Xu, Han-qiu; Zhang, Tie-jun
2011-07-01
The present paper investigates the quantitative relationship between the NDVI and SAVI vegetation indices of Landsat and ASTER sensors based on three tandem image pairs. The study examines how well ASTER sensor vegetation observations replicate ETM+ vegetation observations, and more importantly, the difference in the vegetation observations between the two sensors. The DN values of the three image pairs were first converted to at-sensor reflectance to reduce radiometric differences between two sensors, images. The NDVI and SAVI vegetation indices of the two sensors were then calculated using the converted reflectance. The quantitative relationship was revealed through regression analysis on the scatter plots of the vegetation index values of the two sensors. The models for the conversion between the two sensors, vegetation indices were also obtained from the regression. The results show that the difference does exist between the two sensors, vegetation indices though they have a very strong positive linear relationship. The study found that the red and near infrared measurements differ between the two sensors, with ASTER generally producing higher reflectance in the red band and lower reflectance in the near infrared band than the ETM+ sensor. This results in the ASTER sensor producing lower spectral vegetation index measurements, for the same target, than ETM+. The relative spectral response function differences in the red and near infrared bands between the two sensors are believed to be the main factor contributing to their differences in vegetation index measurements, because the red and near infrared relative spectral response features of the ASTER sensor overlap the vegetation "red edge" spectral region. The obtained conversion models have high accuracy with a RMSE less than 0.04 for both sensors' inter-conversion between corresponding vegetation indices.
Cross-Calibration of Earth Observing System Terra Satellite Sensors MODIS and ASTER
NASA Technical Reports Server (NTRS)
McCorkel, J.
2014-01-01
The Advanced Spaceborne Thermal Emissive and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectrometer (MODIS) are two of the five sensors onboard the Earth Observing System's Terra satellite. These sensors share many similar spectral channels while having much different spatial and operational parameters. ASTER is a tasked sensor and sometimes referred to a zoom camera of the MODIS that collects a full-earth image every one to two days. It is important that these sensors have a consistent characterization and calibration for continued development and use of their data products. This work uses a variety of test sites to retrieve and validate intercalibration results. The refined calibration of Collection 6 of the Terra MODIS data set is leveraged to provide the up-to-date reference for trending and validation of ASTER. Special attention is given to spatially matching radiance measurements using prelaunch spatial response characterization of MODIS. Despite differences in spectral band properties and spatial scales, ASTER-MODIS is an ideal case for intercomparison since the sensors have nearly identical views and acquisitions times and therefore can be used as a baseline of intercalibration performance of other satellite sensor pairs.
Tsuchida, Satoshi; Thome, Kurtis
2017-01-01
Radiometric cross-calibration between the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) has been partially used to derive the ASTER radiometric calibration coefficient (RCC) curve as a function of date on visible to near-infrared bands. However, cross-calibration is not sufficiently accurate, since the effects of the differences in the sensor’s spectral and spatial responses are not fully mitigated. The present study attempts to evaluate radiometric consistency across two sensors using an improved cross-calibration algorithm to address the spectral and spatial effects and derive cross-calibration-based RCCs, which increases the ASTER calibration accuracy. Overall, radiances measured with ASTER bands 1 and 2 are on averages 3.9% and 3.6% greater than the ones measured on the same scene with their MODIS counterparts and ASTER band 3N (nadir) is 0.6% smaller than its MODIS counterpart in current radiance/reflectance products. The percentage root mean squared errors (%RMSEs) between the radiances of two sensors are 3.7, 4.2, and 2.3 for ASTER band 1, 2, and 3N, respectively, which are slightly greater or smaller than the required ASTER radiometric calibration accuracy (4%). The uncertainty of the cross-calibration is analyzed by elaborating the error budget table to evaluate the International System of Units (SI)-traceability of the results. The use of the derived RCCs will allow further reduction of errors in ASTER radiometric calibration and subsequently improve interoperability across sensors for synergistic applications. PMID:28777329
UMD Land Cover Classification Product External Galleries * ASTER at JPL * AVHRR at JHU * Earth Observatory at NASA * Landsat 7 at USGS * MODIS at NASA * Visible Earth at NASA e-link 4321 Hartwick Building
ASTER's First Views of Red Sea, Ethiopia - Thermal-Infrared (TIR) Image (monochrome)
NASA Technical Reports Server (NTRS)
2000-01-01
ASTER succeeded in acquiring this image at night, which is something Visible/Near Infrared VNIR) and Shortwave Infrared (SWIR) sensors cannot do. The scene covers the Red Sea coastline to an inland area of Ethiopia. White pixels represent areas with higher temperature material on the surface, while dark pixels indicate lower temperatures. This image shows ASTER's ability as a highly sensitive, temperature-discerning instrument and the first spaceborne TIR multi-band sensor in history.
The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately.The ASTER instrument was built in Japan for the Ministry of International Trade and Industry. A joint United States/Japan Science Team is responsible for instrument design, calibration, and data validation. ASTER is flying on the Terra satellite, which is managed by NASA's Goddard Space Flight Center, Greenbelt, MD.NASA Astrophysics Data System (ADS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-12-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTER-specific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in [Zhao and Di Girolamo(2006)]. To validate and evaluate the cloud optical thickness (τ) and cloud effective radius (reff) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000 m resolution as MODIS. Subsequently, τaA and reff,
NASA Astrophysics Data System (ADS)
Xu, Hanqiu; Huang, Shaolin; Zhang, Tiejun
2013-10-01
Worldwide urbanization has accelerated expansion of urban built-up lands and resulted in substantial negative impacts on the global environments. Precisely measuring the urban sprawl is becoming an increasing need. Among the satellite-based earth observation systems, the Landsat and ASTER data are most suitable for mesoscale measurements of urban changes. Nevertheless, to date the difference in the capability of mapping built-up land between the two sensors is not clear. Therefore, this study compared the performances of the Landsat-7 ETM+ and ASTER sensors for built-up land mapping in the coastal areas of southeastern China. The comparison was implemented on three date-coincident image pairs and achieved by using three approaches, including per-band-based, index-based, and classification-based comparisons. The index used is the Index-based Built-up Index (IBI), while the classification algorithm employed is the Support Vector Machine (SVM). Results show that in the study areas, ETM+ and ASTER have an overall similar performance in built-up land mapping but also differ in several aspects. The IBI values determined from ASTER were consistently higher than from ETM+ by up to 45.54% according to percentage difference. The ASTER also estimates more built-up land area than ETM+ by 5.9-6.3% estimated with the IBI-based approach or 3.9-6.1% with the SVM classification. The differences in the spectral response functions and spatial resolution between relative spectral bands of the two sensors are attributed to these different performances.
ASTER preflight and inflight calibration and the validation of level 2 products
Thome, K.; Aral, K.; Hook, S.; Kieffer, H.; Lang, H.; Matsunaga, T.; Ono, A.; Palluconi, F. D.; Sakuma, H.; Slater, P.; Takashima, T.; Tonooka, H.; Tsuchida, S.; Welch, R.M.; Zalewski, E.
1998-01-01
This paper describes the preflight and inflight calibration approaches used for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The system is a multispectral, high-spatial resolution sensor on the Earth Observing System's (EOS)-AMl platform. Preflight calibration of ASTER uses well-characterized sources to provide calibration and preflight round-robin exercises to understand biases between the calibration sources of ASTER and other EOS sensors. These round-robins rely on well-characterized, ultra-stable radiometers. An experiment held in Yokohama, Japan, showed that the output from the source used for the visible and near-infrared (VNIR) subsystem of ASTER may be underestimated by 1.5%, but this is still within the 4% specification for the absolute, radiometric calibration of these bands. Inflight calibration will rely on vicarious techniques and onboard blackbodies and lamps. Vicarious techniques include ground-reference methods using desert and water sites. A recent joint field campaign gives confidence that these methods currently provide absolute calibration to better than 5%, and indications are that uncertainties less than the required 4% should be achievable at launch. The EOS-AMI platform will also provide a spacecraft maneuver that will allow ASTER to see the moon, allowing further characterization of the sensor. A method for combining the results of these independent calibration results is presented. The paper also describes the plans for validating the Level 2 data products from ASTER. These plans rely heavily upon field campaigns using methods similar to those used for the ground-reference, vicarious calibration methods. ?? 1998 IEEE.
Archiving, processing, and disseminating ASTER products at the USGS EROS Data Center
Jones, B.; Tolk, B.; ,
2002-01-01
The U.S. Geological Survey EROS Data Center archives, processes, and disseminates Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data products. The ASTER instrument is one of five sensors onboard the Earth Observing System's Terra satellite launched December 18, 1999. ASTER collects broad spectral coverage with high spatial resolution at near infrared, shortwave infrared, and thermal infrared wavelengths with ground resolutions of 15, 30, and 90 meters, respectively. The ASTER data are used in many ways to understand local and regional earth-surface processes. Applications include land-surface climatology, volcanology, hazards monitoring, geology, agronomy, land cover change, and hydrology. The ASTER data are available for purchase from the ASTER Ground Data System in Japan and from the Land Processes Distributed Active Archive Center in the United States, which receives level 1A and level 1B data from Japan on a routine basis. These products are archived and made available to the public within 48 hours of receipt. The level 1A and level 1B data are used to generate higher level products that include routine and on-demand decorrelation stretch, brightness temperature at the sensor, emissivity, surface reflectance, surface kinetic temperature, surface radiance, polar surface and cloud classification, and digital elevation models. This paper describes the processes and procedures used to archive, process, and disseminate standard and on-demand higher level ASTER products at the Land Processes Distributed Active Archive Center.
ASTER First Views of Red Sea, Ethiopia - Thermal-Infrared TIR Image monochrome
2000-03-11
ASTER succeeded in acquiring this image at night, which is something Visible/Near Infrared VNIR) and Shortwave Infrared (SWIR) sensors cannot do. The scene covers the Red Sea coastline to an inland area of Ethiopia. White pixels represent areas with higher temperature material on the surface, while dark pixels indicate lower temperatures. This image shows ASTER's ability as a highly sensitive, temperature-discerning instrument and the first spaceborne TIR multi-band sensor in history. The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02452
Enhanced ASTER DEMs for Decadal Measurements of Glacier Elevation Changes
NASA Astrophysics Data System (ADS)
Girod, L.; Nuth, C.; Kääb, A.
2016-12-01
Elevation change data is critical to the understanding of a number of geophysical processes, including glaciers through the measurement their volume change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system on-board the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available today, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. We developed MMASTER, an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. Our sensor modeling does not require ground control points and thus potentially allows for automatic processing of large data volumes. When compared to ground truth data, we have assessed a ±5m accuracy in DEM differencing when using our processing method, improved from the ±30m when using the AST14DMO DEM product. We demonstrate and discuss this improved ASTER DEM quality for a number of glaciers in Greenland (See figure attached), Alaska, and Svalbard. The quality of our measurements promises to further unlock the underused potential of ASTER DEMs for glacier volume change time series on a global scale. The data produced by our method will thus help to better understand the response of glaciers to climate change and their influence on runoff and sea level.
NASA Astrophysics Data System (ADS)
Ramsey, M. S.; Dehn, J.; Duda, K.; Hughes, C. G.; Lee, R.; Rose, S.; Scheidt, S. P.; Wessels, R. L.
2009-12-01
Soon after its launch in December 1999, the ASTER sensor on the NASA Terra satellite began acquiring infrared data of dynamic surface processes around the world. For the first time in history, well calibrated, relatively high spatial resolution thermal infrared (TIR) data was being collected in more than two spectral bands. These data began a new era in Earth science from space allowing us to examine such diverse topics as the compositional mapping of eolian systems, the accurate detection of subpixel thermal heterogeneities, the relationship between emitted energy from glassy materials and the volcanic processes that formed them, and the thermophysical behavior of the land surface. The TIR subsystem of ASTER has maintained very good radiometric accuracy over the last decade, which is double the original design life. The diligence of the ASTER Science Team to maintain this quality and expand the data through programs such as the night time TIR global map will provide a scientific dataset utilized for many years in the future. For example, one such program started in 2003 was a new collaboration between the ASTER project and the U.S. Geological Survey to help better monitor the explosive volcanoes of the northern Pacific region. The rapid response mode of the instrument has now been automated and linked to a larger-scale and more rapid monitoring alert system operated by the Alaska Volcano Observatory. ASTER TIR data collected under this project are commonly the first detailed views of new activity at these remote volcanoes, with over 1400 TIR images having been acquired for the five most active Kamchatka volcanoes. This presentation will focus on an overview of the science and operational results over the last decade using data from the ASTER TIR sensor. ASTER has the capability to acquire high spatial resolution data from the visible to the TIR wavelength region. Those data, in conjunction with its ability to generate digital elevation models (DEM’s), makes the instrument particularly useful for numerous aspects of volcanic and eolian remote sensing. The lessons learned in applying these data to a wide range of surface science questions are critically important to consider during the planning for the next generation of orbital TIR sensors such as the proposed NASA Hyperspectral Infrared Imager (HyspIRI) mission.
NASA Astrophysics Data System (ADS)
Ramsey, Michael
2015-04-01
The ASTER-based observational success of active volcanic processes early in the Terra mission later gave rise to a funded NASA program designed to both increase the number of ASTER scenes following an eruption and perform the ground-based science needed to validate that data. The urgent request protocol (URP) system for ASTER grew out of this initial study and has now operated in conjunction with and the support of the Alaska Volcano Observatory, the University of Alaska Fairbanks, the University of Hawaii, the USGS Land Processes DAAC, and the ASTER science team. The University of Pittsburgh oversees this rapid response/sensor-web system, which until 2011 had focused solely on the active volcanoes in the North Pacific region. Since that time, it has been expanded to operate globally with AVHRR and MODIS and now ASTER visible and thermal infrared (TIR) data are being acquired at numerous active volcanoes around the world. This program relies on the increased temporal resolution of AVHRR/MODIS midwave infrared data to trigger the next available ASTER observation, which results in ASTER data as frequently as every 2-5 days. For many new targets such as Mt. Etna, the URP has increased the observational frequency by as much 50%. Examples of these datasets will be presented, which have been used for operational response to new eruptions as well as longer-term scientific studies. These studies include emplacement of new lava flows, detection of endogenous dome growth, and interpretation of hazardous dome collapse events. As a means to validate the ASTER TIR data and capture higher-resolution images, a new ground-based sensor has recently been developed that consists of standard FLIR camera modified with wavelength filters similar to the ASTER bands. Data from this instrument have been acquired of the lava lake at Kilauea and reveal differences in emissivity between molten and cooled surfaces confirming prior laboratory results and providing important constraints on lava flow propagation models. In summary, this operational/scientific program utilizing the unique properties of TIR data from ASTER has shown the potential for providing innovative and integrated synoptic measurements of volcanic science, eruptions and eruption-related hazards globally. Now, this long-term archive of volcanic image data is being mined to provide statistics on the expectations of future high-repeat TIR data such as proposed for the NASA HyspIRI mission.
Hubbard, B.E.; Crowley, J.K.
2005-01-01
Hyperspectral data coverage from the EO-1 Hyperion sensor was useful for calibrating Advanced Land Imager (ALI) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images of a volcanic terrane area of the Chilean-Bolivian Altiplano. Following calibration, the ALI and ASTER datasets were co-registered and joined to produce a 13-channel reflectance cube spanning the Visible to Short Wave Infrared (0.4-2.4 ??m). Eigen analysis and comparison of the Hyperion data with the ALI + ASTER reflectance data, as well as mapping results using various ALI+ASTER data subsets, provided insights into the information dimensionality of all the data. In particular, high spectral resolution, low signal-to-noise Hyperion data were only marginally better for mineral mapping than the merged 13-channel, low spectral resolution, high signal-to-noise ALI + ASTER dataset. Neither the Hyperion nor the combined ALI + ASTER datasets had sufficient information dimensionality for mapping the diverse range of surface materials exposed on the Altiplano. However, it is possible to optimize the use of the multispectral data for mineral-mapping purposes by careful data subsetting, and by employing other appropriate image-processing strategies.
NASA Technical Reports Server (NTRS)
2000-01-01
The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.Glacier Volume Change Estimation Using Time Series of Improved Aster Dems
NASA Astrophysics Data System (ADS)
Girod, Luc; Nuth, Christopher; Kääb, Andreas
2016-06-01
Volume change data is critical to the understanding of glacier response to climate change. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a unique source of systematic stereoscopic images covering the whole globe at 15m resolution and at a consistent quality for over 15 years. While satellite stereo sensors with significantly improved radiometric and spatial resolution are available to date, the potential of ASTER data lies in its long consistent time series that is unrivaled, though not fully exploited for change analysis due to lack of data accuracy and precision. Here, we developed an improved method for ASTER DEM generation and implemented it in the open source photogrammetric library and software suite MicMac. The method relies on the computation of a rational polynomial coefficients (RPC) model and the detection and correction of cross-track sensor jitter in order to compute DEMs. ASTER data are strongly affected by attitude jitter, mainly of approximately 4 km and 30 km wavelength, and improving the generation of ASTER DEMs requires removal of this effect. Our sensor modeling does not require ground control points and allows thus potentially for the automatic processing of large data volumes. As a proof of concept, we chose a set of glaciers with reference DEMs available to assess the quality of our measurements. We use time series of ASTER scenes from which we extracted DEMs with a ground sampling distance of 15m. Our method directly measures and accounts for the cross-track component of jitter so that the resulting DEMs are not contaminated by this process. Since the along-track component of jitter has the same direction as the stereo parallaxes, the two cannot be separated and the elevations extracted are thus contaminated by along-track jitter. Initial tests reveal no clear relation between the cross-track and along-track components so that the latter seems not to be easily modeled analytically from the first one. We thus remove the remaining along-track jitter effects in the DEMs statistically through temporal DEM stacks to finally compute the glacier volume changes over time. Our method yields cleaner and spatially more complete elevation data, which also proved to be more in accordance to reference DEMs, compared to NASA's AST14DMO DEM standard products. The quality of the demonstrated measurements promises to further unlock the underused potential of ASTER DEMs for glacier volume change time series on a global scale. The data produced by our method will help to better understand the response of glaciers to climate change and their influence on runoff and sea level.
NASA Astrophysics Data System (ADS)
Ramos, Yuddy; Goïta, Kalifa; Péloquin, Stéphane
2016-04-01
This study evaluates Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion hyperspectral sensor datasets to detect advanced argillic minerals. The spectral signatures of some alteration clay minerals, such as dickite and alunite, have similar absorption features; thus separating them using multispectral satellite images is a complex challenge. However, Hyperion with its fine spectral bands has potential for good separability of features. The Spectral Angle Mapper algorithm was used in this study to map three advanced argillic alteration minerals (alunite, kaolinite, and dickite) in a known alteration zone in the Peruvian Andes. The results from ASTER and Hyperion were analyzed, compared, and validated using a Portable Infrared Mineral Analyzer field spectrometer. The alterations corresponding to kaolinite and alunite were detected with both ASTER and Hyperion (80% to 84% accuracy). However, the dickite mineral was identified only with Hyperion (82% accuracy).
Targeting Hydrothermal Alterations Utilizing LANDSAT-8 Andaster Data in Shahr-E Iran
NASA Astrophysics Data System (ADS)
Safari, M.; Pour, A. B.; Maghsoudi, A.; Hashim, M.
2017-10-01
Shahr-e-Babak tract of the Kerman metalogenic belt is one of the most potential segments of Urumieh-Dokhtar (Sahand-Bazman) magmatic arc. This area encompasses several porphyry copper deposits in exploration, development and exploitation hierarchy. The aim of this study is to map hydrothermal alterations caused by early Cenozoic magmatic intrusions in Shahr-e-Babak area. To this purpose, mineral mapping methods including band combinations, ratios and multiplications as well as PCA and MNF data space transforms in SWIR and VNIR for both ASTER and OLI sensors. Alteration zones according to spectral signatures of each type of alteration mineral assemblages such as argillic, phyllic and propylitic are successfully mapped. For enhancing the target areas false color composites and HSI-RGB color space transform are performed on developed band combinations. Previous studies have proven the robust application of ASTER in geology and mineral exploration; nonetheless, the results of this investigation prove applicability of OLI sensor from landsat-8 for alteration mapping. According to the results, evidently OLI sensor data can accurately map alteration zones. Additionally, the 12-bit quantization of OLI data is its privilege over 8-bit data of ASTER in VNIR and SWIR, thus OLI high quality results, which makes it easy to distinguish targets with enhanced color contrast between the altered and unaltered rocks.
Cross-calibration of A.M. constellation sensors for long term monitoring of land surface processes
Meyer, D.; Chander, G.
2006-01-01
Data from multiple sensors must be used together to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products derived from different sensors (e.g., vegetation cover, albedo, surface temperature) can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectro-radiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Cross-calibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study extends on a previous study of Terra/MODIS and Landsat/ETM+ cross calibration by including the Terra/ASTER and EO-1/ALI sensors, exploring the impacts of cross-calibrating sensors when conditions described above are met to some degree but not perfectly. Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. Due to problems with direct calibration of ASTER data, linear fits were developed between ASTER and ETM+ to assess the impacts of spectral bandpass differences between the two systems. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.
Normalizing Landsat and ASTER Data Using MODIS Data Products for Forest Change Detection
NASA Technical Reports Server (NTRS)
Gao, Feng; Masek, Jeffrey G.; Wolfe, Robert E.; Tan, Bin
2010-01-01
Monitoring forest cover and its changes are a major application for optical remote sensing. In this paper, we present an approach to integrate Landsat, ASTER and MODIS data for forest change detection. Moderate resolution (10-100m) images (e.g. Landsat and ASTER) acquired from different seasons and times are normalized to one "standard" date using MODIS data products as reference. The normalized data are then used to compute forest disturbance index for forest change detection. Comparing to the results from original data, forest disturbance index from the normalized images is more consistent spatially and temporally. This work demonstrates an effective approach for mapping forest change over a large area from multiple moderate resolution sensors on various acquisition dates.
NASA Technical Reports Server (NTRS)
2000-01-01
Dramatic differences in land use patterns are highlighted in this image of the U.S.-Mexico border. Lush, regularly gridded agricultural fields on the U.S. side contrast with the more barren fields of Mexico This June 12, 2000, sub-scene combines visible and near infrared bands, displaying vegetation in red. The town of Mexicali-Calexico spans the border in the middle of the image; El Centro, California, is in the upper left. Watered by canals fed from the Colorado River, California's Imperial Valley is one of the country's major fruit and vegetable producers. This image covers an area 24 kilometers (15 miles) wide and 30 kilometers (19 miles) long in three bands of the reflected visible and infrared wavelength region.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2000-01-01
The Eiffel Tower and its shadow can be seen next to the Seine in the left middle of this ASTER image of Paris. Based on the length of the shadow and the solar elevation angle of 59 degrees, we can calculate its height as 324 meters (1,054 feet), compared to its actual height of 303 meters (985 feet). Acquired on July 23, 2000, this image covers an area 23 kilometers (15 miles) wide and 20 kilometers (13 miles) long in three bands of the reflected visible and infrared wavelength region. Known as the City of Light, Paris has been extolled for centuries as one of the great cities of the world. Its location on the Seine River, at a strategic crossroads of land and river routes, has been the key to its expansion since the Parisii tribe first settled here in the 3rd century B.C.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.NASA Astrophysics Data System (ADS)
Ramsey, M.; Wessels, R.; Dehn, J.; Duda, K.; Harris, A.; Watson, M.
2008-12-01
From soon after its launch in December 1999, the ASTER sensor on the NASA Terra satellite has been acquiring data of volcanic eruptions and other natural disasters around the world. ASTER has the capability to acquire high spatial resolution data from the visible to thermal infrared wavelength region. Those data, in conjunction with its ability to generate digital elevation models (DEMs), makes ASTER particularly useful for numerous aspects of volcanic remote sensing. However, the nature of the ASTER scheduling/data collection/calibration pathway makes rapid observations of hazard locations nearly impossible. The sensor's acquisitions are scheduled in advance and the data are processed and calibrated in Japan prior to archiving in the United States. This can produce a lag of at least several days from the initial request to data scheduling and another several days after acquisition until the data are available. However, there exists a manual "rapid response" mode that provides faster data scheduling, processing and availability. This mode has now been semi-automated and linked to larger-scale and more rapid monitoring alert system. The first phase has been to integrate with the Alaska Volcano Observatory's current near-real-time satellite monitoring system, which relies on high temporal/low spatial resolution orbital data. This phase of the project has focused on eruptions in the north Pacific region, and in particular over Kamchatka, Russia. Several beneficial factors have combined that resulted in over 1350 ASTER images being acquired for the five most thermally-active Kamchatka volcanoes (Bezymianny, Karimsky, Kluichevskoi, Sheveluch and Tolbachik). These factors include the orbital alignment of Terra, the high latitude of the peninsula, and the many eruptions and volcanic activity in Kamchatka. From the inception of the automated rapid response program in 2003, an additional 350 scenes have been acquired over the Kamchatka volcanoes, which have targeted both small-scale activity and larger eruptions for science and hazard response. Numerous eruptions have been observed that displayed varying volcanic styles including basaltic lava flow emplacement, silicic lava dome growth, pyroclastic flow production, volcanic ash plume production, fumarolic activity, and geothermal emission. The focus of this presentation is to summarize the current ASTER rapid response program in Kamchatka, focus on two specific eruptions of Sheveluch volcano, and discuss the future expansion plans for global hazard response.
Rockwell, Barnaby W.
2012-01-01
The efficacy of airborne spectroscopic, or "hyperspectral," remote sensing for geoenvironmental watershed evaluations and deposit-scale mapping of exposed mineral deposits has been demonstrated. However, the acquisition, processing, and analysis of such airborne data at regional and national scales can be time and cost prohibitive. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor carried by the NASA Earth Observing System Terra satellite was designed for mineral mapping and the acquired data can be efficiently used to generate uniform mineral maps over very large areas. Multispectral remote sensing data acquired by the ASTER sensor were analyzed to identify and map minerals, mineral groups, hydrothermal alteration types, and vegetation groups in the western San Juan Mountains, Colorado, including the Silverton and Lake City calderas. This mapping was performed in support of multidisciplinary studies involving the predictive modeling of surface water geochemistry at watershed and regional scales. Detailed maps of minerals, vegetation groups, and water were produced from an ASTER scene using spectroscopic, expert system-based analysis techniques which have been previously described. New methodologies are presented for the modeling of hydrothermal alteration type based on the Boolean combination of the detailed mineral maps, and for the entirely automated mapping of alteration types, mineral groups, and green vegetation. Results of these methodologies are compared with the more detailed maps and with previously published mineral mapping results derived from analysis of high-resolution spectroscopic data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. Such comparisons are also presented for other mineralized and (or) altered areas including the Goldfield and Cuprite mining districts, Nevada and the central Marysvale volcanic field, Wah Wah Mountains, and San Francisco Mountains, Utah. The automated mineral group mapping products described in this study are ideal for application to mineral resource and mineral-environmental assessments at regional and national scales.
NASA Technical Reports Server (NTRS)
2000-01-01
One of the most important waterways in the world, the Suez Canal runs north to south across the Isthmus of Suez in northeastern Egypt. This image of the canal covers an area 36 kilometers (22 miles) wide and 60 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. It shows the northern part of the canal, with the Mediterranean Sea just visible in the upper right corner. The Suez Canal connects the Mediterranean Sea with the Gulf of Suez, an arm of the Red Sea. The artificial canal provides an important shortcut for ships operating between both European and American ports and ports located in southern Asia, eastern Africa, and Oceania. With a length of about 195 kilometers (121 miles) and a minimum channel width of 60 meters (197 feet), the Suez Canal is able to accommodate ships as large as 150,000 tons fully loaded. Because no locks interrupt traffic on this sea level waterway, the transit time only averages about 15 hours. ASTER acquired this scene on May 19, 2000.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.Evaluating the ASTER sensor for mapping and characterizing forest fire fuels in northern Idaho
Michael J. Falkowski; Paul Gessler; Penelope Morgan; Alistair M. S. Smith; Andrew T. Hudak
2004-01-01
Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection...
Satellite Validation: A Project to Create a Data-Logging System to Monitor Lake Tahoe
NASA Technical Reports Server (NTRS)
Roy, Rudy A.
2005-01-01
Flying aboard the satellite Terra, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument used to acquire detailed maps of Earth's surface temperature, elevation, emissivity, and reflectance. An automated site consisting of four buoys was established 6 years ago at Lake Tahoe for the validation of ASTERS thermal infrared data. Using Campbell CR23X Dataloggers, a replacement system to be deployed on a buoy was designed and constructed for the measurement of the lake's temperature profile, surrounding air temperature, humidity, wind direction and speed, net radiation, and surface skin temperature. Each Campbell Datalogger has been programmed to control, power, and monitor 14 different temperature sensors, a JPL-built radiometer, and an RM Young 32500 meteorological station. The logger communicates with the radiometer and meteorological station through a Campbell SDM-SIO4 RS232 serial interface, sending polling commands, and receiving filtered data back from the sensors. This data is then cataloged and sent back across a cellular modem network every hour to JPL. Each instrument is wired via a panel constructed with 18 individual plugs that allow for simple installation and expansion. Data sent back from the system are analyzed at JPL, where they are used to calibrate ASTER data.
Energy Systems Sensor Laboratory | Energy Systems Integration Facility |
NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen
NASA Astrophysics Data System (ADS)
Ramsey, M. S.
2014-12-01
The success of Terra-based observations using the ASTER instrument of active volcanic processes early in the mission gave rise to a funded NASA program designed to both increase the number of ASTER observations following an eruption and validate the satellite data. The urgent request protocol (URP) system for ASTER grew out of this initial study and has now operated in conjunction with and the support of the Alaska Volcano Observatory, the University of Alaska Fairbanks, the University of Hawaii, the USGS Land Processes DAAC, and the ASTER science team. The University of Pittsburgh oversees this rapid response/sensor-web system, which until 2011 had focused solely on the active volcanoes in the North Pacific region. Since that time, it has been expanded to operate globally with AVHRR and MODIS and now ASTER VNIR/TIR data are being acquired at numerous erupting volcanoes around the world. This program relies on the increased temporal resolution of AVHRR/MODIS midwave infrared data to trigger the next available ASTER observation, which results in ASTER data as frequently as every 2-5 days. For many targets, the URP has increased the observational frequency over active eruptions by as much 50%. The data have been used for operational response to new eruptions, longer-term scientific studies such as capturing detailed changes in lava domes/flows, pyroclastic flows and lahars. These data have also been used to infer the emplacement of new lava lobes, detect endogenous dome growth, and interpret hazardous dome collapse events. The emitted TIR radiance from lava surfaces has also been used effectively to model composition, texture and degassing. Now, this long-term archive of volcanic image data is being mined to provide statistics on the expectations of future high-repeat TIR data such as that proposed for the NASA HyspIRI mission. In summary, this operational/scientific program utilizing the unique properties of ASTER and the Terra mission has shown the potential for providing innovative and integrated synoptic measurements of geothermal activity, volcanic eruptions and their subsequent hazards globally.
ASTER and USGS EROS disaster response: emergency imaging after Hurricane Katrina
Duda, Kenneth A.; Abrams, Michael
2005-01-01
The value of remotely sensed imagery during times of crisis is well established, and the increasing spatial and spectral resolution in newer systems provides ever greater utility and ability to discriminate features of interest (International Charter, Space and Major Disasters, 2005). The existing suite of sensors provides an abundance of data, and enables warning alerts to be broadcast for many situations in advance. In addition, imagery acquired soon after an event occurs can be used to assist response and remediation teams in identifying the extent of the affected area and the degree of damage. The data characteristics of the Advanced Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) are well-suited for monitoring natural hazards and providing local and regional views after disaster strikes. For this reason, and because of the system fl exibility in scheduling high-priority observations, ASTER is often tasked to support emergency situations. The Emergency Response coordinators at the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) work closely with staff at the National Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center (LP DAAC) at EROS and the ASTER Science Team as they fulfi ll their mission to acquire and distribute data during critical situations. This article summarizes the role of the USGS/EROS Emergency Response coordinators, and provides further discussion of ASTER data and the images portrayed on the cover of this issue
Multi-sensor analysis of urban ecosystems
Gallo, Kevin P.; Ji, Lei
2004-01-01
This study examines the synthesis of multiple space-based sensors to characterize the urban environment Single scene data (e.g., ASTER visible and near-IR surface reflectance, and land surface temperature data), multi-temporal data (e.g., one year of 16-day MODIS and AVHRR vegetation index data), and DMSP-OLS nighttime light data acquired in the early 1990s and 2000 were evaluated for urban ecosystem analysis. The advantages of a multi-sensor approach for the analysis of urban ecosystem processes are discussed.
NASA Technical Reports Server (NTRS)
2000-01-01
The Strait of Gibraltar separates Spain from Morocco. This image, acquired on July 5, 2000, covers an area 34 kilometers (21 miles) wide and 59 kilometers (37 miles) long in three bands of the reflected visible and infrared wavelength region. The promontory on the eastern side of the conspicuous Spanish port is the Rock of Gibraltar. Once one of the two classical Pillars of Hercules, the Rock was crowned with silver columns by Phoenician mariners to mark the limits of safe navigation for the ancient Mediterranean peoples. The rocky promontory still commands the western entrance to the Mediterranean Sea. The rocky limestone and shale ridge rises abruptly from the sea, to a maximum elevation of 426 meters (1,398 feet). A British colony, Gibraltar occupies a narrow strip of land at the southernmost tip of the Iberian Peninsula. It is separated from the Spanish mainland by a neutral zone contained on a narrow, sandy isthmus. Because of its strategic location and formidable topography, Gibraltar serves mainly as a British fortress. Most of its sparse land is taken up by air and naval installations, and the civilian population is small.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.ASTER First Views of San Francisco River, Brazil - Visible/near Infrared VNIR Image monochrome
2000-03-11
This image of the San Francisco River channel, and its surrounding flood zone, in Brazil was acquired by band 3N of ASTER's Visible/Near Infrared sensor. The surrounding area along the river channel in light gray to white could be covered by dense tropical rain forests. The water surface of the San Francisco River shows rather gray color as compared to small lakes and tributaries, which could indicate that the river water is contaminated by suspended material. The size of image: 20 km x 20 km approx., ground resolution 15 m x 15 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02451
Hyacinths Choke the Rio Grande
NASA Technical Reports Server (NTRS)
2002-01-01
These images acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), flying aboard NASA's Terra satellite, demonstrate the potential of satellite-based remote sensors to monitor infestations of non-native plant species. These images show the vigorous growth of water hyacinths along a stretch of the Rio Grande River in Texas. The infestation had grown so dense in some places it was impeding the flow of water and rendered the river impassible for boats. The hyacinth is an aquatic weed native to South America. The plant is exotic looking and, when it blooms, the hyacinth produces a pretty purple flower, which is why it was introduced into North America. However, it has the capacity to grow and spread at astonishing rates so that in the wild it can completely clog the flow of rivers and waterways in a matter of days or weeks. The top image was acquired on March 30, 2002, and the bottom image on May 9, 2002. In the near-infrared region of the spectrum, photosynthetically-active vegetation is highly reflective. Consequently, vegetation appears bright to the near-infrared sensors aboard ASTER; and water, which absorbs near-infrared radiation, appears dark. In these false-color images produced from the sensor data, healthy vegetation is shown as bright red while water is blue or black. Notice a water hyacinth infestation is already apparent on March 30 near the center of the image. By May 9, the hyacinth population has exploded to cover more than half the river in the scene. Satellite-based remote sensors can enable scientists to monitor large areas of infestation like this one rather quickly and efficiently, which is particularly useful for regions that are difficult to reach from on the ground. (For more details, click to read Showdown in the Rio Grande.) Images courtesy Terrametrics; Data provided by the ASTER Science Team
Sulfur Dioxide Plume During the Continuing Eruption of Mt. Etna, Italy
NASA Technical Reports Server (NTRS)
2001-01-01
The current eruption of Mt. Etna started on July 17, and has continued to the present. This ASTER image was acquired on Sunday, July 29 and shows the sulfur dioxide plume (in purple) originating form the summit, drifting over the city of Catania, and continuing over the Ionian Sea. ASTER's unique combination of multiple thermal infrared channels and high spatial resolution allows the determination of the thickness and position of the SO2 plume. The image covers an area of 24 x 30 km.The image is centered at 37.7 degrees north latitude, 15 degrees east longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2000-01-01
This ASTER images was acquired on May 2, 2000 over the North Patagonia Ice Sheet, Chile near latitude 47 degrees south, longitude 73 degrees west. The image covers 36 x 30 km. The false color composite displays vegetation in red. The image dramatically shows a single large glacier, covered with crevasses. A semi-circular terminal moraine indicates that the glacier was once more extensive than at present. ASTER data are being acquired over hundreds of glaciers worldwide to measure their changes over time. Since glaciers are sensitive indicators of warming or cooling, this program can provide global data set critical to understand climate change.This image is located at 46.5 degrees south latitude and 73.9 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.
Beiranvand Pour, Amin; Hashim, Mazlan
2014-01-01
This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Su, B.; Wang, J.; Ishikawa, H.
2009-06-01
Surface fluxes are important boundary conditions for climatological modeling and the Asian monsoon system. Recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A Surface Energy Balance System (SEBS) method based on ASTER data and field observations has been proposed and tested for deriving net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E) over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the WATER (Watershed Allied Telemetry Experimental Research), located at the mid-to-upstream sections of the Heihe River, northwest China. The ASTER data of 3 May and 4 June in 2008 was used in this paper for the case of mid-to-upstream sections of the Heihe River Basin. To validate the proposed methodology, the ground-measured land surface heat fluxes (net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E)) were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in different months over the study area are in good accordance with the land surface status. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface heat fluxes using the ASTER data and filed observation over the study area.
Recent Release of the ASTER Global DEM Product
NASA Astrophysics Data System (ADS)
Behnke, J.; Hall, A.; Meyer, D.; Sohre, T.; Doescher, C.
2009-12-01
On June 29th, the ASTER Global Digital Elevation Model (DEM) release was announced to the public and to a very eager audience. ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) is an imaging instrument flying on Terra, a satellite launched in December 1999 as part of NASA's Earth Observing System (EOS). ASTER is a cooperative effort between NASA, Japan's Ministry of Economy, Trade and Industry (METI) and Japan's Earth Remote Sensing Data Analysis Center (ERSDAC). On June 21, NASA Headquarters along with colleagues in Japan (METI) signed a plan for distribution of this product. The global digital elevation model of Earth is available online to users everywhere at no cost from NASA's Land Processes Distributed Active Archive Center (DAAC) located at Sioux Falls, SD. The DAAC is a joint project of NASA and the USGS and is a key component of NASA's EOSDIS. The new ASTER GDEM was created from nearly 1.3 million individual stereo-pair images acquired by the Japanese Advanced Spaceborne Thermal Emission and Reflection Radiometer (Aster) instrument aboard NASA’s Terra satellite. The ASTER elevation model was jointly developed by NASA and METI under contract to Sensor Information Laboratory Corp., Tsukuba, Japan. On June 29, the NASA press release was picked up quickly by numerous news organizations and online sites. Response to the product was incredible! The news of the release of the product was carried on websites across the globe, this fueled a tremendous response from users. Here are a few interesting metrics about the release: - over 41,000 unique visitors to website in first week following release - top countries in order were: US (approx. 20%), Germany, U.K., Brazil, Austria, Canada, Spain, Switzerland, Japan - approximately 29,000 visitors came to the news page in the first week and about 11,000 of these users downloaded the actual press release - by the end of August, over 2 Million ASTER GDEM files had been downloaded from the Land Processes DAAC This presentation covers the issues associated with the release of this very popular product, including issues raised by many of our users.
Land cover of oases and forest in XinJiang, China retrieved from ASTER data
NASA Astrophysics Data System (ADS)
Buhe, Aosier; Tsuchiya, K.; Kaneko, M.; Ohtaishi, N.; Halik, Mahmut
ASTER aboard NASA’s satellite Terra is a high-resolution multispectral radiometer of 14 bands. The spatial resolution is 15 m in VNIR, 30 m in SWIR and 90 m in TIR spectra, respectively. With the data observed with ASTER, the land cover classification is produced for the Tarim Diversifolious Poplar Protection Area along the Tarim River in the northern Tarim Basin (Taklamakan Desert) in XinJiang, China. The classification of the vegetation (plants) in the arid and semiarid regions using remote-sensing technology is very difficult. Because the cause has low vegetable cover density and the influence of reflection from background soil is large. ASTER data are effective in studying the spectrum characteristics of land cover in arid and semiarid regions. The sensor has several bands in the shortwave infrared wavelength region that is designed for exploration of earth resources and study of the arid and semiarid region natural environment. However, we are not clear combination of which band is the most effective in research of the arid region like the Taklamakan desert in the data of 14 bands of ASTER. The optimum index factor (OIF), based on total variance within bands and correlation coefficient between bands, is a statistical approach to rank all possible three-band combinations. In the process of analyzing the data, the pixel sizes of all the data are converted (layer stacking and re-sampling) into consistent same size of 15 m. The three-band composite with the largest OIF value will have most information (as measured by variance) with the least amount of duplication (as measured by correlation). We used the OIF technique to rank all three-band combinations of ASTER original 14-band data over Tarim River Poplar Protection Area. Our study indicates that RGB color overlay using atmospheric corrected ASTER original bands 2, 3 (VNIR), and 6 (SWIR) has the highest OIF. When NDVI is considered as one ASTER band, highest OIF will have by carrying out bands 3 (VNIR), 4 (SWIR), and NDVI. In this study, we used highest OIF (bands 3, 4, and NDVI) succeeded in extraction of Tarim River Poplar Forest.
Coerência espectroscópica de famílias de asteróides
NASA Astrophysics Data System (ADS)
Mothé Diniz, T.; Roig, F. V.
2003-08-01
As Famílias de asteróides são caracterizadas como agrupamentos de objetos provenientes da quebra por colisão de corpos precursores. Desta forma, seus membros devem preservar relações genéticas que podem ser traduzidas sob a análise de suas características espectrais. Neste trabalho é apresentado o primeiro estudo espectroscópico de todas as famílias de asteróides do cinturão principal. Para tal, a divisão em famílias foi refeita utilizando-se o método HCM com uma base de elementos próprios analíticos (Knezevic e Milani, Jun 2001) e para o estudo espectroscópico foram utilizadas diversas campanhas de observação espectroscópica, tais o S3OS2 e o SMASSII, bem como outros dados disponíveis na literatura. A homogeneidade espectroscópica de cada família foi avaliada através da verificação das classes espectroscópicas presentes, bem como da comparação destes espectros com os de objetos de fundo, localizados na vizinhança da família. Vinte e duas famílias foram analisadas (as que possuíam mais do que 3 membros com espectro) e, dentre as principais conclusões pode-se citar a homogeneidade espectroscópica e, provavelmente mineralógica das famílias de Vesta, Eunomia, Hoffmeister, Dora, Merxia, Agnia, Koronis e Veritas. Esta última em particular, foi tida como uma família não homogênea espectroscopicamente em trabalho anterior (Di Martino et al. 1997). Outro resultado interessante é, por um lado, a aparente falta de homogeneidade dos membros da família de Eos, e por outro sua forte distinção dos objetos de fundo. O oposto ocorre na família de Themis, esta apresentando-se espectroscopicamente compatível com os objetos de fundo, mas com grande homogeneidade taxonômica entre seus membros. Algumas das famílias apresentam asteróides "intrusos" (objetos cujas características físicas não são compatíveis com aquelas dos membros da família) que, de modo geral desaparecem ao se considerarem níveis mais baixos de corte para a divisão da família no HCM, sem prejuízo para o agrupamento dos demais membros.
A Validation of Remotely Sensed Fires Using Ground Reports
NASA Astrophysics Data System (ADS)
Ruminski, M. G.; Hanna, J.
2007-12-01
A satellite based analysis of fire detections and smoke emissions for North America is produced daily by NOAA/NESDIS. The analysis incorporates data from the MODIS (Terra and Aqua) and AVHRR (NOAA-15/16/17) polar orbiting instruments and GOES East and West geostationary spacecraft with nominal resolutions of 1km and 4 km for the polar and geostationary platforms respectively. Automated fire detection algorithms are utilized for each of the sensors. Analysts perform a quality control procedure on the automated detects by deleting points that are deemed to be false detects and adding points that the algorithms did not detect. A limited validation of the final quality controlled product was performed using high resolution (30 m) ASTER data in the summer of 2006. Some limitations in using ASTER data are that each scene is only approximately 3600 square km, the data acquisition time is relatively constant at around 1030 local solar time and ASTER is another remotely sensed data source. This study expands on the ASTER validation by using ground reports of prescribed burns in Montana and Idaho for 2003 and 2004. It provides a non-remote sensing data source for comparison. While the ground data do not have the limitations noted above for ASTER there are still limitations. For example, even though the data set covers a much larger area (nearly 600,000 square km) than even several ASTER scenes, it still represents a single region of North America. And while the ground data are not restricted to a narrow time window, only a date is provided with each report, limiting the ability to make detailed conclusions about the detection capabilities for specific instruments, especially for the less temporally frequent polar orbiting MODIS and AVHRR sensors. Comparison of the ground data reports to the quality controlled fire analysis revealed a low rate of overall detection of 23.00% over the entire study period. Examination of the daily detection rates revealed a wide variation, with some days resulting in as little as 5 detects out of 107 reported fires while other days had as many as 84 detections out of 160 reports. Inspection of the satellite imagery from the days with very low detection rates revealed that extensive cloud cover prohibited satellite fire detection. On days when cloud cover was at a minimum, detection rates were substantially higher. An estimate of the fire size was also provided with the ground data set. Statistics will be presented for days with minimal cloud cover which will indicate the probability of detection for fires of various sizes.
NASA Astrophysics Data System (ADS)
Schmugge, T.; Hulley, G.; Hook, S.
2009-04-01
The land surface emissivity is often overlooked when considering surface properties that effect the energy balance. However, knowledge of the emissivity in the window region is important for determining the longwave radiation balance and its subsequent effect on surface temperature. The net longwave radiation (NLR) is strongly affected by the difference between the temperature of the emitting surface and the sky brightness temperature, this difference will be the greatest in the window region. Outside the window region any changes in the emitted radiation by emissivity variability are mostly compensated for by changes in the reflected sky brightness. The emissivity variability is typically greatest in arid regions where the exposed soil and rock surfaces display the widest range of emissivity. For example, the dune regions of North Africa have emissivities of 0.7 or less in the 8 to 9 micrometer wavelength band due to the quartz sands of the region, which can produce changes in NLR of more than 10 w/m*m compared to assuming a constant emissivity. The errors in retrievals of atmospheric temperature and moisture profiles from hyperspectral infrared radiances, such as those from the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite result from using constant or inaccurate surface emissivities, particularly over arid and semi-arid regions here the variation in emissivity is large, both spatially and spectrally. The multispectral thermal infrared data obtained from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer and MODerate resolution Imaging Spectrometer (MODIS) sensors on NASA's Terra satellite have been shown to be of good quality and provide a unique new tool for studying the emissivity of the land surface. ASTER has 5 channels in the 8 to 12 micrometer waveband with 90 m spatial resolution, when the data are combined with the Temperature Emissivity Separation (TES) algorithm the surface emissivity over this wavelength region can be determined. The TES algorithm has been validated with field measurements using a multi-spectral radiometer having similar bands to ASTER. The ASTER data have now been used to produce a seasonal gridded database of the emissivity for North America and the results compared to laboratory measured emissivities of in-situ rock/sand samples collected at ten validation sites in the Western USA during 2008. The directional hemispherical reflectance of the in-situ samples are measured in the laboratory using a Nicolet Fourier Transform Interferometer (FTIR), converted to emissivity using Kirchoff's law, and convolving to the appropriate sensor spectral response functions. This ASTER database, termed the North American ASTER Land Surface Emissivity Database (NAALSED), was validated using the laboratory results from these ten sites to within 0.015 (1.5%) in emissivity. MODIS has 3 channels in this waveband with 1km spatial resolution and almost daily global coverage. The MODIS data are composited to 5 km resolution and day night pairs of observations are used to derive the emissivities. These results have been validated using the ASTER emissivities over selected test areas.
