as a reference) now agree with theoretical error limits. Additional measurements on the 0012 airfoil using Temperature Sensitive Paint have been made. These TSP measurements now fully quantify the impact of temporal temperature changes on model surfaces on PSP measurements. Finally, simultaneous PSP - TSP measurements have been performed, allowing in-situ temperature correction of PSP data with good results.

  11. CALIBRATION, OPTIMIZATION, AND SENSITIVITY AND UNCERTAINTY ALGORITHMS APPLICATION PROGRAMMING INTERFACE (COSU-API)

    EPA Science Inventory

    The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and Parameter Estimation (UA/SA/PE API) tool development, here fore referred to as the Calibration, Optimization, and Sensitivity and Uncertainty Algorithms API (COSU-API), was initially d...

  12. Temperature Crosstalk Sensitivity of the Kummerow Rainfall Algorithm

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Petrenko, Boris

    1999-01-01

    Even though the signal source for passive microwave retrievals is thermal emission, retrievals of non-temperature geophysical parameters typically do not explicitly take into account the effects of temperature change on the retrievals. For global change research, changes in geophysical parameters (e.g. water vapor, rainfall, etc.) are referenced to the accompanying changes in temperature. If the retrieval of a certain parameter has a cross-talk response from temperature change alone, the retrievals might not be very useful for climate research. We investigated the sensitivity of the Kummerow rainfall retrieval algorithm to changes in air temperature. It was found that there was little net change in total rainfall with air temperature change. However, there were non-negligible changes within individual rain rate categories.

  13. Measuring temperature dependence of soil respiration: importance of incubation time, soil type, moisture content and model fits

    NASA Astrophysics Data System (ADS)

    Schipper, L. A.; Robinson, J.; O'Neill, T.; Ryburn, J.; Arcus, V. L.

    2015-12-01

    Developing robust models of the temperature response and sensitivity of soil respiration is critical for determining changes carbon cycling in response to climate change and at daily to annual time scales. Currently, approaches for measuring temperature dependence of soil respiration generally use long incubation times (days to weeks and months) at a limited number of incubation temperatures. Long incubation times likely allow thermal adaptation by the microbial population so that results are poorly representative of in situ soil responses. Additionally, too few incubation temperatures allows for the fit and justification of many different predictive equations, which can lead to inaccuracies when used for carbon budgeting purposes. We have developed a method to rapidly determine the response of soil respiration rate to wide range of temperatures. An aluminium block with 44 sample slots is heated at one end and cooled at the other to give a temperature gradient from 0 to 55°C at about one degree increments. Soil respiration is measured within 5 hours to minimise the possibility of thermal adaptation. We have used this method to demonstrate the similarity of temperature sensitivity of respiration for different soils from the same location across seasons. We are currently testing whether long-term (weeks to months) incubation alter temperature response and sensitivity that occurs in situ responses. This method is also well suited for determining the most appropriate models of temperature dependence and sensitivity of soil respiration (including macromolecular rate theory MMRT). With additional testing, this method is expected to be a more reliable method of measuring soil respiration rate for soil quality and modelling of soil carbon processes.

  14. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp.

    PubMed

    Pécrix, Yann; Rallo, Géraldine; Folzer, Hélène; Cigna, Mireille; Gudin, Serge; Le Bris, Manuel

    2011-06-01

    Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.

  15. Substrate-dependent temperature sensitivity of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Myachina, Olga; Blagodatskaya, Evgenia

    2015-04-01

    Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.

  16. Climate and health impacts of clean cookstove implementation programs in Africa

    NASA Astrophysics Data System (ADS)

    Lacey, F.; Marais, E. A.; Wiedinmyer, C.; Coffey, E.; Muvandimwe, D.; Hannigan, M.; Henze, D. K.

    2016-12-01

    In Africa, 77% of the population (646 million people in 2010) use solid fuels as the main cooking source. These cooking methods are often inefficient and result in significant burdens to both climate and human health, particularly for women and children. In order to fully understand the impacts of clean cookstove implementation programs, a better understanding of the background concentrations of aerosols, aerosol precursors, and ozone precursors are needed, along with improved information on the changes in emissions from transitions to newer technologies. Through the use of the GEOS-Chem adjoint model, we have calculated species-specific climate and health sensitivities using a range of African emissions estimates including EDGAR-HTAP and a more recent improved emissions inventory, DICE-Africa. These sensitivities account for the spatial heterogeneity of emissions with respect to their impacts and allow for efficient estimation of the impacts of various clean cookstove implementation emissions scenarios that are based on laboratory and field measurements of emissions factors, along with realistic adoption and usage rates from field surveys. The resulting estimates of premature deaths and global surface temperature change are then aggregated to the national scale in order to provide policy makers with improved information regarding the implementation of clean cookstoves throughout continental Africa.

  17. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  18. Higher climatological temperature sensitivity of soil carbon in cold than warm climates

    NASA Astrophysics Data System (ADS)

    Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.

    2017-11-01

    The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.

  19. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    NASA Astrophysics Data System (ADS)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-06-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  20. Prediction of parturition in bitches utilizing continuous vaginal temperature measurement.

    PubMed

    Geiser, B; Burfeind, O; Heuwieser, W; Arlt, S

    2014-02-01

    The objective of this study was to determine sensitivity and specificity of a body temperature decline in bitches to predict parturition. Temperature loggers were placed into the vaginal cavity of 16 pregnant bitches on day 56-61 after estimated ovulation or first mating. This measurement technique has been validated previously and enabled continuous sampling of body temperature. The temperature loggers were expelled from the vagina before delivery of the first pup. The computed values for specificity (77-92%) were higher than sensitivity (53-69%), indicating a more precise prognosis of parturition not occurring. In conclusion, our findings may assist interpreting vaginal temperature measurements in order to predict parturition in bitches. © 2013 Blackwell Verlag GmbH.

  1. Comparative study: Degree of sensitization and intergranular stress corrosion cracking susceptibility of type 304 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraleedharan, P.; Gnanamoorthy, J.B.; Rodriguez, P.

    1996-10-01

    An attempt was made to correlate the susceptibility of type 304 stainless steel sensitized by isothermal exposures from 500 C to 700 C to intergranular stress corrosion cracking (IGSCC) in boiling 20% sodium chloride solution to the degree of sensitization (DOS) measured using the electrochemical potentiokinetic reactivation (EPR) test. No systematic correlation was detected over the entire time-temperature regime. However, for a given sensitizing temperature, IGSCC susceptibility increased with increasing DOS up to a certain value, with no further increase thereafter. This behavior was attributed to the difference in sensitivities of the EPR and IGSCC tests to chromium depletion atmore » the grain boundaries (GB) during the sensitizing heat treatments.« less

  2. The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Yu, Shuai; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Tang, Liping; Yuan, Baohong

    2017-01-01

    Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing. PMID:28208666

  3. Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel

    NASA Astrophysics Data System (ADS)

    Sun, Chunran; Dong, Yue; Wang, Muguang; Jian, Shuisheng

    2018-03-01

    The detection of liquid level and temperature based on a fiber ring cavity laser sensing configuration is presented and demonstrated experimentally. The sensing head contains a fiber Bragg grating (FBG) and a single-mode-cladding-less-single-mode multimode interferometer, which also functions as wavelength-selective components of the fiber laser. When the liquid level or temperature is applied on the sensing head, the pass-band peaks of both multimode interference (MMI) filter and FBG filter vary and the two output wavelengths of the laser shift correspondingly. In the experiment, the corresponding sensitivities of the liquid level with four different refractive indices (RI) in the deep range from 0 mm to 40 mm are obtained and the sensitivity enhances with the RI of the liquid being measured. The maximum sensitivity of interferometer is 106.3 pm/mm with the RI of 1.391. For the temperature measurement, a sensitivity of 10.3 pm/°C and 13.8 pm/°C are achieved with the temperature ranging from 0 °C to 90 °C corresponding to the two lasing wavelengths selective by the MMI filter and FBG, respectively. In addition, the average RI sensitivity of 155.77 pm/mm/RIU is also obtained in the RI range of 1.333-1.391.

  4. The relationship between virtual body ownership and temperature sensitivity

    PubMed Central

    Llobera, Joan; Sanchez-Vives, M. V.; Slater, Mel

    2013-01-01

    In the rubber hand illusion, tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here, we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first-person perspective. For half the participants, the VB was consistent in posture and movement with their own body, and in the other half, there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared with the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full VB. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity—with proprioception and tactile sensations on the real body integrated with the visual presence of the VB. The results are interpreted in the framework of a ‘body matrix’ recently introduced into the literature. PMID:23720537

  5. Evaluation of Microbolometer-Based Thermography for Gossamer Space Structures

    NASA Technical Reports Server (NTRS)

    Miles, Jonathan J.; Blandino, Joseph R.; Jenkins, Christopher H.; Pappa, Richard S.; Banik, Jeremy; Brown, Hunter; McEvoy, Kiley

    2005-01-01

    In August 2003, NASA's In-Space Propulsion Program contracted with our team to develop a prototype on-board Optical Diagnostics System (ODS) for solar sail flight tests. The ODS is intended to monitor sail deployment as well as structural and thermal behavior, and to validate computational models for use in designing future solar sail missions. This paper focuses on the thermography aspects of the ODS. A thermal model was developed to predict local sail temperature variations as a function of sail tilt to the sun, billow depth, and spectral optical properties of front and back sail surfaces. Temperature variations as small as 0.5 C can induce significant thermal strains that compare in magnitude to mechanical strains. These thermally induced strains may result in changes in shape and dynamics. The model also gave insight into the range and sensitivity required for in-flight thermal measurements and supported the development of an ABAQUS-coupled thermo-structural model. The paper also discusses three kinds of tests conducted to 1) determine the optical properties of candidate materials; 2) evaluate uncooled microbolometer-type infrared imagers; and 3) operate a prototype imager with the ODS baseline configuration. (Uncooled bolometers are less sensitive than cooled ones, but may be necessary because of restrictive ODS mass and power limits.) The team measured the spectral properties of several coated polymer samples at various angles of incidence. Two commercially available uncooled microbolometer imagers were compared, and it was found that reliable temperature measurements are feasible for both coated and uncoated sides of typical sail membrane materials.

  6. Sensitivity of the equilibrium surface temperature of a GCM to systematic changes in atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Saltzman, Barry

    1990-01-01

    The equilibrium response of surface temperature to atmospheric CO2 concentration, for six values between 100 and 1000 ppm, is calculated from a series of GCM experiments. This response is nonlinear, showing greater sensitivity for lower values of CO2 than for the higher values. It is suggested that changes in CO2 concentration of a given magnitude (e.g., 100 ppm) played a larger role in the Pleistocene ice-age-type temperature variations than in causing global temperature changes due to anthropogenic increases.

  7. Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Willis, J. S.

    1971-01-01

    Unidirectional active and passive fluxes of K-42 and Na-24 were measured in red blood cells of ground squirrels (hibernators) and guinea pigs (nonhibernators). As the temperature was lowered, ?active' (ouabain-sensitive) K influx and Na efflux were more considerably diminished in guinea pig cells than in those of ground squirrels. The fraction of total K influx which is ouabain-sensitive in red blood cells of ground squirrels was virtually constant at all temperatures, whereas it decreased abruptly in guinea pig cells as temperature was lowered.

  8. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  9. Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Conley, A. J.; Westervelt, D. M.; Lamarque, J.-F.; Fiore, A. M.; Shindell, D.; Correa, G.; Faluvegi, G.; Horowitz, L. W.

    2018-03-01

    Three Earth System models are used to derive surface temperature responses to removal of U.S. anthropogenic SO2 emissions. Using multicentury perturbation runs with and without U.S. anthropogenic SO2 emissions, the local and remote surface temperature changes are estimated. In spite of a temperature drift in the control and large internal variability, 200 year simulations yield statistically significant regional surface temperature responses to the removal of U.S. SO2 emissions. Both local and remote surface temperature changes occur in all models, and the patterns of changes are similar between models for northern hemisphere land regions. We find a global average temperature sensitivity to U.S. SO2 emissions of 0.0055 K per Tg(SO2) per year with a range of (0.0036, 0.0078). We examine global and regional responses in SO4 burdens, aerosol optical depths (AODs), and effective radiative forcing (ERF). While changes in AOD and ERF are concentrated near the source region (United States), the temperature response is spread over the northern hemisphere with amplification of the temperature increase toward the Arctic. In all models, we find a significant response of dust concentrations, which affects the AOD but has no obvious effect on surface temperature. Temperature sensitivity to the ERF of U.S. SO2 emissions is found to differ from the models' sensitivity to radiative forcing of doubled CO2.

  10. Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation

    NASA Astrophysics Data System (ADS)

    Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong

    2018-04-01

    We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.

