Research on distributed temperature sensor (DTS) applied in underground tunnel
NASA Astrophysics Data System (ADS)
Hu, Chuanlong; Wang, Jianfeng; Zhang, Zaixuan; Shen, Changyu; Jin, Yongxing; Jin, Shangzhong
2011-11-01
A distributed temperature sensor (DTS) system with a sensing distance of 4 km was developed for applications in tunnel temperature measurement and fire alarm. Characteristics of DTS and experiment results are introduced. The results show that DTS system can play an important role in tunnel fire alarm.
Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan
2013-04-01
Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing optical fiber effectively extended. Optical fiber sensor network is composed.
High-resolution distributed temperature sensing with the multiphoton-timing technique
NASA Astrophysics Data System (ADS)
Höbel, M.; Ricka, J.; Wüthrich, M.; Binkert, Th.
1995-06-01
We report on a multiphoton-timing distributed temperature sensor (DTS) based on the concept of distributed anti-Stokes Raman thermometry. The sensor combines the advantage of very high spatial resolution (40 cm) with moderate measurement times. In 5 min it is possible to determine the temperature of as many as 4000 points along an optical fiber with an accuracy Delta T less than 2 deg C. The new feature of the DTS system is the combination of a fast single-photon avalanche diode with specially designed real-time signal-processing electronics. We discuss various parameters that affect the operation of analog and photon-timing DTS systems. Particular emphasis is put on the consequences of the nonideal behavior of sensor components and the corresponding correction procedures.
Autonomous docking ground demonstration
NASA Technical Reports Server (NTRS)
Lamkin, Steve L.; Le, Thomas Quan; Othon, L. T.; Prather, Joseph L.; Eick, Richard E.; Baxter, Jim M.; Boyd, M. G.; Clark, Fred D.; Spehar, Peter T.; Teters, Rebecca T.
1991-01-01
The Autonomous Docking Ground Demonstration is an evaluation of the laser sensor system to support the docking phase (12 ft to contact) when operated in conjunction with the guidance, navigation, and control (GN&C) software. The docking mechanism being used was developed for the Apollo/Soyuz Test Program. This demonstration will be conducted using the 6-DOF Dynamic Test System (DTS). The DTS simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration, the laser sensor will be mounted on the target vehicle and the retroflectors will be on the chase vehicle. This arrangement was chosen to prevent potential damage to the laser. The laser sensor system, GN&C, and 6-DOF DTS will be operated closed-loop. Initial conditions to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved.
Experimental study of low-cost fiber optic distributed temperature sensor system performance
NASA Astrophysics Data System (ADS)
Dashkov, Michael V.; Zharkov, Alexander D.
2016-03-01
The distributed control of temperature is an actual task for various application such as oil & gas fields, high-voltage power lines, fire alarm systems etc. The most perspective are optical fiber distributed temperature sensors (DTS). They have advantages on accuracy, resolution and range, but have a high cost. Nevertheless, for some application the accuracy of measurement and localization aren't so important as cost. The results of an experimental study of low-cost Raman based DTS based on standard OTDR are represented.
Autonomous docking ground demonstration (category 3)
NASA Technical Reports Server (NTRS)
Lamkin, Steve L.; Eick, Richard E.; Baxter, James M.; Boyd, M. G.; Clark, Fred D.; Lee, Thomas Q.; Othon, L. T.; Prather, Joseph L.; Spehar, Peter T.; Teders, Rebecca J.
1991-01-01
The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented.
Autonomous docking ground demonstration (category 3)
NASA Astrophysics Data System (ADS)
Lamkin, Steve L.; Eick, Richard E.; Baxter, James M.; Boyd, M. G.; Clark, Fred D.; Lee, Thomas Q.; Othon, L. T.; Prather, Joseph L.; Spehar, Peter T.; Teders, Rebecca J.
The NASA Johnson Space Center (JSC) is involved in the development of an autonomous docking ground demonstration. The demonstration combines the technologies, expertise and facilities of the JSC Tracking and Communications Division (EE), Structures and Mechanics Division (ES), and the Navigation, Guidance and Control Division (EG) and their supporting contractors. The autonomous docking ground demonstration is an evaluation of the capabilities of the laser sensor system to support the docking phase (12ft to contact) when operated in conjunction with the Guidance, Navigation and Control Software. The docking mechanism being used was developed for the Apollo Soyuz Test Program. This demonstration will be conducted using the Six-Degrees of Freedom (6-DOF) Dynamic Test System (DTS). The DTS environment simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration the laser sensor will be mounted on the target vehicle and the retroreflectors on the chase vehicle. This arrangement was used to prevent potential damage to the laser. The sensor system. GN&C and 6-DOF DTS will be operated closed-loop. Initial condition to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved. Detailed description of each of the demonstration components (e.g., Sensor System, GN&C, 6-DOF DTS and supporting computer configuration) including their capabilities and limitations will be discussed. A demonstration architecture drawing and photographs of the test configuration will be presented.
Technical Note: Bed conduction impact on fiber optic DTS water temperature measurements
NASA Astrophysics Data System (ADS)
O'Donnell Meininger, T.; Selker, J. S.
2014-07-01
Error in Distributed Temperature Sensor (DTS) water temperature measurements may be introduced by contact of the fiber optic cable sensor with bed materials (e.g., seafloor, lakebed, stream bed). Heat conduction from the bed materials can affect cable temperature and the resulting DTS measurements. In the Middle Fork John Day River, apparent water temperature measurements were influenced by cable sensor contact with aquatic vegetation and fine sediment bed materials. Affected cable segments measured a diurnal temperature range reduced by 10% and lagged by 20-40 min relative to that of ambient stream temperature. The diurnal temperature range deeper within the vegetation-sediment bed material was reduced 70% and lagged 240 min relative to ambient stream temperature. These site-specific results illustrate the potential magnitude of bed-conduction impacts with buried DTS measurements. Researchers who deploy DTS for water temperature monitoring should understand the importance of the environment into which the cable is placed on the range and phase of temperature measurements.
Temperature Sensing for Oil, Gas, and Structural Analysis
NASA Technical Reports Server (NTRS)
2006-01-01
In 1996, Systems and Processes Engineering Corporation (SPEC), of Austin, Texas, undertook a NASA Small Business Innovation Research (SBIR) contract with Langley Research Center to develop a compact and lightweight digital thermal sensing (DTS) system for monitoring the cryogenic tanks on the X-33 prototype aircraft. That technology, along with a processor developed by SPEC for Goddard Space Flight Center, was space-qualified and integrated into several NASA missions. SPEC formed an ancillary organization, SensorTran, Inc., to continue work developing the DTS technology for a variety of commercial and industrial applications.
Lowry, Christopher S.; Walker, John F.; Hunt, Randall J.; Anderson, Mary P.
2007-01-01
Discrete zones of groundwater discharge in a stream within a peat‐dominated wetland were identified on the basis of variations in streambed temperature using a distributed temperature sensor (DTS). The DTS gives measurements of the spatial (±1 m) and temporal (15 min) variation of streambed temperature over a much larger reach of stream (>800 m) than previous methods. Isolated temperature anomalies observed along the stream correspond to focused groundwater discharge zones likely caused by soil pipes within the peat. The DTS also recorded variations in the number of temperature anomalies, where higher numbers correlated well with a gaining reach identified by stream gauging. Focused zones of groundwater discharge showed essentially no change in position over successive measurement periods. Results suggest DTS measurements will complement other techniques (e.g., seepage meters and stream gauging) and help further improve our understanding of groundwater–surface water dynamics in wetland streams.
Detection and localization of building insulation faults using optical-fiber DTS system
NASA Astrophysics Data System (ADS)
Papes, Martin; Liner, Andrej; Koudelka, Petr; Siska, Petr; Cubik, Jakub; Kepak, Stanislav; Jaros, Jakub; Vasinek, Vladimir
2013-05-01
Nowadays the trends in the construction industry are changing at an incredible speed. The new technologies are still emerging on the market. Sphere of building insulation is not an exception as well. One of the major problems in building insulation is usually its failure, whether caused by unwanted mechanical intervention or improper installation. The localization of these faults is quite difficult, often impossible without large intervention into the construction. As a proper solution for this problem might be utilization of Optical-Fiber DTS system based on stimulated Raman scattering. Used DTS system is primary designed for continuous measurement of the temperature along the optical fiber. This system is using standard optical fiber as a sensor, which brings several advantages in its application. First, the optical fiber is relatively inexpensive, which allows to cover a quite large area for a small cost. The other main advantages of the optical fiber are electromagnetic resistance, small size, safety operation in inflammable or explosive area, easy installation, etc. This article is dealing with the detection and localization of building insulation faults using mentioned system.
Verifying the distributed temperature sensing Bowen ratio method for measuring evaporation
NASA Astrophysics Data System (ADS)
Schilperoort, Bart; Coenders-Gerrits, Miriam; Luxemburg, Willem; Cisneros Vaca, César; Ucer, Murat
2016-04-01
Evaporation is an important process in the hydrological cycle, therefore measuring evaporation accurately is essential for water resource management, hydrological management and climate change models. Current techniques to measure evaporation, like eddy covariance systems, scintillometers, or lysimeters, have their limitations and therefore cannot always be used to estimate evaporation correctly. Also the conventional Bowen ratio surface energy balance method has as drawback that two sensors are used, which results in large measuring errors. In Euser et al. (2014) a new method was introduced, the DTS-based Bowen ratio (BR-DTS), that overcomes this drawback. It uses a distributed temperature sensing technique (DTS) whereby a fibre optic cable is placed vertically, going up and down along a measurement tower. One stretch of the cable is dry, the other wrapped with cloth and kept wet, akin to a psychrometer. Using this, the wet and dry bulb temperatures are determined every 12.5 cm over the height, from which the Bowen ratio can be determined. As radiation and wind have an effect on the cooling and heating of the cable's sheath as well, the DTS cables do not necessarily always measure dry and wet bulb temperature of the air accurately. In this study the accuracy in representing the dry and wet bulb temperatures of the cable are verified, and evaporation observations of the BR-DTS method are compared to Eddy Covariance (EC) measurements. Two ways to correct for errors due to wind and solar radiation warming up the DTS cables are presented: one for the dry cable and one for the wet cable. The measurements were carried out in a pine forest near Garderen (The Netherlands), along a 46-meter tall scaffold tower (15 meters above the canopy). Both the wet (Twet) and dry (Tdry) temperature of the DTS cable were compared to temperature and humidity (from which Twet is derived) observations from sensors placed along the height of the tower. Underneath the canopy, where there was barely any direct sunlight, the non-corrected temperatures correlated well for both Tdry (R2=0.998) and Twet (R2=0.995). Above the canopy the two temperature corrections worked well Tdry (R2=0.978) and Twet (R2=0.979). The comparison of the latent and sensible heat flux from the BR-DTS and the EC-system was often not possible, due to large energy balance residuals estimated during north-eastern winds (using an averaging interval of 30 minutes). For the limited days with other wind directions the BR-DTS overestimated the latent and sensible heat flux. Additionally, we even found that the applied temperature corrections resulted in a lower performance due to increased uncertainties in the applied corrections. Furthermore, we found that both the corrected and uncorrected DTS-temperatures resulted in rather similar latent and sensible heat fluxes, due to the fact that BR-DTS applies gradients of temperatures over the height, rather than absolute values. Hence, based on our limited data, the correction methods are not recommended if one is interested in the fluxes.
Bed conduction impact on fiber optic distributed temperature sensing water temperature measurements
NASA Astrophysics Data System (ADS)
O'Donnell Meininger, T.; Selker, J. S.
2015-02-01
Error in distributed temperature sensing (DTS) water temperature measurements may be introduced by contact of the fiber optic cable sensor with bed materials (e.g., seafloor, lakebed, streambed). Heat conduction from the bed materials can affect cable temperature and the resulting DTS measurements. In the Middle Fork John Day River, apparent water temperature measurements were influenced by cable sensor contact with aquatic vegetation and fine sediment bed materials. Affected cable segments measured a diurnal temperature range reduced by 10% and lagged by 20-40 min relative to that of ambient stream temperature. The diurnal temperature range deeper within the vegetation-sediment bed material was reduced 70% and lagged 240 min relative to ambient stream temperature. These site-specific results illustrate the potential magnitude of bed-conduction impacts with buried DTS measurements. Researchers who deploy DTS for water temperature monitoring should understand the importance of the environment into which the cable is placed on the range and phase of temperature measurements.
All-Printed Differential Temperature Sensor for the Compensation of Bending Effects.
Ali, Shawkat; Hassan, Arshad; Bae, Jinho; Lee, Chong Hyun; Kim, Juho
2016-11-08
Because printed resistance temperature detectors (RTDs) are affected by tension and compression of metallic patterns on flexible or curved surfaces, a significant temperature-sensing error occurs in general. Hence, we propose a differential temperature sensor (DTS) to compensate the bending effect of the printed RTDs, which is composed of two serially connected similar meander patterns fabricated back-to-back on a polyimide polyethylene terephthalate substrate through a Dimatix DMP-3000 inkjet printer using silver nanoparticles. Under mechanical deformation, the resistance of the proposed DTS is not varied significantly under the same temperature environment because its patterns vary differentially as one side experiences tension while the opposite side experiences compression. A single meander pattern of the proposed DTS has a total length of 75 mm and device dimensions of 7 × 7 mm 2 . The total resistance variation is observed to be 15.5 Ω against the temperature variation from 0 to 100 °C, and the temperature coefficient of resistance is 1.076 × 10 -3 °C -1 . The proposed DTS exhibits no significant resistance change on bendability testing down to 2 mm diameter because of mechanical deformation. In addition, it is also used to detect the curvature of a body shape down to 2 mm diameter because its resistance changes by ±8.22% using a single meander pattern of DTS. The proposed sensor can be applied on a curved or flexible surface to measure relatively accurate temperature when compared to a single meander pattern.
ARM Tethered Balloon System & AALCO Activities at AMF3 Site at Oliktok Point, AK
NASA Astrophysics Data System (ADS)
Hardesty, J.; Dexheimer, D.; Mei, F.; Roesler, E. L.; Longbottom, C.; Hillman, B. R.
2017-12-01
Sandia National Laboratories (SNL) has operated the Atmospheric Radiation Measurement program's (ARM) third ARM Mobile Facility (AMF3) and the restricted airspace associated with it at Oliktok Point, Alaska, since October 2013. The site hosts ground-based instrumentation which collects a variety of continuous atmospheric measurements as well as user-conducted unmanned aircraft and tethered balloon campaigns. SNL has operated ARM's tethered balloon system (TBS) as part of the Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) since 2016. AALCO (Aerial Assessment of Liquid in Clouds at Oliktok), is an ARM Intensive Operations Period conducted by SNL at the AMF3 since 2016. The operation of the TBS during ICARUS and AALCO to altitudes above 4,000' AGL in a variety of seasons and conditions is addressed. A Distributed Temperature Sensing (DTS) system and supercooled liquid water content (SLWC) sensors have been deployed under both campaigns. The performance of these sensors is discussed and results are presented. DTS measurements and their relationship to concurrent temperature measurements from unmanned aircraft and radiosondes are shown. SLWC sensor in situ measurements are compared with microwave radiometer and radiosonde-derived measurements. Preliminary analysis of using Large Eddy Simulations to compare with the SLWC measurements reveals three-dimensional properties of the observed clouds.
NASA Astrophysics Data System (ADS)
Soto, M. A.; Sahu, P. K.; Faralli, S.; Sacchi, G.; Bolognini, G.; Di Pasquale, F.; Nebendahl, B.; Rueck, C.
2007-07-01
The performance of distributed temperature sensor systems based on spontaneous Raman scattering and coded OTDR are investigated. The evaluated DTS system, which is based on correlation coding, uses graded-index multimode fibers, operates over short-to-medium distances (up to 8 km) with high spatial and temperature resolutions (better than 1 m and 0.3 K at 4 km distance with 10 min measuring time) and high repeatability even throughout a wide temperature range.
NASA Astrophysics Data System (ADS)
Kennedy, A. M.; Thomas, C. K.; Pypker, T. G.; Bond, B. J.; Selker, J. S.; Unsworth, M. H.
2009-12-01
Fiber-optic distributed temperature sensing (DTS) has great potential for spatial monitoring in hydrology and atmospheric science. DTS systems have an advantage over conventional individual temperature sensors in that thousands of quasi-concurrent temperature measurements may be made along the entire length of a fiber at 1 meter increments by a single instrument, thus increasing measurement precision. However, like any other temperature sensors, the fiber temperature is influenced by energy exchange with its environment, particularly by radiant energy (solar and long-wave) and by wind speed. The objective of this research is to perform an energy-balance based calibration of a DTS fiber system that will reduce the uncertainty of air temperature measurements in open and forested environments. To better understand the physics controlling the fiber temperature reported by the DTS, alternating black and white fiber optic cables were installed on vertical wooden jigs inside a recirculating wind tunnel. A constant irradiance from six 600W halogen lamps was directed on a two meter section of fiber to permit controlled observations of the resulting temperature difference between the black and white fibers as wind speed was varied. The net short and longwave radiation balance of each fiber was measured with an Eppley pyranometer and Kipp and Zonen pyrgeometer. Additionally, accurate air temperature was recorded from a screened platinum resistance thermometer, and sonic anemometers were positioned to record wind speed and turbulence. Relationships between the temperature excess of each fiber, net radiation, and wind speed were developed and will be used to derive correction terms in future field work. Preliminary results indicate that differential heating of fibers (black-white) is driven largely by net radiation with wind having a smaller but consistent effect. Subsequent work will require field verification to confirm that the observed wind tunnel correction algorithms are applicable in both open and forest canopy settings. Our ultimate goal is to use atmospheric DTS measurements of 3D temperature fields in a small steep-walled forested watershed to gain a better understanding and rigorous description of the processes governing air circulation (cold air drainage etc) in the canopy. Such knowledge will assist in the interpretation of observed biological responses.
NASA Astrophysics Data System (ADS)
Bersan, Silvia; Koelewijn, André R.; Simonini, Paolo
2018-02-01
Internal erosion is the cause of a significant percentage of failure and incidents involving both dams and river embankments in many countries. In the past 20 years the use of fibre-optic Distributed Temperature Sensing (DTS) in dams has proved to be an effective tool for the detection of leakages and internal erosion. This work investigates the effectiveness of DTS for dike monitoring, focusing on the early detection of backward erosion piping, a mechanism that affects the foundation layer of structures resting on permeable, sandy soils. The paper presents data from a piping test performed on a large-scale experimental dike equipped with a DTS system together with a large number of accompanying sensors. The effect of seepage and piping on the temperature field is analysed, eventually identifying the processes that cause the onset of thermal anomalies around piping channels and thus enable their early detection. Making use of dimensional analysis, the factors that influence this thermal response of a dike foundation are identified. Finally some tools are provided that can be helpful for the design of monitoring systems and for the interpretation of temperature data.
Distributed temperature sensing inside a 19-rod bundle
Lomperski, S.; Bremer, N.; Gerardi, C.
2017-05-23
The temperature field within a model of a sodium-cooled fast reactor fuel rod bundle was measured using Ø155 μm fiber optic distributed temperature sensors (DTS). The bundle consists of 19 electrically-heated rods Ø6.3 mm and 865 mm long. Working fluids were argon and air at atmospheric pressure and Reynolds numbers up to 300. A 20 m-long DTS was threaded through Ø1 mm capillaries wound around rods as wire-wraps. The sensor generated 173 measurements along each rod at 5 mm resolution for a total of 3300 data locations. A second DTS, 58 m long, was suspended between rods to provide 9300more » fluid temperature measurements at 20 mm resolution. Such data density makes it possible to construct 3D maps of the temperature field that are beyond the reach of traditional sensors such as thermocouples. This is illustrated through a series of steady-state and transient tests. As a result, the work demonstrates the feasibility of mapping temperature within the close confines of a rod bundle at resolutions suitable for validation of computational fluid dynamics codes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J; Park, C; Kauweloa, K
2015-06-15
Purpose: As an alternative to full tomographic imaging technique such as cone-beam computed tomography (CBCT), there is growing interest to adopt digital tomosynthesis (DTS) for the use of diagnostic as well as therapeutic applications. The aim of this study is to propose a new DTS system using novel orthogonal scanning technique, which can provide superior image quality DTS images compared to the conventional DTS scanning system. Methods: Unlike conventional DTS scanning system, the proposed DTS is reconstructed with two sets of orthogonal patient scans. 1) X-ray projections that are acquired along transverse trajectory and 2) an additional sets of X-raymore » projections acquired along the vertical direction at the mid angle of the previous transverse scan. To reconstruct DTS, we have used modified filtered backprojection technique to account for the different scanning directions of each projection set. We have evaluated the performance of our method using numerical planning CT data of liver cancer patient and a physical pelvis phantom experiment. The results were compared with conventional DTS techniques with single transverse and vertical scanning. Results: The experiments on both numerical simulation as well as physical experiment showed that the resolution as well as contrast of anatomical structures was much clearer using our method. Specifically, the image quality comparing with transversely scanned DTS showed that the edge and contrast of anatomical structures along Left-Right (LR) directions was comparable however, considerable discrepancy and enhancement could be observed along Superior-Inferior (SI) direction using our method. The opposite was observed when vertically scanned DTS was compared. Conclusion: In this study, we propose a novel DTS system using orthogonal scanning technique. The results indicated that the image quality of our novel DTS system was superior compared to conventional DTS system. This makes our DTS system potentially useful in various on-line clinical applications.« less
NASA Astrophysics Data System (ADS)
Zhang, Yuanzhong; Xiao, Lizhi; Fu, Jianwei; Chen, Haifeng; Zhao, Xiaoliang
2005-12-01
Most of the onshore oilfields in China are in the middle and late development stages, and great deals of residual oil are waiting for exploitation. Downhole permanent sensor monitoring technology is an effective means to enhance oil and gas recovery. The concept of the downhole permanent sensor network is introduced, and the research status was reviewed. The measurement principle, application and some issues of the Distribute Temperature System (DTS) and Fiber Bragg Grating (FBG) sensor are discussed. Some potential applications of permanent monitoring with FBG sensors in oil and gas production, including enhancing oil and gas recovery and realtime monitoring of casing damaging were reviewed.
Progress in distributed fiber optic temperature sensing
NASA Astrophysics Data System (ADS)
Hartog, Arthur H.
2002-02-01
The paper reviews the adoption of distributed temperature sensing (DTS) technology based on Raman backscatter. With one company alone having installed more than 400 units, the DTS is becoming accepted practice in several applications, notably in energy cable monitoring, specialised fire detection and oil production monitoring. The paper will provide case studies in these applications. In each case the benefit (whether economic or safety) will be addressed, together with key application engineering issues. The latter range from the selection and installation of the fibre sensor, the specific performance requirements of the opto-electronic equipment and the issues of data management. The paper will also address advanced applications of distributed sensing, notably the problem of monitoring very long ranges, which apply in subsea DC energy cables or in subsea oil wells linked to platforms through very long (e.g. 30km flowlines). These applications are creating the need for a new generation of DTS systems able to achieve measurements at up to 40km with very high temperature resolution, without sacrificing spatial resolution. This challenge is likely to drive the development of new concepts in the field of distributed sensing.
NASA Astrophysics Data System (ADS)
Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping
2018-02-01
Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.
Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos
2016-09-07
This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.
Data Transport Subsystem - The SFOC glue
NASA Technical Reports Server (NTRS)
Parr, Stephen J.
1988-01-01
The design and operation of the Data Transport Subsystem (DTS) for the JPL Space Flight Operation Center (SFOC) are described. The SFOC is the ground data system under development to serve interplanetary space probes; in addition to the DTS, it comprises a ground interface facility, a telemetry-input subsystem, data monitor and display facilities, and a digital TV system. DTS links the other subsystems via an ISO OSI presentation layer and an LAN. Here, particular attention is given to the DTS services and service modes (virtual circuit, datagram, and broadcast), the DTS software architecture, the logical-name server, the role of the integrated AI library, and SFOC as a distributed system.
NASA Astrophysics Data System (ADS)
Hausner, Mark B.; Wilson, Kevin P.; Gaines, D. Bailey; Tyler, Scott W.
2012-05-01
Devils Hole, a groundwater-filled fracture in the carbonate aquifer of the southern Nevada Mojave Desert, represents a unique ecohydrological setting, as home to the only extant population of Cyprinodon diabolis, the endangered Devils Hole pupfish. Using water column temperatures collected with a fiber-optic distributed temperature sensor (DTS) during four field campaigns in 2009, evidence of deep circulation and nutrient export are, for the first time, documented. The DTS was deployed to measure vertical temperature profiles in the system, and the raw data returned were postprocessed to refine the calibration beyond the precision of the instrument's native calibration routines. Calibrated temperature data serve as a tracer for water movement and reveal a seasonal pattern of convective mixing that is supported by numerical simulations of the system. The periodic presence of divers in the water is considered, and their impacts on the temperature profiles are examined and found to be minimal. The seasonal mixing cycle may deplete the pupfish's food supplies when nutrients are at their scarcest. The spatial and temporal scales of the DTS observations make it possible to observe temperature gradients on the order of 0.001°C m-1, revealing phenomena that would have been lost in instrument noise and uncertainty.
NASA Astrophysics Data System (ADS)
Vogt, T.; Hahn-Woernle, L.; Sunarjo, B.; Thum, T.; Schneider, P.; Schirmer, M.; Cirpka, O. A.
2009-04-01
In recent years, the transition zone between surface water bodies and groundwater, known as the hyporheic zone, has been identified as crucial for the ecological status of the open-water body and the quality of groundwater. The hyporheic exchange processes vary both in time and space. For the assessment of water quality of both water bodies reliable models and measurements of the exchange rates and their variability are needed. A wide range of methods and technologies exist to estimate water fluxes between surface water and groundwater. Due to recent developments in sensor techniques and data logging work on heat as a tracer in hydrological systems advances, especially with focus on surface water - groundwater interactions. Here, we evaluate the use of Distributed Temperature Sensing (DTS) for the qualitative and quantitative investigation of groundwater discharge into and groundwater recharge from a river. DTS is based on the temperature dependence of Raman scattering. Light from a laser pulse is scattered along an optical fiber of up to several km length, which is the sensor of the DTS system. By sampling the the back-scattered light with high temporal resolution, the temperature along the fiber can be measured with high accuracy (0.1 K) and high spatial resolution (1 m). We used DTS at a test side at River Thur in North-East Switzerland. Here, the river is loosing and the aquifer is drained by two side-channels, enabling us to test DTS for both, groundwater recharge from the river and groundwater discharge into the side-channels. For estimation of seepage rates, we measured highly resolved vertical temperature profiles in the river bed. For this application, we wrapped an optical fiber around a piezometer tube and measured the temperature distribution along the fiber. Due to the wrapping, we obtained a vertical resolution of approximately 5 mm. We analyzed the temperature time series by means of Dynamic Harmonic Regression as presented by Keery et al. (2007). From the travel time and attenuation of the diurnal time signal, we estimated the apparent velocity and diffusivity of temperature propagation, which then can be used to quantify infiltration rates. A particular strength of the new measuring technique lies in the high spatial and temporal resolution, enabling us to detect non-uniformity and temporal changes in vertical water fluxes. In the side-channels, we have laterally laid out optical fibers to detect zones of groundwater discharge. As groundwater temperatures differ from river temperatures, local exfiltration of groundwater leads to a local change of the temperature at the river bottom. A limitation of lateral DTS data is that exchange rates cannot directly be quantified. Therefore, we used DTS for streambed temperature mapping. Then certain exfiltration zones undergo further investigation using time series of streambed temperature profiles obtained in piezometers. J. Keery, A. Binley, N. Crook and J.W.N. Smith (2007) Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series, Journal of Hydrology, 336, 1-16.
Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Challener, William A
2014-12-04
The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber,more » and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.« less
Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos
2016-01-01
This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure. PMID:27618040
NASA Astrophysics Data System (ADS)
Chalari, A.; Mondanos, M.; Finfer, D.; Christodoulou, D.; Kordella, S.; Papatheodorou, G.; Geraga, M.; Ferentinos, G.
2012-12-01
A wide submarine seep of thermogenic gas in the Katakolo bay, Western Greece, was monitored passively using the intelligent Distributed Acoustic Sensor (iDAS) and Ultima Raman spectra Distributed Temperature Sensor (DTS), in order to study the thermal and noise signal of the bubble plumes released from the seafloor. Katakolo is one one of the most prolific thermogenic gas seepage zones in Europe and the biggest methane seep ever reported in Greece. Very detailed repetitive offshore gas surveys, including marine remote sensing (sub-bottom profiling, side scan sonar), underwater exploration by a towed instrumented system (MEDUSA), long-term monitoring benthic station (GMM), compositional and isotopic analyses, and flux measurements of gas, showed that: (a) gas seepage takes place over an extended area in the Katakolo harbour and along two main normal faults off the harbour; (b) at least 823 gas bubble ( 10-20 cm in diameter) plumes escaping over an area of 94,200 m2, at depths ranging from 5.5 to 16 m; (c) the gas consists mainly of methane and has H2S levels of hundreds to thousands ppmv, and shows significant amounts of other light hydrocarbons like ethane, propane, iso-butane and C6 alkanes, (d) offshore and onshore seeps release the same type of thermogenic gas; (e) due to the shallow depth, more than 90 % of CH4 released at the seabed enters the atmosphere, and (f) the gas seeps may produce severe geohazards for people, buildings and construction facilities due to the explosive and toxicological properties of methane and hydrogen sulfide, respectively. For the short-term monitoring, the deployment took place on a site located inside the harbour of Katakolo within a thermogenic gas seepage area where active faults are intersected. The iDAS system makes it possible to observe the acoustical signal along the entire length of an unmodified optical cable without introducing any form of point sensors such as Bragg gratings. When the bubble plumes are released by the seabed into the water column, they ring at their resonance frequency in a manner consistent with standard bubble acoustics. This bubble ringing can be detected by iDAS allowing for both seepage detection, quantification and relationship with seismic activity. The DTS system makes it possible to observe temporal variations of the gas plumes and its relationship with the meteorological factors of the area. Moreover, DTS and iDAS data interpretation needs a detailed examination in comparison with the long-term GMM monitoring data (O2, CH4, H2S, temperature, pressure and conductivity) which was collected from the same location. The processing chain used to observe this phenomenon can have applications in both industrial and environmental monitoring capacities.
NASA Astrophysics Data System (ADS)
Vogt, T.; Schirmer, M.; Cirpka, O. A.
2010-12-01
Infiltrating river water is of high relevance for drinking water supply by river bank filtration as well as for riparian groundwater ecology. Quantifying flow patterns and velocities, however, is hampered by temporal and spatial variations of exchange fluxes. In recent years, heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. Nevertheless, field investigations are often limited by insufficient sensors spacing or simplifying assumptions such as one-dimensional flow. Our interest lies in a detailed local survey of river water infiltration at a restored river section at the losing river Thur in northeast Switzerland. Here, we measured three high-resolution temperature profiles along an assumed flow path by means of distributed temperature sensing (DTS) using fiber optic cables wrapped around poles. Moreover, piezometers were equipped with standard temperature sensors for a comparison to the DTS data. Diurnal temperature oscillations were tracked in the river bed and the riparian groundwater and analyzed by means of dynamic harmonic regression and subsequent modeling of heat transport with sinusoidal boundary conditions to quantify seepage velocities and thermal diffusivities. Compared to the standard temperature sensors, the DTS data give a higher vertical resolution, facilitating the detection of process- and structure-dependent patterns of the spatiotemporal temperature field. This advantage overcompensates the scatter in the data due to instrument noise. In particular, we could demonstrate the impact of heat conduction through the unsaturated zone on the riparian groundwater by the high resolution temperature profiles.
NASA Astrophysics Data System (ADS)
Thayer, D.; Klatt, A. L.; Miller, S. N.; Ohara, N.
2014-12-01
From a hydrologic point of view, the critical zone in alpine areas contains the first interaction of living systems with water which will flow to streams and rivers that sustain lowland biomes and human civilization. A key to understanding critical zone functions is understanding the flow of energy, and we can measure temperature as a way of looking at energy transfer between related systems. In this study we installed a Distributed Temperature Sensor (DTS) and fiber-optic cable in a zero-order stream at 9,000 ft in the Medicine Bow National Forest in southern Wyoming. We measured the temperature of the stream for 17 days from June 29 to July 16; the first 12 days were mostly sunny with occasional afternoon storms, and the last 5 experienced powerful, long-lasting storms for much of the day. The DTS measurements show a seasonal warming trend of both minimum and maximum stream temperature for the first 12 days, followed by a distinct cooling trend for the five days that experienced heavy storm activity. To gain insights into the timing and mechanisms of energy flow through the critical zone systems, we analyzed the timing of stream temperature change relative to solar short-wave radiation, and compared the stream temperature temporal response to the temporal response of soil temperature adjacent to the stream. Since convective thunderstorms are a dominant summer weather pattern in sub-alpine regions in the Rocky Mountains, this study gives us further insight into interactions of critical zone processes and weather in mountain ecosystems.
Slater, Lee D.; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Andy; Strickland, Christopher; Johnson, Carole D.; Lane, John W.
2010-01-01
We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.
Feasibility study on low-dosage digital tomosynthesis (DTS) using a multislit collimation technique
NASA Astrophysics Data System (ADS)
Park, S. Y.; Kim, G. A.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kang, S. Y.; Kim, K. S.; Lim, H. W.; Lee, H. W.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.