NASA Astrophysics Data System (ADS)
Ramsey, M.; Dehn, J.; Wessels, R.; Byrnes, J.; Duda, K.; Maldonado, L.; Dwyer, J.
2004-12-01
Numerous government agencies and university partnerships are currently utilizing orbital instruments with high-temporal/low-spatial resolution (e.g. MODIS, AVHRR) to monitor hazards. These hazards are varied and include both natural (volcanic eruptions, severe weather, wildfires, earthquake damage) and anthropogenic (environmental damage, urban terrorism). Although monitoring a hazardous situation is critical, a key strategy of NASA's Earth science program is to develop a scientific understanding of the Earth system and its responses to changes, as well as to improve prediction of hazard onset. In order to develop a quantitative scientific basis from which to model transient geological and climatological hazards, much higher spatial/spectral resolution datasets are required. Such datasets are sparse, currently available from certain government (e.g. ASTER, Hyperion) and commercial (e.g. IKONOS, QuickBird) instruments. However, only ASTER has the capability to acquire high spatial resolution data from the visible to thermal infrared (TIR) wavelength region in conjunction with digital elevation models (DEM) generation. These capabilities are particularly useful for numerous aspects of volcanic remote sensing. For example, multispectral TIR data are critical for monitoring low temperature anomalies and mapping both chemical and textural variations on volcanic surfaces. Because ASTER data are scheduled in advance and the raw data are sent to Japan for calibration processing, rapid acquisition of hazards becomes problematic. However, a "rapid response" mode does exist for ASTER data scheduling and processing, but its availability is limited and requires significant human interaction. A newly-funded NASA ASTER science team project seeks to link this ASTER rapid response pathway to larger-scale monitoring alerts, which are already in-place and in-use by other organizations. By refining the initial event detection criteria and improving interfaces between these organizations and the ASTER project, we expect to minimize lag time and use existing monitoring tools as triggers for the emergency response of ASTER. The first phase of this project will be integrated into the Alaska Volcano Observatory's current near-real-time volcanic monitoring system, which relies on high temporal/low spatial resolution orbital data. This synergy will allow small-scale activity to be targeted for science and response, and a calibration baseline between each sensor to be established. If successful, this will be the first time that high spatial resolution, multispectral satellite data will be routinely scheduled, acquired, and analyzed in a "rapid response" mode within an existing hazard monitoring framework. Initial testing of this system is now underway using data from previous eruptions in the north Pacific region, and modifications to the rapid data flow procedure within the ASTER science and support structure has begun.
NASA Technical Reports Server (NTRS)
2001-01-01
Anchorage, Alaska and Cook Inlet are seen in this 30 by 30 km (19 by 19 miles) sub-image, acquired May 12, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Orbiting at an altitude of 705 km (430 miles) on board NASA's Terra satellite, ASTER provides data at a resolution of 15 m (47 feet) and allows creation of this simulated natural color image. At the center of the image is the Ted Stevens Anchorage International Airport; in the upper right corner is Elmendorf Air Force Base. Dark green coniferous forests are seen in the northwest part of the image. A golf course, with its lush green fairways, is just south of the Air Force Base.The image covers an area of 30 by 30 km, was acquired May 12, 2000, and is located at 61.2 degrees north latitude and 149.9 degrees west longitude.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.Safety Sensor Testing Laboratory | Hydrogen and Fuel Cells | NREL
collaborations, trainings and workshops, and academic research and development support. Work in the laboratory (temperature, pressure, and relative humidity) and gas parameters (flow and composition) Quantitative sensor services to assist end-users on sensor selection and use Assist developers in quantitative assessment of
Aerial Magnetic, Electromagnetic, and Gamma-ray Survey, Berrien County, Michigan
Duval, Joseph S.; Pierce, Herbert A.; Daniels, David L.; Mars, John L.; Webring, Michael W.; Hildenbrand, Thomas G.
2002-01-01
This publication includes maps, grids, and flightline databases of a detailed aerial survey and maps and grids of satellite data in Berrien County, Michigan. The purpose of the survey was to map aquifers in glacial terrains. This was accomplished by using a DIGHEMVRES mufti-coil, mufti-frequency electromagnetic system supplemented by a high sensitivity cesium magnetometer and 256-channel spectrometer. The information from these sensors was processed to produce maps, which display the conductive, magnetic and radioactive properties of the survey area. A GPS electronic navigation system ensured accurate positioning of the geophysical data. This report also includes data from the advanced spaceborne thermal emission and reflection (ASTER) radiometer. ASTER measures thermal emission and reflection data for 14 bands of the spectrum.
NASA Technical Reports Server (NTRS)
2000-01-01
This 60 by 55 km ASTER scene shows almost the entire island of Oahu, Hawaii on June 3, 2000. The data were processed to produce a simulated natural color presentation. Oahu is the commercial center of Hawaii and is important to United States defense in the Pacific. Pearl Harbor naval base is situated here. The chief agricultural industries are the growing and processing of pineapples and sugarcane. Tourism also is important to the economy. Among the many popular beaches is the renowned Waikiki Beach, backed by the famous Diamond Head, an extinct volcano. The largest community, Honolulu, is the state capital.The image is located at 21.5 degrees north latitude and 158 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2001-01-01
This ASTER image was acquired on July 23, 2001 and covers an area of 64 x 72 km. The data were processed to create a simulated natural color image. From its start as a sleepy Spanish pueblo in 1781, LA and its metropolitan area has grown to become an ethnically diverse, semitropical megalopolis, laying claim as the principal center of the western US and the nation's second largest urban area. The city's economy is based on international trade, aerospace, agriculture, tourism, and filmmaking. LA provides a glimpse of the typically cosmopolitan and global city of the future.The image is located at 34.1 degrees north latitude and 118.2 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.ASTER View of Sharm El Sheik, Egypt
NASA Technical Reports Server (NTRS)
2000-01-01
The Red Sea golf resort in Sharm El Sheik, Egypt, where President Clinton met with Israeli Prime Minister Ehud Barak and Palestinian Authority President Yasser Arafat, stands out against the desert landscape in this image acquired on August 25, 2000.This image of the southern tip of the Sinai Peninsula shows an area about 30 by 40 kilometers (19 by 25 miles) in the visible and near infrared wavelength region. Vegetation appears in red. The blue areas in the water at the top and bottom of the image are coral reefs. The airport is visible just to the north of the golf resort.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2001-01-01
This ASTER sub-image covers a 12 x 12 km area in northern Shanxi Province, China, and was acquired January 9, 2001. The low sun angle, and light snow cover highlight a section of the Great Wall, visible as a black line running diagonally through the image from lower left to upper right. The Great Wall is over 2000 years old and was built over a period of 1000 years. Stretching 4500 miles from Korea to the Gobi Desert it was first built to protect China from marauders from the north.This image is located at 40.2 degrees north latitude and 112.8 degrees east longitude.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.MEaSUREs Land Surface Temperature from GOES Satellites
NASA Astrophysics Data System (ADS)
Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon
2017-04-01
Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).
NASA Astrophysics Data System (ADS)
Moghtaderi, Arsia; Moore, Farid; Ranjbar, Hojjatollah
2017-01-01
Satellite images are widely used to map geological and environmental features at different map scales. The ability of visible to near-infrared (VNIR) scanner systems to map gossans, rich in iron and associated with weathered sulfide occurrences, as well as to characterize regoliths, is perhaps one of the most important current applications of this technology. Initial results of this study show that advanced space-borne thermal emission and reflection (ASTER), VNIR, and short-wave infrared radiometer scanner systems can be used successfully to map iron ores. By applying internal average relative reflectance, false color composite, minimum noise fraction transform, and mathematical evaluation method (MEM) techniques, iron contaminations were successfully detected in the Chadormalu iron mine area of central Iran. An attempt was also made to discriminate between the geogenic and anthropogenic iron contaminations in the vicinity of the Chadormalu iron deposit. This research compares ASTER and Landsat 8 data images and the MEM with the band ratio method in a full scope view scale and demonstrates ASTER image data capability in detecting iron contaminations in the Chadormalu area. This indicates that ASTER bands 3, 2, and 1 have a higher spatial (15 m) resolution compared with sensors used in previous works. In addition, the capability of the MEM in detecting Fe-contaminants, unlike the color judgments of the band ratio method, can discriminate between iron pollution in an alluvial plain and the Fe-contents of the host and country rocks in the study area. This study proved that Landsat 8 data illustrate exaggeration both in the MEM and band ratio final results (outputs) and cannot display iron contamination in detail.
Fusion of Laser Altimetry Data with Dems Derived from Stereo Imaging Systems
NASA Astrophysics Data System (ADS)
Schenk, T.; Csatho, B. M.; Duncan, K.
2016-06-01
During the last two decades surface elevation data have been gathered over the Greenland Ice Sheet (GrIS) from a variety of different sensors including spaceborne and airborne laser altimetry, such as NASA's Ice Cloud and land Elevation Satellite (ICESat), Airborne Topographic Mapper (ATM) and Laser Vegetation Imaging Sensor (LVIS), as well as from stereo satellite imaging systems, most notably from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Worldview. The spatio-temporal resolution, the accuracy, and the spatial coverage of all these data differ widely. For example, laser altimetry systems are much more accurate than DEMs derived by correlation from imaging systems. On the other hand, DEMs usually have a superior spatial resolution and extended spatial coverage. We present in this paper an overview of the SERAC (Surface Elevation Reconstruction And Change detection) system, designed to cope with the data complexity and the computation of elevation change histories. SERAC simultaneously determines the ice sheet surface shape and the time-series of elevation changes for surface patches whose size depends on the ruggedness of the surface and the point distribution of the sensors involved. By incorporating different sensors, SERAC is a true fusion system that generates the best plausible result (time series of elevation changes) a result that is better than the sum of its individual parts. We follow this up with an example of the Helmheim gacier, involving ICESat, ATM and LVIS laser altimetry data, together with ASTER DEMs.
NASA Technical Reports Server (NTRS)
Mah, G. R.; Myers, J.
1993-01-01
The U.S. Government has initiated the Global Change Research program, a systematic study of the Earth as a complete system. NASA's contribution of the Global Change Research Program is the Earth Observing System (EOS), a series of orbital sensor platforms and an associated data processing and distribution system. The EOS Data and Information System (EOSDIS) is the archiving, production, and distribution system for data collected by the EOS space segment and uses a multilayer architecture for processing, archiving, and distributing EOS data. The first layer consists of the spacecraft ground stations and processing facilities that receive the raw data from the orbiting platforms and then separate the data by individual sensors. The second layer consists of Distributed Active Archive Centers (DAAC) that process, distribute, and archive the sensor data. The third layer consists of a user science processing network. The EOSDIS is being developed in a phased implementation. The initial phase, Version 0, is a prototype of the operational system. Version 0 activities are based upon existing systems and are designed to provide an EOSDIS-like capability for information management and distribution. An important science support task is the creation of simulated data sets for EOS instruments from precursor aircraft or satellite data. The Land Processes DAAC, at the EROS Data Center (EDC), is responsible for archiving and processing EOS precursor data from airborne instruments such as the Thermal Infrared Multispectral Scanner (TIMS), the Thematic Mapper Simulator (TMS), and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). AVIRIS, TIMS, and TMS are flown by the NASA-Ames Research Center ARC) on an ER-2. The ER-2 flies at 65000 feet and can carry up to three sensors simultaneously. Most jointly collected data sets are somewhat boresighted and roughly registered. The instrument data are being used to construct data sets that simulate the spectral and spatial characteristics of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument scheduled to be flown on the first EOS-AM spacecraft. The ASTER is designed to acquire 14 channels of land science data in the visible and near-IR (VNIR), shortwave-IR (SWIR), and thermal-IR (TIR) regions from 0.52 micron to 11.65 micron at high spatial resolutions of 15 m to 90 m. Stereo data will also be acquired in the VNIR region in a single band. The AVIRIS and TMS cover the ASTER VNIR and SWIR bands, and the TIMS covers the TIR bands. Simulated ASTER data sets have been generated over Death Valley, California, Cuprite, Nevada, and the Drum Mountains, Utah using a combination of AVIRIS, TIMS, amd TMS data, and existing digital elevation models (DEM) for the topographic information.
Mountain, Vicki; Simerly, Calvin; Howard, Louisa; Ando, Asako; Schatten, Gerald; Compton, Duane A.
1999-01-01
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes. PMID:10525540
NASA Astrophysics Data System (ADS)
Thiem, Christina; Sun, Liya; Müller, Benjamin; Bernhardt, Matthias; Schulz, Karsten
2014-05-01
Despite the importance of evapotranspiration for Meteorology, Hydrology and Agronomy, obtaining area-averaged evapotranspiration estimates is cost as well as maintenance intensive: usually area-averaged evapotranspiration estimates are obtained by distributed sensor networks or remotely sensed with a scintillometer. A low cost alternative for evapotranspiration estimates are satellite images, as many of them are freely available. This approach has been proven to be worthwhile above homogeneous terrain, and typically evapotranspiration data obtained with scintillometry are applied for validation. We will extend this approach to heterogeneous terrain: evapotranspiration estimates from ASTER 2013 images will be compared to scintillometer derived evapotranspiration estimates. The goodness of the correlation will be presented as well as an uncertainty estimation for both the ASTER derived and the scintillometer derived evapotranspiration.
NASA Technical Reports Server (NTRS)
2001-01-01
This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.
This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 55 by 40 kilometers (34 by 25 miles) Location: 60.0 degrees North latitude, 140.7 degrees West longitude Orientation: North at top Image Data: ASTER bands 2, 3 and 4 Original Data Resolution: 15 meters (49 feet) Date Acquired: June 8, 20013D View of Death Valley, California
NASA Technical Reports Server (NTRS)
2000-01-01
This 3-D perspective view looking north over Death Valley, California, was produced by draping ASTER nighttime thermal infrared data over topographic data from the US Geological Survey. The ASTER data were acquired April 7, 2000 with the multi-spectral thermal infrared channels, and cover an area of 60 by 80 km (37 by 50 miles). Bands 13, 12, and 10 are displayed in red, green and blue respectively. The data have been computer enhanced to exaggerate the color variations that highlight differences in types of surface materials. Salt deposits on the floor of Death Valley appear in shades of yellow, green, purple, and pink, indicating presence of carbonate, sulfate, and chloride minerals. The Panamint Mtns. to the west, and the Black Mtns. to the east, are made up of sedimentary limestones, sandstones, shales, and metamorphic rocks. The bright red areas are dominated by the mineral quartz, such as is found in sandstones; green areas are limestones. In the lower center part of the image is Badwater, the lowest point in North America.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.NASA Technical Reports Server (NTRS)
2002-01-01
On March 26, New York Mayor Michael Bloomberg declared a drought emergency for the city and four upstate counties in response to the worst drought to hit the eastern United States in nearly 70 years. Restrictions on water use will affect more than 8 million residents of New York. The city's reservoirs, located in the Catskill Mountains, are at 52 percent capacity. One of these, Ashokan Reservoir, is seen in this pair of ASTER images acquired on September 18, 2000 and February 3, 2002.
These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 16.5 x 13 km (10.2 x 8.1 miles) Location: 41.9 deg. North lat., 74.2 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: September 18, 2000 and February 3, 2002Salt Lake City, Utah, Perspective View
NASA Technical Reports Server (NTRS)
2001-01-01
The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This 3-D perspective view, in simulated natural colors, presents a late spring view over Salt Lake City towards the snow-capped Wasatch Mountains to the east. The image was created by draping ASTER image data over digital topography data from the US Geological Survey's National Elevation Data.
This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: View width 15 km ( 9.2 miles); view distance 12 km (7.3 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 28, 2000Predicting eruptions from precursory activity using remote sensing data hybridization
NASA Astrophysics Data System (ADS)
Reath, K. A.; Ramsey, M. S.; Dehn, J.; Webley, P. W.
2016-07-01
Many volcanoes produce some level of precursory activity prior to an eruption. This activity may or may not be detected depending on the available monitoring technology. In certain cases, precursors such as thermal output can be interpreted to make forecasts about the time and magnitude of the impending eruption. Kamchatka (Russia) provides an ideal natural laboratory to study a wide variety of eruption styles and precursory activity prior to an eruption. At Bezymianny volcano for example, a clear increase in thermal activity commonly occurs before an eruption, which has allowed predictions to be made months ahead of time. Conversely, the eruption of Tolbachik volcano in 2012 produced no discernable thermal precursors before the large scale effusive eruption. However, most volcanoes fall between the extremes of consistently behaved and completely undetectable, which is the case with neighboring Kliuchevskoi volcano. This study tests the effectiveness of using thermal infrared (TIR) remote sensing to track volcanic thermal precursors using data from both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Very High Resolution Radiometer (AVHRR) sensors. It focuses on three large eruptions that produced different levels and durations of effusive and explosive behavior at Kliuchevskoi. Before each of these eruptions, TIR spaceborne sensors detected thermal anomalies (i.e., pixels with brightness temperatures > 2 °C above the background temperature). High-temporal, low-spatial resolution (i.e., hours and 1 km) AVHRR data are ideal for detecting large thermal events occurring over shorter time scales, such as the hot material ejected following strombolian eruptions. In contrast, high-spatial, low-temporal resolution (i.e., days to weeks and 90 m) ASTER data enables the detection of much lower thermal activity; however, activity with a shorter duration will commonly be missed. ASTER and AVHRR data are combined to track low-level anomalies months prior to an eruption and higher-energy events prior to large eruptions to develop a monitoring approach for this eruption style. Results show that strombolian eruptions produce enough energy in the pre-eruptive phase to trigger an AVHRR detection. Paired with ASTER data, the results can be extended back in time to develop a precursory timeline, which captures subtle changes in volcanic activity that would commonly go unnoticed in a single data set. Although these precursors may be volcano and eruption specific, the now sixteen-year-old database from ASTER allows this methodology to be repeatable at other volcanoes to establish a quantitative precursory baseline, which would be an improvement over current eruption classifications.
NASA Astrophysics Data System (ADS)
Said, Yahia A.; Petropoulos, George; Srivastava, Prashant K.
2014-05-01
Information on burned area estimates is of key importance in environmental and ecological studies as well as in fire management including damage assessment and planning of post-fire recovery of affected areas. Earth Observation (EO) provides today the most efficient way in obtaining such information in a rapid, consistent and cost-effective manner. The present study aimed at exploring the effect of topographic correction to the burnt area delineation in conditions characteristic of a Mediterranean environment using ASTER high resolution multispectral remotely sensed imagery. A further objective was to investigate the potential added-value of the inclusion of the shortwave infrared (SWIR) bands in improving the retrievals of burned area cartography from the ASTER data. In particular the capability of the Maximum Likelihood (ML), the Support Vector Machines (SVMs) and Object-based Image Analysis (OBIA) classification techniques has been examined herein for the purposes of our study. As a case study is used a typical Mediterranean site on which a fire event occurred in Greece during the summer of 2007, for which post-fire ASTER imagery has been acquired. Our results indicated that the combination of topographic correction (ortho-rectification) with the inclusion of the SWIR bands returned the most accurate results in terms of burnt area mapping. In terms of image processing methods, OBIA showed the best results and found as the most promising approach for burned area mapping with least absolute difference from the validation polygon followed by SVM and ML. All in all, our study provides an important contribution to the understanding of the capability of high resolution imagery such as that from ASTER sensor and corroborates the usefulness particularly of the topographic correction as an image processing step when in delineating the burnt areas from such data. It also provides further evidence that use of EO technology can offer an effective practical tool for the extent of ecosystem destruction from wildfires, providing extremely useful information in co-ordinating efforts for the recovery of fire-affected ecosystems after wildfire. Keywords: Remote Sensing, ASTER, Burned area mapping, Maximum Likelihood, Support Vector Machines, Object-based image analysis, Greece
Michael J. Falkowski; Paul Gessler; Penelope Morgan; Alistair M. S. Smith; Andrew T. Hudak
2004-01-01
Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection...
Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling
Michael J. Falkowski; Paul E. Gessler; Penelope Morgan; Andrew T. Hudak; Alistair M. S. Smith
2005-01-01
Land managers need cost-effective methods for mapping and characterizing forest fuels quickly and accurately. The launch of satellite sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the advanced spaceborne thermal emission and...
NOAA Photo Library - NOAA In Space Collection/Space Vehicles
Collections page. Takes you to the search page. Takes you to the Links page. NOAA In Space space vehicles banner How do you get cameras, infra-red sensors, microwave sensors into space so they can observe the the above option to view ALL current images. NOAA In Space ~ Space Vehicles Album drawing of TIROS
NASA Technical Reports Server (NTRS)
Matsunaga, Tsuneo
1993-01-01
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a Japanese future imaging sensor which has five channels in thermal infrared (TIR) region. To extract spectral emissivity information from ASTER and/or TIMS data, various temperature-emissivity (T-E) separation methods have been developed to date. Most of them require assumptions on surface emissivity, in which emissivity measured in a laboratory is often used instead of in-situ pixel-averaged emissivity. But if these two emissivities are different, accuracies of separated emissivity and surface temperature are reduced. In this study, the difference between laboratory and in-situ pixel-averaged emissivity and its effect on T-E separation are discussed. TIMS data of an area containing both rocks and vegetation were also processed to retrieve emissivity spectra using two T-E separation methods.
Sensor Research Targets Smart Building Technology Using Radio-Frequency
a battery-free radio-frequency identification (RFID) sensor network with spatiotemporal pattern network based data fusion system for human presence sensing, with ARPA-E awarding the team $2 million over
NASA Astrophysics Data System (ADS)
Roy, Priyom; Guha, Arindam; Kumar, K. Vinod
2015-07-01
Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.
NASA Astrophysics Data System (ADS)
Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.
2014-09-01
Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.
Preflight and in-flight calibration plan for ASTER
Ono, A.; Sakuma, F.; Arai, K.; Yamaguchi, Y.; Fujisada, H.; Slater, P.N.; Thome, K.J.; Palluconi, Frank Don; Kieffer, H.H.
1996-01-01
Preflight and in-flight radiometric calibration plans are described for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) that is a multispectral optical imager of high spatial resolution. It is designed for the remote sensing from orbit of land surfaces and clouds, and is expected to be launched in 1998 on NASA's EOS AM-1 spacecraft. ASTER acquires images in three separate spectral regions, the visible and near-infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR) with three imaging radiometer subsystems. The absolute radiometric accuracy is required to be better than 4% for VNIR and SWIR radiance measurements and 1 to 3 K, depending on the temperature regions from 200 to 370 K, for TIR temperature measurements. A reference beam is introduced at the entrance pupil of each imaging radiometer to provide the in-flight calibration Thus, the ASTER instrument includes internal onboard calibration units that comprise incandescent lamps for the VNIR and SWIR and a blackbody radiator for the TIR as reference sources. The calibration reliability of the VNIR and SWIR is enhanced by a dual system of onboard calibration units as well as by high-stability halogen lamps. A ground calibration system of spectral radiances traceable to fixed-point blackbodies is used for the preflight VNIR and SWIR calibration. Because of the possibility of nonuniform contamination effects on the partial-aperture onboard calibration, it is desirable to check their results with respect to other methods. Reflectance- and radiance-based vicarious methods have been developed for this purpose. These, and methods involving in-flight cross-calibration with other sensors are also described.
NASA Astrophysics Data System (ADS)
Batirov, R.; Yakovlev, A.
In 1999 the TERRA orbital platform was launched. It is intended for space monitoring of various natural objects on a surface of the Earth and in particular of glaciers. Onboard the orbital platform the Japanese sensor ASTER was installed. Characteristics of the sensor give unique possibility for monitoring glaciers from the space. In the given work the cataloguing of glaciers of some river basins of Alai, Turkestan and Zeravshan ranges of Gissar--Alai mountain system, which in turn is a part of Pamir--Alai mountain system, was fulfilled. In particular, the cataloguing of glaciers of Shahimardan, Sokh, Isfara river basins, and also the basin of Zeravshan glacier was fulfilled. Thematic processing of the images was implemented for the range of the images on the date of the survey -- second half of August 2001--2002 years. The images were granted in the framework of Aster Research Opportunity Scheme (ARO) of Japanese space agency ERSDAC (``Monitoring of mountain glaciers and glacial lakes using ASTER space images'', contract AP-0290). Previous data of glaciation of this region were obtained as per 1957 and 1980 with application of materials of aerial photography (1957) and analogue space images (1980). The ASTER sensor makes survey an earth surface in 14 bands of a spectrum of electromagnetic waves radiated by the Sun -- from the visible up to the thermal infrared. Thus the following three bands are optimal for extraction of glaciological information: Band 1 (visible green) -- 0.52-0.60 microns; Band 2 (visible red) -- 0.63-0.69 microns; Band 3N (short-range infrared) -- 0.78-0.86 microns. The spatial resolution of these bands is 15 m, and radiometric resolution is 8 bits. Such geometrical and radiometric resolutions provide acceptable accuracy of definition of glaciers. At composition of the computer image in a pseudo-color, the red color was correlated with the band1, the green with the band 2 and the dark blue with the band 3N. Such selection of the bands gives the best combination of colors for recognition of the glaciers. According to data for 2001 the aggregate area of the glaciers of Gissar-Alai study region amounted to 482.5 km2. In 1980 and 1957 years the aggregate area of the glaciers of these basins was 511.4 and 572.0 km2, accordingly. In spite of global climate warming which occurs from the middle of 20 century and till the present time, there is a fact that for period from 1980 to 2001 years the mean annual rates of degradation of the glaciation are, approximately, on two times lower than for the period from 1957 to 1980 years, 0.27 % per a year and 0.46 % per a year, accordingly. The prevalent climatic situation in the second half of 20 century appears extremely unfavorable for existence of glaciation of the Gissar-Alai and as a whole for the Pamir--Alai. For last 45 years the glaciers of the study river basins lost about 16 % of the initial area.
A Unified and Coherent Land Surface Emissivity Earth System Data Record
NASA Astrophysics Data System (ADS)
Knuteson, R. O.; Borbas, E. E.; Hulley, G. C.; Hook, S. J.; Anderson, M. C.; Pinker, R. T.; Hain, C.; Guillevic, P. C.
2014-12-01
Land Surface Temperature and Emissivity (LST&E) data are essential for a wide variety of studies from calculating the evapo-transpiration of plant canopies to retrieving atmospheric water vapor. LST&E products are generated from data acquired by sensors in low Earth orbit (LEO) and by sensors in geostationary Earth orbit (GEO). Although these products represent the same measure, they are produced at different spatial, spectral and temporal resolutions using different algorithms. The different approaches used to retrieve the temperatures and emissivities result in discrepancies and inconsistencies between the different products. NASA has identified a major need to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. This poster will introduce the land surface emissivity product of the NASA MEASUREs project called A Unified and Coherent Land Surface Temperature and Emissivity (LST&E) Earth System Data Record (ESDR). To develop a unified high spectral resolution emissivity database, the MODIS baseline-fit emissivity database (MODBF) produced at the University of Wisconsin-Madison and the ASTER Global Emissivity Database (ASTER GED) produced at JPL will be merged. The unified Emissivity ESDR will be produced globally at 5km in mean monthly time-steps and for 12 bands from 3.6-14.3 micron and extended to 417 bands using a PC regression approach. The poster will introduce this data product. LST&E is a critical ESDR for a wide variety of studies in particular ecosystem and climate modeling.
Characterization monitoring & sensor technology crosscutting program
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-08-01
The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).
Safety, Codes, and Standards | Hydrogen and Fuel Cells | NREL
to develop and test hydrogen sensor technologies. In addition to partnering with organizations in the and Validation of Prototype Hydrogen Sensors, P.K. Sekhar, J. Zhou, M.B. Post, L. Woo, W.J. Buttner , M.B. Post, C. Rivkin, R. Burgess, and W.J. Buttner, International Journal of Hydrogen Energy (March
Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval
Liu, Desheng; Pu, Ruiliang
2008-01-01
Land surface temperature (LST) retrieved from satellite thermal sensors often consists of mixed temperature components. Retrieving subpixel LST is therefore needed in various environmental and ecological studies. In this paper, we developed two methods for downscaling coarse resolution thermal infrared (TIR) radiance for the purpose of subpixel temperature retrieval. The first method was developed on the basis of a scale-invariant physical model on TIR radiance. The second method was based on a statistical relationship between TIR radiance and land cover fraction at high spatial resolution. The two methods were applied to downscale simulated 990-m ASTER TIR data to 90-m resolution. When validated against the original 90-m ASTER TIR data, the results revealed that both downscaling methods were successful in capturing the general patterns of the original data and resolving considerable spatial details. Further quantitative assessments indicated a strong agreement between the true values and the estimated values by both methods. PMID:27879844
Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval.
Liu, Desheng; Pu, Ruiliang
2008-04-06
Land surface temperature (LST) retrieved from satellite thermal sensors often consists of mixed temperature components. Retrieving subpixel LST is therefore needed in various environmental and ecological studies. In this paper, we developed two methods for downscaling coarse resolution thermal infrared (TIR) radiance for the purpose of subpixel temperature retrieval. The first method was developed on the basis of a scale-invariant physical model on TIR radiance. The second method was based on a statistical relationship between TIR radiance and land cover fraction at high spatial resolution. The two methods were applied to downscale simulated 990-m ASTER TIR data to 90-m resolution. When validated against the original 90-m ASTER TIR data, the results revealed that both downscaling methods were successful in capturing the general patterns of the original data and resolving considerable spatial details. Further quantitative assessments indicated a strong agreement between the true values and the estimated values by both methods.
Thermal airborne multispectral aster simulator and its preliminary results
NASA Astrophysics Data System (ADS)
Mills, F.; Kannari, Y.; Watanabe, H.; Sano, M.; Chang, S. H.
1994-03-01
An Airborne ASTER Simulator (AAS) is being developed for the Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research (GER) Corporation. The first test flights of the AAS were over Cuprite, Nevada; Long Valley, California; and Death Valley, California, in December 1991. Preliminary laboratory tests at NASA's Stennis Space Center (SSC) were completed in April 1992. The results of the these tests indicate the AAS can discriminate between silicate and non-silicate rocks. The improvements planned for the next two years may give a spectral Full-Width at Half-Maximum (FWHM) of 0.3 μm and NEΔT of 0.2 - 0.5°K. The AAS has the potential to become a good tool for airborne TIR research and can be used for simulations of future satellite-borne TIR sensors. Flight tests over Cuprite, Nevada, and Castaic Lake, California, are planned for October-December 1992.
ASTER Images San Francisco Bay Area
NASA Technical Reports Server (NTRS)
2000-01-01
This image of the San Francisco Bay region was acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.
Image: This image covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of bands portrays vegetation in red, and urban areas in gray. Sediment in the Suisun Bay, San Pablo Bay, San Francisco Bay, and the Pacific Ocean shows up as lighter shades of blue. Along the west coast of the San Francisco Peninsula, strong surf can be seen as a white fringe along the shoreline. A powerful rip tide is visible extending westward from Daly City into the Pacific Ocean. In the lower right corner, the wetlands of the South San Francisco Bay National Wildlife Refuge appear as large dark blue and brown polygons. The high spatial resolution of ASTER allows fine detail to be observed in the scene. The main bridges of the area (San Mateo, San Francisco-Oakland Bay, Golden Gate, Richmond-San Rafael, Benicia-Martinez, and Carquinez) are easily picked out, connecting the different communities in the Bay area. Shadows of the towers along the Bay Bridge can be seen over the adjacent bay water. With enlargement the entire road network can be easily mapped; individual buildings are visible, including the shadows of the high-rises in downtown San Francisco.Inset: This enlargement of the San Francisco Airport highlights the high spatial resolution of ASTER. With further enlargement and careful examination, airplanes can be seen at the terminals.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.ASTER satellite observations for international disaster management
Duda, K.A.; Abrams, M.
2012-01-01
When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.
NASA Astrophysics Data System (ADS)
Ghrefat, Habes A.; Goodell, Philip C.
2011-08-01
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial-spectral-temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.
NASA Technical Reports Server (NTRS)
2001-01-01
This simulated natural color ASTER image in the German state of North Rhine Westphalia covers an area of 30 by 36 km, and was acquired on August 26, 2000. On the right side of the image are 3 enormous opencast coalmines. The Hambach opencast coal mine has recently been brought to full output capacity through the addition of the No. 293 giant bucket wheel excavator. This is the largest machine in the world; it is twice as long as a soccer field and as tall as a building with 30 floors. To uncover the 2.4 billion tons of brown coal (lignite) found at Hambach, five years were required to remove a 200-m-thick layer of waste sand and to redeposit it off site. The mine currently yields 30 million tons of lignite annually, with annual capacity scheduled to increase to 40 million tons in coming years.The image is centered at 51 degrees north latitude, 6.4 degrees east longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping and monitoring dynamic conditions and temporal change. Examples of applications include monitoring glacial advances and retreats, potentially active volcanoes, thermal pollution, and coral reef degradation; identifying crop stress; determining cloud morphology and physical properties; evaluating wetlands; mapping surface temperature of soils and geology; and measuring surface heat balance.Eruption of Shiveluch Volcano, Kamchatka, Russia
NASA Technical Reports Server (NTRS)
2001-01-01
On the night of June 4, 2001 ASTER captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 8028'. The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25 km ash plume, seen as a cold 'cloud' streaming from the summit. At least 60 large eruptions have occurred during the last 10,000 years; the largest historical eruptions were in 1854 and 1964. Because Kamchatka is located along the major aircraft routes between North America/Europe and the Far East, this area is constantly monitored for potential ash hazards to aircraft. The lower image is the same as the upper, except it has been color coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas.The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.College Fjord, Prince Williams Sound
NASA Technical Reports Server (NTRS)
2000-01-01
The College Fjord with its glaciers was imaged by ASTER on June 24, 2000.This image covers an area 20 kilometers (13 miles) wide and 24 kilometers (15 miles) long in three bands of the reflected visible and infrared wavelength region. College Fjord is located in Prince Williams Sound, east of Seward, Alaska. Vegetation is in red, and snow and ice are white and blue. Ice bergs calved off of the glaciers can be seen as white dots in the water. At the head of the fjord, Harvard Glacier (left) is one of the few advancing glaciers in the area; dark streaks on the glacier are medial moraines: rock and dirt that indicate the incorporated margins of merging glaciers. Yale Glacier to the right is retreating, exposing (now vegetated) bedrock where once there was ice. On the west edge of the fjord, several small glaciers enter the water. This fjord is a favorite stop for cruise ships plying Alaska's inland passage.This image is located at 61.2 degrees north latitude and 147.7 degrees west longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.Salt Lake City, Utah, Winter 2001
NASA Technical Reports Server (NTRS)
2001-01-01
The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.
This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 63.5 x 123.3 km (38.1 x 74 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: February 8, 2001NASA Technical Reports Server (NTRS)
2001-01-01
The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.
This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 63.5 x 123.3 km (38.1 x 74 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 28, 2000Comparative mineral mapping in the Colorado Mineral Belt using AVIRIS and ASTER remote sensing data
Rockwell, Barnaby W.
2013-01-01
This report presents results of interpretation of spectral remote sensing data covering the eastern Colorado Mineral Belt in central Colorado, USA, acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors. This study was part of a multidisciplinary mapping and data integration project at the U.S. Geological Survey that focused on long-term resource planning by land-managing entities in Colorado. The map products were designed primarily for the regional mapping and characterization of exposed surface mineralogy, including that related to hydrothermal alteration and supergene weathering of pyritic rocks. Alteration type was modeled from identified minerals based on standard definitions of alteration mineral assemblages. Vegetation was identified using the ASTER data and subdivided based on per-pixel chlorophyll content (depth of 0.68 micrometer absorption band) and dryness (fit and depth of leaf biochemical absorptions in the shortwave infrared spectral region). The vegetation results can be used to estimate the abundance of fire fuels at the time of data acquisition (2002 and 2003). The AVIRIS- and ASTER-derived mineral mapping results can be readily compared using the toggleable layers in the GeoPDF file, and by using the provided GIS-ready raster datasets. The results relating to mineral occurrence and distribution were an important source of data for studies documenting the effects of mining and un-mined, altered rocks on aquatic ecosystems at the watershed level. These studies demonstrated a high correlation between metal concentrations in streams and the presence of hydrothermal alteration and (or) pyritic mine waste as determined by analysis of the map products presented herein. The mineral mapping results were also used to delineate permissive areas for various mineral deposit types.
NASA Astrophysics Data System (ADS)
Cramer, Timothy F.
The Desert National Wildlife Refuge in southern Nevada has been selected for remote sensing analysis as part of a mineral assessment required for renewal of mineral withdrawal. The area of interest is nearly 3,000 km2 and covers portions of 5 different ranges with little to no infrastructure. Assessing such a large area using traditional field methods is very time intensive and expensive. The study described here serves as a pilot study, testing the capability of Landsat ETM+ and ASTER satellite imagery to remotely identify areas of potentially mineralized lithologies. This is done by generating a number of band ratio, band index, and mineral likelihood maps identifying 5 key mineral classes (silica, clay, iron oxide, dolomite and calcite), which commonly have patterned zonation around ore deposits. When compiled with available geologic and geochemical data sets, these intermediate products can provide guidance for targeted field evaluation and exploration. Field observations and spectral data collected in the laboratory can then be integrated with ASTER imagery to guide a Spectral Angle Mapper algorithm to generate a distribution map of the five mineral classes. The methods presented found the ASTER platform to be capable of remotely assessing the distribution of various lithologies and the mineral potential of large, remote areas. Furthermore areas of both high and low potential for ore deposits can be identified and used to guide field evaluation and exploration. Remote sensing studies of this caliber can be performed relatively quickly and inexpensively resulting in datasets, which can result in more accurate mapping and the identification of both lithologic boundaries and previously unidentified alteration associated with mineralization. Future mineral assessments and exploration activity should consider similar studies prior to field work.
NASA Technical Reports Server (NTRS)
2002-01-01
The Barringer Meteorite Crater (also known as 'Meteor Crater') is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset.
This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 15 x 30 km (9 x 18 miles) Location: 35.1 deg. North lat., 111.0 deg. West long. Orientation: Northeast at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 17, 2001Downscaling of land surface temperatures from SEVIRI
NASA Astrophysics Data System (ADS)
Bechtel, B.; Zaksek, K.
2013-12-01
Land surface temperature (LST) determines the radiance emitted by the surface and hence is an important boundary condition of the energy balance. In urban areas, detailed knowledge about the diurnal cycle in LST can contribute to understand the urban heat island (UHI). Although the increased surface temperatures compared to the surrounding rural areas (surface urban heat island, SUHI) have been measured by satellites and analysed for several decades, an operational SUHI monitoring is still not available due to the lack of sensors with appropriate spatiotemporal resolution. While sensors on polar orbiting satellites are still restricted to approx. 100 m spatial resolution and coarse temporal coverage (about 1-2 weeks), sensors on geostationary platforms have high temporal (several times per hour) and poor spatial resolution (>3 km). Further, all polar orbiting satellites have a similar equator crossing time and hence the SUHI can at best be observed at two times a day. A downscaling DS scheme for LST from the Spinning Enhanced Visible Infra-Red Imager (SEVIRI) sensor onboard the geostationary meteorological Meteosat 8 to spatial resolutions between 100 and 1000 m was developed and tested for Hamburg. Various data were tested as predictors, including multispectral data and derived indices, morphological parameters from interferometric SAR and multitemporal thermal data. All predictors were upscaled to the coarse resolution approximating the point spread function of SEVIRI. Then empirical relationships between the predictors and LST were derived which are then transferred to the high resolution domain, assuming they are scale invariant. For validation LST data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Enhanced Thematic Mapper Plus (ETM+) for two dates were used. Aggregated parameters from multi-temporal thermal data (in particular annual cycle parameters and principal components) proved particularly suitable. The results for the highest resolution of 100 m showed a high explained variance (R^2 = 0.71) and relatively low root mean square errors (RMSE = 2.2 K) for the ASTER scene and slightly higher errors (R^2 = 0.73, RMSE = 2.53) for the ETM+ scene. A considerable percentage of the error was systematic due to the different viewing geometry of the sensors (the high resolution LST was overestimated about 1.3 K for ASTER and 0.66 K for ETM+). This shows that DS of SEVIRI LST is possible up to a resolution of 100 m for urban areas and that multitemporal thermal data are particularly suitable as predictors. Further, the scheme was used to produce an entire diurnal cycle in high resolution. While essential characteristics of the diurnal cycle were well reproduced, certain artefacts resulting from the multitemporal predictors from different seasons (like phenology and different water surface temperatures) were generated. Eventually, the bias and its dependence on the viewing geometry and topography are currently investigated.
NON-TOXIC MELANOMA THERAPY BY A NOVEL TUBULIN-BINDING AGENT
Aneja, Ritu; Asress, Seneshaw; Dhiman, Neerupma; Awasthi, Anshumali; Rida, Padmashree C.G.; Arora, Sudarshan K.; Zhou, Jun; Glass, Jonathan D.; Joshi, Harish C.
2009-01-01
(S)-3-((R)-9-bromo-4-methoxy-6-methyl-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquino-lin-5-yl)-6,7-dimethoxyisobenzofuran-1(3H)-one (EM011) is a tubulin-binding agent with significant anticancer activity. Here we show that EM011 modulates microtubule dynamics at concentrations that do not alter the total polymer mass of tubulin. In particular, EM011 decreases the transition frequencies between growth and shortening phases and increases the duration microtubules spend in an idle ‘pause’ state. Using B16LS9 murine melanoma cells, we show that EM011 briefly arrests cell-cycle progression at the G2/M phase by formation of multiple aster spindles. An aberrant mitotic exit without cytokinesis then occurs, leading to the accumulation of abnormal multinucleated cells prior to apoptosis. Our pharmacokinetic studies conformed to a linear dose-response relationship upto 150 mg/kg. However, non-linearity was observed at 300 mg/kg. In a syngeneic murine model of subcutaneous melanoma, better antitumor responses were seen at 150 mg/kg compared to 300 mg/kg of EM011. Unlike currently available chemotherapeutics, EM011 is non-toxic to normal tissues and most importantly, does not cause any immunosuppression and neurotoxicity. Our data thus warrant a clinical evaluation of EM011 for melanoma therapy. PMID:19626589
Li, Wei-Ping; Yang, Fu-Sheng; Jivkova, Todorka; Yin, Gen-Shen
2012-01-01
Background and Aims The classification and phylogeny of Eurasian (EA) Aster (Asterinae, Astereae, Asteraceae) remain poorly resolved. Some taxonomists adopt a broad definition of EA Aster, whereas others favour a narrow generic concept. The present study aims to delimit EA Aster sensu stricto (s.s.), elucidate the phylogenetic relationships of EA Aster s.s. and segregate genera. Methods The internal and external transcribed spacers of nuclear ribosomal DNA and the plastid DNA trnL-F region were used to reconstruct the phylogeny of EA Aster through maximum parsimony and Bayesian analyses. Key Results The analyses strongly support an Aster clade including the genera Sheareria, Rhynchospermum, Kalimeris (excluding Kalimeris longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron. Many well-recognized species of Chinese Aster s.s. lie outside of the Aster clade. Conclusions The results reveal that EA Aster s.s. is both paraphyletic and polyphyletic. Sheareria, Rhynchospermum, Kalimeris (excluding K. longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron should be included in Aster, whereas many species of Chinese Aster s.s. should be excluded. The recircumscribed Aster should be divided into two subgenera and nine sections. Kalimeris longipetiolata, Aster batangensis, A. ser. Albescentes, A. series Hersileoides, a two-species group composed of A. senecioides and A. fuscescens, and a six-species group including A. asteroides, should be elevated to generic level. With the Aster clade, they belong to the Australasian lineages. The generic status of Callistephus should be maintained. Whether Galatella (including Crinitina) and Tripolium should remain as genera or be merged into a single genus remains to be determined. In addition, the taxonomic status of A. auriculatus and the A. pycnophyllus–A. panduratus clade remains unresolved, and the systematic position of some segregates of EA Aster requires further study. PMID:22517812
NASA Technical Reports Server (NTRS)
2001-01-01
This image of the Nyiragonga volcano eruption in the Congo was acquired on January 28, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.
Image: A river of molten rock poured from the Nyiragongo volcano in the Congo on January 18, 2002, a day after it erupted, killing dozens, swallowing buildings and forcing hundreds of thousands to flee the town of Goma. The flow continued into Lake Kivu. The lave flows are depicted in red on the image indicating they are still hot. Two of them flowed south form the volcano's summit and went through the town of Goma. Another flow can be seen at the top of the image, flowing towards the northwest. One of Africa's most notable volcanoes, Nyiragongo contained an active lava lake in its deep summit crater that drained catastrophically through its outer flanks in 1977. Extremely fluid, fast-moving lava flows draining from the summit lava lake in 1977 killed 50 to 100 people, and several villages were destroyed. The image covers an area of 21 x 24 km and combines a thermal band in red, and two infrared bands in green and blue.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Rockwell, Barnaby W.
2009-01-01
This report presents and compares mineral and vegetation maps of parts of the Marysvale volcanic field in west-central Utah that were published in a recent paper describing the White Horse replacement alunite deposit. Detailed, field-verified maps of the deposit were produced from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired from a low-altitude Twin Otter turboprop airborne platform. Reconnaissance-level maps of surrounding areas including the central and northern Tushar Mountains, Pahvant Range, and portions of the Sevier Plateau to the east were produced from visible, near-infrared, and shortwave-infrared data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor carried aboard the Terra satellite platform. These maps are also compared to a previously published mineral map of the same area generated from AVIRIS data acquired from the high-altitude NASA ER-2 jet platform. All of the maps were generated by similar analysis methods, enabling the direct comparison of the spatial scale and mineral composition of surface geologic features that can be identified using the three types of remote sensing data. The high spatial (2-17 meter) and spectral (224 bands) resolution AVIRIS data can be used to generate detailed mineral and vegetation maps suitable for geologic and geoenvironmental studies of individual deposits, mines, and smelters. The lower spatial (15-30 meter) and spectral (9 bands) resolution ASTER data are better suited to less detailed mineralogical studies of lithology and alteration across entire hydrothermal systems and mining districts, including regional mineral resource and geoenvironmental assessments. The results presented here demonstrate that minerals and mineral mixtures can be directly identified using AVIRIS and ASTER data to elucidate spatial patterns of mineralogic zonation; AVIRIS data can enable the generation of maps with significantly greater detail and accuracy. The vegetation mapping results suggest that ASTER data may provide an efficient alternative to spectroscopic data for studies of burn severity after wildland fires. A new, semiautomated methodology for the analysis of ASTER data is presented that is currently being applied to ASTER data coverage of large areas for regional assessments of mineral-resource potential and mineral-environmental effects. All maps are presented in a variety of digital formats, including jpeg, pdf, and ERDAS Imagine (.img). The Imagine format files are georeferenced and suitable for viewing with other geospatial data in Imagine, ArcGIS, and ENVI. The mineral and vegetation maps are attributed so that the material identified for a pixel can be determined easily in ArcMap by using the Identify tool and in Imagine by using the Inquire Cursor tool.
Flight model performances of HISUI hyperspectral sensor onboard ISS (International Space Station)
NASA Astrophysics Data System (ADS)
Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira
2016-10-01
Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.
Flight model of HISUI hyperspectral sensor onboard ISS (International Space Station)
NASA Astrophysics Data System (ADS)
Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira
2017-09-01
Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared wavelength region. The sensor is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of a Flight Model (FM) of HISUI hyperspectral sensor have been completed in the beginning of 2017. Simultaneously, the development of JEMExternal Facility (EF) Payload system for the instrument is being carried out. The system includes the structure, the thermal control sub-system and the electrical sub-system. The tests results of flight model, such as optical performance, optical distortion and radiometric performance are reported.