  11. CHO-cell mutant with a defect in cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, L.H.; Lindl, P.A.

    1976-01-01

    In a selection procedure designed to enrich for temperature-sensitive mutant cells blocked in mitosis a CHO-cell mutant was isolated which has a defect in cytokinesis as the basis of its temperature-sensitive phenotype. Cultures of the mutant had an abnormally high percentage (ie, 34 percent) of polyploid cells at the permissive temperature of 34/sup 0/C and showed further increased frequencies of polyploidy as well as many multinucleated cells at 38.5/sup 0/ and 39.5/sup 0/. When the mutant cells were synchronized in metaphase by Colcemid arrest and then placed into fresh medium at nonpermissive temperature, they did not divide although the completionmore » of mitosis appeared cytologically normal. Ultrastructural examination by electron microscopy of such synchronized cells at telophase revealed no specific defects in cellular components other than failure of development of a normal midbody. The sensitivity of the mutant to cytochalasin B and to Colcemid was the same as for wild-type cells. This mutation behaved as recessive in tetraploid cell hybrids constructed by fusing the mutant with a CHO strain which was wild-type with respect to temperature sensitivity.« less

  12. Design and fabrication of a differential scanning nanocalorimeter

    DOE PAGES

    Zuo, Lei; Chen, Xiaoming; Yu, Shifeng; ...

    2016-12-19

    This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 µK. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterizedmore » through the measurement of current–voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. As a result, the noise test together with the simulation show the device is promising for micro 10 µK temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding.« less

  13. TRPA1 Channels in Drosophila and Honey Bee Ectoparasitic Mites Share Heat Sensitivity and Temperature-Related Physiological Functions

    PubMed Central

    Peng, Guangda; Kashio, Makiko; Li, Tianbang; Dong, Xiaofeng; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2016-01-01

    The transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is conserved between many arthropods, and in some has been shown to function as a chemosensor for noxious compounds. Activation of arthropod TRPA1 channels by temperature fluctuations has been tested in only a few insect species, and all of them were shown to be activated by heat. The recent identification of chemosensitive TRPA1 channels from two honey bee ectoparasitic mite species (VdTRPA1 and TmTRPA1) have provided an opportunity to study the temperature-dependent activation and the temperature-associated physiological functions of TRPA1 channels in non-insect arthropods. We found that both mite TRPA1 channels are heat sensitive and capable of rescuing the temperature-related behavioral defects of a Drosophila melanogaster trpA1 mutant. These results suggest that heat-sensitivity of TRPA1 could be conserved between many arthropods despite its amino acid sequence diversity. Nevertheless, the ankyrin repeats (ARs) 6 and 7 are well-conserved between six heat-sensitive arthropod TRPA1 channels and have critical roles for the heat activation of VdTRPA1. PMID:27761115

  14. Thermal effects on nonlinear vibration of a carbon nanotube-based mass sensor using finite element analysis

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Keun; Kim, Chang-Wan; Yang, Hyun-Ik

    2017-01-01

    In the present study we carried out a dynamic analysis of a CNT-based mass sensor by using a finite element method (FEM)-based nonlinear analysis model of the CNT resonator to elucidate the combined effects of thermal effects and nonlinear oscillation behavior upon the overall mass detection sensitivity. Mass sensors using carbon nanotube (CNT) resonators provide very high sensing performance. Because CNT-based resonators can have high aspect ratios, they can easily exhibit nonlinear oscillation behavior due to large displacements. Also, CNT-based devices may experience high temperatures during their manufacture and operation. These geometrical nonlinearities and temperature changes affect the sensing performance of CNT-based mass sensors. However, it is very hard to find previous literature addressing the detection sensitivity of CNT-based mass sensors including considerations of both these nonlinear behaviors and thermal effects. We modeled the nonlinear equation of motion by using the von Karman nonlinear strain-displacement relation, taking into account the additional axial force associated with the thermal effect. The FEM was employed to solve the nonlinear equation of motion because it can effortlessly handle the more complex geometries and boundary conditions. A doubly clamped CNT resonator actuated by distributed electrostatic force was the configuration subjected to the numerical experiments. Thermal effects upon the fundamental resonance behavior and the shift of resonance frequency due to attached mass, i.e., the mass detection sensitivity, were examined in environments of both high and low (or room) temperature. The fundamental resonance frequency increased with decreasing temperature in the high temperature environment, and increased with increasing temperature in the low temperature environment. The magnitude of the shift in resonance frequency caused by an attached mass represents the sensing performance of a mass sensor, i.e., its mass detection sensitivity, and it can be seen that this shift is affected by the temperature change and the amount of electrostatic force. The thermal effects on the mass detection sensitivity are intensified in the linear oscillation regime and increase with increasing CNT length; this intensification can either improve or worsen the detection sensitivity.

  15. A Sensitivity Analysis of the Rigid Pavement Life-Cycle Cost Analysis Program

    DOT National Transportation Integrated Search

    2000-12-01

    Original Report Date: September 1999. This report describes the sensitivity analysis performed on the Rigid Pavement Life-Cycle Cost Analysis program, a computer program developed by the Center for Transportation Research for the Texas Department of ...

  16. Visualization of boundary-layer development on turbomachine blades with liquid crystals

    NASA Technical Reports Server (NTRS)

    Vanzante, Dale E.; Okiishi, Theodore H.

    1991-01-01

    This report documents a study of the use of liquid crystals to visualize boundary layer development on a turbomachine blade. A turbine blade model in a linear cascade of blades was used for the tests involved. Details of the boundary layer development on the suction surface of the turbine blade model were known from previous research. Temperature sensitive and shear sensitive liquid crystals were tried as visual agents. The temperature sensitive crystals were very effective in their ability to display the location of boundary layer flow separation and reattachment. Visualization of natural transition from laminar to turbulent boundary layer flow with the temperature sensitive crystals was possible but subtle. The visualization of separated flow reattachment with the shear sensitive crystals was easily accomplished when the crystals were allowed to make a transition from the focal-conic to a Grandjean texture. Visualization of flow reattachment based on the selective reflection properties of shear sensitive crystals was achieved only marginally because of the larger surface shear stress and shear stress gradient levels required for more dramatic color differences.

  17. Sensitivity of the reference evapotranspiration to key climatic variables during the growing season in the Ejina oasis northwest China.

    PubMed

    Hou, Lan-Gong; Zou, Song-Bing; Xiao, Hong-Lang; Yang, Yong-Gang

    2013-01-01

    The standardized FAO56 Penman-Monteith model, which has been the most reasonable method in both humid and arid climatic conditions, provides reference evapotranspiration (ETo) estimates for planning and efficient use of agricultural water resources. And sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration. In this study, a non-dimensional relative sensitivity coefficient was employed to predict responses of ETo to perturbations of four climatic variables in the Ejina oasis northwest China. A 20-year historical dataset of daily air temperature, wind speed, relative humidity and daily sunshine duration in the Ejina oasis was used in the analysis. Results have shown that daily sensitivity coefficients exhibited large fluctuations during the growing season, and shortwave radiation was the most sensitive variable in general for the Ejina oasis, followed by air temperature, wind speed and relative humidity. According to this study, the response of ETo can be preferably predicted under perturbation of air temperature, wind speed, relative humidity and shortwave radiation by their sensitivity coefficients.

  18. Unified Model Deformation and Flow Transition Measurements

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Liu, Tianshu; Garg, Sanjay; Bell, James H.; Morgan, Daniel G.

    1999-01-01

    The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.

  19. Temperature sensitivity on growth and/or replication of H1N1, H1N2 and H3N2 influenza A viruses isolated from pigs and birds in mammalian cells.

    PubMed

    Massin, Pascale; Kuntz-Simon, Gaëlle; Barbezange, Cyril; Deblanc, Céline; Oger, Aurélie; Marquet-Blouin, Estelle; Bougeard, Stéphanie; van der Werf, Sylvie; Jestin, Véronique

    2010-05-19

    Influenza A viruses have been isolated from a wide range of animal species, aquatic birds being the reservoir for their genetic diversity. Avian influenza viruses can be transmitted to humans, directly or indirectly through an intermediate host like pig. This study aimed to define in vitro conditions that could prove useful to evaluate the potential of influenza viruses to adapt to a different host. Growth of H1N1, H1N2 and H3N2 influenza viruses belonging to different lineages isolated from birds or pigs prior to 2005 was tested on MDCK or NPTr cell lines in the presence or absence of exogenous trypsin. Virus multiplication was compared at 33, 37 and 40 degrees C, the infection site temperatures in human, swine and avian hosts, respectively. Temperature sensitivity of PB2-, NP- and M-RNA replication was also tested by quantitative real-time PCR. Multiplication of avian viruses was cold-sensitive, whatever cell type. By contrast, temperature sensitivity of swine viruses was found to depend on the virus and the host cell: for an H1N1 swine isolate from 1982, multiplication was cold-sensitive on NPTr cells and undetectable at 40 degrees C. From genetic analyses, it appears that temperature sensitivity could involve other residues than PB2 residue 627 and could affect other steps of the replication cycle than replication. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    PubMed

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-02

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

  1. Incorporation of surface albedo-temperature feedback in a one-dimensional radiative-connective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W. C.; Stone, P. H.

    1979-01-01

    The feedback between ice snow albedo and temperature is included in a one dimensional radiative convective climate model. The effect of this feedback on sensitivity to changes in solar constant is studied for the current values of the solar constant and cloud characteristics. The ice snow albedo feedback amplifies global climate sensitivity by 33% and 50%, respectively, for assumptions of constant cloud altitude and constant cloud temperature.

  2. A new room temperature gas sensor based on pigment-sensitized TiO2 thin film for amines determination.

    PubMed

    Yanxiao, Li; Xiao-bo, Zou; Xiao-wei, Huang; Ji-yong, Shi; Jie-wen, Zhao; Holmes, Mel; Hao, Limin

    2015-05-15

    A new room temperature gas sensor was fabricated with pigment-sensitized TiO2 thin film as the sensing layer. Four natural pigments were extracted from spinach (Spinacia oleracea), red radish (Raphanus sativus L), winter jasmine (Jasminum nudiflorum), and black rice (Oryza sativa L. indica) by ethanol. Natural pigment-sensitized TiO2 sensor was prepared by immersing porous TiO2 films in an ethanol solution containing a natural pigment for 24h. The hybrid organic-inorganic formed films here were firstly exposed to atmospheres containing methylamine vapours with concentrations over the range 2-10 ppm at room temperature. The films sensitized by the pigments from black-rice showed an excellent gas-sensitivity to methylamine among the four natural pigments sensitized films due to the anthocyanins. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of methylamine (r=0.931). At last, the black rice pigment sensitized TiO2 thin film was used to determine the biogenic amines generated by pork during storage. The developed films had good sensitivity to analogous gases such as putrscine, and cadaverine that will increase during storage. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The binding of [3H]-propylbenzilylcholine mustard by longitudinal muscle strips from guinea-pig small intestine

    PubMed Central

    Burgen, A.S.V.; Hiley, C.R.; Young, J.M.

    1974-01-01

    1 The synthesis of tritium labelled propylbenzilylcholine mustard ([3H]-PrBCM; N-2′-chloroethyl-N-[2″, 3″-3H2] propyl-2-aminoethyl benzilate) is described. 2 The uptake by muscle strips was measured and shown to be considerably increased by previous immersion of the muscle in distilled water. 3 A considerable part of the uptake is inhibited selectively by atropine, but not by nicotinic antagonists. A number of muscarinic agonists also inhibit uptake and their apparent affinity constants have been determined. 4 The uptake by atropine-sensitive sites is temperature-insensitive, whereas the other sites are temperature-sensitive. Recovery is highly temperature-sensitive and there is good agreement between recovery of sensitivity to agonists and loss of radioactivity from the muscle. PMID:4150888

  4. A compact, high temperature nuclear magnetic resonance probe for use in a narrow-bore superconducting magnet

    NASA Astrophysics Data System (ADS)

    Adler, Stuart B.; Michaels, James N.; Reimer, Jeffrey A.

    1990-11-01

    The design of a nuclear magnetic resonance (NMR) probe is reported, that can be used in narrow-bore superconducting solenoids for the observation of nuclear induction at high temperatures. The probe is compact, highly sensitive, and stable in continuous operation at temperatures up to 1050 C. The essential feature of the probe is a water-cooled NMR coil that contains the sample-furnace; this design maximizes sensitivity and circuit stability by maintaining the probe electronics at ambient temperature. The design is demonstrated by showing high temperature O-17 NMR spectra and relaxation measurements in solid barium bismuth oxide and yttria-stabilized zirconia.

  5. Arginine vasopressin antagonizes the effects of prostaglandin E2 on the spontaneous activity of warm-sensitive and temperature-insensitive neurons in the medial preoptic area in rats.