2018-04-01
In this study, we investigated an effective low-dose digital tomosynthesis (DTS) where a multislit collimator placed between the X-ray tube and the patient oscillates during projection data acquisition, partially blocking the X-ray beam to the patient thereby reducing the radiation dosage. We performed a simulation using the proposed DTS with two sets of multislit collimators both having a 50% duty cycle and investigated the image characteristics to demonstrate the feasibility of this proposed approach. In the simulation, all projections were taken at a tomographic angle of θ = ± 50° and an angle step of Δθ =2°. We utilized an iterative algorithm based on a compressed-sensing (CS) scheme for more accurate DTS reconstruction. Using the proposed DTS, we successfully obtained CS-reconstructed DTS images with no bright-band artifacts around the multislit edges of the collimator, thus maintaining the image quality. Therefore, the use of multislit collimation in current real-world DTS systems can reduce the radiation dosage to patients.
Permanent installation of fibre-optic DTS cables in boreholes for temperature monitoring
NASA Astrophysics Data System (ADS)
Henninges, J.; Schrötter, J.; Erbas, K.; Böde, S.; Huenges, E.
2003-04-01
Temperature measurements have become an important tool for the monitoring of dynamic processes in the subsurface both in academia and industry. An innovative experimental design for the monitoring of spatial and temporal variations of temperature along boreholes was developed and successfully applied under extreme arctic conditions during a field experiment, which was carried out within the framework of the Mallik 2002 Production Research Well Program*. Three 40 m spaced, 1200 m deep wells were equipped with permanent fibre-optic sensor cables and the variation of temperature was measured deploying the Distributed Temperature Sensing (DTS) technology. The used DTS system enables the simultaneous online registration of temperature profiles along the three boreholes with a maximum spatial resolution of 0.25 m and a minimum sampling interval of 7 sec. After an individual calibration of the fibre-optic sensor cables a resolution of 0.3 °C of the measured temperature data could be achieved. A special feature of the experiment design is the installation of the sensor cables outside the borehole casing. The fibre-optic cables were attached to the outer side of the casing at every connector within intervals of approx. 12 m with cable clamps. The clamps enable a defined positioning of the cable around the perimeter of the casing and are protecting the cable from mechanical damage during installation. After completion the sensor cables are located in the cement annulus between casing and borehole wall. As an example of the performance of the described temperature logging technology data from the reaming of a 300 m thick cement plug inside the borehole is displayed, offering a unique opportunity to explore thermal processes in the near vicinity of a borehole during drilling. The temperature changes image the progress of the drill bit as well as changes in the mud circulation. Furthermore, local effects can be observed that relate to local thermal properties and technical features of the cable installation. (*) The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group.
NASA Astrophysics Data System (ADS)
Schilperoort, Bart; Coenders-Gerrits, Miriam; van Iersel, Tara; Jiménez Rodríguez, Cesar; Luxemburg, Willem; Cisneros Vaca, Cesar; Ucer, Murat
2017-04-01
Distributed temperature sensing (DTS) is a relatively new method for measuring latent and sensible heat fluxes. The method has been successfully tested before on multiple sites (Euser, 2014). It uses a glass fibre optic cable of which the temperature can be measured every 12.5cm. By placing the cable vertically along a structure, the air temperature profile can be measured. If the cable is wrapped with cloth and kept wet (akin to a psychrometer), a vertical wet-bulb temperature gradient over height can be calculated. From these dry and wet-bulb temperatures over the height the Bowen ratio is determined and together with the energy balance the latent and sensible heat can be determined. To verify the measurements of the DTS based Bowen ratio method (BR-DTS) we assessed in detail; the accuracy of the air temperature and wet-bulb temperature measurements, the influence of solar radiation and wind on these temperatures, and a comparison to standard methods of evaporation measurement. We tested the performance of the BR-DTS on a 45m high tower in a tall mixed forest in the centre of the Netherlands in August. The average tree height is 30m, hence we measure temperature gradients above, in, and underneath the canopy. We found that solar radiation has a significant effect on the temperature measurements due to heating of the cable coating and leads to deviations up to 2° C. By using cables with different coating thickness we could theoretically correct for this effect, but this introduces too much uncertainty for calculating the temperature gradient. By installing screens the effect of direct sunlight on the cable is sufficiently reduced, and the correlation of the cable temperature with reference air temperature sensors is very high (R2=0.988 to 0.998). Wind speed seems to have a minimal effect on the measured wet-bulb temperature, both below and above the canopy. The latent heat fluxes of the BR-DTS were compared to an eddy covariance system using data from 10 days, with quality control applied to both methods. When comparing the daytime values, there is a high correlation (R2=0.75), a low bias (mean difference of ±15W/m2) and a good accuracy (standard deviation of the difference of 40W/m2) for both the latent and sensible heat flux. This can lead to a small error. Nonetheless, the results show that when the system is set up with care, and by eliminating sources of errors, the DTS based Bowen ratio is in agreement with an eddy covariance system, even above a tall forest canopy, which is notoriously hard to measure. Further applications of the DTS data in evaporation measurement studies are the flux-variance method (where the standard deviations of the air temperature and absolute humidity are used to estimate the sensible and latent heat fluxes), the surface-renewal method, and correcting the Bowen ratio for the non-unity of the eddy diffusivity ratios. These can all be used to gather additional data on the evaporation to increase the accuracy.
NASA Astrophysics Data System (ADS)
Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.
2011-03-01
In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.
Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLean, A. G., E-mail: mclean@fusion.gat.com; Soukhanovskii, V. A.; Allen, S. L.
2014-11-15
A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented onmore » NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.« less
Macchi, Edoardo Gino; Tosi, Daniele; Braschi, Giovanni; Gallati, Mario; Cigada, Alfredo; Busca, Giorgio; Lewis, Elfed
2014-01-01
Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C∕mm) and temporal (up to 1°C∕s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor∕cm. In this work, we apply a distributed temperature sensor (DTS) with a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the tissue along different diameters. Several experiments have been carried out measuring the space-time evolution of temperature during RFTA. The present work showcases the temperature monitoring in RFTA with an unprecedented spatial resolution and is exportable to in vivo measurement; the acquired data can be particularly useful for the validation of RFTA computational models.
Langeveld, J G; de Haan, C; Klootwijk, M; Schilperoort, R P S
2012-01-01
Storm water separating manifolds in house connections have been introduced as a cost effective solution to disconnect impervious areas from combined sewers. Such manifolds have been applied by the municipality of Breda, the Netherlands. In order to investigate the performance of the manifolds, a monitoring technique (distributed temperature sensing or DTS) using fiber optic cables has been applied in the sewer system of Breda. This paper describes the application of DTS as a research tool in sewer systems. DTS proves to be a powerful tool to monitor the performance of (parts of) a sewer system in time and space. The research project showed that DTS is capable of monitoring the performance of house connections and identifying locations of inflow of both sewage and storm runoff. The research results show that the performance of storm water separating manifolds varies over time, thus making them unreliable.
Distributed temperature sensor testing in liquid sodium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerardi, Craig; Bremer, Nathan; Lisowski, Darius
Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400°C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 lm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.
NASA Astrophysics Data System (ADS)
Sewell, Tanzania S.; Piacsek, Kelly L.; Heckel, Beth A.; Sabol, John M.
2011-03-01
The current imaging standard for diagnosis and monitoring of knee osteoarthritis (OA) is projection radiography. However radiographs may be insensitive to markers of early disease such as osteophytes and joint space narrowing (JSN). Relative to standard radiography, digital X-ray tomosynthesis (DTS) may provide improved visualization of the markers of knee OA without the interference of superimposed anatomy. DTS utilizes a series of low-dose projection images over an arc of +/-20 degrees to reconstruct tomographic images parallel to the detector. We propose that DTS can increase accuracy and precision in JSN quantification. The geometric accuracy of DTS was characterized by quantifying joint space width (JSW) as a function of knee flexion and position using physical and anthropomorphic phantoms. Using a commercially available digital X-ray system, projection and DTS images were acquired for a Lucite rod phantom with known gaps at various source-object-distances, and angles of flexion. Gap width, representative of JSW, was measured using a validated algorithm. Over an object-to-detector-distance range of 5-21cm, a 3.0mm gap width was reproducibly measured in the DTS images, independent of magnification. A simulated 0.50mm (+/-0.13) JSN was quantified accurately (95% CI 0.44-0.56mm) in the DTS images. Angling the rods to represent knee flexion, the minimum gap could be precisely determined from the DTS images and was independent of flexion angle. JSN quantification using DTS was insensitive to distance from patient barrier and flexion angle. Potential exists for the optimization of DTS for accurate radiographic quantification of knee OA independent of patient positioning.
NASA Astrophysics Data System (ADS)
Ciocca, F.; Krause, S.; Blaen, P.; Hannah, D. M.; Chalari, A.; Mondanos, M.; Abesser, C.
2016-12-01
Water and thermal conditions in the shallow vadose zone can be very complex and dynamic across a range of spatiotemporal scales. The efficient analysis of such dynamics requires technologies capable of precise and high-resolution monitoring of soil temperature and moisture across multiple scales. Optical fibre distributed temperature sensors (DTS) allows for precise temperature measurements at high spatio-temporal resolution, over several kilometres of optical fibre cable. In addition to passive temperature monitoring, hybrid optical cables with embedded metal conductors can be electrically heated and allow for distributed heat pulses. Such Active-DTS technique involves the analysis of temperatures during both heating and cooling phases of an optical fibre cable buried in the soil in order to provide distributed soil moisture estimates. In summer 2015, three loops of a 500m hybrid-optical cable have been deployed at 10cm, 25cm and 40cm depths along a hillslope with juvenile forest. Active-DTS surveys have been conducted with the aim to: (i) monitor the post-installation soil settling around the cable; (ii) analyse different heating strategies (intensity, duration) of the cable; (iii) establish a method for inferring soil moisture from Active-DTS results and validate with independent soil moisture readings from point probes; (iv) monitor the soil moisture response to short forcing events such as storms and artificial irrigation. Results from the surveys will be presented, and first assumptions on how the obtained soil water dynamics can be associated to specific triggers such as precipitation, evapotranspiration, soil inclination, will be discussed. This research is part of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and is realised in the context of the Free Air Carbon Enrichment (FACE) experiment, in collaboration with the Birmingham Institute of Forest Research (BIFoR).
Practical considerations for coil-wrapped Distributed Temperature Sensing setups
NASA Astrophysics Data System (ADS)
Solcerova, Anna; van Emmerik, Tim; Hilgersom, Koen; van de Giesen, Nick
2015-04-01
Fiber-optic Distributed Temperature Sensing (DTS) has been applied widely in hydrological and meteorological systems. For example, DTS has been used to measure streamflow, groundwater, soil moisture and temperature, air temperature, and lake energy fluxes. Many of these applications require a spatial monitoring resolution smaller than the minimum resolution of the DTS device. Therefore, measuring with these resolutions requires a custom made setup. To obtain both high temporal and high spatial resolution temperature measurements, fiber-optic cable is often wrapped around, and glued to, a coil, for example a PVC conduit. For these setups, it is often assumed that the construction characteristics (e.g., the coil material, shape, diameter) do not influence the DTS temperature measurements significantly. This study compares DTS datasets obtained during four measurement campaigns. The datasets were acquired using different setups, allowing to investigate the influence of the construction characteristics on the monitoring results. This comparative study suggests that the construction material, shape, diameter, and way of attachment can have a significant influence on the results. We present a qualitative and quantitative approximation of errors introduced through the selection of the construction, e.g., choice of coil material, influence of solar radiation, coil diameter, and cable attachment method. Our aim is to provide insight in factors that influence DTS measurements, which designers of future DTS measurements setups can take into account. Moreover, we present a number of solutions to minimize these errors for improved temperature retrieval using DTS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Xiong, Z; Rudin, S
Purpose: The functionality of the Dose-Tracking System (DTS) has been expanded to include the calculation of the Kerma-Area Product (KAP) for non-uniform x-ray fields such as result from the use of compensation filters during fluoroscopic procedures Methods: The DTS calculates skin dose during fluoroscopic interventions and provides a color-coded dose map on a patient-graphic model. The KAP is the integral of air kerma over the x-ray field and is usually measured with a transmission-ionization chamber that intercepts the entire x-ray beam. The DTS has been modified to determine KAP when there are beam non-uniformities that can be modeled. For example,more » the DTS includes models of the three compensation filters with tapered edges located in the collimator assembly of the Toshiba Infinix fluoroscopic C-Arm and can track their movement. To determine the air kerma after the filters, DTS includes transmission factors for the compensation filters as a function of kVp and beam filtration. A virtual KAP dosimeter is simulated in the DTS by an array of graphic vertices; the air kerma at each vertex is corrected by the field non-uniformity, which in this case is the attenuation factor for those rays which pass through the filter. The products of individual vertex air-kerma values for all vertices within the beam times the effective-area-per-vertex are summed for each x-ray pulse to yield the KAP per pulse and the cumulative KAP for the procedure is then calculated. Results: The KAP values estimated by DTS with the compensation filter inserted into the x-ray field agree within ± 6% with the values displayed on the fluoroscopy unit monitor, which are measured with a transmission chamber. Conclusion: The DTS can account for field non-uniformities such as result from the use of compensation filters in calculating KAP and can obviate the need for a KAP transmission ionization chamber. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
NASA Astrophysics Data System (ADS)
Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.
2011-01-01
In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y; Yin, F; Mao, R
2015-06-15
Purpose: To develop a dual-detector phase-matched DTS technique for continuous and fast intra-treatment lung tumor localization. Methods: Tumor localization accuracy of limited-angle DTS imaging is affected by low inter-slice resolution. The dual-detector DTS technique aims to overcome this limitation through combining orthogonally acquired beam’s eye view MV projections and kV projections for intra-treatment DTS reconstruction and localization. To aggregate the kV and MV projections for reconstruction, the MV projections were linearly converted to synthesize corresponding kV projections. To further address the lung motion induced localization errors, this technique uses respiratory phase-matching to match the motion information between on-board DTS andmore » reference DTS to offset the adverse effects of motion blurriness in tumor localization.A study was performed using the CIRS008A lung phantom to simulate different on-board target variation scenarios for localization. The intra-treatment kV and MV acquisition was achieved through the Varian TrueBeam Developer Mode. Four methods were compared for their localization accuracy: 1. the proposed dual-detector phase-matched DTS technique; 2. the single-detector phase-matched DTS technique; 3. the dual-detector 3D-DTS technique without phase-matching; and 4. the single-detector 3D-DTS technique without phase-matching. Results: For scan angles of 2.5°, 5°, 10°, 20° and 30°, the dual-detector phase-matched DTS technique localized the tumor with average(±standard deviations) errors of 0.4±0.3 mm, 0.5±0.3 mm, 0.6±0.2 mm, 0.9±0.4 mm and 1.0±0.3 mm, respectively. The corresponding values of single-detector phase-matched DTS technique were 4.0±2.5 mm, 2.7±1.1 mm, 1.7±1.2 mm, 2.2±0.9 mm and 1.5±0.8 mm, respectively. The values of dual-detector 3D-DTS technique were 6.2±1.7 mm, 6.3±1.2 mm, 5.3±1.3 mm, 2.0±2.2 mm and 1.5±0.5 mm, respectively. And the values of single-detector 3D-DTS technique were 9.7±8.9 mm, 9.8±8.8 mm, 10.0±9.7 mm, 3.9±2.7 mm and 2.2±1.3 mm, respectively. Conclusion: The dual-detector phase-matched DTS technique substantially improves the tumor localization accuracy, which can be applied to real-time intra-treatment lung tumor localization. The research was funded by the National Institutes of Health Grant No. R01-CA184173 and a grant from Varian Medical Systems.« less
Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.
2012-01-01
We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures. PMID:24027616
Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R
2012-02-23
We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.
Evaluation of respiration-correlated digital tomosynthesis in lung.
Santoro, Joseph; Kriminski, Sergey; Lovelock, D Michael; Rosenzweig, Kenneth; Mostafavi, Hassan; Amols, Howard I; Mageras, Gig S
2010-03-01
Digital tomosynthesis (DTS) with a linear accelerator-mounted imaging system provides a means of reconstructing tomographic images from radiographic projections over a limited gantry arc, thus requiring only a few seconds to acquire. Its application in the thorax, however, often results in blurred images from respiration-induced motion. This work evaluates the feasibility of respiration-correlated (RC) DTS for soft-tissue visualization and patient positioning. Image data acquired with a gantry-mounted kilovoltage imaging system while recording respiration were retrospectively analyzed from patients receiving radiotherapy for non-small-cell lung carcinoma. Projection images spanning an approximately 30 degrees gantry arc were sorted into four respiration phase bins prior to DTS reconstruction, which uses a backprojection, followed by a procedure to suppress structures above and below the reconstruction plane of interest. The DTS images were reconstructed in planes at different depths through the patient and normal to a user-selected angle close to the center of the arc. The localization accuracy of RC-DTS was assessed via a comparison with CBCT. Evaluation of RC-DTS in eight tumors shows visible reduction in image blur caused by the respiratory motion. It also allows the visualization of tumor motion extent. The best image quality is achieved at the end-exhalation phase of the respiratory motion. Comparison of RC-DTS with respiration-correlated cone-beam CT in determining tumor position, motion extent and displacement between treatment sessions shows agreement in most cases within 2-3 mm, comparable in magnitude to the intraobserver repeatability of the measurement. These results suggest the method's applicability for soft-tissue image guidance in lung, but must be confirmed with further studies in larger numbers of patients.
Yoo, Sua; Wu, Q. Jackie; Godfrey, Devon; Yan, Hui; Ren, Lei; Das, Shiva; Lee, William R.; Yin, Fang-Fang
2008-01-01
Purpose To evaluate on-board digital tomosynthesis (DTS) for patient positioning in comparison with 2D-radiographs and 3D-CBCT. Methods and Materials A total of 92 image sessions from 9 prostate cancer patients were analyzed. An on-board image set was registered to a corresponding reference image set. Four pairs of image sets were used; DRR vs. on-board orthogonal paired radiograph for the 2D method, coronal-reference-DTS (RDTS) vs. on-board coronal-DTS for the coronal-DTS method, sagittal-RDTS vs. on-board sagittal-DTS for the sagittal-DTS method, and planning CT vs. CBCT for the CBCT method. Registration results were compared. Results The systematic errors in all methods were less than 1 mm/1°. When registering bony anatomy, the mean vector differences were 0.21±0.11 cm between 2D and CBCT, 0.11±0.08 cm between CBCT and coronal-DTS, and 0.14±0.07 cm between CBCT and sagittal-DTS. The correlation of CBCT to DTS was stronger (coefficients=0.92–0.95) than the correlation between 2D and CBCT or DTS (coefficients=0.81–0.83). When registering soft tissue, the mean vector differences were 0.18±0.11 cm between CBCT and coronal-DTS and 0.29±0.17 cm between CBCT and sagittal-DTS. The correlation coefficients of CBCT to sagittal-DTS and to coronal-DTS were 0.84 and 0.92, respectively. Conclusions DTS could provide equivalent results to CBCT when bony anatomy is used as landmarks for prostate IGRT. For soft tissue-based positioning verification, coronal-DTS produced equivalent results to CBCT and sagittal-DTS alone was insufficient. DTS could allow comparable soft tissue-based target localization with faster scanning time and less imaging dose compared to CBCT. PMID:19100923
Performance Evaluation of Five Turbidity Sensors in Three Primary Standards
Snazelle, Teri T.
2015-10-28
Open-File Report 2015-1172 is temporarily unavailable.Five commercially available turbidity sensors were evaluated by the U.S. Geological Survey, Hydrologic Instrumentation Facility (HIF) for accuracy and precision in three types of turbidity standards; formazin, StablCal, and AMCO Clear (AMCO–AEPA). The U.S. Environmental Protection Agency (EPA) recognizes all three turbidity standards as primary standards, meaning they are acceptable for reporting purposes. The Forrest Technology Systems (FTS) DTS-12, the Hach SOLITAX sc, the Xylem EXO turbidity sensor, the Yellow Springs Instrument (YSI) 6136 turbidity sensor, and the Hydrolab Series 5 self-cleaning turbidity sensor were evaluated to determine if turbidity measurements in the three primary standards are comparable to each other, and to ascertain if the primary standards are truly interchangeable. A formazin 4000 nephelometric turbidity unit (NTU) stock was purchased and dilutions of 40, 100, 400, 800, and 1000 NTU were made fresh the day of testing. StablCal and AMCO Clear (for Hach 2100N) standards with corresponding concentrations were also purchased for the evaluation. Sensor performance was not evaluated in turbidity levels less than 40 NTU due to the unavailability of polymer-bead turbidity standards rated for general use. The percent error was calculated as the true (not absolute) difference between the measured turbidity and the standard value, divided by the standard value.The sensors that demonstrated the best overall performance in the evaluation were the Hach SOLITAX and the Hydrolab Series 5 turbidity sensor when the operating range (0.001–4000 NTU for the SOLITAX and 0.1–3000 NTU for the Hydrolab) was considered in addition to sensor accuracy and precision. The average percent error in the three standards was 3.80 percent for the SOLITAX and -4.46 percent for the Hydrolab. The DTS-12 also demonstrated good accuracy with an average percent error of 2.02 percent and a maximum relative standard deviation of 0.51 percent for the operating range, which was limited to 0.01–1600 NTU at the time of this report. Test results indicated an average percent error of 19.81 percent in the three standards for the EXO turbidity sensor and 9.66 percent for the YSI 6136. The significant variability in sensor performance in the three primary standards suggests that although all three types are accepted as primary calibration standards, they are not interchangeable, and sensor results in the three types of standards are not directly comparable.
Fibre-optic distributed temperature sensing in combined sewer systems.
Schilperoort, R P S; Clemens, F H L R
2009-01-01
This paper introduces the application of fibre-optic distributed temperature sensing (DTS) in combined sewer systems. The DTS-technique uses a fibre-optic cable that is inserted into a combined sewer system in combination with a laser instrument that performs measurements and logs the data. The DTS-technique allows monitoring in-sewer temperatures with dense spatial and temporal resolutions. The installation of a fibre-optic cable in a combined sewer system has proven feasible. The use of a single instrument in an easy accessible and safe location that can simultaneously monitor up to several hundreds of monitoring locations makes the DTS set-up easy in use and nearly free of maintenance. Temperature data from a one-week monitoring campaign in an 1,850 m combined sewer system shows the level of detail with which in-sewer processes that affect wastewater temperatures can be studied. Individual discharges from house-connections can be tracked in time and space. With a dedicated cable configuration the confluence of wastewater flows can be observed with a potential to derive the relative contributions of contributary flows to a total flow. Also, the inflow and in-sewer propagation of stormwater can be monitored.
Sood, Anubhav; Ramarao, Sathyanarayanan; Carounanidy, Usha
2015-01-01
Aim: The aim was to evaluate the influence of different crosshead speeds on diametral tensile strength (DTS) of a resin composite material (Tetric N-Ceram). Materials and Methods: The DTS of Tetric N-Ceram was evaluated using four different crosshead speeds 0.5 mm/min (DTS 1), 1 mm/min (DTS 2), 5 mm/min (DTS 3), 10 mm/min (DTS 4). A total of 48 specimens were prepared and divided into four subgroups with 12 specimens in each group. Specimens were made using stainless steel split custom molds of dimensions 6 mm diameter and 3 mm height. The specimens were stored in distilled water at room temperature for 24 h. Universal testing machine was used and DTS values were calculated in MPa. Results: Analysis of variance was used to compare the four groups. Higher mean DTS value was recorded in DTS 2 followed by DTS 4, DTS 1, and DTS 3, respectively. However, the difference in mean tensile strength between the groups was not statistically significant (P > 0.05). Conclusion: The crosshead speed variation between 0.5 and 10 mm/min does not seem to influence the DTS of a resin composite. PMID:26069407
Sood, Anubhav; Ramarao, Sathyanarayanan; Carounanidy, Usha
2015-01-01
The aim was to evaluate the influence of different crosshead speeds on diametral tensile strength (DTS) of a resin composite material (Tetric N-Ceram). The DTS of Tetric N-Ceram was evaluated using four different crosshead speeds 0.5 mm/min (DTS 1), 1 mm/min (DTS 2), 5 mm/min (DTS 3), 10 mm/min (DTS 4). A total of 48 specimens were prepared and divided into four subgroups with 12 specimens in each group. Specimens were made using stainless steel split custom molds of dimensions 6 mm diameter and 3 mm height. The specimens were stored in distilled water at room temperature for 24 h. Universal testing machine was used and DTS values were calculated in MPa. Analysis of variance was used to compare the four groups. Higher mean DTS value was recorded in DTS 2 followed by DTS 4, DTS 1, and DTS 3, respectively. However, the difference in mean tensile strength between the groups was not statistically significant (P > 0.05). The crosshead speed variation between 0.5 and 10 mm/min does not seem to influence the DTS of a resin composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, Jeremy R.; Cardiff, Michael; Coleman, Thomas
Distributed temperature sensing (DTS) systems provide near real-time data collection that captures borehole spatiotemporal temperature dynamics. For this study, temperature data was collected in an observation well at an active geothermal site for a period of eight days under geothermal production conditions. Collected temperature data showcase the ability of DTS systems to detect changes to the location of the steam-water interface, visualize borehole temperature recovery — following injection of a coldwater “slug” — and identify anomalously warm and/or cool zones. The high sampling rate and spatial resolution of DTS data also shows borehole temperature dynamics that are not captured bymore » traditional pressure-temperature survey tools. Inversion of thermal recovery data using a finite-difference heat-transfer model produces a thermal-diffusivity profile that is consistent with laboratorymeasured values and correlates with identified lithologic changes within the borehole. Used alone or in conjunction with complementary data sets, DTS systems are useful tools for developing a better understanding of both reservoir rock thermal properties as well as within and near borehole fluid movement.« less
Patterson, Jeremy R.; Cardiff, Michael; Coleman, Thomas; ...
2017-12-01
Distributed temperature sensing (DTS) systems provide near real-time data collection that captures borehole spatiotemporal temperature dynamics. For this study, temperature data was collected in an observation well at an active geothermal site for a period of eight days under geothermal production conditions. Collected temperature data showcase the ability of DTS systems to detect changes to the location of the steam-water interface, visualize borehole temperature recovery — following injection of a coldwater “slug” — and identify anomalously warm and/or cool zones. The high sampling rate and spatial resolution of DTS data also shows borehole temperature dynamics that are not captured bymore » traditional pressure-temperature survey tools. Inversion of thermal recovery data using a finite-difference heat-transfer model produces a thermal-diffusivity profile that is consistent with laboratorymeasured values and correlates with identified lithologic changes within the borehole. Used alone or in conjunction with complementary data sets, DTS systems are useful tools for developing a better understanding of both reservoir rock thermal properties as well as within and near borehole fluid movement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funabashi, Hisakage; Takatsu, Makoto; Saito, Mikako
2010-10-01
Research highlights: {yields} SV40-DTS worked as a DTS in ES cells as well as other types of cells. {yields} Sox2 regulatory region 2 worked as a DTS in ES cells and thus was termed as SRR2-DTS. {yields} SRR2-DTS was suggested as an ES cell-specific DTS. -- Abstract: In this report, the effects of two DNA nuclear targeting sequence (DTS) candidates on the gene expression efficiency in ES cells were investigated. Reporter plasmids containing the simian virus 40 (SV40) promoter/enhancer sequence (SV40-DTS), a DTS for various types of cells but not being reported yet for ES cells, and the 81 basemore » pairs of Sox2 regulatory region 2 (SRR2) where two transcriptional factors in ES cells, Oct3/4 and Sox2, are bound (SRR2-DTS), were introduced into cytoplasm in living cells by femtoinjection. The gene expression efficiencies of each plasmid in mouse insulinoma cell line MIN6 cells and mouse ES cells were then evaluated. Plasmids including SV40-DTS and SRR2-DTS exhibited higher gene expression efficiency comparing to plasmids without these DTSs, and thus it was concluded that both sequences work as a DTS in ES cells. In addition, it was suggested that SRR2-DTS works as an ES cell-specific DTS. To the best of our knowledge, this is the first report to confirm the function of DTSs in ES cells.« less
DTS: The NOAO Data Transport System
NASA Astrophysics Data System (ADS)
Fitzpatrick, M.; Semple, T.
2014-05-01
The NOAO Data Transport System (DTS) provides high-throughput, reliable, data transfer between telescopes, pipelines and archive centers located in the Northern and Southern hemispheres. It is a distributed application using XML-RPC for command and control, and either parallel-TCP or UDT protocols for bulk data transport. The system is data-agnostic, allowing arbitrary files or directories to be moved using the same infrastructure. Data paths are configurable in the system by connecting nodes as the source or destination of data in a queue. Each leg of a data path may be configured independently based on the network environment between the sites. A queueing model is currently implemented to manage the automatic movement of data, a streaming model is planned to support arbitrarily large transfers (e.g. as in a disk recovery scenario) or to provide a 'pass-thru' interface to minize overheads. A web-based monitor allows anyone to get a graphical overview of the DTS system as it runs, operators will be able to control individual nodes in the system. Through careful tuning of the network paths DTS is able to achieve in excess of 80-percent of the nominal wire speed using only commodity networks, making it ideal for long-haul transport of large volumes of data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2015-02-28
To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important –more » a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
Models of practice organisation using dental therapists: English case studies.
Sun, N; Harris, R V
2011-08-12
A new dental remuneration system based on bands of activity has changed the reward system operating in dental practices and influenced practitioner behaviour in relation to the delegation of tasks to English dental therapists (DTs). Since dental practitioners operate as independent contractors they are free to innovate. A variety of models incorporating DTs in general practice teams exist, some of which may overcome the apparent delegation constraints embedded within this system of remuneration. To describe the way different practices are organised to take account of DTs in their teams and identify whether any of these models address delegation disincentives arising from the system of remuneration. A purposive sample of six dental practices was identified, comprising two small, two medium and two large dental practices, including a variety of models of practice organisation. Semi-structured interviews were carried out with principal dentists, associate dentists, DTs, practice managers and dental hygienists (35 participants in total). A thematic analysis was applied to interview transcripts. The six dental practices demonstrated six different models of practice organisation which could be grouped into 'practice payment' and 'dentist payment' models according to whether the salary costs of the DT were met by a central practice fund or from the income of individual dentists in the team. In both of the large practices only some of the dentists in the team referred work to the DT because of reimbursement issues. In two practices the system was perceived to be satisfactory to all parties, one of these being a single-handed practice with two DTs. Although the remuneration system contained some potential disincentives to DT delegation, some practices innovated in their organisations to overcome these issues.
Galea, Angela; Adlan, Tarig; Gay, David; Roobottom, Carl; Dubbins, Paul; Riordan, Richard
2015-09-01
The aim of this study was to compare the sensitivity and specificity of chest digital tomosynthesis (DTS) with chest radiography (CXR) for the detection of noncalcified pulmonary nodules and hilar lesions using computed tomography (CT) as the reference standard. A total of 78 patients with suspected noncalcified pulmonary lesions on CXR were included in the study. Two radiologists, blinded to the history and CT, analyzed the CXR and the DTS images (separately), whereas a third radiologist analyzed the CXR and DTS images together. Noncalcified intrapulmonary nodules and hilar lesions were recorded for analysis. The interobserver agreement for CXR and DTS was assessed, and the time taken to report the images was recorded. A total of 202 lesions were recorded in 78 patients. There were 111 true lesions confirmed on CT in 53 patients; in 25 patients subsequent CT excluded a lesion. The overall sensitivity was 32% for CXR and 49% for DTS. This improved to 54% when the posteroanterior CXR and DTS were reviewed together (CXR-DTS). The overall specificities for CXR, DTS, and CXR-DTS were 49%, 96%, and 98%, respectively. There were 56 suspected hilar lesions with subgroup sensitivities of 76% for CXR, 65% for DTS, and 76% for CXR-DTS. The specificity for hilar lesions was 59%, 92%, and 97% for CXR, DTS, and CXR-DTS, respectively. DTS significantly improves the detectability of noncalcified nodules when compared with and when used in combination with CXR. The specificity and interobserver agreement of DTS in the diagnosis of suspected noncalcified pulmonary nodules and hilar lesions are significantly better than those of CXR and approaches those of CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krementz, Dan; Rose, David; Dunsmuir, Mike
2014-02-06
The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24” diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. Aftermore » reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18” in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24” in diameter and ~11 feet long from a dry transfer cask to the basin. The 18” and 24” applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with different diameters and lengths would likely be on the same order of magnitude as the Basin Modifications project. The cost of a DTS capability is affected by the number of design variations of different vendor transport and dry transfer casks to be considered for design input. Some costs would be incurred for each vendor DTS to be handled. For example, separate analyses would be needed for each dry transfer cask type such as criticality, shielding, dropping a dry transfer cask and basket, handling and auxiliary equipment, procedures, operator training, readiness assessments, and operational readiness reviews. A DTS handling capability in L-Area could serve as a backup to the Shielded Transfer System (STS) for unloading long casks and could support potential future missions such as the Idaho National Laboratory (INL) Exchange or transferring UNF from wet to dry storage.« less
An online dispatcher training simulator function for real-time analysis and training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadari, S.V.; Montstream, M.J.; Ross, H.B. Jr.