Videos | Argonne National Laboratory
science --Agent-based modeling --Applied mathematics --Artificial intelligence --Cloud computing management -Intelligence & counterterrorrism -Vulnerability assessment -Sensors & detectors Programs
Physical basis of large microtubule aster growth
Ishihara, Keisuke; Korolev, Kirill S; Mitchison, Timothy J
2016-01-01
Microtubule asters - radial arrays of microtubules organized by centrosomes - play a fundamental role in the spatial coordination of animal cells. The standard model of aster growth assumes a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we recently found evidence for non-centrosomal microtubule nucleation. Here, we combine autocatalytic nucleation and polymerization dynamics to develop a biophysical model of aster growth. Our model predicts that asters expand as traveling waves and recapitulates all major aspects of aster growth. With increasing nucleation rate, the model predicts an explosive transition from stationary to growing asters with a discontinuous jump of the aster velocity to a nonzero value. Experiments in frog egg extract confirm the main theoretical predictions. Our results suggest that asters observed in large fish and amphibian eggs are a meshwork of short, unstable microtubules maintained by autocatalytic nucleation and provide a paradigm for the assembly of robust and evolvable polymer networks. DOI: http://dx.doi.org/10.7554/eLife.19145.001 PMID:27892852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don, S; Cormack, R; Viswanathan, A
Purpose: To present a programmable robotic system for the accurate and fast deployment of an electromagnetic (EM) sensor for brachytherapy catheter localization. Methods: A robotic system for deployment of an EM sensor was designed and built. The system was programmed to increment the sensor position at specified time and space intervals. Sensor delivery accuracy was measured in a phantom using the localization of the EM sensor and tested in different environmental conditions. Accuracy was tested by measuring the distance between the physical locations reached by the sensor (measured by the EM tracker) and the intended programmed locations. Results: The systemmore » consisted of a stepper motor connected to drive wheels (that grip the cable to move the sensor) and a series of guides to connect to a brachytherapy transfer tube, all controlled by a programmable Arduino microprocessor. The total cost for parts was <$300. The positional accuracy of the sensor location was within 1 mm of the expected position provided by the motorized guide system. Acquisition speed to localize a brachytherapy catheter with 20 cm of active length was 10 seconds. The current design showed some cable slip and warping depending on environment temperature. Conclusion: The use of EM tracking for the localization of brachytherapy catheters has been previously demonstrated. Efficient data acquisition and artifact reduction requires fast and accurate deployment of an EM sensor in consistent, repeatable patterns, which cannot practically be achieved manually. The design of an inexpensive, programmable robot allowing for the precise deployment of stepping patterns was presented, and a prototype was built. Further engineering is necessary to ensure that the device provides efficient independent localization of brachytherapy catheters. This research was funded by the Kaye Family Award.« less
USDA-ARS?s Scientific Manuscript database
Many soil water sensors, especially those based on electromagnetic (EM) properties of soils, have been shown to be unsuitable in salt-affected or clayey soils. Most available soil water content sensors are of this EM type, particularly the so-called capacitance sensors. They often over estimate and ...
"Newer, bigger, older" with NASA GIBS
NASA Astrophysics Data System (ADS)
Schmaltz, J. E.; Alarcon, C.; Boller, R. A.; Cechini, M. F.; De Cesare, C.; De Luca, A. P.; Hall, J. R.; Huang, T.; King, J.; Plesea, L.; Pressley, N. N.; Roberts, J. T.; Rodriguez, J. D.; Thompson, C. K.
2015-12-01
The year 2015 witnessed a vast expansion of NASA's Global Imagery Browse Services (GIBS) in a number of dimensions. Near real time imagery was added from a slew of additional sensors including GPM, SMAP, AMSR2, VIIRS, CERES, MOPITT, SSMI, and Aquarius, many of these representing measurements that had not been available in GIBS previously. The SMAP layers are also pioneering a new capability for GIBS to display individual granules. Higher resolution imagery, up to 30m/pixel, is now available in GIBS for some sensors, including ASTER GDEM and L1T and Web-Enabled Landsat Data (WELD). The imagery record is being extended into the past with the entire record of data from MODIS and AMSR-E reprocessing campaigns.
USDA-ARS?s Scientific Manuscript database
The aster yellows (AY) index is used to prescribe insecticide sprays that target Macrosteles quadrilineatus, or aster leafhopper (ALH), the vector of the aster yellows phytoplasma (AYp). The AY index metric is the product of the proportion of infective ALHs and the relative ALH population size at a ...
ASTER Images San Francisco Bay Area
NASA Technical Reports Server (NTRS)
2000-01-01
These images of the San Francisco Bay region were acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. Each covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet.
Upper Left: The color infrared composite uses bands in the visible and reflected infrared. Vegetation is red, urban areas are gray; sediment in the bays shows up as lighter shades of blue. Thanks to the 15 meter (50-foot) spatial resolution, shadows of the towers along the Bay Bridge can be seen.Upper right: A composite of bands in the short wave infrared displays differences in soils and rocks in the mountainous areas. Even though these regions appear entirely vegetated in the visible, enough surface shows through openings in the vegetation to allow the ground to be imaged.Lower left: This composite of multispectral thermal bands shows differences in urban materials in varying colors. Separation of materials is due to differences in thermal emission properties, analogous to colors in the visible.Lower right: This is a color coded temperature image of water temperature, derived from the thermal bands. Warm waters are in white and yellow, colder waters are blue. Suisun Bay in the upper right is fed directly from the cold Sacramento River. As the water flows through San Pablo and San Francisco Bays on the way to the Pacific, the waters warm up.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan
Chirico, Peter G.; Warner, Michael B.
2007-01-01
INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and southeastern-facing slopes. In these areas, holes, large pits, and spikes were generated by the software during the correlation process and the automatic interpolation method. To eliminate these problems, overlapping DEMs were generated and filtered using a progressive morphologic filter. The quadrangles used to delineate the DEMs in the publication were derived from the Afghan Geodesy and Cartography Head Office's (AGCHO) 1:100,000-scale maps series quadrangles. Each DEM was clipped and assigned a name according to the associated AGCHO quadrangle name. The geospatial data included in this publication are intended to be used with any GIS software packages including, but not limited to, ESRI's ArcGIS and ERDAS IMAGINE.
2017-12-08
Salt Lake City, Utah, Winter 2001 The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake. This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. Image credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Bioenergetics | Bioenergy | NREL
technologies, and working to understand the capture of solar energy in photosynthetic systems and the and attached to sensors, hoses, and valves Photosynthetic Energy Transduction Woman working with a
NASA Astrophysics Data System (ADS)
Abrams, Michael; Tsu, Hiroji; Hulley, Glynn; Iwao, Koki; Pieri, David; Cudahy, Tom; Kargel, Jeffrey
2015-06-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 15-channel imaging instrument operating on NASA's Terra satellite. A joint project between the U.S. National Aeronautics and Space Administration and Japan's Ministry of Economy, Trade, and Industry, ASTER has been acquiring data for 15 years, since March 2000. The archive now contains over 2.8 million scenes; for the majority of them, a stereo pair was collected using nadir and backward telescopes imaging in the NIR wavelength. The majority of users require only a few to a few dozen scenes for their work. Studies have ranged over numerous scientific disciplines, and many practical applications have benefited from ASTER's unique data. A few researchers have been able to mine the entire ASTER archive, that is now global in extent due to the long duration of the mission. Six examples of global products are described in this contribution: the ASTER Global Digital Elevation Model (GDEM), the most complete, highest resolution DEM available to all users; the ASTER Emissivity Database (ASTER GED), a global 5-band emissivity map of the land surface; the ASTER Global Urban Area Map (AGURAM), a 15-m resolution database of over 3500 cities; the ASTER Volcano Archive (AVA), an archive of over 1500 active volcanoes; ASTER Geoscience products of the continent of Australia; and the Global Ice Monitoring from Space (GLIMS) project.
NASA Technical Reports Server (NTRS)
Globus, Al; Biegel, Bryan A.; Traugott, Steve
2004-01-01
AsterAnts is a concept calling for a fleet of solar sail powered spacecraft to retrieve large numbers of small (1/2-1 meter diameter) Near Earth Objects (NEOs) for orbital processing. AsterAnts could use the International Space Station (ISS) for NEO processing, solar sail construction, and to test NEO capture hardware. Solar sails constructed on orbit are expected to have substantially better performance than their ground built counterparts [Wright 1992]. Furthermore, solar sails may be used to hold geosynchronous communication satellites out-of-plane [Forward 1981] increasing the total number of slots by at least a factor of three. potentially generating $2 billion worth of orbital real estate over North America alone. NEOs are believed to contain large quantities of water, carbon, other life-support materials and metals. Thus. with proper processing, NEO materials could in principle be used to resupply the ISS, produce rocket propellant, manufacture tools, and build additional ISS working space. Unlike proposals requiring massive facilities, such as lunar bases, before returning any extraterrestrial larger than a typical inter-planetary mission. Furthermore, AsterAnts could be scaled up to deliver large amounts of material by building many copies of the same spacecraft, thereby achieving manufacturing economies of scale. Because AsterAnts would capture NEOs whole, NEO composition details, which are generally poorly characterized, are relatively unimportant and no complex extraction equipment is necessary. In combination with a materials processing facility at the ISS, AsterAnts might inaugurate an era of large-scale orbital construction using extraterrestrial materials.
Therans-3-enoic acids ofAster alpinus andArctium minus seed oils.
Morris, L J; Marshall, M O; Hammond, E W
1968-01-01
Thetrans-3-enoic acids ofAster alpinus (dwarf aster, rock aster) andArctium minus (burdock) seed oils have been isolated and characterized.Arctium seed oil containstrans-3,cis-9,cis-12-octadecatrienoic acid (9.9%), andAster oil containstrans-3-hexadecenoic (7.1%),rans-3-octadecenoic (1.9%),trans-3,cis-9-octadecadienoic (3.0%),a ndtrans-3,cis-9,cis-12-octadecatrienoic (13.7%) acids.Aster oil also has an epoxy acid as a minor constituent (ca. 2.0%), which has been identified ascis-9,10-epoxy-cis-12-octadecenoic acid.
Particle Engineering Research Center at the University of Florida
Sensors (CNBS) PERC Setup * Login to PERC Computers Form * PERC Key Form Search Site Search Source Search SiteSearch Textbox Search Site Search Search Frequently Used Pages News | Events | Directory | MyUFL | Campus
Cytoplasmic asters are required for progression past the first cell cycle in cloned mouse embryos.
Miki, Hiromi; Inoue, Kimiko; Ogonuki, Narumi; Mochida, Keiji; Nagashima, Hiroshi; Baba, Tadashi; Ogura, Atsuo
2004-12-01
Unlike the oocytes of most other animal species, unfertilized murine oocytes contain cytoplasmic asters, which act as microtubule-organizing centers following fertilization. This study examined the role of asters during the first cell cycle of mouse nuclear transfer (NT) embryos. NT was performed by intracytoplasmic injection of cumulus cells. Cytoplasmic asters were localized by staining with an anti-alpha-tubulin antibody. Enucleation of MII oocytes caused no significant change in the number of cytoplasmic asters. The number of asters decreased after transfer of the donor nuclei into these enucleated oocytes, probably because some of the asters participated in the formation of the spindle that anchors the donor chromosomes. The cytoplasmic asters became undetectable within 2 h of oocyte activation, irrespective of the presence or absence of the donor chromosomes. After the standard NT protocol, a spindle-like structure persisted between the pseudopronuclei of these oocytes throughout the pronuclear stage. The asters reappeared shortly before the first mitosis and formed the mitotic spindle. When the donor nucleus was transferred into preactivated oocytes (delayed NT) that were devoid of free asters, the microtubules and microfilaments were distributed irregularly in the ooplasm and formed dense bundles within the cytoplasm. Thereafter, all of the delayed NT oocytes underwent fragmentation and arrested development. Treatment of these delayed NT oocytes with Taxol, which is a microtubule-assembling agent, resulted in the formation of several aster-like structures and reduced fragmentation. Some Taxol-treated oocytes completed the first cell cycle and developed further. This study demonstrates that cytoplasmic asters play a crucial role during the first cell cycle of murine NT embryos. Therefore, in mouse NT, the use of MII oocytes as recipients is essential, not only for chromatin reprogramming as previously reported, but also for normal cytoskeletal organization in reconstructed oocytes.
Hubbard, Bernard E.; Dusel-Bacon, Cynthia; Rowan, Lawrence C.; Eppinger, Robert G.; Gough, Larry P.; Day, Warren C.
2007-01-01
On July 8, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor acquired satellite imagery of a 60-kilometer-wide swath covering a portion of the Bonnifield mining district within the southernmost part of the Tintina Gold Province, Alaska, under unusually favorable conditions of minimal cloud and snow cover. Although rocks from more than eight different lithotectonic terranes are exposed within the extended swath of data, we focus on volcanogenic massive sulfides (VMS) and porphyry deposits within the Yukon-Tanana terrane (YTT), the largest Mesozoic accretionary terrane exposed between the Denali fault system to the south of Fairbanks and the Tintina fault system to the north of Fairbanks. Comparison of thermal-infrared region (TIR) decorrelation stretch data to available geologic maps indicates that rocks from the YTT contain a wide range of rock types ranging in composition from mafic metavolcanic rocks to felsic rock types such as metarhyolites, pelitic schists, and quartzites. The nine-band ASTER visible-near-infrared region--short-wave infrared region (VNIR-SWIR) reflectance data and spectral matched-filter processing were used to map hydrothermal alteration patterns associated with VMS and porphyry deposit types. In particular, smectite, kaolinite, opaline silica, jarosite and (or) other ferric iron minerals defined narrow (less than 250-meter diameter) zonal patterns around Red Mountain and other potential VMS targets. Using ASTER we identified some of the known mineral deposits in the region, as well as mineralogically similar targets that may represent potential undiscovered deposits. Some known deposits were not identified and may have been obscured by vegetation or snow cover or were too small to be resolved.
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Frost, K E; Esker, P D; Van Haren, R; Kotolski, L; Groves, R L
2013-06-01
In Wisconsin, vegetable crops are threatened annually by the aster yellows phytoplasma (AYp), which is obligately transmitted by the aster leafhopper. Using a multiyear, multilocation data set, seasonal patterns of leafhopper abundance and infectivity were modeled. A seasonal aster yellows index (AYI) was deduced from the model abundance and infectivity predictions to represent the expected seasonal risk of pathogen transmission by infectious aster leafhoppers. The primary goal of this study was to identify periods of time during the growing season when crop protection practices could be targeted to reduce the risk of AYp spread. Based on abundance and infectivity, the annual exposure of the carrot crop to infectious leafhoppers varied by 16- and 70-fold, respectively. Together, this corresponded to an estimated 1,000-fold difference in exposure to infectious leafhoppers. Within a season, exposure of the crop to infectious aster leafhoppers (Macrosteles quadrilineatus Forbes), varied threefold because of abundance and ninefold because of infectivity. Periods of above average aster leafhopper abundance occurred between 11 June and 2 August and above average infectivity occurred between 27 May and 13 July. A more comprehensive description of the temporal trends of aster leafhopper abundance and infectivity provides new information defining when the aster leafhopper moves into susceptible crop fields and when they transmit the pathogen to susceptible crops.
Mars, John L.; Rowan, Lawrence C.
2007-01-01
Introduction: ASTER data and logical operators were successfully used to map phyllic and argillic-altered rocks in the southeastern part of Afghanistan. Hyperion data were used to correct ASTER band 5 and ASTER data were georegistered to orthorectified Landsat TM data. Logical operator algorithms produced argillic and phyllic byte ASTER images that were converted to vector data and overlain on ASTER and Landsat TM images. Alteration and fault patterns indicated that two areas, the Argandab igneous complex, and the Katawaz basin may contain potential polymetallic vein and porphyry copper deposits. ASTER alteration mapping in the Chagai Hills indicates less extensive phyllic and argillic-altered rocks than mapped in the Argandab igneous complex and the Katawaz basin and patterns of alteration are inconclusive to predict potential deposit types.
USDA-ARS?s Scientific Manuscript database
Since the late 1980s, electromagnetic (EM) sensors for determination on of soil water content from within nonmetallic access tubes have been marketed as replacements for the neutron moisture meter (NMM); however, the accuracy, variability and physical significance of EM sensor field measurements hav...
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Environmental Management System
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Sobre o uso das séries de Puiseux em mecanica celeste
NASA Astrophysics Data System (ADS)
Miloni, O. I.
2003-08-01
Neste trabalho é apresentada uma demonstração do uso dos diferentes desenvolvimentos em séries para as equações de perturbação em Mecânica Celeste no marco Hamiltoniano. Em trabalhos clássicos como os de Poincaré (Poincaré, 1893) por exemplo, já esta planteado o uso de potências não inteiras no pequeno parâmetro, o que evidencia a não analiticidade das funções quando uma ressonância ocorre. Nestes trabalhos os desenvolvimentos são na raíz quadrada da massa de Júpiter (o pequeno parâmetro). Mais recentemente (Ferraz-Mello, 1985) outros tipos de desenvolvimentos foram aplicados modificando substancialmente as ordens de grandeza e a velocidade de convergência das séries. Com esta abordagem, os desenvolvimentos foram expressados em termos da raíz cúbica do pequeno parâmetro. Neste trabalho apresentamos um enfoque geral, onde os diferentes tipos de desenvolvimentos em séries de Puiseux (Valiron, 1950) são obtidos a partir da aplicação de Teorema de Preparação de Weierstrass (Goursat, 1916) considerando a equação de Hamilton-Jacobi como uma equação algébrica. Os resultados são aplicados ao problema restrito dos três corpos em ressonância de primeira ordem e, dependendo da grandeza da excentricidade do asteróide em relação à de Júpiter, obtemos os diferentes desenvolvimentos, em raíz quadrada ou raíz cúbica da massa de Júpiter.
NASA Technical Reports Server (NTRS)
2002-01-01
A January 6, 2002 ASTER nighttime thermal infrared image of Chiliques volcano in Chile shows a hot spot in the summit crater and several others along the upper flanks of the edifice, indicating new volcanic activity. Examination of an earlier nighttime thermal infrared image from May 24,2000 showed no thermal anomaly. Chiliques volcano was previously thought to be dormant. Rising to an elevation of 5778 m, Chiliques is a simple stratovolcano with a 500-m-diameter circular summit crater. This mountain is one of the most important high altitude ceremonial centers of the Incas. It is rarely visited due to its difficult accessibility. Climbing to the summit along Inca trails, numerous ruins are encountered; at the summit there are a series of constructions used for rituals. There is a beautiful lagoon in the crater that is almost always frozen.The daytime image was acquired on November 19, 2000 and was created by displaying ASTER bands 1,2 and 3 in blue, green and red. The nighttime image was acquired January 6, 2002, and is a color-coded display of a single thermal infrared band. The hottest areas are white, and colder areas are darker shades of red. Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.Both images cover an area of 7.5 x 7.5 km, and are centered at 23.6 degrees south latitude, 67.6 degrees west longitude.These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 7.5 x 7.5 km (4.5 x 4.5 miles) Location: 23.6 deg. South lat., 67.6 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3, and thermal band 12 Original Data Resolution: 15 m and 90 m Date Acquired: January 6, 2002 and November 19, 2000NASA Technical Reports Server (NTRS)
2000-01-01
On April 3, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Satellite captured this image of the erupting Mt. Usu volcano in Hokkaido, Japan. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet.
This false color infrared image of Mt Usu volcano is dominated by Lake Toya, an ancient volcanic caldera. On the south shore is the active Usu volcano. On Friday, March 31, more than 11,000 people were evacuated by helicopter, truck and boat from the foot of Usu, that began erupting from the northwest flank, shooting debris and plumes of smoke streaked with blue lightning thousands of feet in the air. Although no lava gushed from the mountain, rocks and ash continued to fall after the eruption. The region was shaken by thousands of tremors before the eruption. People said they could taste grit from the ash that was spewed as high as 2,700 meters (8,850 ft) into the sky and fell to coat surrounding towns with ash. 'Mount Usu has had seven significant eruptions that we know of, and at no time has it ended quickly with only a small scale eruption,' said Yoshio Katsui, a professor at Hokkaido University. This was the seventh major eruption of Mount Usu in the past 300 years. Fifty people died when the volcano erupted in 1822, its worst known eruption.In the image, most of the land is covered by snow. Vegetation, appearing red in the false color composite, can be seen in the agricultural fields, and forests in the mountains. Mt. Usu is crossed by three dark streaks. These are the paths of ash deposits that rained out from eruption plumes two days earlier. The prevailing wind was from the northwest, carrying the ash away from the main city of Date. Ash deposited can be traced on the image as far away as 10 kilometers (16 miles) from the volcano.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.ASTER Images the Island of Hawaii
NASA Technical Reports Server (NTRS)
2000-01-01
These images of the Island of Hawaii were acquired on March 19, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Data are shown from the short wavelength and thermal infrared spectral regions, illustrating how different and complementary information is contained in different parts of the spectrum.
Left image: This false-color image covers an area 60 kilometers (37 miles) wide and 120 kilometers (75 miles) long in three bands of the short wavelength infrared region. While, much of the island was covered in clouds, the dominant central Mauna Loa volcano, rising to an altitude of 4115 meters (13,500 feet), is cloud-free. Lava flows can be seen radiating from the central crater in green and black tones. As they reach lower elevations, the flows become covered with vegetation, and their image color changes to yellow and orange. Mauna Kea volcano to the north of Mauna Loa has a thin cloud-cover, producing a bluish tone on the image. The ocean in the lower right appears brown due to the color processing.Right image: This image is a false-color composite of three thermal infrared bands. The brightness of the colors is proportional to the temperature, and the hues display differences in rock composition. Clouds are black, because they are the coldest objects in the scene. The ocean and thick vegetation appear dark green because they are colder than bare rock surfaces, and have no thermal spectral features. Lava flows are shades of magenta, green, pink and yellow, reflecting chemical changes due to weathering and relative age differences.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.ASTER system operating achievement for 15 years on orbit
NASA Astrophysics Data System (ADS)
Inada, Hitomi; Ito, Yoshiyuki; Kikuchi, Masakuni; Sakuma, Fumihiro; Tatsumi, Kenji; Akagi, Shigeki; Ono, Hidehiko
2015-10-01
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) System is operating more than 15 years since launched on board of NASA's Terra spacecraft in December 1999. ASTER System is composed of 3 radiometers (VNIR (Visible and Near Infrared Radiometer), SWIR (Short-Wave Infrared Radiometer), and TIR (Thermal Infrared Radiometer)), CSP (Common Signal Processor) and MSP (Master Power Supply). This paper describes the ASTER System operating history and the achievement of ASTER System long term operation since the initial checkout operation, the normal operation, and the continuous operation. Through the 15 years operation, ASTER system had totally checked the all subsystems (MPS, VNIR, TIR, SWIR, and CSP) health and safety check using telemetry data trend evaluation, and executed the necessary action. The watch items are monitored as the life control items. The pointing mechanics for VNIR, SWIR and TIR, and the cooler for SWIR and TIR are all operating with any problem for over 15 years. In 2003, ASTER was successfully operated for the lunar calibration. As the future plan, ASTER team is proposing the 2nd lunar calibration before the end of mission.
; Getting ready for the Northern New Mexico RoboRAVE on March 7; Today's tuberculosis; Lab supercomputer Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale training program; Fighting tuberculosis with better diagnostics; Santa Fe's Fiesta Queen... Connections
Laboratory Directed Research & Development (LDRD)
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Nuclear Deterrence and Stockpile Stewardship
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Emerging Threats and Opportunities
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Protecting Against Nuclear Threats
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Properties (CTD/profile data) Trawl Survey Data (including oceanographic profiles) Shiptrack Surface Properties (hull-mounted sensor data) Temperature & Salinity Anomalies (by region) Drifter Tracks eMOLT
Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA
NASA Astrophysics Data System (ADS)
Athale, Chaitanya A.; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric
2014-02-01
Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions.
NASA Astrophysics Data System (ADS)
Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Amici, S.; Piscini, A.
2015-12-01
LP DAAC released the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED) datasets on April 2, 2014. The database was developed by the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology. The database includes land surface emissivities derived from ASTER data acquired over the contiguous United States, Africa, Arabian Peninsula, Australia, Europe, and China. In this work we compare ground measurements of emissivity acquired by means of Micro-FTIR (Fourier Thermal Infrared spectrometer) instrument with the ASTER emissivity map extract from ASTER-GED and the emissivity obtained by using single ASTER data. Through this analysis we want to investigate differences existing between the ASTER-GED dataset (average from 2000 to 2008 seasoning independent) and fall in-situ emissivity measurement. Moreover the role of different spatial resolution characterizing ASTER and MODIS, 90mt and 1km respectively, by comparing them with in situ measurements. Possible differences can be due also to the different algorithms used for the emissivity estimation, Temperature and Emissivity Separation algorithm for ASTER TIR band( Gillespie et al, 1998) and the classification-based emissivity method (Snyder and al, 1998) for MODIS. In-situ emissivity measurements have been collected during dedicated fields campaign on Mt. Etna vulcano and Solfatara of Pozzuoli. Gillespie, A. R., Matsunaga, T., Rokugawa, S., & Hook, S. J. (1998). Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113-1125. Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19, 2753-2574.
NASA Astrophysics Data System (ADS)
Silvestri, Malvina; Musacchio, Massimo; Cammarano, Diego; Fabrizia Buongiorno, Maria; Amici, Stefania; Piscini, Alessandro
2016-04-01
In this work we compare ground measurements of emissivity collected during dedicated fields campaign on Mt. Etna and Solfatara of Pozzuoli volcanoes and acquired by means of Micro-FTIR (Fourier Thermal Infrared spectrometer) instrument with the emissivity obtained by using single ASTER data (Advanced Spaceborne Thermal Emission and Reflection Radiometer, ASTER 05) and the ASTER emissivity map extract from ASTER Global Emissivity Database (GED), released by LP DAAC on April 2, 2014. The database was developed by the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology. The database includes land surface emissivity derived from ASTER data acquired over the contiguous United States, Africa, Arabian Peninsula, Australia, Europe, and China. Through this analysis we want to investigate the differences existing between the ASTER-GED dataset (average from 2000 to 2008 seasoning independent) and fall in-situ emissivity measurement. Moreover the role of different spatial resolution characterizing ASTER and MODIS, 90mt and 1km respectively, by comparing them with in situ measurements, is analyzed. Possible differences can be due also to the different algorithms used for the emissivity estimation, Temperature and Emissivity Separation algorithm for ASTER TIR band( Gillespie et al, 1998) and the classification-based emissivity method (Snyder and al, 1998) for MODIS. Finally land surface temperature products generated using ASTER-GED and ASTER 05 emissivity are also analyzed. Gillespie, A. R., Matsunaga, T., Rokugawa, S., & Hook, S. J. (1998). Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113-1125. Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19, 2753-2574.
AVAL - The ASTER Volcanic Ash Library
NASA Astrophysics Data System (ADS)
Williams, D.; Ramsey, M. S.
2016-12-01
Volcanic ash is a rich data source for understanding the causal mechanisms behind volcanic eruptions. Petrologic and morphometric information can provide direct information on the characteristics of the parent magma. Understanding how erupted ash interacts with the atmosphere can help quantify the effect that explosive volcanism has on the local to regional climate, whereas a measure of the particle size distribution enables more accurate modeling of plume propagation. Remote sensing is regularly employed to monitor volcanic plumes using a suite of high temporal/low spatial resolution sensors. These methods employ radiative transfer modeling with assumptions of the transmissive properties of infrared energy through the plume to determine ash density, particle size and sulfur dioxide content. However, such approaches are limited to the optically-transparent regions, and the low spatial resolution data are only useful for large-scale trends. In a new approach, we are treating the infrared-opaque regions of the plume in a similar way to a solid emitting surface. This allows high spatial resolution orbital thermal infrared data from the dense proximal plume to be modeled using a linear deconvolution approach coupled with a spectral library to extract the particle size and petrology. The newly created ASTER Volcanic Ash Library (AVAL) provides the end member spectral suite, and is comprised of laboratory emission measurements of volcanic ash taken from a variety of different volcanic settings, to obtain a wide range of petrologies. These samples have been further subdivided into particle size fractions to account for spectral changes due to diffraction effects. Once mapped to the ASTER sensor's spectral resolution, this library is applied to image data and the plume deconvolved to estimate composition and particle size. We have analyzed eruptions at the Soufrière Hills Volcano, Montserrat, Chaitén and Puyehue-Cordón Caulle, both Chile, and Eyjafjallajökull, Iceland. These results provide particle size distributions within actively-erupting volcanic plumes for the first time in high resolution, and the petrologic information is being studied to understand the underlying eruptive processes observed.
NASA Astrophysics Data System (ADS)
Gao, Shengguo; Zhu, Zhongli; Liu, Shaomin; Jin, Rui; Yang, Guangchao; Tan, Lei
2014-10-01
Soil moisture (SM) plays a fundamental role in the land-atmosphere exchange process. Spatial estimation based on multi in situ (network) data is a critical way to understand the spatial structure and variation of land surface soil moisture. Theoretically, integrating densely sampled auxiliary data spatially correlated with soil moisture into the procedure of spatial estimation can improve its accuracy. In this study, we present a novel approach to estimate the spatial pattern of soil moisture by using the BME method based on wireless sensor network data and auxiliary information from ASTER (Terra) land surface temperature measurements. For comparison, three traditional geostatistic methods were also applied: ordinary kriging (OK), which used the wireless sensor network data only, regression kriging (RK) and ordinary co-kriging (Co-OK) which both integrated the ASTER land surface temperature as a covariate. In Co-OK, LST was linearly contained in the estimator, in RK, estimator is expressed as the sum of the regression estimate and the kriged estimate of the spatially correlated residual, but in BME, the ASTER land surface temperature was first retrieved as soil moisture based on the linear regression, then, the t-distributed prediction interval (PI) of soil moisture was estimated and used as soft data in probability form. The results indicate that all three methods provide reasonable estimations. Co-OK, RK and BME can provide a more accurate spatial estimation by integrating the auxiliary information Compared to OK. RK and BME shows more obvious improvement compared to Co-OK, and even BME can perform slightly better than RK. The inherent issue of spatial estimation (overestimation in the range of low values and underestimation in the range of high values) can also be further improved in both RK and BME. We can conclude that integrating auxiliary data into spatial estimation can indeed improve the accuracy, BME and RK take better advantage of the auxiliary information compared to Co-OK, and BME outperforms RK by integrating the auxiliary data in a probability form.
Tiny plastic lung mimics human pulmonary function
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Science and Innovation at Los Alamos
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Public Reading Room: Environmental Documents, Reports
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
experience includes mechanical and electrical system modeling and analysis, data sensing and sensor placement . Education Ph.D. in Mechanical Engineering, University of Massachusetts at Amherst; M.S. in Electrical Engineering, Institute of Electrical Engineering, Chinese Academy of Sciences; B.S. in Electrical Engineering
USDA-ARS?s Scientific Manuscript database
The native perennial New England aster (Symphyotrichum novae-angliae; syn.=Aster novae-anglicae) is ubiquitous throughout most of the United States, as they self-seed and are well-adapted to many environments. New England asters are valued for their prominent dense clusters of purple flowers that at...
volatile organic compounds at sub-parts-per-million concentration levels," Sensors and Actuators B : Chemical (2006) "The Volatile Organic Compound (VOC) Removal Performance of Desiccant-Based
application architecture, energy informatics, scalable acquisition of sensor data, and software tools for engaging occupants in building energy performance. Prior to joining NREL, Anya developed custom business
Absolute vs. relative error characterization of electromagnetic tracking accuracy
NASA Astrophysics Data System (ADS)
Matinfar, Mohammad; Narayanasamy, Ganesh; Gutierrez, Luis; Chan, Raymond; Jain, Ameet
2010-02-01
Electromagnetic (EM) tracking systems are often used for real time navigation of medical tools in an Image Guided Therapy (IGT) system. They are specifically advantageous when the medical device requires tracking within the body of a patient where line of sight constraints prevent the use of conventional optical tracking. EM tracking systems are however very sensitive to electromagnetic field distortions. These distortions, arising from changes in the electromagnetic environment due to the presence of conductive ferromagnetic surgical tools or other medical equipment, limit the accuracy of EM tracking, in some cases potentially rendering tracking data unusable. We present a mapping method for the operating region over which EM tracking sensors are used, allowing for characterization of measurement errors, in turn providing physicians with visual feedback about measurement confidence or reliability of localization estimates. In this instance, we employ a calibration phantom to assess distortion within the operating field of the EM tracker and to display in real time the distribution of measurement errors, as well as the location and extent of the field associated with minimal spatial distortion. The accuracy is assessed relative to successive measurements. Error is computed for a reference point and consecutive measurement errors are displayed relative to the reference in order to characterize the accuracy in near-real-time. In an initial set-up phase, the phantom geometry is calibrated by registering the data from a multitude of EM sensors in a non-ferromagnetic ("clean") EM environment. The registration results in the locations of sensors with respect to each other and defines the geometry of the sensors in the phantom. In a measurement phase, the position and orientation data from all sensors are compared with the known geometry of the sensor spacing, and localization errors (displacement and orientation) are computed. Based on error thresholds provided by the operator, the spatial distribution of localization errors are clustered and dynamically displayed as separate confidence zones within the operating region of the EM tracker space.
3D View of Grand Canyon, Arizona
NASA Technical Reports Server (NTRS)
2000-01-01
The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.NASA Astrophysics Data System (ADS)
Adiri, Zakaria; El Harti, Abderrazak; Jellouli, Amine; Lhissou, Rachid; Maacha, Lhou; Azmi, Mohamed; Zouhair, Mohamed; Bachaoui, El Mostafa
2017-12-01
Certainly, lineament mapping occupies an important place in several studies, including geology, hydrogeology and topography etc. With the help of remote sensing techniques, lineaments can be better identified due to strong advances in used data and methods. This allowed exceeding the usual classical procedures and achieving more precise results. The aim of this work is the comparison of ASTER, Landsat-8 and Sentinel 1 data sensors in automatic lineament extraction. In addition to image data, the followed approach includes the use of the pre-existing geological map, the Digital Elevation Model (DEM) as well as the ground truth. Through a fully automatic approach consisting of a combination of edge detection algorithm and line-linking algorithm, we have found the optimal parameters for automatic lineament extraction in the study area. Thereafter, the comparison and the validation of the obtained results showed that the Sentinel 1 data are more efficient in restitution of lineaments. This indicates the performance of the radar data compared to those optical in this kind of study.
Panel: If I Only Knew Then What I Know Now
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
- spac0118 Overhead view of a TIROS satellite showing interior arrangement of satellite sensing packages including TV cameras and infra-red sensors. In: "TIROS A Story of Achievement" RCA, February 28 /Graphic/Satellite/ * High Resolution Photo Available Publication of the U.S. Department of Commerce
extent of snow cover. In addition, satellite sensors detect ice fields and map the movement of sea and greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE SATELLITE PRODUCTS NOAA's operational weather satellite system is composed of two types of satellites: geostationary operational
cells. TIROS II was the first meteorological satellite to have infra-red sensors as well as television - spac0116 Making adjustments to TIROS II satellite prior to launch. Small square objects are 9,260 solar Collection Photo Date: 1960, November Category: Space/Satellite/Vehicle/ * High Resolution Photo Available
University of Maryland MRSEC - About Us
Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Programs Teacher Programs Community Outreach Educational Resources News MRSEC Featured MRSEC Calendar Employment , switches and sensors. The research is closely integrated with a continuing educational outreach program
The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation
2014-01-01
Background Microtubule stabilizers suppress microtubule dynamics and, at the lowest antiproliferative concentrations, disrupt the function of mitotic spindles, leading to mitotic arrest and apoptosis. At slightly higher concentrations, these agents cause the formation of multiple mitotic asters with distinct morphologies elicited by different microtubule stabilizers. Results We tested the hypothesis that two classes of microtubule stabilizing drugs, the taxanes and the taccalonolides, cause the formation of distinct aster structures due, in part, to differential effects on microtubule dynamics. Paclitaxel and the taccalonolides suppressed the dynamics of microtubules formed from purified tubulin as well as in live cells. Both agents suppressed microtubule dynamic instability, with the taccalonolides having a more pronounced inhibition of microtubule catastrophe, suggesting that they stabilize the plus ends of microtubules more effectively than paclitaxel. Live cell microscopy was also used to evaluate the formation and resolution of asters after drug treatment. While each drug had similar effects on initial formation, substantial differences were observed in aster resolution. Paclitaxel-induced asters often coalesced over time resulting in fewer, larger asters whereas numerous compact asters persisted once they were formed in the presence of the taccalonolides. Conclusions We conclude that the increased resistance of microtubule plus ends to catastrophe may play a role in the observed inability of taccalonolide-induced asters to coalesce during mitosis, giving rise to the distinct morphologies observed after exposure to these agents. PMID:24576146
1993-09-01
alboranensis Anthemis glabemrma Artemisia granatensis Artemisia laciniata Aster pyrenacus Aster sibiricus Centaurea heldreichii Centaurea horrida Centaurea...kalambakensi s Centaurea lactiflora Centaurea Iinaresii Centaurea megarensis Centaurea niederi Centaurea peucedanifolia Centaurea princeps Crepis...50 Table 448 (continued) COMIPOSrrAE Anthemis glaberrima (Rech. f.) Greuter Artemisia granatensis Boiss. Aster pyrenacus Desf. ex DC. Aster sorrentinil
, multi-scale observing systems under challenging field conditions to document unexpectedly large soil CO2 pleased to recognize the Building Technology and Urban Systems Division's Retro-commissioning Sensor synthetic biology while providing novel approaches for crop engineering to support Berkeley Lab and DOE's
Sandia National Laboratories: National Security Missions: Defense Systems
Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Development Agreement (CRADA) Strategic Partnership Projects, Non-Federal Entity (SPP/NFE) Agreements New leadership for the national security community by delivering cutting-edge experimental and operational sensor
Research | Hydrogen and Fuel Cells | NREL
a laboratory apparatus to measure thermal conductivity Hydrogen Storage Characterizing hydrogen and fuel cell technology commercialization Photo of a researcher working with sensor testing equipment hydrogen station equipment Technology Validation Collecting and analyzing real-world data to show the
Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale effects of tuberculosis infection on AIDS, and issues related to national security. Play video Read more
In-Situ Transfer Standard and Coincident-View Intercomparisons for Sensor Cross-Calibration
NASA Technical Reports Server (NTRS)
Thome, Kurt; McCorkel, Joel; Czapla-Myers, Jeff
2013-01-01
There exist numerous methods for accomplishing on-orbit calibration. Methods include the reflectance-based approach relying on measurements of surface and atmospheric properties at the time of a sensor overpass as well as invariant scene approaches relying on knowledge of the temporal characteristics of the site. The current work examines typical cross-calibration methods and discusses the expected uncertainties of the methods. Data from the Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection and Radiometer (ASTER), Enhanced Thematic Mapper Plus (ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS), and Thematic Mapper (TM) are used to demonstrate the limits of relative sensor-to-sensor calibration as applied to current sensors while Landsat-5 TM and Landsat-7 ETM+ are used to evaluate the limits of in situ site characterizations for SI-traceable cross calibration. The current work examines the difficulties in trending of results from cross-calibration approaches taking into account sampling issues, site-to-site variability, and accuracy of the method. Special attention is given to the differences caused in the cross-comparison of sensors in radiance space as opposed to reflectance space. The results show that cross calibrations with absolute uncertainties lesser than 1.5 percent (1 sigma) are currently achievable even for sensors without coincident views.
Laboratories | Energy Systems Integration Facility | NREL
laboratories to be safely divided into multiple test stand locations (or "capability hubs") to enable Fabrication Laboratory Energy Systems High-Pressure Test Laboratory Energy Systems Integration Laboratory Energy Systems Sensor Laboratory Fuel Cell Development and Test Laboratory High-Performance Computing
Maritime Academy training ships to test promising energy saving technologies and increase steaming days between refuelings. The Maritime Pre-Screening Assessment of Conservation Technologies (M-PACT) project uses a ship-board test-bed with sophisticated sensors and a calibrated model to evaluate new and
NASA Astrophysics Data System (ADS)
Nafis, Christopher; Jensen, Vern; von Jako, Ron
2008-03-01
Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.
ASTER, a multinational Earth observing concept
NASA Technical Reports Server (NTRS)
Bothwell, Graham W.; Geller, Gary N.; Larson, Steven A.; Morrison, Andrew D.; Nichols, David A.
1993-01-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a facility instrument selected for launch in 1998 on the first in a series of spacecraft for NASA's Earth Observing System (EOS). The ASTER instrument is being sponsored and built in Japan. It is a three telescope, high spatial resolution imaging instrument with 15 spectral bands covering the visible through to the thermal infrared. It will play a significant role within EOS providing geological, biological, land hydrological information necessary for intense study of the Earth. The operational capabilities for ASTER, including the necessary interfaces and operational collaborations between the US and Japanese participants, are under development. EOS operations are the responsibility of the EOS Project at NASA's Goddard Space Flight Center (GSFC). Although the primary EOS control center is at GSFC, the ASTER control facility will be in Japan. Other aspects of ASTER are discussed.
Advances in Classification Methods for Military Munitions Response
2010-12-01
Response Herb Nelson Objective of the Course Provide an update on the sensors , methods, and status of the classification of military munitions...advanced EMI sensors 2Advances in Classification - Introduction Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Electromagnetics (EM): Fundamentals and Parameter Extraction Stephen Billings EM Module Outline ● EMI Fundamentals How EMI sensors work and what they measure
Handheld Sensor for UXO Discrimination:
2006-06-01
between buried UXO and clutter. This project demonstrated the use of commercially available technology (Geonics EM61-HH handheld metal detector ) for...determine whether each target was UXO or clutter. The Geonics EM61-HH handheld metal detector is a pulsed electromagnetic induction (EMI) sensor. The...processing, the EM61-HH handheld metal detector can 2 be used in a cued identification mode to reliably discriminate between buried UXO and clutter
Automatic segmentation and centroid detection of skin sensors for lung interventions
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Xu, Sheng; Xue, Zhong; Wong, Stephen T.
2012-02-01
Electromagnetic (EM) tracking has been recognized as a valuable tool for locating the interventional devices in procedures such as lung and liver biopsy or ablation. The advantage of this technology is its real-time connection to the 3D volumetric roadmap, i.e. CT, of a patient's anatomy while the intervention is performed. EM-based guidance requires tracking of the tip of the interventional device, transforming the location of the device onto pre-operative CT images, and superimposing the device in the 3D images to assist physicians to complete the procedure more effectively. A key requirement of this data integration is to find automatically the mapping between EM and CT coordinate systems. Thus, skin fiducial sensors are attached to patients before acquiring the pre-operative CTs. Then, those sensors can be recognized in both CT and EM coordinate systems and used calculate the transformation matrix. In this paper, to enable the EM-based navigation workflow and reduce procedural preparation time, an automatic fiducial detection method is proposed to obtain the centroids of the sensors from the pre-operative CT. The approach has been applied to 13 rabbit datasets derived from an animal study and eight human images from an observation study. The numerical results show that it is a reliable and efficient method for use in EM-guided application.
Developing Flexible Networked Lighting Control Systems
, Bluetooth, ZigBee and others are increasingly used for building control purposes. Low-cost computation : Bundling digital intelligence at the sensors and lights adds virtually no incremental cost. Coupled with cost. Research Goals and Objectives This project "Developing Flexible, Networked Lighting Control
CHANNEL PROTEINS, MUTANT PROKARYOTIC CATION CHANNEL PROTEINS, AND USES THEREOF - MacKinnon, Roderick cation channel proteins, and potentially have uses in treating conditions related to the function of SENSOR DOMAINS OF VOLTAGE-DEPENDENT ION CHANNEL PROTEINS AND USES THEREOF - MacKinnon, Roderick; et. al
Optical satellite data volcano monitoring: a multi-sensor rapid response system
Duda, Kenneth A.; Ramsey, Michael; Wessels, Rick L.; Dehn, Jonathan
2009-01-01
In this chapter, the use of satellite remote sensing to monitor active geological processes is described. Specifically, threats posed by volcanic eruptions are briefly outlined, and essential monitoring requirements are discussed. As an application example, a collaborative, multi-agency operational volcano monitoring system in the north Pacific is highlighted with a focus on the 2007 eruption of Kliuchevskoi volcano, Russia. The data from this system have been used since 2004 to detect the onset of volcanic activity, support the emergency response to large eruptions, and assess the volcanic products produced following the eruption. The overall utility of such integrative assessments is also summarized. The work described in this chapter was originally funded through two National Aeronautics and Space Administration (NASA) Earth System Science research grants that focused on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. A skilled team of volcanologists, geologists, satellite tasking experts, satellite ground system experts, system engineers and software developers collaborated to accomplish the objectives. The first project, Automation of the ASTER Emergency Data Acquisition Protocol for Scientific Analysis, Disaster Monitoring, and Preparedness, established the original collaborative research and monitoring program between the University of Pittsburgh (UP), the Alaska Volcano Observatory (AVO), the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, and affiliates on the ASTER Science Team at the Jet Propulsion Laboratory (JPL) as well as associates at the Earth Remote Sensing Data Analysis Center (ERSDAC) in Japan. This grant, completed in 2008, also allowed for detailed volcanic analyses and data validation during three separate summer field campaigns to Kamchatka Russia. The second project, Expansion and synergistic use of the ASTER Urgent Request Protocol (URP) for natural disaster monitoring and scientific analysis, has expanded the project to other volcanoes around the world and is in progress through 2011. The focus on ASTER data is due to the suitability of the sensor for natural disaster monitoring and the availability of data. The instrument has several unique facets that make it especially attractive for volcanic observations (Ramsey and Dehn, 2004). Specifically, ASTER routinely collects data at night, it has the ability to generate digital elevation models using stereo imaging, it can collect data in various gain states to minimize data saturation, it has a cross-track pointing capability for faster targeting, and it collects data up to ±85° latitude for better global coverage. As with any optical imaging-based remote sensing, the viewing conditions can negatively impact the data quality. This impact varies across the optical and thermal infrared wavelengths as well as being a function of the specific atmospheric window within a given wavelength region. Water vapor and cloud formation can obscure surface data in the visible and near infrared (VNIR)/shortwave infrared (SWIR) region due mainly to non-selective scattering of the incident photons. In the longer wavelengths of the thermal infrared (TIR), scattering is less of an issue, but heavy cloud cover can still obscure the ground due to atmospheric absorption. Thin clouds can be optically-transparent in the VNIR and TIR regions, but can cause errors in the extracted surface reflectance or derived surface temperatures. In regions prone to heavy cloud cover, optical remote sensing can be improved through increased temporal resolution. As more images are acquired in a given time period the chances of a clear image improve dramatically. The Advanced Very High Resolution Radiometer (AVHRR) routine monitoring, which commonly collects 4-6 images per day of any north Pacific volcano, takes advantage of this fact. The rapid response program described in this chapter also improves the temporal resolution of the ASTER instrument. ASTER has been acquiring images of volcanic eruptions since soon after its launch in December 1999. An early example included the observations of the large pyroclastic flow deposit emplaced at Bezymianny volcano in Kamchatka, Russia. The first images in March 2000, just weeks after the eruption, revealed the extent, composition, and cooling history of this large deposit and of the active lava dome (Ramsey and Dehn, 2004). The initial results from these early datasets spurred interest in using ASTER data for expanded volcano monitoring in the north Pacific. It also gave rise to the multi-year NASA-funded programs of rapid response scheduling and imaging throughout the Aleutian, Kamchatka and Kurile arcs. Since the formal establishment of the programs, the data have provided detailed descriptions of the eruptions of Augustine, Bezymianny, Kliuchevskoi and Sheveluch volcanoes over the past nine years (Wessels et al., in press; Carter et al., 2007, 2008; Ramsey et al., 2008; Rose and Ramsey, 2009). The initial research focus of this rapid response program was specifically on automating the ASTER sensor’s ability for targeted observational scheduling using the expedited data system. This urgent request protocol is one of the unique characteristics of ASTER. It provides a limited number of emergency observations, typically at a much-improved temporal resolution and quicker turnaround with data processing in the United States rather than in Japan. This can speed the reception of the processed data by several days to a week. The ongoing multi-agency research and operational collaboration has been highly successful. AVO serves as the primary source for status information on volcanic activity, working closely with the National Weather Service (NWS), Federal Aviation Administration (FAA), military and other state and federal emergency services. Collaboration with the Russian Institute of Volcanology and Seismology (IVS)/Kamchatka Volcanic Eruption Response Team (KVERT) is also maintained. Once a volcano is identified as having increased thermal output, ASTER is automatically tasked and the volcano is targeted at the next available opportunity. After the data are acquired, scientists at all the agencies have access to the images, with the primary science analysis carried out at the University of Pittsburgh and AVO. Results are disseminated to the responsible monitoring agencies and the global community through e-mail mailing lists.