    PubMed

    Xu, Jian-Hui; Hou, Xiao-Yu; Tang, Yu; Luo, Rong; Zhang, Jie; Liu, Chang; Yang, Yong-Lu

    2018-01-01

    Arginine vasopressin (AVP) plays an important role in thermoregulation and antipyresis. We have demonstrated that AVP could change the spontaneous activity of thermosensitive and temperature insensitive neurons in the preoptic area. However, whether AVP influences the effects of prostaglandin E 2 (PGE 2 ) on the spontaneous activity of neurons in the medial preoptic area (MPO) remains unclear. Our experiment showed that PGE 2 decreased the spontaneous activity of warm-sensitive neurons, and increased that of low-slope temperature-insensitive neurons in the MPO. AVP attenuated the inhibitory effect of PGE 2 on warm-sensitive neurons, and reversed the excitatory effect of PGE 2 on low-slope temperature-insensitive neurons, demonstrating that AVP antagonized the effects of PGE 2 on the spontaneous activity of these neurons. The effect of AVP was suppressed by an AVP V 1a receptor antagonist, suggesting that V 1a receptor mediated the action of AVP. We also demonstrated that AVP attenuated the PGE 2 -induced decrease in the prepotential's rate of rise in warm-sensitive neurons and the PGE 2 -induced increase in that in low-slope temperature-insensitive neurons through the V 1a receptor. Together, these data indicated that AVP antagonized the PGE 2 -induced change in the spontaneous activity of warm-sensitive and low-slope temperature-insensitive neurons in the MPO partly by reducing the PGE 2 -induced change in the prepotential of these neurons in a V 1a receptor-dependent manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Airway extravasation induced by increasing airway temperature in ovalbumin-sensitized rats

    PubMed Central

    Hsu, Chun-Chun; Tapia, Reyno J.; Lee, Lu-Yuan

    2015-01-01

    This study was carried out to determine whether hyperventilation of humidified warm air (HWA) induced airway extravasation in ovalbumin (Ova)-sensitized rats. Our results showed: 1) After isocapnic hyperventilation with HWA for 2 min, tracheal temperature (Ttr) was increased to 40.3°C, and the Evans blue contents in major airways and lung tissue were elevated to 651% and 707%, respectively, of that after hyperventilation with humidified room air in Ova-sensitized rats; this striking effect of HWA was absent in control rats. 2) The HWA-induced increase in Evans blue content in sensitized rats was completely prevented by a pretreatment with either L-732138, a selective antagonist of neurokinin type 1 (NK-1) receptor, or formoterol, a selective agonist of β2 adrenoceptor. This study demonstrated that an increase in airway temperature induced protein extravasation in the major airways and lung tissue of sensitized rats, and an activation of the NK-1 receptor by tachykinins released from bronchopulmonary C-fiber nerve endings was primarily responsible. PMID:25864799

  7. Diurnal Changes in the Chilling Sensitivity of Seedlings

    PubMed Central

    King, Ann I.; Reid, Michael S.; Patterson, Brian D.

    1982-01-01

    Seedlings of tomato (Lycopersicon esculentum, Mill.) varied diurnally in their sensitivity to chilling temperatures. If chilled near the end of the dark period when they were most sensitive, the time taken to kill half of the seedlings was approximately 3 days, whereas in samples taken 4 hours after the onset of dark, a period of 6 days of chilling was required. Sensitivity dropped rapidly after the onset of the light period. This rhythm was exogenously controlled by the diurnal changes in light, rather than in the temperature. The susceptibility of predawn seedlings could be reduced by exposure to light, by water stress, or by abscisic acid applied to the leaves. However, the subsequent changes in sensitivity to chilling did not correlate with stomatal aperture. Six other chilling-sensitive species showed similar diurnal changes in their chilling sensitivity. Images Fig. 2 PMID:16662448

  8. Sensitivity Study of Ice Crystal Optical Properties in the 874 GHz Submillimeter Band

    NASA Technical Reports Server (NTRS)

    Tang, Guanglin; Yang, Ping; Wu, Dong L.

    2015-01-01

    Testing of an 874 GHz submillimeter radiometer on meteorological satellites is being planned to improve ice water content retrievals. In this paper we study the optical properties of ice cloud particles in the 874 GHz band. The results show that the bulk scattering and absorption coefficients of an ensemble of ice cloud particles are sensitive to the particle shape and effective diameter, whereas the latter is also sensitive to temperature. The co-polar back scattering cross-section is not sensitive to particle shape, temperature, and the effective diameter in the range of 50200 m.

  9. Design and synthesis study of the thermo-sensitive poly (N-vinylpyrrolidone-b- N, N-diethylacrylamide).

    PubMed

    Zhang, Xiayun; Yang, Zhongduo; Xie, Dengmin; Liu, Donglei; Chen, Zhenbin; Li, Ke; Li, Zhizhong; Tichnell, Brandon; Liu, Zhen

    2018-01-01

    The reversible addition fragmentation chain transfer (RAFT) polymerization method was adopted here to prepare a series of thermo-sensitive copolymers, poly (N,N-diethyl- acrylamide-b-N-vinylpyrrolidone). Their structures, molecular weight distribution and temperature sensitivity performances were characterized by the nuclear magnetic resonance ( 1 HNMR), the gel permeation chromatography (GPC) and the fluorescence spectrophotometer, respectively. It has been identified that the synthesis reaction of the block copolymer was living polymerization. The thermo-sensitivity study suggested that N-vinylpyrrolidone (NVP), played a key role on the lower critical solution temperature (LCST) performance.

  10. Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles.

    PubMed

    Nguyen, Lich Quang; Phan, Pho Quoc; Duong, Huyen Ngoc; Nguyen, Chien Duc; Nguyen, Lam Huu

    2013-01-30

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH(3) gas sensing applications. The MWCNT-based sensor is sensitive to NH(3) gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH(3), compared with alcohol and LPG.

  11. Global convergence in the temperature sensitivity of respiration at ecosystem level.

    PubMed

    Mahecha, Miguel D; Reichstein, Markus; Carvalhais, Nuno; Lasslop, Gitta; Lange, Holger; Seneviratne, Sonia I; Vargas, Rodrigo; Ammann, Christof; Arain, M Altaf; Cescatti, Alessandro; Janssens, Ivan A; Migliavacca, Mirco; Montagnani, Leonardo; Richardson, Andrew D

    2010-08-13

    The respiratory release of carbon dioxide (CO(2)) from the land surface is a major flux in the global carbon cycle, antipodal to photosynthetic CO(2) uptake. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate-carbon cycle feedback. We approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q(10)) across 60 FLUXNET sites with the use of a methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that Q(10) is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 +/- 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly variable among sites. The results may partly explain a less pronounced climate-carbon cycle feedback than suggested by current carbon cycle climate models.

  12. On the sensitivity of annual streamflow to air temperature

    USGS Publications Warehouse

    Milly, Paul C.D.; Kam, Jonghun; Dunne, Krista A.

    2018-01-01

    Although interannual streamflow variability is primarily a result of precipitation variability, temperature also plays a role. The relative weakness of the temperature effect at the annual time scale hinders understanding, but may belie substantial importance on climatic time scales. Here we develop and evaluate a simple theory relating variations of streamflow and evapotranspiration (E) to those of precipitation (P) and temperature. The theory is based on extensions of the Budyko water‐balance hypothesis, the Priestley‐Taylor theory for potential evapotranspiration ( ), and a linear model of interannual basin storage. The theory implies that the temperature affects streamflow by modifying evapotranspiration through a Clausius‐Clapeyron‐like relation and through the sensitivity of net radiation to temperature. We apply and test (1) a previously introduced “strong” extension of the Budyko hypothesis, which requires that the function linking temporal variations of the evapotranspiration ratio (E/P) and the index of dryness ( /P) at an annual time scale is identical to that linking interbasin variations of the corresponding long‐term means, and (2) a “weak” extension, which requires only that the annual evapotranspiration ratio depends uniquely on the annual index of dryness, and that the form of that dependence need not be known a priori nor be identical across basins. In application of the weak extension, the readily observed sensitivity of streamflow to precipitation contains crucial information about the sensitivity to potential evapotranspiration and, thence, to temperature. Implementation of the strong extension is problematic, whereas the weak extension appears to capture essential controls of the temperature effect efficiently.

  13. A cost effective model for appropriate administration of red cell units and salvaging un-transfused red cell units by using temperature sensitive indicators for blood component transportation in a hospital setting.

    PubMed

    Tiwari, Aseem K; Sharma, Pooja; Pandey, Prashant K; Rawat, Ganesh S; Dixit, Surbhi; Raina, Vimarsh; Bhargava, Richa

    2015-01-01

    A rule called "30-min rule" defines that red cell unit cannot be used if it has been out of blood bank refrigerator for over 30 min. This rule is useful to guide initiation of transfusion, but is inadequate for deciding whether to reuse or discard units received-back at blood transfusion services (BTS). A simple cost-effective temperature-sensitive indicator was evaluated to decide upon reuse (cold chain was uninterrupted) or discard (where cold chain was interrupted) in a simulation exercise. Temperature-sensitive indicators TH-F™ that irreversibly changed color from white to red demonstrated that heat excursion has occurred and the cumulative temperature has exceeded 10°C for over 30 min, were used in outdated red cells for simulating units, which are not used and received-back. These units were also tagged with a standard temperature monitoring device, which was a re-usable credit card sized device, which would log the actual time and temperature. In few units percent hemolysis was also calculated. Statistically insignificant elevation in average temperature was noted in 102 simulated units at the time of return to BTS (Δ 0.04°C), despite the fact that these units were in the transport box for over 4 h. The average supernatant hemoglobin in these units was 0.24%, much below the prescribed threshold. Transportation of blood in controlled conditions with temperature-sensitive indicator is a cost-effective model to save blood, a precious human resource.

  14. Global versus local mechanisms of temperature sensing in ion channels.

    PubMed

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  15. Thermal acclimation and thyroxine treatment modify the electric organ discharge frequency in an electric fish, Apteronotus leptorhynchus.

    PubMed

    Dunlap, K D; Ragazzi, M A

    2015-11-01

    In ectotherms, the rate of many neural processes is determined externally, by the influence of the thermal environment on body temperature, and internally, by hormones secreted from the thyroid gland. Through thermal acclimation, animals can buffer the influence of the thermal environment by adjusting their physiology to stabilize certain processes in the face of environmental temperature change. The electric organ discharge (EOD) used by weak electric fish for electrocommunication and electrolocation is highly temperature sensitive. In some temperate species that naturally experience large seasonal fluctuations in environmental temperature, the thermal sensitivity (Q10) of the EOD shifts after long-term temperature change. We examined thermal acclimation of EOD frequency in a tropical electric fish, Apteronotus leptorhynchus that naturally experiences much less temperature change. We transferred fish between thermal environments (25.3 and 27.8 °C) and measured EOD frequency and its thermal sensitivity (Q10) over 11 d. After 6d, fish exhibited thermal acclimation to both warming and cooling, adjusting the thermal dependence of EOD frequency to partially compensate for the small change (2.5 °C) in water temperature. In addition, we evaluated the thyroid influence on EOD frequency by treating fish with thyroxine or the anti-thyroid compound propylthiouricil (PTU) to stimulate or inhibit thyroid activity, respectively. Thyroxine treatment significantly increased EOD frequency, but PTU had no effect. Neither thyroxine nor PTU treatment influenced the thermal sensitivity (Q10) of EOD frequency during acute temperature change. Thus, the EOD of Apteronotus shows significant thermal acclimation and responds to elevated thyroxine. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Pressure-Sensitive Paint Measurements on Surfaces with Non-Uniform Temperature

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    1999-01-01

    Pressure-sensitive paint (PSP) has become a useful tool to augment conventional pressure taps in measuring the surface pressure distribution of aerodynamic components in wind tunnel testing. While the PSP offers the advantage of a non-intrusive global mapping of the surface pressure, one prominent drawback to the accuracy of this technique is the inherent temperature sensitivity of the coating's luminescent intensity. A typical aerodynamic surface PSP test has relied on the coated surface to be both spatially and temporally isothermal, along with conventional instrumentation for an in situ calibration to generate the highest accuracy pressure mappings. In some tests however, spatial and temporal thermal gradients are generated by the nature of the test as in a blowing jet impinging on a surface. In these cases, the temperature variations on the painted surface must be accounted for in order to yield high accuracy and reliable data. A new temperature correction technique was developed at NASA Lewis to collapse a "family" of PSP calibration curves to a single intensity ratio versus pressure curve. This correction allows a streamlined procedure to be followed whether or not temperature information is used in the data reduction of the PSP. This paper explores the use of conventional instrumentation such as thermocouples and pressure taps along with temperature-sensitive paint (TSP) to correct for the thermal gradients that exist in aeropropulsion PSP tests. Temperature corrected PSP measurements for both a supersonic mixer ejector and jet cavity interaction tests are presented.

  17. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    PubMed

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  18. Global sensitivity analysis of water age and temperature for informing salmonid disease management

    NASA Astrophysics Data System (ADS)

    Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha

    2018-06-01

    Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.