1995-11-01
Today`s power systems have become so complex that it is not easy for the system dispatcher to realistically predict the results of outages. The situation is compounded whenever the power grid is not in its normal configuration due to maintenance switching or equipment failure. The authors feel that the DTS is an excellent tool that can be used to teach the dispatcher how to react under these conditions. In this paper, the authors present an on-line implementation of the DTS which allows the user to initialize the DTS to an EMS disturbance using data that was captured at the timemore » of the disturbance; and place the DTS in a playback mode and go back to specific times in the scenario. The former feature allows the analyst to investigate EMS disturbances and then train the various dispatchers to be able to recognize such disturbances and to recover from them when they occur. The latter feature allows the instructor (with the trainee) to review and re-experience desired portions of the scenario. It is the authors` feeling that these two features will help the EMS operational staff understand their power system better and help their dispatchers in dealing with operational problems associated with the proper running of the system.« less
De Silvestro, A; Martini, K; Becker, A S; Kim-Nguyen, T D L; Guggenberger, R; Calcagni, M; Frauenfelder, T
2018-02-01
To prospectively investigate digital tomosynthesis (DTS) as an alternative to digital radiography (DR) for postoperative imaging of orthopaedic hardware after trauma or arthrodesis in the hand and wrist. Thirty-six consecutive patients (12 female, median age 36 years, range 19-86 years) were included in this institutional review board approved clinical trial. Imaging was performed with DTS in dorso-palmar projection and DR was performed in dorso-palmar, lateral, and oblique views. Images were evaluated by two independent radiologists for qualitative and diagnosis-related imaging parameters using a four-point Likert scale (1=excellent, 4not diagnostic) and nominal scale. Interobserver agreement between the two readers was assessed with Cohen's kappa (k). Differences between DTS and CR were tested with Wilcoxon's signed-rank test. A p-value <0.05 was considered statistically significant. Regarding image quality, interobserver agreement was higher for DTS compared to DR, especially for fracture-related parameters (delineation osteosynthesis material [OSM]: K DTS 0.96 versus K DR 0.45; delineation fracture margins: K DTS 0.78 versus K DR 0.35). Delineation of fracture margins and delineation of adjacent joint spaces scored significant better for DTS compared to DR (delineation fracture margins: DTS1.54, DR2.28, p0.001; delineation adjacent joint spaces: DTS1.31, DR2.24, p0.001). Regarding diagnosis-related findings, interobserver agreement was almost equal. DTS showed a significant higher sharpness of fracture margins (DTS1.94, DR2.33, p0.04). Mean dose area product (DAP) for DTS was significant higher compared to DR (mean DR0.219 Gy·cm 2 , mean DTS0.903 Gy·cm 2 , p0.001). Fracture healing is more visible and interobserver agreement is higher for DTS compared to DR in the postoperative assessment of orthopaedic hardware in the hand and wrist. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2016-06-29
To address the critical site characterization and monitoring needs for Enhance Geothermal Systems (EGS) programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2011 a contract to design, build and test a high temperature fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying a large number of 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor podmore » design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-4.0 at frequencies over 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The data telemetry fibers used for the seismic vector sensors in the system are also used to simultaneously record Distributed Temperature Sensor (DTS) and Distributed Acoustic Sensor (DAS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
NASA Astrophysics Data System (ADS)
Davis, K. A.; Reid, E. C.; Cohen, A. L.
2016-02-01
Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.
The Effects of Time Advance Mechanism on Simple Agent Behaviors in Combat Simulations
2011-12-01
modeling packages that illustrate the differences between discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat... DES ) models , often referred to as “next-event” (Law and Kelton 2000) or discrete time simulation (DTS), commonly referred to as “time-step.” DTS...discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat models use DTS as their simulation time advance mechanism
SU-D-BRF-04: Digital Tomosynthesis for Improved Daily Setup in Treatment of Liver Lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, H; Jones, B; Miften, M
Purpose: Daily localization of liver lesions with cone-beam CT (CBCT) is difficult due to poor image quality caused by scatter, respiratory motion, and the lack of radiographic contrast between the liver parenchyma and the lesion(s). Digital tomosynthesis (DTS) is investigated as a modality to improve liver visualization and lesion/parenchyma contrast for daily setup. Methods: An in-house tool was developed to generate DTS images using a point-by-point filtered back-projection method from on-board CBCT projection data. DTS image planes are generated in a user defined orientation to visualize the anatomy at various depths. Reference DTS images are obtained from forward projection ofmore » the planning CT dataset at each projection angle. The CBCT DTS image set can then be registered to the reference DTS image set as a means for localization. Contour data from the planning CT's associate RT Structure file and forward projected similarly to the planning CT data. DTS images are created for each contoured structure, which can then be overlaid onto the DTS images for organ volume visualization. Results: High resolution DTS images generated from CBCT projections show fine anatomical detail, including small blood vessels, within the patient. However, the reference DTS images generated from forward projection of the planning CT lacks this level of detail due to the low resolution of the CT voxels as compared to the pixel size in the projection images; typically 1mm-by-1mm-by-3mm (lat, vrt, lng) for the planning CT vs. 0.4mm-by-0.4mm for CBCT projections. Overlaying of the contours onto the DTS image allows for visualization of structures of interest. Conclusion: The ability to generate DTS images over a limited range of projection angles allows for reduction in the amount of respiratory motion within each acquisition. DTS may provide improved visualization of structures and lesions as compared to CBCT for highly mobile tumors.« less
Liu, Shifeng; Guo, Jian; Hu, Xiaokun; Zhang, Hao; Shang, Qingjun; Xu, Wenjian; Feng, Weihua
2015-07-07
To investigate the value of X-ray digital tomosynthesis (DTS) in the diagnosis of urinary stones compared with kidney ureter bladder radiography. Between February 2011 and February 2012, 80 consecutively enrolled patients with urinary stones proved by UMDCT, the total number of which was 138, underwent additional DTS and KUB (kidney, ureter and bladder) then the number of stones and the proportions (the sensitivity of detecting stones) were recorded under all kinds of circumstances. Any two cases were selected in comparison with each other among the following four cases (DTS and KUB before and after bowel preparation).The data from all cases were statistically processed by chi-square test of four-fold table. The diagnostic sensitivity of DTS before and after bowel preparation, KUB before and after preparation were 94.2%, 96.4%, 47.8% and 66.7%, respectively. No significant differences between DTS before bowel preparation and DTS after bowel preparation were found. Significant differences were observed in other five ways. DTS is hardly affected by intestinal gas, feces and bones compared with KUB. Use of DTS results in improved detection rate and definition of stones with the same positioning function as KUB.
Brady's Geothermal Field Distributed Temperature Sensing Data
Patterson, Jeremy
2016-03-26
This submission is an 8 day time history of vertical temperature measurements in Brady observation well 56-1 collected during the PoroTomo field experiment. The data was collected with a fiber-optic DTS system installed to a depth of 372 m below wellhead. DTS installation uses a double-loop set up. Data includes forward length and backward length temperature measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Rana, V; Setlur Nagesh, S
2014-06-15
Purpose: Our real-time skin dose tracking system (DTS) has been upgraded to monitor dose for the micro-angiographic fluoroscope (MAF), a high-resolution, small field-of-view x-ray detector. Methods: The MAF has been mounted on a changer on a clinical C-Arm gantry so it can be used interchangeably with the standard flat-panel detector (FPD) during neuro-interventional procedures when high resolution is needed in a region-of-interest. To monitor patient skin dose when using the MAF, our DTS has been modified to automatically account for the change in scatter for the very small MAF FOV and to provide separated dose distributions for each detector. Themore » DTS is able to provide a color-coded mapping of the cumulative skin dose on a 3D graphic model of the patient. To determine the correct entrance skin exposure to be applied by the DTS, a correction factor was determined by measuring the exposure at the entrance surface of a skull phantom with an ionization chamber as a function of entrance beam size for various beam filters and kVps. Entrance exposure measurements included primary radiation, patient backscatter and table forward scatter. To allow separation of the dose from each detector, a parameter log is kept that allows a replay of the procedure exposure events and recalculation of the dose components.The graphic display can then be constructed showing the dose distribution from the MAF and FPD separately or together. Results: The DTS is able to provide separate displays of dose for the MAF and FPD with field-size specific scatter corrections. These measured corrections change from about 49% down to 10% when changing from the FPD to the MAF. Conclusion: The upgraded DTS allows identification of the patient skin dose delivered when using each detector in order to achieve improved dose management as well as to facilitate peak skin-dose reduction through dose spreading. Research supported in part by Toshiba Medical Systems Corporation and NIH Grants R43FD0158401, R44FD0158402 and R01EB002873.« less
Hoes, O A C; Schilperoort, R P S; Luxemburg, W M J; Clemens, F H L R; van de Giesen, N C
2009-12-01
A newly developed technique using distributed temperature sensing (DTS) has been developed to find illicit household sewage connections to storm water systems in the Netherlands. DTS allows for the accurate measurement of temperature along a fiber-optic cable, with high spatial (2m) and temporal (30s) resolution. We inserted a fiber-optic cable of 1300m in two storm water drains. At certain locations, significant temperature differences with an intermittent character were measured, indicating inflow of water that was not storm water. In all cases, we found that foul water from households or companies entered the storm water system through an illicit sewage connection. The method of using temperature differences for illicit connection detection in storm water networks is discussed. The technique of using fiber-optic cables for distributed temperature sensing is explained in detail. The DTS method is a reliable, inexpensive and practically feasible method to detect illicit connections to storm water systems, which does not require access to private property.
A system to track skin dose for neuro-interventional cone-beam computed tomography (CBCT)
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Rudin, Stephen; Bednarek, Daniel R.
2016-03-01
The skin-dose tracking system (DTS) provides a color-coded illustration of the cumulative skin-dose distribution on a closely-matching 3D graphic of the patient during fluoroscopic interventions in real-time for immediate feedback to the interventionist. The skin-dose tracking utility of DTS has been extended to include cone-beam computed tomography (CBCT) of neurointerventions. While the DTS was developed to track the entrance skin dose including backscatter, a significant part of the dose in CBCT is contributed by exit primary radiation and scatter due to the many overlapping projections during the rotational scan. The variation of backscatter inside and outside the collimated beam was measured with radiochromic film and a curve was fit to obtain a scatter spread function that could be applied in the DTS. Likewise, the exit dose distribution was measured with radiochromic film for a single projection and a correction factor was determined as a function of path length through the head. Both of these sources of skin dose are added for every projection in the CBCT scan to obtain a total dose mapping over the patient graphic. Results show the backscatter to follow a sigmoidal falloff near the edge of the beam, extending outside the beam as far as 8 cm. The exit dose measured for a cylindrical CTDI phantom was nearly 10 % of the entrance peak skin dose for the central ray. The dose mapping performed by the DTS for a CBCT scan was compared to that measured with radiochromic film and a CTDI-head phantom with good agreement.
NASA Astrophysics Data System (ADS)
Ochoa, C. G.; Cram, D.; Hatch, C. E.; Tyler, S. W.
2014-12-01
Distributed temperature sensing (DTS) technology offers a viable alternative for accurately measuring wildland fire intensity and distribution in real time applications. We conducted an experiment to test the use of DTS as an alternative technology to monitor prescribed fire temperatures in real time and across a broad spatial scale. The custom fiber-optic cable consisted of three fiber optic lines buffered by polyamide, copper, and polyvinyl chloride, respectively, each armored in a stainless steel tube backfilled with Nitrogen gas. The 150 m long cable was deployed in three different 20 by 26 m experimental plots of short-grass rangeland in central New Mexico. Cable was arranged to maximize coverage of the experimental plots and allow cross-comparison between two main parallel straight-line sections approximately 8 m apart. A DTS system recorded fire temperatures every three seconds and integrated every one meter. A series of five thermocouples attached to a datalogger were placed at selected locations along the cable and also recorded temperature data every three seconds on each fiber. Results indicate that in general there is good agreement between thermocouple-measured and DTS-measured temperatures. A close match in temperature between DTS and thermocouples was particularly observed during the rising limb but not so much during the decline. The metal armoring of the fiber-optic cable remained hot longer than the thermocouples after the flames had passed. The relatively short-duration, high-intensity, prescribed burn fire in each plot resulted in temperatures reaching up to 450 degrees Celsius. In addition, DTS data allow for illustration of the irregular nature of flame speed and travel path across the rangeland grasses, a phenomenon that was impossible to quantify without the use of this tool. This study adds to the understanding of using DTS as a new alternative tool for better characterizing wildland fire intensity, distribution and travel patterns, and establishes the baseline for expanding these test plot results to larger spatial scales.
NASA Astrophysics Data System (ADS)
Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.
2013-12-01
Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow and heat transport model (HydroGeoSphere). Subsequently, time series of vertical groundwater fluxes were computed based on the high-resolution vertical streambed sediment temperature profiles by coupling the model with PEST. The calculated vertical flux time series show spatial differences in discharge between the two HR-DTS sites. A similar temporal variability in vertical fluxes at the two test sites can also be observed, most likely linked to rainfall-runoff processes. The effect of solar radiation as streambed conduction is visible both at the exposed and shaded test site in form of increased diel temperature oscillations up to 14 cm depth from the streambed surface, with the test site exposed to solar radiation showing larger diel temperature oscillations.
A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
Yan, Hui; Dai, Jian-Rong
2016-03-08
Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two-dimensional kV projections covering a narrow scan angles. Comparing with conventional cone-beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic process-ing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone-beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU-based algorithm and CPU-based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU-based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU-based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU-based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy.
Grosso, Maurizio; Priotto, Roberto; Ghirardo, Donatella; Talenti, Alberto; Roberto, Emanuele; Bertolaccini, Luca; Terzi, Alberto; Chauvie, Stéphane
2017-08-01
To compare the lung nodules' detection of digital tomosynthesis (DTS) and computed tomography (CT) in the context of the SOS (Studio OSservazionale) prospective screening program for lung cancer detection. One hundred and thirty-two of the 1843 subjects enrolled in the SOS study underwent CT because non-calcified nodules with diameters larger than 5 mm and/or multiple nodules were present in DTS. Two expert radiologists reviewed the exams classifying the nodules based on their radiological appearance and their dimension. LUNG-RADS classification was applied to compare receiver operator characteristics curve between CT and DTS with respect to final diagnosis. CT was used as gold standard. DTS and CT detected 208 and 179 nodules in the 132 subjects, respectively. Of these 208 nodules, 189 (91%) were solid, partially solid, and ground glass opacity. CT confirmed 140/189 (74%) of these nodules but found 4 nodules that were not detected by DTS. DTS and CT were concordant in 62% of the cases applying the 5-point LUNG-RADS scale. The concordance rose to 86% on a suspicious/non-suspicious binary scale. The areas under the curve in receiver operator characteristics were 0.89 (95% CI 0.83-0.94) and 0.80 (95% CI 0.72-0.89) for CT and DTS, respectively. The mean effective dose was 0.09 ± 0.04 mSv for DTS and 4.90 ± 1.20 mSv for CT. The use of a common classification for nodule detection in DTS and CT helps in comparing the two technologies. DTS detected and correctly classified 74% of the nodules seen by CT but lost 4 nodules identified by CT. Concordance between DTS and CT rose to 86% of the nodules when considering LUNG-RADS on a binary scale.
Distributed optical fiber-based monitoring approach of spatial seepage behavior in dike engineering
NASA Astrophysics Data System (ADS)
Su, Huaizhi; Ou, Bin; Yang, Lifu; Wen, Zhiping
2018-07-01
The failure caused by seepage is the most common one in dike engineering. As to the characteristics of seepage in dike, such as longitudinal extension engineering, the randomness, strong concealment and small initial quantity order, by means of distributed fiber temperature sensor system (DTS), adopting an improved optical fiber layer layout scheme, the location of initial interpolation point of the saturation line is obtained. With the barycentric Lagrange interpolation collocation method (BLICM), the infiltrated surface of dike full-section is generated. Combined with linear optical fiber monitoring seepage method, BLICM is applied in an engineering case, which shows that a real-time seepage monitoring technique is presented in full-section of dike based on the combination method.
Quaia, Emilio; Baratella, Elisa; Poillucci, Gabriele; Gennari, Antonio Giulio; Cova, Maria Assunta
2016-08-01
To assess the actual diagnostic impact of digital tomosynthesis (DTS) in oncologic patients with suspected pulmonary lesions on chest radiography (CXR). A total of 237 patients (135 male, 102 female; age, 70.8 ± 10.4 years) with a known primary malignancy and suspected pulmonary lesion(s) on CXR and who underwent DTS were retrospectively identified. Two radiologists (experience, 10 and 15 years) analysed in consensus CXR and DTS images and proposed a diagnosis according to a confidence score: 1 or 2 = definitely or probably benign pulmonary or extrapulmonary lesion, or pseudolesion; 3 = indeterminate; 4 or 5 = probably or definitely pulmonary lesion. DTS findings were proven by CT (n = 114 patients), CXR during follow-up (n = 105) or histology (n = 18). Final diagnoses included 77 pulmonary opacities, 26 pulmonary scars, 12 pleural lesions and 122 pulmonary pseudolesions. DTS vs CXR presented a higher (P < 0.05) sensitivity (92 vs 15 %), specificity (91 vs 9 %), overall accuracy (92 vs 12 %), and diagnostic confidence (area under ROC, 0.997 vs 0.619). Mean effective dose of CXR vs DTS was 0.06 vs 0.107 mSv (P < 0.05). DTS improved diagnostic accuracy and confidence in comparison to CXR alone in oncologic patients with suspected pulmonary lesions on CXR with only a slight, though significant, increase in radiation dose. • Digital tomosynthesis (DTS) improves accuracy of chest radiography (CXR) in oncologic patients. • DTS improves confidence of CXR in oncologic patients. • DTS allowed avoidance of CT in about 50 % of oncologic patients.
Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.; ...
2017-09-13
Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less
Thomson, Stuart A J; Niklas, Jens; Mardis, Kristy L; Mallares, Christopher; Samuel, Ifor D W; Poluektov, Oleg G
2017-10-19
Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2 ) 2 , DTS(F 2 BTTh 2 ) 2 , DTS(PTTh 2 ) 2 , DTG(FBTTh 2 ) 2 and DTG(F 2 BTTh 2 ) 2 ) with the fullerene derivative PC 61 BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2 ) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2 ) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh 2 ) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.
Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less
NASA Astrophysics Data System (ADS)
Euser, T.; Luxemburg, W. M. J.; Everson, C. S.; Mengistu, M. G.; Clulow, A. D.; Bastiaanssen, W. G. M.
2014-06-01
The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on vertical dry and wet bulb temperature profiles with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the vertical was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (R2 = 0.91), surface layer scintillometer (R2 = 0.81) and surface renewal (R2 = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained.
Rana, V K; Rudin, S; Bednarek, D R
2016-09-01
Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be in the beam. The calculations are done in real-time with a typical graphic update time of 30 ms and an average vertex separation of 3 mm. With appropriate corrections applied, the Biplane-DTS was able to determine the entrance dose within 6% and the spatial distribution of the dose within 4% compared to the measurements with the ionization chamber and film for the SK150 head phantom. The cumulative dose for overlapping fields from both gantries showed similar agreement. The Biplane-DTS can provide a good estimate of the peak skin dose and cumulative skin dose distribution during biplane neurointerventional procedures. Real-time display of this information should help the physician manage patient dose to reduce the risk of radiation-induced skin injuries.
Rana, V. K.; Rudin, S.; Bednarek, D. R.
2016-01-01
Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be in the beam. The calculations are done in real-time with a typical graphic update time of 30 ms and an average vertex separation of 3 mm. With appropriate corrections applied, the Biplane-DTS was able to determine the entrance dose within 6% and the spatial distribution of the dose within 4% compared to the measurements with the ionization chamber and film for the SK150 head phantom. The cumulative dose for overlapping fields from both gantries showed similar agreement. Conclusions: The Biplane-DTS can provide a good estimate of the peak skin dose and cumulative skin dose distribution during biplane neurointerventional procedures. Real-time display of this information should help the physician manage patient dose to reduce the risk of radiation-induced skin injuries. PMID:27587043
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, V. K., E-mail: vkrana@buffalo.edu
Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, amore » data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be in the beam. The calculations are done in real-time with a typical graphic update time of 30 ms and an average vertex separation of 3 mm. With appropriate corrections applied, the Biplane-DTS was able to determine the entrance dose within 6% and the spatial distribution of the dose within 4% compared to the measurements with the ionization chamber and film for the SK150 head phantom. The cumulative dose for overlapping fields from both gantries showed similar agreement. Conclusions: The Biplane-DTS can provide a good estimate of the peak skin dose and cumulative skin dose distribution during biplane neurointerventional procedures. Real-time display of this information should help the physician manage patient dose to reduce the risk of radiation-induced skin injuries.« less
Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements
NASA Astrophysics Data System (ADS)
Schilperoort, Bart; Coenders-Gerrits, Miriam; Luxemburg, Willem; Jiménez Rodríguez, César; Cisneros Vaca, César; Savenije, Hubert
2018-01-01
Rapid improvements in the precision and spatial resolution of distributed temperature sensing (DTS) technology now allow its use in hydrological and atmospheric sciences. Introduced by ) is the use of DTS for measuring the Bowen ratio (BR-DTS), to estimate the sensible and latent heat flux. The Bowen ratio is derived from DTS-measured vertical profiles of the air temperature and wet-bulb temperature. However, in previous research the measured temperatures were not validated, and the cables were not shielded from solar radiation. Additionally, the BR-DTS method has not been tested above a forest before, where temperature gradients are small and energy storage in the air column becomes important. In this paper the accuracy of the wet-bulb and air temperature measurements of the DTS are verified, and the resulting Bowen ratio and heat fluxes are compared to eddy covariance data. The performance of BR-DTS was tested on a 46 m high tower in a mixed forest in the centre of the Netherlands in August 2016. The average tree height is 26 to 30 m, and the temperatures are measured below, in, and above the canopy. Using the vertical temperature profiles the storage of latent and sensible heat in the air column was calculated. We found a significant effect of solar radiation on the temperature measurements, leading to a deviation of up to 3 K. By installing screens, the error caused by sunlight is reduced to under 1 K. Wind speed seems to have a minimal effect on the measured wet-bulb temperature, both below and above the canopy. After a simple quality control, the Bowen ratio measured by DTS correlates well with eddy covariance (EC) estimates (r2 = 0.59). The average energy balance closure between BR-DTS and EC is good, with a mean underestimation of 3.4 W m-2 by the BR-DTS method. However, during daytime the BR-DTS method overestimates the available energy, and during night-time the BR-DTS method estimates the available energy to be more negative. This difference could be related to the biomass heat storage, which is neglected in this study. The BR-DTS method overestimates the latent heat flux on average by 18.7 W m-2, with RMSE = 90 W m-2. The sensible heat flux is underestimated on average by 10.6 W m-2, with RMSE = 76 W m-2. Estimates of the BR-DTS can be improved once the uncertainties in the energy balance are reduced. However, applying, for example, Monin-Obukhov similarity theory could provide independent estimates for the sensible heat flux. This would make the determination of the highly uncertain and difficult to determine net available energy redundant.
A software tool of digital tomosynthesis application for patient positioning in radiotherapy
Dai, Jian‐Rong
2016-01-01
Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two‐dimensional kV projections covering a narrow scan angles. Comparing with conventional cone‐beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic processing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone‐beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU‐based algorithm and CPU‐based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU‐based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU‐based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU‐based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy. PACS number(s): 87.57.nf PMID:27074482
NASA Astrophysics Data System (ADS)
Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.
2015-12-01
The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations of the collected data to investigate the impact on soil moisture dynamics of i) forest evolution (long timescale), (ii) seasonality and, (iii) high-frequency forcing, are discussed.
NASA Astrophysics Data System (ADS)
Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten
2016-04-01
This contribution describes a feasibility study carried out in the laboratory for the detection of leakages in lake pressure pipes using high-resolution fiber-optic temperature measurements (DTS). The usage of the DTS technology provides spatiotemporal high-resolution temperature measurements along a fibre optic cable. An opto-electrical device serves both as a light emitter as well as a spectrometer for measuring the scattering of light. The fiber optic cable serves as linear sensor. Measurements can be taken at a spatial resolution of up to 25 cm with a temperature accuracy of higher than 0.1 °C. The first warmer days after the winter stagnation provoke a temperature rise of superficial layers of lakes with barely stable temperature stratification. The warmer layer in the epilimnion differs 4 °C to 5 °C compared to the cold layers in the meta- or hypolimnion before water circulation in spring starts. The warmer water from the surface layer can be rinsed on the entire length of the pipe. Water intrudes at leakages by generating a slightly negative pressure in the pipe. This provokes a local temperature change, in case that the penetrating water (seawater) differs in temperature from the water pumped through the pipe. These temperature changes should be detectable and localized with a DTS cable introduced in the pipe. A laboratory experiment was carried out to determine feasibility as well as limits and problems of this methodology. A 6 m long pipe, submerged in a water tank at constant temperature, was rinsed with water 5-10 °C warmer than the water in the tank. Temperature measurements were taken continuously along the pipe. A negative pressure of 0.1 bar provoked the intrusion of colder water from the tank into the pipe through the leakages, resulting in local temperature changes. Experiments where conducted with different temperature gradients, leakage sizes, number of leaks as well as with different positioning of the DTS cable inside the pipe. Results showed that already small leakages (4mm) can be detected. Problems have arisen from the inside positioning of DTS cable, measuring a reduced temperature difference in the transition layer at the inside wall of the pipe.
NASA Astrophysics Data System (ADS)
Hausner, M. B.; Suarez, F. I.; Cousiño, J. A.; Victorero, F.; Bonilla, C. A.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Leiva, E.; Pasten, P.
2015-12-01
Technological innovations used for sustainable urban development, green roofs offer a range of benefits, including reduced heat island effect, rooftop runoff, roof surface temperatures, energy consumption, and noise levels inside buildings, as well as increased urban biodiversity. Green roofs feature layered construction, with the most important layers being the vegetation and the substrate layers located above the traditional roof. These layers provide both insulation and warm season cooling by latent heat flux, reducing the thermal load to the building. To understand and improve the processes driving this thermal energy reduction, it is important to observe the thermal dynamics of a green roof at the appropriate spatial and temporal scales. Traditionally, to observe the thermal behavior of green roofs, a series of thermocouples have been installed at discrete depths within the layers of the roof. Here, we present a vertical high-resolution distributed-temperature-sensing (DTS) system installed in different green roof modules of the Laboratory of Vegetated Infrastructure for Buildings (LIVE -its acronym in Spanish) of the Pontifical Catholic University of Chile. This DTS system allows near-continuous measurement of the thermal profile at spatial and temporal resolutions of approximately 1 cm and 30 s, respectively. In this investigation, the temperature observations from the DTS system are compared with the measurements of a series of thermocouples installed in the green roofs. This comparison makes it possible to assess the value of thermal observations at better spatial and temporal resolutions. We show that the errors associated with lower resolution observations (i.e., from the thermocouples) are propagated in the calculations of the heat fluxes through the different layers of the green roof. Our results highlight the value of having a vertical high-resolution DTS system to observe the thermal dynamics in green roofs.
NCAR Earth Observing Laboratory's Data Tracking System
NASA Astrophysics Data System (ADS)
Cully, L. E.; Williams, S. F.
2014-12-01
The NCAR Earth Observing Laboratory (EOL) maintains an extensive collection of complex, multi-disciplinary datasets from national and international, current and historical projects accessible through field project web pages (https://www.eol.ucar.edu/all-field-projects-and-deployments). Data orders are processed through the EOL Metadata Database and Cyberinfrastructure (EMDAC) system. Behind the scenes is the institutionally created EOL Computing, Data, and Software/Data Management Group (CDS/DMG) Data Tracking System (DTS) tool. The DTS is used to track the complete life cycle (from ingest to long term stewardship) of the data, metadata, and provenance for hundreds of projects and thousands of data sets. The DTS is an EOL internal only tool which consists of three subsystems: Data Loading Notes (DLN), Processing Inventory Tool (IVEN), and Project Metrics (STATS). The DLN is used to track and maintain every dataset that comes to the CDS/DMG. The DLN captures general information such as title, physical locations, responsible parties, high level issues, and correspondence. When the CDS/DMG processes a data set, IVEN is used to track the processing status while collecting sufficient information to ensure reproducibility. This includes detailed "How To" documentation, processing software (with direct links to the EOL Subversion software repository), and descriptions of issues and resolutions. The STATS subsystem generates current project metrics such as archive size, data set order counts, "Top 10" most ordered data sets, and general information on who has ordered these data. The DTS was developed over many years to meet the specific needs of the CDS/DMG, and it has been successfully used to coordinate field project data management efforts for the past 15 years. This paper will describe the EOL CDS/DMG Data Tracking System including its basic functionality, the provenance maintained within the system, lessons learned, potential improvements, and future developments.
Tamiru, Afework; Boulanger, Lucy; Chang, Michelle A; Malone, Joseph L; Aidoo, Michael
2015-01-21
Rapid diagnostic tests (RDTs) are now widely used for laboratory confirmation of suspected malaria cases to comply with the World Health Organization recommendation for universal testing before treatment. However, many malaria programmes lack quality control (QC) processes to assess RDT use under field conditions. Prior research showed the feasibility of using the dried tube specimen (DTS) method for preserving Plasmodium falciparum parasites for use as QC samples for RDTs. This study focused on the use of DTS for RDT QC and proficiency testing under field conditions. DTS were prepared using cultured P. falciparum at densities of 500 and 1,000 parasites/μL; 50 μL aliquots of these along with parasite negative human blood controls (0 parasites/μL) were air-dried in specimen tubes and reactivity verified after rehydration. The DTS were used in a field study in the Oromia Region of Ethiopia. Replicate DTS samples containing 0, 500 and 1,000 parasites/μL were stored at 4°C at a reference laboratory and at ambient temperatures at two nearby health facilities. At weeks 0, 4, 8, 12, 16, 20, and 24, the DTS were rehydrated and tested on RDTs stored under manufacturer-recommended temperatures at the RL and on RDTs stored under site-specific conditions at the two health facilities. Reactivity of DTS stored at 4°C at the reference laboratory on RDTs stored at the reference laboratory was considered the gold standard for assessing DTS stability. A proficiency-testing panel consisting of one negative and three positive samples, monitored with a checklist was administered at weeks 12 and 24. At all the seven time points, DTS stored at both the reference laboratory and health facility were reactive on RDTs stored under the recommended temperature and under field conditions, and the DTS without malaria parasites were negative. At the reference laboratory and one health facility, a 500 parasites/μL DTS from the proficiency panel was falsely reported as negative at week 24 due to errors in interpreting faint test lines. The DTS method can be used under field conditions to supplement other RDT QC methods and health worker proficiency in Ethiopia and possibly other malaria-endemic countries.
A parallel decision tree-based method for user authentication based on keystroke patterns.
Sheng, Yong; Phoha, Vir V; Rovnyak, Steven M
2005-08-01
We propose a Monte Carlo approach to attain sufficient training data, a splitting method to improve effectiveness, and a system composed of parallel decision trees (DTs) to authenticate users based on keystroke patterns. For each user, approximately 19 times as much simulated data was generated to complement the 387 vectors of raw data. The training set, including raw and simulated data, is split into four subsets. For each subset, wavelet transforms are performed to obtain a total of eight training subsets for each user. Eight DTs are thus trained using the eight subsets. A parallel DT is constructed for each user, which contains all eight DTs with a criterion for its output that it authenticates the user if at least three DTs do so; otherwise it rejects the user. Training and testing data were collected from 43 users who typed the exact same string of length 37 nine consecutive times to provide data for training purposes. The users typed the same string at various times over a period from November through December 2002 to provide test data. The average false reject rate was 9.62% and the average false accept rate was 0.88%.
2007-12-01
price dispersion at least as large as dispersion for traditional retailers for books, music CDs, and software offered through 52 Internet and...dispersion differences. For instance, for 22 old-hit albums , average price percentage differences are 31% on-line, compared to 11% off-line. But for 21...current-hit albums , differences are smaller at 18% on-line and 19% off-line. This suggests price dispersion levels are related to product
The value of X-ray digital tomosynthesis in the diagnosis of urinary calculi
Liu, Shifeng; Wang, Hong; Feng, Weihua; Hu, Xiaokun; Guo, Jian; Shang, Qingjun; Li, Zixiang; Yu, Hongsheng
2018-01-01
Urinary calculus is a common and recurrent condition that affects kidney function. The present study evaluated the use of digital tomosynthesis (DTS) and Kidneys-Ureters-Bladder (KUB) radiography as methods of diagnosing urinary calculi. Unenhanced multidetector computed tomography (UMDCT) was used in the diagnosis of calculi. KUB radiography and DTS procedures were conducted on patients prior to and following bowel preparation to detect kidney, ureteral and bladder calculi. Differences in diagnostic performance of KUB radiography and DTS imaging on prepared and unprepared bowel were evaluated using the χ2 test. The consistency of diagnostic results between two examining physicians was analyzed using the κ test. A total of 138 calculi from 80 patients were detected via UMDCT. The calculi detection rates of KUB prior to and following bowel preparation were 47.8 and 66.7% respectively, and the calculi detection rate of DTS prior to and following bowel preparation were 94.2 and 96.4%, respectively. The detection rates of calculi >5 mm via KUB prior to and following bowel preparation were 56.6 and 73.5% respectively, and in DTS they were 100% prior to and following bowel preparation. Economically, DTS performed on the unprepared bowel was the most cost effective, followed by DTS on the prepared bowel, KUB on the unprepared bowel and KUB on the prepared bowel. Therefore, the current study concluded that DTS may be an appropriate first-line imaging technique in patients with urinary calculi. PMID:29434761
The value of X-ray digital tomosynthesis in the diagnosis of urinary calculi.