Reliability, Durability, and Safety | Transportation Research | NREL
fill results obtained in different scenarios. The animation serves as a useful tool to help fleet limitations from a performance and reliability perspective. Evaluation results for three different BIMs analysis assists in development and helps end users select and deploy appropriate sensors for different
Kuciauskas, J Tynan, "Dual-sensor technique for characterization of carrier lifetime decay transients in semiconductors", Journal of Applied Physics 116 (21), 214510 (2014) J. Moseley, M.M. Al-Jassim, H.R For Contactless Measurement of Carrier Lifetime", J. Vac. Sci. Technol. B 31, 04D113 R. K
Berkeley Lab Wins Seven 2015 R&D 100 Awards | Berkeley Lab
products from industry, academia, and government-sponsored research, ranging from chemistry to materials to problems in metrology techniques: the quantitative characterization of the imaging instrumentation Computational Research Division led the development of the technology. Sensor Integrated with Recombinant and
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Areas with Surface Thermal Anomalies as Detected by ASTER and LANDSAT Data in Ouray, Colorado
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Ouray identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature around south Steamboat Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
The influence of Aster x salignus Willd. Invasion on the diversity of soil yeast communities
NASA Astrophysics Data System (ADS)
Glushakova, A. M.; Kachalkin, A. V.; Chernov, I. Yu.
2016-07-01
The annual dynamics of yeast communities were studied in the soddy-podzolic soil under the thickets of Aster x salignus Willd., one of the widespread invasive plant species in central Russia. Yeast groups in the soils under continuous aster thickets were found to differ greatly from the yeast communities in the soils under the adjacent indigenous meadow vegetation. In both biotopes the same species ( Candida vartiovaarae, Candida sake, and Cryptococcus terreus) are dominants. However, in the soils under indigenous grasses, eurybiontic yeasts Rhodotorula mucilaginosa, which almost never occur in the soil under aster, are widespread. In the soil under aster, the shares of other typical epiphytic and pedobiontic yeast fungi (ascomycetic species Wickerhamomyces aniomalus, Barnettozyma californica and basidiomycetic species Cystofilobasidium macerans, Guehomyces pullulans) significantly increase. Thus, the invasion of Aster x salignus has a clear effect on soil yeast complexes reducing their taxonomic and ecological diversity.
Fifteen Years of ASTER Data on NASA's Terra Platform
NASA Astrophysics Data System (ADS)
Abrams, M.; Tsu, H.
2014-12-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five instruments operating on NASA's Terra platform. Launched in 1999, ASTER has been acquiring data for 15 years. ASTER is a joint project between Japan's Ministry of Economy, Trade and Industry; and US NASA. Data processing and distribution are done by both organizations; a joint science team helps to define mission priorities. ASTER acquires ~550 images per day, with a 60 km swath width. A daytime acquisition is three visible bands and a backward-looking stereo band with 15 m resolution, six SWIR bands with 30 m resolution, and 5 TIR bands with 90 m resolution. Nighttime TIR-only data are routinely collected. The stereo capability has allowed the ASTER project to produce a global Digital Elevation Model (GDEM) data set, covering the earth's land surfaces from 83 degrees north to 83 degrees south, with 30 m data postings. This is the only (near-) global DEM available to all users at no charge; to date, over 28 million 1-by-1 degree DEM tiles have been distributed. As a general-purpose imaging instrument, ASTER-acquired data are used in numerous scientific disciplines, including: land use/land cover, urban monitoring, urban heat island studies, wetlands studies, agriculture monitoring, forestry, etc. Of particular emphasis has been the acquisition and analysis of data for natural hazard and disaster applications. We have been systematically acquiring images for 15,000 valley glaciers through the USGS Global Land Ice Monitoring from Space Project. The recently published Randolph Glacier Inventory, and the GLIMS book, both relied heavily on ASTER data as the basis for glaciological and climatological studies. The ASTER Volcano Archive is a unique on-line archive of thousands of daytime and nighttime ASTER images of ~1500 active glaciers, along with a growing archive of Landsat images. ASTER was scheduled to target active volcanoes at least 4 times per year, and more frequently for select volcanoes (like Mt. Etna and Hawaii). A separate processing and distribution system is operational in the US to allow rapid scheduling, acquisition, and distribution of ASTER data for natural hazards and disasters, such as forest fires, tornadoes, tsunamis, earthquakes, and floods. We work closely with other government agencies to provide this service.
Alexakis, Dimitrios; Sarris, Apostolos; Astaras, Theodoros; Albanakis, Konstantinos
2009-01-01
Thessaly is a low relief region in Greece where hundreds of Neolithic settlements/tells called magoules were established from the Early Neolithic period until the Bronze Age (6,000 – 3,000 BC). Multi-sensor remote sensing was applied to the study area in order to evaluate its potential to detect Neolithic settlements. Hundreds of sites were geo-referenced through systematic GPS surveying throughout the region. Data from four primary sensors were used, namely Landsat ETM, ASTER, EO1 - HYPERION and IKONOS. A range of image processing techniques were originally applied to the hyperspectral imagery in order to detect the settlements and validate the results of GPS surveying. Although specific difficulties were encountered in the automatic classification of archaeological features composed by a similar parent material with the surrounding landscape, the results of the research suggested a different response of each sensor to the detection of the Neolithic settlements, according to their spectral and spatial resolution. PMID:22399961
Alexakis, Dimitrios; Sarris, Apostolos; Astaras, Theodoros; Albanakis, Konstantinos
2009-01-01
Thessaly is a low relief region in Greece where hundreds of Neolithic settlements/tells called magoules were established from the Early Neolithic period until the Bronze Age (6,000 - 3,000 BC). Multi-sensor remote sensing was applied to the study area in order to evaluate its potential to detect Neolithic settlements. Hundreds of sites were geo-referenced through systematic GPS surveying throughout the region. Data from four primary sensors were used, namely Landsat ETM, ASTER, EO1 - HYPERION and IKONOS. A range of image processing techniques were originally applied to the hyperspectral imagery in order to detect the settlements and validate the results of GPS surveying. Although specific difficulties were encountered in the automatic classification of archaeological features composed by a similar parent material with the surrounding landscape, the results of the research suggested a different response of each sensor to the detection of the Neolithic settlements, according to their spectral and spatial resolution.
ARGOS Home - NOAA Satellite Information System (NOAASIS); Office of
Satellite and Product Operations » DOC » NOAA » NESDIS » OSPO » NOAASIS NOAA Satellite Links ARGOS Image satellite over globe The Argos Data Collection and location System (DCS) is a data ISRO. The system consists of in-situ data collection platforms equipped with sensors and transmitters
Raup, B.H.; Kieffer, H.H.; Hare, T.M.; Kargel, J.S.
2000-01-01
The advanced spaceborne thermal emission and reflection radiometer (ASTER) instrument is scheduled to be launched on the EOS Terra platform in 1999. The Global Land Ice Measurements from Space project has planned to acquire ASTER images of most of the world's land ice annually during the six-year ASTER mission. This article describes the process of creating the data acquisition requests needed to cover approximately 170,000 glacier targets.
Working Toward the Very Low Energy Consumption Building of the Future |
systems engineering methods that have transformed other industries, including the aircraft and automobile Merced and United Technologies are studying the use of sensors and occupancy estimating methods to , occupancy dynamics models, and energy control methods. The team will test whether this technology can
Home page | prc.gatech.edu | Georgia Institute of Technology | Atlanta, GA
Interconnections & Assembly Low Cost Glass Interposers & Packages MEMS and Sensors GRA Opportunities addressing electrical, mechanical and thermal barriers. Low-cost Glass Interposer and Package Panel-based ultra-thin glass as a high performance, high I/O density, and low cost platform. Interconnections and
Smart Occupancy Sensor Debuts - Continuum Magazine | NREL
occupancy, IPOS uses sequential image subtractions like this one for extracting and analyzing motion building energy performance. Noted as one of the 100 most significant innovations of 2013 by R&D device where one edge of the IC is exposed. In the background is a blackboard on which computer
Evaluation of ASTER GDEM with respect to SRTM for Chandra-Bhaga Basin, Indian Himalaya
NASA Astrophysics Data System (ADS)
Pandey, P.
2011-12-01
Evaluation of ASTER GDEM with respect to SRTM for Chandra-Bhaga Basin, Indian Himalaya Pratima Pandey, G. Venkataraman Centre of Studies in Resources Engineering, IIT Bombay, Mumbai, India Abstract A digital elevation model (DEM) is a simple representation of a surface in 3 dimensional way with height as the third dimension along with x and y in rectangular axes. DEM has wide applications in various areas like disaster management, hydrology and water management, geomorphology and in urban development. Valuable information about a terrain can be inferred by exploiting a DEM in proper way. Study of DEM becomes very useful for studying mountainous terrain such as Himalaya which is otherwise hard to access due to harsh weather and inaccessibility. DEM can be generated by aerial photos, stereo images from satellites and toposheet. SRTM and ASTER GDEM are DEM which generated from satellite images and covers maximum parts of the earth. Shuttle Radar Topography Mission (SRTM) is a good quality DEM created in 2000 covering the globe between 600 N and 580 S with 3 arc second (90m) resolution. SRTM is available freely for research. ASTER GDEM is recently released global DEM created using ASTER scenes and made available to the world since June 2009 for carrying out research. ASTER GDEM covers land surfaces between 83°N and 83°S with estimated accuracies of 20 meters vertical data and 30 meters for horizontal data. So ASTER GDEM supposed to be more sophisticated. The present study aims at comparing the ASTER GDEM with the SRTM and ASTER DEM and evaluating its relative characteristics for undulating surface and glaciers of Chandra-Bhaga sub-basin situated in Lahual-Spiti district of Himachal Pradesh, Indian Himalaya. Once the characteristics of ASTER GDEM are evaluated for Himalayan terrain it can be used for various studies involving rugged terrain of Himalaya.
NREL-KPA-Toyota Collaboration Facilitates Permitting of Fuel Cell Electric
operation, the likelihood of a release can increase during certain operations, such as maintenance on the requirements for FCEV maintenance activity. Hydrogen sensors were one key element to this design. In the first
NASA Astrophysics Data System (ADS)
Purinton, Benjamin; Bookhagen, Bodo
2017-04-01
In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30 m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12 m TanDEM-X, 10 m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5 m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000 m of elevation. For the 30 m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all < 3.5 m. Higher-resolution DEMs generally had lower uncertainty, with both the 12 m TanDEM-X and 5 m ALOS World 3D having < 2 m vertical standard deviation. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the low uncertainty across these attributes for SRTM-C (30 m), TanDEM-X (12-30 m), and ALOS World 3D (5-30 m). Single-CoSSC TerraSAR-X/TanDEM-X 10 m DEMs and the 30 m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and ASTER Stack). Based on low vertical standard deviations and visual inspection alongside optical satellite data, we selected the 30 m SRTM-C, 12-30 m TanDEM-X, 10 m single-CoSSC TerraSAR-X/TanDEM-X, and 5 m ALOS World 3D for geomorphic metric comparison in a 66 km2 catchment with a distinct river knickpoint. Consistent m/n values were found using chi plot channel profile analysis, regardless of DEM type and spatial resolution. Slope, curvature, and drainage area were calculated and plotting schemes were used to assess basin-wide differences in the hillslope-to-valley transition related to the knickpoint. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. This is especially true for the optical 5 m ALOS World 3D DEM, which demonstrated high-frequency noise in 2-8 pixel steps through a Fourier frequency analysis. The improvements in accurate space-radar DEMs (e.g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis.
NASA Technical Reports Server (NTRS)
2000-01-01
This June 16, 2000 image of Istanbul, Turkey show a full 60 by 60 km ASTER scene in the visible and infrared channels. Vegetation appears red, and urban areas blue-green. Bustling Istanbul, with its magnificent historical heritage, has spanned the divide between Europe and Asia for more than 2,500 years. Originally called Byzantium, the city was founded in the 7th century BC on the Golden Horn, an arm of the narrow Bosporus (also spelled Bosphorus) Strait, which connects the Sea of Marmara to the south, with the Black Sea to the north. Constantine I made it his capital of the Eastern Roman Empire in AD 330. As Constantinople, the strategically located city arose as the preeminent cultural, religious, and political center of the Western world. It reached the height of its wealth and glory in the early 5th century. After centuries of decline, the city entered another period of tremendous growth and prosperity when, as Istanbul, it became the capital of the Turkish Ottoman Empire in 1457. Although Turkey moved its capital to Ankara in 1923, Istanbul remains the nation's largest city with a population of over 8 million, its commercial center, and a major port. Two bridges spanning the Bosporus, and ships in the busy channel can be seen on the enlargement. On the image, the water areas have been replaced with a thermal image: colder waters are displayed in dark blue, warmer areas in light blue. Note the dark lines showing boat wakes, and the cold water entering the Sea of Marmara from deeper waters of the Bosporus.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.Assembly and control of large microtubule complexes
NASA Astrophysics Data System (ADS)
Korolev, Kirill; Ishihara, Keisuke; Mitchison, Timothy
Motility, division, and other cellular processes require rapid assembly and disassembly of microtubule structures. We report a new mechanism for the formation of asters, radial microtubule complexes found in very large cells. The standard model of aster growth assumes elongation of a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we found evidence for microtubule nucleation away from centrosomes. By combining polymerization dynamics and auto-catalytic nucleation of microtubules, we developed a new biophysical model of aster growth. The model predicts an explosive transition from an aster with a steady-state radius to one that expands as a travelling wave. At the transition, microtubule density increases continuously, but aster growth rate discontinuously jumps to a nonzero value. We tested our model with biochemical perturbations in egg extract and confirmed main theoretical predictions including the jump in the growth rate. Our results show that asters can grow even though individual microtubules are short and unstable. The dynamic balance between microtubule collapse and nucleation could be a general framework for the assembly and control of large microtubule complexes. NIH GM39565; Simons Foundation 409704; Honjo International 486 Scholarship Foundation.
Terrestrial Environmental Variables Derived From EOS Platform Sensors
NASA Technical Reports Server (NTRS)
Stadler, Stephen J.; Czajkowski, Kevin P.; Goward, Samuel N.; Xue, Yongkang
2001-01-01
The three main objectives of the overall project were: 1. Adaptation of environmental constraint methods to take advantage of EOS sensors, specifically, MODIS, ASTER, and Landsat-7, in addition to the PM AVHRR observations 2. Refinement of environmental constraint methods based on fundamental scientific knowledge. 3. Assessment of spatial scaling patterns in environmental constraint measurements to evaluate the potential biases and errors that occur when estimating regional and global-scale NPP patterns with moderate to coarse satellite observations. These goals were modified because, on one hand, MODIS data did not become available until after the first year of the project and because of project staffing issues at the University of Maryland., The OSU portion of the project contained a modest amount of funding and responsibility compared to the University of Maryland and the University of Toledo.
The ASTER Global Digital Elevation Model (GDEM) -for societal benefit -
NASA Astrophysics Data System (ADS)
Hato, M.; Tsu, H.; Tachikawa, T.; Abrams, M.; Bailey, B.
2009-12-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was developed jointly by the Ministry of Economy, Trade and Industry (METI) of Japan and the United States National Aeronautics and Space Administration (NASA) under the agreement of contribution to GEOSS and a public release was started on June 29th. ASTER GDEM can be downloaded to users from the Earth Remote Sensing Data Analysis Center (ERSDAC) of Japan and NASA’s Land Processes Distributed Active Archive Center (LP DAAC) free of charge. The ASTER instrument was built by METI and launched onboard NASA’s Terra spacecraft in December 1999. It has an along-track stereoscopic capability using its near infrared spectral band (NIR) and its nadir-viewing and backward-viewing telescopes to acquire stereo image data with a base-to-height ratio of 0.6. The ASTER GDEM was produced by applying newly-developed automated algorithm to more than 1.2 million NIR data Produced DEMs of all scene data was stacked after cloud masking and finally partitioned into 1° x 1°unit (called ‘tile’) data for convenience of distribution and handling by users. Before start of public distribution, ERSDAC and USGS/NASA together with many volunteers did validation and characterization by using a preliminary product of the ASTER GDEM. As a result of validation, METI and NASA evaluated that Version 1 of the ASTER GDEM has enough quality to be used as “experimental” or “research grade” data and consequently decided to release it. The ASTER GDEM covering almost all land area of from 83N to 83S on the earth represents as an important contribution to the global earth observation community. We will show our effort of development of ASTER GDEM and its accuracy and character.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature around South Canyon Hot Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.
Thermal mapping of Hawaiian volcanoes with ASTER satellite data
Patrick, Matthew R.; Witzke, Coral-Nadine
2011-01-01
Thermal mapping of volcanoes is important to determine baseline thermal behavior in order to judge future thermal activity that may precede an eruption. We used cloud-free kinetic temperature images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor obtained between 2000 and 2010 to produce thermal maps for all five subaerial volcanoes in Hawaii that have had eruptions in the Holocene (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). We stacked the images to provide time-averaged thermal maps, as well as to analyze temperature trends through time. Thermal areas are conspicuous at the summits and rift zones of Kīlauea and Mauna Loa, and the summit calderas of these volcanoes contain obvious arcuate, concentric linear thermal areas that probably result from channeling of rising gas along buried, historical intracaldera scarps. The only significant change in thermal activity noted in the study period is the opening of the Halemaumau vent at Kīlauea's summit in 2008. Several small thermal anomalies are coincident with pit craters on Hualālai. We suspect that these simply result from the sheltered nature of the depression, but closer inspection is warranted to determine if genuine thermal activity exists in the craters. Thermal areas were not detected on Haleakalā or Mauna Kea. The main limitation of the study is the large pixel size (90 m) of the ASTER images, which reduces our ability to detect subtle changes or to identify small, low-temperature thermal activity. This study, therefore, is meant to characterize the broad, large-scale thermal features on these volcanoes. Future work should study these thermal areas with thermal cameras and thermocouples, which have a greater ability to detect small, low-temperature thermal features.
2016-09-23
Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s
Characterization, monitoring, and sensor technology crosscutting program: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plumemore » Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.« less
Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures.
Yang, Yaowen; Hu, Yuhang; Lu, Yong
2008-01-21
Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanicalimpedance (EMI) technique for structural health monitoring (SHM) has been successfullyapplied to various engineering systems. However, fundamental research work on thesensitivity of the PZT impedance sensors for damage detection is still in need. In thetraditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of theimpedance) is used as damage indicator, which is difficult to specify the effect of damage onstructural properties. This paper uses the structural mechanical impedance (SMI) extractedfrom the PZT EM admittance signature as the damage indicator. A comparison study on thesensitivity of the EM admittance and the structural mechanical impedance to the damages ina concrete structure is conducted. Results show that the SMI is more sensitive to the damagethan the EM admittance thus a better indicator for damage detection. Furthermore, this paperproposes a dynamic system consisting of a number of single-degree-of-freedom elementswith mass, spring and damper components to model the SMI. A genetic algorithm isemployed to search for the optimal value of the unknown parameters in the dynamic system.An experiment is carried out on a two-storey concrete frame subjected to base vibrations thatsimulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the framestructure to acquire PZT EM admittance signatures. The relationship between the damageindex and the distance of the PZT sensor from the damage is studied. Consequently, thesensitivity of the PZT sensors is discussed and their sensing region in concrete is derived.
Lugez, Elodie; Sadjadi, Hossein; Joshi, Chandra P; Akl, Selim G; Fichtinger, Gabor
2017-04-01
Electromagnetic (EM) catheter tracking has recently been introduced in order to enable prompt and uncomplicated reconstruction of catheter paths in various clinical interventions. However, EM tracking is prone to measurement errors which can compromise the outcome of the procedure. Minimizing catheter tracking errors is therefore paramount to improve the path reconstruction accuracy. An extended Kalman filter (EKF) was employed to combine the nonlinear kinematic model of an EM sensor inside the catheter, with both its position and orientation measurements. The formulation of the kinematic model was based on the nonholonomic motion constraints of the EM sensor inside the catheter. Experimental verification was carried out in a clinical HDR suite. Ten catheters were inserted with mean curvatures varying from 0 to [Formula: see text] in a phantom. A miniaturized Ascension (Burlington, Vermont, USA) trakSTAR EM sensor (model 55) was threaded within each catheter at various speeds ranging from 7.4 to [Formula: see text]. The nonholonomic EKF was applied on the tracking data in order to statistically improve the EM tracking accuracy. A sample reconstruction error was defined at each point as the Euclidean distance between the estimated EM measurement and its corresponding ground truth. A path reconstruction accuracy was defined as the root mean square of the sample reconstruction errors, while the path reconstruction precision was defined as the standard deviation of these sample reconstruction errors. The impacts of sensor velocity and path curvature on the nonholonomic EKF method were determined. Finally, the nonholonomic EKF catheter path reconstructions were compared with the reconstructions provided by the manufacturer's filters under default settings, namely the AC wide notch and the DC adaptive filter. With a path reconstruction accuracy of 1.9 mm, the nonholonomic EKF surpassed the performance of the manufacturer's filters (2.4 mm) by 21% and the raw EM measurements (3.5 mm) by 46%. Similarly, with a path reconstruction precision of 0.8 mm, the nonholonomic EKF surpassed the performance of the manufacturer's filters (1.0 mm) by 20% and the raw EM measurements (1.7 mm) by 53%. Path reconstruction accuracies did not follow an apparent trend when varying the path curvature and sensor velocity; instead, reconstruction accuracies were predominantly impacted by the position of the EM field transmitter ([Formula: see text]). The advanced nonholonomic EKF is effective in reducing EM measurement errors when reconstructing catheter paths, is robust to path curvature and sensor speed, and runs in real time. Our approach is promising for a plurality of clinical procedures requiring catheter reconstructions, such as cardiovascular interventions, pulmonary applications (Bender et al. in medical image computing and computer-assisted intervention-MICCAI 99. Springer, Berlin, pp 981-989, 1999), and brachytherapy.
Khalid Hussein
2012-02-01
This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Drajsajtl, Tomáš; Struk, Petr; Bednárová, Alice
2013-01-01
AsTeRICS - "The Assistive Technology Rapid Integration & Construction Set" is a construction set for assistive technologies which can be adapted to the motor abilities of end-users. AsTeRICS allows access to different devices such as PCs, cell phones and smart home devices, with all of them integrated in a platform adapted as much as possible to each user. People with motor disabilities in the upper limbs, with no cognitive impairment, no perceptual limitations (neither visual nor auditory) and with basic skills in using technologies such as PCs, cell phones, electronic agendas, etc. have available a flexible and adaptable technology which enables them to access the Human-Machine-Interfaces (HMI) on the standard desktop and beyond. AsTeRICS provides graphical model design tools, a middleware and hardware support for the creation of tailored AT-solutions involving bioelectric signal acquisition, Brain-/Neural Computer Interfaces, Computer-Vision techniques and standardized actuator and device controls and allows combining several off-the-shelf AT-devices in every desired combination. Novel, end-user ready solutions can be created and adapted via a graphical editor without additional programming efforts. The AsTeRICS open-source framework provides resources for utilization and extension of the system to developers and researches. AsTeRICS was developed by the AsTeRICS project and was partially funded by EC.
NREL Research Garners Three Prestigious R&D 100 Awards | News | NREL
, SkyFuel, to create a ground-breaking and low-cost system for utility-sized power generation. The SkyTrough installation costs into competition with gas-fired power plants. NREL shares this award with SkyFuel, Inc. NREL -film lithium microbattery. Its ideal applications are remote wireless sensors, smart homes, smart cars
Vertical Accuracy Evaluation of Aster GDEM2 Over a Mountainous Area Based on Uav Photogrammetry
NASA Astrophysics Data System (ADS)
Liang, Y.; Qu, Y.; Guo, D.; Cui, T.
2018-05-01
Global digital elevation models (GDEM) provide elementary information on heights of the Earth's surface and objects on the ground. GDEMs have become an important data source for a range of applications. The vertical accuracy of a GDEM is critical for its applications. Nowadays UAVs has been widely used for large-scale surveying and mapping. Compared with traditional surveying techniques, UAV photogrammetry are more convenient and more cost-effective. UAV photogrammetry produces the DEM of the survey area with high accuracy and high spatial resolution. As a result, DEMs resulted from UAV photogrammetry can be used for a more detailed and accurate evaluation of the GDEM product. This study investigates the vertical accuracy (in terms of elevation accuracy and systematic errors) of the ASTER GDEM Version 2 dataset over a complex terrain based on UAV photogrammetry. Experimental results show that the elevation errors of ASTER GDEM2 are in normal distribution and the systematic error is quite small. The accuracy of the ASTER GDEM2 coincides well with that reported by the ASTER validation team. The accuracy in the research area is negatively correlated to both the slope of the terrain and the number of stereo observations. This study also evaluates the vertical accuracy of the up-sampled ASTER GDEM2. Experimental results show that the accuracy of the up-sampled ASTER GDEM2 data in the research area is not significantly reduced by the complexity of the terrain. The fine-grained accuracy evaluation of the ASTER GDEM2 is informative for the GDEM-supported UAV photogrammetric applications.
USDA-ARS?s Scientific Manuscript database
The aster yellows phytoplasma (AYp) is transmitted by the aster leafhopper (ALH), Macrosteles quadrilineatus Forbes, in a persistent and propagative manner. To study AYp replication and examine the variability of AYp titer in individual ALHs, we developed a quantitative, real-time PCR (qPCR) assay t...
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled"warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.
NASA Astrophysics Data System (ADS)
Ninomiya, Yoshiki; Fu, Bihong
2017-07-01
After the authors have proposed the mineralogical indices, e.g., Quartz Index (QI), Carbonate Index (CI), Mafic Index (MI) for ASTER thermal infrared (TIR) data, many articles have been applied the indices for the geological case studies and proved to be robust in extracting geological information at the local scale. The authors also have developed a system for producing the regional map with the indices, which needs mosaicking of many scenes considering the relatively narrow spatial coverage of each ASTER scene. The system executes the procedures very efficiently to find ASTER data covering a wide target area in the vast and expanding ASTER data archive. Then the searched ASTER data are conditioned, prioritized, and the indices are calculated before finally mosaicking the imagery. Here in this paper, we will present two case studies of the regional lithologic and mineralogic mapping of the indices covering very wide regions in and around the Pamir Mountains and the Tarim basin. The characteristic features of the indices related to geology are analysed, interpreted and discussed.
NASA Astrophysics Data System (ADS)
Braucher, R.; Keddadouche, K.; Aumaître, G.; Bourlès, D. L.; Arnold, M.; Pivot, S.; Baroni, M.; Scharf, A.; Rugel, G.; Bard, E.
2018-04-01
After 6 years of 36Cl routine operation, more than 6000 unknown samples have been measured at the 5MV French accelerator mass spectrometry (AMS) national facility ASTER (CEREGE, Aix en Provence). This paper presents the long term behavior of ASTER through the analysis of the measurements of the most used chlorine standards and reference materials, KNSTD1600, SM-Cl-12 and SM-CL-13 over a 46 months' time period. Comparison of measured chlorine concentrations (both 35Cl and 36Cl) from ice samples on two AMS facilities operating at 5MV (ASTER) and 6MV (DREAMS, Helmholtz-Zentrum Dresden-Rossendorf) and normalizing to two different reference materials agree within uncertainties making both reference materials (SM-Cl-12 and KNSTD1600) suitable for 36Cl measurement at ASTER.
Comparison of preliminary results from Airborne Aster Simulator (AAS) with TIMS data
NASA Technical Reports Server (NTRS)
Kannari, Yoshiaki; Mills, Franklin; Watanabe, Hiroshi; Ezaka, Teruya; Narita, Tatsuhiko; Chang, Sheng-Huei
1992-01-01
The Japanese Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), being developed for a NASA EOS-A satellite, will have 3 VNIR, 6 SWIR, and 5 TIR (8-12 micron) bands. An Airborne ASTER Simulator (AAS) was developed for Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research Group (GER) Corp. to research surface temperature and emission features in the MWIR/TIR, to simulate ASTER's TIR bands, and to study further possibility of MWIR/TIR bands. ASTER Simulator has 1 VNIR, 3 MWIR (3-5 microns), and 20 (currently 24) TIR bands. Data was collected over 3 sites - Cuprite, Nevada; Long Valley/Mono Lake, California; and Death Valley, California - with simultaneous ground truth measurements. Preliminary data collected by AAS for Cuprite, Nevada is presented and AAS data is compared with Thermal Infrared Multispectral Scanner (TIMS) data.
NASA Technical Reports Server (NTRS)
Montes, Carlo; Jacob, Frederic
2017-01-01
We compared the capabilities of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imageries for mapping daily evapotranspiration (ET) within a Mediterranean vineyard watershed. We used Landsat and ASTER data simultaneously collected on four dates in 2007 and 2008, along with the simplified surface energy balance index (S-SEBI) model. We used previously ground-validated good quality ASTER estimates as reference, and we analyzed the differences with Landsat retrievals in light of the instrumental factors and methodology. Although Landsat and ASTER retrievals of S-SEBI inputs were different, estimates of daily ET from the two imageries were similar. This is ascribed to the S-SEBI spatial differencing in temperature, and opens the path for using historical Landsat time series over vineyards.
Characterization of ASTER GDEM Elevation Data over Vegetated Area Compared with Lidar Data
NASA Technical Reports Server (NTRS)
Ni, Wenjian; Sun, Guoqing; Ranson, Kenneth J.
2013-01-01
Current researches based on areal or spaceborne stereo images with very high resolutions (less than 1 meter) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is a state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 meters) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that accurate co-registration between ASTER GDEM and the National Elevation Dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-seconds and further improved to 0.6 if only homogenous vegetated areas were considered.
Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures
Yang, Yaowen; Hu, Yuhang; Lu, Yong
2008-01-01
Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanical impedance (EMI) technique for structural health monitoring (SHM) has been successfully applied to various engineering systems. However, fundamental research work on the sensitivity of the PZT impedance sensors for damage detection is still in need. In the traditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of the impedance) is used as damage indicator, which is difficult to specify the effect of damage on structural properties. This paper uses the structural mechanical impedance (SMI) extracted from the PZT EM admittance signature as the damage indicator. A comparison study on the sensitivity of the EM admittance and the structural mechanical impedance to the damages in a concrete structure is conducted. Results show that the SMI is more sensitive to the damage than the EM admittance thus a better indicator for damage detection. Furthermore, this paper proposes a dynamic system consisting of a number of single-degree-of-freedom elements with mass, spring and damper components to model the SMI. A genetic algorithm is employed to search for the optimal value of the unknown parameters in the dynamic system. An experiment is carried out on a two-storey concrete frame subjected to base vibrations that simulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the frame structure to acquire PZT EM admittance signatures. The relationship between the damage index and the distance of the PZT sensor from the damage is studied. Consequently, the sensitivity of the PZT sensors is discussed and their sensing region in concrete is derived. PMID:27879711
NASA Astrophysics Data System (ADS)
Roig, F.; Beaugé, C.
2003-08-01
Além do cálculo semi-analítico de elementos próprios dos asteróides Troianos (Beaugé & Roig 2001, Icarus 153, 391), recentemente foi apresentado um novo conjunto destes elementos próprios determinado através de uma teoria sintética (Knenezevic & Milani 2003, comunicação pessoal). As bases de dados contendo estas determinações estão disponiveis na pagina web do Asteroid Dynamical Site (http://hamilton.dm.unipi.it/cgi-bin/astdys/astibo). Nesta comunicação apresentamos os primeiros resultados de um estudo comparativo entre ambos conjuntos de elementos próprios, analisando suas vantagens e desvantagens, assim como os limites de precisão de cada conjunto. Mostramos que os elementos próprios sintéticos são mais precisos que os smi-analíticos para grandes amplitudes de libração do ângulo s = l-lJup, embora acontece o contrario para os corpos cuja amplitude de libração é muito pequena. Finalmente discutimos a influencia destes erros na determinação de familias de asteroides e da estrutura resonante em torno dos pontos Lagrangeanos L4 e L5.
NASA Technical Reports Server (NTRS)
Werner, Frank; Wind, Galina; Zhang, Zhibo; Platnick, Steven; Di Girolamo, Larry; Zhao, Guangyu; Amarasinghe, Nandana; Meyer, Kerry
2016-01-01
A research-level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. It is based on the operational MODIS algorithm. This paper documents the technical details of this algorithm and evaluates the retrievals for selected marine boundary layer cloud scenes through comparisons with the operational MODIS Data Collection 6 (C6) cloud product. The newly developed, ASTERspecific cloud masking algorithm is evaluated through comparison with an independent algorithm reported in Zhao and Di Girolamo (2006). To validate and evaluate the cloud optical thickness (tau) and cloud effective radius (r(sub eff)) from ASTER, the high-spatial-resolution ASTER observations are first aggregated to the same 1000m resolution as MODIS. Subsequently, tau(sub aA) and r(sub eff, aA) retrieved from the aggregated ASTER radiances are compared with the collocated MODIS retrievals. For overcast pixels, the two data sets agree very well with Pearson's product-moment correlation coefficients of R greater than 0.970. However, for partially cloudy pixels there are significant differences between r(sub eff, aA) and the MODIS results which can exceed 10 micrometers. Moreover, it is shown that the numerous delicate cloud structures in the example marine boundary layer scenes, resolved by the high-resolution ASTER retrievals, are smoothed by the MODIS observations. The overall good agreement between the research-level ASTER results and the operational MODIS C6 products proves the feasibility of MODIS-like retrievals from ASTER reflectance measurements and provides the basis for future studies concerning the scale dependency of satellite observations and three-dimensional radiative effects.
Underwater Electromagnetic Sensor Networks—Part I: Link Characterization †
Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J. Joaquín
2017-01-01
Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined. PMID:28106843
Underwater Electromagnetic Sensor Networks-Part I: Link Characterization.
Quintana-Díaz, Gara; Mena-Rodríguez, Pablo; Pérez-Álvarez, Iván; Jiménez, Eugenio; Dorta-Naranjo, Blas-Pablo; Zazo, Santiago; Pérez, Marina; Quevedo, Eduardo; Cardona, Laura; Hernández, J Joaquín
2017-01-19
Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have serious disadvantages. Sea water scenario is a harsh environment for radiocommunications, and there is no standard model for the underwater EM channel. The high conductivity of sea water, the effect of seabed and the surface make the behaviour of the channel hard to predict. This justifies the need of link characterization as the first step to approach the development of EM underwater sensor networks. To obtain a reliable link model, measurements and simulations are required. The measuring setup for this purpose is explained and described, as well as the procedures used. Several antennas have been designed and tested in low frequency bands. Agreement between attenuation measurements and simulations at different distances was analysed and made possible the validation of simulation setups and the design of different communications layers of the system. This leads to the second step of this work, where data and routing protocols for the sensor network are examined.
Duda, Kenneth A.; Abrams, Michael
2007-01-01
Satellite images have been extremely useful in a variety of emergency response activities, including hurricane disasters. This article discusses the collaborative efforts of the U.S. Geological Survey (USGS), the Joint United States-Japan Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, and the National Aeronautics and Space Administration (NASA) in responding to crisis situations by tasking the ASTER instrument and rapidly providing information to initial responders. Insight is provided on the characteristics of the ASTER systems, and specific details are presented regarding Hurricane Katrina support.
NASA Astrophysics Data System (ADS)
Pournamdari, Mohsen; Hashim, Mazlan; Pour, Amin Beiranvand
2014-08-01
Spectral transformation methods, including correlation coefficient (CC) and Optimum Index Factor (OIF), band ratio (BR) and principal component analysis (PCA) were applied to ASTER and Landsat TM bands for lithological mapping of Soghan ophiolitic complex in south of Iran. The results indicated that the methods used evidently showed superior outputs for detecting lithological units in ophiolitic complexes. CC and OIF methods were used to establish enhanced Red-Green-Blue (RGB) color combination bands for discriminating lithological units. A specialized band ratio (4/1, 4/5, 4/7 in RGB) was developed using ASTER bands to differentiate lithological units in ophiolitic complexes. The band ratio effectively detected serpentinite dunite as host rock of chromite ore deposits from surrounding lithological units in the study area. Principal component images derived from first three bands of ASTER and Landsat TM produced well results for lithological mapping applications. ASTER bands contain improved spectral characteristics and higher spatial resolution for detecting serpentinite dunite in ophiolitic complexes. The developed approach used in this study offers great potential for lithological mapping using ASTER and Landsat TM bands, which contributes in economic geology for prospecting chromite ore deposits associated with ophiolitic complexes.
ASTER VNIR 15 years growth to the standard imaging radiometer in remote sensing
NASA Astrophysics Data System (ADS)
Hiramatsu, Masaru; Inada, Hitomi; Kikuchi, Masakuni; Sakuma, Fumihiro
2015-10-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared Radiometer (VNIR) is the remote sensing equipment which has 3 spectral bands and one along-track stereoscopic band radiometer. ASTER VNIR's planned long life design (more than 5 years) is successfully achieved. ASTER VNIR has been imaging the World-wide Earth surface multiband images and the Global Digital Elevation Model (GDEM). VNIR data create detailed world-wide maps and change-detection of the earth surface as utilization transitions and topographical changes. ASTER VNIR's geometric resolution is 15 meters; it is the highest spatial resolution instrument on NASA's Terra spacecraft. Then, ASTER VNIR was planned for the geometrical basis map makers in Terra instruments. After 15-years VNIR growth to the standard map-maker for space remote-sensing. This paper presents VNIR's feature items during 15-year operation as change-detection images , DEM and calibration result. VNIR observed the World-wide Earth images for biological, climatological, geological, and hydrological study, those successful work shows a way on space remote sensing instruments. Still more, VNIR 15 years observation data trend and onboard calibration trend data show several guide or support to follow-on instruments.
Rowan, L.C.
1998-01-01
The advanced spaceborne thermal emission and reflection (ASTER) radiometer was designed to record reflected energy in nine channels with 15 or 30 m resolution, including stereoscopic images, and emitted energy in five channels with 90 m resolution from the NASA Earth Observing System AM1 platform. A simulated ASTER data set was produced for the Iron Hill, Colorado, study area by resampling calibrated, registered airborne visible/infrared imaging spectrometer (AVIRIS) data, and thermal infrared multispectral scanner (TIMS) data to the appropriate spatial and spectral parameters. A digital elevation model was obtained to simulate ASTER-derived topographic data. The main lithologic units in the area are granitic rocks and felsite into which a carbonatite stock and associated alkalic igneous rocks were intruded; these rocks are locally covered by Jurassic sandstone, Tertiary rhyolitic tuff, and colluvial deposits. Several methods were evaluated for mapping the main lithologic units, including the unsupervised classification and spectral curve-matching techniques. In the five thermal-infrared (TIR) channels, comparison of the results of linear spectral unmixing and unsupervised classification with published geologic maps showed that the main lithologic units were mapped, but large areas with moderate to dense tree cover were not mapped in the TIR data. Compared to TIMS data, simulated ASTER data permitted slightly less discrimination in the mafic alkalic rock series, and carbonatite was not mapped in the TIMS nor in the simulated ASTER TIR data. In the nine visible and near-infrared channels, unsupervised classification did not yield useful results, but both the spectral linear unmixing and the matched filter techniques produced useful results, including mapping calcitic and dolomitic carbonatite exposures, travertine in hot spring deposits, kaolinite in argillized sandstone and tuff, and muscovite in sericitized granite and felsite, as well as commonly occurring illite/muscovite. However, the distinction made in AVIRIS data between calcite and dolomite was not consistently feasible in the simulated ASTER data. Comparison of the lithologic information produced by spectral analysis of the simulated ASTER data to a photogeologic interpretation of a simulated ASTER color image illustrates the high potential of spectral analysis of ASTER data to geologic interpretation. This paper is not subject to U.S. copyright. Published in 1998 by the American Geophysical Union.
Schwein, Adeline; Kramer, Ben; Chinnadurai, Ponraj; Walker, Sean; O'Malley, Marcia; Lumsden, Alan; Bismuth, Jean
2017-02-01
One limitation of the use of robotic catheters is the lack of real-time three-dimensional (3D) localization and position updating: they are still navigated based on two-dimensional (2D) X-ray fluoroscopic projection images. Our goal was to evaluate whether incorporating an electromagnetic (EM) sensor on a robotic catheter tip could improve endovascular navigation. Six users were tasked to navigate using a robotic catheter with incorporated EM sensors in an aortic aneurysm phantom. All users cannulated two anatomic targets (left renal artery and posterior "gate") using four visualization modes: (1) standard fluoroscopy mode (control), (2) 2D fluoroscopy mode showing real-time virtual catheter orientation from EM tracking, (3) 3D model of the phantom with anteroposterior and endoluminal view, and (4) 3D model with anteroposterior and lateral view. Standard X-ray fluoroscopy was always available. Cannulation and fluoroscopy times were noted for every mode. 3D positions of the EM tip sensor were recorded at 4 Hz to establish kinematic metrics. The EM sensor-incorporated catheter navigated as expected according to all users. The success rate for cannulation was 100%. For the posterior gate target, mean cannulation times in minutes:seconds were 8:12, 4:19, 4:29, and 3:09, respectively, for modes 1, 2, 3 and 4 (P = .013), and mean fluoroscopy times were 274, 20, 29, and 2 seconds, respectively (P = .001). 3D path lengths, spectral arc length, root mean dimensionless jerk, and number of submovements were significantly improved when EM tracking was used (P < .05), showing higher quality of catheter movement with EM navigation. The EM tracked robotic catheter allowed better real-time 3D orientation, facilitating navigation, with a reduction in cannulation and fluoroscopy times and improvement of motion consistency and efficiency. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Demonstration of ROV-based Underwater Electromagnetic Array Technology
2017-05-25
Volume Magnetic Source Model that Was Modified to Address EM Propagation through a Conductive Seawater Medium...16 Figure 7. Still Shots of the Integrated ROV- EM System (left) and the EM Sensor (right) Performing Bottom Following...of Defense DVL Doppler Velocity Log E Easting EOD Explosive Ordnance Disposal EM Electromagnetic EMI Electromagnetic Induction EMF
Alternate Host of Jack Pine Needle rust in Northern Minnesota
Ralph L. Anderson; Neil A. Anderson
1978-01-01
The pine needle rust of jack pine on the Little Sioux Burn in northeastern Minnesota infected large-leaf aster but not goldenrod. The rust was most severe when asters were abundant on the plots. Les than 10 percent of the jack pine were infected over a 3-year period when asters were more than 10 feet (3.05 m) from the mil-acre plots
The ASTER Global Topographic Data Set
NASA Astrophysics Data System (ADS)
Abrams, M.; Bailey, B.; Tsu, H.; Hato, M.
2009-12-01
The availability of an up-to-date, high-resolution global digital elevation model (DEM) has been a priority of the Earth observation community for a long time. Until now, the best publicly available global data set has been the 100 m SRTM topography, covering 60 degrees north to 57 degrees south latitude On June 29 Japan’s Ministry of Economy, Trade, and Industry (METI) and the United States National Aeronautics and Space Administration (NASA) released the ASTER Global (GDEM) created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. ASTER is an imaging instrument built by METI and operating on the NASA Terra platform. ASTER has a backward- looking stereo band, producing stereo pairs in the near-infrared wavelength region; from these stereo pairs, DEMs with 30 m postings (1 arc-second) can be produced. The joint US/Japan ASTER Project completed a program to produce a global DEM (GDEM). The ASTER GDEM was created by stereo-correlating the entire 1,200,000-scene ASTER archive; stacking and averaging the individual DEMs; cloud screening; and filling voids or holes using SRTM 100 m or other data where available. An extensive validation program was completed prior to release of the GDEM. Validation of the GDEM involved comparisons against higher resolution DEMs worldwide by many organizations. Results indicate that globally, the GDEM meets the 20 m vertical accuracy requirement at the 95% confidence level. Accompanying each tile is another data plane indicating the number of individual DEMs that went into the stack, or identifying the data source used to fill the void. At the November 2007 GEO Ministerial Summit, NASA and METI were invited by GEO to contribute this global DEM to GEOSS. Both countries accepted the invitation. Consequently, the ASTER GDEM is offered at no charge to users worldwide. It is packaged in 1 degree-by-1 degree tiles, and covers the Earth’s land surfaces between 83 degree N and 83 degree S latitudes with estimated accuracies of 20 m for vertical data and 30 m for horizontal data. It is distributed by both METI’s Earth Remote Sensing Data Analysis Center organization in Japan, and NASA’s Land Processes Distributed Active Archive Center in the U.S.
NASA Astrophysics Data System (ADS)
Soto-Pinto, C. A.; Arellano-Baeza, A. A.; Ouzounov, D. P.
2011-12-01
We study the temporal evolution of the stress patterns in the crust by using high-resolution (10-300 m) satellite images from MODIS and ASTER satellite sensors. We are able to detect some changes in density and orientation of lineaments preceding earthquake events. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments; nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. Our analysis has shown that the system of lineaments is very dynamical, and the significant number of lineaments appeared approximately one month before an earthquake, while one month after the earthquake the lineament configuration returned to its initial state. These features were not observed in the test areas that are free of any seismic activity in that period (null hypothesis). We have designed a computational prototype capable to detect lineament evolution and to utilize both ASTER and MODIS satellite L1/L2. We will demonstrate the first successful test results for several Mw> 5 earthquakes in Chile, Peru, China, and California (USA).
Rockwell, Barnaby W.
2013-01-01
Multispectral satellite data acquired by the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and Landsat 7 Enhanced Thematic Mapper Plus (TM) sensors are being used to populate an online Geographic Information System (GIS) of the spatial occurrence of mineral groups and green vegetation across the western conterminous United States and Alaska. These geospatial data are supporting U.S. Geological Survey national-scale mineral deposit database development and other mineral resource and geoenvironmental research as a means of characterizing mineral exposures related to mined and unmined hydrothermally altered rocks and mine waste. This report introduces a new methodology for the automated analysis of Landsat TM data that has been applied to more than 180 scenes covering the western United States. A map of mineral groups and green vegetation produced using this new methodology that covers the western San Juan Mountains, Colorado, and the Four Corners Region is presented. The map is provided as a layered GeoPDF and in GIS-ready digital format. TM data analysis results from other well-studied and mineralogically characterized areas with strong hydrothermal alteration and (or) supergene weathering of near-surface sulfide minerals are also shown and compared with results derived from ASTER data analysis.
Kalman filter-based EM-optical sensor fusion for needle deflection estimation.