  19. Interannual variability of the atmospheric CO2 growth rate: relative contribution from precipitation and temperature

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zeng, N.; Wang, M. R.

    2015-12-01

    The interannual variability (IAV) in atmospheric CO2 growth rate (CGR) is closely connected with the El Niño-Southern Oscillation. However, sensitivities of CGR to temperature and precipitation remain largely uncertain. This paper analyzed the relationship between Mauna Loa CGR and tropical land climatic elements. We find that Mauna Loa CGR lags precipitation by 4 months with a correlation coefficient of -0.63, leads temperature by 1 month (0.77), and correlates with soil moisture (-0.65) with zero lag. Additionally, precipitation and temperature are highly correlated (-0.66), with precipitation leading by 4-5 months. Regression analysis shows that sensitivities of Mauna Loa CGR to temperature and precipitation are 2.92 ± 0.20 Pg C yr-1 K-1 and -0.46 ± 0.07 Pg C yr-1 100 mm-1, respectively. Unlike some recent suggestions, these empirical relationships favor neither temperature nor precipitation as the dominant factor of CGR IAV. We further analyzed seven terrestrial carbon cycle models, from the TRENDY project, to study the processes underlying CGR IAV. All models capture well the IAV of tropical land-atmosphere carbon flux (CFTA). Sensitivities of the ensemble mean CFTA to temperature and precipitation are 3.18 ± 0.11 Pg C yr-1 K-1 and -0.67 ± 0.04 Pg C yr-1 100 mm-1, close to Mauna Loa CGR. Importantly, the models consistently show the variability in net primary productivity (NPP) dominates CGR, rather than soil respiration. Because NPP is largely driven by precipitation, this suggests a key role of precipitation in CGR IAV despite the higher CGR correlation with temperature. Understanding the relative contribution of CO2 sensitivity to precipitation and temperature has important implications for future carbon-climate feedback using such "emergent constraint".

  20. Biomass-C specific temperature responses of microbial C transformations reveal consistency regardless of microbial community structure across diverse timescales of inquiry

    NASA Astrophysics Data System (ADS)

    Min, K.; Buckeridge, K. M.; Ziegler, S. E.; Edwards, K. A.; Bagchi, S.; Billings, S. A.

    2016-12-01

    The responses of heterotrophic microbial process rates to temperature in soils are often investigated in the short-term (hours to months), making it difficult to predict longer-term temperature responses. Here, we integrate the temperature sensitivity obtained from the Arrhenius model with the concepts of microbial resistance, resilience, and susceptibility to assess temporal dynamics of microbial temperature responses. We collected soils along a boreal forest climate gradient (long-term effect), and quantified exo-enzyme activities and CO2 respiration at 5, 15, and 25°C for 84 days (relatively short-term effect). Microbial process rates were examined at two levels (per g microbial biomass-C; and per g dry soil) along with community structure, to characterize driving mechanisms for temporal patterns (e.g., size of biomass, physiological plasticity, community composition). Although temperature sensitivity of exo-enzyme activities on a per g dry soil basis showed both resistance and resilience depending on the types of exo-enzyme, biomass -C-specific responses always exhibited resistance regardless of distinct community composition. Temperature sensitivity of CO2 respiration was constant across time and different communities at both units. This study advances our knowledge in two ways. First, resistant temperature sensitivity of exo-enzymes and respiration at biomass-C specific level across distinct communities and diverse timescales indicates a common relationship between microbial physiology and temperature at a fundamental level, a useful feature allowing microbial process models to be reasonably simplified. Second, different temporal responses of exo-enzymes depending on the unit selected provide a cautionary tale for those projecting future microbial behaviors, because interpretation of ecosystem process rates may vary with the unit of observation.

  1. Physiological and Thermal Responses of MS Patients to Head and Vest Cooling: A Case Study

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Webbon, Bruce W.; Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal cooling systems are used to alleviate symptoms of multiple sclerosis (MS) and to prevent increased core temperature during daily activities. The objective of this study was to determine the operating characteristics and the physiologic changes produced by short term application of the stationary thermal control system used by most clinical institutions. The Life Enhancement Tech (LET) Mark VII portable cooling system and a lightweight Head-vest active cooling garment were used to cool the head and chest regions of 4 male and 3 female MS patients (30 to 66 yrs. old) in this study. The subjects, seated in an upright position at normal room temperature (approx. 24 C), were tested for 60 min. with the liquid cooling garment (LCG) operated at 50 F. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures, heart rate, respiration, and an activity index were recorded continuously on a U.F.I., Inc., Biolog ambulatory monitor. All temperature responses showed extreme variation among subjects. The cold-sensitive subject's rectal temperature increased initially in response to cooling; the heat sensitive subject's rectal temperature decreased. After 40 min. of cooling and during recovery, all subjects'rectal temperatures decreased. Oral temperatures began to decrease after 30 min. of cooling. After 60 min. of cooling, temperature drops ranged from approx. 0.3 - 0.8 C. Oral temperatures continued to decrease during recovery (approx. 0.2 C). The car temperature of the heat sensitive subject was increased after cooling, other subjects exhibited an ear temperature decrease (0.0 - 0.5 C). These data indicate that head and vest cooling may be used to reduce the oral temperatures of MS patients by the approximate amount needed for symptomatic relief as shown by other researchers. The combination of a small subject population and a large subject variance does not permit us to draw statistical conclusions about the temperature response of MS patients. An individual's heat or cold sensitivity may influence their thermal response to cooling. This factor should be considered in the prescribed use of liquid cooling garments in the therapeutic management of MS.

  2. Steroid Signaling and Temperature-Dependent Sex Determination – Reviewing the Evidence for Early Action of Estrogen during Ovarian Determination in the Red-Eared Slider Turtle (Trachemys scripta elegans)

    PubMed Central

    Ramsey, Mary; Crews, David

    2009-01-01

    The developmental processes underlying gonadal differentiation are conserved across vertebrates, but the triggers initiating these trajectories are extremely variable. The red-eared slider turtle (Trachemys scripta elegans) exhibits temperature-dependent sex determination (TSD), a system where incubation temperature during a temperature-sensitive period of development determines offspring sex. However, gonadal sex is sensitive to both temperature and hormones during this period – particularly estrogen. We present a model for temperature-based differences in aromatase expression as a critical step in ovarian determination. Localized estrogen production facilitates ovarian development while inhibiting male-specific gene expression. At male-producing temperatures aromatase is not upregulated, thereby allowing testis development. PMID:18992835

  3. Simultaneous determination of main reaction components in the reaction mixture during biodiesel production.

    PubMed

    Sánek, Lubomír; Pecha, Jiří; Kolomazník, Karel

    2013-03-01

    The proposed analytical method allows for simultaneous determination by GC using a programed temperature vaporization injector and a flame ionization detector of the main reaction components (i.e. glycerol, methyl esters, mono-, di-, and triacylglycerols) in the reaction mixture during biodiesel production. The suggested method is convenient for the rapid and simple evaluation of the kinetic data gained during the transesterification reaction and, also partially serves as an indicator of the quality of biodiesel and mainly, as the indicator of the efficiency of the whole production process (i.e. the conversion of triacylglycerols to biodiesel and its time progress). The optimization of chromatographic conditions (e.g. the oven temperature program, injector setting, amount of derivatization reagent, and the derivatization reaction time) was performed. The method has been validated with crude samples of biodiesel made from waste-cooking oils in terms of linearity, precision, accuracy, sensitivity, and limits of detection and quantification. The results confirmed a satisfactory degree of accuracy and repeatability (the mean RSDs were usually below 2%) necessary for the reliable quantitative determination of all components in the considerable concentration range (e.g. 10-1100 μg/mL in case of methyl esters). Compound recoveries ranging from 96 to 104% were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Kex1 protease is involved in yeast cell death induced by defective N-glycosylation, acetic acid, and chronological aging.

    PubMed

    Hauptmann, Peter; Lehle, Ludwig

    2008-07-04

    N-glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to humans. The key step of this pathway is the transfer of the lipid-linked core oligosaccharide to the nascent polypeptide chain, catalyzed by the oligosaccharyltransferase complex. Temperature-sensitive oligosaccharyltransferase mutants of Saccharomyces cerevisiae at the restrictive temperature, such as wbp1-1, as well as wild-type cells in the presence of the N-glycosylation inhibitor tunicamycin display typical apoptotic phenotypes like nuclear condensation, DNA fragmentation, phosphatidylserine translocation, caspase-like activity, and reactive oxygen species accumulation. Since deletion of the yeast metacaspase YCA1 did not abrogate this death pathway, we postulated a different proteolytic process to be responsible. Here, we show that Kex1 protease is involved in the programmed cell death caused by defective N-glycosylation. Its disruption decreases caspase-like activity, production of reactive oxygen species, and fragmentation of mitochondria and, conversely, improves growth and survival of cells. Moreover, we demonstrate that Kex1 contributes also to the active cell death program induced by acetic acid stress or during chronological aging, suggesting that Kex1 plays a more general role in cellular suicide of yeast.

  5. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  6. DEFINING THE 'BLIND SPOT' OF HINODE EIS AND XRT TEMPERATURE MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winebarger, Amy R.; Cirtain, Jonathan; Mulu-Moore, Fana

    2012-02-20

    Observing high-temperature, low emission measure plasma is key to unlocking the coronal heating problem. With current instrumentation, a combination of EUV spectral data from Hinode Extreme-ultraviolet Imaging Spectrometer (EIS; sensitive to temperatures up to 4 MK) and broadband filter data from Hinode X-ray Telescope (XRT; sensitive to higher temperatures) is typically used to diagnose the temperature structure of the observed plasma. In this Letter, we demonstrate that a 'blind spot' exists in temperature-emission measure space for combined Hinode EIS and XRT observations. For a typical active region core with significant emission at 3-4 MK, Hinode EIS and XRT are insensitivemore » to plasma with temperatures greater than {approx}6 MK and emission measures less than {approx}10{sup 27} cm{sup -5}. We then demonstrate that the temperature and emission measure limits of this blind spot depend upon the temperature distribution of the plasma along the line of sight by considering a hypothetical emission measure distribution sharply peaked at 1 MK. For this emission measure distribution, we find that EIS and XRT are insensitive to plasma with emission measures less than {approx}10{sup 26} cm{sup -5}. We suggest that a spatially and spectrally resolved 6-24 Angstrom-Sign spectrum would improve the sensitivity to these high-temperature, low emission measure plasma.« less

  7. Investigation of luminescence from LuAG: Mn4+ for physiological temperature sensing

    NASA Astrophysics Data System (ADS)

    Li, Fei; Cai, Jiajia; Chi, FengFeng; Chen, Yonghu; Duan, Changkui; Yin, Min

    2017-04-01

    Optical thermometry based on luminescent materials has garnered much attention due to its many advantages. But higher sensitivity is still expected in physiological temperature range which is of special significance in medicine and biology. For this purpose, quadrivalent manganese doped lutetium aluminum garnet, Lu3Al5O12: Mn4+, or simply LuAG: Mn4+, has been successfully synthesized by sol-gel method and its temperature dependent luminescence has been investigated in the present work. Compared to the common red emission phosphors Y3Al5O12: Mn4+ (YAG:Mn4+) with same structure, LuAG:Mn4+ has a stronger crystal field strength and a higher thermal-quenching activation energy (ΔE) of 5732 cm-1. Rapid thermal quenching of the Mn4+ luminescence occurred above room temperature around 90 °C for our LuAG:Mn4+ sample. Temperature dependent decay curves of Mn4+ emission from LuAG:Mn4+ revealed that an extraordinary high sensitivity can be achieved from luminescence lifetime measurements covering physiological temperature range with a sensitivity of 3.75% K-1 at 38 °C.

  8. Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry.

    PubMed

    Lu, Xin; Soto, Marcelo A; Thévenaz, Luc

    2017-07-10

    A method based on coherent Rayleigh scattering distinctly evaluating temperature and strain is proposed and experimentally demonstrated for distributed optical fiber sensing. Combining conventional phase-sensitive optical time-domain domain reflectometry (ϕOTDR) and ϕOTDR-based birefringence measurements, independent distributed temperature and strain profiles are obtained along a polarization-maintaining fiber. A theoretical analysis, supported by experimental data, indicates that the proposed system for temperature-strain discrimination is intrinsically better conditioned than an equivalent existing approach that combines classical Brillouin sensing with Brillouin dynamic gratings. This is due to the higher sensitivity of coherent Rayleigh scatting compared to Brillouin scattering, thus offering better performance and lower temperature-strain uncertainties in the discrimination. Compared to the Brillouin-based approach, the ϕOTDR-based system here proposed requires access to only one fiber-end, and a much simpler experimental layout. Experimental results validate the full discrimination of temperature and strain along a 100 m-long elliptical-core polarization-maintaining fiber with measurement uncertainties of ~40 mK and ~0.5 με, respectively. These values agree very well with the theoretically expected measurand resolutions.