Liu, Shifeng; Wang, Hong; Feng, Weihua; Hu, Xiaokun; Guo, Jian; Shang, Qingjun; Li, Zixiang; Yu, Hongsheng
2018-02-01
Urinary calculus is a common and recurrent condition that affects kidney function. The present study evaluated the use of digital tomosynthesis (DTS) and Kidneys-Ureters-Bladder (KUB) radiography as methods of diagnosing urinary calculi. Unenhanced multidetector computed tomography (UMDCT) was used in the diagnosis of calculi. KUB radiography and DTS procedures were conducted on patients prior to and following bowel preparation to detect kidney, ureteral and bladder calculi. Differences in diagnostic performance of KUB radiography and DTS imaging on prepared and unprepared bowel were evaluated using the χ 2 test. The consistency of diagnostic results between two examining physicians was analyzed using the κ test. A total of 138 calculi from 80 patients were detected via UMDCT. The calculi detection rates of KUB prior to and following bowel preparation were 47.8 and 66.7% respectively, and the calculi detection rate of DTS prior to and following bowel preparation were 94.2 and 96.4%, respectively. The detection rates of calculi >5 mm via KUB prior to and following bowel preparation were 56.6 and 73.5% respectively, and in DTS they were 100% prior to and following bowel preparation. Economically, DTS performed on the unprepared bowel was the most cost effective, followed by DTS on the prepared bowel, KUB on the unprepared bowel and KUB on the prepared bowel. Therefore, the current study concluded that DTS may be an appropriate first-line imaging technique in patients with urinary calculi.
Cavallini, Aldo; Rotelli, Maria Teresa; Lippolis, Catia; Piscitelli, Domenico; Digennaro, Rosa; Covelli, Claudia; Carella, Nicola; Accetturo, Matteo; Altomare, Donato Francesco
2017-06-27
Desmoid tumors (DT) are rare, benign, fibroblastic neoplasm with challenging histological diagnosis. DTs can occur sporadically or associated with the familial adenomatous polyposis coli (FAP). Most sporadic DTs are associated with β-catenin gene (CTNNB1) mutations, while mutated APC gene causes FAP disease. microRNAs (miRNAs) are involved in many human carcinogenesis.The miRNA profile was analyzed by microarray in formalin-fixed, paraffin-embedded (FFPE) specimens of 12 patients (8 sporadic, 4 FAP-associated) and 4 healthy controls. One hundred and one mRNAs resulted dysregulated, of which 98 in sporadic DTs and 8 in FAP-associated DTs, 5 were shared by both tumors. Twenty-six miRNAs were then validated by RT-qPCR in 23 sporadic and 7 FAP-associated DT samples matched with healthy controls. The qPCR method was also used to evaluate the CTNNB1 mutational status in sporadic DTs. The correlation between sporadic DTs and miRNA expression showed that miR-21-3p increased in mutated versus wild-type DTs, while miR-197-3p was decreased. The mRNA expression of Tetraspanin3 and Serpin family A member 3, as miR-21-3p targets, and L1 Cell Adhesion Molecule, as miR-197-3p target, was also evaluate. CTNNB1 mutations associated to miRNA dysregulation could affect the genesis and the progression of this disease and help histological diagnosis of sporadic DTs.
A dual-view digital tomosynthesis imaging technique for improved chest imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng
Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of themore » reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values computed using the digital chest phantom or the CBCT images as the reference in the simulation and experimental study, respectively. High-contrast wires with vertical, oblique, and horizontal orientations in a PA view plane were also imaged to investigate the spatial resolutions and how the wire signals spread in the PA view and lateral view slice images. Results: Both the digital phantom images (simulated) and the anthropomorphic phantom images (experimentally generated) demonstrated that the dual-view DTS technique resulted in improved spatial resolution in the depth (PA) direction, more accurate representation of the anatomy, and significantly reduced artifacts. The RMSD values corroborate well with visual observations with substantially lower RMSD values measured for the dual-view DTS images as compared to those measured for the single-view DTS images. The imaging experiment with the high-contrast wires shows that while the vertical and oblique wires could be resolved in the lateral view in both single- and dual-view DTS images, the horizontal wire could only be resolved in the dual-view DTS images. This indicates that with single-view DTS, the wire signals spread liberally to off-fulcrum planes and generated wire shadow there. Conclusions: The authors have demonstrated both visually and quantitatively that the dual-view DTS technique can be used to achieve more accurate rendition of the anatomy and to obtain slice images with improved resolution and reduced artifacts as compared to the single-view DTS technique, thus allowing the 3D image data to be viewed in views other than the PA view. These advantages could make the dual-view DTS technique useful in situations where better separation of the objects-of-interest from the off-fulcrum structures or more accurate 3D rendition of the anatomy are required while a regular CT examination is undesirable due to radiation dose considerations.« less
Patel, J; Granger, C; Parker, S; Patel, M
2017-01-01
This in-vitro study investigated the effect of 'instrument lubricants' used during placement of composite restorative material, on the diametral tensile strength (DTS) and water uptake of composite specimens. 300 posterior composite cylindrical specimens were manufactured: 60 with each instrument lubricant (ethanol, 3-step, 2-step and 1-step 'bonding agent') and 60 with no lubricant (controls). Each set of 60 specimens was evenly allocated to one of the following test groups (n=100/group): Group 1 - tested for DTS immediately after manufacture; Groups 2 and 3 - tested for DTS after immersion in phosphate-buffered saline (PBS) for 1 and 12-weeks respectively, using a Universal Instron machine. Water uptake was assessed gravimetrically. Data were statistically analysed with two-way ANOVA and Tukey's post hoc test (α=0.05). The mean DTS and percentage weight change of composite specimens ranged between 32.49-53.14MPa and 0.51-1.36% and varied with lubricant used and time incubated in PBS. All control groups exhibited significantly higher DTS (MPa) (groups 1-3: 53.17±1.78; 50.64±1.85; 45.17±1.77) and lower percentage weight change (groups 2-3: 0.51±0.03; 0.61±0.01) than specimens placed with an instrument lubricant, with significant differences between certain lubricant groups. Data from the present study suggest that the use of instrument lubricant may adversely effect the DTS and water uptake of composite restorative material. The use of instrument lubricants to aid composite placement is widespread however based on the data obtained it is suggested that discontinuing or limiting the use of instrument lubricants, and if necessary using the 'bonding agent' from a 3-step adhesive system is recommended as results suggest this has the least deleterious effect upon material properties.. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bi, Peng-Qing; Wu, Bo; Zheng, Fei; Xu, Wei-Long; Yang, Xiao-Yu; Feng, Lin; Zhu, Furong; Hao, Xiao-Tao
2016-09-07
A small-molecule material, 7,7-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo-[c] [1,2,5]thiadiazole) (p-DTS(FBTTH2)2), was used to modify the morphology and electron-transport properties of the polymer blend of poly(3-hexythiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) bulk heterojunctions. As a result, a 24% increase in the power-conversion efficiency (PCE) of the p-DTS(FBTTH2)2:P3HT:PC71BM ternary organic solar cells (OSCs) is obtained. The improvement in the performance of OSCs is attributed to the constructive energy cascade path in the ternary system that benefits an efficient Förster resonance energy/charge transfer process between P3HT and p-DTS(FBTTH2)2, thereby improving photocurrent generation. It is shown that p-DTS(FBTTH2)2 molecules engage themselves at the P3HT/PC71BM interface. A combination of absorption enhancement, efficient energy transfer process, and ordered nanomorphology in the ternary system favors exciton dissociation and charge transportation in the polymer bulk heterojunction. The finding of this work reveals that distribution of the appropriate "guest" donor at the "host" donor/acceptor interface is an effective approach for attaining high-performance OSCs.
Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.
2008-01-01
Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.
Choo, Ji Yung; Lee, Ki Yeol; Yu, Ami; Kim, Je-Hyeong; Lee, Seung Heon; Choi, Jung Won; Kang, Eun-Young; Oh, Yu Whan
2016-09-01
To compare the diagnostic performance of digital tomosynthesis (DTS) and chest radiography for detecting airway abnormalities, using computed tomography (CT) as a reference. We evaluated 161 data sets from 149 patients (91 with and 70 without airway abnormalities) who had undergone radiography, DTS, and CT to detect airway problems. Radiographs and DTS were evaluated to localize and score the severity of the airway abnormalities, and to score the image quality using CT as a reference. Receiver operating characteristics (ROC), McNemar's test, weighted kappa, and the paired t-test were used for statistical analysis. The sensitivity of DTS was higher (reader 1, 93.51 %; reader 2, 94.29 %) than chest radiography (68.83 %; 71.43 %) in detecting airway lesions. The diagnostic accuracy of DTS (90.91 %; 94.70 %) was also significantly better than that of radiography (78.03 %; 82.58 %, all p < 0.05). DTS image quality was significantly better than chest radiography (1.83, 2.74; p < 0.05) in the results of both readers. The inter-observer agreement with respect to DTS findings was moderate and superior when compared to radiography findings. DTS is a more accurate and sensitive modality than radiography for detecting airway lesions that are easily obscured by soft tissue structures in the mediastinum. • Digital tomosynthesis offers new diagnostic options for airway lesions. • Digital tomosynthesis is more sensitive and accurate than radiography for airway lesions. • Digital tomosynthesis shows better image quality than radiography. • Assessment of lesion severity, via tomosynthesis is comparable to computed tomography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Z; Vijayan, S; Rana, V
2015-06-15
Purpose: A system was developed that automatically calculates the organ and effective dose for individual fluoroscopically-guided procedures using a log of the clinical exposure parameters. Methods: We have previously developed a dose tracking system (DTS) to provide a real-time color-coded 3D- mapping of skin dose. This software produces a log file of all geometry and exposure parameters for every x-ray pulse during a procedure. The data in the log files is input into PCXMC, a Monte Carlo program that calculates organ and effective dose for projections and exposure parameters set by the user. We developed a MATLAB program to readmore » data from the log files produced by the DTS and to automatically generate the definition files in the format used by PCXMC. The processing is done at the end of a procedure after all exposures are completed. Since there are thousands of exposure pulses with various parameters for fluoroscopy, DA and DSA and at various projections, the data for exposures with similar parameters is grouped prior to entry into PCXMC to reduce the number of Monte Carlo calculations that need to be performed. Results: The software developed automatically transfers data from the DTS log file to PCXMC and runs the program for each grouping of exposure pulses. When the dose from all exposure events are calculated, the doses for each organ and all effective doses are summed to obtain procedure totals. For a complicated interventional procedure, the calculations can be completed on a PC without manual intervention in less than 30 minutes depending on the level of data grouping. Conclusion: This system allows organ dose to be calculated for individual procedures for every patient without tedious calculations or data entry so that estimates of stochastic risk can be obtained in addition to the deterministic risk estimate provided by the DTS. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corp.« less
Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.
2013-01-01
Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.
Oravec, Daniel; Quazi, Abrar; Xiao, Angela; Yang, Ellen; Zauel, Roger; Flynn, Michael J; Yeni, Yener N
2015-12-01
Endplate morphology is understood to play an important role in the mechanical behavior of vertebral bone as well as degenerative processes in spinal tissues; however, the utility of clinical imaging modalities in assessment of the vertebral endplate has been limited. The objective of this study was to evaluate the ability of two clinical imaging modalities (digital tomosynthesis, DTS; high resolution computed tomography, HRCT) to assess endplate topography by correlating the measurements to a microcomputed tomography (μCT) standard. DTS, HRCT, and μCT images of 117 cadaveric thoracolumbar vertebrae (T10-L1; 23 male, 19 female; ages 36-100 years) were segmented, and inferior and superior endplate surface topographical distribution parameters were calculated. Both DTS and HRCT showed statistically significant correlations with μCT approaching a moderate level of correlation at the superior endplate for all measured parameters (R(2)Adj=0.19-0.57), including averages, variability, and higher order statistical moments. Correlation of average depths at the inferior endplate was comparable to the superior case for both DTS and HRCT (R(2)Adj=0.14-0.51), while correlations became weak or nonsignificant for higher moments of the topography distribution. DTS was able to capture variations in the endplate topography to a slightly better extent than HRCT, and taken together with the higher speed and lower radiation cost of DTS than HRCT, DTS appears preferable for endplate measurements. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Y. O.; Hong, D. K.; Cho, H. S.; Je, U. K.; Oh, J. E.; Lee, M. S.; Kim, H. J.; Lee, S. H.; Jang, W. S.; Cho, H. M.; Choi, S. I.; Koo, Y. S.
2013-09-01
In this paper, we introduce an effective imaging system for digital tomosynthesis (DTS) with a circular X-ray tube, the so-called circular-DTS (CDTS) system, and its image reconstruction algorithm based on the total-variation (TV) minimization method for low-dose, high-accuracy X-ray imaging. Here, the X-ray tube is equipped with a series of cathodes distributed around a rotating anode, and the detector remains stationary throughout the image acquisition. We considered a TV-based reconstruction algorithm that exploited the sparsity of the image with substantially high image accuracy. We implemented the algorithm for the CDTS geometry and successfully reconstructed images of high accuracy. The image characteristics were investigated quantitatively by using some figures of merit, including the universal-quality index (UQI) and the depth resolution. For selected tomographic angles of 20, 40, and 60°, the corresponding UQI values in the tomographic view were estimated to be about 0.94, 0.97, and 0.98, and the depth resolutions were about 4.6, 3.1, and 1.2 voxels in full width at half maximum (FWHM), respectively. We expect the proposed method to be applicable to developing a next-generation dental or breast X-ray imaging system.
Galea, Angela; Dubbins, Paul; Riordan, Richard; Adlan, Tarig; Roobottom, Carl; Gay, David
2015-05-01
To assess the capability of digital tomosynthesis (DTS) of the chest compared to a postero-anterior (PA) and lateral chest radiograph (CXR) in the diagnosis of suspected but unconfirmed pulmonary nodules and hilar lesions detected on a CXR. Computed tomography (CT) was used as the reference standard. 78 patients with suspected non-calcified pulmonary nodules or hilar lesions on their CXR were included in the study. Two radiologists, blinded to the history and CT, prospectively analysed the CXR (PA and lateral) and the DTS images using a picture archiving and communication workstation and were asked to designate one of two outcomes: true intrapulmonary lesion or false intrapulmonary lesion. A CT of the chest performed within 4 weeks of the CXR was used as the reference standard. Inter-observer agreement and time to report the modalities were calculated for CXR and DTS. There were 34 true lesions confirmed on CT, 12 were hilar lesions and 22 were peripheral nodules. Of the 44 false lesions, 37 lesions were artefactual or due to composite shadow and 7 lesions were real but extrapulmonary simulating non-calcified intrapulmonary lesions. The PA and lateral CXR correctly classified 39/78 (50%) of the lesions, this improved to 75/78 (96%) with DTS. The sensitivity and specificity was 0.65 and 0.39 for CXR and 0.91 and 1 for DTS. Based on the DTS images, readers correctly classified all the false lesions but missed 3/34 true lesions. Two of the missed lesions were hilar in location and one was a peripheral nodule. All three missed lesions were incorrectly classified on DTS as composite shadow. DTS improves diagnostic confidence when compared to a repeat PA and lateral CXR in the diagnosis of both suspected hilar lesions and pulmonary nodules detected on CXR. DTS is able to exclude most peripheral pulmonary nodules but caution and further studies are needed to assess its ability to exclude hilar lesions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Multivariate analysis for scanning tunneling spectroscopy data
NASA Astrophysics Data System (ADS)
Yamanishi, Junsuke; Iwase, Shigeru; Ishida, Nobuyuki; Fujita, Daisuke
2018-01-01
We applied principal component analysis (PCA) to two-dimensional tunneling spectroscopy (2DTS) data obtained on a Si(111)-(7 × 7) surface to explore the effectiveness of multivariate analysis for interpreting 2DTS data. We demonstrated that several components that originated mainly from specific atoms at the Si(111)-(7 × 7) surface can be extracted by PCA. Furthermore, we showed that hidden components in the tunneling spectra can be decomposed (peak separation), which is difficult to achieve with normal 2DTS analysis without the support of theoretical calculations. Our analysis showed that multivariate analysis can be an additional powerful way to analyze 2DTS data and extract hidden information from a large amount of spectroscopic data.
The Development of Dispatcher Training Simulator in a Thermal Energy Generation System
NASA Astrophysics Data System (ADS)
Hakim, D. L.; Abdullah, A. G.; Mulyadi, Y.; Hasan, B.
2018-01-01
A dispatcher training simulator (DTS) is a real-time Human Machine Interface (HMI)-based control tool that is able to visualize industrial control system processes. The present study was aimed at developing a simulator tool for boilers in a thermal power station. The DTS prototype was designed using technical data of thermal power station boilers in Indonesia. It was then designed and implemented in Wonderware Intouch 10. The resulting simulator came with component drawing, animation, control display, alarm system, real-time trend, historical trend. This application used 26 tagnames and was equipped with a security system. The test showed that the principles of real-time control worked well. It is expected that this research could significantly contribute to the development of thermal power station, particularly in terms of its application as a training simulator for beginning dispatchers.
Advances in Using Fiber-Optic Distributed Temperature Sensing to Identify the Mixing of Waters
NASA Astrophysics Data System (ADS)
Briggs, M. A.; Day-Lewis, F. D.; Rosenberry, D. O.; Harvey, J. W.; Lane, J. W., Jr.; Hare, D. K.; Boutt, D. F.; Voytek, E. B.; Buckley, S.
2014-12-01
Fiber-optic distributed temperature sensing (FO-DTS) provides thermal data through space and time along linear cables. When installed along a streambed, FO-DTS can capture the influence of upwelling groundwater (GW) as thermal anomalies. The planning of labor-intensive physical measurements can make use of FO-DTS data to target areas of focused GW discharge that can disproportionately affect surface-water (SW) quality and temperature. Typical longitudinal FO-DTS spatial resolution ranges 0.25 to1.0 m, and cannot resolve small-scale water-column mixing or sub-surface diurnal fluctuations. However, configurations where the cable is wrapped around rods can improve the effective vertical resolution to sub-centimeter scales, and the pipes can be actively heated to induce a thermal tracer. Longitudinal streambed and high-resolution vertical arrays were deployed at the upper Delaware River (PA, USA) and the Quashnet River (MA, USA) for aquatic habitat studies. The resultant datasets exemplify the varied uses of FO-DTS. Cold anomalies found along the Delaware River steambed coincide with zones of known mussel populations, and high-resolution vertical array data showed relatively stable in-channel thermal refugia. Cold anomalies at the Quashnet River identified in 2013 were found to persist in 2014, and seepage measurements and water samples at these locations showed high GW flux with distinctive chemistry. Cable location is paramount to seepage identification, particularly in faster flowing deep streams such as the Quashnet and Delaware Rivers where steambed FO-DTS identified many seepage zones with no surface expression. The temporal characterization of seepage dynamics are unique to FO-DTS. However, data from Tidmarsh Farms, a cranberry bog restoration site in MA, USA indicate that in slower flowing shallow steams GW inflow affects surface temperature; therefore infrared imaging can provide seepage location information similar to FO-DTS with substantially less effort.
NASA Astrophysics Data System (ADS)
Neilson, B. T.; Hatch, C. E.; Bingham, Q. G.; Tyler, S. W.
2008-12-01
In recent years, distributed temperature sensing (DTS) has enjoyed steady increases in the number and diversity of applications. Because fiber optic cables used for DTS are typically sheathed in dark materials resistant to UV deterioration, the question arises of how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures. Initial calculations of these affects considered: shortwave radiation as a function of time of day, water depth, and water clarity; fiber optic cable dimensions; and fluid velocity. These indicate that for clear waterbodies with low velocities and shallow depths, some heating on the cable is likely during peak daily solar radiation. Given higher water velocities, substantial increases in turbidity, and/or deeper water, there should be negligible solar heating on the cable. To confirm these calculations, a field study was conducted to test the effects of solar radiation by installing two types of fiber optic cable at multiple, uniform depths in a trapezoidal canal with constant flow determined by a controlled release from Porcupine Dam near Paradise, Utah. Cables were installed in water depths from 0.05 to 0.79 m in locations of faster (center of canal) and slower (sidewall) water velocities. Thermister strings were installed at the same depths, but shielded from solar radiation and designed to record absolute water temperatures. Calculations predict that at peak solar radiation, in combination with shallow depths and slow velocities, typical fiber-optic cable is likely to experience heating greater than the ambient water column. In this study, DTS data show differences of 0.1-0.2°C in temperatures as seen by cables separated vertically by 0.31 m on the sidewall and center of the channel. Corresponding thermister data showed smaller vertical differences (~0.03-0.1°C) suggesting thermal stratification was also present in the canal. However, the magnitude of the DTS differences could not be fully explained by stratification alone. Additional information from cables installed in a shallow, near-zero velocity pool showed significantly higher temperature differences with cable depth when compared to the cable in the higher-velocity canal flows. This indicates a higher potential for heating of fiber-optic cable in stagnant, shallow waters. With sufficient water velocities and depths, the effect of shortwave solar radiation on DTS measurement accuracy via heating of the fiber- optic cable is negligible. Particular care in experimental design is recommended in shallow or low-velocity systems, including consideration of solar radiation, and independent quantification of (or calibration for) absolute temperatures.
Analyzed DTS Data, Guelph, ON Canada
Coleman, Thomas
2015-07-01
Analyzed DTS datasets from active heat injection experiments in Guelph, ON Canada is included. A .pdf file of images including borehole temperature distributions, temperature difference distributions, temperature profiles, and flow interpretations is included as the primary analyzed dataset. Analyzed data used to create the .pdf images are included as a matlab data file that contains the following 5 types of data: 1) Borehole Temperature (matrix of temperature data collected in the borehole), 2) Borehole Temperature Difference (matrix of temperature difference above ambient for each test), 3) Borehole Time (time in both min and sec since the start of a DTS test), 4) Borehole Depth (channel depth locations for the DTS measurements), 5) Temperature Profiles (ambient, active, active off early time, active off late time, and injection).
NASA Astrophysics Data System (ADS)
Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.
2017-12-01
Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with retrievals from hyperspectral imaging spectroradiometer (AVIRIS) data. Initial evidence suggest fSCA was generally lower under canopy and that overall snow cover estimates were overestimated as a result. Implications for a canopy correction applicable to coarser-resolution sensors like MODIS are discussed, as are topography and view angle effects.
47 CFR 73.626 - DTV distributed transmission systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false DTV distributed transmission systems. 73.626... RADIO BROADCAST SERVICES Television Broadcast Stations § 73.626 DTV distributed transmission systems. (a... distributed transmission system (DTS). Except as expressly provided in this section, DTV stations operating a...
Dolan, Andrew T.; Diamond, Scott L.
2014-01-01
Resting platelets maintain a stable level of low cytoplasmic calcium ([Ca2+]cyt) and high dense tubular system calcium ([Ca2+]dts). During thrombosis, activators cause a transient rise in inositol trisphosphate (IP3) to trigger calcium mobilization from stores and elevation of [Ca2+]cyt. Another major source of [Ca2+]cyt elevation is store-operated calcium entry (SOCE) through plasmalemmal calcium channels that open in response to store depletion as [Ca2+]dts drops. A 34-species systems model employed kinetics describing IP3-receptor, DTS-plasmalemma puncta formation, SOCE via assembly of STIM1 and Orai1, and the plasmalemma and sarco/endoplasmic reticulum Ca2+-ATPases. Four constraints were imposed: calcium homeostasis before activation; stable in zero extracellular calcium; IP3-activatable; and functional SOCE. Using a Monte Carlo method to sample three unknown parameters and nine initial concentrations in a 12-dimensional space near measured or expected values, we found that model configurations that were responsive to stimuli and demonstrated significant SOCE required high inner membrane electric potential (>−70 mV) and low resting IP3 concentrations. The absence of puncta in resting cells was required to prevent spontaneous store depletion in calcium-free media. Ten-fold increases in IP3 caused saturated calcium mobilization. This systems model represents a critical step in being able to predict platelets’ phenotypes during hemostasis or thrombosis. PMID:24806937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D; Kang, S; Kim, T
2014-06-01
Purpose: In this paper, we implemented the four-dimensional (4D) digital tomosynthesis (DTS) imaging based on algebraic image reconstruction technique and total-variation minimization method in order to compensate the undersampled projection data and improve the image quality. Methods: The projection data were acquired as supposed the cone-beam computed tomography system in linear accelerator by the Monte Carlo simulation and the in-house 4D digital phantom generation program. We performed 4D DTS based upon simultaneous algebraic reconstruction technique (SART) among the iterative image reconstruction technique and total-variation minimization method (TVMM). To verify the effectiveness of this reconstruction algorithm, we performed systematic simulation studiesmore » to investigate the imaging performance. Results: The 4D DTS algorithm based upon the SART and TVMM seems to give better results than that based upon the existing method, or filtered-backprojection. Conclusion: The advanced image reconstruction algorithm for the 4D DTS would be useful to validate each intra-fraction motion during radiation therapy. In addition, it will be possible to give advantage to real-time imaging for the adaptive radiation therapy. This research was supported by Leading Foreign Research Institute Recruitment Program (Grant No.2009-00420) and Basic Atomic Energy Research Institute (BAERI); (Grant No. 2009-0078390) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP)« less
Using Perturbation Theory to Compute the Morphological Similarity of Diffusion Tensors
Bansal, Ravi; Staib, Lawrence H.; Xu, Dongrong; Laine, Andrew F.; Royal, Jason; Peterson, Bradley S.
2008-01-01
Computing the morphological similarity of Diffusion Tensors (DTs) at neighboring voxels within a DT image, or at corresponding locations across different DT images, is a fundamental and ubiquitous operation in the post-processing of DT images. The morphological similarity of DTs typically has been computed using either the Principal Directions (PDs) of DTs (i.e., the direction along which water molecules diffuse preferentially) or their tensor elements. Although comparing PDs allows the similarity of one morphological feature of DTs to be visualized directly in eigenspace, this method takes into account only a single eigenvector, and it is therefore sensitive to the presence of noise in the images that can introduce error into the estimation of that vector. Although comparing tensor elements, rather than PDs, is comparatively more robust to the effects of noise, the individual elements of a given tensor do not directly reflect the diffusion properties of water molecules. We propose a measure for computing the morphological similarity of DTs that uses both their eigenvalues and eigenvectors, and that also accounts for the noise levels present in DT images. Our measure presupposes that DTs in a homogeneous region within or across DT images are random perturbations of one another in the presence of noise. The similarity values that are computed using our method are smooth (in the sense that small changes in eigenvalues and eigenvectors cause only small changes in similarity), and they are symmetric when differences in eigenvalues and eigenvectors are also symmetric. In addition, our method does not presuppose that the corresponding eigenvectors across two DTs have been identified accurately, an assumption that is problematic in the presence of noise. Because we compute the similarity between DTs using their eigenspace components, our similarity measure relates directly to both the magnitude and the direction of the diffusion of water molecules. The favorable performance characteristics of our measure offer the prospect of substantially improving additional post-processing operations that are commonly performed on DTI datasets, such as image segmentation, fiber tracking, noise filtering, and spatial normalization. PMID:18450533
Sacramento, C B; Moraes, J Z; Denapolis, P M A; Han, S W
2010-08-01
The main objective of the present study was to find suitable DNA-targeting sequences (DTS) for the construction of plasmid vectors to be used to treat ischemic diseases. The well-known Simian virus 40 nuclear DTS (SV40-DTS) and hypoxia-responsive element (HRE) sequences were used to construct plasmid vectors to express the human vascular endothelial growth factor gene (hVEGF). The rate of plasmid nuclear transport and consequent gene expression under normoxia (20% O2) and hypoxia (less than 5% O2) were determined. Plasmids containing the SV40-DTS or HRE sequences were constructed and used to transfect the A293T cell line (a human embryonic kidney cell line) in vitro and mouse skeletal muscle cells in vivo. Plasmid transport to the nucleus was monitored by real-time PCR, and the expression level of the hVEGF gene was measured by ELISA. The in vitro nuclear transport efficiency of the SV40-DTS plasmid was about 50% lower under hypoxia, while the HRE plasmid was about 50% higher under hypoxia. Quantitation of reporter gene expression in vitro and in vivo, under hypoxia and normoxia, confirmed that the SV40-DTS plasmid functioned better under normoxia, while the HRE plasmid was superior under hypoxia. These results indicate that the efficiency of gene expression by plasmids containing DNA binding sequences is affected by the concentration of oxygen in the medium.
Interplay of Drug-Metabolizing Enzymes and Transporters in Drug Absorption and Disposition.
Shi, Shaojun; Li, Yunqiao
2014-01-01
In recent years, the functional interplay between drug-metabolizing enzymes (DMEs) and drug transporters (DTs) in drug absorption and disposition, as well as the complex drug interactions (DIs), has become an intriguing contention, which has also been termed the "transport-metabolism interplay". The current mechanistic understanding for this interplay is first discussed. In the present article, studies investigating the interplay between cytochrome P450 enzymes (CYPs) and efflux transporters have been systematically reviewed in vitro, in situ, in silico, in animals and humans, followed by CYPs-uptake transporters, CYPs-uptake transporters-efflux transporters, and phase II metabolic enzymes-transporters interplay studies. Although several cellular, isolated organ and whole animal studies, in conjunction with simulation and modelling, have addressed the issue that DMEs and DTs can work cooperatively to affect the bioavailability of shared substrate drugs, convincing evidences in human studies are still lacking. Furthermore, the functional interplay between DMEs and DTs will be highly substrate- and dose- dependent. Additionally, we review recent studies to evaluate the influence of genetic variations in the interplay between DMEs and DTs, which might be helpful for the prediction of pharmacokinetics (PK) and possible DIs in human more correctly. There is strong evidence of coordinately regulated DEMs and DTs gene expression and protein activity (e.g. nuclear receptors). Taken together, further investigations and analysis are urgently needed to explore the functional interplay of DMEs and DTs and to delineate the underlying mechanisms.
Milner, Mark S; Beckman, Kenneth A; Luchs, Jodi I; Allen, Quentin B; Awdeh, Richard M; Berdahl, John; Boland, Thomas S; Buznego, Carlos; Gira, Joseph P; Goldberg, Damien F; Goldman, David; Goyal, Raj K; Jackson, Mitchell A; Katz, James; Kim, Terry; Majmudar, Parag A; Malhotra, Ranjan P; McDonald, Marguerite B; Rajpal, Rajesh K; Raviv, Tal; Rowen, Sheri; Shamie, Neda; Solomon, Jonathan D; Stonecipher, Karl; Tauber, Shachar; Trattler, William; Walter, Keith A; Waring, George O; Weinstock, Robert J; Wiley, William F; Yeu, Elizabeth
2017-01-01
Dysfunctional tear syndrome (DTS) is a common and complex condition affecting the ocular surface. The health and normal functioning of the ocular surface is dependent on a stable and sufficient tear film. Clinician awareness of conditions affecting the ocular surface has increased in recent years because of expanded research and the publication of diagnosis and treatment guidelines pertaining to disorders resulting in DTS, including the Delphi panel treatment recommendations for DTS (2006), the International Dry Eye Workshop (DEWS) (2007), the Meibomian Gland Dysfunction (MGD) Workshop (2011), and the updated Preferred Practice Pattern guidelines from the American Academy of Ophthalmology pertaining to dry eye and blepharitis (2013). Since the publication of the existing guidelines, new diagnostic techniques and treatment options that provide an opportunity for better management of patients have become available. Clinicians are now able to access a wealth of information that can help them obtain a differential diagnosis and treatment approach for patients presenting with DTS. This review provides a practical and directed approach to the diagnosis and treatment of patients with DTS, emphasizing treatment that is tailored to the specific disease subtype as well as the severity of the condition.
Milner, Mark S.; Beckman, Kenneth A.; Luchs, Jodi I.; Allen, Quentin B.; Awdeh, Richard M.; Berdahl, John; Boland, Thomas S.; Buznego, Carlos; Gira, Joseph P.; Goldberg, Damien F.; Goldman, David; Goyal, Raj K.; Jackson, Mitchell A.; Katz, James; Kim, Terry; Majmudar, Parag A.; Malhotra, Ranjan P.; McDonald, Marguerite B.; Rajpal, Rajesh K.; Raviv, Tal; Rowen, Sheri; Shamie, Neda; Solomon, Jonathan D.; Stonecipher, Karl; Tauber, Shachar; Trattler, William; Walter, Keith A.; Waring, George O.; Weinstock, Robert J.; Wiley, William F.; Yeu, Elizabeth
2017-01-01
Dysfunctional tear syndrome (DTS) is a common and complex condition affecting the ocular surface. The health and normal functioning of the ocular surface is dependent on a stable and sufficient tear film. Clinician awareness of conditions affecting the ocular surface has increased in recent years because of expanded research and the publication of diagnosis and treatment guidelines pertaining to disorders resulting in DTS, including the Delphi panel treatment recommendations for DTS (2006), the International Dry Eye Workshop (DEWS) (2007), the Meibomian Gland Dysfunction (MGD) Workshop (2011), and the updated Preferred Practice Pattern guidelines from the American Academy of Ophthalmology pertaining to dry eye and blepharitis (2013). Since the publication of the existing guidelines, new diagnostic techniques and treatment options that provide an opportunity for better management of patients have become available. Clinicians are now able to access a wealth of information that can help them obtain a differential diagnosis and treatment approach for patients presenting with DTS. This review provides a practical and directed approach to the diagnosis and treatment of patients with DTS, emphasizing treatment that is tailored to the specific disease subtype as well as the severity of the condition. PMID:28099212
Leiva-Bianchi, Marcelo C.; Araneda, Andrea C.