Jiang, Baichuan; Gao, Wenpeng; Kacher, Daniel; Nevo, Erez; Fetics, Barry; Lee, Thomas C; Jayender, Jagadeesan
2018-04-01
In many clinical procedures such as cryoablation that involves needle insertion, accurate placement of the needle's tip at the desired target is the major issue for optimizing the treatment and minimizing damage to the neighboring anatomy. However, due to the interaction force between the needle and tissue, considerable error in intraoperative tracking of the needle tip can be observed as needle deflects. In this paper, measurements data from an optical sensor at the needle base and a magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. Bending model-based estimations and EM-based direct estimation are used as the measurement vectors in the Kalman filter, thus establishing an online estimation approach. Static tip bending experiments show that the fusion method can reduce the mean error of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI entrance, respectively. This work established a novel sensor fusion scheme that incorporates model information, which enables real-time tracking of needle deflection with MRI compatibility, in a free-hand operating setup.
Davis, R. E.; Whitcomb, R. F.
1970-01-01
Antibiotics suppressed development of aster yellows (AY) disease symptoms in plants of china aster [Callistephus chinensis (L.) Nees.] and annual chrysanthemum (Chrysanthemum carinatum, Schousb.). When inoculated chrysanthemum plants were treated by any of several techniques with tetracycline antibiotics or chloramphenicol, symptoms failed to appear during treatment but appeared 1 to 4 weeks after treatments were terminated. Under continuous administration of chlortetracycline, aster plants with AY symptoms developed symptomless axillary growth, including flowers. Streptomycin, oleandomycin, kanamycin, tylosin, carbomycin, polymyxin, bacitracin, neomycin, sulfanilamide, penicillin, vancomycin, or cycloserine had no discernible effect on development of AY symptoms. Treatment of plants with tetracycline antibiotics before exposure to inoculative (pathogen-transmitting) vectors delayed the appearance of symptoms or prevented AY infection. Remission of AY symptoms in inoculated plants treated with chlortetracycline was correlated with an inhibition of multiplication of AY agent, as measured by bioassay of extracts. The data give additional support to the hypothesis that aster yellows disease is caused by a mycoplasma-like microorganism. Images PMID:16557820
NASA Astrophysics Data System (ADS)
Ng, Z. F.; Gisen, J. I.; Akbari, A.
2018-03-01
Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.
Characterizing regional soil mineral composition using spectroscopyand geostatistics
Mulder, V.L.; de Bruin, S.; Weyermann, J.; Kokaly, Raymond F.; Schaepman, M.E.
2013-01-01
This work aims at improving the mapping of major mineral variability at regional scale using scale-dependent spatial variability observed in remote sensing data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and statistical methods were combined with laboratory-based mineral characterization of field samples to create maps of the distributions of clay, mica and carbonate minerals and their abundances. The Material Identification and Characterization Algorithm (MICA) was used to identify the spectrally-dominant minerals in field samples; these results were combined with ASTER data using multinomial logistic regression to map mineral distributions. X-ray diffraction (XRD)was used to quantify mineral composition in field samples. XRD results were combined with ASTER data using multiple linear regression to map mineral abundances. We testedwhether smoothing of the ASTER data to match the scale of variability of the target sample would improve model correlations. Smoothing was donewith Fixed Rank Kriging (FRK) to represent the mediumand long-range spatial variability in the ASTER data. Stronger correlations resulted using the smoothed data compared to results obtained with the original data. Highest model accuracies came from using both medium and long-range scaled ASTER data as input to the statistical models. High correlation coefficients were obtained for the abundances of calcite and mica (R2 = 0.71 and 0.70, respectively). Moderately-high correlation coefficients were found for smectite and kaolinite (R2 = 0.57 and 0.45, respectively). Maps of mineral distributions, obtained by relating ASTER data to MICA analysis of field samples, were found to characterize major soil mineral variability (overall accuracies for mica, smectite and kaolinite were 76%, 89% and 86% respectively). The results of this study suggest that the distributions of minerals and their abundances derived using FRK-smoothed ASTER data more closely match the spatial variability of soil and environmental properties at regional scale.
Feasibility Study of ASTER SWIR data prediction
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Gonzalez, L.
2017-12-01
Observation by ASTER SWIR spectral bands are unavailable since 2008 due to anomalously high SWIR detector temperatures, but ASTER VNIR and TIR spectral bands are still valid. SWIR wavelength region is however very useful to determining the land cover or discriminating rock types, etc. In this work, we present the results of a feasibility study for the prediction of ASTER SWIR bands with artificial neural networks (ANN) using ASTER valid bands. The latter are selected over three types of ground data sets, representing desert, rocky and vegetated areas. The ASTER VNIR bands are atmospherically corrected, using the US standard 62 model, without aerosol correction. To optimize the training of the ANN, it is crucial to categorize the input data. In this goal, we have built a histogram using a simple linear combination of the 3 VNIR bands, that we call contrast histogram, to split the input ASTER data in 4 areas. For each of these 4 areas, we have built six ANN, one for each SWIR band to retrieve with 3 inputs and two layers with 5 hidden nodes each and one outputs layer. The training of the ANN is done using ASTER pixels selected over several millions of pixels in representative desert, green and rocky areas. The analysis of the ANN results demonstrates that 99 % of the pixels are reconstructed with less than 20% error in desert areas. In rocky areas, the errors do not exceed 30%. However, the errors can exceed 50% in vegetated areas. This led us to improve the ANN by introducing new spectral bands (1.24, 1.64, 2.13 μm) from TERRA MODIS that is time synchronized with ASTER. The measurements are pan-sharpened to match ASTER spatial resolution. Instead of using a contrast histogram, a NDVI histogram helps us to classify the input data. With the newly constructed ANNs, the quality of the retrieved SWIR values is perceptible in particular over vegetation ( 45% of the points with less than 20% errors), and even more over the desert and rocky areas ( 75% of the points with less than 10% errors). We demonstrate that it is possible to build ANNs that are capable of regenerating, with a reasonable error, the SWIR bands in deserts and mountainous, while SWIR reconstruction in vegetation areas is more difficult. Improvements can be envisaged by introducing missing elements such as snow or ice along with a better discrimination of the vegetation.
ASTER Thermal Anomalies in Western Colorado
Richard E. Zehner
2013-01-01
This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2o, and areas with temperature equal to 1o to 2o, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Note: 'o' is used in place of lowercase sigma in this description.
Retrieval of volcanic ash composition and particle size using high spatial resolution satellite data
NASA Astrophysics Data System (ADS)
Williams, D.; Ramsey, M. S.
2017-12-01
Volcanic ash plumes are a complex mixture of glass, mineral and lithic fragments in suspension with multiple gas species. These plumes are rapidly injected into the atmosphere, traveling thousands of kilometers from their source and affecting lives and property. One important use of satellite-based data has been to monitor volcanic plumes and their associated hazards. For distal plumes, the transmissive properties of volcanic ash in the thermal infrared (TIR) region allows the effective radii, composition, and density to be determined using approaches such as radiative transfer modelling. Proximal to the vent, however, the plume remains opaque, rendering this method invalid. We take a new approach to proximal plume analysis by assuming the plume's upper layer behaves spectrally as a solid surface in the TIR, due to the temperature and density of the plume soon after ejection from the vent. If this hypothesis is true, linear mixing models can be employed together with an accurate spectral library to compute both the particle size and petrology of every plume pixel. This method is being applied to high spatial resolution TIR data from the ASTER sensor using the newly developed ASTER Volcanic Ash Library (AVAL). AVAL serves as the spectral end-member suite from which to model plume data of 4 volcanoes: Chaitén, Puyehue-Cordón Caulle, Sakurajima and Soufrière Hills Volcano (SHV). Preliminary results indicate that this approach may be valid. The Sakurajima and SHV AVAL spectra provide an excellent fit to the ASTER data, whereas crushed high silica glass served as an appropriate end-member for both Chaitén and Puyehue-Cordón Caulle. In all cases, the best-fit size fractions are < 45 µm. Analysis of the proximal plume is essential in understanding the volcanic processes occurring within the vent. This study provides unprecedented detail of this region of the plume, further demonstrating the need for the continuation of high spatial resolution TIR satellite missions.
NASA Astrophysics Data System (ADS)
Huang, C.; LI, Y.
2017-12-01
Continuous monitoring of daily evapotranspiration (ET) is crucial for allocating and managing water resources in irrigated agricultural areas in arid regions. In this study, continuous daily ET at a 90-m spatial resolution was estimated using the Surface Energy Balance System (SEBS) by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) images with high temporal resolution and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) images with high spatial resolution. The spatiotemporal characteristics of these sensors were obtained using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The performance of this approach was validated over a heterogeneous oasis-desert region covered by cropland, residential, woodland, water, Gobi desert, sandy desert, desert steppe, and wetland areas using in situ observations from automatic meteorological systems (AMS) and eddy covariance (EC) systems in the middle reaches of the Heihe River Basin in Northwest China. The error introduced during the data fusion process based on STARFM is within an acceptable range for predicted LST at a 90-m spatial resolution. The surface energy fluxes estimated using SEBS based on predicted remotely sensed data that combined the spatiotemporal characteristics of MODIS and ASTER agree well with the surface energy fluxes observed using EC systems for all land cover types, especially for vegetated area with MAP values range from 9% to 15%, which are less than the uncertainty (18%) of the observed in this study area. Time series of daily ET modelled from SEBS were compared to that modelled from PT-JPL (one of Satellite-based Priestley-Taylor ET model) and observations from EC systems. SEBS performed generally better than PT-JPL for vegetated area, especially irrigated cropland with bias, RMSE, and MAP values of 0.29 mm/d, 0.75 mm/d, 13% at maize site, -0.33 mm/d, 0.81 mm/d, and 14% at vegetable sites.
Soil water sensor response to bulk electrical conductivity
USDA-ARS?s Scientific Manuscript database
Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...
Assessing Mesoscale Volcanic Aviation Hazards using ASTER
NASA Astrophysics Data System (ADS)
Pieri, D.; Gubbels, T.; Hufford, G.; Olsson, P.; Realmuto, V.
2006-12-01
The Advanced Spaceborne Thermal Emission and Reflection (ASTER) imager onboard the NASA Terra Spacecraft is a joint project of the Japanese Ministry for Economy, Trade, and Industry (METI) and NASA. ASTER has acquired over one million multi-spectral 60km by 60 km images of the earth over the last six years. It consists of three sub-instruments: (a) a four channel VNIR (0.52-0.86um) imager with a spatial resolution of 15m/pixel, including three nadir-viewing bands (1N, 2N, 3N) and one repeated rear-viewing band (3B) for stereo-photogrammetric terrain reconstruction (8-12m vertical resolution); (b) a SWIR (1.6-2.43um) imager with six bands at 30m/pixel; and (c) a TIR (8.125-11.65um) instrument with five bands at 90m/pixel. Returned data are processed in Japan at the Earth Remote Sensing Data Analysis Center (ERSDAC) and at the Land Processes Distributed Active Archive Center (LP DAAC), located at the USGS Center for Earth Resource Observation and Science (EROS) in Sioux Falls, South Dakota. Within the ASTER Project, the JPL Volcano Data Acquisition and Analyses System (VDAAS) houses over 60,000 ASTER volcano images of 1542 volcanoes worldwide and will be accessible for downloads by the general public and on-line image analyses by researchers in early 2007. VDAAS multi-spectral thermal infrared (TIR) de-correlation stretch products are optimized for volcanic ash detection and have a spatial resolution of 90m/pixel. Digital elevation models (DEM) stereo-photogrammetrically derived from ASTER Band 3B/3N data are also available within VDAAS at 15 and 30m/pixel horizontal resolution. Thus, ASTER visible, IR, and DEM data at 15-100m/pixel resolution within VDAAS can be combined to provide useful boundary conditions on local volcanic eruption plume location, composition, and altitude, as well as on topography of underlying terrain. During and after eruptions, low- altitude winds and ash transport can be affected by topography, and other orographic thermal and water vapor transport effects from the micro (<1km) to mesoscale (1-100km). Such phenomena are thus well-observed by ASTER and pose transient and severe hazards to aircraft operating in and out of airports near volcanoes (e.g., Anchorage, AK, USA; Catania, Italy; Kagoshima City, Japan). ASTER image data and derived products provide boundary conditions for 3D mesoscale atmospheric transport and chemistry models (e.g., RAMS) for retrospective and prospective studies of volcanic aerosol transport at low altitudes in takeoff and landing corridors near active volcanoes. Putative ASTER direct downlinks in the future could provide real-time mitigation of such hazards. Some examples of mesoscale analyses for threatened airspace near US and non- US airports will be shown. This work was, in part, carried out at the Jet Propulsion Laboratory of the California Institute of Technology under contract to the NASA Earth Science Research Program and as part of ASTER Science Team activities.
NASA JSC EV2 Intern Spring 2016 - Jennie Chung
NASA Technical Reports Server (NTRS)
Chung, Jennie
2016-01-01
Exploration Mission 2 (EM-2) is a mission to resume the manned exploration of the Solar System. This mission is the first crewed mission of NASA’s Orion on the Space Launch System. The target for EM-2 is to perform a flyby of a captured asteroid in lunar orbit, which NASA plans to launch in 2023. As an intern working with EV-2 – Avionics Systems Division in Johnson Space Center, we are developing flight instrumentation systems for EM-2 (MISL & RFID). The Modular Integrated Stackable Layer (MISL) is a compact space-related computer system that is modular, scalable and reconfigurable. The RFID (radio frequency identification) sensors are used to take lower frequency (TC) type measurements and be able to stream data real-time to an RF (radio frequency) interrogator upon demand. Our job, in EV-2, is to certify, test, manufacture/assemble and deliver flight EM-2 DFI System (MISL & RFID). Our goal is to propose a development effort to design low-mass wire and wireless data acquisition and sensor solutions for EM-2 DFI (Development Flight Instrumentation). The team is tasked to provide the most effective use of 75 pounds to acquire DFI data and to collect sensor data for 100-200 high priority DFI channels (mass driven).
Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.
2014-01-01
Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.
Discrepancy Between ASTER- and MODIS- Derived Land Surface Temperatures: Terrain Effects
Liu, Yuanbo; Noumi, Yousuke; Yamaguchi, Yasushi
2009-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) are onboard the same satellite platform NASA TERRA. Both MODIS and ASTER offer routine retrieval of land surface temperatures (LSTs), and the ASTER- and MODIS-retrieved LST products have been used worldwide. Because a large fraction of the earth surface consists of mountainous areas, variations in elevation, terrain slope and aspect angles can cause biases in the retrieved LSTs. However, terrain-induced effects are generally neglected in most satellite retrievals, which may generate discrepancy between ASTER and MODIS LSTs. In this paper, we reported the terrain effects on the LST discrepancy with a case examination over a relief area at the Loess Plateau of China. Results showed that the terrain-induced effects were not major, but nevertheless important for the total LST discrepancy. A large local slope did not necessarily lead to a large LST discrepancy. The angle of emitted radiance was more important than the angle of local slope in generating the LST discrepancy. Specifically, the conventional terrain correction may be unsuitable for densely vegetated areas. The distribution of ASTER-to-MODIS emissivity suggested that the terrain correction was included in the generalized split window (GSW) based approach used to rectify MODIS LSTs. Further study should include the classification-induced uncertainty in emissivity for reliable use of satellite-retrieved LSTs over relief areas. PMID:22399955
... Meningococcemia associated purpura Necrosis of the toes References Kumar V, Abbas AK, Aster JC. Cellular responses to ... and toxic insults: adaptation, injury, and death. In: Kumar V, Abbas AK, Aster JC, eds. Robbins and ...
... A. Bones, joints, and soft tissue tumors. In: Kumar V, Abbas AK, Aster JC, eds. Robbins and ... ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 26. Kumar V, Abbas AK, Aster JC. Cellular responses to ...
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.
Khalid Hussein
2012-02-01
Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.
Spectral mineral mapping for characterization of subtle geothermal prospects using ASTER data
NASA Astrophysics Data System (ADS)
Abubakar, A. J.; Hashim, M.; Pour, A. B.
2017-05-01
In this study, the performance of ASTER data is evaluated for mapping subtle geothermal prospects in an unexplored tropical region having a number of thermal springs. The study employed a simple Decorrelation stretch with specific absorptions to highlight possible alteration zones of interest related to Geothermal (GT) systems. Hydrothermal alteration minerals are subsequently mapped using Spectral Angle Mapper (SAM) and Linear Spectral Unmixing (LSU) algorithms to target representative minerals such as clays, carbonates and AL-OH minerals as indicators of GT activity. The results were validated through field GPS survey, rock sampling and laboratory analysis using latest smart lab X-Ray Diffractometer technology. The study indicates that ASTER broadband satellite data could be used to map subtle GT prospects with the aid of an in-situ verification. However, it also shows that ASTER could not discriminate within specie minerals especially for clays using SWIR bands. Subsequent studies are aimed at looking at both ASTER and Hyperion hyperspectral data in the same area as this could have significant implications for GT resource detection in unmapped aseismic and inaccessible tropical regions using available spaceborne data.
Access to Land Data Products Through the Land Processes DAAC
NASA Astrophysics Data System (ADS)
Klaassen, A. L.; Gacke, C. K.
2004-12-01
The Land Processes Distributed Active Archive Center (LP DAAC) was established as part of NASA's Earth Observing System (EOS) Data and Information System (EOSDIS) initiative to process, archive, and distribute land-related data collected by EOS sensors, thereby promoting the inter-disciplinary study and understanding of the integrated Earth system. The LP DAAC is responsible for archiving, product development, distribution, and user support of Moderate Resolution Imaging Spectroradiometer (MODIS) land products derived from data acquired by the Terra and Aqua satellites and processing and distribution of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data products. These data are applied in scientific research, management of natural resources, emergency response to natural disaster, and Earth Science Education. There are several web interfaces by which the inventory may be searched and the products ordered. The LP DAAC web site (http://lpdaac.usgs.gov/) provides product-specific information and links to data access tools. The primary search and order tool is the EOS Data Gateway (EDG) (http://edcimswww.cr.usgs.gov/pub/imswelcome/) that allows users to search data holdings, retrieve descriptions of data sets, view browse images, and place orders. The EDG is the only tool to search the entire inventory of ASTER and MODIS products available from the LP DAAC. The Data Pool (http://lpdaac.usgs.gov/datapool/datapool.asp) is an online archive that provides immediate FTP access to selected LP DAAC data products. The data can be downloaded by going directly to the FTP site, where you can navigate to the desired granule, metadata file or browse image. It includes the ability to convert files from the standard HDF-EOS data format into GeoTIFF, to change the data projections, or perform spatial subsetting by using the HDF-EOS to GeoTIFF Converter (HEG) for selected data types. The Browse Tool also known as the USGS Global Visualization Viewer (http://lpdaac.usgs.gov/aster/glovis.asp) provides a easy online method to search, browse, and order the LP DAAC ASTER and MODIS land data by viewing browse images to define spatial and temporal queries. The LP DAAC User Services Office is the interface for support for the ASTER and MODIS data products and services. The user services representatives are available to answer questions, assist with ordering data, technical support and referrals, and provide information on a variety of tools available to assist in data preparation. The LP DAAC User Services contact information is: LP DAAC User Services U.S. Geological Survey EROS Data Center 47914 252nd Street Sioux Falls, SD 57198-0001 Voice: (605) 594-6116 Toll Free: 866-573-3222 Fax: 605-594-6963 E-mail: edc@eos.nasa.gov "This abstract was prepared under Contract number 03CRCN0001 between SAIC and U.S. Geological Survey. Abstract has not been reviewed for conformity with USGS editorial standards and has been submitted for approval by the USGS Director."
NASA Astrophysics Data System (ADS)
Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Dini, L.
2009-04-01
The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools geophysical parameters suitable for volcanic risk management. The ASI-SRV is devoted to the development of an integrated system based on Earth Observation (EO) data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes during all the risk phases (Pre Crisis, Crisis and Post Crisis). The ASI-SRV system provides support to risk managers during the different volcanic activity phases and its results are addressed to the Italian Civil Protection Department (DPC). SRV provides the capability to manage the import many different EO data into the system, it maintains a repository where the acquired data have to be stored and generates selected volcanic products. The processing modules for EO Optical sensors data are based on procedures jointly developed by INGV and University of Modena. This procedures allow to estimate a number of parameters such as: surface thermal proprieties, gas, aerosol and ash emissions and to characterize the volcanic products in terms of composition and geometry. For the analysis of the surface thermal characteristics, the available algorithms allow to extract information during the prevention phase and during the Warning and Crisis phase. In the prevention phase the thermal analysis is directed to the identification of temperature variation on volcanic structure which may indicate a change in the volcanic activity state. At the moment the only sensor that shows good technical characteristics for the prevention phase is the ASTER sensor (90 m pixel) on NASA satellite TERRA. The product regarding the Crisis phase is mainly finalized to the estimation of the effusion rate for active lava flows, the algorithms for this product are well consolidated and could be applied to the low spatial resolution space sensors (eg. AVHRR, MODIS) and to high spatial resolution space sensors (eg. Hyperion, ASTER). A further class of products regards the analysis of degassing plumes and eruptive clouds. The analysis of the emitted gas species from degassing plume is usually performed trough ground networks of instruments based on the spectral behaviour of the gas species, although many volcanoes in the world do not have such permanent networks. The SRV system will produce information on the concentration and flux of sulphur dioxide (SO2) water vapour and volcanic aerosol optical thickness by means of ASTER, MODIS and HYPERION data on Etna test site. The analysis of ash clouds will be made by means of already consolidated procedures which uses low spatial resolution sensors with an high revisit time (eg. AVHRR, MSG, MODIS). For the Post Crisis phase the required products will be obtained through classification algorithms and spectral analysis operated by the scientific personnel of INGV and introduced in the system repository after the use of modules. The processing modules for EO RADAR sensors data for ground deformation measurement via Differential Interferometric SAR (DInSAR) techniques is performed by IREA-CNR. The selected test sites are Etna, Vesuvius and Campi Flegrei caldera. In particular, ground deformation time series will be generated by using ERS and ENVISAT SAR data and via the application of the Small BAeline Subset (SBAS) technique. This algorithm has the advantage of being both simple and very effective; moreover, it allows an easy combination of multiplatform data, provided that the acquisition geometries of both platform are compatible. In this paper the first results obtained by means of modules developed within the ASI-SRV project and dedicated to the processing of EO historical series are presented.
Real-time MRI-guided needle intervention for cryoablation: a phantom study
NASA Astrophysics Data System (ADS)
Gao, Wenpeng; Jiang, Baichuan; Kacher, Dan F.; Fetics, Barry; Nevo, Erez; Lee, Thomas C.; Jayender, Jagadeesan
2017-03-01
MRI-guided needle intervention for cryoablation is a promising way to relieve the pain and treat the cancer. However, the limited size of MRI bore makes it impossible for clinicians to perform the operation in the bore. The patients had to be moved into the bore for scanning to verify the position of the needle's tip and out for adjusting the needle's trajectory. Real-time needle tracking and shown in MR images is of importance for clinicians to perform the operation more efficiently. In this paper, we have instrumented the cryotherapy needle with a MRI-safe electromagnetic (EM) sensor and optical sensor to measure the needle's position and orientation. To overcome the limitation of line-of-sight for optical sensor and the poor dynamic performance of the EM sensor, Kalman filter based data fusion is developed. Further, we developed a navigation system in open-source software, 3D Slicer, to provide accurate visualization of the needle and the surrounding anatomy. Experiment of simulation the needle intervention at the entrance was performed with a realistic spine phantom to quantify the accuracy of the navigation using the retrospective analysis method. Eleven trials of needle insertion were performed independently. The target accuracy with the navigation using only EM sensor, only optical sensor and data fusion are 2.27 +/-1.60 mm, 4.11 +/- 1.77 mm and 1.91 - 1.10 mm, respectively.
... 12th ed. Philadelphia, PA: Elsevier; 2017:1061-1067. Kumar V, Abbas AK, Aster JC. Cellular responses to ... and toxic insults: adaptation, injury, and death. In: Kumar V, Abbas AK, Aster JC, eds. Robbins and ...
Gowrishankar, Kripa; Rao, Madan
2016-02-21
We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating".
Active sensors for health monitoring of aging aerospace structures
NASA Astrophysics Data System (ADS)
Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk
2000-06-01
A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.
NASA Astrophysics Data System (ADS)
Ferreira da Silva, R.; Filgueira, R.; Deelman, E.; Atkinson, M.
2016-12-01
We present Asterism, an open source data-intensive framework, which combines the Pegasus and dispel4py workflow systems. Asterism aims to simplify the effort required to develop data-intensive applications that run across multiple heterogeneous resources, without users having to: re-formulate their methods according to different enactment systems; manage the data distribution across systems; parallelize their methods; co-place and schedule their methods with computing resources; and store and transfer large/small volumes of data. Asterism's key element is to leverage the strengths of each workflow system: dispel4py allows developing scientific applications locally and then automatically parallelize and scale them on a wide range of HPC infrastructures with no changes to the application's code; Pegasus orchestrates the distributed execution of applications while providing portability, automated data management, recovery, debugging, and monitoring, without users needing to worry about the particulars of the target execution systems. Asterism leverages the level of abstractions provided by each workflow system to describe hybrid workflows where no information about the underlying infrastructure is required beforehand. The feasibility of Asterism has been evaluated using the seismic ambient noise cross-correlation application, a common data-intensive analysis pattern used by many seismologists. The application preprocesses (Phase1) and cross-correlates (Phase2) traces from several seismic stations. The Asterism workflow is implemented as a Pegasus workflow composed of two tasks (Phase1 and Phase2), where each phase represents a dispel4py workflow. Pegasus tasks describe the in/output data at a logical level, the data dependency between tasks, and the e-Infrastructures and the execution engine to run each dispel4py workflow. We have instantiated the workflow using data from 1000 stations from the IRIS services, and run it across two heterogeneous resources described as Docker containers: MPI (Container2) and Storm (Container3) clusters (Figure 1). Each dispel4py workflow is mapped to a particular execution engine, and data transfers between resources are automatically handled by Pegasus. Asterism is freely available online at http://github.com/dispel4py/pegasus_dispel4py.
ASTER Global Digital Elevation Model GDEM
2009-06-29
NASA and Japan Ministry of Economy, Trade and Industry METI released the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER Global Digital Elevation Model GDEM to the worldwide public on June 29, 2009.
ASTER Global DEM contribution to GEOSS demonstrates open data sharing
NASA Astrophysics Data System (ADS)
Sohre, T.; Duda, K. A.; Meyer, D. J.; Behnke, J.; Nasa Esdis Lp Daac
2010-12-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing instrument on the Terra spacecraft has been acquiring images of Earth since launch in 1999. Throughout this time data products have been openly available to the general public through sites in the U.S. and Japan. As the ASTER mission matured, a spatially broad and temporally deep data archive was gradually established. With this extensive accumulation of Earth observations, it became possible to create a new global digital elevation product, the ASTER Global Digital Elevation Model (GDEM), using multi-temporal data, resulting in over 22,000 static 10 X 10 tiles. The ASTER GDEM was contributed by Japan’s Ministry of Economy Trade and Industry (METI) and the U.S. National Aeronautics and Space Administration (NASA) to the Global Earth Observation System of Systems (GEOSS) for distribution at no cost to users. As such, both METI and NASA desired to understand the uses of the ASTER GDEM, expressed as one of the GEOSS applications themes: disasters, health, energy, climate, water, weather, ecosystems, agriculture or biodiversity. This required both the registration of users, and restrictions on redistribution, to capture the intended use in terms of the GEOSS themes. The ASTER GDEM was made available to users worldwide via electronic download from the Earth Remote Sensing Data Analysis Center (ERSDAC) of Japan and from NASA’s Land Processes Distributed Active Archive Center (LP DAAC). During the first three months after product release, over 4 million GDEM tiles were distributed from the LP DAAC and ERSDAC. The ASTER GDEM release generated nearly 20,000 new user registrations in the NASA EOS ClearingHOuse (ECHO)/WIST and the ERSDAC systems. By the end of 2009, over 6.5 Million GDEM tiles were distributed by the LP DAAC and ERSDAC. Users have requested tiles over specific areas of interest as well as the entire dataset for global research. Intense global interest in the GDEM across all the GEOSS Societal Benefit areas was shown. The release of the global tiled research-grade DEM resulted in a significant increase in demand for ASTER elevation models, and increased awareness of related products. No cost access to these data has also promoted new applications of remotely sensed data, increasing their use across the full range of the GEOSS societal benefit areas. In addition, the simplified data access and greatly expanded pool of users resulted in a number of suggestions from researchers in many disciplines for possible enhancements to future versions of the ASTER GDEM. The broad distribution of the product can be directly attributed to the adoption of fundamental GEOSS data sharing principles, which are directed toward expanded access by minimizing time delay and cost, thus facilitating data use for education, research, and a range of other applications. The ASTER GDEM demonstrated the need and user demand for an improved global DEM product as well as the added benefit of not only “full and open” distribution, but “free and open” distribution.
Generation of a high-accuracy regional DEM based on ALOS/PRISM imagery of East Antarctica
NASA Astrophysics Data System (ADS)
Shiramizu, Kaoru; Doi, Koichiro; Aoyama, Yuichi
2017-12-01
A digital elevation model (DEM) is used to estimate ice-flow velocities for an ice sheet and glaciers via Differential Interferometric Synthetic Aperture Radar (DInSAR) processing. The accuracy of DInSAR-derived displacement estimates depends upon the accuracy of the DEM. Therefore, we used stereo optical images, obtained with a panchromatic remote-sensing instrument for stereo mapping (PRISM) sensor mounted onboard the Advanced Land Observing Satellite (ALOS), to produce a new DEM ("PRISM-DEM") of part of the coastal region of Lützow-Holm Bay in Dronning Maud Land, East Antarctica. We verified the accuracy of the PRISM-DEM by comparing ellipsoidal heights with those of existing DEMs and values obtained by satellite laser altimetry (ICESat/GLAS) and Global Navigation Satellite System surveying. The accuracy of the PRISM-DEM is estimated to be 2.80 m over ice sheet, 4.86 m over individual glaciers, and 6.63 m over rock outcrops. By comparison, the estimated accuracy of the ASTER-GDEM, widely used in polar regions, is 33.45 m over ice sheet, 14.61 m over glaciers, and 19.95 m over rock outcrops. For displacement measurements made along the radar line-of-sight by DInSAR, in conjunction with ALOS/PALSAR data, the accuracy of the PRISM-DEM and ASTER-GDEM correspond to estimation errors of <6.3 mm and <31.8 mm, respectively.
Use of UAVs for Remote Measurement of Vegetation Canopy Variables
NASA Astrophysics Data System (ADS)
Rango, A.; Laliberte, A.; Herrick, J.; Steele, C.; Bestelmeyer, B.; Chopping, M. J.
2006-12-01
Remote sensing with different sensors has proven useful for measuring vegetation canopy variables at scales ranging from landscapes down to individual plants. For use at landscape scales, such as desert grasslands invaded by shrubs, it is possible to use multi-angle imagery from satellite sensors, such as MISR and CHRIS/Proba, with geometric optical models to retrieve fractional woody plant cover. Vegetation community states can be mapped using visible and near infrared ASTER imagery at 15 m resolution. At finer scales, QuickBird satellite imagery with approximately 60 cm resolution and piloted aircraft photography with 25-80 cm resolution can be used to measure shrubs above a critical size. Tests conducted with the QuickBird data in the Jornada basin of southern New Mexico have shown that 87% of all shrubs greater than 2 m2 were detected whereas only about 29% of all shrubs less than 2 m2 were detected, even at these high resolutions. Because there is an observational gap between satellite/aircraft measurements and ground observations, we have experimented with Unmanned Aerial Vehicles (UAVs) producing digital photography with approximately 5 cm resolution. We were able to detect all shrubs greater than 2 m2, and we were able to map small subshrubs indicative of rangeland deterioration, as well as remnant grass patches, for the first time. None of these could be identified on the 60 cm resolution data. Additionally, we were able to measure canopy gaps, shrub patterns, percent bare soil, and vegetation cover over mixed rangeland vegetation. This approach is directly applicable to rangeland health monitoring, and it provides a quantitative way to assess shrub invasion over time and to detect the depletion or recovery of grass patches. Further, if the UAV images have sufficient overlap, it may be possible to exploit the stereo viewing capabilities to develop a digital elevation model from the orthophotos, with a potential for extracting canopy height. We envision two parallel routes for investigation: one which emphasizes utilization of the most technically advanced passive and active space and aircraft sensors (e.g., LIDAR, radar, Hyperion, ASTER, QuickBird follow-on) for modeling research, and a second which emphasizes minimization of costs and maximization of simplicity for monitoring purposes utilizing inexpensive sensors such as digital cameras on UAVs for arid and semiarid rangelands. The use of UAVs will provide management agencies a way to assess various vegetation canopy variables for a very reasonable cost.
Expanding the Role of Emergency Medical Services in Homeland Security
2013-03-01
1 A. BACKGROUND AND OVERVIEW .............................................................2 B ... B . DATA ANALYSIS .........................................................................................20 III. ANALYSIS AND EVALUATION—EMS AS...INTELLIGENCE SENSORS ......21 A. ACTING AS INTELLIGENCE SENSORS ................................................21 B . PREVENTION MODELS
NASA Astrophysics Data System (ADS)
Girod, L.; Nuth, C.; Kääb, A.
2015-12-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a source of stereoscopic images covering the whole globe at a 15m resolution at a consistent quality for over 15 years. The potential of this data in terms of geomorphological analysis and change detection in three dimensions is unrivaled and needs to be exploited. However, the quality of the DEMs and ortho-images currently delivered by NASA (ASTER DMO products) is often of insufficient quality for a number of applications such as mountain glacier mass balance. For this study, the use of Ground Control Points (GCPs) or of other ground truth was rejected due to the global "big data" type of processing that we hope to perform on the ASTER archive. We have therefore developed a tool to compute Rational Polynomial Coefficient (RPC) models from the ASTER metadata and a method improving the quality of the matching by identifying and correcting jitter induced cross-track parallax errors. Our method outputs more accurate DEMs with less unmatched areas and reduced overall noise. The algorithms were implemented in the open source photogrammetric library and software suite MicMac.
1987-01-01
0.5 O.6 11.0 2.6 1.7 13.0 3.3 2.201C199t11 tuberosi Ascleplas viridi flora Aster Pricoides Aster piloaus Aster 19. Aitraqi1ui crIsitcar~n. 9arbarea...strigosus 4.0 1.0 0.5 15.0 3.11 7.1 19.0 4.9 2.9 Eujohoofii so. ’estuca etltior Festqci xctofloea 0.0 0.0 0.0 3.0 0.9 1.0 3.0 0.8 1.0 Fragaria virginiani
Findings from the 2013 EPA Air Sensors Workshop
This article, first published in the January 2014 issue of EM Magazine, provides findings from the Air Sensors 2013: Data Quality & Applications workshop held in Research Triangle Park, N.C., in March 2013.
NASA Astrophysics Data System (ADS)
Rajendran, Sankaran; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K.
2011-04-01
This work describes a new image processing technique for discriminating iron ores (magnetite quartzite deposits) and associated lithology in high-grade granulite region of Salem, Southern Peninsular India using visible, near-infrared and short wave infrared reflectance data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Image spectra show that the magnetite quartzite and associated lithology of garnetiferrous pyroxene granulite, hornblende biotite gneiss, amphibolite, dunite, and pegmatite have absorption features around spectral bands 1, 3, 5, and 7. ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in RGB are constructed by summing the bands representing the shoulders of absorption features as a numerator, and the band located nearest the absorption feature as a denominator to map iron ores and band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB for associated lithology. The results show that ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in a Red-Green-Blue (RGB) color combination identifies the iron ores much better than previously published ASTER band ratios analysis. A Principal Component Analysis (PCA) is applied to reduce redundant information in highly correlated bands. PCA (3, 2, and 1 for iron ores and 5, 4, 2 for granulite rock) in RGB enabled the discrimination between the iron ores and garnetiferrous pyroxene granulite rock. Thus, this image processing technique is very much suitable for discriminating the different types of rocks of granulite region. As outcome of the present work, the geology map of Salem region is provided based on the interpretation of ASTER image results and field verification work. It is recommended that the proposed methods have great potential for mapping of iron ores and associated lithology of granulite region with similar rock units of granulite regions of Southern Peninsular India. This work also demonstrates the ability of ASTER's to provide information on iron ores, which is valuable for mineral prospecting and exploration activities.
Validation of the ASTER instrument level 1A scene geometry
Kieffer, H.H.; Mullins, K.F.; MacKinnon, D.J.
2008-01-01
An independent assessment of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument geometry was undertaken by the U.S. ASTER Team, to confirm the geometric correction parameters developed and applied to Level 1A (radiometrically and geometrically raw with correction parameters appended) ASTER data. The goal was to evaluate the geometric quality of the ASTER system and the stability of the Terra spacecraft. ASTER is a 15-band system containing optical instruments with resolutions from 15- to 90-meters; all geometrically registered products are ultimately tied to the 15-meter Visible and Near Infrared (VNIR) sub-system. Our evaluation process first involved establishing a large database of Ground Control Points (GCP) in the mid-western United States; an area with features of an appropriate size for spacecraft instrument resolutions. We used standard U.S. Geological Survey (USGS) Digital Orthophoto Quads (DOQS) of areas in the mid-west to locate accurate GCPs by systematically identifying road intersections and recording their coordinates. Elevations for these points were derived from USGS Digital Elevation Models (DEMS). Road intersections in a swath of nine contiguous ASTER scenes were then matched to the GCPs, including terrain correction. We found no significant distortion in the images; after a simple image offset to absolute position, the RMS residual of about 200 points per scene was less than one-half a VNIR pixel. Absolute locations were within 80 meters, with a slow drift of about 10 meters over the entire 530-kilometer swath. Using strictly simultaneous observations of scenes 370 kilometers apart, we determined a stereo angle correction of 0.00134 degree with an accuracy of one microradian. The mid-west GCP field and the techniques used here should be widely applicable in assessing other spacecraft instruments having resolutions from 5 to 50-meters. ?? 2008 American Society for Photogrammetry and Remote Sensing.
Topographic Features of Malyy Naryn River Watershed Based on Different Data
NASA Astrophysics Data System (ADS)
Li, M.; Chen, L.; Cui, Y.; Zhang, M.
2018-04-01
This paper researched the influence on the topographical characteristics of watersheds by setting different catchment area thresholds based on different data sets, namely ZY3 DSM, SRTM DEM and ASTER GDEM. Slope, hypsometric integral, river network density and river network discrepancy are analyzed and compared. The results are as follows: a) Three data sets all can express the same rough terrain characteristics and the same degree of watershed topography development; b) ZY3 DSM can reflect terrain information over the Malyy Naryn River watershed in most detail and it has the best expression effect on the terrain among the three data sets of ZY3 DSM, SRTM DEM and ASTER GDEM, followed by SRTM DEM, and the effect of ASTER GDEM is the worst; c) The similarity of river networks extracted by ZY3 DSM and SRTM DEM is the highest, and the similarity between ZY3 DSM and ASTER GDEM is the lowest one.
Recognition of a porphyry system using ASTER data in Bideghan - Qom province (central of Iran)
NASA Astrophysics Data System (ADS)
Feizi, F.; Mansouri, E.
2014-07-01
The Bideghan area is located south of the Qom province (central of Iran). The most impressive geological features in the studied area are the Eocene sequences which are intruded by volcanic rocks with basic compositions. Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) image processing have been used for hydrothermal alteration mapping and lineaments identification in the investigated area. In this research false color composite, band ratio, Principal Component Analysis (PCA), Least Square Fit (LS-Fit) and Spectral Angel Mapping (SAM) techniques were applied on ASTER data and argillic, phyllic, Iron oxide and propylitic alteration zones were separated. Lineaments were identified by aid of false color composite, high pass filters and hill-shade DEM techniques. The results of this study demonstrate the usefulness of remote sensing method and ASTER multi-spectral data for alteration and lineament mapping. Finally, the results were confirmed by field investigation.
Lee, Gregory K.
2015-01-01
A digital elevation model (DEM) of the entire country of the Islamic Republic of Mauritania was produced using Shuttle Radar Topography Mission (SRTM) data as required for deliverable 65 of the contract. In addition, because of significant recent advancements of availability, seamlessness, and validity of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global elevation data, the U.S. Geological Survey (USGS) extended its efforts to include a higher resolution countrywide ASTER DEM as value added to the required Deliverable 63, which was limited to five areas within the country. Both SRTM and ASTER countrywide DEMs have been provided in ERDAS Imagine (.img) format that is also directly compatible with ESRI ArcMap, ArcGIS Explorer, and other GIS applications.
NASA Astrophysics Data System (ADS)
Polzin, Kurt A.; Godfroy, Thomas J.
2008-01-01
A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m3/hr.
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Godfroy, Thomas J.
2008-01-01
A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.
ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman
NASA Astrophysics Data System (ADS)
Rajendran, Sankaran; Nasir, Sobhi
2014-02-01
Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates in carbonatites apart the influence of major carbonate minerals that occurred predominantly in these rocks. The study of ASTER thermal infrared (TIR) spectral bands distinguished the marls have low emissivity of energy due to the presence of hydroxyl bearing alumina-silicate minerals from the other rocks such as limestones, listwaenites and carbonatites which have high emissivity due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of carbonate minerals and carbonates. Further, the study demonstrates and confirms the spectral sensitivity of marls and carbonatites. Marls have high reflectivity in ASTER visible near infrared (VNIR) and shortwave infrared (SWIR) spectral bands and low emissivity of energy in ASTER TIR spectral bands due to the presence of hydroxyl bearing alumina-silicate minerals. Carbonatites have low reflectivity in ASTER VNIR-SWIR spectral bands and high emissivity in ASTER TIR spectral bands due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of the carbonate minerals and carbonates. These have been discussed by providing the grey scale color image of 14 ASTER spectral bands of the study sites. The study is based on the interpretation of image spectra of multispectral image conducted to map such economic valuable carbonate rocks. It provides a simple methods and basic knowledge, which are of great help to the geology and exploration communities. It is recommended to the geologists, industrialists, exploration communities of carbonates and mine owners to take up the knowledge for economic exploration of such deposits. Further, the study has proved that the technique is time and cost effective in mapping of such deposits and can be used to the areas which have extremely rugged topography occurred in similar arid region, where difficult to do exhaustive sampling and not reachable for conventional geological mapping.
NASA Astrophysics Data System (ADS)
Wright, Shawn P.; Ramsey, Michael S.
2006-02-01
Thermal infrared (TIR) data from the Earth-orbiting Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument are used to identify the lithologic distribution of the Meteor Crater ejecta blanket. Thermal emission laboratory spectra were obtained for collected samples, and spectral deconvolution was performed on ASTER emissivity data using both image and sample end-members. Comparison of the spaceborne ASTER data to the airborne Thermal Infrared Multispectral Scanner (TIMS) data was used to validate the ASTER end-member analyses. The ASTER image end-member analysis agrees well with past studies considering the effects of resolution degradation. The work at Meteor Crater has direct bearing on the interpretation of Thermal Emission Imaging System (THEMIS) data currently being returned from Mars. ASTER and THEMIS have similar spatial and spectral resolutions, and Meteor Crater serves as an analog for similar-sized impact sites on Mars. These small impact craters have not been studied in detail owing to the low spatial resolution of past orbiting TIR instruments. Using the same methodology as that applied to Meteor Crater, THEMIS TIR data of a provisionally named Winslow Crater (~1 km) impact crater in Syrtis Major are analyzed. The crater rim and ejecta blanket were found to contain larger block sizes and a lower albedo than the surrounding ejecta-free plain, indicating a young impact age. The composition of the rim, ejecta, and surrounding plain is determined to be dominated by basalt; however, potential stratigraphy has also been identified. Results of this work could be extended to future investigations using THEMIS data.
ASTER cloud coverage reassessment using MODIS cloud mask products
NASA Astrophysics Data System (ADS)
Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli
2010-10-01
In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.
40 CFR 86.413-2006 - Labeling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... lettered in the English language in block letters and numerals, which shall be of a color that contrasts...; DFI Direct fuel injection; O2S Oxygen sensor; HO2S Heated oxygen sensor; EM Engine modification; CFI...
40 CFR 86.413-2006 - Labeling.
Code of Federal Regulations, 2011 CFR
2011-07-01
... lettered in the English language in block letters and numerals, which shall be of a color that contrasts...; DFI Direct fuel injection; O2S Oxygen sensor; HO2S Heated oxygen sensor; EM Engine modification; CFI...
Overview of Japanese Earth observation programs
NASA Astrophysics Data System (ADS)
Shimoda, Haruhisa; Honda, Yoshiaki
2017-09-01
Five programs, i.e. ASTER, GOSAT, GCOM-W1, GPM and ALOS-2 are going on in Japanese Earth Observation programs. ASTER has lost its short wave infrared channels. AMSR-E stopped its operation, but it started its operation from Sep. 2012 with slow rotation speed. It finally stopped on December 2015. GCOM-W1 was launched on 18, May, 2012 and is operating well as well as GOSAT. ALOS (Advanced Land Observing Satellite) was successfully launched on 24th Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). Unfortunately, ALOS has stopped its operation on 22nd, April, 2011 by power loss. GOSAT (Greenhouse Gas Observation Satellite) was successfully launched on 29, January, 2009. GOSAT carries 2 instruments, i.e. a green house gas sensor (TANSO-FTS) and a cloud/aerosol imager (TANSO-CAI). The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 μm region with 0.2 to 0.5 cm-1 resolution. SMILES (Superconducting Millimeter wave Emission Spectrometer) was launched on September 2009 to ISS and started the observation, but stopped its operation on April 2010. GPM (Global Precipitation Mission) core satellite was launched on Feb. 2014. GPM is a joint project with NASA and carries two instruments. JAXA has developed DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. ALOS F/O satellites are divided into two satellites, i.e. SAR and optical satellites. The first one of ALOS F/O is called ALOS 2 and carries L-band SAR. It was launched on May 2014. JAXA is planning to launch follow on of optical sensors. It is now called Advanced Optical Satellite and the planned launch date is fiscal 2019. Other future satellites are GCOM-C1 (ADEOS-2 follow on), GOSAT-2 and EarthCare. GCOM-C1 will be launched on 2017 and GOSAT-2 will be launched on fiscal 2018. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). EarthCare will be launched on 2019.
NASA Astrophysics Data System (ADS)
Méndez, Alexis
2017-06-01
Over the last few years, fiber optic sensors (FOS) have seen an increased acceptance and widespread use in industrial sensing and in structural monitoring in civil, aerospace, marine, oil & gas, composites and other applications. One of the most prevalent types in use today are fiber Bragg grating (FBG) sensors. Historically, FOS have been an attractive solution because of their EM immunity and suitability for use in harsh environments and rugged applications with extreme temperatures, radiation exposure, EM fields, high voltages, water contact, flammable atmospheres, or other hazards. FBG sensors have demonstrated that can operate reliably in many different harsh environment applications but proper type and fabrication process are needed, along with suitable packaging and installation procedure. In this paper, we review the impact that external factors and environmental conditions play on FBG's performance and reliability, and describe the appropriate sensor types and protection requirements suitable for a variety of harsh environment applications in industrial furnaces, cryogenic coolers, nuclear plants, maritime vessels, oil & gas wells, aerospace crafts, automobiles, and others.