  9. Mechanistic basis of temperature-dependent dwell fatigue in titanium alloys

    NASA Astrophysics Data System (ADS)

    Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P. E.

    2017-10-01

    The temperature-dependent dwell sensitivity of Ti-6242 and Ti-6246 alloys has been assessed over a temperature range from - 50∘ C to 390 °C using discrete dislocation plasticity which incorporates both thermal activation of dislocation escape from obstacles and slip transfer across grain boundaries. The worst-case load shedding in Ti-6242 alloy is found to be at or close to 120 °C under dwell fatigue loading, which diminishes and vanishes at temperatures lower than - 50∘ C or higher than 230 °C. Load shedding behaviour is predicted to occur in alloy Ti-6246 also but over a range of higher temperatures which are outside those relevant to in-service conditions. The key controlling dislocation mechanism with respect to load shedding in titanium alloys, and its temperature sensitivity, is shown to be the time constant associated with the thermal activation of dislocation escape from obstacles, with respect to the stress dwell time. The mechanistic basis of load shedding and dwell sensitivity in dwell fatigue loading is presented and discussed in the context of experimental observations.

  10. Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches

    NASA Astrophysics Data System (ADS)

    Zubel, Michal G.; Sugden, Kate; Webb, David J.; Sáez-Rodríguez, David; Nielsen, Kristian; Bang, Ole

    2016-04-01

    This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing patch for strain or temperature sensing. The cyclic strain performance and temperature characteristics of both devices are examined and discussed. The strain sensitivities of the sensing patches were 0.40 and 0.95 pm/μɛ for SOFBG embedded in ABS, 0.38 pm/μɛ for POFBG in PLA, and 0.15 pm/μɛ for POFBG in ABS. The strain response was linear above a threshold and repeatable. The temperature sensitivity of the SOFBG sensing patch was found to be up to 169 pm/°C, which was up to 17 times higher than for an unembedded silica grating. Unstable temperature response POFBG embedded in PLA was reported, with temperature sensitivity values varying between 30 and 40 pm/°C.

  11. Alteration in the contents of unsaturated fatty acids in dnaA mutants of Escherichia coli.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-04-01

    DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, has a high affinity for acidic phospholipids containing unsaturated fatty acids. We have examined here the fatty acid composition of phospholipids in dnaA mutants. A temperature-sensitive dnaA46 mutant showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) at 42 degrees C (non-permissive temperature) and at 37 degrees C (semi-permissive temperature), but not at 28 degrees C (permissive temperature), compared with the wild-type strain. Plasmid complementation analysis revealed that the dnaA46 mutation is responsible for the phenotype. Other temperature-sensitive dnaA mutants showed similar results. On the other hand, a cold-sensitive dnaAcos mutant, in which over-initiation of DNA replication occurs at low temperature (28 degrees C), showed a higher level of unsaturation of fatty acids at 28 degrees C. Based on these observations, we discuss the role of phospholipids in the regulation of the activity of DnaA protein.

  12. 4H SiC betavoltaic powered temperature transducer

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, M. V. S.; Duggirala, Rajesh; Spencer, Michael G.; Lal, Amit

    2007-07-01

    The change in open-circuit voltage of a 4H SiC p-n diode betavoltaic cell in response to temperature was used to sense temperature. A linear sensitivity of 2.7mV /K was obtained from 24to86°C. This was achieved with only 2.5μCi of active nickel-63 as the β source, giving a short circuit current of 21pA, a low-enough activity for civilian applications. The measured sensitivity of 2.7mV/K was lower than the 5.5mV/K predicted from the theory. The 28GΩ shunt resistance of the betavoltaic cell was used to explain the lower sensitivity.

  13. Tolerance of an Antarctic Bacterium to Multiple Environmental Stressors.

    PubMed

    Sengupta, Dipanwita; Sangu, Kavya; Shivaji, Sisinthy; Chattopadhyay, Madhab K

    2015-10-01

    A population of cold-tolerant Antarctic bacteria was screened for their ability to tolerate other environmental stress factors. Besides low temperature, they were predominantly found to be tolerant to alkali. Attempt was also made to postulate a genetic basis of their multistress-tolerance. Transposon mutagenesis of an isolate Pseudomonas syringae Lz4W was performed, and mutants with delayed growth at low temperature were further screened for sensitivity to some other stress factors. A number of multistress-sensitive mutants were isolated. The mutated gene in one of the mutants sensitive to low temperature, acid and alkali was found to encode citrate synthase. Possible role of citrate synthase in conferring multistress-tolerance was postulated.

  14. A tension insensitive PbS fiber temperature sensor based on Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Fu, Xing-hu; Zhang, Jiang-peng; Yang, Kai-li; Dong, Yan-hua; Wen, Jian-xiang; Fu, Guang-wei; Bi, Wei-hong

    2017-03-01

    In this paper, a tension insensitive PbS fiber temperature sensor based on Sagnac interferometer is proposed and demonstrated. The sensing mechanism of tension and temperature is analyzed. The relationships between the interference spectrum, temperature and tension are analyzed, respectively. The experimental temperature range is 36—70 °C. The experimental results show that the interference spectrum is red shifted, and its sensitivity is 53.89 pm/°C. In tension experiment, the tension range is 0—1 400 μɛ. The experimental results show that there is no wavelength shift in the interference spectrum. The sensor is immune to tension cross-sensitivity compared with other sensors. It can be used for temperature testing in aerospace, chemistry and pharmacy.

  15. Deterministic Local Sensitivity Analysis of Augmented Systems - II: Applications to the QUENCH-04 Experiment Using the RELAP5/MOD3.2 Code System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu-Bujor, Mihaela; Jin Xuezhou; Cacuci, Dan G.

    2005-09-15

    The adjoint sensitivity analysis procedure for augmented systems for application to the RELAP5/MOD3.2 code system is illustrated. Specifically, the adjoint sensitivity model corresponding to the heat structure models in RELAP5/MOD3.2 is derived and subsequently augmented to the two-fluid adjoint sensitivity model (ASM-REL/TF). The end product, called ASM-REL/TFH, comprises the complete adjoint sensitivity model for the coupled fluid dynamics/heat structure packages of the large-scale simulation code RELAP5/MOD3.2. The ASM-REL/TFH model is validated by computing sensitivities to the initial conditions for various time-dependent temperatures in the test bundle of the Quench-04 reactor safety experiment. This experiment simulates the reflooding with water ofmore » uncovered, degraded fuel rods, clad with material (Zircaloy-4) that has the same composition and size as that used in typical pressurized water reactors. The most important response for the Quench-04 experiment is the time evolution of the cladding temperature of heated fuel rods. The ASM-REL/TFH model is subsequently used to perform an illustrative sensitivity analysis of this and other time-dependent temperatures within the bundle. The results computed by using the augmented adjoint sensitivity system, ASM-REL/TFH, highlight the reliability, efficiency, and usefulness of the adjoint sensitivity analysis procedure for computing time-dependent sensitivities.« less

  16. Environmental and Hydroclimatic Sensitivities of Greenhouse Gas (GHG) Fluxes from Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2016-12-01

    We computed the reference environmental and hydroclimatic sensitivities of the greenhouse gas (GHG) fluxes (CO2 and CH4) from coastal salt marshes. Non-linear partial least squares regression models of CO2 (net uptake) and CH4 (net emissions) fluxes were developed with a bootstrap resampling approach using the photosynthetically active radiation (PAR), air and soil temperatures, water height, soil moisture, porewater salinity, and pH as predictors. Analytical sensitivity coefficients of different predictors were then analytically derived from the estimated models. The numerical sensitivities of the dominant drivers were determined by perturbing the variables individually and simultaneously to compute their individual and combined (respectively) effects on the GHG fluxes. Four tidal wetlands of Waquoit Bay, MA — incorporating a gradient in land-use, salinity and hydrology — were considered as the case study sites. The wetlands were dominated by native Spartina Alterniflora, and characterized by high salinity and frequent flooding. Results indicated a high sensitivity of CO2 fluxes to temperature and PAR, a moderate sensitivity to soil salinity and water height, and a weak sensitivity to pH and soil moisture. In contrast, the CH4 fluxes were more sensitive to temperature and salinity, compared to that of PAR, pH, and hydrologic variables. The estimated sensitivities and mechanistic insights can aid the management of coastal carbon under a changing climate and environment. The sensitivity coefficients also indicated the most dominant drivers of GHG fluxes for the development of a parsimonious predictive model.

  17. Temperature-sensitive elastin-mimetic dendrimers: Effect of peptide length and dendrimer generation to temperature sensitivity.

    PubMed

    Kojima, Chie; Irie, Kotaro; Tada, Tomoko; Tanaka, Naoki

    2014-06-01

    Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature-sensitive biomacromolecule. Previously, Val-Pro-Gly-Val-Gly peptides have been conjugated to a dendrimer for designing an elastin-mimetic dendrimer. In this study, various elastin-mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin-mimetic dendrimers formed β-turn structure by heating, which was similar to the elastin-like peptides. The elastin-mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin-mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin-mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin-mimetic dendrimer. Copyright © 2013 Wiley Periodicals, Inc.

  18. Ultrahigh-sensitive sensing platform based on p-type dumbbell-like Co3O4 network

    NASA Astrophysics Data System (ADS)

    Zhou, Tingting; Zhang, Tong; Zhang, Rui; Lou, Zheng; Deng, Jianan; Wang, Lili

    2017-12-01

    Development of high performance room temperature sensors remains a grand challenge for high demand of practical application. Metal oxide semiconductors (MOSs) have many advantages over others due to their easy functionalization, high surface area, and low cost. However, they typically need a high work temperature during sensing process. Here, p-type sensing layer is reported, consisting of pore-rich dumbbell-like Co3O4 particles (DP-Co3O4) with intrinsic high catalytic activity. The gas sensor (GS) based DP-Co3O4 catalyst exhibits ultrahigh NH3 sensing activity along with excellent stability over other structure based NH3 GSs in room temperature work environment. In addition, the unique structure of DP-Co3O4 with pore-rich and high catalytic activity endows fast gas diffusion rate and high sensitivity at room temperature. Taken together, the findings in this work highlight the merit of integrating highly active materials in p-type materials, offering a framework to develop high-sensitivity room temperature sensing platforms.

  19. A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Maiorov, Mikhail; Jeffries, Jay B.; Garbuzov, Dmitri Z.; Connolly, John C.; Hanson, Ronald K.

    2000-11-01

    The potential for on-road remote sensing of vehicle exhausts using 2.3 µm diode-laser-absorption-based CO sensors is examined. Using a wavelength-modulation- spectroscopy (WMS) technique, 20 ppm sensitivity with a detection bandwidth of ≃1.5 kHz is demonstrated in laboratory experiments, which implies the ability to monitor CO emissions from even the cleanest combustion-powered vehicles. The influence of the temperature and composition of the exhaust gas on the inferred CO concentration through both linestrength and linewidth is also investigated and we propose a novel approach to reduce these effects to ±3% in the typical exhaust temperature range of 300-700 K. Thus, sensitive and remote measurements of vehicular CO effluent are possible without knowing the exact temperature or composition of the exhaust. This influence of temperature is further exploited to suggest a two-line CO2-absorption thermometry method with a large temperature sensitivity to identify cold-start vehicles.

  20. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    NASA Astrophysics Data System (ADS)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  1. Performance of Control System Using Microcontroller for Sea Water Circulation

    NASA Astrophysics Data System (ADS)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  2. Climate, Tree Growth, Forest Drought Stress, and Tree Mortality in Forests of Western North America: Long-Term Patterns and Recent Trends

    NASA Astrophysics Data System (ADS)

    Allen, C. D.; Williams, P.

    2012-12-01

    Ongoing climate changes are increasingly affecting the world's forests, particularly including high latitude and high elevation coniferous forests. Although forest growth has improved in some regions due to greater growing season length and warmth (perhaps along with increased atmospheric CO2 or N), large growth declines or increased mortality from droughts or hotter temperatures also are being observed. We present and interpret information on regional variation in climate-tree growth relationships and trends, and on patterns and trends of climate-related forest disturbances, from western North America. From 235 tree-ring chronologies in the Southwest US we show that tree-ring growth records from warmer southwestern sites are more sensitive to temperature than tree-ring growth records from cooler southwestern sites. Assessment of 59 tree-ring records from 11 species in the Cascade Mountains of the Pacific Northwest shows that trees growing in cool places respond positively to increased temperature and trees in warm places respond negatively, implying that trees historically not sensitive to temperature may become sensitive as mean temperatures warm. An analysis of 59 white spruce populations in Alaska supports the hypothesis that warming has caused tree growth to lose sensitivity to cold temperatures. Comparing ring widths to temperature during just the coldest 50% of years during the 20th century, tree growth was sensitive to cold temperatures, and this effect was strongest at the coldest sites; whereas during the warmest 50% of years, trees were not at all sensitive to cold temperatures, even at the cold sites. Drought and vapor pressure deficit are among the variables that emerge as being increasingly important to these Alaska boreal forests as mean temperatures rise. Most recently, from 346 tree-ring chronologies in the Southwest US we establish a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in this region. FDSI responds sensitively and nonlinearly to growing season daily maximum temperatures which increase vapor pressure deficit, resulting in greater tree physiological stress and reduced tree growth. Drought conditions and warming temperatures in the Southwest since ca. 1996 have caused FDSI values in particular years since 2000 to start to exceed the most extreme values reconstructed from tree-rings for the past 1000 years for this region. FDSI demonstrates strong correlations with the spatial extent of major forest disturbances in the Southwest, including high-severity wildfire and bark beetle infestations, which over the past 20 years also have affected historically unprecedented levels. Similar trends of increasing extent and severity of forest disturbances are apparent across large portions of western North America. For the Southwest US, given relatively robust projections of substantial further increases in warmer temperatures and drought stress in coming decades, by ~2050 projected levels of FDSI and associated disturbances would reach extreme values, suggesting that current forest ecosystems likely would be forced to reorganize through wholesale tree mortality and the establishment of new dominant species.