2013-01-01
Background On February 27, 2010 (F-27), an earthquake and tsunami occurred having a significant impact on the mental health of the Chilean population, leading to an increase in cases of post-traumatic stress disorder (PTSD). Objectives Within this context, validated for the first time in Chile was the Davidson Trauma Scale (DTS) using three samples (each one consisting of 200 participants), two of them random from the Chilean population. Results Reliability analyses (i.e., α=0.933), concurrent validity (63% of the items are significantly correlated with the criteria variable “degree of damage to home”) and construct validity (i.e., CMIN = 3.754, RMSEA = 0.118, NFI = 0.808, CFI = 0.850 and PNFI = 0.689) indicate validity between regular and good for DTS. However, a new short version of the scale (DTS-SF) created using the items with heavier factor weights, presented better fits (CMIN = 2.170, RMSEA = 0.077, NFI = 0.935, CFI = 0.963, PNFI = 0.697). Discussion Finally, the usefulness of DTS and DTS-SF is discussed, the latter being briefer, valid and having better psychometric characteristics. PMID:23983920
The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
O'Reilly, Rachel K; Turberfield, Andrew J; Wilks, Thomas R
2017-10-17
Precise control over reactivity and molecular structure is a fundamental goal of the chemical sciences. Billions of years of evolution by natural selection have resulted in chemical systems capable of information storage, self-replication, catalysis, capture and production of light, and even cognition. In all these cases, control over molecular structure is required to achieve a particular function: without structural control, function may be impaired, unpredictable, or impossible. The search for molecules with a desired function is often achieved by synthesizing a combinatorial library, which contains many or all possible combinations of a set of chemical building blocks (BBs), and then screening this library to identify "successful" structures. The largest libraries made by conventional synthesis are currently of the order of 10 8 distinct molecules. To put this in context, there are 10 13 ways of arranging the 21 proteinogenic amino acids in chains up to 10 units long. Given that we know that a number of these compounds have potent biological activity, it would be highly desirable to be able to search them all to identify leads for new drug molecules. Large libraries of oligonucleotides can be synthesized combinatorially and translated into peptides using systems based on biological replication such as mRNA display, with selected molecules identified by DNA sequencing; but these methods are limited to BBs that are compatible with cellular machinery. In order to search the vast tracts of chemical space beyond nucleic acids and natural peptides, an alternative approach is required. DNA-templated synthesis (DTS) could enable us to meet this challenge. DTS controls chemical product formation by using the specificity of DNA hybridization to bring selected reactants into close proximity, and is capable of the programmed synthesis of many distinct products in the same reaction vessel. By making use of dynamic, programmable DNA processes, it is possible to engineer a system that can translate instructions coded as a sequence of DNA bases into a chemical structure-a process analogous to the action of the ribosome in living organisms but with the potential to create a much more chemically diverse set of products. It is also possible to ensure that each product molecule is tagged with its identifying DNA sequence. Compound libraries synthesized in this way can be exposed to selection against suitable targets, enriching successful molecules. The encoding DNA can then be amplified using the polymerase chain reaction and decoded by DNA sequencing. More importantly, the DNA instruction sequences can be mutated and reused during multiple rounds of amplification, translation, and selection. In other words, DTS could be used as the foundation for a system of synthetic molecular evolution, which could allow us to efficiently search a vast chemical space. This has huge potential to revolutionize materials discovery-imagine being able to evolve molecules for light harvesting, or catalysts for CO 2 fixation. The field of DTS has developed to the point where a wide variety of reactions can be performed on a DNA template. Complex architectures and autonomous "DNA robots" have been implemented for the controlled assembly of BBs, and these mechanisms have in turn enabled the one-pot synthesis of large combinatorial libraries. Indeed, DTS libraries are being exploited by pharmaceutical companies and have already found their way into drug lead discovery programs. This Account explores the processes involved in DTS and highlights the challenges that remain in creating a general system for molecular discovery by evolution.
The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery
2017-01-01
Conspectus Precise control over reactivity and molecular structure is a fundamental goal of the chemical sciences. Billions of years of evolution by natural selection have resulted in chemical systems capable of information storage, self-replication, catalysis, capture and production of light, and even cognition. In all these cases, control over molecular structure is required to achieve a particular function: without structural control, function may be impaired, unpredictable, or impossible. The search for molecules with a desired function is often achieved by synthesizing a combinatorial library, which contains many or all possible combinations of a set of chemical building blocks (BBs), and then screening this library to identify “successful” structures. The largest libraries made by conventional synthesis are currently of the order of 108 distinct molecules. To put this in context, there are 1013 ways of arranging the 21 proteinogenic amino acids in chains up to 10 units long. Given that we know that a number of these compounds have potent biological activity, it would be highly desirable to be able to search them all to identify leads for new drug molecules. Large libraries of oligonucleotides can be synthesized combinatorially and translated into peptides using systems based on biological replication such as mRNA display, with selected molecules identified by DNA sequencing; but these methods are limited to BBs that are compatible with cellular machinery. In order to search the vast tracts of chemical space beyond nucleic acids and natural peptides, an alternative approach is required. DNA-templated synthesis (DTS) could enable us to meet this challenge. DTS controls chemical product formation by using the specificity of DNA hybridization to bring selected reactants into close proximity, and is capable of the programmed synthesis of many distinct products in the same reaction vessel. By making use of dynamic, programmable DNA processes, it is possible to engineer a system that can translate instructions coded as a sequence of DNA bases into a chemical structure—a process analogous to the action of the ribosome in living organisms but with the potential to create a much more chemically diverse set of products. It is also possible to ensure that each product molecule is tagged with its identifying DNA sequence. Compound libraries synthesized in this way can be exposed to selection against suitable targets, enriching successful molecules. The encoding DNA can then be amplified using the polymerase chain reaction and decoded by DNA sequencing. More importantly, the DNA instruction sequences can be mutated and reused during multiple rounds of amplification, translation, and selection. In other words, DTS could be used as the foundation for a system of synthetic molecular evolution, which could allow us to efficiently search a vast chemical space. This has huge potential to revolutionize materials discovery—imagine being able to evolve molecules for light harvesting, or catalysts for CO2 fixation. The field of DTS has developed to the point where a wide variety of reactions can be performed on a DNA template. Complex architectures and autonomous “DNA robots” have been implemented for the controlled assembly of BBs, and these mechanisms have in turn enabled the one-pot synthesis of large combinatorial libraries. Indeed, DTS libraries are being exploited by pharmaceutical companies and have already found their way into drug lead discovery programs. This Account explores the processes involved in DTS and highlights the challenges that remain in creating a general system for molecular discovery by evolution. PMID:28915003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, Lee; Day-Lewis, Frederick; Lane, John
2011-08-31
The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be usedmore » to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in the depth to the Hanford-Ringold inland over a critical region where borehole information is absent, identifying evidence for a continuous depression in the H-R contact between the IFRC and the river corridor. Strong natural contrasts in temperature and specific conductance of river water compared to groundwater at this site, along with periodic river stage fluctuations driven by dam operations, were exploited to yield new insights into the dynamics of groundwater-surface water interaction. Whereas FO-DTS datasets have provided meter-scale measurements of focused groundwater discharge at the riverbed along the corridor, continuous resistivity monitoring has non-invasively imaged spatiotemporal variation in the resistivity inland driven by river stage fluctuations. Time series and time-frequency analysis of FO-DTS and 3D resistivity datasets has provided insights into the role of forcing variables, primarily daily dam operations, in regulating the occurrence of focused exchange at the riverbed and its extension inland. High amplitudes in the DTS and 3D resistivity signals for long periods that dominate the stage time series identify regions along the corridor where stage-driven exchange is preferentially focused. Our work has demonstrated how time-series analysis of both time-lapse resistivity and DTS datasets, in conjunction with resistivity/IP imaging of lithology, can improve understanding of groundwater-surface water exchange along river corridors, offering unique opportunities to connect stage-driven groundwater discharge observed with DTS on the riverbed to stage-driven groundwater and solute fluctuations captured with resistivity inland.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Slater
2011-08-15
The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be usedmore » to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing ~60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along ~3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in the depth to the Hanford-Ringold inland over a critical region where borehole information is absent, identifying evidence for a continuous depression in the H-R contact between the IFRC and the river corridor. Strong natural contrasts in temperature and specific conductance of river water compared to groundwater at this site, along with periodic river stage fluctuations driven by dam operations, were exploited to yield new insights into the dynamics of groundwater-surface water interaction. Whereas FO-DTS datasets have provided meter-scale measurements of focused groundwater discharge at the riverbed along the corridor, continuous resistivity monitoring has non-invasively imaged spatiotemporal variation in the resistivity inland driven by river stage fluctuations. Time series and time-frequency analysis of FO-DTS and 3D resistivity datasets has provided insights into the role of forcing variables, primarily daily dam operations, in regulating the occurrence of focused exchange at the riverbed and its extension inland. High amplitudes in the DTS and 3D resistivity signals for long periods that dominate the stage time series identify regions along the corridor where stage-driven exchange is preferentially focused. Our work has demonstrated how time-series analysis of both time-lapse resistivity and DTS datasets, in conjunction with resistivity/IP imaging of lithology, can improve understanding of groundwater-surface water exchange along river corridors, offering unique opportunities to connect stage-driven groundwater discharge observed with DTS on the riverbed to stage-driven groundwater and solute fluctuations captured with resistivity inland.« less
Erkan, A F; Ekici, B; Demir, G G; Töre, H F
2014-01-01
High-density lipoprotein cholesterol (HDL-C) levels are inversely related to the atherosclerotic burden and are higher in women than in men. We aimed to investigate the sex-specific relationship between serum HDL-C levels and the Duke treadmill score (DTS) in this study. A total of 111 patients (59 men, 42 women) with suspected coronary artery disease (CAD) who underwent exercise treadmill test (EST) were included. Fasting blood samples were obtained for the assessment of serum lipid levels. DTS was calculated for each patient based on EST findings including ST segment deviation and symptoms. Patients were categorized into a moderate to high risk group based on the DTS score (group-I: 38 patients) and a low risk group (group-II: 63 patients). There was a significant positive correlation between serum HDL-C levels and DTS (r = 0.230; P=0.021). The mean HDL-C level was significantly higher in group-II relative to group-I (49.25 ±11.21 vs. 44.43 ± 11.18, respectively, P = 0.04). An HDL-C level less than the cut-off value of 41.39 mg/dL predicted a moderate to severe risk DTS with 65% sensitivity and 69% specificity in men (area under curve = 0.732, P = 0.004), but not in women (area under curve = 0.505, P = 0.958). After adjustment for traditional CAD risk factors (age, sex, and smoking status), the relationship of DTS to HDL-C remained significant. (P = 0.030; adjusted OR = 0.948 [95% CI, 0.904-0.995]). Low HDL-C levels may be associated with a moderate to high risk Duke treadmill score in men, but not in women. Further research is required to clarify the sex-specific relationship between HDL-C and DTS.
McDonald, Scott D; Beckham, Jean C; Morey, Rajendra A; Calhoun, Patrick S
2009-03-01
The present study examined the psychometric properties and diagnostic efficiency of the Davidson Trauma Scale (DTS), a self-report measure of posttraumatic stress disorder (PTSD) symptoms. Participants included 158 U.S. military veterans who have served since September 11, 2001 (post-9/11). Results support the DTS as a valid self-report measure of PTSD symptoms. The DTS demonstrated good internal consistency, concurrent validity, and convergent and divergent validity. Diagnostic efficiency was excellent when discriminating between veterans with PTSD and veterans with no Axis I diagnosis. However, although satisfactory by conventional standards, efficiency was substantially attenuated when discriminating between PTSD and other Axis I diagnoses. Thus, results illustrate that potency of the DTS as a diagnostic aid was highly dependent on the comparison group used for analyses. Results are discussed in terms of applications to clinical practice and research.
Lee, Dong Hoon; Yeom, Dong Woo; Song, Ye Seul; Cho, Ha Ra; Choi, Yong Seok; Kang, Myung Joo; Choi, Young Wook
2015-01-15
A novel supersaturable self-emulsifying drug delivery system (S-SEDDS) was formulated to improve the oral absorption of dutasteride (DTS), a 5α-reductase inhibitor that is poorly water-soluble. A supersaturable system was prepared by employing Soluplus(®) (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) as a precipitation inhibitor with a conventional SEDDS vehicle consisted of Capryol™ 90, Cremophor(®) EL and Transcutol(®) HP (DTS:SEDDS vehicle:Soluplus(®)=1.0:67.6:10.0 w/v/w). In an in vitro dissolution test in a non-sink condition, the drug dissolution rate from SEDDS was rapidly increased to 72% for an initial period of 5min, but underwent rapid drug precipitation within 2h, decreasing the amount of drug dissolved to one-seventh of its original amount. On the other hand, S-SEDDS resulted in a slower crystallization of DTS by virtue of a precipitation inhibitor, maintaining a 3 times greater dissolution rate after 2h compared to SEDDS. In an in vivo pharmacokinetic study in rats, the S-SEDDS formulation exhibited 3.9-fold greater area-under-curve value than that of the drug suspension and 1.3-fold greater than that of SEDDS. The maximum plasma concentration of S-SEDDS was 5.6- and 2.0-fold higher compared to drug suspension and SEDDS, respectively. The results of this study suggest that the novel supersaturable system may be a promising tool for improving the physicochemical property and oral absorption of the 5α-reductase inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge.
Mawer, Chloe; Parsekian, Andrew; Pidlisecky, Adam; Knight, Rosemary
2016-11-01
Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO-DTS) observations and the phase shift of the diurnal temperature signal between two vertically co-located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO-DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO-DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high-spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R 2 = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates. © 2016, National Ground Water Association.
Improved-resolution real-time skin-dose mapping for interventional fluoroscopic procedures
NASA Astrophysics Data System (ADS)
Rana, Vijay K.; Rudin, Stephen; Bednarek, Daniel R.
2014-03-01
We have developed a dose-tracking system (DTS) that provides a real-time display of the skin-dose distribution on a 3D patient graphic during fluoroscopic procedures. Radiation dose to individual points on the skin is calculated using exposure and geometry parameters from the digital bus on a Toshiba C-arm unit. To accurately define the distribution of dose, it is necessary to use a high-resolution patient graphic consisting of a large number of elements. In the original DTS version, the patient graphics were obtained from a library of population body scans which consisted of larger-sized triangular elements resulting in poor congruence between the graphic points and the x-ray beam boundary. To improve the resolution without impacting real-time performance, the number of calculations must be reduced and so we created software-designed human models and modified the DTS to read the graphic as a list of vertices of the triangular elements such that common vertices of adjacent triangles are listed once. Dose is calculated for each vertex point once instead of the number of times that a given vertex appears in multiple triangles. By reformatting the graphic file, we were able to subdivide the triangular elements by a factor of 64 times with an increase in the file size of only 1.3 times. This allows a much greater number of smaller triangular elements and improves resolution of the patient graphic without compromising the real-time performance of the DTS and also gives a smoother graphic display for better visualization of the dose distribution.
Groundwater temperature estimation and modeling using hydrogeophysics.
NASA Astrophysics Data System (ADS)
Nguyen, F.; Lesparre, N.; Hermans, T.; Dassargues, A.; Klepikova, M.; Kemna, A.; Caers, J.
2017-12-01
Groundwater temperature may be of use as a state variable proxy for aquifer heat storage, highlighting preferential flow paths, or contaminant remediation monitoring. However, its estimation often relies on scarce temperature data collected in boreholes. Hydrogeophysical methods such as electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) may provide more exhaustive spatial information of the bulk properties of interest than samples from boreholes. If a properly calibrated DTS reading provides direct measurements of the groundwater temperature in the well, ERT requires one to determine the fractional change per degree Celsius. One advantage of this petrophysical relationship is its relative simplicity: the fractional change is often found to be around 0.02 per degree Celcius, and represents mainly the variation of electrical resistivity due to the viscosity effect. However, in presence of chemical and kinetics effects, the variation may also depend on the duration of the test and may neglect reactions occurring between the pore water and the solid matrix. Such effects are not expected to be important for low temperature systems (<30 °C), at least for short experiments. In this contribution, we use different field experiments under natural and forced flow conditions to review developments for the joint use of DTS and ERT to map and monitor the temperature distribution within aquifers, to characterize aquifers in terms of heterogeneity and to better understand processes. We show how temperature time-series measurements might be used to constraint the ERT inverse problem in space and time and how combined ERT-derived and DTS estimation of temperature may be used together with hydrogeological modeling to provide predictions of the groundwater temperature field.
TU-D-209-02: A Backscatter Point Spread Function for Entrance Skin Dose Determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Xiong, Z; Shankar, A
Purpose: To determine the distribution of backscattered radiation to the skin resulting from a non-uniform distribution of primary radiation through convolution with a backscatter point spread function (PSF). Methods: A backscatter PSF is determined using Monte Carlo simulation of a 1 mm primary beam incident on a 30 × 30 cm × 20 cm thick PMMA phantom using EGSnrc software. A primary profile is similarly obtained without the phantom and the difference from the total provides the backscatter profile. This scatter PSF characterizes the backscatter spread for a “point” primary interaction and can be convolved with the entrance primary dosemore » distribution to obtain the total entrance skin dose. The backscatter PSF was integrated into the skin dose tracking system (DTS), a graphical utility for displaying the color-coded skin dose distribution on a 3D graphic of the patient during interventional fluoroscopic procedures. The backscatter convolution method was validated for the non-uniform beam resulting from the use of an ROI attenuator. The ROI attenuator is a copper sheet with about 20% primary transmission (0.7 mm thick) containing a circular aperture; this attenuator is placed in the beam to reduce dose in the periphery while maintaining full dose in the region of interest. The DTS calculated primary plus backscatter distribution is compared to that measured with GafChromic film and that calculated using EGSnrc Monte-Carlo software. Results: The PSF convolution method used in the DTS software was able to account for the spread of backscatter from the ROI region to the region under the attenuator. The skin dose distribution determined using DTS with the ROI attenuator was in good agreement with the distributions measured with Gafchromic film and determined by Monte Carlo simulation Conclusion: The PSF convolution technique provides an accurate alternative for entrance skin dose determination with non-uniform primary x-ray beams. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
48 CFR 47.301-3 - Using the Defense Transportation System (DTS).
Code of Federal Regulations, 2010 CFR
2010-10-01
... implemented on a world-wide basis. (b) Contracting activities are responsible for (1) ensuring that the... directly to a military air or water port terminal without authorization from the designated contract...
2017-01-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications. PMID:29104259
Miah, Khalid; Potter, David K
2017-11-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.
NASA Astrophysics Data System (ADS)
Seyfried, M. S.; Link, T. E.
2013-12-01
Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal trends in Ts variability controlled by snow cover and solar radiation as modified by topography. During periods of spatially continuous snow cover Ts was practically homogeneous throughout. In the absence of snow cover, Ts is highly variable, with most of the variability attributable to different topographic units defined by slope and aspect. During transition periods when snow melts out, Ts is highly variable within the watershed and within topographic units. The importance of accounting for these relatively small scale effects is underscored by the fact that the overall range of Ts in study area 600 m long is similar to that of the much large RCEW with 900 m elevation gradient.
Solar radiative heating of fiber-optic cables used to monitor temperatures in water
NASA Astrophysics Data System (ADS)
Neilson, Bethany T.; Hatch, Christine E.; Ban, Heng; Tyler, Scott W.
2010-08-01
In recent years, applications of distributed temperature sensing (DTS) have increased in number and diversity. Because fiber-optic cables used for DTS are typically sheathed in dark UV-resistant materials, the question arises as to how shortwave solar radiation penetrating a water column influences the accuracy of absolute DTS-derived temperatures in aquatic applications. To quantify these effects, we completed a modeling effort that accounts for the effects of radiation and convection on a submersed cable to predict when solar heating may be important. Results indicate that for cables installed at shallow depths in clear, low-velocity water bodies, measurable heating of the cable is likely during peak solar radiation. However, at higher velocities, increased turbidity and/or greater depths, the effects of solar heating are immeasurable. A field study illustrated the effects of solar radiation by installing two types of fiber-optic cable at multiple water depths (from 0.05 to 0.8 m) in the center and along the sidewall of a trapezoidal canal. Thermistors were installed at similar depths and shielded from solar radiation to record absolute water temperatures. During peak radiation, thermistor data showed small temperature differences (˜0.003°C-0.04°C) between depths suggesting minor thermal stratification in the canal center. DTS data from cables at these same depths show differences of 0.01°C-0.17°C. The DTS differences cannot be explained by stratification alone and are likely evidence of additional heating from solar radiation. Sidewall thermistor strings also recorded stratification. However, corresponding DTS data suggested that bed conduction overwhelmed the effects of solar radiation.
Ko Kyaw, Aung Ko; Gehrig, Dominik; Zhang, Jie; ...
2014-11-27
The photovoltaic performance of bulk heterojunction solar cells using the solution-processable small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh 2) 2 in combination with indene-C60 bis-adduct (ICBA) as an acceptor is systematically optimized by altering the processing conditions. A high open-circuit voltage of 1 V, more than 0.2 V higher than that of a p-DTS(FBTTh 2) 2:PC 70BM blend, is achieved. However, the power conversion efficiency remains around 5% and thus is lower than ~8% previously reported for p-DTS(FBTTh 2) 2:PC 70BM. Transient absorption (TA) pump–probe spectroscopy over a wide spectral (Vis-NIR) and dynamic (fs to μs) range in combination with multivariate curvemore » resolution analysis of the TA data reveals that generation of free charges is more efficient in the blend with PC 70BM as an acceptor. In contrast, blends with ICBA create more coulombically bound interfacial charge transfer (CT) states, which recombine on the sub-nanosecond timescale by geminate recombination. Furthermore, the ns to μs charge carrier dynamics in p-DTS(FBTTh 2) 2:ICBA blends are only weakly intensity dependent implying a significant contribution of recombination from long-lived CT states and trapped charges, while those in p-DTS(FBTTh 2) 2:PC 70BM decay via an intensity-dependent recombination mechanism indicating that spatially separated (free) charge carriers are observed, which can be extracted as photocurrent from the device.« less
FAP-related desmoid tumors: a series of 44 patients evaluated in a cancer referral center.
Colombo, Chiara; Foo, Wai Chin; Whiting, David; Young, Eric D; Lusby, Kristelle; Pollock, Raphael E; Lazar, Alexander J; Lev, Dina
2012-05-01
Desmoid tumors (DTs), the commonest extra-intestinal manifestation of familial adenomatosis polyposis (FAP), are monoclonal neoplasms demonstrating fibroblastic - myofibroblastic differentiation; they are locally invasive without metastatic capacity. FAP-associated DT natural history knowledge is limited; we examined patient and tumor characteristics for a FAP-DT cohort and evaluated anti-DT therapy molecular target expression levels (immunohistochemical analyses, FAP-DT tissue microarray; TMA). Forty-four patients were classified as intra-abdominal (IA; n=26), abdominal wall (AW)/extra-abdominal (EA; n=12) or concomitant IA/AW (n=6) based on DT primary diagnosis location. Positive family histories were found in 62% of FAP versus 10% of DT patients. Surgery was the mainstay therapy for AW/EW patients, whereas IA DTs received surgery, chemotherapy, radiotherapy, tamoxifen, NSAIDs, and/or imatinib. Eight of 20 completely resected DTs in the IA and AW/EA groups recurred; 12 of 38 patients in these groups (33%) developed secondary lesions elsewhere. Two intestinal mesenteric DT patients died of disease, three from other cancers, 27 are alive with disease and 12 are alive without disease. All evaluable FAP-DT exhibited nuclear β-catenin, 65% were positive for cyclin D1, and 66% expressed nuclear p53. No ERα expression was observed, but ERβ was expressed in 72%. COX2 was expressed in all evaluable FAP-DTs. KIT was rarely found in DTs but both PDGFRs and their ligands were expressed. Comparing biomarker expression (IA vs. EA DTs), only nuclear ER-ß staining was significantly higher in EA lesions (p=0.0070); no other markers were site informative. Enhanced knowledge of FAP-DT molecular underpinnings will facilitate development of novel therapeutic strategies.
Optical fiber distributed temperature sensor in cardiological surgeries
NASA Astrophysics Data System (ADS)
Skapa, Jan; Látal, Jan; Penhaker, Marek; Koudelka, Petr; Hancek, František; Vasinek, Vladimír
2010-04-01
In those days a lot of cardiological surgeries is made every day. It is a matter of very significant importance keeping the temperature of the hearth low during the surgery because it decides whether the cells of the muscle will die or not. The hearth is cooled by the ice placed around the hearth muscle during the surgery and cooling liquid is injected into the hearth also. In these days the temperature is measured only in some points of the hearth using sensors based on the pH measurements. This article describes new method for measurement of temperature of the hearth muscle during the cardiological surgery. We use a multimode optical fiber and distributed temperature sensor (DTS) based on the stimulated Raman scattering in temperature measurements. This principle allows us to measure the temperature and to determine where the temperature changes during the surgery. Resolution in the temperature is about 0.1 degrees of Celsius. Resolution in length is about 1 meter. The resolution in length implies that the fiber must be wound to ensure the spatial resolution about 5 by 5 centimeters.
Effect of microwave disinfection on compressive and tensile strengths of dental stones.
Robati Anaraki, Mahmood; Moslehifard, Elnaz; Aminifar, Soran; Ghanati, Hamed
2013-01-01
Although microwave irradiation has been used for disinfection of dental stone casts, there are concerns regarding mechanical damage to casts during the process. The aim of this study was to evaluate the effect of microwave irradiation on the compressive strength (CS) and diametral tensile strength (DTS) of stone casts. In this in vitro study, 80 cylindrical type III and IV stone models (20 × 40 mm) were prepared and divided into 8 groups of 10. The DTS and CS of the specimens were measured by a mechanical testing machine at a crosshead speed of 0.5 cm/min after 7 times of frequent wetting, irradiating at an energy level of 600 W for 3 minutes and cooling. Data were analyzed by Student's t-test. Microwave irradiation significantly increased DTS of type III and IV to 5.23 ± 0.64 and 8.17 ± 0.94, respectively (P < 0.01). According to the results, microwave disinfection increases DTS of type III and IV stone casts without any effects on their CS.
Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol
Klonoff, David C.; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A.; Arreaza-Rubin, Guillermo; Burk, Robert D.; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B.; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W.
2015-01-01
Background: Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. Methods: The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. Results: A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled “Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program” is attached as supplementary material. Conclusion: This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. PMID:26481642
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.
2016-03-01
The skin dose tracking system (DTS) that we developed provides a color-coded mapping of the cumulative skin dose distribution on a 3D graphic of the patient during fluoroscopic procedures in real time. The DTS has now been modified to also calculate the kerma area product (KAP) and cumulative air kerma (CAK) for fluoroscopic interventions using data obtained in real-time from the digital bus on a Toshiba Infinix system. KAP is the integral of air kerma over the beam area and is typically measured with a large-area transmission ionization chamber incorporated into the collimator assembly. In this software, KAP is automatically determined for each x-ray pulse as the product of the air kerma/ mAs from a calibration file for the given kVp and beam filtration times the mAs per pulse times the length and width of the beam times a field nonuniformity correction factor. Field nonuniformity is primarily the result of the heel effect and the correction factor was determined from the beam profile measured using radio-chromic film. Dividing the KAP by the beam area at the interventional reference point provides the area averaged CAK. The KAP and CAK per x-ray pulse are summed after each pulse to obtain the total procedure values in real-time. The calculated KAP and CAK were compared to the values displayed by the fluoroscopy machine with excellent agreement. The DTS now is able to automatically calculate both KAP and CAK without the need for measurement by an add-on transmission ionization chamber.
Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol.
Klonoff, David C; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A; Arreaza-Rubin, Guillermo; Burk, Robert D; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W
2016-05-01
Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled "Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program" is attached as supplementary material. This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. © 2015 Diabetes Technology Society.
Frontiers in In-Situ Cosmic Dust Detection and Analysis
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltán; Auer, Siegfried; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Le, Huy; Srama, Ralf; Xie, Jianfeng
2011-11-01
In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.
77 FR 27457 - Ocean Transportation Intermediary License; Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
... FEDERAL MARITIME COMMISSION Ocean Transportation Intermediary License; Applicants Notice is hereby... license as a Non-Vessel-Operating Common Carrier (NVO) and/or Ocean Freight Forwarder (OFF)--Ocean... at (202) 523-5843 or by email at [email protected] . DTS World Cargo Services, Inc. dba DTS World Cargo...
Kim, Jun H; Lee, Kyung H; Kim, Kyoung-Tae; Kim, Hyun J; Ahn, Hyeong S; Kim, Yeo J; Lee, Ha Y; Jeon, Yong S
2016-12-01
To compare the diagnostic accuracy of digital tomosynthesis (DTS) with that of chest radiography for the detection of pulmonary nodules by meta-analysis. A systematic literature search was performed to identify relevant original studies from 1 January 1 1976 to 31 August 31 2016. The quality of included studies was assessed by quality assessment of diagnostic accuracy studies-2. Per-patient data were used to calculate the sensitivity and specificity and per-lesion data were used to calculate the detection rate. Summary receiver-operating characteristic curves were drawn for pulmonary nodule detection. 16 studies met the inclusion criteria. 1017 patients on a per-patient basis and 2159 lesions on a per-lesion basis from 16 eligible studies were evaluated. The pooled patient-based sensitivity of DTS was 0.85 [95% confidence interval (CI) 0.83-0.88] and the specificity was 0.95 (0.93-0.96). The pooled sensitivity and specificity of chest radiography were 0.47 (0.44-0.51) and 0.37 (0.34-0.40), respectively. The per-lesion detection rate was 2.90 (95% CI 2.63-3.19). DTS has higher diagnostic accuracy than chest radiography for detection of pulmonary nodules. Chest radiography has low sensitivity but similar specificity, comparable with that of DTS. Advances in knowledge: DTS has higher diagnostic accuracy than chest radiography for the detection of pulmonary nodules.
NASA Astrophysics Data System (ADS)
Park, S. Y.; Kim, G. A.; Cho, H. S.; Park, C. K.; Lee, D. Y.; Lim, H. W.; Lee, H. W.; Kim, K. S.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Je, U. K.; Woo, T. H.; Oh, J. E.
2018-02-01
In recent digital tomosynthesis (DTS), iterative reconstruction methods are often used owing to the potential to provide multiplanar images of superior image quality to conventional filtered-backprojection (FBP)-based methods. However, they require enormous computational cost in the iterative process, which has still been an obstacle to put them to practical use. In this work, we propose a new DTS reconstruction method incorporated with a dual-resolution voxelization scheme in attempt to overcome these difficulties, in which the voxels outside a small region-of-interest (ROI) containing target diagnosis are binned by 2 × 2 × 2 while the voxels inside the ROI remain unbinned. We considered a compressed-sensing (CS)-based iterative algorithm with a dual-constraint strategy for more accurate DTS reconstruction. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate its viability. Our results indicate that the proposed method seems to be effective for reducing computational cost considerably in iterative DTS reconstruction, keeping the image quality inside the ROI not much degraded. A binning size of 2 × 2 × 2 required only about 31.9% computational memory and about 2.6% reconstruction time, compared to those for no binning case. The reconstruction quality was evaluated in terms of the root-mean-square error (RMSE), the contrast-to-noise ratio (CNR), and the universal-quality index (UQI).
Brady's Geothermal Field DAS and DTS Surface and Borehole Array Metadata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dante Fratta
This metadata submission includes the coordinates of the DAS and DTS surface and borehole arrays, the list of file names, and the list of recorded files during testing at the PoroTomo Natural Laboratory at Brady Hot Spring in Nevada. Testing was completed during March 2016.
DOT National Transportation Integrated Search
1999-03-01
This report documents an investigation of the flight paths of 13 selected controlled flight into terrain (CFIT) aircraft accidents that occurred between 1985 and 1997. The Operations Assessment Division (DTS-43) and the Aviation Safety Division (DTS-...
Comparison of heaving buoy and oscillating flap wave energy converters
NASA Astrophysics Data System (ADS)
Abu Bakar, Mohd Aftar; Green, David A.; Metcalfe, Andrew V.; Najafian, G.
2013-04-01
Waves offer an attractive source of renewable energy, with relatively low environmental impact, for communities reasonably close to the sea. Two types of simple wave energy converters (WEC), the heaving buoy WEC and the oscillating flap WEC, are studied. Both WECs are considered as simple energy converters because they can be modelled, to a first approximation, as single degree of freedom linear dynamic systems. In this study, we estimate the response of both WECs to typical wave inputs; wave height for the buoy and corresponding wave surge for the flap, using spectral methods. A nonlinear model of the oscillating flap WEC that includes the drag force, modelled by the Morison equation is also considered. The response to a surge input is estimated by discrete time simulation (DTS), using central difference approximations to derivatives. This is compared with the response of the linear model obtained by DTS and also validated using the spectral method. Bendat's nonlinear system identification (BNLSI) technique was used to analyze the nonlinear dynamic system since the spectral analysis was only suitable for linear dynamic system. The effects of including the nonlinear term are quantified.
Brady's Geothermal Field - DTS Raw Data
Thomas Coleman
2016-03-26
The submitted data correspond to the complete raw temperature datasets captured by the distributed temperature sensing (DTS) horizontal and vertical arrays during the PoroTomo Experiment. Files in each submitted resource include: .xml (level 0): Data that includes Stokes, Anti-Stokes, and Temperature data .csv (level 1): Data that includes temperature PT100: Reference probe data
Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter
2016-06-01
The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. © The Author 2016. Published by Oxford University Press.
Proposal and Implementation of a Robust Sensing Method for DVB-T Signal
NASA Astrophysics Data System (ADS)
Song, Chunyi; Rahman, Mohammad Azizur; Harada, Hiroshi
This paper proposes a sensing method for TV signals of DVB-T standard to realize effective TV White Space (TVWS) Communication. In the TVWS technology trial organized by the Infocomm Development Authority (iDA) of Singapore, with regard to the sensing level and sensing time, detecting DVB-T signal at the level of -120dBm over an 8MHz channel with a sensing time below 1 second is required. To fulfill such a strict sensing requirement, we propose a smart sensing method which combines feature detection and energy detection (CFED), and is also characterized by using dynamic threshold selection (DTS) based on a threshold table to improve sensing robustness to noise uncertainty. The DTS based CFED (DTS-CFED) is evaluated by computer simulations and is also implemented into a hardware sensing prototype. The results show that the DTS-CFED achieves a detection probability above 0.9 for a target false alarm probability of 0.1 for DVB-T signals at the level of -120dBm over an 8MHz channel with the sensing time equals to 0.1 second.