Zhang, Ru; Duan, Yuanfeng; Or, Siu Wing; Zhao, Yang
2014-01-01
An elasto-magnetic (EM) and magneto-electric (ME) effect based elasto-magneto-electric (EME) sensor has been proposed recently by the authors for stress monitoring of steel cables with obvious superiorities over traditional elasto-magnetic sensors. For design optimization and engineering application of the EME sensor, the design theory is interpreted with a developed model taking into account the EM coupling effect and ME coupling effect. This model is able to approximate the magnetization changes that a steel structural component undergoes when subjected to excitation magnetic field and external stress, and to simulate the induced ME voltages of the ME sensing unit located in the magnetization area. A full-scale experiment is then carried out to verify the model and to calibrate the EME sensor as a non-destructive evaluation (NDE) tool to monitor the cable stress. The experimental results agree well with the simulation results using the developed model. The proposed EME sensor proves to be feasible for stress monitoring of steel cables with high sensitivity, fast response, and ease of installation. PMID:25072348
Zhang, Ru; Duan, Yuanfeng; Or, Siu Wing; Zhao, Yang
2014-07-28
An elasto-magnetic (EM) and magneto-electric (ME) effect based elasto-magneto-electric (EME) sensor has been proposed recently by the authors for stress monitoring of steel cables with obvious superiorities over traditional elasto-magnetic sensors. For design optimization and engineering application of the EME sensor, the design theory is interpreted with a developed model taking into account the EM coupling effect and ME coupling effect. This model is able to approximate the magnetization changes that a steel structural component undergoes when subjected to excitation magnetic field and external stress, and to simulate the induced ME voltages of the ME sensing unit located in the magnetization area. A full-scale experiment is then carried out to verify the model and to calibrate the EME sensor as a non-destructive evaluation (NDE) tool to monitor the cable stress. The experimental results agree well with the simulation results using the developed model. The proposed EME sensor proves to be feasible for stress monitoring of steel cables with high sensitivity, fast response, and ease of installation.
2010-03-11
Shiveluch volcano on Russia’s Kamchatka Peninsula. This is a false-color satellite image, acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on March 10, 2010. To download a full high res version of this image and to learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=43103 Credit: NASA Earth Observatory image by Jesse Allen and Robert Simmon, based on data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Instrument: Terra - ASTER For more information about the Goddard Space Flight Center go here: www.nasa.gov/centers/goddard/home/index.html
Direction of arrival estimation using blind separation of sources
NASA Astrophysics Data System (ADS)
Hirari, Mehrez; Hayakawa, Masashi
1999-05-01
The estimation of direction of arrival (DOA) and polarization of an incident electromagnetic (EM) wave is of great importance in many applications. In this paper we propose a new approach for the estimation of DOA for polarized EM waves using blind separation of sources. In this approach we use a vector sensor, a sensor whose output is a complete set of the EM field components of the irradiating wave, and we reconstruct the waveforms of all the original signals that is, all the EM components of the sources' fields. From the waveform of each source we calculate its amplitude and phase and consequently calculate its DOA and polarization using the field analysis method. The separation of sources is conducted iteratively using a recurrent Hopfield-like single-layer neural network. The simulation results for two sources have been investigated. We have considered coherent and incoherent sources and also the case of varying DOAs vis-ā-vis the sensor and a varying polarization. These are cases seldom treated by other approaches even though they exist in real-world applications. With the proposed method we have obtained almost on-time tracking for the DOA and polarization of any incident sources with a significant reduction of both memory and computation costs.
Assessment Tools for the Evaluation of Risk
ASTER (Assessment Tools for the Evaluation of Risk) was developed by the U.S. EPA Mid-Continent Ecology Division, Duluth, MN to assist regulators in performing ecological risk assessments. ASTER is an integration of the ECOTOXicology Database (ECOTOX; Teshekpuk Lake, Alaska
NASA Technical Reports Server (NTRS)
2006-01-01
This ASTER image of Teshekpuk Lake on Alaska's North Slope, within the National Petroleum Reserve, was acquired on August 15, 2000. It covers an area of 58.7 x 89.9 km, and is centered near 70.4 degrees north latitude, 153 degrees west longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 58.7 by 89.9 kilometers (36.4 by 55.7 miles) Location: 70.4 degrees North latitude, 153 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 30 meters (98.4 feet) Dates Acquired: August 15, 2000NASA Astrophysics Data System (ADS)
Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.
2001-05-01
Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.
NASA and USGS ASTER Expedited Satellite Data Services for Disaster Situations
NASA Astrophysics Data System (ADS)
Duda, K. A.
2012-12-01
Significant international disasters related to storms, floods, volcanoes, wildfires and numerous other themes reoccur annually, often inflicting widespread human suffering and fatalities with substantial economic consequences. During and immediately after such events it can be difficult to access the affected areas and become aware of the overall impacts, but insight on the spatial extent and effects can be gleaned from above through satellite images. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on the Terra spacecraft has offered such views for over a decade. On short notice, ASTER continues to deliver analysts multispectral imagery at 15 m spatial resolution in near real-time to assist participating responders, emergency managers, and government officials in planning for such situations and in developing appropriate responses after they occur. The joint U.S./Japan ASTER Science Team has developed policies and procedures to ensure such ongoing support is accessible when needed. Processing and distribution of data products occurs at the NASA Land Processes Distributed Active Archive Center (LP DAAC) located at the USGS Earth Resources Observation and Science Center in South Dakota. In addition to current imagery, the long-term ASTER mission has generated an extensive collection of nearly 2.5 million global 3,600 km2 scenes since the launch of Terra in late 1999. These are archived and distributed by LP DAAC and affiliates at Japan Space Systems in Tokyo. Advanced processing is performed to create higher level products of use to researchers. These include a global digital elevation model. Such pre-event imagery provides a comparative basis for use in detecting changes associated with disasters and to monitor land use trends to portray areas of increased risk. ASTER imagery acquired via the expedited collection and distribution process illustrates the utility and relevancy of such data in crisis situations.
Roughness effects on thermal-infrared emissivities estimated from remotely sensed images
NASA Astrophysics Data System (ADS)
Mushkin, Amit; Danilina, Iryna; Gillespie, Alan R.; Balick, Lee K.; McCabe, Matthew F.
2007-10-01
Multispectral thermal-infrared images from the Mauna Loa caldera in Hawaii, USA are examined to study the effects of surface roughness on remotely retrieved emissivities. We find up to a 3% decrease in spectral contrast in ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 90-m/pixel emissivities due to sub-pixel surface roughness variations on the caldera floor. A similar decrease in spectral contrast of emissivities extracted from MASTER (MODIS/ASTER Airborne Simulator) ~12.5-m/pixel data can be described as a function of increasing surface roughness, which was measured remotely from ASTER 15-m/pixel stereo images. The ratio between ASTER stereo images provides a measure of sub-pixel surface-roughness variations across the scene. These independent roughness estimates complement a radiosity model designed to quantify the unresolved effects of multiple scattering and differential solar heating due to sub-pixel roughness elements and to compensate for both sub-pixel temperature dispersion and cavity radiation on TIR measurements.
Stack Number Influence on the Accuracy of Aster Gdem (V2)
NASA Astrophysics Data System (ADS)
Mirzadeh, S. M. J.; Alizadeh Naeini, A.; Fatemi, S. B.
2017-09-01
In this research, the influence of stack number (STKN) on the accuracy of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM (GDEM) has been investigated. For this purpose, two data sets of ASTER and Reference DEMs from two study areas with various topography (Bomehen and Tazehabad) were used. The Results show that in both study areas, STKN of 19 results in minimum error so that this minimum error has small difference with other STKN. The analysis of slope, STKN, and error values shows that there is no strong correlation between these parameters in both study areas. For example, the value of mean absolute error increase by changing the topography and the increase of slope values and height on cells but, the changes in STKN has no important effect on error values. Furthermore, according to high values of STKN, effect of slope on elevation accuracy has practically decreased. Also, there is no great correlation between the residual and STKN in ASTER GDEM.
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Sader, Steven; Smoot, James
2012-01-01
Cypress swamp forests of Louisiana offer many important ecological and economic benefits: wildlife habitat, forest products, storm buffers, water quality, and recreation. Such forests are also threatened by multiple factors: subsidence, salt water intrusion, sea level rise, persistent flooding, hydrologic modification, hurricanes, insect and nutria damage, timber harvesting, and land use conversion. Unfortunately, there are many information gaps regarding the type, location, extent, and condition of these forests. Better more up to date swamp forest mapping products are needed to aid coastal forest conservation and restoration work (e.g., through the Coastal Forest Conservation Initiative or CFCI). In response, a collaborative project was initiated to develop, test and demonstrate cypress swamp forest mapping products, using NASA supported Landsat, ASTER, and MODIS satellite data. Research Objectives are: Develop, test, and demonstrate use of Landsat and ASTER data for computing new cypress forest classification products and Landsat, ASTER, and MODIS satellite data for detecting and monitoring swamp forest change
NASA Astrophysics Data System (ADS)
Toomey, M.; Vierling, L.
2004-12-01
Landsat TM and ASTER satellite data can be used to make physically-based estimates of equivalent water thickness (EWT) in a Pinus ponderosa ecosystem. EWT is a measure of ecosystem water status and is an important parameter for studying ecosystem dynamics, fire potential, and biological responses to climate change. Near infrared (NIR) and shortwave infrared (SWIR) reflectances were simulated using the LIBERTY and GeoSAIL leaf and canopy reflectance models; the results were used to calculate a NIR/SWIR ratio and a normalized NIR/SWIR index. Index-EWT relationships were modeled and inverted for EWT derivation. Landsat and ASTER were used to make reasonably accurate estimates of EWT (± 17.3% and 19.4% mean error, respectively); TM band 5 and ASTER band 4 produced the best results. Exclusion of plots with dense understory vegetation reduced point scatter substantially, especially with Landsat (r2 = 0.847, ±13%), indicating that this method can provide robust EWT quantification in homogeneous conifer ecosystems.
NASA MEaSUREs Combined ASTER and MODIS Emissivity over Land (CAMEL)
NASA Astrophysics Data System (ADS)
Borbas, E. E.; Hulley, G. C.; Feltz, M.; Knuteson, R. O.; Hook, S. J.
2016-12-01
A land surface emissivity product of the NASA MEASUREs project called Combined ASTER and MODIS Emissivity over Land (CAMEL) is being made available as part of the Unified and Coherent Land Surface Temperature and Emissivity (LST&E) Earth System Data Record (ESDR). The CAMEL database has been created by merging the UW MODIS-based baseline-fit emissivity database (UWIREMIS) developed at the University of Wisconsin-Madison, and the ASTER Global Emissivity Database (ASTER GED V4) produced at JPL. This poster will introduce the beta version of the database, which is available globally for the period 2003 through 2015 at 5km in mean monthly time-steps and for 13 bands from 3.6-14.3 micron. An algorithm to create a high spectral emissivity on 417 wavenumbers is also provided for high spectral IR applications. On the poster the CAMEL database has been evaluated with the IASI Emissivity Atlas (Zhou et al, 2010) and laboratory measurements, and also through simulation of IASI BTs in the RTTOV Forward model.
Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C.
2003-01-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-band multispectral instrument on board the Earth Observing System (EOS), TERRA. The three bands between 0.52 and 0.86 ??m and the six bands from 1.60 and 2.43 ??m, which have 15- and 30-m spatial resolution, respectively, were selected primarily for making remote mineralogical determinations. The Cuprite, Nevada, mining district comprises two hydrothermal alteration centers where Tertiary volcanic rocks have been hydrothermally altered mainly to bleached silicified rocks and opalized rocks, with a marginal zone of limonitic argilized rocks. Country rocks are mainly Cambrian phyllitic siltstone and limestone. Evaluation of an ASTER image of the Cuprite district shows that spectral reflectance differences in the nine bands in the 0.52 to 2.43 ??m region provide a basis for identifying and mapping mineralogical components which characterize the main hydrothermal alteration zones: opal is the spectrally dominant mineral in the silicified zone; whereas, alunite and kaolinite are dominant in the opalized zone. In addition, the distribution of unaltered country rocks was mapped because of the presence of spectrally dominant muscovite in the siltstone and calcite in limestone, and the tuffaceous rocks and playa deposits were distinguishable due to their relatively flat spectra and weak absorption features at 2.33 and 2.20 ??m, respectively. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image of the study area was processed using a similar methodology used with the ASTER data. Comparison of the ASTER and AVIRIS results shows that the results are generally similar, but the higher spectral resolution of AVIRIS (224 bands) permits identification of more individual minerals, including certain polymorphs. However, ASTER has recorded images of more than 90 percent of the Earth's land surface with less than 20 percent cloud cover, and these data are available at nominal or no cost. Landsat TM images have a similar spatial resolution to ASTER images, but TM has fewer bands, which limits its usefulness for making mineral determinations.
Monitoring and predicting eutrophication of Sri Lankan inland waters using ASTER satellite data
NASA Astrophysics Data System (ADS)
Dahanayaka, D. D. G. L.; Wijeyaratne, M. J. S.; Tonooka, H.; Minato, A.; Ozawa, S.; Perera, B. D. C.
2014-10-01
This study focused on determining the past changes and predicting the future trends in eutrophication of the Bolgoda North lake, Sri Lanka using in situ Chlorophyll-a (Chl-a) measurements and Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) satellite data. This Lake is located in a mixed land use area with industries, some agricultural lands, middle income and high income housing, tourist hotels and low income housing. From March to October 2013, water samples from five sampling sites were collected once a month parallel to ASTER overpass and Chl-a, nitrate and phosphate contents of each sample were measured using standard laboratory methods. Cloud-free ASTER scenes over the lake during the 2000-2013 periods were acquired for Chl-a estimation and trend analysis. All ASTER images were atmospherically corrected using FLAASH software and in-situ Chl-a data were regressed with atmospherically corrected three ASTER VNIR band ratios of the same date. The regression equation of the band ratio and Chl-a content with the highest correlation, which was the green/red band ratio was used to develop algorithm for generation of 15-m resolution Chl-a distribution maps. According to the ASTER based Chl-a distribution maps it was evident that eutrophication of this lake has gradually increased from 2008-2011. Results also indicated that there had been significantly high eutrophic conditions throughout the year 2013 in several regions, especially in water stagnant areas and adjacent to freshwater outlets. Field observations showed that this lake is receiving various discharges from factories. Unplanned urbanization and inadequacy of proper facilities in the nearby industries for waste management have resulted in the eutrophication of the water body. If the present trends of waste disposal and unplanned urbanization continue, enormous environmental problems would be resulted in future. Results of the present study showed that information from satellite remote sensing can play a useful role in the development of time series Chl-a distribution maps. Such information is important for the future predictions, development and management of this area as well as in the conservation of this water body.
NASA Technical Reports Server (NTRS)
2006-01-01
Northern Arizona is best known for the Grand Canyon. Less widely known are the hundreds of geologically young volcanoes, at least one of which buried the homes of local residents. San Francisco Mtn., a truncated stratovolcano at 3887 meters, was once a much taller structure (about 4900 meters) before it exploded some 400,000 years ago a la Mt. St. Helens. The young cinder cone field to its east includes Sunset Crater, that erupted in 1064 and buried Native American homes. This ASTER perspective was created by draping ASTER image data over topographic data from the U.S. Geological Survey National Elevation Data. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 20.4 by 24.6 kilometers (12.6 by 15.2 miles) Location: 35.3 degrees North latitude, 111.5 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: Landsat 30 meters (24.6 feet); ASTER 15 meters (49.2 feet) Dates Acquired: October 21, 2003NASA Technical Reports Server (NTRS)
2006-01-01
In many parts of the world, wetlands are being converted to shrimp ponds in order to farm these crustaceans for food and sale. One example is on the west coast of Ecuador, south of Guayaquil. The 1991 Landsat image on top shows a coastal area where 143 square kilometers of wetlands were converted to shrimp ponds. By the time ASTER acquired the bottom image in 2001, 243 square kilometers had been converted, eliminating 83% of the wetlands. These scenes cover an area of 30 x 31 km, and are centered near 3.4 degrees south latitude and 80.2 degrees west longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 30 by 31 kilometers (18.6 by 19.2 miles) Location: 3.4 degrees South latitude, 80.2 degrees West longitude Orientation: North at top Image Data: Landsat bands 4,3 and 2; ASTER bands 3, 2, and 1 Original Data Resolution: Landsat 30 meters (24.6 feet); ASTER 15 meters (49.2 feet) Dates Acquired: Landsat: April 29, 1991; ASTER March 31, 2001NASA Astrophysics Data System (ADS)
Pour, Amin Beiranvand; Hashim, Mazlan
2012-02-01
This study investigates the application of spectral image processing methods to ASTER data for mapping hydrothermal alteration zones associated with porphyry copper mineralization and related host rock. The study area is located in the southeastern segment of the Urumieh-Dokhtar Volcanic Belt of Iran. This area has been selected because it is a potential zone for exploration of new porphyry copper deposits. Spectral transform approaches, namely principal component analysis, band ratio and minimum noise fraction were used for mapping hydrothermally altered rocks and lithological units at regional scale. Spectral mapping methods, including spectral angle mapper, linear spectral unmixing, matched filtering and mixture tuned matched filtering were applied to differentiate hydrothermal alteration zones associated with porphyry copper mineralization such as phyllic, argillic and propylitic mineral assemblages.Spectral transform methods enhanced hydrothermally altered rocks associated with the known porphyry copper deposits and new identified prospects using shortwave infrared (SWIR) bands of ASTER. These methods showed the discrimination of quartz rich igneous rocks from the magmatic background and the boundary between igneous and sedimentary rocks using the thermal infrared (TIR) bands of ASTER at regional scale. Spectral mapping methods distinguished the sericitically- and argillically-altered rocks (the phyllic and argillic alteration zones) that surrounded by discontinuous to extensive zones of propylitized rocks (the propylitic alteration zone) using SWIR bands of ASTER at both regional and district scales. Linear spectral unmixing method can be best suited for distinguishing specific high economic-potential hydrothermal alteration zone (the phyllic zone) and mineral assemblages using SWIR bands of ASTER. Results have proven to be effective, and in accordance with the results of field surveying, spectral reflectance measurements and X-ray diffraction (XRD) analysis. In conclusion, the image processing methods used can provide cost-effective information to discover possible locations of porphyry copper and epithermal gold mineralization prior to detailed and costly ground investigations. The extraction of spectral information from ASTER data can produce comprehensive and accurate information for copper and gold resource investigations around the world, including those yet to be discovered.
Study of ultrasonic sensor that is effective for all direction using an electromagnetic force
NASA Astrophysics Data System (ADS)
Iwaya, Kazuki; Murayama, Riichi; Hirayama, Takahiro
2015-03-01
Non-destructive inspection using ultrasonic sensors is widely utilized to guarantee the safety of large structures. However, there is the problem that it will take a very long time to complete. Therefore, it was decided to develop a sensor capable of testing a wide range of structures at a high inspection speed. The ultrasonic wave that the ultrasonic sensor can generate must be equally emitted in any direction and the ultrasonic wave returned from any direction be detected. To attain this objective, an electromagnetic acoustic transducer (EMAT) consisting of a circular-shaped magnet and an electric induction coil (EM) has been developed, because it is impossible to fabricate such a special ultrasonic sensor using a commercial-type ultrasonic sensor with a piezoelectric element, and it is convenient to automatically scan over the surface of the structure. First, the detail specifications of the new ultrasonic sensor have been determined by changing many of the parameters, for example, the impedance and the size of the EM coil, the size of the magnet, etc. The performance of the new sensor was then tested under different conditions. Based on the results of the experimental tests, it was demonstrated that the new sensor could generate ultrasonic waves in any direction and detect them from any direction. However, the performance was not high enough to apply the new sensor to a real structure. The new sensor has been improved to increase the performance by adding a new concept.
NASA Technical Reports Server (NTRS)
Wan, Zhengming; Dozier, Jeff
1992-01-01
The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.
Efficient Method for Scalable Registration of Remote Sensing Images
NASA Astrophysics Data System (ADS)
Prouty, R.; LeMoigne, J.; Halem, M.
2017-12-01
The goal of this project is to build a prototype of a resource-efficient pipeline that will provide registration within subpixel accuracy of multitemporal Earth science data. Accurate registration of Earth-science data is imperative to proper data integration and seamless mosaicing of data from multiple times, sensors, and/or observation geometries. Modern registration methods make use of many arithmetic operations and sometimes require complete knowledge of the image domain. As such, while sensors become more advanced and are able to provide higher-resolution data, the memory resources required to properly register these data become prohibitive. The proposed pipeline employs a region of interest extraction algorithm in order to extract image subsets with high local feature density. These image subsets are then used to generate local solutions to the global registration problem. The local solutions are then 'globalized' to determine the deformation model that best solves the registration problem. The region of interest extraction and globalization routines are tested for robustness among the variety of scene-types and spectral locations provided by Earth-observing instruments such as Landsat, MODIS, or ASTER.
Automated Glacier Surface Velocity using Multi-Image/Multi-Chip (MIMC) Feature Tracking
NASA Astrophysics Data System (ADS)
Ahn, Y.; Howat, I. M.
2009-12-01
Remote sensing from space has enabled effective monitoring of remote and inhospitable polar regions. Glacier velocity, and its variation in time, is one of the most important parameters needed to understand glacier dynamics, glacier mass balance and contribution to sea level rise. Regular measurements of ice velocity are possible from large and accessible satellite data set archives, such as ASTER and LANDSAT-7. Among satellite imagery, optical imagery (i.e. passive, visible to near-infrared band sensors) provides abundant data with optimal spatial resolution and repeat interval for tracking glacier motion at high temporal resolution. Due to massive amounts of data, computation of ice velocity from feature tracking requires 1) user-friendly interface, 2) minimum local/user parameter inputs and 3) results that need minimum editing. We focus on robust feature tracking, applicable to all currently available optical satellite imagery, that is ASTER, SPOT and LANDSAT etc. We introduce the MIMC (multiple images/multiple chip sizes) matching approach that does not involve any user defined local/empirical parameters except approximate average glacier speed. We also introduce a method for extracting velocity from LANDSAT-7 SLC-off data, which has 22 percent of scene data missing in slanted strips due to failure of the scan line corrector. We apply our approach to major outlet glaciers in west/east Greenland and assess our MIMC feature tracking technique by comparison with conventional correlation matching and other methods (e.g. InSAR).
Mesospheric sodium structure variability on horizontal scales relevant to laser guide star asterisms
NASA Astrophysics Data System (ADS)
Pfrommer, Thomas; Hickson, Paul
2012-07-01
Adaptive optics (AO) systems of modern telescopes use laser guide stars, produced by resonant excitation of sodium atoms in the mesosphere at around 92 km. Wavefront sensor subapertures, if sufficiently far away from the primary mirror center, resolve the internal structure of the sodium layer. The variability of this structure is caused by the influence of gravity waves and wind shear turbulence. The relevance of such dynamics to AO has been investigated over the past four years. A high-resolution lidar system, employed at the 6-m liquid mirror telescope, which is located near Vancouver, Canada, has been used to study mesospheric dynamics, such as the temporal behavior of the mean altitude. The main results from this study have been published elsewhere and will be summarized here. Along with the temporal variability, the mean altitude on horizontal scales of order IOs of meters has been studied by introducing a tip/tilt stage in the experimental setup. This enables us to swap the laser pulse within a 1 arcmin field of view. The horizontal mean altitude structure function has been measured on 10 observing nights between July and August 2011. Results reveal severe structural differences and a strong horizontal anisotropy. Individual laser beacons in a laser guide star asterism will therefore have at the same time significantly different focus heights. By propagating this 2d structure function to the entrance pupil of a 39 m telescope, we derive a differential focus wavefront error map.
NASA Astrophysics Data System (ADS)
Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.
2013-12-01
The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.
Bahar, Md H; Wist, Tyler J; Bekkaoui, Diana R; Hegedus, Dwayne D; Olivier, Chrystel Y
2018-01-10
Aster yellows (AY) is an important disease of Brassica crops and is caused by Candidatus Phytoplasma asteris and transmitted by the insect vector, Aster leafhopper (Macrosteles quadrilineatus). Phytoplasma-infected Aster leafhoppers were incubated at various constant and fluctuating temperatures ranging from 0 to 35 °C with the reproductive host plant barley (Hordium vulgare). At 0 °C, leafhopper adults survived for 18 days, but failed to reproduce, whereas at 35 °C insects died within 18 days, but successfully reproduced before dying. Temperature fluctuation increased thermal tolerance in leafhoppers at 25 °C and increased fecundity of leafhoppers at 5 and 20 °C. Leafhopper adults successfully infected and produced AY-symptoms in canola plants after incubating for 18 days at 0-20 °C on barley, indicating that AY-phytoplasma maintains its virulence in this temperature range. The presence and number of AY-phytoplasma in insects and plants were confirmed by droplet digital PCR (ddPCR) quantification. The number of phytoplasma in leafhoppers increased over time, but did not differ among temperatures. The temperatures associated with a typical crop growing season on the Canadian Prairies will not limit the spread of AY disease by their predominant insect vector. Also, ddPCR quantification is a useful tool for early detection and accurate quantification of phytoplasma in plants and insects.
2002-02-26
This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating. This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03475
Exploring the limits of identifying sub-pixel thermal features using ASTER TIR data
Vaughan, R.G.; Keszthelyi, L.P.; Davies, A.G.; Schneider, D.J.; Jaworowski, C.; Heasler, H.
2010-01-01
Understanding the characteristics of volcanic thermal emissions and how they change with time is important for forecasting and monitoring volcanic activity and potential hazards. Satellite instruments view volcanic thermal features across the globe at various temporal and spatial resolutions. Thermal features that may be a precursor to a major eruption, or indicative of important changes in an on-going eruption can be subtle, making them challenging to reliably identify with satellite instruments. The goal of this study was to explore the limits of the types and magnitudes of thermal anomalies that could be detected using satellite thermal infrared (TIR) data. Specifically, the characterization of sub-pixel thermal features with a wide range of temperatures is considered using ASTER multispectral TIR data. First, theoretical calculations were made to define a "thermal mixing detection threshold" for ASTER, which quantifies the limits of ASTER's ability to resolve sub-pixel thermal mixing over a range of hot target temperatures and % pixel areas. Then, ASTER TIR data were used to model sub-pixel thermal features at the Yellowstone National Park geothermal area (hot spring pools with temperatures from 40 to 90 ??C) and at Mount Erebus Volcano, Antarctica (an active lava lake with temperatures from 200 to 800 ??C). Finally, various sources of uncertainty in sub-pixel thermal calculations were quantified for these empirical measurements, including pixel resampling, atmospheric correction, and background temperature and emissivity assumptions.
Evaluation of Aster Images for Characterization and Mapping of Amethyst Mining Residues
NASA Astrophysics Data System (ADS)
Markoski, P. R.; Rolim, S. B. A.
2012-07-01
The objective of this work was to evaluate the potential of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), subsystems VNIR (Visible and Near Infrared) and SWIR (Short Wave Infrared) images, for discrimination and mapping of amethyst mining residues (basalt) in the Ametista do Sul Region, Rio Grande do Sul State, Brazil. This region provides the most part of amethyst mining of the World. The basalt is extracted during the mining process and deposited outside the mine. As a result, mounts of residues (basalt) rise up. These mounts are many times smaller than ASTER pixel size (VNIR - 15 meters and SWIR - 30 meters). Thus, the pixel composition becomes a mixing of various materials, hampering its identification and mapping. Trying to solve this problem, multispectral algorithm Maximum Likelihood (MaxVer) and the hyperspectral technique SAM (Spectral Angle Mapper) were used in this work. Images from ASTER subsystems VNIR and SWIR were used to perform the classifications. SAM technique produced better results than MaxVer algorithm. The main error found by the techniques was the mixing between "shadow" and "mining residues/basalt" classes. With the SAM technique the confusion decreased because it employed the basalt spectral curve as a reference, while the multispectral techniques employed pixels groups that could have spectral mixture with other targets. The results showed that in tropical terrains as the study area, ASTER data can be efficacious for the characterization of mining residues.
Evaluation of Aster Gdem v3 Using Icesat Laser Altimetry
NASA Astrophysics Data System (ADS)
Carabajal, C. C.; Boy, J.-P.
2016-06-01
We have used a set of Ground Control Points (GCPs) derived from altimetry measurements from the Ice, Cloud and land Elevation Satellite (ICESat) to evaluate the quality of the 30 m posting ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Global Digital Elevation Model (GDEM) V3 elevation products produced by NASA/METI for Greenland and Antarctica. These data represent the highest quality globally distributed altimetry measurements that can be used for geodetic ground control, selected by applying rigorous editing criteria, useful at high latitudes, where other topographic control is scarce. Even if large outliers still remain in all ASTER GDEM V3 data for both, Greenland and Antarctica, they are significantly reduced when editing ASTER by number of scenes (N≥5) included in the elevation processing. For 667,354 GCPs in Greenland, differences show a mean of 13.74 m, a median of -6.37 m, with an RMSE of 109.65 m. For Antarctica, 6,976,703 GCPs show a mean of 0.41 m, with a median of -4.66 m, and a 54.85 m RMSE, displaying smaller means, similar medians, and less scatter than GDEM V2. Mean and median differences between ASTER and ICESat are lower than 10 m, and RMSEs lower than 10 m for Greenland, and 20 m for Antarctica when only 9 to 31 scenes are included.
Augustine Volcano, Cook Inlet, Alaska (January 12, 2006)
NASA Technical Reports Server (NTRS)
2006-01-01
Since last spring, the U.S. Geological Survey's Alaska Volcano Observatory (AVO) has detected increasing volcanic unrest at Augustine Volcano in Cook Inlet, Alaska near Anchorage. Based on all available monitoring data, AVO regards that an eruption similar to 1976 and 1986 is the most probable outcome. During January, activity has been episodic, and characterized by emission of steam and ash plumes, rising to altitudes in excess of 9,000 m (30,000 ft), and posing hazards to aircraft in the vicinity. An ASTER image was acquired at 12:42 AST on January 12, 2006, during an eruptive phase of Augustine. The perspective rendition shows the eruption plume derived from the ASTER image data. ASTER's stereo viewing capability was used to calculate the 3-dimensional topography of the eruption cloud as it was blown to the south by prevailing winds. From a maximum height of 3060 m (9950 ft), the plume cooled and its top descended to 1900 m (6175 ft). The perspective view shows the ASTER data draped over the plume top topography, combined with a base image acquired in 2000 by the Landsat satellite, that is itself draped over ground elevation data from the Shuttle Radar Topography Mission. The topographic relief has been increased 1.5 times for this illustration. Comparison of the ASTER plume topography data with ash dispersal models and weather radar data will allow the National Weather Service to validate and improve such models. These models are used to forecast volcanic ash plume trajectories and provide hazard alerts and warnings to aircraft in the Alaska region. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: Roughly 25 km (15 miles) across; scale varies in this perspective view Location: 59.3 deg. North latitude, 153.4 deg. West longitude Orientation: View from southwest towards the northeast Vertical Exaggeration: 2 Eruption plume and Elevation: 30 m ASTER, (1-arcsecond) Image Data: Landsat bands 7, 4 and 2 Ground Topography Data: SRTM 90 m data, acquired January 2000 Date Acquired: ASTER: January 12, 2006; Landsat: September 17, 2000Compact, Low-Noise Magnetic Sensor with Fluxgate (DC) and Induction (AC) Modes of Operation
2009-07-01
induction sensor and the fluxgate magnetometer . ......................................... 2 Figure 3.1 - Impulse response of a 4” long coil (#6...Block diagram of the Year 2, Task 2 fluxgate magnetometer . ................................... 6 Figure 3.3 - FIS-prototype magnetic-field...and demonstrated an innovative dual-mode, fluxgate -induction sensor (FIS) that combines a fluxgate magnetometer and an electromagnetic (EM) induction
Toxicokinetics and pathology of plant-associated acute selenium toxicosis in steers
USDA-ARS?s Scientific Manuscript database
Sixteen of about 500 yearling steers died of acute selenium (Se) toxicosis after grazing Se contaminated range for only a few days. Field studies and chemical analyses identified the predominant toxic plant as western aster (Aster ascendens), which contained over 4,000 ppm Se. Several dead animals...
Restoration of the endangered Ruth's golden aster (Pityopsis ruthii)
USDA-ARS?s Scientific Manuscript database
Pityopsis ruthii Small (Small), Ruth’s golden aster, is an endangered herbaceous perennial that is endemic to small sections of the Hiwassee and Ocoee Rivers in the Southeastern United States. Our objective was to test the effect of bonded fiber matrix (BFM) on establishment and fecundity of P. ruth...
Towards automatic lithological classification from remote sensing data using support vector machines
NASA Astrophysics Data System (ADS)
Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael
2010-05-01
Remote sensing data can be effectively used as a mean to build geological knowledge for poorly mapped terrains. Spectral remote sensing data from space- and air-borne sensors have been widely used to geological mapping, especially in areas of high outcrop density in arid regions. However, spectral remote sensing information by itself cannot be efficiently used for a comprehensive lithological classification of an area due to (1) diagnostic spectral response of a rock within an image pixel is conditioned by several factors including the atmospheric effects, spectral and spatial resolution of the image, sub-pixel level heterogeneity in chemical and mineralogical composition of the rock, presence of soil and vegetation cover; (2) only surface information and is therefore highly sensitive to the noise due to weathering, soil cover, and vegetation. Consequently, for efficient lithological classification, spectral remote sensing data needs to be supplemented with other remote sensing datasets that provide geomorphological and subsurface geological information, such as digital topographic model (DEM) and aeromagnetic data. Each of the datasets contain significant information about geology that, in conjunction, can potentially be used for automated lithological classification using supervised machine learning algorithms. In this study, support vector machine (SVM), which is a kernel-based supervised learning method, was applied to automated lithological classification of a study area in northwestern India using remote sensing data, namely, ASTER, DEM and aeromagnetic data. Several digital image processing techniques were used to produce derivative datasets that contained enhanced information relevant to lithological discrimination. A series of SVMs (trained using k-folder cross-validation with grid search) were tested using various combinations of input datasets selected from among 50 datasets including the original 14 ASTER bands and 36 derivative datasets (including 14 principal component bands, 14 independent component bands, 3 band ratios, 3 DEM derivatives: slope/curvatureroughness and 2 aeromagnetic derivatives: mean and variance of susceptibility) extracted from the ASTER, DEM and aeromagnetic data, in order to determine the optimal inputs that provide the highest classification accuracy. It was found that a combination of ASTER-derived independent components, principal components and band ratios, DEM-derived slope, curvature and roughness, and aeromagnetic-derived mean and variance of magnetic susceptibility provide the highest classification accuracy of 93.4% on independent test samples. A comparison of the classification results of the SVM with those of maximum likelihood (84.9%) and minimum distance (38.4%) classifiers clearly show that the SVM algorithm returns much higher classification accuracy. Therefore, the SVM method can be used to produce quick and reliable geological maps from scarce geological information, which is still the case with many under-developed frontier regions of the world.
Wireless and Powerless Sensing Node System Developed for Monitoring Motors.
Lee, Dasheng
2008-08-27
Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program.
Wireless and Powerless Sensing Node System Developed for Monitoring Motors
Lee, Dasheng
2008-01-01
Reliability and maintainability of tooling systems can be improved through condition monitoring of motors. However, it is difficult to deploy sensor nodes due to the harsh environment of industrial plants. Sensor cables are easily damaged, which renders the monitoring system deployed to assure the machine's reliability itself unreliable. A wireless and powerless sensing node integrated with a MEMS (Micro Electro-Mechanical System) sensor, a signal processor, a communication module, and a self-powered generator was developed in this study for implementation of an easily mounted network sensor for monitoring motors. A specially designed communication module transmits a sequence of electromagnetic (EM) pulses in response to the sensor signals. The EM pulses can penetrate through the machine's metal case and delivers signals from the sensor inside the motor to the external data acquisition center. By using induction power, which is generated by the motor's shaft rotation, the sensor node is self-sustaining; therefore, no power line is required. A monitoring system, equipped with novel sensing nodes, was constructed to test its performance. The test results illustrate that, the novel sensing node developed in this study can effectively enhance the reliability of the motor monitoring system and it is expected to be a valuable technology, which will be available to the plant for implementation in a reliable motor management program. PMID:27873798
FR4-based electromagnetic energy harvester for wireless sensor nodes
NASA Astrophysics Data System (ADS)
Hatipoglu, G.; Ürey, H.
2010-01-01
Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 µW with 15 m s-2 acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high- g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire-road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature.
2002-10-22
In this ASTER image the features that look like folded material are carbonate sand dunes in the shallow waters of Tarpum Bay, southwest of Eleuthera Island in the Bahamas. The sand making up the dunes comes from the erosion of limestone coral reefs, and has been shaped into dunes by ocean currents. This image was acquired on May 12, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03877
2002-07-25
This ASTER image shows a 60 km stretch of the Yangtze River in China, including the Xiling Gorge, the eastern of the three gorges. In the left part of the image is the construction site of the Three Gorges Dam, the world's largest. This image was acquired on July 20, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03852
2002-10-15
Thirteen years after devastating forest fires burned over 1.6 million acres in Yellowstone National Park, the scars are still evident. In this simulated natural color ASTER image, burned areas appear gray, in contrast to the dark green of unburned forests. The image covers an area of 60 x 63 km. This image was acquired on July 2, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03875
Early Exposure to Research: Outcomes of the ASTER Certification Program
ERIC Educational Resources Information Center
Griffard, Phyllis Baudoin; Golkowska, Krystyna
2013-01-01
This paper discusses a novel structure for providing a high-impact, first year experience for science students. ASTER (Access to Science Through Experience in Research) is an extracurricular certification program designed to introduce our students to the research culture via seminar attendance, journal clubs, book clubs, and lab visits.…
USDA-ARS?s Scientific Manuscript database
Ruth’s golden aster, Pityopsis ruthii (Small), is an endangered, herbaceous perennial plant that is only endemic to small sections of the Hiwassee and Ocoee Rivers, in Polk County, Tennessee. In July 2015, a greenhouse grown plant exhibited symptoms of disease that included elongated brown lesions o...
1990-12-01
Name Species Cover Mudflat Area Cocklebur Xanthium strumarium ង to ɝ Shepherd’s purse Capsella bursa pastoris Barnyard grass Echinochloa crusgalli...Lythrium salicaria Rice cutgrass Leersia oryzoides * Cocklebur Xanthium strumarium Love giais Era grostis hypnoides Bog rush Juncus sp. Aster Aster pilosus
Cultural Resources Survey of Palmetto and Coochie Revetments, Mississippi River M-326 to 315
1993-11-11
oils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Sedim entary...wildlife are asters (Aster sp.), buck vine (Amelopsis arborea), dewberry (Rubus sp.), elderberry ( Sambucus canadensis), and various maples (Acer sp...time characterized by a "filling in" of regional areas by peoples adapting to essentially modern natural environments. The concept of an Archaic Stage
Interface colloidal robotic manipulator
Aronson, Igor; Snezhko, Oleksiy
2015-08-04
A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.
NASA Astrophysics Data System (ADS)
Savin, A.; Novy, F.; Fintova, S.; Steigmann, R.
2017-08-01
The current stage of nondestructive evaluation techniques imposes the development of new electromagnetic (EM) methods that are based on high spatial resolution and increased sensitivity. In order to achieve high performance, the work frequencies must be either radifrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. In order to use the evanescent wave that can appear even if the slits width is much smaller that the wavwelength of incident EM wave, a sensor with metamaterial (MM) is used. The study of the EM field diffraction against the edge of long thin discontinuity placed under the inspected surface of a conductive plate has been performed using the geometrical optics principles. This type of sensor having the reception coils shielded by a conductive screen with a circular aperture placed in the front of reception coil of emission reception sensor has been developed and “transported” information for obtaining of magnified image of the conductive structures inspected. This work presents a sensor, using MM conical Swiss roll type that allows the propagation of evanescent waves and the electromagnetic images are magnified. The test method can be successfully applied in a variety of applications of maxim importance such as defect/damage detection in materials used in automotive and aviation technologies. Applying this testing method, spatial resolution can be improved.
Hubbard, B.E.; Crowley, J.K.; Zimbelman, D.R.
2003-01-01
Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Hyperion imaging spectrometer data covering an area in the Central Andes between Volcan Socompa and Salar de Llullaillaco were used to map hydrothermally altered rocks associated with several young volcanic systems. Six ALI channels in the visible and near-infrared wavelength range (0.4-1.0 ??m) were useful for discriminating between ferric-iron alteration minerals based on the spectral shapes of electronic absorption features seen in continuum-removed spectra. Six ASTER channels in the short wavelength infrared (1.0-2.5 ??m) enabled distinctions between clay and sulfate mineral types based on the positions of band minima related to Al-OH vibrational absorption features. Hyperion imagery embedded in the broader image coverage of ALI and ASTER provided essential leverage for calibrating and improving the mapping accuracy of the multispectral data. This capability is especially valuable in remote areas of the earth where available geologic and other ground truth information is limited.
Micromanipulation studies of the mitotic apparatus in sand dollar eggs.
Hiramoto, Y; Nakano, Y
1988-01-01
Mechanical properties of the mitotic spindle and the effects of various operations of the mitotic apparatus on the chromosome movement and spindle elongation were investigated in fertilized eggs and blastomeres of the sand dollar, Clypeaster japonicus. On the basis of results with mechanical stretching and compression of the spindle with a pair of microneedles and the behavior of an oil drop microinjected into the spindle, it was concluded that the equatorial region of the spindle is mechanically weaker than the half-spindle region. Anaphase chromosome movement occurred in the spindle from which an aster had been removed or separated with its polar end and in the spindle in which the interzonal region had been removed. This fact indicates that chromosomes move poleward in anaphase by forces generated near the kinetochores in the half-spindle. Because of the effects of separation or removal of an aster from the spindle on the spindle elongation in anaphase and the behavior of the aster, it was concluded that the spindle elongation in anaphase is caused by pulling forces generated by asters attached to the ends of the spindle.
2003-01-08
The Anti-Atlas Mountains of Morocco formed as a result of the collision of the African and Eurasian tectonic plates about 80 million years ago. This collision destroyed the Tethys Ocean; the limestone, sandstone, claystone, and gypsum layers that formed the ocean bed were folded and crumpled to create the Atlas and Anti-Atlas Mountains. In this ASTER image, short wavelength infrared bands are combined to dramatically highlight the different rock types, and illustrate the complex folding. The yellowish, orange and green areas are limestones, sandstones and gypsum; the dark blue and green areas are underlying granitic rocks. The ability to map geology using ASTER data is enhanced by the multiple short wavelength infrared bands, that are sensitive to differences in rock mineralogy. This image was acquired on June 13, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03893
Zanin, Esther; Desai, Arshad; Poser, Ina; Toyoda, Yusuke; Andree, Cordula; Moebius, Claudia; Bickle, Marc; Conradt, Barbara; Piekny, Alisa; Oegema, Karen
2014-01-01
SUMMARY During animal cell cytokinesis, the spindle directs contractile ring assembly by activating RhoA in a narrow equatorial zone. Rapid GTPase activating protein (GAP)-mediated inactivation (RhoA flux) is proposed to limit RhoA zone dimensions. Testing the significance of RhoA flux has been hampered by the fact that the GAP targeting RhoA is not known. Here, we identify M-phase GAP (MP-GAP) as the primary GAP targeting RhoA during mitosis/cytokinesis. MP-GAP inhibition caused excessive RhoA activation in M-phase leading to the uncontrolled formation of large cortical protrusions and late cytokinesis failure. RhoA zone width was broadened by attenuation of the centrosomal asters but was not affected by MP-GAP inhibition alone. Simultaneous aster attenuation and MP-GAP inhibition led to RhoA accumulation around the entire cell periphery. These results identify the major GAP restraining RhoA during cell division and delineate the relative contributions of RhoA flux and centrosomal asters in controlling RhoA zone dimensions. PMID:24012485
USDA-ARS?s Scientific Manuscript database
The article by Singh et al., (2018) provides a striking example of the wide range of soil water contents reported by several electromagnetic (EM) sensor technologies under field conditions. We commend the authors for taking the initiative to evaluate these sensors in the field and in situations wher...
NASA Astrophysics Data System (ADS)
Abubakar, A. J.; Hashim, M.; Pour, A. B.
2017-10-01
Geothermal systems are essentially associated with hydrothermal alteration mineral assemblages such as iron oxide/hydroxide, clay, sulfate, carbonate and silicate groups. Blind and fossilized geothermal systems are not characterized by obvious surface manifestations like hot springs, geysers and fumaroles, therefore, they could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park in northeastern Nigeria. The area is characterized by a number of thermal springs such as Wikki and Mawulgo. Feature-oriented Principal Component selection (FPCS) was applied to ASTER data based on spectral characteristics of hydrothermal alteration minerals for a systematic and selective extraction of the information of interest. Application of FPCS analysis to bands 5, 6 and 8 and bands 1, 2, 3 and 4 datasets of ASTER was used for mapping clay and iron oxide/hydroxide minerals in the zones of Wikki and Mawulgo thermal springs in Yankari Park area. Field survey using GPS and laboratory analysis, including X-ray Diffractometer (XRD) and Analytical Spectral Devices (ASD) were carried out to verify the image processing results. The results indicate that ASTER dataset reliably and complementarily be used for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.
Zhang, Guo-Jin; Hu, Hai-Hua; Zhang, Cai-Fei; Tian, Xiao-Juan; Peng, Hui; Gao, Tian-Gang
2015-01-01
Aster tianmenshanensis G. J. Zhang & T. G. Gao, a new species of Asteraceae from southern China is described and illustrated based on evidence from morphology, micromorphology and molecular phylogeny. The new species is superficially similar to Aster salwinensis Onno in having rosettes of spatulate leaves and a solitary, terminal capitulum, but it differs by its glabrous leaf margins, unequal disc floret lobes and 1-seriate pappus. The molecular phylogenetic analysis, based on nuclear sequences ITS, ETS and chloroplast sequence trnL-F, showed that the new species was nested within the genus Aster and formed a well supported clade with Aster verticillatus (Reinw.) Brouillet et al. The new species differs from the latter in having unbranched stems, much larger capitula, unequal disc floret lobes, beakless achenes and persistent pappus. In particular, A. tianmenshanensis has very short stigmatic lines, only ca. 0.18 mm long and less than 1/3 of the length of sterile style tip appendages, remarkably different from its congeners. This type of stigmatic line, as far as we know, has not been found in any other species of Aster. The very short stigmatic lines plus the unequal disc floret lobes imply that the new species may have a very specialized pollination system, which may be a consequence of habitat specialization. The new species grows only on the limestone cliffs of Mt. Tianmen, Hunan Province, at the elevation of 1400 m. It could only be accessed when a plank walkway was built across the cliffs for tourists. As it is known only from an area estimated at less than 10 km2 and a walkway passes through this location, its habitat could be easily disturbed. This species should best be treated as Critically Endangered based on the International Union for Conservation of Nature Red List Categories and Criteria B2a.
NASA Technical Reports Server (NTRS)
2002-01-01
This ASTER image shows a 60 km stretch of the Yangtze River in China, including the Xiling Gorge, the eastern of the three gorges. In the left part of the image is the construction site of the Three Gorges Dam, the world's largest.
This image was acquired on July 20, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 60 x 24 km (36 x 15 miles) Location: 30.6 deg. North lat., 111.2 deg. East long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: July 20, 2000NASA Technical Reports Server (NTRS)
2005-01-01
This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mount St. Helens was captured one week after the March 8, 2005, ash and steam eruption, the latest activity since the volcano's reawakening in September 2004. The new lava dome in the southeast part of the crater is clearly visible, highlighted by red areas where ASTER's infrared channels detected hot spots from incandescent lava. The new lava dome is 155 meters (500 feet) higher than the old lava dome, and still growing. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 21.9 by 24.4 kilometers (13.6 by 15.1 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: North at top Image Data: ASTER bands 8, 3, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: March 15, 2005NASA Astrophysics Data System (ADS)
Jawak, Shridhar D.; Luis, Alvarinho J.