  3. Dual-sensing porphyrin-containing copolymer nanosensor as full-spectrum colorimeter and ultra-sensitive thermometer.

    PubMed

    Yan, Qiang; Yuan, Jinying; Kang, Yan; Cai, Zhinan; Zhou, Lilin; Yin, Yingwu

    2010-04-28

    A porphyrin-containing copolymer has dual-sensing in response to metal ions and temperature as a novel nanosensor. Triggered by ions, the sensor exhibits full-color tunable behavior as a cationic detector and colorimeter. Responding to temperature, the sensor displays an "isothermal" thermochromic point as an ultra-sensitive thermometer.

  4. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 1: A One-Dimensional Analysis of Low Frequency Combustion Instability in the Fuel Preburner of the Space Shuttle Main Engine. Final Report M.S. Thesis - Aug. 1986

    NASA Technical Reports Server (NTRS)

    Lim, Kair Chuan

    1986-01-01

    Low frequency combustion instability, known as chugging, is consistently experienced during shutdown in the fuel and oxidizer preburners of the Space Shuttle Main Engines. Such problems always occur during the helium purge of the residual oxidizer from the preburner manifolds during the shutdown sequence. Possible causes and triggering mechanisms are analyzed and details in modeling the fuel preburner chug are presented. A linearized chugging model, based on the foundation of previous models, capable of predicting the chug occurrence is discussed and the predicted results are presented and compared to experimental work performed by NASA. Sensitivity parameters such as chamber pressure, fuel and oxidizer temperatures, and the effective bulk modulus of the liquid oxidizer are considered in analyzing the fuel preburner chug. The computer program CHUGTEST is utilized to generate the stability boundary for each sensitivity study and the region for stable operation is identified.

  5. Material properties and their influence on the behaviour of tungsten as plasma facing material

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Uytdenhouwen, I.; Barabash, V.; Escourbiac, F.; Hirai, T.; Linke, J.; Loewenhoff, Th.; Panayotis, S.; Pintsuk, G.

    2017-06-01

    With the aim of a possible improvement of the material specification for tungsten, five different tungsten products by different companies and by different production technologies (forging and rolling) are subject to a materials characterization program. Tungsten produced by forging results in an uniaxial elongated grain shape while rolled products have a plate like grain shape which has an influence on the mechanical properties of the material. The materials were investigated with respect to the following parameters: hardness measurements, microstructural investigations, tensile tests and recrystallisation sensitivity tests at 3 different temperatures. The obtained results show that different production processes have an influence on the resulting anisotropic microstructure and the related material properties of tungsten in the as-received state. Additionally, the recrystallization sensitivity varies between the different products, what could be a result of the different production processes. Additionally, two tungsten products were exposed to thermal shocks. The obtained results show that the improved recrystallisation behaviour has no major impact on the thermal shock performance.

  6. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    PubMed Central

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  7. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-07-25

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.

  8. Los Alamos nEDM Experiment and Demonstration of Ramsey's Method on Stored UCNs at the LANL UCN Source

    NASA Astrophysics Data System (ADS)

    Clayton, Steven; Chupp, Tim; Cude-Woods, Christopher; Currie, Scott; Ito, Takeyasu; Liu, Chen-Yu; Long, Joshua; MacDonald, Stephen; Makela, Mark; O'Shaughnessy, Christopher; Plaster, Brad; Ramsey, John; Saunders, Andy; LANL nEDM Collaboration

    2017-09-01

    The Los Alamos National Laboratory ultracold neutron (UCN) source was recently upgraded for a factor of 5 improvement in stored density, providing the statistical precision needed for a room temperature neutron electric dipole moment measurement with sensitivity 3 ×10-27 e . cm, a factor 10 better than the limit set by the Sussex-RAL-ILL experiment. Here, we show results of a demonstration of Ramsey's separated oscillatory fields method on stored UCNs at the LANL UCN source and in a geometry relevant for a nEDM measurement. We argue a world-leading nEDM experiment could be performed at LANL with existing technology and a short lead time, providing a physics result with sensitivity intermediate between the current limit set by Sussex-RAL-ILL, and the anticipated limit from the complex, cryogenic nEDM experiment planned for the next decade at the ORNL Spallation Neutron Source (SNS-nEDM). This work was supported by the Los Alamos LDRD Program, Project 20140015DR.

  9. Characteristics research of pressure sensor based on nanopolysilicon thin films resistors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Li, Dandan; Wen, Dianzhong

    2017-10-01

    To further improve the sensitivity temperature characteristics of pressure sensor, a kind of pressure sensor taking nanopolysilicon thin films as piezoresistors is proposed in this paper. On the basis of the microstructure analysis by X-ray diffraction (XRD) and scanning electron microscope (SEM) tests, the preparing process of nanopolysilicon thin films is optimized. The effects of film thickness and annealing temperature on the micro-structure of nanopolysilicon thin films were studied, respectively. In order to realize the measurement of external pressure, four nanopolysilicon thin films resistors were arranged at the edges of square silicon diaphragm connected to a Wheatstone bridge, and the chip of the sensor was designed and fabricated on a 〈100〉 orientation silicon wafer by microelectromechanical system (MEMS) technology. Experimental result shows that when I = 6.80 mA, the sensitivity of the sensor PS-1 is 0.308 mV/kPa, and the temperature coefficient of sensitivity (TCS) is about -1742 ppm/∘C in the range of -40-140∘C. It is possible to obviously improve the sensitivity temperature characteristics of pressure sensor by the proposed sensors.

  10. Room temperature, very sensitive thermometer using a doubly clamped microelectromechanical beam resonator for bolometer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y., E-mail: zhangya@iis.u-tokyo.ac.jp; Watanabe, Y.; Hosono, S.

    We propose a room temperature, all electrical driving and detecting, very sensitive thermometer structure using a microelectromechanical (MEMS) resonator for bolometer applications. We have fabricated a GaAs doubly clamped MEMS beam resonator whose oscillation can be excited and detected by the piezoelectric effect. When a heating power is applied to a NiCr film deposited on the MEMS beam surface, internal thermal stress is generated in the beam, leading to a reduction in the resonance frequency. The present device detects the shift in the resonance frequency caused by heating and works as a very sensitive thermometer. When the resonator was drivenmore » by a voltage slightly below the threshold for the nonlinear, hysteretic oscillation, the thermometer showed a voltage responsivity of about 3300 V/W, while keeping a low noise spectral density of about 60 nV/Hz{sup 1/2}, demonstrating a noise equivalent power of <20 pW/Hz{sup 1/2} even at room temperature. The observed effect can be used for realizing high-sensitivity terahertz bolometers for room-temperature operation.« less

  11. The effects of surface evaporation parameterizations on climate sensitivity to solar constant variations

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Curran, R. J.; Ohring, G.

    1981-01-01

    The effects of two different evaporation parameterizations on the sensitivity of simulated climate to solar constant variations are investigated by using a zonally averaged climate model. One parameterization is a nonlinear formulation in which the evaporation is nonlinearly proportional to the sensible heat flux, with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface (model A). The other is the formulation of Saltzman (1968) with the evaporation linearly proportional to the sensible heat flux (model B). The computed climates of models A and B are in good agreement except for the energy partition between sensible and latent heat at the earth's surface. The difference in evaporation parameterizations causes a difference in the response of temperature lapse rate to solar constant variations and a difference in the sensitivity of longwave radiation to surface temperature which leads to a smaller sensitivity of surface temperature to solar constant variations in model A than in model B. The results of model A are qualitatively in agreement with those of the general circulation model calculations of Wetherald and Manabe (1975).

  12. Temperature measurement in the adult emergency department: oral, tympanic membrane and temporal artery temperatures versus rectal temperature.

    PubMed

    Bijur, Polly E; Shah, Purvi D; Esses, David

    2016-12-01

    The objective was to compare agreement between three non-invasive measures of temperature and rectal temperatures and to estimate the sensitivity and specificity of these measures to detect a rectal temperature of 38°C or higher. We conducted a study of the diagnostic accuracy of oral, tympanic membrane (TM) and temporal artery (TA) thermometry to measure fever in an urban emergency department (ED). Data were collected from adult patients who received rectal temperature measurement. Bland-Altman analysis was performed; sensitivity, specificity and 95% CIs were calculated. 987 patients were enrolled. 36% of the TM and TA readings differed by 0.5°C or more from rectal temperatures, 50% of oral temperatures. TM measures were most precise-the SD of the difference from rectal was 0.4°C TM, and 0.6°C for oral and TA (p<0.001). The sensitivities of a 38°C cutpoint on oral, TM and TA measures to detect a rectal temperature of 38°C or higher were: 37.0%, 68.3% and 71.1%, respectively (oral vs TM and TA p<0.001). The corresponding specificities were 99.4%, 98.2% and 92.3% (oral, TM and TA) with oral specificity significantly higher than the other two methods (p<0.01). TM and TA cutpoints of 37.5°C provided greater than 90% sensitivity to detect fever with specificity of 90% and 72%, respectively. None of the non-invasive methods met benchmarks for diagnostic accuracy using the criterion of 38°C to detect rectal temperature of 38°C. A TM cutpoint of 37.5°C provides maximum diagnostic accuracy of the three non-invasive measures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Cytological, molecular mechanisms and temperature stress regulating production of diploid male gametes in Dianthus caryophyllus L.

    PubMed

    Zhou, Xuhong; Mo, Xijun; Gui, Min; Wu, Xuewei; Jiang, Yalian; Ma, Lulin; Shi, Ziming; Luo, Ying; Tang, Wenru

    2015-12-01

    In plant evolution, because of its key role in sexual polyploidization or whole genome duplication events, diploid gamete formation is considered as an important component in diversification and speciation. Environmental stress often triggers unreduced gamete production. However, the molecular, cellular mechanisms and adverse temperature regulating diplogamete production in carnation remain poorly understood. Here, we investigate the cytological basis for 2n male gamete formation and describe the isolation and characterization of the first gene, DcPS1 (Dianthus Caryophyllus Parallel Spindle 1). In addition, we analyze influence of temperature stress on diploid gamete formation and transcript levels of DcPS1. Cytological evidence indicated that 2n male gamete formation is attributable to abnormal spindle orientation at male meiosis II. DcPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. DcPS1 expression analysis show DcPS1 gene probably have a role in 2n pollen formation. Unreduced pollen formation in various cultivation was sensitive to high or low temperature which was probably regulated by the level of DcPS1 transcripts. In a broader perspective, these findings can have potential applications in fundamental polyploidization research and plant breeding programs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Development of high-resolution n(2) coherent anti-stokes Raman scattering for measuring pressure, temperature, and density in high-speed gas flows.

    PubMed

    Woodmansee, M A; Lucht, R P; Dutton, J C

    2000-11-20

    Mean and instantaneous measurements of pressure, temperature, and density have been acquired in an optically accessible gas cell and in the flow field of an underexpanded sonic jet by use of the high-resolution N(2) coherent anti-Stokes Raman scattering (CARS) technique. This nonintrusive method resolves the pressure- and temperature-sensitive rotational transitions of the nu = 0 ? 1 N(2) Q-branch to within Domega = 0.10 cm(-1). To extract thermodynamic information from the experimental spectra, theoretical spectra, generated by a N(2) spectral modeling program, are fit to the experimental spectra in a least-squares manner. In the gas cell, the CARS-measured pressures compare favorably with transducer-measured pressures. The precision and accuracy of the single-shot CARS pressure measurements increase at subatmospheric conditions. Along the centerline of the underexpanded jet, the agreement between the mean CARS P/T/rho measurements and similar quantities extracted from a Reynolds-averaged Navier-Stokes computational fluid dynamic simulation is generally excellent. This CARS technique is able to capture the low-pressure and low-temperature conditions of the M = 3.4 flow entering the Mach disk, as well as the subsonic conditions immediately downstream of this normal shock.