Meltzer, Carin; Båth, Magnus; Kheddache, Susanne; Ásgeirsdóttir, Helga; Gilljam, Marita; Johnsson, Åse Allansdotter
2016-01-01
The aims of this study were to assess the visibility of pulmonary structures in patients with cystic fibrosis (CF) in digital tomosynthesis (DTS) using computed tomography (CT) as reference and to investigate the dependency on anatomical location and observer experience. Anatomical structures in predefined regions of CT images from 21 patients were identified. Three observers with different levels of experience rated the visibility of the structures in DTS by performing a head-to-head comparison with visibility in CT. Visibility of the structures in DTS was reported as equal to CT in 34 %, inferior in 52 % and superior in 14 % of the ratings. Central and peripheral lateral structures received higher visibility ratings compared with peripheral structures anteriorly, posteriorly and surrounding the diaphragm (p ≤ 0.001). Reported visibility was significantly higher for the most experienced observer (p ≤ 0.01). The results indicate that minor pathology can be difficult to visualise with DTS depending on location and observer experience. Central and peripheral lateral structures are generally well depicted. PMID:26842827
Kim, Jun H; Lee, Kyung H; Kim, Kyoung-Tae; Ahn, Hyeong S; Kim, Yeo J; Lee, Ha Y; Jeon, Yong S
2016-01-01
Objective: To compare the diagnostic accuracy of digital tomosynthesis (DTS) with that of chest radiography for the detection of pulmonary nodules by meta-analysis. Methods: A systematic literature search was performed to identify relevant original studies from 1 January 1 1976 to 31 August 31 2016. The quality of included studies was assessed by quality assessment of diagnostic accuracy studies-2. Per-patient data were used to calculate the sensitivity and specificity and per-lesion data were used to calculate the detection rate. Summary receiver-operating characteristic curves were drawn for pulmonary nodule detection. Results: 16 studies met the inclusion criteria. 1017 patients on a per-patient basis and 2159 lesions on a per-lesion basis from 16 eligible studies were evaluated. The pooled patient-based sensitivity of DTS was 0.85 [95% confidence interval (CI) 0.83–0.88] and the specificity was 0.95 (0.93–0.96). The pooled sensitivity and specificity of chest radiography were 0.47 (0.44–0.51) and 0.37 (0.34–0.40), respectively. The per-lesion detection rate was 2.90 (95% CI 2.63–3.19). Conclusion: DTS has higher diagnostic accuracy than chest radiography for detection of pulmonary nodules. Chest radiography has low sensitivity but similar specificity, comparable with that of DTS. Advances in knowledge: DTS has higher diagnostic accuracy than chest radiography for the detection of pulmonary nodules. PMID:27759428
Issues Related to Effects of New Maintenance Concept on AF Specialists Working in the Field
DOT National Transportation Integrated Search
1990-03-07
This working paper was prepared by the Transportation Systems Center, Operator : performance and Safety Analysis Division (DTS-45) for the Federal Aviation Ad : ministration. The paper provides initial thinking on groups of human resource issues : re...
NASA Astrophysics Data System (ADS)
Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek
2015-01-01
Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.
Time-lapse ERT and DTS for seasonal and short-term monitoring of an alpine river hyporheic zone
NASA Astrophysics Data System (ADS)
Boaga, Jacopo; Laura, Busato; Mariateresa, Perri; Giorgio, Cassiani
2016-04-01
The hyporheic zone (HZ) is the area located beneath and adjacent to rivers and streams, where the interactions between surface water and groundwater take place. This complex physical domain allows the transport of several substances from a stream to the unconfined aquifer below, and vice versa, thus playing a fundamental role in the river ecosystem. The importance of the hyporheic zone makes its characterization a goal shared by several disciplines, which range from applied geophysics to biogeochemistry, from hydraulics to ecology. The frontier field of HZ characterization stays in applied non-invasive methodologies as Electrical Resistivity Tomography - ERT - and Distributed Temperature Sensing - DTS. ERT is commonly applied in cross-well configuration or with a superficial electrodes deployment while DTS is used in hydro-geophysics in the last decade, revealing a wide applicability to the typical issues of this field of study. DTS for hydro-geophysics studies is based on Raman scattering and employs heat as tracer and uses a fiber-optic cable to acquire temperature values. We applied both techniques for an alpine river case studies located in Val di Sole, TN, Italy. The collected measurements allow high-resolution characterization of the hyporheic zone, overcoming the critical problem of invasive measurements under riverbeds. In this work, we present the preliminary results regarding the characterization of the hyporheic zone of the alpine river obtained combining ERT and DTS time-lapse measurements. The data collection benefits from an innovative instrumentation deployment, which consists of both an ERT multicore cable and a DTS fiber-optic located in two separated boreholes drilled 5m under the watercourse and perpendicular to it. In particular we present the first year monitoring results and a short time-lapse monitoring experiment conducted during summer 2015. The site and the results here described are part of the EU FP7 CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins) project.
Jadidi, Masoud; Båth, Magnus; Nyrén, Sven
2018-04-09
To compare the quality of images obtained with two different protocols with different acquisition time and the influence from image post processing in a chest digital tomosynthesis (DTS) system. 20 patients with suspected lung cancer were imaged with a chest X-ray equipment with tomosynthesis option. Two examination protocols with different acquisition times (6.3 and 12 s) were performed on each patient. Both protocols were presented with two different image post-processing (standard DTS processing and more advanced processing optimised for chest radiography). Thus, 4 series from each patient, altogether 80 series, were presented anonymously and in a random order. Five observers rated the quality of the reconstructed section images according to predefined quality criteria in three different classes. Visual grading characteristics (VGC) was used to analyse the data and the area under the VGC curve (AUC VGC ) was used as figure-of-merit. The 12 s protocol and the standard DTS processing were used as references in the analyses. The protocol with 6.3 s acquisition time had a statistically significant advantage over the vendor-recommended protocol with 12 s acquisition time for the classes of criteria, Demarcation (AUC VGC = 0.56, p = 0.009) and Disturbance (AUC VGC = 0.58, p < 0.001). A similar value of AUC VGC was found also for the class Structure (definition of bone structures in the spine) (0.56) but it could not be statistically separated from 0.5 (p = 0.21). For the image processing, the VGC analysis showed a small but statistically significant advantage for the standard DTS processing over the more advanced processing for the classes of criteria Demarcation (AUC VGC = 0.45, p = 0.017) and Disturbance (AUC VGC = 0.43, p = 0.005). A similar value of AUC VGC was found also for the class Structure (0.46), but it could not be statistically separated from 0.5 (p = 0.31). The study indicates that the protocol with 6.3 s acquisition time yields slightly better image quality than the vender-recommended protocol with acquisition time 12 s for several anatomical structures. Furthermore, the standard gradation processing (the vendor-recommended post-processing for DTS), yields to some extent advantage over the gradation processing/multiobjective frequency processing/flexible noise control processing in terms of image quality for all classes of criteria. Advances in knowledge: The study proves that the image quality may be strongly affected by the selection of DTS protocol and that the vendor-recommended protocol may not always be the optimal choice.
ERIC Educational Resources Information Center
Gadkari, Abhijit S.; Mott, David A.; Kreling, David H.; Bonnarens, Joseph K.
2009-01-01
Context: Higher prevalence of chronic diseases and reduced access to other health professionals in rural areas suggest that rural Medicare enrollees will benefit from pharmacist-provided drug therapy services (DTS). Purpose: The purpose of this study was to describe non-metropolitan community pharmacy sites in Wisconsin, the provision of DTS at…
Mathematics Education ITE Students Examining the Value of Digital Learning Objects
ERIC Educational Resources Information Center
Hawera Ngarewa; Wright, Noeline; Sharma, Sashi
2017-01-01
One issue in mathematics initial teacher education (ITE) is how to best support students to use digital technologies (DTs) to enhance their teaching of mathematics. While most ITE students are probably using DTs on a daily basis for personal use, they are often unfamiliar with using them for educative purposes in New Zealand primary school…
Further development of the EUMETNET Composite Observing System (EUCOS)
NASA Astrophysics Data System (ADS)
Klink, S.; Dibbern, J.
2009-09-01
EUCOS, which stands for EUMETNET Composite Observing System, is a EUMETNET programme whose main objective is a central management of surface based operational observations on a European-wide scale serving the needs of regional scale NWP. EUMETNET is a consortium of currently 26 national meteorological services in Europe that provides a framework for different operational and developmental co-operative programmes between the services. The work content of the EUCOS Programme includes the management of the operational observing networks, through the E-AMDAR, E-ASAP, E-SURFMAR and E-WINPROF programmes. The coordination of NMSs owned territorial networks (e.g. radiosonde stations and synoptic stations), data quality monitoring, fault reporting and recovery, a studies programme for the evolution of the observing networks and liaison with other organisations like WMO are among the tasks of the programme. The current period of the EUCOS programme has a five year duration (2007-2011) and a two stage approach was proposed in the programme definition. During the transition phase 2007-2008 no new programmatic objectives had been set because amongst others the Space-Terrestrial (S-T) study which investigated the relative contributions of selected space based and ground based observing systems to the forecast skill of global and regional NWP models had to be finalised first. Based on the findings of this study EUCOS currently prepares a redesign of its upper-air network. The original EUCOS upper-air network design was prepared in 2000 in order to define a set of stations serving the common general NWP requirement. Additional considerations were to make it possible to supply a common set of performance standards across the territory of EUMETNET Members and to ensure that the radiosonde network interleaved with AMDAR airports. The EUCOS upper-air network now requires a redesign because of several reasons. There is a need to take into account the significant evolution of the AMDAR network. Member states were not able to install the proposed EUCOS radiosonde network design with 4 ascents per day at most of the sites. The results from the S-T study are available with recommendations for the network design. Data assimilation of NWP models has improved significantly with advanced capability to make use of high time resolution data. The guidelines for the redesign of the EUCOS upper-air network will be derived from a study which is currently organised by EUCOS and conducted by ECMWF and several national Met. services. They contribute by running OSEs for different observation network setups with their model suites. The S-T study has shown that despite of all the additional new satellite observations, the degrading of the current terrestrial observing system to a basic (GUAN+GSN) network would have a significant negative impact on the forecast skill. The expected result from the envisaged OSEs is to find an optimum setting of upper-air measurements in space and time which maintains forecast skill. Throughout the second phase of the programme (2009-2011) the revised EUCOS design will be implemented. In the field of observation targeting EUCOS supported the PREVIEW Data Targeting (DTS) project. The main goal of this project was to develop and to assess the feasibility of an operational adaptive control of the operational observing system. The DTS project was lead by Met Office and co-funded by EUCOS and the European Commission (within the PREVIEW project). The main software, an interactive web-based tool, was developed by ECMWF and ran on their computer system during the trial phase which lasted from February until December 2008. During the trial the focus was on improving short range (1-3 days) forecasts of potentially high-impact and/or high-uncertainty weather events in Europe. Forecasters from all EUMETNET members had had the chance to submit sensitive area prediction requests on a daily basis. Afterwards the DTS displayed the sensitive areas calculated by ECMWF, Météo-France and Met Office and the lead user (an experienced forecaster) could then use the system to issue requests for additional, unscheduled observations. The trial has shown that a data targeting system can be routinely used. Targeted observations were successfully deployed from E-ASAP units, by the E-AMDAR programme and in 21 countries. 88% of the additionally requested radiosondes from land stations have been launched. Furthermore, the DTS was used to support research field campaigns like THORPEX-IPY, THORPEX-PARC and MEDEX. During the envisaged MEDEX Phase 2 campaign in autumn 2009, the DTS will be used as an operational tool to aid research. Further tasks for EUCOS will be the proposal and implementation of a new E-programme responsible for running a central data hub and centralised monitoring, setting of new objectives for the programme components E-ASAP, E-AMDAR, E-SURFMAR and E-WINPROF, and an extension of quality monitoring activities. An example for new programme objectives is the introduction of a humidity sensor on commercial aircraft within the E-AMDAR programme.
Logistics Support for U.S. Perimeter and Portal Monitoring Sites in the Soviet Union
1990-09-01
Interaction of Components. .................. 40 The U.S. National Defense Transportation System.......................52 DTS Description...53 Pros and Cons of Air, Motor Transport 54 Military Airlift Command ............ 56 iii Page Cost/Service Tradeoffs ... .......... . 59 Military...Traffic Management Command . . 59 The Soviet National Transportation System . 61 Transportation and the Economy ....... .. 63 Intermodal Comparison
NASA Astrophysics Data System (ADS)
Lauer, F.; Frede, H.-G.; Breuer, L.
2012-04-01
Spatially confined groundwater discharge can contribute significantly to stream discharge. Distributed fibre optic temperature sensing (DTS) of stream water has been successfully used to localize- and quantify groundwater discharge from this type "point sources" (PS) in small first-order streams. During periods when stream and groundwater temperatures differ PS appear as abrupt step in longitudinal stream water temperature distribution. Based on stream temperature observation up- and downstream of a point source and estimated or measured groundwater temperature the proportion of groundwater inflow to stream discharge can be quantified using simple mixing models. However so far this method has not been quantitatively verified, nor has a detailed uncertainty analysis of the method been conducted. The relative accuracy of this method is expected to decrease nonlinear with decreasing proportions of lateral inflow. Furthermore it depends on the temperature differences (ΔT) between groundwater and surface water and on the accuracy of temperature measurement itself. The latter could be affected by different sources of errors. For example it has been shown that a direct impact of solar radiation on fibre optic cables can lead to errors in temperature measurements in small streams due to low water depth. Considerable uncertainty might also be related to the determination of groundwater temperature through direct measurements or derived from the DTS signal. In order to directly validate the method and asses it's uncertainty we performed a set of artificial point source experiments with controlled lateral inflow rates to a natural stream. The experiments were carried out at the Vollnkirchener Bach, a small head water stream in Hessen, Germany in November and December 2011 during a low flow period. A DTS system was installed along a 1.2 km sub reach of the stream. Stream discharge was measured using a gauging flume installed directly upstream of the artificial PS. Lateral inflow was simulated using a pumping system connected to a 2 m3 water tank. Pumping rates were controlled using a magnetic inductive flowmeter and kept constant for a time period of 30 minutes to 1.5 hours depending on the simulated inflow rate. Different temperatures of lateral inflow were adjusted by heating the water in the tank (for summer experiments a cooling by ice cubes could be realized). With this setup, different proportions of lateral inflow to stream flow ranging from 2 to 20%, could be simulated for different ΔT's (2-7° C) between stream- and inflowing water. Results indicate that the estimation of groundwater discharge through DTS is working properly, but that the method is very sensitive to the determination of the PS groundwater temperature. The span of adjusted ΔT and inflow rates of the artificial system are currently used to perform a thorough uncertainty analysis of the DTS method and to derive thresholds for detection limits.
Recent sheath physics studies on DIII-D
NASA Astrophysics Data System (ADS)
Watkins, J. G.; Labombard, B.; Stangeby, P. C.; Lasnier, C. J.; McLean, A. G.; Nygren, R. E.; Boedo, J. A.; Leonard, A. W.; Rudakov, D. L.
2015-08-01
A study to examine some current issues in the physics of the plasma sheath has been recently carried out in DIII-D low power Ohmic plasmas using both flush and domed Langmuir probes, divertor Thomson scattering (DTS), an infrared camera (IRTV), and a new calorimeter triple probe assembly mounted on the Divertor Materials Evaluation System (DIMES). The sheath power transmission factor was found to be consistent with the theoretically predicted value of 7 (±2) for low power plasmas. Using this factor, the three heat flux profiles derived from the LP, DTS, and calorimeter diagnostic measurements agree. Comparison of flush and domed Langmuir probes and divertor Thomson scattering indicates that proper interpretation of flush probe data to get target plate density and temperature is feasible and could potentially yield accurate measurements of target plate conditions where the probes are located.
Voxel-Wise Comparisons of the Morphology of Diffusion Tensors Across Groups of Experimental Subjects
Bansal, Ravi; Staib, Lawrence H.; Plessen, Kerstin J.; Xu, Dongrong; Royal, Jason; Peterson, Bradley S.
2007-01-01
Water molecules in the brain diffuse preferentially along the fiber tracts within white matter, which form the anatomical connections across spatially distant brain regions. A diffusion tensor (DT) is a probabilistic ellipsoid composed of 3 orthogonal vectors, each having a direction and an associated scalar magnitude, that represent the probability of water molecules diffusing in each of those directions. The 3D morphologies of DTs can be compared across groups of subjects to reveal disruptions in structural organization and neuroanatomical connectivity of the brains of persons with various neuropsychiatric illnesses. Comparisons of tensor morphology across groups have typically been performed on scalar measures of diffusivity, such as Fractional Anisotropy (FA), rather than directly on the complex 3D morphologies of DTs. Scalar measures, however, are related in nonlinear ways to the eigenvalues and eigenvectors that create the 3D morphologies of DTs. We present a mathematical framework that permits the direct comparison across groups of mean eigenvalues and eigenvectors of individual DTs. We show that group-mean eigenvalues and eigenvectors are multivariate Gaussian distributed, and we use the Delta method to compute their approximate covariance matrices. Our results show that the theoretically computed Mean Tensor (MT) eigenvectors and eigenvalues match well with their respective true values. Furthermore, a comparison of synthetically generated groups of DTs highlights the limitations of using FA to detect group differences. Finally, analyses of in vivo DT data using our method reveal significant between-group differences in diffusivity along fiber tracts within white matter, whereas analyses based on FA values failed to detect some of these differences. PMID:18006284
Spent nuclear fuel dry transfer system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, L.; Agace, S.
The U.S. Department of Energy is currently engaged in a cooperative program with the Electric Power Research Institute (EPRI) to design a spent nuclear fuel dry transfer system (DTS). The system will enable the transfer of individual spent nuclear fuel assemblies between a conventional top loading cask and multi-purpose canister in a shielded overpack, or accommodate spent nuclear fuel transfers between two conventional casks.
A high resolution method for soil moisture mapping at large spatial and temporal scales
NASA Astrophysics Data System (ADS)
moreno, D.; Sayde, C.; Ochsner, T. E.; Sorin, C.; Selker, J. S.
2013-12-01
Soil moisture is a critical component of the planet's water budget, yet precise measurement of its dynamics across the critical scales of 0.1-1,000 m continues to be an area of great uncertainty. Here we present the preliminary results for a large scale installation of soil moisture quantification based on the work of Sayde et al. (2010) using actively heated fiber optic with a DTS system capable of soil moisture measurements at high spatial (reporting every 0.125 m) and temporal resolution (read as frequently as each 15 min)). The fiber optic (FO) sensing cables were installed in 2 sections: 1) a highly resolved multi-scale spiral 75m x 65m in size, 530 m total path length, and 2) a 770 m transect in the foot print of the cosmos cosmic ray probe installed at the site. In each of those 2 sections, the FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. In addition, six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the DTS data. Finally, gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. The ability of this DTS FO system to provide soil moisture measurements over four orders of magnitude in spatial scale (0.1 - 1,000m) will allow better understanding of the spatio-temporal variability in soil moisture in the field, which is essential to develop protocols for calibration and validation of large scale soil moisture remote sensing data (such as NASA airMOSS soil moisture air flights). The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation.. Sayde, C., C. Gregory, M. Gil-Rodriguez, N. Tufillaro, S. Tyler, N. van de Giesen, M. English, R. Cuenca, and J.S. Selker (2010), Feasibility of soil moisture monitoring with heated fiber optics, Water Resour. Res., 46, W06201, doi:10.1029/2009WR007846.
Investigating Self-Perceptions and Resilience in Looked after Children
ERIC Educational Resources Information Center
Honey, Kyla L.; Rees, Paul; Griffey, Simon
2011-01-01
The perceptions of Looked After Children (LAC; n = 51), their Designated Teachers (DTs), and a sample of non-LAC (n = 99) were elicited. LAC held more positive self-perceptions than the non-LAC, and similarly positive ratings were given for the LAC by their DTs; but LAC held lower career aspirations than the non-LAC. LAC differed in their levels…
NASA Astrophysics Data System (ADS)
Ciocca, F.; Van De Giesen, N.; Assouline, S.; Huwald, H.; Hopmans, J. W.; Lunati, I.; Parlange, M. B.
2011-12-01
Optical fibers in combination with Raman scattering measurements (Distributed Temperature Sensor: DTS) have recently become more standard for the measurement of soil temperature. A recently developed technique to measure soil moisture called Active DTS (ADTS) is investigated in this study. ADTS consists of an application of a heat pulse for a fixed duration and power along the metal sheath covering the optical fiber placed in the soil. Soil moisture can be inferred from the increased temperature measured during the heating phase and the subsequent temperature decrease during the cooling phase. We assess this technique for a loamy-sandy soil as part of a field campaign that took place during the 2011 summer at EPFL. The measurements were taken within a weighing lysimeter (2.5 m depth and 1.2 m diameter) using an optical fiber arranged in 15 loops for a total measurement length of 52 m in the top 80 cm of the soil profile. Local soil moistures were simultaneously measured using capacity-based probes. Thermocouples, wrapped around the fiber, are used to account for the effects of the insulating cover surrounding the cable. Heat pulses of various duration and power have been applied for a range of soil moistures. Measurements were taken during periods of drainage and evaporation. The accuracy of the technique for the EPFL 2011 field campaign and the experiment are discussed and the soil moisture measurements are presented.
USDA-ARS?s Scientific Manuscript database
Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...
AWACS Dialogue Training System (DTS) Evaluation
2007-08-01
Dialogue would also be welcome. Human instructors would also have the benefit of providing experienced advice and feedback. Feedback, or the lack of it...converse/start/commit a mission or to KIO when necessary. There was no response to KIO calls when fuel state was at Bingo and to KIO calls for
Heat and Groundwater Flow in the San Gabriel Mountains, California
NASA Astrophysics Data System (ADS)
Newman, A. A.; Becker, M.; Laton, W. R., Jr.
2017-12-01
Groundwater flow paths in mountainous terrain often vary widely in both time and space. Such systems remain difficult to characterize due to fracture-dominated flow paths, high topographic relief, and sparse hydrologic data. We develop a hydrogeologic conceptual model of the Western San Gabriel Mountains in Southern California based on geophysical, thermal, and hydraulic head data. Boreholes are located along the San Gabriel Fault Zone (SGFZ) and cover a wide range of elevations to capture the heterogeneity of the hydrogeologic system. Long term (2016-2017) monitoring of temperature and hydraulic head was carried out in four shallow (300-600m depth) boreholes within the study area using fiber-optic distributed temperature sensing (DTS). Borehole temperature profiles were used to assess the regional groundwater flow system and local flows in fractures intersecting the borehole. DTS temperature profiles were compared with available borehole geophysical logs and head measurements collected with grouted vibrating wire pressure transducers (VWPT). Spatial and temporal variations in borehole temperature profiles suggest that advective heat transfer due to fluid flow affected the subsurface thermal regime. Thermal evidence of groundwater recharge and/or discharge and flow through discrete fractures was found in all four boreholes. Analysis of temporal changes to the flow system in response to seasonal and drilling-induced hydraulic forcing was useful in reducing ambiguities in noisy datasets and estimating interborehole relationships. Acoustic televiewer logs indicate fractures were primarily concentrated in densely fractured intervals, and only a minor decrease of fracture density was observed with depth. Anomalously high hydraulic gradients across the SGFZ suggest that the feature is a potential barrier to lateral flow. However, transient thermal anomalies consistent with groundwater flow within the SGFZ indicate this feature may be a potential conduit to vertical flow. This study builds upon the limited hydrogeologic understanding of the region and demonstrates the value of DTS in characterization efforts.
Ishikawa, K; Miyamoto, Y; Takechi, M; Ueyama, Y; Suzuki, K; Nagayama, M; Matsumura, T
1999-03-05
The setting reaction and mechanical strength in terms of diametral tensile strength (DTS) of hydroxyapatite (HAP) putty made of tetracalcium phosphate, dicalcium phosphate anhydrous, and neutral sodium hydrogen phosphate (Na1.8H1.2PO4) solution containing 8 wt % sodium alginate were evaluated as a function of the Na1.8H1.2PO4 concentration. In one condition, HAP putty was placed in an incubator kept at 37 degrees C and 100% relative humidity. In the other condition, immediately after mixing HAP putty was immersed in serum kept at 37 degrees C. Longer setting times and lower DTS values were observed when HAP putty was immersed in serum regardless of the Na1.8H1.2PO4 concentration. The setting times of the HAP putty in both conditions became shorter with an increase in the Na1. 8H1.2PO4 concentration, reaching approximately 7-13 min when the Na1. 8H1.2PO4 concentration was 0.6 mol/L or higher. The DTS value of HAP putty was relatively constant (10 MPa) regardless of the Na1.8H1. 2PO4 concentration (0.2-1.0 mol/L) when HAP putty was kept in an incubator. In contrast, when HAP putty was immersed in serum, the DTS value was dependent on the Na1.8H1.2PO4 concentration. It increased with the Na1.8H1.2PO4 concentration and reached approximately 5 MPa when the Na1.8H1.2PO4 concentration was 0.6 mol/L, after which it showed a relatively constant DTS value. We therefore would recommend a HAP putty that uses 0.6 mol/L Na1.8H1. 2PO4 since at that concentration the putty's setting time (approximately 10 min) is proper for clinical use and it shows good DTS value (approximately 5 MPa) even when it is immersed in serum immediately after mixing. Copyright 1999 John Wiley & Sons, Inc.
Limberg, Brian J; Johnstone, Kevin; Filloon, Thomas; Catrenich, Carl
2016-09-01
Using United States Pharmacopeia-National Formulary (USP-NF) general method <1223> guidance, the Soleris(®) automated system and reagents (Nonfermenting Total Viable Count for bacteria and Direct Yeast and Mold for yeast and mold) were validated, using a performance equivalence approach, as an alternative to plate counting for total microbial content analysis using five representative microbes: Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus brasiliensis. Detection times (DTs) in the alternative automated system were linearly correlated to CFU/sample (R(2) = 0.94-0.97) with ≥70% accuracy per USP General Chapter <1223> guidance. The LOD and LOQ of the automated system were statistically similar to the traditional plate count method. This system was significantly more precise than plate counting (RSD 1.2-2.9% for DT, 7.8-40.6% for plate counts), was statistically comparable to plate counting with respect to variations in analyst, vial lots, and instruments, and was robust when variations in the operating detection thresholds (dTs; ±2 units) were used. The automated system produced accurate results, was more precise and less labor-intensive, and met or exceeded criteria for a valid alternative quantitative method, consistent with USP-NF general method <1223> guidance.
L-Area STS MTR/NRU/NRX Grapple Assembly Closure Mechanics Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huizenga, D. J.
2016-06-08
A review of the closure mechanics associated with the Shielded Transfer System (STS) MTR/NRU/NRX grapple assembly utilized at the Savannah River Site (SRS) was performed. This review was prompted by an operational event which occurred at the Canadian Nuclear Laboratories (CNL) utilizing a DTS-XL grapple assembly which is essentially identical to the STS MTR/NRU/NRX grapple assembly used at the SRS. The CNL operational event occurred when a NRU/NRX fuel basket containing spent nuclear fuel assemblies was inadvertently released by the DTS-XL grapple assembly during a transfer. The SM review of the STS MTR/NRU/NRX grapple assembly will examine the operational aspectsmore » of the STS and the engineered features of the STS which prevent such an event at the SRS. The design requirements for the STS NRU/NRX modifications and the overall layout of the STS are provided in other documents.« less
Moshaverinia, Alireza; Ansari, Sahar; Movasaghi, Zanyar; Billington, Richard W; Darr, Jawwad A; Rehman, Ihtesham U
2008-10-01
The objective of this study was to enhance the mechanical strength of glass-ionomer cements, while preserving their unique clinical properties. Copolymers incorporating several different segments including N-vinylpyrrolidone (NVP) in different molar ratios were synthesized. The synthesized polymers were copolymers of acrylic acid and NVP with side chains containing itaconic acid. In addition, nano-hydroxyapatite and fluoroapatite were synthesized using an ethanol-based sol-gel technique. The synthesized polymers were used in glass-ionomer cement formulations (Fuji II commercial GIC) and the synthesized nanoceramic particles (nano-hydroxy or fluoroapatite) were also incorporated into commercial glass-ionomer powder, respectively. The synthesized materials were characterized using FTIR and Raman spectroscopy and scanning electron microscopy. Compressive, diametral tensile and biaxial flexural strengths of the modified glass-ionomer cements were evaluated. After 24h setting, the NVP modified glass-ionomer cements exhibited higher compressive strength (163-167 MPa), higher diametral tensile strength (DTS) (13-17 MPa) and much higher biaxial flexural strength (23-26 MPa) in comparison to Fuji II GIC (160 MPa in CS, 12MPa in DTS and 15 MPa in biaxial flexural strength). The nano-hydroxyapatite/fluoroapatite added cements also exhibited higher CS (177-179 MPa), higher DTS (19-20 MPa) and much higher biaxial flexural strength (28-30 MPa) as compared to the control group. The highest values for CS, DTS and BFS were found for NVP-nanoceramic powder modified cements (184 MPa for CS, 22 MPa for DTS and 33 MPa for BFS) which were statistically higher than control group. It was concluded that, both NVP modified and nano-HA/FA added glass-ionomer cements are promising restorative dental materials with improved mechanical properties.
Relative Impacts of Low Permeability Subsurface Deposits on Recharge Basin Infiltration Rates
NASA Astrophysics Data System (ADS)
Oconnell, P.; Becker, M.; Pham, C.; Rodriguez, G.; Hutchinson, A.; Plumlee, M.
2017-12-01
Artificial recharge of aquifers through spreading basins has become an important component of water management in semi-arid climates. The rate at which water can be recharged in these basins is limited by the natural vertical permeability of the underlying deposits which may be highly variable both laterally and vertically. To help understand hydrostratigraphic controls on recharge, a newly constructed basin was surveyed and instrumented. Prior to flooding the basin, lithology was characterized by shallow hand coring, direct push coring, ground penetrating radar, and electrical resistivity. After flooding, recharge was monitored through piezometers, electrical resistivity, and a network of fiber optic distributed temperature sensing (DTS). The DTS network used temperature as a tracer to measure infiltration rate on 25 cm intervals both laterally and vertically. Several hundred paired DTS time series datasets (from fiber optic cables located at 0 and 0.5 meters below ground surface) were processed with the cross-wavelet transform (XWT) to calculate spatially and temporally continuous infiltration rates, which can be interpolated and animated to visualize heterogeneity. Time series data from 8-meter deep, vertically oriented DTS cables reveal depth intervals where infiltration rates vary. Inverted resistivity sections from repeated dipole-dipole surveys along the sidewall of a spreading basin exhibit a positive correlation with the distribution of relatively high and low infiltration rates, indicating zones of preferential downward (efficient) and lateral (inefficient) flow, respectively. In contrast to other monitored basins, no perching was observed in the vertically oriented DTS cables. The variation in recharge across the basin and the appearance of subsurface lateral flow can be explained in context of the alluvial depositional environment.
Carmello, Juliana Cabrini; Fais, Laiza Maria Grassi; Ribeiro, Lígia Nunes de Moraes; Claro Neto, Salvador; Guaglianoni, Dalton Geraldo; Pinelli, Lígia Antunes Pereira
2012-02-01
The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm²) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (α=0.05). The values of DTS (MPa) were: Pure COP- 10.94 ± 1.30; COP 10%- 30.06 ± 0.64; COP 50%- 29.87 ± 0.27; zinc phosphate- 4.88 ± 0.96. The values of FT (µm) were: Pure COP- 31.09 ± 3.16; COP 10%- 17.05 ± 4.83; COP 50%- 13.03 ± 4.83; Zinc Phosphate- 20.00 ± 0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness.
CARMELLO, Juliana Cabrini; FAIS, Laiza Maria Grassi; RIBEIRO, Lígia Nunes de Moraes; CLARO NETO, Salvador; GUAGLIANONI, Dalton Geraldo; PINELLI, Lígia Antunes Pereira
2012-01-01
The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm2) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (α=0.05). Results The values of DTS (MPa) were: Pure COP- 10.94±1.30; COP 10%- 30.06±0.64; COP 50%- 29.87±0.27; zinc phosphate- 4.88±0.96. The values of FT (µm) were: Pure COP- 31.09±3.16; COP 10%- 17.05±4.83; COP 50%- 13.03±4.83; Zinc Phosphate- 20.00±0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness. PMID:22437672
Dithienogermole as a fused electron donor in bulk heterojunction solar cells.
Amb, Chad M; Chen, Song; Graham, Kenneth R; Subbiah, Jegadesan; Small, Cephas E; So, Franky; Reynolds, John R
2011-07-06
We report the synthesis and bulk heterojunction photovoltaic performance of the first dithienogermole (DTG)-containing conjugated polymer. Stille polycondensation of a distannyl-DTG derivative with 1,3-dibromo-N-octyl-thienopyrrolodione (TPD) results in an alternating copolymer which displays light absorption extending to 735 nm, and a higher HOMO level than the analogous copolymer containing the commonly utilized dithienosilole (DTS) heterocycle. When polyDTG-TPD:PC(70)BM blends are utilized in inverted bulk heterojunction solar cells, the cells display average power conversion efficiencies of 7.3%, compared to 6.6% for the DTS-containing cells prepared in parallel under identical conditions. The performance enhancement is a result of a higher short-circuit current and fill factor in the DTG-containing cells, which comes at the cost of a slightly lower open circuit voltage than for the DTS-based cells.
TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oines, A; Oines, A; Kilian-Meneghin, J
2016-06-15
Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphologymore » from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Toothbrushing education via a smart software visualization system.