2016-05-01
Digital elevation model (DEM) is indispensable for analysis such as topographic feature extraction, ice sheet melting, slope stability analysis, landscape analysis and so on. Such analysis requires a highly accurate DEM. Available DEMs of Antarctic region compiled by using radar altimetry and the Antarctic digital database indicate elevation variations of up to hundreds of meters, which necessitates the generation of local improved DEM. An improved DEM of the Schirmacher Oasis, East Antarctica has been generated by synergistically fusing satellite-derived laser altimetry data from Geoscience Laser Altimetry System (GLAS), Radarsat Antarctic Mapping Project (RAMP) elevation data and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global elevation data (GDEM). This is a characteristic attempt to generate a DEM of any part of Antarctica by fusing multiple elevation datasets, which is essential to model the ice elevation change and address the ice mass balance. We analyzed a suite of interpolation techniques for constructing a DEM from GLAS, RAMP and ASTER DEM-based point elevation datasets, in order to determine the level of confidence with which the interpolation techniques can generate a better interpolated continuous surface, and eventually improve the elevation accuracy of DEM from synergistically fused RAMP, GLAS and ASTER point elevation datasets. The DEM presented in this work has a vertical accuracy (≈ 23 m) better than RAMP DEM (≈ 57 m) and ASTER DEM (≈ 64 m) individually. The RAMP DEM and ASTER DEM elevations were corrected using differential GPS elevations as ground reference data, and the accuracy obtained after fusing multitemporal datasets is found to be improved than that of existing DEMs constructed by using RAMP or ASTER alone. This is our second attempt of fusing multitemporal, multisensory and multisource elevation data to generate a DEM of Antarctica, in order to address the ice elevation change and address the ice mass balance. Our approach focuses on the strengths of each elevation data source to produce an accurate elevation model.
Tian, Xiao-Juan; Peng, Hui; Gao, Tian-Gang
2015-01-01
Aster tianmenshanensis G. J. Zhang & T. G. Gao, a new species of Asteraceae from southern China is described and illustrated based on evidence from morphology, micromorphology and molecular phylogeny. The new species is superficially similar to Aster salwinensis Onno in having rosettes of spatulate leaves and a solitary, terminal capitulum, but it differs by its glabrous leaf margins, unequal disc floret lobes and 1-seriate pappus. The molecular phylogenetic analysis, based on nuclear sequences ITS, ETS and chloroplast sequence trnL-F, showed that the new species was nested within the genus Aster and formed a well supported clade with Aster verticillatus (Reinw.) Brouillet et al. The new species differs from the latter in having unbranched stems, much larger capitula, unequal disc floret lobes, beakless achenes and persistent pappus. In particular, A. tianmenshanensis has very short stigmatic lines, only ca. 0.18 mm long and less than 1/3 of the length of sterile style tip appendages, remarkably different from its congeners. This type of stigmatic line, as far as we know, has not been found in any other species of Aster. The very short stigmatic lines plus the unequal disc floret lobes imply that the new species may have a very specialized pollination system, which may be a consequence of habitat specialization. The new species grows only on the limestone cliffs of Mt. Tianmen, Hunan Province, at the elevation of 1400 m. It could only be accessed when a plank walkway was built across the cliffs for tourists. As it is known only from an area estimated at less than 10 km2 and a walkway passes through this location, its habitat could be easily disturbed. This species should best be treated as Critically Endangered based on the International Union for Conservation of Nature Red List Categories and Criteria B2a. PMID:26308863
The Global ASTER Geoscience and Mineralogical Maps
NASA Astrophysics Data System (ADS)
Abrams, M.
2017-12-01
In 2012, Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) released 17 Geoscience mineral maps for the continent of Australia We are producing the CSIRO Geoscience data products for the entire land surface of the Earth. These maps are created from Advanced Spacecraft Thermal Emission and Reflection Radiometer (ASTER) data, acquired between 2000 and 2008. ASTER, onboard the United States' Terra satellite, is part of NASA's Earth Observing System. This multispectral satellite system has 14 spectral bands spanning: the visible and near-infrared (VNIR) @ 15 m pixel resolution; shortwave-infrared (SWIR) @ 30 m pixel resolution; and thermal infrared (TIR) @ 90 m pixel resolution. In a polar-orbit, ASTER acquires a 60 km swath of data.The CSIRO maps are the first continental-scale mineral maps generated from an imaging satellite designed to measure clays, quartz and other minerals. Besides their obvious use in resource exploration, the data have applicability to climatological studies. Over Australia, these satellite mineral maps improved our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map showed how kaolinite has developed over tectonically stable continental crust in response to deep weathering. The same clay composition map, in combination with one sensitive to water content, enabled the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust. This product was also used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The two-year project is undertaken by JPL with collaboration from CSIRO. JPL has in-house the entire ASTER global archive of Level 1B image data—more than 1,500,000 scenes. This cloud-screened and vegetation-masked data set will be the basis for creation of the suite of global Geoscience products using all of ASTER's 14 VNIR-SWIR-TIR spectral bands resampled to 100 m pixel resolution. We plan a staged release of the geoscience products through NASA's LPDAAC.
2017-12-08
Sochi, Russia Winter Olympic Sites (Mountain Cluster) The 2014 Winter Olympic ski runs may be rated double black diamond, but they're not quite as steep as they appear in this image of the skiing and snowboarding sites for the Sochi Winter Olympic Games, acquired on Jan. 4, 2014, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. Rosa Khutar ski resort near Sochi, Russia, is in the valley at center, and the runs are visible on the shadowed slopes on the left-hand side of the valley. Height has been exaggerated 1.5 times to bring out topographic details. The games, which begin on Feb. 7 and continue for 17 days, feature six new skiing and boarding events plus the return of the legendary Jamaican bobsled team to the winter games for the first time since 2002. In this southwest-looking image, red indicates vegetation, white is snow, and the resort site appears in gray. The area imaged is about 11 miles (18 kilometers) across in the foreground and 20 miles (32 kilometers) from front to back. The image was created from the ASTER visible and near-infrared bands, draped over ASTER-derived digital elevation data. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. credit:NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Draft genome sequence of the New Jersey aster yellows strain of ‘Candidatus Phytoplasma asteris’
USDA-ARS?s Scientific Manuscript database
The NJAY (New Jersey aster yellows) strain of ‘Candidatus Phytoplasma asteris’ is a significant plant pathogen responsible for causing severe lettuce yellows in the U.S. state of New Jersey. A draft genome sequence was prepared for this organism and used for genome- and gene-based comparative phylog...
USDA-ARS?s Scientific Manuscript database
Ruth's golden aster (Pityopsis ruthii) is an endangered, herbaceous perennial that occurs only at a few sites along small reaches of the Hiwassee and Ocoee rivers in Polk County, Tennessee. This species has ornamental potential. In 2012, we vegetatively propagated various genotypes and established p...
Rockwell, Barnaby W.; Knepper, Daniel H.; Horton, John D.
2015-01-01
The image products derived from Landsat TM and ASTER data enable the delineation of mineral groups across wide areas based on color response. Guides are provided that allow users to interpret these colors as to mineral group occurrence over lithologic units and known deposits. This information can be extrapolated to other geologically permissive tracts for various deposit types in the search for similar mineralogic responses that may be indicative of concealed deposits.
2017-04-18
Industry’s Treatability Study 20 demonstration sites Over 30 datasets from 3 different sensors Former Lowry Bombing and Gunnery Range Former Camp...object by an external EM source, after the external EM source is removed. Polarizability values exist for each of the object’s three principal...The EM Signal We Measure 13 BUILDING STRONG® Normalized response (polarizability) for excitation in object’s principal axis directions are the
2017-12-08
Lake Mackay is the largest of hundreds of ephemeral lakes scattered throughout Western Australia and the Northern Territory, and is the second largest lake in Australia. The darker areas indicate some form of desert vegetation or algae, moisture within the soils, and lowest elevations where water pools. The image was acquired on September 19, 2010 and covers an area of 27 x 41 km. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image Credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team
Cleavage in conical sand dollar eggs.
Rappaport, R; Rappaport, B N
1994-07-01
Previous experiments have shown that the mitotic apparatus and the surface can interact and produce functional furrows in various unusual geometrical circumstances. The consistent development of the furrow in the plane equidistant from the aster centers has led to conjecture about the need for a special structural configuration of the subsurface in the future cleavage plane. In most experiments involving altered cell geometry, the relation between each aster and nearby surface was symmetrical, and the effect of that symmetry upon the position and orientation of the cleavage mechanism in the cortex has not been systematically analyzed. The normal symmetry of sand dollar eggs can be changed by reshaping them into cones. When the cone and mitotic axes are parallel, the aster center closer to the vertex is also closer to the nearby surface, and the cleavage plane develops on the vertex side of the midpoint between the asters. A mitotic apparatus oriented perpendicular to the cone axis produces in the base of the cone a normal unilateral furrow that advances toward the vertex, and a second contractile band that isolates the vertex region. This event only occurs when the surface is conical and the mitotic apparatus is perpendicular to the cone axis. Furrow formation is not restricted to the plane of the metaphase plate or the midpoint between the aster centers. The orientation of mitotic apparatus-produced contractile bands is not limited to the circumstances in normal cytokinesis, but may vary according to surface contour. These results confirm predictions of the Harris and Gewalt model of contractile ring induction.
NASA Astrophysics Data System (ADS)
De Bonis, Giulia; Bozza, Cristiano
2017-03-01
In the framework of Horizon 2020, the European Commission approved the ASTERICS initiative (ASTronomy ESFRI and Research Infrastructure CluSter) to collect knowledge and experiences from astronomy, astrophysics and particle physics and foster synergies among existing research infrastructures and scientific communities, hence paving the way for future ones. ASTERICS aims at producing a common set of tools and strategies to be applied in Astronomy ESFRI facilities. In particular, it will target the so-called multi-messenger approach to combine information from optical and radio telescopes, photon counters and neutrino telescopes. pLISA is a software tool under development in ASTERICS to help and promote machine learning as a unified approach to multivariate analysis of astrophysical data and signals. The library will offer a collection of classification parameters, estimators, classes and methods to be linked and used in reconstruction programs (and possibly also extended), to characterize events in terms of particle identification and energy. The pLISA library aims at offering the software infras tructure for applications developed inside different experiments and has been designed with an effort to extrapolate general, physics-related estimators from the specific features of the data model related to each particular experiment. pLISA is oriented towards parallel computing architectures, with awareness of the opportunity of using GPUs as accelerators demanding specifically optimized algorithms and to reduce the costs of pro cessing hardware requested for the reconstruction tasks. Indeed, a fast (ideally, real-time) reconstruction can open the way for the development or improvement of alert systems, typically required by multi-messenger search programmes among the different experi mental facilities involved in ASTERICS.
Aster Global dem Version 3, and New Aster Water Body Dataset
NASA Astrophysics Data System (ADS)
Abrams, M.
2016-06-01
In 2016, the US/Japan ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) project released Version 3 of the Global DEM (GDEM). This 30 m DEM covers the earth's surface from 82N to 82S, and improves on two earlier versions by correcting some artefacts and filling in areas of missing DEMs by the acquisition of additional data. The GDEM was produced by stereocorrelation of 2 million ASTER scenes and operation on a pixel-by-pixel basis: cloud screening; stacking data from overlapping scenes; removing outlier values, and averaging elevation values. As previously, the GDEM is packaged in ~ 23,000 1 x 1 degree tiles. Each tile has a DEM file, and a NUM file reporting the number of scenes used for each pixel, and identifying the source for fill-in data (where persistent clouds prevented computation of an elevation value). An additional data set was concurrently produced and released: the ASTER Water Body Dataset (AWBD). This is a 30 m raster product, which encodes every pixel as either lake, river, or ocean; thus providing a global inland and shore-line water body mask. Water was identified through spectral analysis algorithms and manual editing. This product was evaluated against the Shuttle Water Body Dataset (SWBD), and the Landsat-based Global Inland Water (GIW) product. The SWBD only covers the earth between about 60 degrees north and south, so it is not a global product. The GIW only delineates inland water bodies, and does not deal with ocean coastlines. All products are at 30 m postings.
High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations
NASA Astrophysics Data System (ADS)
Yue, Linwei; Shen, Huanfeng; Zhang, Liangpei; Zheng, Xianwei; Zhang, Fan; Yuan, Qiangqiang
2017-01-01
The absence of a high-quality seamless global digital elevation model (DEM) dataset has been a challenge for the Earth-related research fields. Recently, the 1-arc-second Shuttle Radar Topography Mission (SRTM-1) data have been released globally, covering over 80% of the Earth's land surface (60°N-56°S). However, voids and anomalies still exist in some tiles, which has prevented the SRTM-1 dataset from being directly used without further processing. In this paper, we propose a method to generate a seamless DEM dataset blending SRTM-1, ASTER GDEM v2, and ICESat laser altimetry data. The ASTER GDEM v2 data are used as the elevation source for the SRTM void filling. To get a reliable filling source, ICESat GLAS points are incorporated to enhance the accuracy of the ASTER data within the void regions, using an artificial neural network (ANN) model. After correction, the voids in the SRTM-1 data are filled with the corrected ASTER GDEM values. The triangular irregular network based delta surface fill (DSF) method is then employed to eliminate the vertical bias between them. Finally, an adaptive outlier filter is applied to all the data tiles. The final result is a seamless global DEM dataset. ICESat points collected from 2003 to 2009 were used to validate the effectiveness of the proposed method, and to assess the vertical accuracy of the global DEM products in China. Furthermore, channel networks in the Yangtze River Basin were also extracted for the data assessment.
NASA Astrophysics Data System (ADS)
Grohmann, Carlos H.
2018-06-01
A first assessment of the TanDEM-X DEMs over Brazilian territory is presented through a comparison with SRTM, ASTER GDEM and ALOS AW3D30 DEMs in seven study areas with distinct geomorphological contexts, vegetation coverage and land use. Visual analysis and elevation histograms point to a finer effective spatial resolution of TanDEM-X compared to SRTM and ASTER GDEM. In areas of open vegetation, TanDEM-X lower elevations indicate a better penetration of the radar signal. DEMs of differences (DoDs) allowed the identification of issues inherent to the production methods of the analyzed DEMs, such as mast oscillations in SRTM data and mismatch between adjacent scenes in ASTER GDEM and ALOS AW3D30. A systematic difference in elevations between TanDEM-X 12m, TanDEM-X 30m and SRTM was observed in the steep slopes of the coastal ranges, related to the moving-window process used to resample the 12m data to a 30m pixel size. Due its simplicity, it is strongly recommended to produce a DoD with SRTM before using ASTER GDEM or ALOS AW3D30 in any analysis, to evaluate if the area of interest is affected by these problems. The DoDs also highlighted changes in land use in the time span between the acquisition of SRTM (2000) and TanDEM-X (2013) data, whether by natural causes or by human interference in the environment.
Qureshi, Umair Mujtaba; Shaikh, Faisal Karim; Aziz, Zuneera; Shah, Syed M. Zafi S.; Sheikh, Adil A.; Felemban, Emad; Qaisar, Saad Bin
2016-01-01
Underwater Wireless Sensor Network (UWSN) communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM) signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW) at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water) environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss) of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz. PMID:27322263
Qureshi, Umair Mujtaba; Shaikh, Faisal Karim; Aziz, Zuneera; Shah, Syed M Zafi S; Sheikh, Adil A; Felemban, Emad; Qaisar, Saad Bin
2016-06-16
Underwater Wireless Sensor Network (UWSN) communication at high frequencies is extremely challenging. The intricacies presented by the underwater environment are far more compared to the terrestrial environment. The prime reason for such intricacies are the physical characteristics of the underwater environment that have a big impact on electromagnetic (EM) signals. Acoustics signals are by far the most preferred choice for underwater wireless communication. Because high frequency signals have the luxury of large bandwidth (BW) at shorter distances, high frequency EM signals cannot penetrate and propagate deep in underwater environments. The EM properties of water tend to resist their propagation and cause severe attenuation. Accordingly, there are two questions that need to be addressed for underwater environment, first what happens when high frequency EM signals operating at 2.4 GHz are used for communication, and second which factors affect the most to high frequency EM signals. To answer these questions, we present real-time experiments conducted at 2.4 GHz in terrestrial and underwater (fresh water) environments. The obtained results helped in studying the physical characteristics (i.e., EM properties, propagation and absorption loss) of underwater environments. It is observed that high frequency EM signals can propagate in fresh water at a shallow depth only and can be considered for a specific class of applications such as water sports. Furthermore, path loss, velocity of propagation, absorption loss and the rate of signal loss in different underwater environments are also calculated and presented in order to understand why EM signals cannot propagate in sea water and oceanic water environments. An optimal solk6ution for underwater communication in terms of coverage distance, bandwidth and nature of communication is presented, along with possible underwater applications of UWSNs at 2.4 GHz.
2010-03-03
Image taken 5/2/2002 by ASTER: A vast alluvial fan blossoms across the desolate landscape between the Kunlun and Altun mountain ranges that form the southern border of the Taklimakan Desert in China's XinJiang Province. This image can be found on ASTER Path 143 Row 34, center: 37.43 N, 84.30 E. To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/
Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao
2015-08-01
There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models.
NASA Astrophysics Data System (ADS)
Rendon Santillan, Jojene; Makinano-Santillan, Meriam
2018-04-01
We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa) to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345-1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2). Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.
Detection and Discrimination in One-Pass Using the OPTEMA Towed-Array
2014-11-01
pitch, roll , and yaw measurements for the OPTEMA sensor head. The IMU is co-located with the GPS receiver. OPTEMA sensor electronics include the...subtracted from subsequent data sets to isolate the anomaly response. In addition to a background subtraction, a transmitter current normalization is...the survey area. EM3DAcquire provides line following based on the sensor head GPS and IMU data. Using the line following display, the OPTEMA is
Spectral unmixing of hyperspectral data to map bauxite deposits
NASA Astrophysics Data System (ADS)
Shanmugam, Sanjeevi; Abhishekh, P. V.
2006-12-01
This paper presents a study about the potential of remote sensing in bauxite exploration in the Kolli hills of Tamilnadu state, southern India. ASTER image (acquired in the VNIR and SWIR regions) has been used in conjunction with SRTM - DEM in this study. A new approach of spectral unmixing of ASTER image data delineated areas rich in alumina. Various geological and geomorphological parameters that control bauxite formation were also derived from the ASTER image. All these information, when integrated, showed that there are 16 cappings (including the existing mines) that satisfy most of the conditions favouring bauxitization in the Kolli Hills. The study concludes that spectral unmixing of hyperspectral satellite data in the VNIR and SWIR regions may be combined with the terrain parameters to get accurate information about bauxite deposits, including their quality.
COSMOS soil water sensor compared with EM sensor network & weighing lysimeter
USDA-ARS?s Scientific Manuscript database
Soil water sensing methods are widely used to characterize the root zone and below, but only a few are capable of delivering water content data with accuracy for the entire soil profile such that evapotranspiration (ET) can be determined by soil water balance and irrigations can be scheduled with mi...
Design and testing of access-tube TDR soil water sensor
USDA-ARS?s Scientific Manuscript database
We developed the design of a waveguide on the exterior of an access tube for use in time-domain reflectometry (TDR) for in-situ soil water content sensing. In order to optimize the design with respect to sampling volume and losses, we derived the electromagnetic (EM) fields produced by a TDR sensor...
2017-12-08
Sochi, Russia Winter Olympic Sites (Coastal Cluster) The Black Sea resort of Sochi, Russia, is the warmest city ever to host the Winter Olympic Games, which open on Feb. 7, 2014, and run through Feb. 23. This north-looking image, acquired on Jan. 4, 2014, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft, shows the Sochi Olympic Park Coastal Cluster -- the circular area on the shoreline in the bottom center of the image -- which was built for Olympic indoor sports. Even curling has its own arena alongside multiple arenas for hockey and skating. The Olympic alpine events will take place at the Mountain Cluster, located in a snow-capped valley at the top right of the image. Sochi itself, a city of about 400,000, is not visible in the picture. It's farther west (left) along the coast, past the airport at bottom left. In the image, red indicates vegetation, white is snow, buildings are gray and the ocean is dark blue. The area imaged is about 15 miles (24 kilometers) from west to east (left to right) at the coastline and 25 miles (41 kilometers) from front to back. Height is exaggerated 1.5 times. The image was created from the ASTER visible and near-infrared bands, draped over ASTER-derived digital elevation data. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
2002-01-01
The Hayman forest fire, started on June 8, is continuing to burn in the Pike National Forest, 57 km (35 miles) south-southwest of Denver. According to the U.S. Forest Service, the fire has consumed more than 90,000 acres and has become Colorado's worst fire ever. In this ASTER image, acquired Sunday, June 16, 2002 at 10:30 am MST, the dark blue area is burned vegetation and the green areas are healthy vegetation. Red areas are active fires, and the blue cloud at the top center is smoke. Meteorological clouds are white. The image covers an area of 32.2 x 35.2 km (20.0 x 21.8 miles), and displays ASTER bands 8-3-2 in red, green and blue.
This image was acquired on June 16, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 32.2 x 35.2 km (20.0 x 21.8 miles) Location: 39.2 deg. North lat., 105.3 deg. West long. Orientation: North at top Image Data: ASTER bands 8, 3, and 2. Original Data Resolution: 15 m Date Acquired: June 16, 2002NASA Astrophysics Data System (ADS)
Pipaud, Isabel; Loibl, David; Lehmkuhl, Frank
2015-10-01
Digital elevation models (DEMs) are a prerequisite for many different applications in the field of geomorphology. In this context, the two near-global medium resolution DEMs originating from the SRTM and ASTER missions are widely used. For detailed geomorphological studies, particularly in high mountain environments, these datasets are, however, known to have substantial disadvantages beyond their posting, i.e., data gaps and miscellaneous artifacts. The upcoming TanDEM-X DEM is a promising candidate to improve this situation by application of state-of-the-art radar technology, exhibiting a posting of 12 m and less proneness to errors. In this study, we present a DEM processed from a single TanDEM-X CoSSC scene, covering a study area in the extreme relief of the eastern Nyainqêntanglha Range, southeastern Tibet. The potential of the resulting experimental TanDEM-X DEM for geomorphological applications was evaluated by geomorphometric analyses and an assessment of landform cognoscibility and artifacts in comparison to the ASTER GDEM and the recently released SRTM 1″ DEM. Detailed geomorphological mapping was conducted for four selected core study areas in a manual approach, based exclusively on the TanDEM-X DEM and its basic derivates. The results show that the self-processed TanDEM-X DEM yields a detailed and widely consistent landscape representation. It thus fosters geomorphological analysis by visual and quantitative means, allowing delineation of landforms down to footprints of 30 m. Even in this premature state, the TanDEM-X elevation data are widely superior to the ASTER and SRTM datasets, primarily owing to its significantly higher resolution and its lower susceptibility to artifacts that hamper landform interpretation. Conversely, challenges toward interferometric DEM generation were identified, including (i) triangulation facets and missing topographic information resulting from radar layover on steep slopes facing toward the radar sensor, (ii) low coherence values on leeward slopes, (iii) decorrelation effects over water bodies, and (iv) challenges for phase unwrapping in settings of strong topographic contrasts. There is, however, a high probability that these drawbacks can be overcome by applying multiple interferograms exhibiting different perpendicular baselines as planned for the generation of the final TanDEM-X DEM product.
Esperanza Fire near Palm Springs, California
NASA Technical Reports Server (NTRS)
2006-01-01
The Esperanza fire started on October 26 in the dry brush near Palm Springs, CA. By the time it was contained 6 days later, the fire had consumed 40,200 acres, and destroyed 34 homes and 20 outbuildings. Racing through grass, brush, and timber, the blaze had forced hundreds to evacuate, and it killed five firefighters who were working to protect homes. Fire officials are reporting the cause of the blaze as arson. In this ASTER image composite of visible and infrared bands, burned areas are shown in shades of red, vegetation is green, brown vegetation is brown and asphalt and concrete are blue-gray. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 21.4 by 26.9 kilometers (13.2 by 16.6 miles) Location: 33.6 degrees North latitude, 116.8 degrees West longitude Orientation: North at top Image Data: ASTER Bands 7, 3 and 1 Original Data Resolution: ASTER 15 meters (49.2 feet) and 30 meters (98.4 feet) Dates Acquired: November 3, 2006Fire near South Lake Tahoe, California
NASA Technical Reports Server (NTRS)
2007-01-01
A destructive forest fire that broke out June 24, 2007 near South Lake Tahoe, Calif., continued to burn June 27 when this image was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer instrument on NASA's Terra satellite. As of June 28, the fire had destroyed about 230 residences and other buildings. In all, about 2,000 people were evacuated, according to South Lake Tahoe Police. The blaze has charred more than 3,100 acres -- about 4.8 square miles -- and was 60 percent contained on June 28. In this ASTER image, the burned area is in gray, a combination of burned forest and some smoke, between Fallen Leaf Lake and the Tahoe Airport. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 15 by 15 kilometers (9.3 by 9.3 miles) Location: 38.9 degrees North latitude, 120 degrees West longitude Orientation: North at top Image Data: ASTER Bands 3, 2, and 1 Original Data Resolution: ASTER 15 meters (49.2 feet) Date Acquired: June 27, 2007.NASA Technical Reports Server (NTRS)
2007-01-01
The last major fire in southern Greece was brought under control this weekend, but not until over 469,000 acres of mostly forest and farmland were destroyed. An estimated 4000 people lost their homes, and over 60 deaths were reported. These were the worst fires ever to occur in Greece. In this Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image acquired September 4 over the western coast of the Peloponnesus Peninsula, burned areas appear in dark red, and unburned vegetation is green. The area includes the ancient site of Olympia, the site of the Olympic Games in classical times. The fires came within 2 kilometers (1.2 miles) of the archaeological site, but spared it. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 56.4 by 63.5 kilometers (35 by 39.4 miles) Location: 37.9 degrees North latitude, 21.6 degrees East longitude Orientation: North at top Image Data: ASTER Bands 6, 3, and 1 Original Data Resolution: ASTER 15 meters (49.2 feet Dates Acquired: September 4, 2007.Witch Wildland Fire, California
NASA Technical Reports Server (NTRS)
2007-01-01
The October wildfires that plagued southern California were some of the worst on record. One of these, the Witch Wildland fire, burned 198,000 acres north of San Diego, destroying 1125 homes, commercial structures, and outbuildings. Over 3,000 firefighters finally contained the fire two weeks after it started on October 21. Now begins the huge task of planning and implementing mitigation measures to replant and reseed the burned areas. This ASTER image depicts the area after the fire, on November 6; vegetation is green, burned areas are dark red, and urban areas are blue. On the burn severity index image, calculated using infrared and visible bands, red areas are the most severely burned, followed by green and blue. This information can help the US Forest Service to plan post-fire activities. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 37.5 by 45 kilometers (23.1 by 27.8 miles) Location: 33 degrees North latitude, 116.9 degrees West longitude Orientation: North at top Image Data: ASTER Bands 6, 3, and 1 Original Data Resolution: ASTER 15 meters (49.2 feet) Dates Acquired: November 6, 2007NASA Astrophysics Data System (ADS)
Zhang, Wangfei; Chen, Erxue; Li, Zengyuan; Feng, Qi; Zhao, Lei
2016-08-01
DEM Differential Method is an effective and efficient way for forest tree height assessment with Polarimetric and interferometric technology, however, the assessment accuracy of it is based on the accuracy of interferometric results and DEM. Terra-SAR/TanDEM-X, which established the first spaceborne bistatic interferometer, can provide highly accurate cross-track interferometric images in the whole global without inherent accuracy limitations like temporal decorrelation and atmospheric disturbance. These characters of Terra-SAR/TandDEM-X give great potential for global or regional tree height assessment, which have been constraint by the temporal decorrelation in traditional repeat-pass interferometry. Currently, in China, it will be costly to collect high accurate DEM with Lidar. At the same time, it is also difficult to get truly representative ground survey samples to test and verify the assessment results. In this paper, we analyzed the feasibility of using TerraSAR/TanDEM-X data to assess forest tree height with current free DEM data like ASTER-GDEM and archived ground in-suit data like forest management inventory data (FMI). At first, the accuracy and of ASTER-GDEM and forest management inventory data had been assessment according to the DEM and canopy height model (CHM) extracted from Lidar data. The results show the average elevation RMSE between ASTER-GEDM and Lidar-DEM is about 13 meters, but they have high correlation with the correlation coefficient of 0.96. With a linear regression model, we can compensate ASTER-GDEM and improve its accuracy nearly to the Lidar-DEM with same scale. The correlation coefficient between FMI and CHM is 0.40. its accuracy is able to be improved by a linear regression model withinconfidence intervals of 95%. After compensation of ASTER-GDEM and FMI, we calculated the tree height in Mengla test site with DEM Differential Method. The results showed that the corrected ASTER-GDEM can effectively improve the assessment accuracy. The average assessment accuracy before and after corrected is 0.73 and 0.76, the RMSE is 5.5 and 4.4, respectively.
2006-10-26
tte r M r. D ea n C ar ic o TR AC K 1 Sy st em s En gi ne er in g Ef fe ct iv en es s M r. Al B ro...FS S) T oo ls - PG M M Ca se S tu dy M r. D ou gl as S to rs ve d Pa tte rn L ib ra ry fo r Us e in W ea po ns S ys te m E ng in ee...Sensors Sensors Sensors Sensors Air, Land or Sea Undersea or from the Sea (C3) (C2)( ) Sensors Sensors
Automated Hand-Held UXO Detection, Classification & Discrimination Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Thomas H.
2000-06-12
The research focused on procedures for target discrimination and classification using hand-held EMI sensors. The idea is to have a small, portable sensor that can be operated in a sweep or similar pattern in front of the operator, and that is capable of distinguishing between buried UXO and clutter on the spot. Curing Phase 1, we developed the processing techniques for distinguishing between buried UXO and clutter using the EM61-HH hand-held metal detector.
A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement
Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Ren, Wei; Li, Hui; Zhao, You
2018-01-01
With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size. PMID:29494519
NASA Astrophysics Data System (ADS)
Linick, J. P.; Pieri, D. C.; Sanchez, R. M.
2014-12-01
The physical and temporal systematics of the world's volcanic activity is a compelling and productive arena for the exercise of orbital remote sensing techniques, informing studies ranging from basic volcanology to societal risk. Comprised of over 160,000 frames and spanning 15 years of the Terra platform mission, the ASTER Volcano Archive (AVA: http://ava.jpl.nasa.gov) is the world's largest (100+Tb) high spatial resolution (15-30-90m/pixel), multi-spectral (visible-SWIR-TIR), downloadable (kml enabled) dedicated archive of volcano imagery. We will discuss the development of the AVA, and describe its growing capability to provide new easy public access to ASTER global volcano remote sensing data. AVA system architecture is designed to facilitate parameter-based data mining, and for the implementation of archive-wide data analysis algorithms. Such search and analysis capabilities exploit AVA's unprecedented time-series data compilations for over 1,550 volcanoes worldwide (Smithsonian Holocene catalog). Results include thermal anomaly detection and mapping, as well as detection of SO2 plumes from explosive eruptions and passive SO2 emissions confined to the troposphere. We are also implementing retrospective ASTER image retrievals based on volcanic activity reports from Volcanic Ash Advisory Centers (VAACs) and the US Air Force Weather Agency (AFWA). A major planned expansion of the AVA is currently underway, with the ingest of the full 1972-present LANDSAT, and NASA EO-1, volcano imagery for comparison and integration with ASTER data. Work described here is carried out under contract to NASA at the Jet Propulsion Laboratory as part of the California Institute of Technology.
The Tibesti Volcanoes of Chad: an ASTER-based Remote Sensing Analysis
NASA Astrophysics Data System (ADS)
Permenter, J. L.; Oppenheimer, C.
2002-12-01
Situated in the central Sahara desert, the Tibesti volcanic province of northern Chad, Africa, is a superb example of large-scale continental hot spot volcanism. The massif is comprised of seven major volcanoes and an assembly of related volcanic and tectonic structures, with a total surface area of over 350 km2. Its highest peak (Emi Koussi) rises above the surrounding desert to ~3415 m above sea level. Due, in part, to its remoteness, the Tibesti has never been described in volcanological detail. This study aims to provide the first modern synthesis of the volcanology of this significant hot spot province. It is based primarily on a detailed analysis and interpretation of a comprehensive set of multi-band imagery from NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). ASTER has 14 spectral bands, divided between 3 optical subsystems; 3 in the very-near infrared (VNIR), 6 in the short-wave infrared, and 5 in the thermal infrared regions. In addition, the VNIR subsystem has aft-viewing optics for stereoscopic observation in the along-track direction, which permits generation of digital elevation models. The preliminary results presented here focus on the discrimination of lava composition, identification of pyroclastic deposits, and characterisation of the dimension of flows, craters, and other structural elements of the massif, using spectral and textural information gathered from the ASTER imagery. Furthermore, stratigraphic detail is obtained from the superposition of flow units and craters. The application of ASTER data to the Tibesti volcanic complex permits an initial first order description of the relative proportions and timing of different erupted materials, providing a framework for further interpretation of the volcanology and magmatic evolution of the Tibesti, based on modern geologic and tectonic concepts. It also allows intercomparisons to be made with other continental hot spot provinces.
Assessment of ASTER data for forest inventory in Canary Islands
NASA Astrophysics Data System (ADS)
Alonso-Benito, Alfonso; Arbelo, Manuel; Hernandez-Leal, Pedro A.; González-Calvo, Alejandro; Labrador Garcia, Mauricio
To understand and evaluate the forest structural attributes, forest inventories are conducted, which are costly and lengthy in time. Since the last 10-15 years there has been examining the possibility of using remote sensing data, to save costs and cheapen the process. One of the aims of SATELMAC, a project PCT-MAC 2007-2013 co-financing with FEDER funds, is to automate the forest inventory in Canary Islands using satellite images. In this study, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data were used to estimate forest structure of the endemic vegetal specie, Pinus canariensis, located on the island of Tenerife (Spain). The forest structural attributes analyzed have been volume, basal area, stem per hectare and tree height. ASTER is an imaging instrument flying on Terra, a satellite launched in December 1999 as part of NASA's Earth Observing System. ASTER data were used because it have relatively high spatial resolution in the three visible and near-infrared bands (15 m) and in the six spectral bands (30 m) in the shortwave-IR region. To identify the vegetation index that is most suitable to use, about specific forest structural attributes in our study area, we assess the ability of different spectral indices: Normalized Difference Vegetation Index, Transformed Soil Adjusted Vegetation Index, Modified Soil adjusted Vegetation Index, Perpendicular Vegetation Index and Reduced Simple Ratio. The information provided by the ASTER data has been supplemented by the Third National Forest Inventory (III NFI) and field data. The results are analyzed statistically in order to see the degree of correlation (R2) and the mean square error (RMSE) of the values studied.
a Preliminary Investigation on Comparison and Transformation of SENTINEL-2 MSI and Landsat 8 Oli
NASA Astrophysics Data System (ADS)
Chen, F.; Lou, S.; Fan, Q.; Li, J.; Wang, C.; Claverie, M.
2018-05-01
A PRELIMINARY INVESTIGATION ON COMPARISON AND TRANSFORMATION OF SENTINEL-2 MSI AND LANDSAT 8 OLI Timely and accurate earth observation with short revisit interval is usually necessary, especially for emergency response. Currently, several new generation sensors provided with similar channel characteristics have been operated onboard different satellite platforms, including Sentinel-2 and Landsat 8. Joint use of the observations by different sensors offers an opportunity to meet the demands for emergency requirements. For example, through the combination of Landsat and Sentinel-2 data, the land can be observed every 2-3 days at medium spatial resolution. However, differences are expected in radiometric values (e.g., channel reflectance) of the corresponding channels between two sensors. Spectral response function (SRF) is taken as an important aspect of sensor settings. Accordingly, between-sensor differences due to SRFs variation need to be quantified and compensated. The comparison of SRFs shows difference (more or less) in channel settings between Sentinel-2 Multi-Spectral Instrument (MSI) and Landsat 8 Operational Land Imager (OLI). Effect of the difference in SRF on corresponding values between MSI and OLI was investigated, mainly in terms of channel reflectance and several derived spectral indices. Spectra samples from ASTER Spectral Library Version 2.0 and Hyperion data archives were used in obtaining channel reflectance simulation of MSI and OLI. Preliminary results show that MSI and OLI are well comparable in several channels with small relative discrepancy (< 5 %), including the Costal Aerosol channel, a NIR (855-875 nm) channel, the SWIR channels, and the Cirrus channel. Meanwhile, for channels covering Blue, Green, Red, and NIR (785-900 nm), the between-sensor differences are significantly presented. Compared with the difference in reflectance of each individual channel, the difference in derived spectral index is more significant. In addition, effectiveness of linear transformation model is not ensured when the target belongs to another spectra collection. If an improper transformation model is selected, the between-sensor discrepancy will even largely increase. In conclusion, improvement in between-sensor consistency is possibly a challenge, through linear transformation based on model(s) generated from other spectra collections.
2008-02-01
of the magnetic data to constrain the target depth using joint or cooperative inversions ( Pasion et al. 2002). ERDC/EL TR-08-9 24 Figure 15. EM...baseline ordnance classification test site at Blossom Pt. Naval Research Laboratory. NRL/MR/6110-00-8437, March 20, 1998. Pasion , L., S. Billings, and
Velocities along Byrd Glacier, East Antarctica, derived from Automatic Feature Tracking
NASA Astrophysics Data System (ADS)
Stearns, L. A.; Hamilton, G. S.
2003-12-01
Automatic feature tracking techniques are applied to recently acquired ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery in order to determine the velocity field of Byrd Glacier, East Antarctica. The software IMCORR tracks the displacement of surface features (crevasses, drift mounds) in time sequential images, to produce the velocity field. Due to its high resolution, ASTER imagery is ideally suited for detecting small features changes. The produced result is a dense array of velocity vectors, which allows more thorough characterization of glacier dynamics. Byrd Glacier drains approximately 20.5 km3 of ice into the Ross Ice Shelf every year. Previous studies have determined ice velocities for Byrd Glacier by using photogrammetry, field measurements and manual feature tracking. The most recent velocity data is from 1986 and, as evident in the West Antarctic ice streams, substantial changes in velocity can occur on decadal time scales. The application of ASTER-based velocities fills this time lapse, and increased temporal resolution allows for a more complete analysis of Byrd Glacier. The ASTER-derived ice velocities are used in updating mass balance and force budget calculations to assess the stability of Byrd Glacier. Ice thickness information from BEDMAP, surface slopes from the OSUDEM and a compilation of accumulation rates are used to complete the calculations.
NASA Astrophysics Data System (ADS)
Trunk, Laura; Bernard, Alain
2008-12-01
A two-channel or split-window algorithm designed to correct for atmospheric conditions was applied to thermal images taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) of Lake Yugama on Kusatsu-Shirane volcano in Japan in order to measure the temperature of its crater lake. These temperature calculations were validated using lake water temperatures that were collected on the ground. Overall, the agreement between the temperatures calculated using the split-window method and ground truth is quite good, typically ± 1.5 °C for cloud-free images. Data from fieldwork undertaken in the summer of 2004 at Kusatsu-Shirane allow a comparison of ground-truth data with the radiant temperatures measured using ASTER imagery. Further images were analyzed of Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes to acquire time-series of lake temperatures. A total of 64 images of these 4 volcanoes covering a wide range of geographical locations and climates were analyzed. Results of the split-window algorithm applied to ASTER images are reliable for monitoring thermal changes in active volcanic lakes. These temperature data, when considered in conjunction with traditional volcano monitoring techniques, lead to a better understanding of whether and how thermal changes in crater lakes aid in eruption forecasting.
2018-11-09
Retreatment and EMS were completed using a dental operating microscope (Zeiss OPMJ PROergo) and contemporary materials and techniques. Retreatrnent...paralleling technique and external cone positioning device (XCP) using size 2 digital sensors (Kodak RVG 6100). A dental x-ray machine (Planmeca...EMS and retreatment were calculated. Examiners used MiPACS dental enterprise viewer (LEAD Technologies Inc, Charlotte, NC) to interpret randomized
NASA Astrophysics Data System (ADS)
Crawford, C. J.; Chickadel, C. C.; Hall, D. K.; Jennings, D. E.; Jhabvala, M. D.; Kim, E. J.; Jessica, L.; Lunsford, A.
2017-12-01
The NASA Terrestrial Hydrology Program sponsored a ground and airborne snow experiment (SnowEx) to the Grand Mesa area and Senator Beck Basin in western Colorado during February 2017. This communication summarizes efforts to develop traceable instrument calibration requirements for SnowEx Grand Mesa in support of thermal infrared (TIR) and visible-to-shortwave infrared (VSWIR) snow measurement science. Cross-calibration outcomes for TIR instruments (7-10 µm and 8-14 µm response functions) indicate that an at-sensor measurement accuracy of within 1.5 degrees Celsius was achieved across ground and airborne sensors using laboratory and field blackbody sources. A cross-calibration assessment of VSWIR spectrometers (0.35 to 2.5 µm response functions) using a National Institutes of Standard Technology (NIST) traceable source indicates an at-sensor measurement accuracy of within 5% for visible-near infrared spectral radiance (W/cm-2/sr-1/nm) and irradiance (W/m-2/nm), and within 20% for shortwave infrared measurements before a radiometric cross-calibration correction was applied. Additional validation is undertaken to assess the ground and airborne SnowEx Grand Mesa TIR and VSWIR instrument cross-calibration quality by benchmarking against on-orbit image acquisitions of the snow surface on February 14th and 15th, 2017 from Landsat Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Sentinel-2A Multi-Spectral Instrument (MSI).
Detection Of Tornado Damage Tracks With EOS Data
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Nair, Udaysankar; Haines, Stephanie L.
2005-01-01
The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (path length and width) and an estimation of the tornado intensity. This study explored the possibility of using near real-time medium and high-resolution satellite imagery from the NASA EOS satellites to provide additional information for the surveys. MODIS and ASTER data were used to study the damage tracks from three tornadic storms; the La Plata, Maryland storm of 28 April 2002 and the Carter-Butler Counties and Madison County Missouri storms of 24 April 2002. These storms varied in intensity (from F0-F4) and occurred over regions with different land use. It was found that, depending on the nature of land use, tornado damage tracks from intense storms (F2 or greater) may be evident in both ASTER and MODIS satellite imagery. In areas of dense vegetation the scar patterns show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not at all obvious in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2004 Madison County, Missouri tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery appears to be as much dependent on the nature of the underlying surface and land use as on the severity of the tornadic storm. The imaging sensors on the NPOESS operational satellites to be launched in 2006 will continue the unique observing capabilities of the EOS instruments.
NASA Technical Reports Server (NTRS)
Starr, David
2000-01-01
The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community.
NASA Technical Reports Server (NTRS)
Starr, David
1999-01-01
The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include ASTER, CERES, MISR, MODIS and MOPITT. In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS), AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2, though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community. Detailed information about the EOS Terra validation Program can be found on the EOS Validation program homepage i/e.: http://ospso.gsfc.nasa.gov/validation/valpage.html).
Robust numerical electromagnetic eigenfunction expansion algorithms
NASA Astrophysics Data System (ADS)
Sainath, Kamalesh
This thesis summarizes developments in rigorous, full-wave, numerical spectral-domain (integral plane wave eigenfunction expansion [PWE]) evaluation algorithms concerning time-harmonic electromagnetic (EM) fields radiated by generally-oriented and positioned sources within planar and tilted-planar layered media exhibiting general anisotropy, thickness, layer number, and loss characteristics. The work is motivated by the need to accurately and rapidly model EM fields radiated by subsurface geophysical exploration sensors probing layered, conductive media, where complex geophysical and man-made processes can lead to micro-laminate and micro-fractured geophysical formations exhibiting, at the lower (sub-2MHz) frequencies typically employed for deep EM wave penetration through conductive geophysical media, bulk-scale anisotropic (i.e., directional) electrical conductivity characteristics. When the planar-layered approximation (layers of piecewise-constant material variation and transversely-infinite spatial extent) is locally, near the sensor region, considered valid, numerical spectral-domain algorithms are suitable due to their strong low-frequency stability characteristic, and ability to numerically predict time-harmonic EM field propagation in media with response characterized by arbitrarily lossy and (diagonalizable) dense, anisotropic tensors. If certain practical limitations are addressed, PWE can robustly model sensors with general position and orientation that probe generally numerous, anisotropic, lossy, and thick layers. The main thesis contributions, leading to a sensor and geophysical environment-robust numerical modeling algorithm, are as follows: (1) Simple, rapid estimator of the region (within the complex plane) containing poles, branch points, and branch cuts (critical points) (Chapter 2), (2) Sensor and material-adaptive azimuthal coordinate rotation, integration contour deformation, integration domain sub-region partition and sub-region-dependent integration order (Chapter 3), (3) Integration partition-extrapolation-based (Chapter 3) and Gauss-Laguerre Quadrature (GLQ)-based (Chapter 4) evaluations of the deformed, semi-infinite-length integration contour tails, (4) Robust in-situ-based (i.e., at the spectral-domain integrand level) direct/homogeneous-medium field contribution subtraction and analytical curbing of the source current spatial spectrum function's ill behavior (Chapter 5), and (5) Analytical re-casting of the direct-field expressions when the source is embedded within a NBAM, short for non-birefringent anisotropic medium (Chapter 6). The benefits of these contributions are, respectively, (1) Avoiding computationally intensive critical-point location and tracking (computation time savings), (2) Sensor and material-robust curbing of the integrand's oscillatory and slow decay behavior, as well as preventing undesirable critical-point migration within the complex plane (computation speed, precision, and instability-avoidance benefits), (3) sensor and material-robust reduction (or, for GLQ, elimination) of integral truncation error, (4) robustly stable modeling of scattered fields and/or fields radiated from current sources modeled as spatially distributed (10 to 1000-fold compute-speed acceleration also realized for distributed-source computations), and (5) numerically stable modeling of fields radiated from sources within NBAM layers. Having addressed these limitations, are PWE algorithms applicable to modeling EM waves in tilted planar-layered geometries too? This question is explored in Chapter 7 using a Transformation Optics-based approach, allowing one to model wave propagation through layered media that (in the sensor's vicinity) possess tilted planar interfaces. The technique leads to spurious wave scattering however, whose induced computation accuracy degradation requires analysis. Mathematical exhibition, and exhaustive simulation-based study and analysis of the limitations of, this novel tilted-layer modeling formulation is Chapter 7's main contribution.
1984-07-01
POSITAE C. rugosa *Arctiumn minus CON VOLULACEAE * .Centaurea maculosa , Convolviliis Cirsium arvense (several possible) C. discolor CRASSULACEAE C. hill...Heracleum lanatumn A. umbllatusHieraciumn aurantiacum - A. sp. I H. florentinumn A. sp. 2 H. pratense A. sp. 3 Hypericumn perforatumn Centaurea maculosa H...Hypericumn perforatumn Aster umbellatus Lychnis alba Aster sp. I Melilotus alba *Centaurea maculosa Oenethera biennis Chrysanthemum leucanthemnum Prunus
2002-06-11
This image was acquired on October 12, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03498
NASA Astrophysics Data System (ADS)
Adiri, Zakaria; Harti, Abderrazak El; Jellouli, Amine; Maacha, Lhou; Bachaoui, El Mostafa
2016-01-01
Lithological mapping is a fundamental step in various mineral prospecting studies because it forms the basis of the interpretation and validation of retrieved results. Therefore, this study exploited the multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat 8 Operational Land Imager (OLI) data in order to map lithological units in the Bas Drâa inlier, at the Moroccan Anti Atlas. This task was completed by using principal component analysis (PCA), band ratios (BR), and support vector machine (SVM) classification. Overall accuracy and the kappa coefficient of SVM based on ground truth in addition to the results of PCA and BR show an excellent correlation with the existing geological map of the study area. Consequently, the methodology proposed demonstrates a high potential of ASTER and Landsat 8 OLI data in lithological units discrimination.