  15. Elevated temperature mechanical properties of line pipe steels

    NASA Astrophysics Data System (ADS)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.

  16. Quantifying the bending of bilayer temperature-sensitive hydrogels

    NASA Astrophysics Data System (ADS)

    Dong, Chenling; Chen, Bin

    2017-04-01

    Stimuli-responsive hydrogels can serve as manipulators, including grippers, sensors, etc., where structures can undergo significant bending. Here, a finite-deformation theory is developed to quantify the evolution of the curvature of bilayer temperature-sensitive hydrogels when subjected to a temperature change. Analysis of the theory indicates that there is an optimal thickness ratio to acquire the largest curvature in the bilayer and also suggests that the sign or the magnitude of the curvature can be significantly affected by pre-stretches or small pores in the bilayer. This study may provide important guidelines in fabricating temperature-responsive bilayers with desirable mechanical performance.

  17. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things.

    PubMed

    Liu, Guanyu; Tan, Qiulin; Kou, Hairong; Zhang, Lei; Wang, Jinqi; Lv, Wen; Dong, Helei; Xiong, Jijun

    2018-05-02

    Flexible electronics, which can be distributed on any surface we need, are highly demanded in the development of Internet of Things (IoT), robot technology and electronic skins. Temperature is a fundamental physical parameter, and it is an important indicator in many applications. Therefore, a flexible temperature sensor is required. Here, we report a simple method to fabricate three lightweight, low-cost and flexible temperature sensors, whose sensitive materials are reduced graphene oxide (r-GO), single-walled carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs). By comparing linearity, sensitive and repeatability, we found that the r-GO temperature sensor had the most balanced performance. Furthermore, the r-GO temperature sensor showed good mechanical properties and it could be bent in different angles with negligible resistance change. In addition, the performance of the r-GO temperature sensor remained stable under different kinds of pressure and was unaffected by surrounding environments, like humidity or other gases, because of the insulating layer on its sensitive layer. The easy-fabricated process and economy, together with the remarkable performance of the r-GO temperature sensor, suggest that it is suitable for use as a robot skin or used in the environment of IoT.

  18. Delineating Spatial Patterns in the Yellowstone Hydrothermal System using Geothermometry

    NASA Astrophysics Data System (ADS)

    King, J.; Hurwitz, S.; Lowenstern, J. B.

    2015-12-01

    Yellowstone National Park is unmatched with regard to its quantity of active hydrothermal features. Origins of thermal waters in its geyser basins have been traced to mixing of a deep parent water with meteoric waters in shallow local reservoirs (Fournier, 1989). A mineral-solution equilibrium model was developed to calculate water-rock chemical re-equilibration temperatures in these shallow reservoirs. We use the GeoT program, which uses water composition data as input to calculate saturation indices of selected minerals; the "best-clustering" minerals are then statistically determined to infer reservoir temperatures (Spycher et al., 2013). We develop the method using water composition data from Heart Lake Geyser Basin (HLGB), for which both chemical and isotopic geothermometers predict a reservoir water temperature of 205°C ± 10°C (Lowenstern et al., 2012), and minerals found in drill cores in Yellowstone's geyser basins. We test the model for sensitivity to major element composition, pH, Total Inorganic Carbon (TIC) and selected minerals to optimize model parameters. Calculated temperatures are most accurate at pH values below 9.0, and closely match the equilibrium saturation indices of quartz, stilbite, microcline, and albite. The model is optimized with a TIC concentration that is consistent with the mass of diffuse CO2 flux in HLGB (Lowenstern et al., 2012). We then use water compositions from other thermal basins in Yellowstone in search of spatial variations in reservoir temperatures. We then compare the calculated temperatures with various SiO2 and cation geothermometers.

  19. Clogging of Joule-Thomson Devices in Liquid Hydrogen Handling

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Lekki, John D.

    2009-01-01

    Experiments conducted at the NASA Glenn Research Center indicate that Joule-Thomson devices become clogged when transferring liquid hydrogen (LH2), operating at a temperature range from 20.5 to 24.4 K. Blockage does not exist under all test conditions but is found to be sensitive to the inlet temperature of the LH2. At a subcooled inlet temperature of 20.5 K blockage consistently appears but is dissipated when the fluid temperature is raised above 24.5 K. Clogging steadily reduced flow rate through the orifices, eventually resulting in complete blockage. This tendency poses a threat to spacecraft cryogenic propulsion systems that would utilize passive thermal control systems. We propose that this clogging is due to trace amounts of neon in the regular LH2 supply. Neon freezes at 24.5 K at one atmosphere pressure. It is postulated that between 20.5 and 24.5 K, neon remains in a meta-stable, supercooled liquid state. When impacting the face of an orifice, liquid neon droplets solidify and accumulate, blocking flow over time. The purpose of this test program was to definitively quantify the phenomena experimentally by obtaining direct visual evidence of orifice clogging by accretion from neon contaminates in the LH2 flow stream, utilizing state of the art imaging technology. Tests were conducted with LH2 flowing in the temperature range of 20.5 to 24.4 K. Additional imaging was also done at LH2 temperatures with no flow to verify clear view through the orifice.

  20. A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.

    PubMed

    Dürrenmatt, David J; Wanner, Oskar

    2014-01-01

    Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive particles

    NASA Astrophysics Data System (ADS)

    Someya, Satoshi; Li, Yanrong; Ishii, Keiko; Okamoto, Koji

    2011-01-01

    This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flows using temperature-sensitive particles (TSPs), a pulsed ultraviolet laser, and a high-speed camera. TSPs respond to temperature changes in the flow and can also serve as tracers for the velocity field. The luminescence from the TSPs was recorded at 15,000 frames per second as sequential images for a lifetime-based temperature analysis. These images were also used for the particle image velocimetry calculations. The temperature field was estimated using several images, based on the lifetime method. The decay curves for various temperature conditions fit well to exponential functions, and from these the decay constants at each temperature were obtained. The proposed technique was applied to measure the temperature and velocity fields in natural convection driven by a Marangoni force and buoyancy in a rectangular tank. The accuracy of the temperature measurement of the proposed technique was ±0.35-0.40°C.

  2. NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, Troy; Reichenberger, Michael; Stevenson, Sarah

    2016-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core fission chambers and thermocouple. As discussed within this report,more » the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year two of this three year project. Highlights from research accomplishments include: • Continuation of a joint collaboration between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. • An updated parallel wire HT MPFD design was developed. • Program support for HT MPFD deployments was given to Accident Tolerant Fuels (ATF) and Advanced Gas-cooled Reactor (AGR) irradiation test programs. • Quality approved materials for HT MPFD construction were procured by irradiation test programs for upcoming deployments. • KSU improved and performed electrical contact and fissile material plating. • KSU delivered fissile HT MPFD parts to INL for final construction of HT MPFD prototype. • A prototype HT MPFD was constructed and analyzed at INL. • The HT MPFD has been modeled in MCNP to optimize the amount of fissile material deposition. • The HT MPFD has been modeled in MCNP to optimize the sensor location in the irradiation test. • The fissile material deposition is undergoing independent verifications. • Detector amplifier electronics have been revised and tested by KSU. • Several project meetings were held at INL and KSU to discuss the roles and responsibilities between INL, KSU, and CEA for development and deployment of the HT MPFDs. As documented in this report, FY16 funding has allowed the project to meet year two planned accomplishments to develop a HT MPFD. In addition, the accomplishments of this project have attracted independent funding from other Department of Energy Office of Nuclear Energy (DOE-NE) programs for MTR irradiations of the MPFD technology. These are significant opportunities for this NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors project because the irradiation expense of these experiments could not be included in the original project scope.« less

  3. Thermo-sensitive polymer nanospheres as a smart plugging agent for shale gas drilling operations.

    PubMed

    Wang, Wei-Ji; Qiu, Zheng-Song; Zhong, Han-Yi; Huang, Wei-An; Dai, Wen-Hao

    2017-01-01

    Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcohol-water medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive monomer N -isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA-St) nanospheres at 80 °C, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD-SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability.

  4. The thermoluminescence sensitivity-metamorphism relationship in ordinary chondrites - Experimental data on the mechanism and implications for terrestrial systems

    NASA Technical Reports Server (NTRS)

    Guimon, R. K.; Sears, D. W. G.; Lofgren, G. E.

    1986-01-01

    Hydrothermal annealing experiments have been performed on samples of the Sharps meteorite in order to investigate the mechanism responsible for the metamorphism-related, 10-to-the-5th-fold range in the thermoluminescence (TL) sensitivity in ordinary chondrites. Duplicate 50 mg samples of meteorite were annealed under the following conditions: (1) 168 h at 785 C and 1 kbar; (2) the same time, temperature and pressure, but with 2 wt pct water; (3) 174 h at 855 C and 0.77 kbar with 2 wt pct water and 2 molal sodium disilicate (NadiSi); (4) the same time, temperature and pressure as the preceding samples, but with 10 wt pct H2O and 2 molal NadiSi. Samples annealed under the first three sets of conditions showed little or no change in their TL sensitivities, however the samples annealed with 10 wt pct water and 2 molal NadiSi showed a three-fold to 10-fold increase in TL sensitivity, and the temperature of the TL peak was suggestive of feldspar in the high-temperature form. It is suggested that these data are consistent with the TL sensitivity-metamorphism relationship in ordinary chondrites being due to the formation of the TL phosphor, feldspar, by the crystallization of chondrule glass.

  5. Shock-wave initiation of heated plastified TATB detonation

    NASA Astrophysics Data System (ADS)

    Kuzmitsky, Igor; Rudenko, Vladimir; Gatilov, Leonid; Koshelev, Alexandr

    1999-06-01

    Explosive, plastified TATB, attracts attention with its weak sensitivity to shock loads and high temperature stability ( Pthreshold ? 6.5 GPa and Tcrit ? 250 0Q). However, at its cooling to T 250 0Q plastified TATB becomes as sensitive to shock load as octogen base HE: the excitation threshold reduces down to Pthreshold 2.0 GPa. The main physical reason for the HE sensitivity change is reduction in density at heating and, hence, higher porosity of the product (approximately from 2Moreover, increasing temperature increases the growth rate of uhotf spots which additionally increases the shock sensitivity [1]. Heated TATB experiments are also conducted at VNIIEF. The detonation excitation was computed within 1D program system MAG using EOS JWL for HE and EP and LLNL kinetics [1,2,3]. Early successful results of using this kinetics to predict detonation excitation in heated plastified TATB in VNIIEF experiments with short and long loading pulses are presented. Parameters of the chemical zone of the stationary detonation wave in plastified TATB (LX-17) were computed with the data from [1]. Parameters Heated In shell Cooled Unheated ?0 , g/cm3 1.70 1.81 1.84 1.905 D , km/s 7.982 7.764 7.686 7.517 PN, GPa 45.4 45.8 35.7 32.9 PJ, GPa 27.0 27.3 27.2 26.4 ?x , mm 0.504 0.843 1.041 2.912 ?t , ns 63.1 108.6 135.5 387.4 [1] Effect of Confinement and Thermal Cycling on the Shock Initiation of LX-17 P.A. Urtiew, C.M. Tarver, J.L. Maienschein, and W.C. Tao. LLNL. Combustion and Flame 105: 43-53 (1996) [2] C.M. Tarver, P.A. Urtiew and W.C. Tao (LLNL) Effects of tandem and colliding shock waves on initiation of triaminotrinitrobenzene. J.Appl. Phys. 78(5), September 1995 [3] Craig M. Tarver, John W. Kury and R. Don Breithaupt Detonation waves in triaminotrinitrobenzene J. Appl. Phys. 82(8) , 15 October 1997.

  6. Influence of Lake Stratification Onset on Summer Surface Water Temperature

    NASA Astrophysics Data System (ADS)

    Woolway, R. I.; Merchant, C. J.

    2016-12-01

    Summer lake surface water temperatures (LSSWT) are sensitive to climatic warming and have previously been shown to increase at a faster rate than surface air temperatures in some lakes, as a response to thermal stratification occurring earlier in spring. We explore this relationship using a combination of in situ, satellite derived, and simulated temperatures from 144 lakes. Our results demonstrate that LSSWTs of high-latitude and large deep lakes are particularly sensitive to changes in stratification onset and can be expected to display an amplified response to climatic changes in summer air temperature. Climatic modification of LSSWT has numerous consequences for water quality and lake ecosystems, so quantifying this amplified response is important.

  7. Ethanol Microsensors with a Readout Circuit Manufactured Using the CMOS-MEMS Technique

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-01

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro-mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm. PMID:25594598

  8. Ethanol microsensors with a readout circuit manufactured using the CMOS-MEMS technique.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-14

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro -mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm.

  9. Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo

    2017-08-01

    This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.

  10. Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.