Graetz, Christian; Bielfeldt, Jule; Wolff, Lars; Springer, Claudia; El-Sayed, Karim M Fawzy; Sälzer, Sonja; Badri-Höher, Sabah; Dörfer, Christof E
2013-02-01
The aim of this study is to evaluate the efficiency of a recently developed smart digital toothbrush monitoring and training system (DTS) in terms of correct brushing motion and grip axis orientation in an at-home environment. Twenty-one participants (11 test individuals [DTSG] and 10 control individuals [COG]) received instructions on the modified Bass technique (MBT) after their toothbrushing performance was monitored and they received professional tooth cleaning (T0). After 36 hours (T1), without mechanical oral hygiene measures, plaque and gingival indices were recorded, and the brushing technique was reviewed. After randomization, participants individually performed oral hygiene for 6 weeks (T2) with the provided oral hygiene kits. The DTSG group additionally used DTS. During the following 8 weeks (T3), participants used their original brushing devices without any additional interference. Investigators at each visit were masked regarding group identity. Data were statistically evaluated using Mann-Whitney U, Friedman, Wilcoxon, and paired tests and Pearson correlation. At T0, 27.27% of DTSG participants used the MBT correctly (COG, 50%), increasing to 54.55% (COG, 60%) after professional instruction (T1) and further to 90.91% at T2 (COG, 60%) (P <0.001). Plaque scores were reduced in DTSG (P <0.05). At T3, 80% of the DTSG (COG, 40%) totally adopted the MBT (P <0.05). The plaque scores on buccal surfaces of the DTSG showed an additional slight improvement between T2 and T3, in contrast to a decline on oral surfaces (P <0.001). At T2 and T3, the DTSG brushed >120 seconds (COG, 90% and 50%) (P <0.05). Apparently, the tested DTS effectively improves the brushing technique and leads to a prolonged learning effect, including improved oral hygiene.
Chen, Lyu Feng; Zhu, Guo Ping
2018-03-01
Based on Antarctic krill fishery and marine environmental data collected by scientific observers, using geographically weighted regression (GWR) model, we analyzed the effects of the factors with spatial attributes, i.e., depth of krill swarm (DKS) and distance from fishing position to shore (DTS), and sea surface temperature (SST), on the spatial distribution of fishing ground in the northern South Shetland Islands. The results showed that there was no significant aggregation in spatial distribution of catch per unit fishing effort (CPUE). Spatial autocorrelations (positive) among three factors were observed in 2010 and 2013, but were not in 2012 and 2016. Results from GWR model showed that the extent for the impacts on spatial distribution of CPUEs varied among those three factors, following the order DKS>SST>DTS. Compared to the DKS and DTS, the impact of SST on the spatial distribution of CPUEs presented adverse trend in the eastern and western parts of the South Shetland Islands. Negative correlations occurred for the spatial effects of DKS and DTS on distribution of CPUEs, though with inter-annual and regional variation. Our results provide metho-dological reference for researches on the underlying mechanism for fishing ground formation for Antarctic krill fishery.
Initial Concept of Operations for Full Management by Trajectory
NASA Technical Reports Server (NTRS)
Fernandes, Alicia D.; Atkins, Steve; Leiden, Ken; Kaler, Curt; Evans, Mark; Bell, Alan; Kilbourne, Todd; Jackson, Michael
2017-01-01
This document describes Management by Trajectory (MBT), a concept for future air traffic management (ATM) in which flights are assigned four-dimensional trajectories (4DTs) through a negotiation process between the Federal Aviation Administration (FAA) and flight operators that respects the flight operator's goals while complying with National Airspace System (NAS) constraints.
Quantifying the tibiofemoral joint space using x-ray tomosynthesis.
Kalinosky, Benjamin; Sabol, John M; Piacsek, Kelly; Heckel, Beth; Gilat Schmidt, Taly
2011-12-01
Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets. A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior-anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0-5 mm in 0.5 mm increments (VolumeRad™, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients. The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all trials. A linear fit estimated a slope of 0.887 (R² = 0.962) and a mean error across all trials of 0.34 mm for the PA phantom data. The estimated minimum JSW values for the lateral adjustable phantom acquisitions were found to have low correlation to the measured values (R² = 0.377), with a mean error of 2.13 mm. The error in the lateral adjustable-phantom datasets appeared to be caused by artifacts due to unrealistic features in the phantom bones. JSW maps generated by DTS and CT varied by a mean of 0.6 mm and 0.8 mm across the knee joint, for PA and lateral scans. The tibial and femoral edges were successfully segmented and JSW maps determined for PA and lateral clinical DTS datasets. A semiautomated method is presented for quantifying the 3D joint space in a 2D JSW map using tomosynthesis images. The proposed algorithm quantified the JSW across the knee joint to sub-millimeter accuracy for PA tomosynthesis acquisitions. Overall, the results suggest that x-ray tomosynthesis may be beneficial for diagnosing and monitoring disease progression or treatment of osteoarthritis by providing quantitative images of JSW in the load-bearing knee.
Chasing the long tail of environmental data: PEcAn is nuts about Brown Dog
NASA Astrophysics Data System (ADS)
Dietze, M.; Cowdery, E.; Desai, A. R.; Gardella, A.; Kelly, R.; Kooper, R.; LeBauer, D.; Mantooth, J.; McHenry, K.; Serbin, S.; Shiklomanov, A. N.; Simkins, J.; Viskari, T.; Raiho, A.
2015-12-01
The Predictive Ecosystem Analyzer (PEcAn) is a ecological modeling informatics system that manages the flows of information in and out of terrestrial biosphere models, provenance tracking, visualization, analysis, and model-data fusion. We are in the process of scaling the PEcAn system from one that currently supports a handful of models and system nodes to one that aims to provide bottom-up connectivity across much of the model-data integration done by the terrestrial biogeochemistry community. This talk reports on the current state of PEcAn, it's data processing workflows, and the near- and long-term challenges faced. Particular emphasis will be given to the tools being developed by the Brown Dog project to make unstructured, un-curated data more accessible: the Data Access Proxy (DAP) and the Data Tilling Service (DTS). The use of the DAP to process meteorological data and the DTS to read vegetation data will be demonstrated and other Brown Dog environmental case studies will be briefly touched on. Beyond data processing, facilitating data discovery and import into PEcAn and distributing analyses across the PEcAn network (i.e. bringing models to data) are key challenges moving forward.
Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je
2010-04-06
In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed.
Factorial invariance of posttraumatic stress disorder symptoms across three veteran samples.
McDonald, Scott D; Beckham, Jean C; Morey, Rajendra; Marx, Christine; Tupler, Larry A; Calhoun, Patrick S
2008-06-01
Research generally supports a 4-factor structure of posttraumatic stress disorder (PTSD) symptoms. However, few studies have established factor invariance by comparing multiple groups. This study examined PTSD symptom structure using the Davidson Trauma Scale (DTS) across three veteran samples: treatment-seeking Vietnam-era veterans, treatment-seeking post-Vietnam-era veterans, and Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veteran research participants. Confirmatory factor analyses of DTS items demonstrated that a 4-factor structural model of the DTS (reexperiencing, avoidance, numbing, and hyperarousal) was superior to five alternate models, including the conventional 3-factor model proposed by the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994). Results supported factor invariance across the three veteran cohorts, suggesting that cross-group comparisons are interpretable. Implications and applications for DSM-IV nosology and the validity of symptom measures are discussed.
Do people trust dentists? Development of the Dentist Trust Scale.
Armfield, J M; Ketting, M; Chrisopoulos, S; Baker, S R
2017-09-01
This study aimed to adapt a measure of trust in physicians to trust in dentists and to assess the reliability and validity of the measure. Questionnaire data were collected from a simple random sample of 596 Australian adults. The 11-item General Trust in Physicians Scale was modified to apply to dentists. The Dentist Trust Scale (DTS) had good internal consistency (α = 0.92) and exploratory factor analysis revealed a single-factor solution. Lower DTS scores were associated with less trust in the dentist last visited, having previously changed dentists due to unhappiness with the care received, currently having dental pain, usual visiting frequency, dental avoidance, and with past experiences of discomfort, gagging, fainting, embarrassment and personal problems with the dentist. The majority of people appear to exhibit trust in dentists. The DTS shows promising reliability and validity evidence. © 2017 Australian Dental Association.
Mushanski, Linda M; Brandt, Ken; Coffin, Nicolette; Levett, Paul N; Horsman, Gregory B; Rank, Elliot L
2012-07-01
Performances of the BD ProbeTec Chlamydia trachomatis (CT)/Neisseria Gonorrhoeae (GC) Q(x) Amplified DNA Assay reagents on a BD Viper System with XTR Technology and APTIMA COMBO 2 Assay reagents on a TIGRIS DTS platform, for detection of both CT and GC were compared. A total of 1018 first-void urine specimens were tested for the presence of CT and GC DNA using the 2 assays. CT was detected in 143 specimens (14%). Eight specimens exhibited discordant results, and they were divided equally between the 2 assays. Based on the original results, the overall agreement for CT was 99.2%, with 97.1% and 99.5% in agreement with positive and negative specimens, respectively. Cohen's Kappa was 0.967. GC was detected in 27 specimens (2.6%). Two specimens exhibited discordant results, and they were divided equally between the 2 assays. Based on the original results, the overall agreement was 99.8%, with 96.2% and 99.9% in agreement for positive and negative specimens, respectively. Cohen's Kappa was 0.961. There was a high level of agreement between the systems for both CT and GC detection.
Mechanical properties and microstructures of glass-ionomer cements.
Xie, D; Brantley, W A; Culbertson, B M; Wang, G
2000-03-01
The objective of this study was to determine the flexural strength (FS), compressive strength (CS), diametral tensile strength (DTS), Knoop hardness (KHN) and wear resistance of ten commercial glass-ionomer cements (GICs). The fracture surfaces of these cements were examined using scanning electron microscopic (SEM) techniques to ascertain relationships between the mechanical properties and microstructures of these cements. Specimens were fabricated according to the instructions from each manufacturer. The FS, CS, DTS, KHN and wear rate were measured after conditioning the specimens for 7 d in distilled water at 37 degrees C. One-way analysis of variance with the post hoc Tukey-Kramer multiple range test was used to determine which specimen groups were significantly different for each test. The fracture surface of one representative specimen of each GIC from the FS tests was examined using a scanning electron microscope. The resin-modified GICs (RM GICs) exhibited much higher FS and DTS, not generally higher CS, often lower Knoop hardness and generally lower wear resistance, compared to the conventional GICs (C GICs). Vitremer (3M) had the highest values of FS and DTS; Fuji II LC (GC International) and Ketac-Molar (ESPE) had the highest CS; Ketac-Fil (ESPE) had the highest KHN. Ketac-Bond (ESPE) had the lowest FS; alpha-Silver (DMG-Hamburg) had the lowest CS. Four GICs (alpha-Fil (DMG-Hamburg), alpha-Silver, Ketac-Bond and Fuji II) had the lowest values of DTS, which were not significantly different from each other; alpha-Silver and Ketac-Silver had the lowest values of KHN. The highest wear resistance was exhibited by alpha-Silver and Ketac-Fil; F2LC had the lowest wear resistance. The C GICs exhibited brittle behavior, whereas the RM GICs underwent substantial plastic deformation in compression. The more integrated the microstructure, the higher were the FS and DTS. Higher CS was correlated with smaller glass particles, and higher KHN was found where there was a combination of smaller glass particles and lower porosity. Larger glass particle sizes and a more integrated microstructure contributed to a higher wear resistance. The mechanical properties of GICs were closely related to their microstructures. Factors such as the integrity of the interface between the glass particles and the polymer matrix, the particle size, and the number and size of voids have important roles in determining the mechanical properties.
Souza, Bianca Mendes; Preisser, Tatiane Melo; Pereira, Vanessa Bastos; Zurita-Turk, Meritxell; de Castro, Camila Prósperi; da Cunha, Vanessa Pecini; de Oliveira, Rafael Pires; Gomes-Santos, Ana Cristina; de Faria, Ana Maria Caetano; Machado, Denise Carmona Cara; Chatel, Jean-Marc; Azevedo, Vasco Ariston de Carvalho; Langella, Philippe; Miyoshi, Anderson
2016-08-30
Inflammatory bowel diseases are characterized by chronic intestinal inflammation that leads to severe destruction of the intestinal mucosa. Therefore, the understanding of their aetiology as well as the development of new medicines is an important step for the treatment of such diseases. Consequently, the development of Lactococcus lactis strains capable of delivering a eukaryotic expression vector encoding the interleukin 4 (IL-4) of Mus musculus would represent a new strategy for the elaboration of a more effective alternative therapy against Crohn's disease. The murine IL-4 ORF was cloned into the eukaryotic expression vector pValac::dts. The resulting plasmid-pValac::dts::IL-4-was transfected into CHO cells so that its functionality could be evaluated in vitro. With fluorescent confocal microscopy, flow cytometry and ELISA, it was observed that pValac::dts::IL-4-transfected cells produced IL-4, while non-transfected cells and cells transfected with the empty vector did not. Then, pValac::dts::IL-4 was inserted into L. lactis MG1363 FnBPA(+) in order to evaluate the therapeutic potential of the recombinant strain against TNBS-induced colitis. Intragastric administration of L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) was able to decrease the severity of colitis, with animals showing decreased levels of IL-12, IL-6 and MPO activity; and increased levels of IL-4 and IL-10. Finally, LP-isolated cells from mice administered TNBS were immunophenotyped so that the main IL-4 and IL-10 producers were identified. Mice administered the recombinant strain presented significantly higher percentages of F4/80(+)MHCII(+)Ly6C(-)IL-4(+), F4/80(+)MHCII(+)Ly6C(-)IL-10(+), F4/80(+)MHCII(+)Ly6C(-)CD206(+)CD124(+)IL-10(+) and CD4(+)Foxp3(+)IL10(+) cells compared to the other groups. This study shows that L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) is a good candidate to maintain the anti-inflammatory and proinflammatory balance in the gastrointestinal tract, increasing the levels of IL-10-secreting regulatory cells and, thus, demonstrating the effectiveness of this novel DNA delivery-based strategy.
The Clear Creek Envirohydrologic Observatory: From Vision Toward Reality
NASA Astrophysics Data System (ADS)
Just, C.; Muste, M.; Kruger, A.
2007-12-01
As the vision of a fully-functional Clear Creek Envirohydrologic Observatory comes closer to reality, the opportunities for significant watershed science advances in the near future become more apparent. As a starting point to approaching this vision, we focused on creating a working example of cyberinfrastructure in the hydrologic and environmental sciences. The system will integrate a broad range of technologies and ideas: wired and wireless sensors, low power wireless communication, embedded microcontrollers, commodity cellular networks, the internet, unattended quality assurance, metadata, relational databases, machine-to-machine communication, interfaces to hydrologic and environmental models, feedback, and external inputs. Hardware: An accomplishment to date is "in-house" developed sensor networking electronics to compliment commercially available communications. The first of these networkable sensors are dielectric soil moisture probes that are arrayed and equipped with wireless connectivity for communications. Commercially available data logging and telemetry-enabled systems deployed at the Clear Creek testbed include a Campbell Scientific CR1000 datalogger, a Redwing 100 cellular modem, a YA Series yagi antenna, a NP12 rechargeable battery, and a BP SX20U solar panel. This networking equipment has been coupled with Hach DS5X water quality sondes, DTS-12 turbidity probes and MicroLAB nutrient analyzers. Software: Our existing data model is an Arc Hydro-based geodatabase customized with applications for extraction and population of the database with third party data. The following third party data are acquired automatically and in real time into the Arc Hydro customized database: 1) geophysical data: 10m DEM and soil grids, soils; 2) land use/land cover data; and 3) eco-hydrological: radar-based rainfall estimates, stream gage, streamlines, and water quality data. A new processing software for data analysis of Acoustic Doppler Current Profilers (ADCP) measurements has been finalized. The software package provides mean flow field and turbulence characteristics obtained by operating the ADCP at fixed points or using the moving-boat approach. Current Work: The current development work is focused on extracting and populating the Clear Creek database with in-situ measurements acquired and transmitted in real time with sensors deployed in the Clear Creek watershed.
Effect of Resin-modified Glass Ionomer Cement Dispensing/Mixing Methods on Mechanical Properties.
Sulaiman, T A; Abdulmajeed, A A; Altitinchi, A; Ahmed, S N; Donovan, T E
2018-03-23
Resin-modified glass ionomer cements (RMGIs) are often used for luting indirect restorations. Hand-mixing traditional cements demands significant time and may be technique sensitive. Efforts have been made by manufacturers to introduce the same cement using different dispensing/mixing methods. It is not known what effects these changes may have on the mechanical properties of the dental cement. The purpose of this study was to evaluate the mechanical properties (diametral tensile strength [DTS], compressive strength [CS], and fracture toughness [FT]) of RMGIs with different dispensing/mixing systems. The RMGI specimens (n=14)-RelyX Luting (hand mix), RelyX Luting Plus (clicker-hand mix), RelyX Luting Plus (automix) (3M ESPE), GC Fuji PLUS (capsule-automix), and GC FujiCEM 2 (automix) (GC)-were prepared for each mechanical test and examined after thermocycling (n=7/subgroup) for 20,000 cycles to the following: DTS, CS (ISO 9917-1) and FT (ISO standard 6872; Single-edge V-notched beam method). Specimens were mounted and loaded with a universal testing machine until failure occurred. Two-/one-way analysis of variance followed by Tukey honestly significantly different post hoc test was used to analyze data for statistical significance ( p<0.05). The interaction effect of both dispensing/mixing method and thermocycling was significant only for the CS test of the GC group ( p<0.05). The different dispensing/mixing methods had no effect on the DTS of the tested cements. The CS of GC Fuji PLUS was significantly higher than that of the automix version ( p<0.05). The FT decreased significantly when switching from RelyX (hand mix) to RelyX Luting Plus (clicker-hand mix) and to RelyX Luting Plus (automix) ( p<0.05). Except in the case of the DTS of the GC group and the CS of GC Fuji PLUS, thermocycling had a significant effect reducing the mechanical properties of the RMGI cements ( p<0.05). Introducing alternative dispensing/mixing methods for mixing RMGIs to reduce time and technique sensitivity may affect mechanical properties and is brand dependent.
Heat transfer fouling characteristics of microfiltered thin stillage from the dry grind process.
Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Singh, Vijay; Tumbleson, M E; Rausch, Kent D
2010-08-01
We investigated effects of microfiltration (MF) on heat transfer fouling tendencies of thin stillage. A stainless steel MF membrane (0.1 micron pore size) was used to remove solids from thin stillage. At filtration conditions of 690kPa, the MF process effectively recovered total solids from thin stillage. Thin stillage was concentrated from 7.0% to 22.4% solids with average permeate flux rates of 180+/-30 L/m(2)/h at 75 degrees C. In retentate streams, protein and fat contents were increased from 23.5 and 16.7% db to 27.6 and 31.1% db, respectively, and ash content was reduced from 10.5% to 3.8% db. Removal of solids, protein and fat generated a microfiltration permeate (MFP) that was used as an input stream to the fouling probe system; MFP fouling tendencies were measured. An annular fouling probe was used to measure fouling tendencies of thin stillage from a commercial dry grind facility. When comparing diluted thin stillage (DTS) stream and MFP, a reduction in solids concentration was not the only reason of fouling decrement. Selective removal of protein and fat played an important role in mitigating the fouling. At t=10h, mean fouling rates of MFP were an order of magnitude lower when compared to thin stillage and diluted streams. When maximum probe temperature (200 degrees C) was reached, mean fouling rates for thin stillage, DTS and MFP were 7.1x10(-4), 4.2x10(-4) and 2.6x10(-4) m(2) degrees C/kW/min, respectively. In DTS and MFP, the induction period was prolonged by factors of 4.3 and 9.5, respectively, compared to the induction period for thin stillage fouling. Mean fouling rates were decreased by factors of 2.3 and 23.4 for DTS and MFP, respectively. Fouling of MFP took twice the time to reach a probe temperature of 200 degrees C than did thin stillage (22 h vs 10 h, respectively). A reduction in heat transfer fouling could be achieved by altering process stream composition using microfiltration. Copyright 2010 Elsevier Ltd. All rights reserved.
Tung, Nguyen-Thach; Tran, Cao-Son; Nguyen, Tran-Linh; Hoang, Tung; Trinh, Thanh-Dat; Nguyen, Thi-Ngan
2018-05-01
The objective of this study was to prepare and evaluate some physiochemical and biopharmaceutical properties of bitter taste masking microparticles containing azithromycin loaded in dispersible tablets. In the first stage of the study, the bitter taste masking microparticles were prepared by solvent evaporation and spray drying method. When compared to the bitter threshold (32.43µg/ml) of azithromycin (AZI), the microparticles using AZI:Eudragit L100=1:4 and having a size distribution of 45-212µm did significantly mask the bitter taste of AZI. Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy ( 1 H NMR) proved that the taste masking of microparticles resulted from the intermolecular interaction of the amine group in AZI and the carbonyl group in Eudragit L100. Differential scanning calorimeter (DSC) analysis was used to display the amorphous state of AZI in microparticles. Images obtaining from optical microscopy and scanning electron microscopy (SEM) indicated the existence of microparticles in regular cube shape with many layers. In the second stage, dispersible tablets containing microparticles (DTs-MP) were prepared by direct compression technique. Stability study was conducted to screen pH modulators for DTs-MP, and a combination of alkali agents (CaCO 3 :NaH 2 PO 4 , 2:1) was added into DTs-MP to create microenvironment pH of 5.0-6.0 for the tablets. The disintegration time of optimum DTs-MP was 53±5.29s and strongly depended on the kinds of lubricant and diluent. The pharmacokinetic study in the rabbit model using liquid chromatography tandem mass spectrometry showed that the mean relative bioavailability (AUC) and mean maximum concentration (C max ) of DTs-MP were improved by 2.19 and 2.02 times, respectively, compared to the reference product (Zithromax®, Pfizer). Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomas, Christoph K.; Kennedy, Adam M.; Selker, John S.; Moretti, Ayla; Schroth, Martin H.; Smoot, Alexander R.; Tufillaro, Nicholas B.; Zeeman, Matthias J.
2012-02-01
We present a novel approach based on fibre-optic distributed temperature sensing (DTS) to measure the two-dimensional thermal structure of the surface layer at high resolution (0.25 m, ≈0.5 Hz). Air temperature observations obtained from a vertically-oriented fibre-optics array of approximate dimensions 8 m × 8 m and sonic anemometer data from two levels were collected over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. The objectives of the study were to evaluate the potential of the DTS technique to study small-scale processes in the surface layer over a wide range of atmospheric stability, and to analyze the space-time dynamics of transient cold-air pools in the calm boundary layer. The time response and precision of the fibre-based temperatures were adequate to resolve individual sub-metre sized turbulent and non-turbulent structures, of time scales of seconds, in the convective, neutral, and stable surface layer. Meaningful sensible heat fluxes were computed using the eddy-covariance technique when combined with vertical wind observations. We present a framework that determines the optimal environmental conditions for applying the fibre-optics technique in the surface layer and identifies areas for potentially significant improvements of the DTS performance. The top of the transient cold-air pool was highly non-stationary indicating a superposition of perturbations of different time and length scales. Vertical eddy scales in the strongly stratified transient cold-air pool derived from the DTS data agreed well with the buoyancy length scale computed using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange.
NASA Astrophysics Data System (ADS)
Xiang-Guo, Meng; Hong-Yi, Fan; Ji-Suo, Wang
2018-04-01
This paper proposes a kind of displaced thermal states (DTS) and explores how this kind of optical field emerges using the entangled state representation. The results show that the DTS can be generated by a coherent state passing through a diffusion channel with the diffusion coefficient ϰ only when there exists κ t = (e^{\\hbar ν /kBT} - 1 )^{-1}. Also, its statistical properties, such as mean photon number, Wigner function and entropy, are investigated.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Yong; Yan, Zhenya
2017-02-01
The novel generalized perturbation (n, M)-fold Darboux transformations (DTs) are reported for the (2 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation and its extension by using the Taylor expansion of the Darboux matrix. The generalized perturbation (1 , N - 1) -fold DTs are used to find their higher-order rational solitons and rogue wave solutions in terms of determinants. The dynamics behaviors of these rogue waves are discussed in detail for different parameters and time, which display the interesting RW and soliton structures including the triangle, pentagon, heptagon profiles, etc. Moreover, we find that a new phenomenon that the parameter (a) can control the wave structures of the KP equation from the higher-order rogue waves (a ≠ 0) into higher-order rational solitons (a = 0) in (x, t)-space with y = const . These results may predict the corresponding dynamical phenomena in the models of fluid mechanics and other physically relevant systems.
NASA Astrophysics Data System (ADS)
Hare, Danielle K.; Briggs, Martin A.; Rosenberry, Donald O.; Boutt, David F.; Lane, John W.
2015-11-01
Groundwater has a predictable thermal signature that can be used to locate discrete zones of discharge to surface water. As climate warms, surface water with strong groundwater influence will provide habitat stability and refuge for thermally stressed aquatic species, and is therefore critical to locate and protect. Alternatively, these discrete seepage locations may serve as potential point sources of contaminants from polluted aquifers. This study compares two increasingly common heat tracing methods to locate discrete groundwater discharge: direct-contact measurements made with fiber-optic distributed temperature sensing (FO-DTS) and remote sensing measurements collected with thermal infrared (TIR) cameras. FO-DTS is used to make high spatial resolution (typically m) thermal measurements through time within the water column using temperature-sensitive cables. The spatial-temporal data can be analyzed with statistical measures to reveal zones of groundwater influence, however, the personnel requirements, time to install, and time to georeference the cables can be burdensome, and the control units need constant calibration. In contrast, TIR data collection, either from handheld, airborne, or satellite platforms, can quickly capture point-in-time evaluations of groundwater seepage zones across large scales. However the remote nature of TIR measurements means they can be adversely influenced by a number of environmental and physical factors, and the measurements are limited to the surface ;skin; temperature of water features. We present case studies from a range of lentic to lotic aquatic systems to identify capabilities and limitations of both technologies and highlight situations in which one or the other might be a better instrument choice for locating groundwater discharge. FO-DTS performs well in all systems across seasons, but data collection was limited spatially by practical considerations of cable installation. TIR is found to consistently locate groundwater seepage zones above and along the streambank, but submerged seepage zones are only well identified in shallow systems (e.g. <0.5 m depth) with moderate flow. Winter data collection, when groundwater is relatively warm and buoyant, increases the water surface expression of discharge zones in shallow systems.
Development and Pilot Testing of the Dual Task Screen in Healthy Adolescents.
Stephens, Jaclyn; Nicholson, Rachel; Slomine, Beth; Suskauer, Stacy
Athletes with mild traumatic brain injury (mTBI) should refrain from high-risk activities until recovered (symptom free and cognitive and physical exam findings normalize). Studies have suggested that this examination may not be sufficiently sensitive because dual-task paradigms, which typically assess motor performance while a person simultaneously completes a distractor task, can detect residual deficits in athletes who otherwise appear recovered from mTBI. Paradigms used to date are time-intensive procedures conducted in laboratory settings. Here, we report findings from a pilot study of the Dual Task Screen (DTS), which is a brief evaluation with two dual-task paradigms. In 32 healthy female adolescents, the DTS was administered in a mean of 5.63 min in the community, and every participant had poorer dual-condition performance on at least one of the motor tasks. The DTS is a clinically feasible measure and merits additional study regarding utility in adolescents with mTBIs. Copyright © 2018 by the American Occupational Therapy Association, Inc.
Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten
2017-01-01
The cost effective maintenance of underwater pressure pipes for sewage disposal in Austria requires the detection and localization of leakages. Extrusion of wastewater in lakes can heavily influence the water and bathing quality of surrounding waters. The Distributed Temperature Sensing (DTS) technology is a widely used technique for oil and gas pipeline leakage detection. While in pipeline leakage detection, fiber optic cables are installed permanently at the outside or within the protective sheathing of the pipe; this paper aims at testing the feasibility of detecting leakages with temporary introduced fiber optic cable inside the pipe. The detection and localization were tested in a laboratory experiment. The intrusion of water from leakages into the pipe, producing a local temperature drop, served as indicator for leakages. Measurements were taken under varying measurement conditions, including the number of leakages as well as the positioning of the fiber optic cable. Experiments showed that leakages could be detected accurately with the proposed methodology, when measuring resolution, temperature gradient and measurement time were properly selected. Despite the successful application of DTS for leakage detection in this lab environment, challenges in real system applications may arise from temperature gradients within the pipe system over longer distances and the placement of the cable into the real pipe system.
NASA Astrophysics Data System (ADS)
Cultrera, Matteo; Boaga, Jacopo; Di Sipio, Eloisa; Dalla Santa, Giorgia; De Seta, Massimiliano; Galgaro, Antonio
2018-05-01
Groundwater tracer tests are often used to improve aquifer characterization, but they present several disadvantages, such as the need to pour solutions or dyes into the aquifer system and alteration of the water's chemical properties. Thus, tracers can affect the groundwater flow mechanics and data interpretation becomes more complex, hindering effective study of ground heat pumps for low enthalpy geothermal systems. This paper presents a preliminary methodology based on a multidisciplinary application of heat as a tracer for defining the main parameters of shallow aquifers. The field monitoring techniques electrical resistivity tomography (ERT) and distributed temperature sensing (DTS) are noninvasive and were applied to a shallow-aquifer test site in northeast Italy. The combination of these measurement techniques supports the definition of the main aquifer parameters and therefore the construction of a reliable conceptual model, which is then described through the numerical code FEFLOW. This model is calibrated with DTS and validated by ERT outcomes. The reliability of the numerical model in terms of fate and transport is thereby enhanced, leading to the potential for better environmental management and protection of groundwater resources through more cost-effective solutions.
NASA Astrophysics Data System (ADS)
Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Van De Giesen, N.
2015-12-01
Soil moisture, hydraulic and thermal properties are critical for understanding the soil surface energy balance and hydrological processes. Here, we will discuss the potential of using soil temperature observations from Distributed Temperature Sensing (DTS) to investigate the spatial variability of soil moisture and soil properties. With DTS soil temperature can be measured with high resolution (spatial <1m, and temporal < 1min) in cables up to kilometers in length. Soil temperature evolution is primarily controlled by the soil thermal properties, and the energy balance at the soil surface. Hence, soil moisture, which affects both soil thermal properties and the energy that participates the evaporation process, is strongly correlated to the soil temperatures. In addition, the dynamics of the soil moisture is determined by the soil hydraulic properties.Here we will demonstrate that soil moisture, hydraulic and thermal properties can be estimated by assimilating observed soil temperature at shallow depths using the Particle Batch Smoother (PBS). The PBS can be considered as an extension of the particle filter, which allows us to infer soil moisture and soil properties using the dynamics of soil temperature within a batch window. Both synthetic and real field data will be used to demonstrate the robustness of this approach. We will show that the proposed method is shown to be able to handle different sources of uncertainties, which may provide a new view of using DTS observations to estimate sub-meter resolution soil moisture and properties for remote sensing product validation.
FONSECA, Rodrigo Borges; BRANCO, Carolina Assaf; QUAGLIATTO, Paulo Sérgio; GONÇALVES, Luciano de Souza; SOARES, Carlos José; CARLO, Hugo Lemes; CORRER-SOBRINHO, Lourenço
2010-01-01
Objective To determine the influence of P/L ratio on the radiodensity and diametral tensile strength (DTS) of glass ionomer cements. Material and Methods There were 2 factors under study: P/L ratio (manufacturer's recommended P/L ratio and a 50% reduced P/L ratio), and materials (Vitro Molar, Vitro Fil, Vitro Cem conventional GICs and Vitro Fil LC, Ortho Glass LC RMGICs). Five 1-mm-thick samples of each material-P/L ratio were produced for radiodensity evaluation. Samples were x-ray exposed onto Digora phosphor plate and radiodensity was obtained using the software Digora for Windows 2.5 Rev 0. For DTS, five (4.0x8.0 mm) cylinder samples of each material were tested (0.5 mm/min). Data were subjected to one- and two-way ANOVA (5x2) followed by Tukey's HSD test, or Kruskal-Wallis and Dunn's method. For paired comparisons, t-test or Mann-Whitney test were used (a=0.05). Results There was a significant interaction (P=0.001) for the studied factors (materials vs. P/L ratio). Reduced P/L ratio resulted in significantly lower DTS for the RMGICs, but radiodensity was affected for all materials (P<0.05). Conclusions Reduced P/L ratio affected properties of the tested glass ionomer cements. RMGICs were more susceptible to lower values of DTS, but radiodensity decreased for all materials following P/L ratio reduction. PMID:21308288
NASA Astrophysics Data System (ADS)
Krause, Stefan; Hannah, David; Blume, Theresa; Angermann, Lisa; Lewandowski, Joerg; Cassidy, Nigel
2016-04-01
This study presents the nested application of three heat tracing methods for identifying aquifer-river exchange fluxes at multiple scales ranging from centimeter to stream reach-scale. The investigations focus on a UK lowland river where hotspots of redox-reactivity were found to coincide with locations of increased streambed residence times underneath flow confining streambed peat and clay structures. In order to identify the spatial extend and patterns of reactivity hot spots associated with these streambed structures, reach-scale patterns of aquifer-river exchange fluxes have been analysed by Fibre-Optic Distributed Temperature Sensing (FO-DTS) along a cable buried in the streambed of a 250 m reach in combination with 2D thermocouple arrays in a 12 m long pool-riffle-pool sequence and small-scale heat pulse injections for tracing shallow hyporheic flow paths within the uppermost 20cm streambed sediments. FO-DTS observed streambed temperature anomalies caused by the mixing of different temperatures of GW and SW end-members were used to infer information on exchange fluxes at the aquifer-river interface. FO-DTS survey results indicate that patterns of up to 2C colder (Summer) and 3.5C warmer (Winter) temperatures in investigated streambed sediments can be attributed to fast GW up-welling in sandy and gravely sediments. Contrasting conditions were found at locations where streambed temperatures equal SW temperatures and GW-SW exchange was inhibited by the existence of peat or clay lenses within the streambed. FO-DTS observations of regional GW up-welling patterns were complemented by heat pulse injection experiments which provided essential information of the shallow aquifer- river exchange fluxes and confirmed increased SW infiltration and lateral flow in riffle crests and at locations with highly conductive streambed sediments above flow confining low conductivity structures. The propagation of diurnal temperature oscillations from the surface to streambed depths of up to 40cm was observed at thermocouple profiles along a pool-riffle-pool sequence in order to analyse the potential masking of FO-DTS observed temperature patterns by topography induced hyporheic exchange fluxes. The cross-correlation functions based analysis of the depth dampening and offset of diurnal temperature amplitudes revealed that streambed temperature variation due to topography induced hyporheic exchange flow was an order of magnitude lower than the FO-DTS signal strength. The investigations supported the development of a conceptual model of aquifer-river exchange and hyporheic reactivity in lowland rivers including temperature traceable hyporheic exchange fluxes at multiple scales.