2002-04-03
On March 26, New York Mayor Michael Bloomberg declared a drought emergency for the city and four upstate counties in response to the worst drought to hit the eastern United States in nearly 70 years. Restrictions on water use will affect more than 8 million residents of New York. The city's reservoirs, located in the Catskill Mountains, are at 52 percent capacity. One of these, Ashokan Reservoir, is seen in this pair of ASTER images acquired on September 18, 2000 and February 3, 2002. These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03491
2002-07-16
The junctions of the Amazon and the Rio Negro Rivers at Manaus, Brazil. The Rio Negro flows 2300 km from Columbia, and is the dark current forming the north side of the river. It gets its color from the high tannin content in the water. The Amazon is sediment laden, appearing brown in this simulated natural color image. Manaus is the capital of Amazonas state, and has a population in excess of one million. The ASTER image covers an area of 60 x 45 km. This image was acquired on July 16, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03851
NASA Technical Reports Server (NTRS)
2003-01-01
The Anti-Atlas Mountains of Morocco formed as a result of the collision of the African and Eurasian tectonic plates about 80 million years ago. This collision destroyed the Tethys Ocean; the limestone, sandstone, claystone, and gypsum layers that formed the ocean bed were folded and crumpled to create the Atlas and Anti-Atlas Mountains. In this ASTER image, short wavelength infrared bands are combined to dramatically highlight the different rock types, and illustrate the complex folding. The yellowish, orange and green areas are limestones, sandstones and gypsum; the dark blue and green areas are underlying granitic rocks. The ability to map geology using ASTER data is enhanced by the multiple short wavelength infrared bands, that are sensitive to differences in rock mineralogy. This image was acquired on June 13, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.
ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.Size: 28.7 x 29.4 km (17.8 x 18.2 miles) Location: 29.4 deg. North lat., 8.9 deg. West long. Orientation: North at top Image Data: ASTER bands 4,6 and 8. Original Data Resolution: 30 m Date Acquired: June 13, 2001ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan
Mars, John C.; Rowan, Lawrence C.
2011-01-01
Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data of the early Quaternary Khanneshin carbonatite volcano located in southern Afghanistan were used to identify carbonate rocks within the volcano and to distinguish them from Neogene ferruginous polymict sandstone and argillite. The carbonatitic rocks are characterized by diagnostic CO3 absorption near 11.2 μm and 2.31–2.33 μm, whereas the sandstone, argillite, and adjacent alluvial deposits exhibit intense Si-O absorption near 8.7 μm caused mainly by quartz and Al-OH absorption near 2.20 μm due to muscovite and illite.Calcitic carbonatite was distinguished from ankeritic carbonatite in the short wave infrared (SWIR) region of the ASTER data due to a slight shift of the CO3 absorption feature toward 2.26 μm (ASTER band 7) in the ankeritic carbonatite spectra. Spectral assessment using ASTER SWIR data suggests that the area is covered by extensive carbonatite flows that contain calcite, ankerite, and muscovite, though some areas mapped as ankeritic carbonatite on a preexisting geologic map were not identified in the ASTER data. A contact aureole shown on the geologic map was defined using an ASTER false color composite image (R = 6, G = 3, B = 1) and a logical operator byte image. The contact aureole rocks exhibit Fe2+, Al-OH, and Fe, Mg-OH spectral absorption features at 1.65, 2.2, and 2.33 μm, respectively, which suggest that the contact aureole rocks contain muscovite, epidote, and chlorite. The contact aureole rocks were mapped using an Interactive Data Language (IDL) logical operator.A visible through short wave infrared (VNIR-SWIR) mineral and rock-type map based on matched filter, band ratio, and logical operator analysis illustrates: (1) laterally extensive calcitic carbonatite that covers most of the crater and areas northeast of the crater; (2) ankeritic carbonatite located southeast and north of the crater and some small deposits located within the crater; (3) agglomerate that primarily covers the inside rim of the crater and a small area west of the crater; (4) a crater rim that consists mostly of epidote-chlorite-muscovite–rich metamorphosed argillite and sandstone; and (5) iron (Fe3+) and muscovite-illite–rich rocks and iron-rich eolian sands surrounding the western part of the volcano. The thermal infrared (TIR) rock-type map illustrates laterally extensive carbonatitic and mafic rocks surrounded by quartz-rich eolian and fluvial reworked sediments. In addition, the combination of VNIR, SWIR, and TIR data complement one another in that the TIR data illustrate more laterally extensive rock types and the VNIR-SWIR data distinguish more specific varieties of rocks and mineral mixtures.
Characterization Approaches to Place Invariant Sites on SI-Traceable Scales
NASA Technical Reports Server (NTRS)
Thome, Kurtis
2012-01-01
The effort to understand the Earth's climate system requires a complete integration of remote sensing imager data across time and multiple countries. Such an integration necessarily requires ensuring inter-consistency between multiple sensors to create the data sets needed to understand the climate system. Past efforts at inter-consistency have forced agreement between two sensors using sources that are viewed by both sensors at nearly the same time, and thus tend to be near polar regions over snow and ice. The current work describes a method that would provide an absolute radiometric calibration of a sensor rather than an inter-consistency of a sensor relative to another. The approach also relies on defensible error budgets that eventually provides a cross comparison of sensors without systematic errors. The basis of the technique is a model-based, SI-traceable prediction of at-sensor radiance over selected sites. The predicted radiance would be valid for arbitrary view and illumination angles and for any date of interest that is dominated by clear-sky conditions. The effort effectively works to characterize the sites as sources with known top-of-atmosphere radiance allowing accurate intercomparison of sensor data that without the need for coincident views. Data from the Advanced Spaceborne Thermal Emission and Reflection and Radiometer (ASTER), Enhanced Thematic Mapper Plus (ETM+), and Moderate Resolution Imaging Spectroradiometer (MODIS) are used to demonstrate the difficulties of cross calibration as applied to current sensors. Special attention is given to the differences caused in the cross-comparison of sensors in radiance space as opposed to reflectance space. The radiance comparisons lead to significant differences created by the specific solar model used for each sensor. The paper also proposes methods to mitigate the largest error sources in future systems. The results from these historical intercomparisons provide the basis for a set of recommendations to ensure future SI-traceable cross calibration using future missions such as CLARREO and TRUTHS. The paper describes a proposed approach that relies on model-based, SI-traceable predictions of at-sensor radiance over selected sites. The predicted radiance would be valid for arbitrary view and illumination angles and for any date of interest that is dominated by clear-sky conditions. The basis of the method is highly accurate measurements of at-sensor radiance of sufficient quality to understand the spectral and BRDF characteristics of the site and sufficient historical data to develop an understanding of temporal effects from changing surface and atmospheric conditions.
Tang, Rui; Ma, Longfei; Li, Ang; Yu, Lihan; Rong, Zhixia; Zhang, Xinjing; Xiang, Canhong; Liao, Hongen; Dong, Jiahong
2018-06-01
We applied augmented reality (AR) techniques to flexible choledochoscopy examinations. Enhanced computed tomography data of a patient with intrahepatic and extrahepatic biliary duct dilatation were collected to generate a hollow, 3-dimensional (3D) model of the biliary tree by 3D printing. The 3D printed model was placed in an opaque box. An electromagnetic (EM) sensor was internally installed in the choledochoscope instrument channel for tracking its movements through the passages of the 3D printed model, and an AR navigation platform was built using image overlay display. The porta hepatis was used as the reference marker with rigid image registration. The trajectories of the choledochoscope and the EM sensor were observed and recorded using the operator interface of the choledochoscope. Training choledochoscopy was performed on the 3D printed model. The choledochoscope was guided into the left and right hepatic ducts, the right anterior hepatic duct, the bile ducts of segment 8, the hepatic duct in subsegment 8, the right posterior hepatic duct, and the left and the right bile ducts of the caudate lobe. Although stability in tracking was less than ideal, the virtual choledochoscope images and EM sensor tracking were effective for navigation. AR techniques can be used to assist navigation in choledochoscopy examinations in bile duct models. Further research is needed to determine its benefits in clinical settings.
NASA Technical Reports Server (NTRS)
2002-01-01
The junctions of the Amazon and the Rio Negro Rivers at Manaus, Brazil. The Rio Negro flows 2300 km from Columbia, and is the dark current forming the north side of the river. It gets its color from the high tannin content in the water. The Amazon is sediment laden, appearing brown in this simulated natural color image. Manaus is the capital of Amazonas state, and has a population in excess of one million. The ASTER image covers an area of 60 x 45 km. This image was acquired on July 16, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.
ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 60 x 45 km (37 x 27 miles) Location: 3.1 deg. South lat., 60.0 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: July 16, 2000NASA Technical Reports Server (NTRS)
2002-01-01
In this ASTER image the features that look like folded material are carbonate sand dunes in the shallow waters of Tarpum Bay, southwest of Eleuthera Island in the Bahamas. The sand making up the dunes comes from the erosion of limestone coral reefs, and has been shaped into dunes by ocean currents.
This image was acquired on May 12, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.Size: 30.7 x 46.1 km (19.0 x 28.2 miles) Location: 25.1 deg. North lat., 76.4 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 12, 2002NASA Spacecraft Image Shows Location of Iranian Earthquake
2017-12-08
On April 9, 2013 at 11:52 GMT, a magnitude 6.3 earthquake hit southwestern Iran's Bushehr province near the town of Kaki. Preliminary information is that several villages have been destroyed and many people have died, as reported by BBC News. This perspective view of the region was acquired Nov. 17, 2012, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. The location of the earthquake's epicenter is marked with a yellow star. Vegetation is displayed in red; the vertical exaggeration of the topography is 2X. The image is centered near 28.5 degrees north latitude, 51.6 degrees east longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image Credit: NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team Image Addition Date: 2013-04-10 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Mars, J.C.; Rowan, L.C.
2010-01-01
ASTER reflectance spectra from Cuprite, Nevada, and Mountain Pass, California, were compared to spectra of field samples and to ASTER-resampled AVIRIS reflectance data to determine spectral accuracy and spectroscopic mapping potential of two new ASTER SWIR reflectance datasets: RefL1b and AST_07XT. RefL1b is a new reflectance dataset produced for this study using ASTER Level 1B data, crosstalk correction, radiance correction factors, and concurrently acquired level 2 MODIS water vapor data. The AST_07XT data product, available from EDC and ERSDAC, incorporates crosstalk correction and non-concurrently acquired MODIS water vapor data for atmospheric correction. Spectral accuracy was determined using difference values which were compiled from ASTER band 5/6 and 9/8 ratios of AST_07XT or RefL1b data subtracted from similar ratios calculated for field sample and AVIRIS reflectance data. In addition, Spectral Analyst, a statistical program that utilizes a Spectral Feature Fitting algorithm, was used to quantitatively assess spectral accuracy of AST_07XT and RefL1b data.Spectral Analyst matched more minerals correctly and had higher scores for the RefL1b data than for AST_07XT data. The radiance correction factors used in the RefL1b data corrected a low band 5 reflectance anomaly observed in the AST_07XT and AST_07 data but also produced anomalously high band 5 reflectance in RefL1b spectra with strong band 5 absorption for minerals, such as alunite. Thus, the band 5 anomaly seen in the RefL1b data cannot be corrected using additional gain adjustments. In addition, the use of concurrent MODIS water vapor data in the atmospheric correction of the RefL1b data produced datasets that had lower band 9 reflectance anomalies than the AST_07XT data. Although assessment of spectral data suggests that RefL1b data are more consistent and spectrally more correct than AST_07XT data, the Spectral Analyst results indicate that spectral discrimination between some minerals, such as alunite and kaolinite, are still not possible unless additional spectral calibration using site specific spectral data are performed. ?? 2010.
A Stochastic-entropic Approach to Detect Persistent Low-temperature Volcanogenic Thermal Anomalies
NASA Astrophysics Data System (ADS)
Pieri, D. C.; Baxter, S.
2011-12-01
Eruption prediction is a chancy idiosyncratic affair, as volcanoes often manifest waxing and/or waning pre-eruption emission, geodetic, and seismic behavior that is unsystematic. Thus, fundamental to increased prediction accuracy and precision are good and frequent assessments of the time-series behavior of relevant precursor geophysical, geochemical, and geological phenomena, especially when volcanoes become restless. The Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), in orbit since 1999 on the NASA Terra Earth Observing System satellite is an important capability for detection of thermal eruption precursors (even subtle ones) and increased passive gas emissions. The unique combination of ASTER high spatial resolution multi-spectral thermal IR imaging data (90m/pixel; 5 bands in the 8-12um region), combined with simultaneous visible and near-IR imaging data, and stereo-photogrammetric capabilities make it a useful, especially thermal, precursor detection tool. The JPL ASTER Volcano Archive consisting of 80,000+ASTER volcano images allows systematic analysis of (a) baseline thermal emissions for 1550+ volcanoes, (b) important aspects of the time-dependent thermal variability, and (c) the limits of detection of temporal dynamics of eruption precursors. We are analyzing a catalog of the magnitude, frequency, and distribution of ASTER-documented volcano thermal signatures, compiled from 2000 onward, at 90m/pixel. Low contrast thermal anomalies of relatively low apparent absolute temperature (e.g., summit lakes, fumarolically altered areas, geysers, very small sub-pixel hotspots), for which the signal-to-noise ratio may be marginal (e.g., scene confusion due to clouds, water and water vapor, fumarolic emissions, variegated ground emissivity, and their combinations), are particularly important to discern and monitor. We have developed a technique to detect persistent hotspots that takes into account in-scene observed pixel joint frequency distributions over time, temperature contrast, and Shannon entropy. Preliminary analyses of Fogo Volcano and Yellowstone hotspots, among others, indicate that this is a very sensitive technique with good potential to be applied over the entire ASTER global night-time archive. We will discuss our progress in creating the global thermal anomaly catalog as well as algorithm approach and results. This work was carried out at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.
NASA Astrophysics Data System (ADS)
Rose, Shellie; Ramsey, Michael
2009-07-01
Kliuchevskoi volcano, located on the Kamchatka peninsula of eastern Russia, is one of the largest and most active volcanoes in the world. Its location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. In 2005, the Kamchatka Volcano Emergency Response Team (KVERT) first reported that seismic activity of Kliuchevskoi increased above background levels on 12 January (Kamchatka Volcanic Eruption Response Team (KVERT) Report, 2005. Kliuchevskoi Volcano, 14 January through 13 May 2005. ( http://www.avo.alaska.edu/activity/avoreport.php?view=kam info&id=&month=January&year=2005). Cited January 2007). By 15 January Kliuchevskoi entered an explosive-effusive phase, which lasted for five months and produced basaltic lava flows, lahar deposits, and phreatic explosions along its northwestern flank. We present a comparison between field observations and multispectral satellite image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument in order to characterize the eruptive behavior. The ASTER instrument was targeted in an automated urgent request mode throughout the eruption timeline in order to collect data at the highest observation frequency possible. Brightness temperatures were calculated in all three ASTER wavelength regions during lava flow emplacement. The maximum lava flow brightness temperatures, calculated from the 15 m/pixel visible near infrared (VNIR) data, were in excess of 800 °C. The shortwave infrared (SWIR) data were radiometrically and geometrically corrected, normalized to the same gain settings, and used to estimate an eruptive volume of 2.35 × 10 - 2 km 3 at the summit. These data were also used to better constrain errors arising in the thermal infrared (TIR) data due to sub-pixel thermal heterogeneities. Based on all the ASTER data, the eruption was separated into three phases: an initial explosive phase (20 January-31 January), an explosive-effusive phase (1 February-8 March), and a subsequent cooling phase. Decorrelation stretch (DCS) images of the TIR data also suggested the presence of silicate ash, SO 2, and water vapor plumes that extended up to 300 km from the summit. The ASTER rapid-response program provided important multispectral, moderate spatial resolution information that was used to detect and monitor the eruptive activity of this remote volcano which can be applied to other eruptions worldwide.
NASA Astrophysics Data System (ADS)
Komatsu, Kosei
Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, mo-mentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious dis-asters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal re-gions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and di-rection sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the wave buoys in 2007-2008 indicated a little more frequent occurrence of freak waves comparing with Forristall's (1978) empirical formula and Naess's (1985) distribution for a narrow-band Gaussian sea.
Use of NASA Satellite Data to Improve Coastal Cypress Forest Management
NASA Technical Reports Server (NTRS)
Spurce, Joseph; Graham, William; Barras, John
2010-01-01
Problem: Information gaps exist regarding health status and location of cypress forests in coastal Louisiana (LA). Such information is needed to aid coastal forest conservation and restoration programs. Approach to Issue Mitigation: Use NASA data to revise cypress forest cover type maps. Landsat and ASTER data. Use NASA data to identify and track cypress forest change. Landsat, ASTER, and MODIS data. Work with partners and end-users to transfer useful products and technology.
2000-10-06
The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces. http://photojournal.jpl.nasa.gov/catalog/PIA02662
NASA Technical Reports Server (NTRS)
2002-01-01
This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. St. Helens volcano in Washington State was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a 'natural' color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief. Landsat7 aquired an image of Mt. St. Helens on August 22, 1999. Image and animation courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.
NASA Technical Reports Server (NTRS)
Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John
1994-01-01
This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.
NASA Astrophysics Data System (ADS)
Ye, Fa-wang; Liu, De-chang
2008-12-01
Practices of sandstone-type uranium exploration in recent years in China indicate that the uranium mineralization alteration information is of great importance for selecting a new uranium target or prospecting in outer area of the known uranium ore district. Taking a case study of BASHIBULAKE uranium ore district, this paper mainly presents the technical minds and methods of extracting the reduced alteration information by oil and gas in BASHIBULAKE ore district using ASTER data. First, the regional geological setting and study status in BASHIBULAKE uranium ore district are introduced in brief. Then, the spectral characteristics of altered sandstone and un-altered sandstone in BASHIBULAKE ore district are analyzed deeply. Based on the spectral analysis, two technical minds to extract the remote sensing reduced alteration information are proposed, and the un-mixing method is introduced to process ASTER data to extract the reduced alteration information in BASHIBULAKE ore district. From the enhanced images, three remote sensing anomaly zones are discovered, and their geological and prospecting significances are further made sure by taking the advantages of multi-bands in SWIR of ASTER data. Finally, the distribution and intensity of the reduced alteration information in Cretaceous system and its relationship with the genesis of uranium deposit are discussed, the specific suggestions for uranium prospecting orientation in outer of BASHIBULAKE ore district are also proposed.
NASA Astrophysics Data System (ADS)
Hu, B.; Wan, B.
2017-12-01
The porphyry copper deposits are characterized by alteration zones. Hydrothermal alteration minerals have diagnostic spectral absorption properties in the visible and near-infrared (VNIR) through the shortwave infrared (SWIR) regions. In order to identify the alteration zones in the study area, the Sentinel-2A Multi-Spectral Instrument(MSI) * Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and field inspection were combined. The Sentinel-2A MSI has ten bands in the visible and near-infrared (VNIR) regions, which has advantages of detecting ferric iron alteration minerals. Six ASTER bands in the shortwave infrared(SWIR) regions have been demonstrated to be effective in the mapping of Al-OH * Mg-OH group minerals. Integrating ASTER and Sentinel-2A MSI (AM) for mineral mapping can compensate each other's defect. The methods of minimum noise fraction(MNF) * band combination * matched filtering were applied to get Al-OH and Mg-OH group minerals information from AM data. The anomaly-overlaying selection method was used to process three temporal Sentinel-2A MSI data for extracting iron oxides minerals. The ground inspection has confirmed the validity of AM and Sentinel-2A MSI data in mineral mapping. The methodology proved effective in an arid area of Duolong ore concentrating area,Tibet and hereby suggested for application in similar geological settings.
International Collaboration in Satellite Observations for Disaster Management
NASA Technical Reports Server (NTRS)
Duda, Kenneth A.; Abrams, Michael
2012-01-01
When lives are threatened or lost due to catastrophic disasters, and when massive financial impacts are experienced, international emergency response teams rapidly mobilize to provide urgently required support. Satellite observations of affected areas often provide essential insight into the magnitude and details of the impacts. The large cost and high complexity of developing and operating satellite flight and ground systems encourages international collaboration in acquiring imagery for such significant global events in order to speed delivery of critical information to help those affected, and optimize spectral, spatial, and temporal coverage of the areas of interest. The International Charter-Space and Major Disasters was established to enable such collaboration in sensor tasking during times of crisis and is often activated in response to calls for assistance from authorized users. Insight is provided from a U.S. perspective into sensor support for Charter activations and other disaster events through a description of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which has been used to support emergency situations for over a decade through its expedited tasking and near real-time data delivery capabilities. Examples of successes achieved and challenges encountered in international collaboration to develop related systems and fulfill tasking requests suggest operational considerations for new missions as well as areas for future enhancements.
Determination for regional differences of agriculture using satellite data
NASA Astrophysics Data System (ADS)
Saito, G.
2006-12-01
Remote Sensing Laboratory, Field Science Center, Graduate School of Agriculture Science, Tohoku University starts at April 2004. For studies and education at the laboratory we are now developing the system of remote sensing and GIS. Earth Remote Sensing Data Analysis Center (ERSDAC) made the Home Pages of Terra/ASTER Image Web Library 3 "The Major Airport of the World." http://www.Ersdac.or.jp/ASTERimage3/library_E.html. First, we check the Airport Data to use agricultural understanding for the world. Almost major airport is located in rural area and surrounded with agriculture field. To survey the agriculture field adjacent to the major airport has almost the same condition of human activities. The images are same size and display about 18km X 14km. We can easily understand field size and surrounding conditions. We study seven airports as follows, 1. Tokyo Narita Airport (NRT), Japan, 2. Taipei Chiang kai Shek International Airport (TPE), Taiwan, 3. Bangkok International Airport (BKK), Thailand, 4. Riyadh King Khalid International Airport (RUH), Saudi Arabia, 5. Charles de Gaulle Airport (CDG), Paris, France, 6. Vienna International Airport (VIE), Austria, 7. Denver International Airport (DEN), CO, USA. At the area of Tokyo Narita Airport, there are many golf courses, big urban area and small size of agricultural fields. At Taipei Airport area are almost same as Tokyo Narita Airport area and there are many ponds for irrigations. Bangkok Airport area also has golf courses and many ponds for irrigation water. Riyadh Airport area is quite different from others, and there are large bare soils and small agriculture fields with irrigation and circle shape. Paris Airport area and Vienna Airport area are almost agricultural fields and there are vegetated field and bare soil fields because of crop rotation. Denver Airport area consists of almost agriculture fields and each field size is very large. The advantages of ASTER data are as follows, 1. High-resolution and large swath, 2. Large wavelength and many bands, 3. High-revel of geographical location, 4. Stereo pair images, 5. High performance data searching system, 6. High speed data delivery system, 7. Cheap price, 8. Seven years observation and large volume archive. A kind of project "Determination of Local Characteristics at Global Agriculture Using Archive ASTER Data" was started at middle of November 2005. We establish data processing system and get some results. Paddy rice fields analysis was started at first, we analyze 1) the Shonai Plains in Japan, 2) the Yangtze River delta in Middle-East China, 3) Mekong Delta in South Vietnam, 4) North-east Thai Plaines, Thailand, 5) Sacrament Valley, California, USA. The results of this studies are as follows, 1) Using ASTER images, we can easily understand agricultural characteristics of each local area. 2) ASTER data are high accuracy for location, and the accuracy is suitable for global study without the fine topographical maps, 3) By five years observation of ASTER, there is huge numbers of ASTER scenes, but not enough volumes for cloud free data for seasonal analysis. It means that follow-on program of ASTER is necessary, 4) We need not only paddy field, but also all crop fields and all area, 5) The studies are necessary to international corroboration.
Rockwell, Barnaby W.; Hofstra, Albert H.
2012-01-01
The Richfield quadrangle in southwestern Utah is known to contain a variety of porphyry Mo, skarn, polymetallic replacement and vein, alunite, and kaolin resources associated with 27-32 Ma calc-alkaline or 12-23 Ma bimodal volcano-plutonic centers in Neoproterozoic to Mesozoic carbonate and siliciclastic rocks. Four scenes of visible to shortwave-infrared image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor were analyzed to generate maps of exposed clay, sulfate, mica, and carbonate minerals, and ASTER thermal infrared data were analyzed to identify quartz and carbonate minerals. Argillic and advanced argillic alteration minerals including alunite, pyrophyllite, dickite, and kaolinite were identified in both undocumented (U) and known (K) areas, including in the southern Paradise Mtns. (U); in calc-alkaline volcanic rocks in the Wah Wah Mtns. between Broken Ridge and the NG area (U/K); at Wah Wah Summit in a small zone adjacent to 33.1 Ma diorite and marble (U); in fractures cutting quartzites surrounding the 20-22 Ma Pine Grove Mo deposit (U); in volcanic rocks in the Shauntie Hills (U/K); in quartzites in the west-central San Francisco Mtns. (U); in volcanic rocks in the Black Mtns. (K); and in mainly 12-13 Ma rhyolitic rocks along a 20 km E-W belt that includes the Bible Spring fault zone west of Broken Ridge, with several small centers in the Escalante Desert to the south (U/K). Argillized Navajo Sandstone with kaolinite and (or) dickite ± alunite was mapped adjacent to calc-alkaline intrusions in the Star Range (U). Intense quartz-sericite alteration (K) with local kaolinite was identified in andesite adjacent to calc-alkaline intrusions in the Beaver Lake Mountains. Mo-bearing phyllic alteration was identified in 22.2 Ma rhyolite plugs at the center of the NG alunite area. Limestones, dolomites, and marbles were differentiated, and quartz and sericite were identified in most unaltered quartzites. Halos of argillically-altered rock ≈12 km in diameter surround the Pine Grove deposit, the central rhyolites at NG, and the North Peaks just south of the Bible Spring fault zone. A southward shift from 22-23 Ma alunite at NG in the northeast to the 12-13 Ma alunite near Broken Ridge in the southwest mirrors a shift in the locus of bimodal magmatism and is similar to the southward shift of activity from the Antelope Range to Alunite Ridge (porphyry Mo potential) in the Marysvale volcanic field farther east. The poster provided in this report compares mineral maps generated from analysis of combined visible-near infrared (VNIR) and shortwave-infrared (SWIR) data and thermal infrared (TIR) ASTER data to a previously published regional geologic map. Such comparisons are used to identify and differentiate rock-forming and hydrothermal alteration-related minerals, which aids in lithologic mapping and alteration characterization over an 11,245 square kilometer area.
Spindles and active vortices in a model of confined filament-motor mixtures.
Head, David A; Briels, Wj; Gompper, Gerhard
2011-11-16
Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic activities underpinning macroscopic self-organization in active gels and urge further experiments to help bridge these lengths.
NASA Technical Reports Server (NTRS)
2006-01-01
Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90 meters (295 feet) Dates Acquired: July 4, 2000Damage by Hurricane Ivan over Pensacola Bay, Florida
NASA Technical Reports Server (NTRS)
2004-01-01
Interstate 10 across Pensacola Bay, Florida was severely damaged by Hurricane Ivan. The ASTER image acquired September 21 (left) clearly shows the destruction, compared with an image acquired September 28, 2003 (right). The Florida Department of Transportation awarded a contract to repair the twin bridges that connect Escambia and Santa Rosa Counties. Traffic could resume crossing the bay in mid-October. These images display vegetation in red, buildings and roads in white and gray, and water in dark blue and green. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. Science Team is located at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.. Size: 6 by 6.5 kilometers (3.7 x 4 miles) Location: 30.5 degrees North latitude, 87.1 degrees West longitude Orientation: North at top Image Data: ASTER bands 3,2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: September 21, 2004, and September 28, 2003ASTER Images San Francisco Bay Area
2000-04-26
This image of the San Francisco Bay region was acquired on March 3, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters about 50 to 300 feet ), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. Image: This image covers an area 60 kilometers (37 miles) wide and 75 kilometers (47 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of bands portrays vegetation in red, and urban areas in gray. Sediment in the Suisun Bay, San Pablo Bay, San Francisco Bay, and the Pacific Ocean shows up as lighter shades of blue. Along the west coast of the San Francisco Peninsula, strong surf can be seen as a white fringe along the shoreline. A powerful rip tide is visible extending westward from Daly City into the Pacific Ocean. In the lower right corner, the wetlands of the South San Francisco Bay National Wildlife Refuge appear as large dark blue and brown polygons. The high spatial resolution of ASTER allows fine detail to be observed in the scene. The main bridges of the area (San Mateo, San Francisco-Oakland Bay, Golden Gate, Richmond-San Rafael, Benicia-Martinez, and Carquinez) are easily picked out, connecting the different communities in the Bay area. Shadows of the towers along the Bay Bridge can be seen over the adjacent bay water. With enlargement the entire road network can be easily mapped; individual buildings are visible, including the shadows of the high-rises in downtown San Francisco. Inset: This enlargement of the San Francisco Airport highlights the high spatial resolution of ASTER. With further enlargement and careful examination, airplanes can be seen at the terminals. http://photojournal.jpl.nasa.gov/catalog/PIA02606
Hubbard, Bernard E.; Rowan1, Lawrence C.; Dusel-Bacon, Cynthia; Eppinger, Robert G.
2007-01-01
On July 8, 2003, ASTER acquired satellite imagery of a 60 km-wide swath of parts of two 1:250,000 Alaska quadrangles, under favorable conditions of minimal cloud- and snow-cover. Rocks from eight different lithotectonic terranes are exposed within the swath of data, several of which define permissive tracts for various mineral deposit types such as: volcanic-hosted massive sulfides (VMS) and porphyry copper and molybdenum. Representative rock samples collected from 13 different lithologic units from the Bonnifield mining district within the Yukon-Tanana terrane (YTT), plus hydrothermally altered VMS material from the Red Mountain prospect, were analyzed to produce a spectral library spanning the VNIR-SWIR (0.4 - 2.5 ?m) through the TIR (8.1 - 11.7 ?m). Comparison of the five-band ASTER TIR emissivity and decorrelation stretch data to available geologic maps indicates that rocks from the YTT display the greatest range and diversity of silica composition of the mapped terranes, ranging from mafic rocks to silicic quartzites. The nine-band ASTER VNIR-SWIR reflectance data and spectral matched-filter processing were used to map several lithologic sequences characterized by distinct suites of minerals that exhibit diagnostic spectral features (e.g. chlorite, epidote, amphibole and other ferrous-iron bearing minerals); other sequences were distinguished by their weathering characteristics and associated hydroxyl- and ferric-iron minerals, such as illite, smectite, and hematite. Smectite, kaolinite, opaline silica, jarosite and/or other ferric iron minerals defined narrow (< 250 m diameter) zonal patterns around Red Mountain and other potential VMS targets. Using ASTER we identified some of the known mineral deposits in the region, as well as mineralogically similar targets that may represent potential undiscovered deposits. Some known deposits were not identified and may have been obscured by vegetation- or snow-cover, or were too small to be resolved.
Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data
Kato, Soushi; Yamaguchi, Yasushi; Liu, Cheng-Chien; Sun, Chen-Yi
2008-01-01
The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures. PMID:27873856
NASA Astrophysics Data System (ADS)
Özkan, Mutlu; Çelik, Ömer Faruk; Özyavaş, Aziz
2018-02-01
One of the most appropriate approaches to better understand and interpret geologic evolution of an accretionary complex is to make a detailed geologic map. The fact that ophiolite sequences consist of various rock types may require a unique image processing method to map each ophiolite body. The accretionary complex in the study area is composed mainly of ophiolitic and metamorphic rocks along with epi-ophiolitic sedimentary rocks. This paper attempts to map the Late Cretaceous accretionary complex in detail in northern Sivas (within İzmir-Ankara-Erzincan Suture Zone in Turkey) by the analysis of all of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) bands and field study. The new two hybrid color composite images yield satisfactory results in delineating peridotite, gabbro, basalt, and epi-ophiolitic sedimentary rocks of the accretionary complex in the study area. While the first hybrid color composite image consists of one principle component (PC) and two band ratios (PC1, 3/4, 4/6 in the RGB), the PC5, the original ASTER band 4 and the 3/4 band ratio images were assigned to the RGB colors to generate the second hybrid color composite image. In addition to that, the spectral indices derived from the ASTER thermal infrared (TIR) bands discriminate clearly ultramafic, siliceous, and carbonate rocks from adjacent lithologies at a regional scale. Peridotites with varying degrees of serpentinization illustrated as a single color were best identified in the spectral indices map. Furthermore, the boundaries of ophiolitic rocks based on fieldwork were outlined in detail in some parts of the study area by superimposing the resultant maps of ASTER maps on Google Earth images of finer spatial resolution. Eventually, the encouraging geologic map generated by the image analysis of ASTER data strongly correlates with lithological boundaries from a field survey.
Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques
Khalid Hussein
2012-02-01
This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Colorado Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics.
Hubbard, Bernard E.; Sheridan, Michael F.; Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Rodriguez, Sergio R.
2007-01-01
Finally, ASTERs 60 km swath width and 8% duty cycle presents a challenge for mapping lahar inundation hazards at E–W oriented stream valleys in low-latitude areas with persistent cloud cover. However, its continued operations enhances its utility as a means for updating the continuous but one-time coverage of SRTM, and for filling voids in the SRTM dataset such as those that occur along steep-sided valleys prone to hazards from future lahars.
1979-12-01
Catalpa Solidago sp. Goldenrod Aster novae - angliae New England Aster Acer saccharum Sugar Maple Ulmus rubra Slippery elm Solanum hi rum Common...red pine, and hemlock are the common softwood species, and the common hardwood species include red maple, silver maple, white oak, willow, slippery ... elm and birch. In 1972, between 70 and 7S percent of the total area of the watershed consisted of forests and primarily wooded land. (Reference 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, Young-Sun; Yoon, Wang-Jung
The purpose of this study is to map pyprophyllite distribution at surface of the Nohwa deposit, Korea by using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. For this, combined Spectral Angle Mapper (SAM), and Matched Filtering (MF) technique based on mathematical algorithm was applied. The regional distribution of high-grade and low-grade pyrophyllite in the Nohwa deposit area could be differentiated by this method. The results of this study show that ASTER data analysis using combination of SAM and MF techniques will assist in exploration of pyrophyllite at the exposed surface.
Imagens do céu ontem e hoje - um multimídia interativo de astronomia e uma nova exposição no MAST
NASA Astrophysics Data System (ADS)
Caretta, C. A.; Lima, F. P.; Requeijo, F.; Vieira, G. G.; Alves, F.; Valente, M. E. A.; de Almeida, R.; de Garcia, G. C.; Quixadá, A. C.
2003-08-01
"Imagens do Céu Ontem e Hoje" é o título de uma nova exposição que está sendo inaugurada no Museu de Astronomia e Ciências Afins (MCT), que inclui experimentos interativos, maquetes, réplicas e 8 terminais de computador com um multimídia interativo sobre Astronomia para consulta dos visitantes. O multimídia apresenta um conteúdo bastante extenso, que engloba quase todos os temas em Astronomia, consistindo numa fonte de divulgação e pesquisa para um público que vai das crianças até estudantes universitários. O conteúdo está distribuído em mais de 500 páginas de texto divididas em 4 módulos: "O Universo", "Espectroscopia", "Telescópios" e "Observando o Céu". Cada módulo é subdividido em 5 seções, em média, cada uma iniciada por uma animação que ilustra os temas a serem abordados na seção. Ao final da animação, uma lista de temas é apresentada sob o título "Saiba Mais". Para exemplificar, o módulo "O Universo" contém as seguintes seções: "O Universo visto pelo homem", "Conhecendo o Sistema Solar", "Indo além do Sistema Solar", "Nossa Galáxia, a Via-Láctea" e "Indo mais além, a imensidão do Universo". A seção "Conhecendo o Sistema Solar", por sua vez, tem os seguintes temas: "A origem do Sistema Solar", "O Sol", "Os planetas", "Satélites, asteróides, cometas e outros bichos..." e "O Sistema Solar em números". Cada texto é repleto de imagens, quadros, desenhos, esquemas, etc, além de passatempos ao final de cada seção, incluindo jogos interativos, quadrinhos e curiosidades, que auxiliam o aprendizado de forma divertida. Apresentamos neste trabalho as idéias gerais que permearam a produção da exposição, e uma viagem pelo multimídia para exemplificar sua estrutura e conteúdo. O multimídia será posteriormente disponibilizado para o público externo pela página eletrônica do MAst e/ou por intermédio de uma publicação comercial.
Onboard electrical calibration of the ASTER VNIR
NASA Astrophysics Data System (ADS)
Sakuma, Fumihiro; Kikuchi, Masakuni; Inada, Hitomi
2013-10-01
The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) is one of the five sensors on the NASA's Terra satellite on orbit since December 1999. ASTER consists of three radiometers, the Visible and Near InfraRed (VNIR), the Short-Wave InfraRed (SWIR) and Thermal InfraRed (TIR) whose spatial resolutions are 15 m, 30 m and 90 m, respectively. Unfortunately the SWIR image data are saturated since April 2008 due to the offset rise caused by the cooler temperature rise, but the VNIR and the TIR are taking Earth images of good quality. The VNIR and the TIR experienced responsivity degradation while the SWIR showed little change. From the lamp calibration, Band 1 decreased the most among three VNIR bands and 31% in thirteen years. The VNIR has the electrical calibration mode to check the healthiness of the electrical circuits through the charge coupled device (CCD). Four voltage levels from Line 1 to Line 4, which are from 2.78 V to 3.10 V, are input to the CCD in the onboard calibration sequence and the output digital numbers (DNs) are detected in the images. These input voltages are monitored as telemetry data and have been stable up to now. From the electrical calibration we can check stabilities of the offset, gain ratio and gain stability of the electric circuit. The output level of the Line1 input is close to the offset level which is measured while observing the earth at night. The trend of the Line 1 output is compared to the offset level. They are similar but are not exactly the same. The trend of the even pixel and odd pixel is the same so the saturated offset levels of the odd pixel is corrected by using the even pixel trend. The gain ratio trend shows that the ratio is stable. But the ratio values are different from those measured before launch. The difference comes up to 10% for the Band 2. The correct gain ratio should be applied to the vicarious calibration result because the onboard calibration is measured with the Normal gain whereas the vicarious calibration often measures with the High gain. The cause of the VNIR responsivity degradation is not known but one of the causes might be the change of the electric circuit. The band 3 gain shows 16 % decrease whereas the gain changes of the band 1 and band 2 are 5% to 8%. The responsivity decrease after 1000 days since launch might be controlled by the electric circuit change.
NASA Astrophysics Data System (ADS)
Jay, J.; Pritchard, M. E.; Mares, P. J.; Mnich, M. E.; Welch, M. D.; Melkonian, A. K.; Aguilera, F.; Naranjo, J.; Sunagua, M.; Clavero, J. E.
2011-12-01
We examine 153 volcanoes and geothermal areas in the central, southern, and austral Andes for temperature anomalies between 2000-2011 from two different spacebourne sensors: 1) those automatically detected by the MODVOLC algorithm (Wright et al., 2004) from MODIS and 2) manually identified hotspots in nighttime images from ASTER. Based on previous work, we expected to find 8 thermal anomalies (volcanoes: Ubinas, Villarrica, Copahue, Láscar, Llaima, Chaitén, Puyehue-Cordón Caulle, Chiliques). We document 31 volcanic areas with pixel integrated temperatures of 4 to more than 100 K above background in at least two images, and another 29 areas that have questionable hotspots with either smaller anomalies or a hotspot in only one image. Most of the thermal anomalies are related to known activity (lava and pyroclastic flows, growing lava domes, fumaroles, and lakes) while others are of unknown origin or reflect activity at volcanoes that were not thought to be active. A handful of volcanoes exhibit temporal variations in the magnitude and location of their temperature anomaly that can be related to both documented and undocumented pulses of activity. Our survey reveals that low amplitude volcanic hotspots detectable from space are more common than expected (based on lower resolution data) and that these features could be more widely used to monitor changes in the activity of remote volcanoes. We find that the shape, size, magnitude, and location on the volcano of the thermal anomaly vary significantly from volcano to volcano, and these variations should be considered when developing algorithms for hotspot identification and detection. We compare our thermal results to satellite InSAR measurements of volcanic deformation and find that there is no simple relationship between deformation and thermal anomalies - while 31 volcanoes have continuous hotspots, at least 17 volcanoes in the same area have exhibited deformation, and these lists do not completely overlap. In order to investigate the relationship between seismic and thermal volcanic activity, we examine seismic data for 5 of the volcanoes (Uturuncu, Olca-Paruma, Ollague, Irruputuncu, and Sol de Mañana) as well as seismological reports from the Chilean geological survey SERNAGEOMIN for 11 additional volcanoes. Although there were 7 earthquakes with Mw > 7 in our study area from 2000-2010, there is essentially no evidence from ASTER or MODVOLC that the thermal anomalies were affected by seismic shaking.
EM61-MK2 Response of Three Munitions Surrogates
2009-03-12
time-domain electromagnetic induction sensors, it produces a pulsed magnetic field (primary field) that induces a secondary field in metallic objects...selected and marked as potential metal targets. This initial list of anomalies is used as input to an analysis step that selects anomalies for digging...response of a metallic object to an Electromagnetic Induction sensor is most simply modeled as an induced dipole moment represented by a magnetic
Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.
2011-01-01
We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.
NASA Technical Reports Server (NTRS)
2002-01-01
In southwest Oregon, the Biscuit Fire continues to grow. This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image from August 14, 2002, shows the burn scar associated with the enormous blaze. The visualization uses ASTER's 30-meter-resolution, short-wave infrared bands to minimize smoke contamination and enhance the burn scar, which appears purple amid green vegetation. Actively burning areas of the fire appear very light purple. More than 6,000 fire personnel are assigned to the Biscuit Fire, which was 390, 276 acres as of Friday morning, August 15, and only 26 percent contained. Among the resources threatened are thousands of homes, three nationally designated wild and scenic rivers, and habitat for several categories of plants and animals at risk of extinction. Firefighters currently have no estimate as to when the fire might be contained. Credit: This image was acquired on an expedited basis as part of NASA Wildfire Response Team activities. Image courtesy Mike Abrams, Simon Hook, and the ASTER team at EROS Data Center DAAC.
NASA Astrophysics Data System (ADS)
Anugrahadi, A.
2018-01-01
Remote sensing technology is to support the identification and assessment of resources and disasters in coastal areas and oceans, because it has the advantage of covering large areas and the highest of the spatial and temporal resolution. Aster GDEM image is used to determine the slope and the length of cross the incision on exposed area abrasion and accretion. Western coastal of Banten Province has experienced abrasion with the furthest distance of 125.05 m to 274.73 m. and experienced accretion with the furthest distance of 31.65 m to 111, 58 m. ASTER GDEM results of image analysis in areas of abrasion has a slope about 1.4° to 3.3° and cross the incision length is approximately 350.52 meters to 506.57 meters. At the accretion region has a slope about 2.0° to 3.1° and cross the incision length about 306.62 m to 562.05 m.
2002-11-07
In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit. This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03880
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Overview
,
2008-01-01
The National Aeronautics and Space Administration (NASA) launched Terra, the Earth Observing System's (EOS) flagship satellite platform on December 18, 1999. The polar-orbiting Terra contains five remote sensing instruments, which enable the scientific study and analyses of global terrestrial processes and manifestations of global change. One of the five instruments is the multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which is built in Japan by a consortium of government, industry, and research groups. It has three spectral bands in the visible near-infrared region (VNIR), six bands in the shortwave infrared region (SWIR), and five bands in the thermal infrared region (TIR), with 15-, 30-, and 90-meter ground resolutions, respectively. This combination of wide spectral coverage and high spatial resolution allows ASTER to discriminate among a wide variety of surface materials. The VNIR subsystem also has a backward-viewing telescope for high-resolution (15-meter) stereoscopic observation in the along-track direction, which facilitates the generation of digital elevation models (DEM).
NASA Astrophysics Data System (ADS)
Asadi Haroni, Hooshang; Hassan Tabatabaei, Seyed
2016-04-01
Muteh gold mining area is located in 160 km NW of Isfahan town. Gold mineralization is meso-thermal type and associated with silisic, seresitic and carbonate alterations as well as with hematite and goethite. Image processing and interpretation were applied on the ASTER satellite imagery data of about 400 km2 at the Muteh gold mining area to identify hydrothermal alterations and iron oxides associated with gold mineralization. After applying preprocessing methods such as radiometric and geometric corrections, image processing methods of Principal Components Analysis (PCA), Least Square Fit (Ls-Fit) and Spectral Angle Mapper (SAM) were applied on the ASTER data to identify hydrothermal alterations and iron oxides. In this research reference spectra of minerals such as chlorite, hematite, clay minerals and phengite identified from laboratory spectral analysis of collected samples were used to map the hydrothermal alterations. Finally, identified hydrothermal alteration and iron oxides were validated by visiting and sampling some of the mapped hydrothermal alterations.
NASA Astrophysics Data System (ADS)
Sengar, Vivek K.; Champati Ray, P. K.; Chattoraj, Shovan L.; Venkatesh, A. S.; Sajeev, R.; Konwar, Purnima; Thapa, Shailaja
2017-10-01
The objective of this work is to identify the potential zones for detailed mineral exploration studies in areas adjoining to a copper prospect using Remotely Sensed data sets. In this study visualization of ASTER data has been enhanced to highlight the mineral-rich areas using various remote sensing techniques such as colour composites and band ratios. VNIR region of ASTER is significant to detect iron oxides while, clay minerals, carbonates and chlorites have characteristic absorption in the SWIR wavelength region. Therefore, an attempt has been made to target the mineral abundant regions through ASTER data processing. Height based information was extracted using high-resolution ALOSDEM to analyse the topographical controls in the region considering the fact that mineral deposits often found associated with geological structures and geomorphological units. Gravity data was used to generate gravity anomaly map which gives clues about subsurface density differences. In this context, base metal ores may show anomalous (high) gravity values in comparison to the non-mineralised areas. Outputs from all the data sets were analysed and correlated with the geological map and available literature. Final validation of results has been done through proper ground checks and laboratory analysis of rock samples collected from the litho-units present in the study area. Based on this study some new areas have been successfully demarcated which may be potential for base metal exploration.
2011-03-01
following: disturbance of sensitive environments (including wildlife); dredging up potentially contaminated sediments; physical contact with UXO; damaging or...is discussed below. 2.1.1 EM61 System and Sensors The EM61 is a high-resolution time-domain electromagnetic metal detector that is capable of...the position of the tow boat and then try to extrapolate the position of the detector based on cable length and GPS heading. In most cases, the
A high frequency electromagnetic impedance imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex
2003-01-15
Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less
NASA Astrophysics Data System (ADS)
Adjorlolo, Clement; Cho, Moses A.; Mutanga, Onisimo; Ismail, Riyad
2012-01-01
Hyperspectral remote-sensing approaches are suitable for detection of the differences in 3-carbon (C3) and four carbon (C4) grass species phenology and composition. However, the application of hyperspectral sensors to vegetation has been hampered by high-dimensionality, spectral redundancy, and multicollinearity problems. In this experiment, resampling of hyperspectral data to wider wavelength intervals, around a few band-centers, sensitive to the biophysical and biochemical properties of C3 or C4 grass species is proposed. The approach accounts for an inherent property of vegetation spectral response: the asymmetrical nature of the inter-band correlations between a waveband and its shorter- and longer-wavelength neighbors. It involves constructing a curve of weighting threshold of correlation (Pearson's r) between a chosen band-center and its neighbors, as a function of wavelength. In addition, data were resampled to some multispectral sensors-ASTER, GeoEye-1, IKONOS, QuickBird, RapidEye, SPOT 5, and WorldView-2 satellites-for comparative purposes, with the proposed method. The resulting datasets were analyzed, using the random forest algorithm. The proposed resampling method achieved improved classification accuracy (κ=0.82), compared to the resampled multispectral datasets (κ=0.78, 0.65, 0.62, 0.59, 0.65, 0.62, 0.76, respectively). Overall, results from this study demonstrated that spectral resolutions for C3 and C4 grasses can be optimized and controlled for high dimensionality and multicollinearity problems, yet yielding high classification accuracies. The findings also provide a sound basis for programming wavebands for future sensors.