    PubMed

    Mondal, Pinki; Jain, Meha; DeFries, Ruth S; Galford, Gillian L; Small, Christopher

    2015-01-15

    Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop type, access to irrigation and other biophysical and socio-economic factors. To better understand sensitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM - precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS - temperature). We examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed phenological sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI phenology anomalies ranged from -25% to 25%, with some highly anomalous values up to 200%. Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon crop productivity across the years. Temperature is critically important for winter productivity across a range of crop and management types, such that irrigation might not provide a sufficient buffer against projected temperature increases. Better access to weather information and usage of climate-resilient crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to projected climate changes in the coming decades would also need to be tailored to regional biophysical and socio-economic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Forecasting the Future Risk of Barmah Forest Virus Disease under Climate Change Scenarios in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Mengersen, Kerrie; Hu, Wenbiao; Tong, Shilu

    2013-01-01

    Background Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease under climate change scenarios in Queensland, Australia. Methods/Principal Findings We obtained data on notified BFV cases, climate (maximum and minimum temperature and rainfall), socio-economic and tidal conditions for current period 2000–2008 for coastal regions in Queensland. Grid-data on future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature projections. Conclusions/Significance We conclude that the results of this study demonstrate that the future risk of BFV disease would vary across coastal regions in Queensland. These results may be helpful for public health decision making towards developing effective risk management strategies for BFV disease control and prevention programs in Queensland. PMID:23690959

  12. Optimization of large-volume injection for the determination of polychlorinated biphenyls in children's fast-food menus by low-resolution mass spectrometry.

    PubMed

    Esteve-Turrillas, Francesc A; Caupos, Emilie; Llorca, Isabel; Pastor, Agustín; de la Guardia, Miguel

    2008-03-26

    This study includes the determination of five indicator polychlorinated biphenyls (PCBs) (52, 101, 153, 138, and 180), six non-ortho PCBs (35, 80, 81, 77, 126, and 169), and two mono-ortho PCBs (28 and 118) in fast food for children. A freeze-dried sample of 10 g is extracted by using pressurized n-hexane in two 5 min cycles at 120 degrees C and 100 mbar. Fatty extracts were cleaned up by means of acetonitrile/n-hexane partitioning and gel-permeation chromatography. The fractionation of non-ortho, mono-ortho, and indicator PCBs was made on graphitized carbon solid-phase extraction cartridges by using n-hexane, n-hexane/toluene (99:1, v/v), and toluene as elution solvents. Gas chromatography coupled to tandem mass spectrometry and large-volume injections with a programmed-temperature vaporizer (PTV-LV) were used to increase sensitivity and selectivity of the PCB determination. The PTV-LV injection settings, that is, vaporizing temperature, vaporizing time, and purge flow, were optimized by using a central composite design. A 15-40 times increased sensitivity was reached as compared with that obtained with the conventional 1 microL splitless injection. The limits of detection achieved were between 0.3 and 1.2 pg/g, and repeatability data, as relative standard deviation varied, ranged from 2 to 9% for the 0.05 ng/mL PCB level.

  13. Single-Shot Charge Readout Using a Cryogenic Heterojunction Bipolar Transistor Preamplifier Inline with a Silicon Single Electron Transistor at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm

    Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  14. Experimental and ecosystem model approach to assessing the sensitivity of High arctic deep permafrost to changes in surface temperature and precipitation

    NASA Astrophysics Data System (ADS)

    Rasmussen, L. H.; Zhang, W.; Elberling, B.; Cable, S.

    2016-12-01

    Permafrost affected areas in Greenland are expected to experience large temperature increases within the 21st century. Most previous studies on permafrost consider near-surface soil, where changes will happen first. However, how sensitive the deep permafrost temperature is to near-surface conditions through changes in soil thermal properties, snow depth and soil moisture, is not known. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed deep permafrost sediments from deltaic, alluvial and fluvial depositional environments in the Zackenberg valley, NE Greenland. We also calibrated a coupled heat and water transfer model, the "CoupModel", for the two closely situated deltaic sites, one with average snow depth and the other with topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four scenarios with changes in surface forcing: a. 3 °C warming and 20 % increase in precipitation; b. 3 °C warming and 100 % increase in precipitation; c. 6 °C warming and 20 % increase in precipitation; d. 6 °C warming and 100 % increase in precipitation.Our results indicated that frozen sediments had higher TC than thawed sediments. All sediments showed a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Fluvial sediments had high sensitivity, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments were less sensitive to soil moisture than deltaic and fluvial sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher annual mean ground temperature than the average snow site. The soil temperature at the depth of 18 m increased with 1.5 °C and 3.5 °C in the scenarios with 3 °C and 6 °C warming, respectively. Precipitation had no significant additional effect to warming. We conclude that below-ground sediment properties affect the sensitivity of TC to GWC, that surface temperature changes can significantly affect the deep permafrost within a short period, and that differences in snow depth affect surface temperatures. Geology, pedology and precipitation should thus be considered if estimating future High arctic deep permafrost sensitivity.

  15. [Study on sensitivity of climatic factors on influenza A (H1N1) based on classification and regression tree and wavelet analysis].

    PubMed

    Xiao, Hong; Lin, Xiao-ling; Dai, Xiang-yu; Gao, Li-dong; Chen, Bi-yun; Zhang, Xi-xing; Zhu, Pei-juan; Tian, Huai-yu

    2012-05-01

    To analyze the periodicity of pandemic influenza A (H1N1) in Changsha in year 2009 and its correlation with sensitive climatic factors. The information of 5439 cases of influenza A (H1N1) and synchronous meteorological data during the period between May 22th and December 31st in year 2009 (223 days in total) in Changsha city were collected. The classification and regression tree (CART) was employed to screen the sensitive climatic factors on influenza A (H1N1); meanwhile, cross wavelet transform and wavelet coherence analysis were applied to assess and compare the periodicity of the pandemic disease and its association with the time-lag phase features of the sensitive climatic factors. The results of CART indicated that the daily minimum temperature and daily absolute humidity were the sensitive climatic factors for the popularity of influenza A (H1N1) in Changsha. The peak of the incidence of influenza A (H1N1) was in the period between October and December (Median (M) = 44.00 cases per day), simultaneously the daily minimum temperature (M = 13°C) and daily absolute humidity (M = 6.69 g/m(3)) were relatively low. The results of wavelet analysis demonstrated that a period of 16 days was found in the epidemic threshold in Changsha, while the daily minimum temperature and daily absolute humidity were the relatively sensitive climatic factors. The number of daily reported patients was statistically relevant to the daily minimum temperature and daily absolute humidity. The frequency domain was mostly in the period of (16 ± 2) days. In the initial stage of the disease (from August 9th and September 8th), a 6-day lag was found between the incidence and the daily minimum temperature. In the peak period of the disease, the daily minimum temperature and daily absolute humidity were negatively relevant to the incidence of the disease. In the pandemic period, the incidence of influenza A (H1N1) showed periodic features; and the sensitive climatic factors did have a "driving effect" on the incidence of influenza A (H1N1).

  16. Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case.

    PubMed

    Stauffer, Paul R; Snow, Brent W; Rodrigues, Dario B; Salahi, Sara; Oliveira, Tiago R; Reudink, Doug; Maccarini, Paolo F

    2014-02-01

    This study characterizes the sensitivity and accuracy of a non-invasive microwave radiometric thermometer intended for monitoring body core temperature directly in brain to assist rapid recovery from hypothermia such as occurs during surgical procedures. To study this approach, a human head model was constructed with separate brain and scalp regions consisting of tissue equivalent liquids circulating at independent temperatures on either side of intact skull. This test setup provided differential surface/deep tissue temperatures for quantifying sensitivity to change in brain temperature independent of scalp and surrounding environment. A single band radiometer was calibrated and tested in a multilayer model of the human head with differential scalp and brain temperature. Following calibration of a 500MHz bandwidth microwave radiometer in the head model, feasibility of clinical monitoring was assessed in a pediatric patient during a 2-hour surgery. The results of phantom testing showed that calculated radiometric equivalent brain temperature agreed within 0.4°C of measured temperature when the brain phantom was lowered 10°C and returned to original temperature (37°C), while scalp was maintained constant over a 4.6-hour experiment. The intended clinical use of this system was demonstrated by monitoring brain temperature during surgery of a pediatric patient. Over the 2-hour surgery, the radiometrically measured brain temperature tracked within 1-2°C of rectal and nasopharynx temperatures, except during rapid cooldown and heatup periods when brain temperature deviated 2-4°C from slower responding core temperature surrogates. In summary, the radiometer demonstrated long term stability, accuracy and sensitivity sufficient for clinical monitoring of deep brain temperature during surgery.

  17. Culturally Sensitive Risk Behavior Prevention Programs for African American Adolescents: A Systematic Analysis

    ERIC Educational Resources Information Center

    Metzger, Isha; Cooper, Shauna M.; Zarrett, Nicole; Flory, Kate

    2013-01-01

    The current review conducted a systematic assessment of culturally sensitive risk prevention programs for African American adolescents. Prevention programs meeting the inclusion and exclusion criteria were evaluated across several domains: (1) theoretical orientation and foundation; (2) methodological rigor; (3) level of cultural integration; (4)…

  18. From Colorblindness to Intercultural Sensitivity: Infusing Diversity Training in PETE Programs

    ERIC Educational Resources Information Center

    Burden, Joe W.; Hodge, Samuel R.; O'Bryant, Camille; Harrison, Louis, Jr.

    2004-01-01

    In this paper, we advocate infusing diversity training across physical education teacher education (PETE) programs and curricula (DeSensi, 1995). Specifically, we call for PETE programs to provide curriculum content and professional socialization experiences that enhance "intercultural sensitivity" to better prepare novice teachers for working…

  19. [Dendrochronology of Chinese pine in Mulan-Weichang, Hebei Province: a primary study].

    PubMed

    Cui, Ming-xing; He, Xing-yuan; Chen, Wei; Chen, Zhen-ju; Zhou, Chang-hong; Wu, Tao

    2008-11-01

    Dendroclimatic methods were used to investigate the relationships between the growth of Chinese pine (Pinus tabulaeformis Carr.) and the climatic parameters in Mulan-Weichang of Hebei Province. The results showed that Chinese pine presented high sensitivity to climatic changes, and its earlywood width showed the highest sensitivity. There was a significant negative correlation between the tree-ring width chronology of Chinese pine and the air temperature in May-June. The precipitation and relative humidity in June had strong positive effects on the growth of earlywood, the precipitation from September to next September had significant positive effects on Chinese pine growth, and the relative humidity in winter more strongly affected the growth of latewood than of earlywood. There was a definite correlation between the tree-ring width chronology of Chinese pine and the large scale climate fluctuation. From 1951 to 2006, the increase of air temperature in study area was significant, and the sensitivity of Chinese pine to the variations of local temperature and precipitation decreased, presenting an inverse transforming trend with increasing temperature. Greater differences were observed between the reconstructed and observed data of mean temperature in May - June in a century scale, suggesting that the tree-ring growth of Chinese pine in study area had a greater fluctuation of sensitivity to the variation of climatic factors.

  20. The Effects of Temperature and Salinity on Mg Incorporation in Planktonic Foraminifera Globigerinoides ruber (white): Results from a Global Sediment Trap Mg/Ca Database

    NASA Astrophysics Data System (ADS)

    Gray, W. R.; Weldeab, S.; Lea, D. W.

    2015-12-01

    Mg/Ca in Globigerinoides ruber is arguably the most important proxy for sea surface temperature (SST) in tropical and sub tropical regions, and as such guides our understanding of past climatic change in these regions. However, the sensitivity of Mg/Ca to salinity is debated; while analysis of foraminifera grown in cultures generally indicates a sensitivity of 3 - 6% per salinity unit, core-top studies have suggested a much higher sensitivity of between 15 - 27% per salinity unit, bringing the utility of Mg/Ca as a SST proxy into dispute. Sediment traps circumvent the issues of dissolution and post-depositional calcite precipitation that hamper core-top calibration studies, whilst allowing the analysis of foraminifera that have calcified under natural conditions within a well constrained period of time. We collated previously published sediment trap/plankton tow G. ruber (white) Mg/Ca data, and generated new Mg/Ca data from a sediment trap located in the highly-saline tropical North Atlantic, close to West Africa. Calcification temperature and salinity were calculated for the time interval represented by each trap/tow sample using World Ocean Atlas 2013 data. The resulting dataset comprises >240 Mg/Ca measurements (in the size fraction 150 - 350 µm), that span a temperature range of 18 - 28 °C and 33.6 - 36.7 PSU. Multiple regression of the dataset reveals a temperature sensitivity of 7 ± 0.4% per °C (p < 2.2*10-16) and a salinity sensitivity of 4 ± 1% per salinity unit (p = 2*10-5). Application of this calibration has significant implications for both the magnitude and timing of glacial-interglacial temperature changes when variations in salinity are accounted for.

Top