Use of fiber-optic DTS to investigate physical processes in thermohaline environments
NASA Astrophysics Data System (ADS)
Suarez, F. I.; Sarabia, A.; Silva, C.
2014-12-01
Salt-gradient solar ponds are artificial thermohaline environments that collect and store thermal energy for long time-periods. A solar pond consists of three distinctive zones: the upper convective zone, which is a thin layer of cooler, less salty water; the non-convective zone that has gradients in temperature and salinity; and the lower convective zone, a layer of high salinity brine where temperatures are the highest. The solar radiation that penetrates the upper layers of the pond reaches the lower convective zone and heats the high salinity brine, which does not rise beyond the lower convective zone because the effect of salinity on density is greater than the effect of temperature. The sediments beneath the pond are also heated due to the temperature increase in the lower convective zone, providing an additional volume for energy storage. To study the different physical processes occurring within a solar pond and its surroundings, we deployed a helicoidally wrapped distributed-temperature-sensing (DTS) system in a small-scale solar pond (1-m deep, 2.5-m long and 1.5-m width). In this installation, the pond is surrounded by a sandy soil that serves as an additional energy storage volume. The thermal profile is observed at a spatial sampling resolution of 1.1 cm (spatial resolution of 2.2. cm), a temporal resolution ranging from 15 s to 5 min, and a thermal resolution ranging from 0.05 to 0.5°C. These resolutions allow closing the energy balance and inferring physical processes such as double-diffusive convection, solar radiation absorption, and heat conduction through the sediments or through the non-convective zone. Independent thermal measurements are also being made to evaluate strengths and limitations of DTS systems in thermohaline environments, and to assess different calibration algorithms that have been proposed in the past.
Monitoring the Impacts of Forest Management on Snowpack Duration
NASA Astrophysics Data System (ADS)
O'Halloran, T.; Tyler, S.; Gaffney, R.; Pai, H.
2017-12-01
Seasonal snowpack constitutes a significant portion of the hydrologic budget in mountain watersheds and influences dynamic (e.g., runoff magnitude and timing, soil moisture availability) and energetic processes (e.g., surface-atmosphere energy fluxes, ground temperature). Altered forest structure can affect snow accumulation and ablation. As part of a long-term monitoring project, this work examines the impact of forest management practices on snow cover in Lassen National Forest, California. We deployed a fiber optic distributed temperature sensing (DTS) cable and multiple meteorological stations in thinned, clear-cut, and untreated areas of forest. The DTS data was collected at 1 meter spatial intervals every 4 hours from February to May 2017. To determine snow cover, daily temperature variations were examined along locations of the DTS cable associated with our areas of interest. Between the various treatments, snow duration was greater in both clear-cut and untreated forest compared to the thinned area. However, snow duration varied by only six days. We also investigated other meteorological forcings, such as average winter temperature and precipitation, which coupled with forest modifications could explain snow duration in our study.
Studies on high-moment soft magnetic FeCo/Co thin films
NASA Astrophysics Data System (ADS)
Fu, Yu; Yang, Zheng; Matsumoto, Mitsunori; Liu, Xiao-Xi; Morisako, Akimitsu
2006-06-01
The dependences of soft magnetic properties and microstructures of the sputtered FeCo (=Fe65Co35) films on Co underlayer thickness tCo, FeCo thickness tFeCo, substrate temperature Ts and target-substrate spacing dT-S are studied. FeCo single layer generally shows a high coercivity with no obvious magnetic anisotropy. Excellent soft magnetic properties with saturation magnetization μ0Ms of 2.35 T and hard axis coercivity Hch of 0.25 kA/m in FeCo films can be achieved by introducing a Co underlayer. It is shown that sandwiching a Co underlayer causes a change in orientation and reduction in grain size from 70 nm to about 10 nm in the FeCo layer. The magnetic softness can be explained by the Hoffmann's ripple theory due to the effect of grain size. The magnetic anisotropy can be controlled by changing dT-S and a maximum of 14.3 kA/m for anisotropic field Hk is obtained with dT-S=18.0 cm.
Daifalla, Lamia E; Mobarak, Enas H
2015-11-01
This study was conducted to evaluate the effect of ultrasound application on the surface microhardness (VHN) and diametral tensile strength (DTS) of three high viscous glass-ionomer restorative materials (HVGIRMs). For each test (VHN and DTS), a total of 180 specimens were prepared from three HVGIRMs (Ketac-Molar Aplicap, Fuji IX GP Fast, and ChemFil Rock). Specimens of each material (n = 60) were further subdivided into three subgroups (n = 20) according to the setting modality whether ultrasound (20 or 40 s) was applied during setting or not (control). Specimens within each subgroup were then equally divided (n = 10) and tested at 24 h or 28 days. For the VHN measurement, five indentations, with a 200 g load and a dwell time for 20 s, were made on the top surface of each specimen. The DTS test was done using Lloyd Testing machine at a cross-head speed of 0.5 mm/min. Ultrasound application had no significant effect on the VHN. Fuji IX GP Fast revealed the highest VHN value, followed by Ketac-Molar Aplicap, and the least was recorded for ChemFil Rock. Fuji IX GP Fast and Ketac-Molar Aplicap VHN values were significantly increased by time. ChemFil Rock recorded the highest DTS value at 24 h and was the only material that showed significant improvement with both US application times. However, this improvement did not sustain till 28 days. The ultrasound did not enhance the surface microhardness, but its positive effect on the diametral tensile strength values was material and time dependent.
Song, Xiao-Feng; Tian, He; Zhang, Ping; Zhang, Zhen-Xing
2017-01-01
Apoptosis regulates embryogenesis, organ metamorphosis and tissue homeostasis. Mitochondrial signaling is an apoptotic pathway, in which Cyt-c and Apaf-1 are transformed into an apoptosome, which activates procaspase-9 and triggers apoptosis. This study evaluated Cyt-c, Apaf-1 and caspase-9 expression during renal development. Kidneys from embryonic (E) 16-, 18-, and 20-day-old fetuses and postnatal (P) 1-, 3-, 5-, 7-, 14-, and 21-day-old pups were obtained. Immunohistochemical analysis, dual-labeled immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique assay and Western blot were performed in addition to histological analysis. Immunohistochemistry showed that Cyt-c was strongly expressed in proximal and distal tubules (DTs) at all time points. Caspase-9 and Apaf-1 were strongly expressed in proximal tubules (PTs) but only weakly expressed in DTs. Dual-labeled immunofluorescence showed that most tubules expressed both Cyt-c and Apaf-1, except for some tubules that only expressed Cyt-c. The TUNEL assay showed a greater percentage of apoptotic cells in PTs compared to DTs. Apaf-1 and cleaved caspase-9 protein expression gradually increased during the embryonic period and peaked during the early postnatal period but apparently declined from P7. Cyt-c protein expression was weak during the embryonic period but obviously increased after P1. This study showed that PTs are more sensitive to apoptosis than DTs during rat renal development, even though both tubule segments contain a large number of mitochondria. Furthermore, Cyt-c-mediated mitochondrial apoptosis-related proteins play an important role in PTs during the early postnatal kidney development. © 2016 S. Karger AG, Basel.
Skinner, Stanley; Chiri, Chala A; Wroblewski, Jill; Transfeldt, Ensor E
2007-02-01
Electrophysiological bulbocavernosus reflex (BCR) testing, during surgeries in which the constituent neural components are at risk, might supplement other low sacral (S2-4) stimulation/recording techniques. However, intraoperative BCR is not always reliably implemented. We proposed to analyze BCR signals in five surgical patients monitored with the novel application of double train stimulation (DTS) to determine if the potential could be enhanced. We prospectively planned a regime of DTS BCR with a series of intertrain delays in five monitored patients at risk for low sacral neural injury. Patients were maintained with propofol, opiate infusion, and low inhalant anesthesia without muscle relaxant. Cutaneous sensory nerves of the penis (or clitoris) were stimulated using two consecutive pulse trains (DTS). Intertrain delays were 75, 100, 125, 150, 175, 200, and 250 ms. For BCR recording, uncoated paired wires were inserted into the external anal sphincter (EAS) bilaterally. For each trial, waveform amplitude, duration, and turn count measures for the first (single train) and second (double train) response were recorded. Percent increase/decrease of the second train response compared to the first train response was calculated. There was at least a 30% increase in measures of amplitude, turn count, and duration of the second train response in 22/28, 22/28, and 14/28 of the total trials respectively. There was an insufficient number of independent observations to determine statistical significance. Intraoperative BCR is currently obtained with some difficulty using pulse train stimulation. Our preliminary evidence has identified BCR waveform enhancement using DTS and suggests that the reliability of intraoperative BCR acquisition may be further improved by the addition of this technique. Our data are insufficient to define the best intertrain interval.
Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U
2009-07-01
In this study a novel N-vinylcaprolactam (NVC)-containing copolymer of acrylic-itaconic acid was synthesized, characterized and incorporated into Fuji IX conventional glass-ionomer cement (GIC). Subsequently, the effects of incorporation of synthesized terpolymer on the mechanical properties of GIC were studied. The synthesized terpolymer was characterized using (1)H nuclear magnetic resonance, Fourier transform infrared and Raman spectroscopy. The viscosity and molecular weight of the terpolymer were also measured. The compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS) of the modified GICs were evaluated after 24h and 1week of immersion in distilled water at 37 degrees C. The handling properties (working and setting times) of the resulting modified cements were also evaluated. One-way analysis of variance was used to study the statistical significance of the mechanical strengths and handling properties in comparison to the control group. The results showed that NVC-containing GIC samples exhibited significantly higher (P<0.05) DTS (38.3+/-10.9MPa) and BFS (82.2+/-12.8MPa) in comparison to Fuji IX GIC (DTS=19.6+/-11.4MPa; BFS=41.3+/-10.5MPa). The experimental cement also showed higher but not statistically significant values for CS compared to the control material (CS for NVC-containing sample=303+/-32.8MPa; CS for Fuji XI=236+/-41.5MPa). Novel NVC-containing GIC has been developed in this study, with a 28% increase in CS. The presented GIC is capable of doubling the DTS and BFS in comparison to commercial Fuji IX GIC. The working properties of NVC-containing glass-ionomer formulations are comparable and are acceptable for water-based cements.
Daifalla, Lamia E.; Mobarak, Enas H.
2014-01-01
This study was conducted to evaluate the effect of ultrasound application on the surface microhardness (VHN) and diametral tensile strength (DTS) of three high viscous glass-ionomer restorative materials (HVGIRMs). For each test (VHN and DTS), a total of 180 specimens were prepared from three HVGIRMs (Ketac-Molar Aplicap, Fuji IX GP Fast, and ChemFil Rock). Specimens of each material (n = 60) were further subdivided into three subgroups (n = 20) according to the setting modality whether ultrasound (20 or 40 s) was applied during setting or not (control). Specimens within each subgroup were then equally divided (n = 10) and tested at 24 h or 28 days. For the VHN measurement, five indentations, with a 200 g load and a dwell time for 20 s, were made on the top surface of each specimen. The DTS test was done using Lloyd Testing machine at a cross-head speed of 0.5 mm/min. Ultrasound application had no significant effect on the VHN. Fuji IX GP Fast revealed the highest VHN value, followed by Ketac-Molar Aplicap, and the least was recorded for ChemFil Rock. Fuji IX GP Fast and Ketac-Molar Aplicap VHN values were significantly increased by time. ChemFil Rock recorded the highest DTS value at 24 h and was the only material that showed significant improvement with both US application times. However, this improvement did not sustain till 28 days. The ultrasound did not enhance the surface microhardness, but its positive effect on the diametral tensile strength values was material and time dependent. PMID:26644916
Henderson, Rory; Day-Lewis, Frederick D.; Lane, John W.; Harvey, Charles F.; Liu, Lanbo
2008-01-01
Submarine ground‐water discharge (SGD) contributes important solute fluxes to coastal waters. Pollutants are transported to coastal ecosystems by SGD at spatially and temporally variable rates. New approaches are needed to characterize the effects of storm‐event, tidal, and seasonal forcing on SGD. Here, we evaluate the utility of two geophysical methods‐fiber‐optic distributed temperature sensing (FO‐DTS) and marine electrical resistivity (MER)—for observing the spatial and temporal variations in SGD and the configuration of the freshwater/saltwater interface within submarine sediments. FO‐DTS and MER cables were permanently installed into the estuary floor on a transect extending 50 meters offshore under Waquoit Bay, Massachusetts, at the Waquoit Bay National Estuarine Research Reserve, and nearly continuous data were collected for 4 weeks in summer 2007. Initial results indicate that the methods are extremely useful for monitoring changes in the complex estuarine environment. The FO‐DTS produced time‐series data at approximately 1‐meter increments along the length of the fiber at approximately 29‐second intervals. The temperature time‐series data show that the temperature at near‐shore locations appears to be dominated by a semi‐diurnal (tidal) signal, whereas the temperature at off‐shore locations is dominated by a diurnal signal (day/night heating and cooling). Dipole‐dipole MER surveys were completed about every 50 minutes, allowing for production of high‐resolution time‐lapse tomograms, which provide insight into the variations of the subsurface freshwater/saltwater interface. Preliminary results from the MER data show a high‐resistivity zone near the shore at low tide, indicative of SGD, and consistent with the FO‐DTS results.
NASA Astrophysics Data System (ADS)
Silva, Guilherme Gregório; Mura, José Claudio; Paradella, Waldir Renato; Gama, Fabio Furlan; Temporim, Filipe Altoé
2017-04-01
Persistent scatterer interferometry (PSI) analysis of a large area is always a challenging task regarding the removal of the atmospheric phase component. This work presents an investigation of ground movement measurements based on a combination of differential SAR interferometry time-series (DTS) and PSI techniques, applied on a large area of extent with open pit iron mines located in Carajás (Brazilian Amazon Region), aiming at detecting linear and nonlinear ground movement. These mines have presented a history of instability, and surface monitoring measurements over sectors of the mines (pit walls) have been carried out based on ground-based radar and total station (prisms). Using a priori information regarding the topographic phase error and a phase displacement model derived from DTS, temporal phase unwrapping in the PSI processing and the removal of the atmospheric phases can be performed more efficiently. A set of 33 TerraSAR-X (TSX-1) images, acquired during the period from March 2012 to April 2013, was used to perform this investigation. The DTS analysis was carried out on a stack of multilook unwrapped interferograms using an extension of SVD to obtain the least-square solution. The height errors and deformation rates provided by the DTS approach were subtracted from the stack of interferograms to perform the PSI analysis. This procedure improved the capability of the PSI analysis for detecting high rates of deformation, as well as increased the numbers of point density of the final results. The proposed methodology showed good results for monitoring surface displacement in a large mining area, which is located in a rain forest environment, providing very useful information about the ground movement for planning and risk control.
NASA Astrophysics Data System (ADS)
Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Silva, Guilherme G.
2016-10-01
PSI (Persistent Scatterer Interferometry) analysis of large area is always a challenging task regarding the removal of the atmospheric phase component. This work presents an investigation of ground deformation measurements based on a combination of DInSAR Time-Series (DTS) and PSI techniques, applied in a large area of open pit iron mines located in Carajás (Brazilian Amazon Region), aiming at detect high rates of linear and nonlinear ground deformation. These mines have presented a historical of instability and surface monitoring measurements over sectors of the mines (pit walls) have been carried out based on ground based radar and total station (prisms). By using a priori information regarding the topographic phase error and phase displacement model derived from DTS, temporal phase unwrapping in the PSI processing and the removal of the atmospheric phases can be performed more efficiently. A set of 33 TerraSAR-X-1 images, acquired during the period from March 2012 to April 2013, was used to perform this investigation. The DTS analysis was carried out on a stack of multi-look unwrapped interferogram using an extension of SVD to obtain the Least-Square solution. The height errors and deformation rates provided by the DTS approach were subtracted from the stack of interferogram to perform the PSI analysis. This procedure improved the capability of the PSI analysis to detect high rates of deformation as well as increased the numbers of point density of the final results. The proposed methodology showed good results for monitoring surface displacement in a large mining area, which is located in a rain forest environment, providing very useful information about the ground movement for planning and risks control.
DTS Raw Data Guelph, ON Canada
Thomas Coleman
2013-07-31
Unprocessed active distributed temperature sensing (DTS) data from 3 boreholes in the Guelph, ON Canada region. Data from borehole 1 was collected during a fluid injection while data from boreholes 2 and 3 were collected under natural gradient conditions in a lined borehole. The column labels/headers (in the first row) define the time since start of measurement in seconds and the row labels/headers (in the first column) are the object IDs that are defined in the metadata. Each object ID is a sampling location whose exact location is defined in the metadata file. Data in each cell are temperature in Celsius at time and sampling location as defined above.
1991-11-01
F-111D RADAR SST TASK NOTES: SST IS LOCATED ONLY AT CANNON AFB, NM. IT CONSISTS OF AN MRU , EPU, LVPS, MFG, DDPU, ARS RACK, AND TRANSMITTER. THE SST...VOTES: SST IS LOCATED ONLY AT CANNON AFB, NM. IT CONSISTS OF AN MRU , EPU, LVPS, MFG, DDPU, ARS RACK, AND TRANSMITTER. THE SST WILL BE REPLACED BY DTS...NOTES: SST IS LOCATED ONLY AT CANNON AFB, NM. IT CONSISTS OF AN MRU , EPU, LVPS, MFG, DDPU, ARS RACK, AND TRANSMITTER. THE SST WILL BE REPLACED BY DTS
Otsuka, Makoto; Yamanaka, Azusa; Uchino, Tomohiro; Otsuka, Kuniko; Sadamoto, Kiyomi; Ohshima, Hiroyuki
2012-01-01
To measure the rapid disintegration of Oral Disintegrating Tablets (ODT), a new test (XCT) was developed using X-ray computing tomography (X-ray CT). Placebo ODT, rapid disintegration candy (RDC) and Gaster®-D-Tablets (GAS) were used as model samples. All these ODTs were used to measure oral disintegration time (DT) in distilled water at 37±2°C by XCT. DTs were affected by the width of mesh screens, and degree to which the tablet holder vibrated from air bubbles. An in-vivo tablet disintegration test was performed for RDC using 11 volunteers. DT by the in-vivo method was significantly longer than that using the conventional tester. The experimental conditions for XCT such as the width of the mesh screen and degree of vibration were adjusted to be consistent with human DT values. Since DTs by the XCT method were almost the same as the human data, this method was able to quantitatively evaluate the rapid disintegration of ODT under the same conditions as inside the oral cavity. The DTs of four commercially available ODTs were comparatively evaluated by the XCT method, conventional tablet disintegration test and in-vivo method.
Detoxification and color removal of Congo red by a novel Dietzia sp. (DTS26) - a microcosm approach.
Satheesh Babu, S; Mohandass, C; Vijayaraj, A S; Dhale, Mohan A
2015-04-01
The present study deals with the decolorization and detoxification of Congo red (CR) by a novel marine bacterium Dietzia sp. (DTS26) isolated from Divar Island, Goa, India. The maximum decolorization of 94.5% (100 mg L(-1)) was observed under static condition within 30 h at pH 8 and temperature 32±2°C. Bacterially treated samples could enhance the light intensity by 38% and the primary production levels 5 times higher than the untreated. The strain was also able to reduce COD by 86.4% within 30 h at 100 mg L(-1) of CR dye. The degraded metabolites of CR dye were analyzed by FTIR, HPLC, GC-MS and the end product closely matches with 4-amino-3-naphthol-1-sulfonate which is comparatively less toxic than CR. Bioassay experiments conducted in treated samples for Artemia franciscana showed better survival rates (after 72 h) at higher concentration of CR (500 mg L(-1)). This work suggests the potential application of DTS26 in bioremediation of dye wastes and its safe disposal into coastal environment. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bond, R. M.; Stubblefield, A. P.
2012-12-01
Stream temperature plays a critical role in determining the overall structure and function of stream ecosystems. Aquatic fauna are particularly vulnerable to projected increases in the magnitude and duration of elevated stream temperatures from global climate change. Northern California cold water salmon and trout fisheries have been declared thermally impacted by the California State Water Resources Control Board. This study employed Distributed Temperature Sensing (DTS) to detect stream heating and cooling at one meter resolution along a one kilometer section of the North Fork of the Salmon River, a tributary of the Klamath River, northern California, USA. The Salmon River has an extensive legacy of hydraulic gold mining tailing which have been reworked into large gravel bars; creating shallow wide runs, possibly filling in pools and disrupting riparian vegetation recruitment. Eight days of temperature data were collected at 15 minute intervals during July 2012. Three remote weather stations were deployed during the study period. The main objectives of this research were: one, quantify thermal inputs that create and maintain thermal refugia for cold water fishes; two, investigate the role of riparian and topographic shading in buffering peak summer temperatures; and three, create and validate a physically based stream heating model to predict effects of riparian management, drought, and climate change on stream temperature. DTS was used to spatially identify cold water seeps and quantify their contribution to the stream's thermal regime. Along the one kilometer reach, hyporheic flow was identified using DTS. The spring was between 16-18°C while the peak mainstem temperature above the spring reached a maximum of 23°C. The study found a diel heating cycle of 5°C with a Maximum Weekly Average Temperature (MWAT) of over 22°C; exceeding salmon and trout protective temperature standards set by USEPA Region 10. Twenty intensive fish counts over five days were conducted to assess the relative abundance of Chinook (Oncorhynchus tshawytscha), coho (O. kisutch), and steelhead (O. mykiss) use of thermal refugia. The North Fork Salmon River is the largest river to be instrumented with DTS technology. The researchers will use the DTS data and thermal model to make suggestions for management actions to improve the Salmon River's thermal regime.
Evaluating the ability of dental technician students and graduate dentists to match tooth color.
Sinmazisik, Gulden; Trakyali, Goksu; Tarcin, Bilge
2014-12-01
The ability of dental technician students to match tooth shade with the Vita 3D-Master shade guide and Toothguide Training Box has not been investigated. The purpose of this study was to evaluate and compare the shade-matching ability of dental technician students and graduate dentists using the Vita 3D-Master shade guide. Twenty-nine dental technician students (DTS group) and 30 graduate dentists (GD group) participated in this study. The Toothguide Training Box (TTB) was used to train the participants and test their shade-matching abilities. Shade-matching ability was evaluated with 3 exercises and a final test, all of which are components of the TTB. The number of mistakes for each participant for value (L), chroma (c), and hue (h) were recorded during the exercises and the final test, and the mistake ratios were calculated. Color difference (ΔE) values for each shade were calculated from the L*, a*, and b* values of the Vita 3D-Master shade guide for each participant in both groups. The Mann-Whitney U test was used to determine statistically significant differences between the L, c, and h mistake ratios of the 2 groups, and the Student t test was used to determine statistically significant differences between the final test scores and the ΔE values of the groups (α=.05). The mistake ratio for L in the GD group was significantly higher than that of the DTS group (P<.05), whereas the mistake ratio for h in the DTS group was higher (P<.001). No significant differences were observed between the groups regarding the mistake ratios for c (P>.05). With regard to the final test scores and the ΔE values, no significant differences were found between the groups (P<.001), and the DTS group received higher scores than the GD group (912 and 851). The mean ΔE values for the DTS and GD groups were 1.72 and 2.92. DTSs made more mistakes in the h parameter than GDs, and GDs made more mistakes in the L parameter than DTSs. With regard to the final test scores and the ΔE values, DTSs were more successful in shade matching than GDs. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yepez, Johanna
Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=<0.001) as well as for the pairwise comparison between the different filler group values and between the different soaking times as an individual treatment. Overall, longer soaking times resulted in lower mean DTS values. The DTS of the PCNC for filler #1 decreased to 82.4% of the original value after 1 day of soaking, 67.2% after 7 days and 27.2 % after 28 days. For filler #2 decreased to 54.8% of the original value after 1 day of soaking, 62.3% after 7 days and 61.2% after 28 days. For filler #3 decreased to 71.2% of the original value, 67.3% after 7 days and 51.4% after 28 days (Fig 8). Conclusions: Within the limitation of this study it can be concluded that the use of coupling agent will significantly influence the degradation of the material under wet environment. Clinical Implication: Changes within matrix composition and bonding interphase of resin base composites promise improvements of mechanical properties, decreasing the incidence of clinical failure of posterior composite restorations, hence resulting in a more ideal restorative material for use in posterior segment. The results of this investigation showed that the deficiency of hydrostability in dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane coupling agent can dramatically reduce the average lifetime of dental composites.
NASA Astrophysics Data System (ADS)
Briggs, M.; Lautz, L. K.; McKenzie, J. M.
2010-12-01
Small dams enhance hyporheic interaction by creating punctuated head differentials along streams, thereby affecting redox conditions and nutrient cycling in the streambed. As beaver populations return, they create dams that alter hyporheic flowpaths locally, an effect which may integrate at the reach scale to produce a net hydrological and ecological functional change. Streambed heterogeneity around beaver dams combines with varied morphology, head differentials and stream velocities to create patterns of hyporheic seepage flux that vary in both space and time. Heat has been used as a groundwater tracer for many years, but it’s dependence on spatially disperse point measurements has only recently been resolved by the development of Distributed Temperature Sensing (DTS) fiber-optic technology. Modified applications of DTS include wrapping the fiber around a mandrel to increase spatial resolution dramatically. Wrapped configurations can be installed vertically in the streambed to provide data for heat transport modeling of vertical hyporheic flux. The vertically continuous dataset generated with DTS may be more informative regarding subsurface heterogeneity than more commonly used spatially discrete thermocouples. We installed a total of nine wrapped DTS rods with 1.4 cm vertical spatial resolution above two beaver dams in Cherry Creek, a tributary of the Little Popo Agie River in Lander, Wyoming, USA. Data was collected over 20 min periods in dual-ended mode continuously for one month (10-Jul to 10-Aug 2010) during baseflow recession, as discharge dropped from 384 Ls-1 to 211 Ls-1. The temperature rods were installed to at least 0.75 m depth within bed sediments at varied distances upstream of the dams in diverse stream morphological units, which ranged from gravel bars to clay lined pools. Diurnal fluctuations in stream temperature were generally between 4.5 and 5.5 oC in amplitude, imparting a strong potential signal for propagation into the bed due to advective hyporheic flux. In many locations monthly temperature standard deviations at the 10 cm depth were larger than that of the overlying stream water, indicating direct heating of the streambed by solar radiation was an important process, even in that high velocity system. The high-resolution temperature records revealed local heterogeneity in the streambed at each rod and indicated the largest hyporheic flux was within gravel bars close to the dams. The smallest flux was through a gravel bar farther upstream of the dam, and through the deepest portions of pools closer to the dam. High flux regions had monthly temperature standard deviations close to that of the stream (1.5 oC) at shallow depths, while shallow sediments in pools had much more muted temperature oscillations. At 0.5 m depth, all rods had similar, smaller temperature standard deviations, ranging from 0.64-0.80 oC. The extensive and spatially continuous data set generated using DTS allowed us to determine hyporheic flux patterns for virtually any depth and time along the high-resolution temperature rods, a crucial step for understanding transient patterns in biogeochemical processing around beaver dams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, V K; Vijayan, S; Rudin, S R
Purpose: To determine the appropriate calibration factor to use when calculating skin dose with our real-time dose-tracking system (DTS) during neuro-interventional fluoroscopic procedures by evaluating the difference in backscatter from different phantoms and as a function of entrance-skin field area. Methods: We developed a dose-tracking system to calculate and graphically display the cumulative skin-dose distribution in real time. To calibrate the DTS for neuro-interventional procedures, a phantom is needed that closely approximates the scattering properties of the head. We compared the x-ray backscatter from eight phantoms: 20-cm-thick solid water, 16-cm diameter water-filled container, 16-cm CTDI phantom, modified-ANSI head phantom, 20-cm-thickmore » PMMA, Kyoto-Kagaku PBU- 50 head, Phantom-Labs SK-150 head, and RSD RS-240T head. The phantoms were placed on the patient table with the entrance surface at 15 cm tube-side from the isocenter of a Toshiba Infinix C-arm, and the entrance-skin exposure was measured with a calibrated 6-cc PTW ionization chamber. The measurement included primary radiation, backscatter from the phantom and forward scatter from the table and pad. The variation in entrance-skin exposure was also measured as a function of the skin-entrance area for a 30x30 cm by 20-cm-thick PMMA phantom and the SK-150 head phantom using four different added beam filters. Results: The entranceskin exposure values measured for eight different phantoms differed by up to 12%, while the ratio of entrance exposure of all phantoms relative to solid water showed less than 3% variation with kVp. The change in entrance-skin exposure with entrance-skin area was found to differ for the SK-150 head compared to the 20-cm PMMA phantom and the variation with field area was dependent on the added beam filtration. Conclusion: To accurately calculate skin dose for neuro-interventional procedures with the DTS, the phantom for calibration should be carefully chosen since different phantoms can contribute different backscatter for identical exposure parameters. Research supported in part by Toshiba Medical Systems and NIH Grants R43FD0158401, R44FD0158402 and R01EB002873.« less
NASA Astrophysics Data System (ADS)
Wagner, A. M.; Lindsey, N.; Ajo Franklin, J. B.; Gelvin, A.; Saari, S.; Ekblaw, I.; Ulrich, C.; Dou, S.; James, S. R.; Martin, E. R.; Freifeld, B. M.; Bjella, K.; Daley, T. M.
2016-12-01
We present preliminary results from an experimental study targeting the use of passive fiber-optic distributed temperature sensing (DTS) in a variety of geometries to estimate moisture content evolution in a dynamic permafrost system. A 4 km continuous 2D array of multi-component fiber optic cable (6 SM/6 MM) was buried at the Fairbanks Permafrost Experiment Station to investigate the possibility of using fiber optic distributed sensing as an early detection system for permafrost thaw. A heating experiment using 120 60 Watt heaters was conducted in a 140 m2 area to artificially thaw the topmost section of permafrost. The soils at the site are primarily silt but some disturbed areas include backfilled gravel to depths of approximately 1.0 m. Where permafrost exists, the depth to permafrost ranges from 1.5 to approximately 5 m. The experiment was also used to spatially estimate soil water content distribution throughout the fiber optic array. The horizontal fiber optic cable was buried at depths between 10 and 20 cm. Soil temperatures were monitored with a DTS system at 25 cm increments along the length of the fiber. At five locations, soil water content time-domain reflectometer (TDR) probes were also installed at two depths, in line with the fiber optic cable and 15 to 25 cm below the cable. The moisture content along the fiber optic array was estimated using diurnal effects from the dual depth temperature measurements. In addition to the horizontally installed fiber optic cable, vertical lines of fiber optic cable were also installed inside and outside the heater plot to a depth of 10 m in small diameter (2 cm) boreholes. These arrays were installed in conjunction with thermistor strings and are used to monitor the thawing process and to cross correlate with soil temperatures at the depth of the TDR probes. Results will be presented from the initiation of the artificial thawing through subsequent freeze-up. A comparison of the DTS measured temperatures and thermistors in vertically installed PVC pipes will also be shown. Initial results from a thermal model of the artificial heating experiment and the model's correlation to the actual soil temperature measurements will also be presented. These results show the possibility of using fiber optic cable to measure moisture contents along a longer array with only limited control points.
NASA Astrophysics Data System (ADS)
Glose, T. J.; Hausner, M. B.; Lowry, C.
2016-12-01
The accurate, fine scale quantification of groundwater-surface water (GW-SW) interactions over large expanses in hydrologic systems is a fundamental need in order to accurately characterize critical zones of biogeochemical transformation and fluxes, as well as to provide insight into near-surface geologic heterogeneity. Paired fiber-optic distributed temperature sensing (FO-DTS) is a tool that is capable of synoptically sampling hydrologic systems, allowing GW-SW interactions to be examined at a fine scale over large distances. Within managed aquifer recharge (MAR) sites, differential recharge dynamics controlled by bed clogging and subsurface heterogeneity dictate the effectiveness of these sites at infiltrating water. Numerical modeling indicates that the use of paired FO-DTS in an MAR site can provide accurate quantification of flux at the GW-SW interface, as well as provide insight to the areal extent of geologic heterogeneity in the subsurface. However, the lateral and vertical separation of the fiber-optic cables is of vital importance. Here we present a 2-D, fully coupled groundwater flow and heat transport model with prescribed heterogeneity. Following a forward modeling approach, realizations simulating varying fiber-optic cable positioning, differential bed clogging, and hydraulic conductivity variability were analyzed over a suite of scenarios. The results from the model were then used as observations to calculate groundwater recharge rates and calibration targets for an inverse model to estimate subsurface heterogeneity.
MAGIC: Model and Graphic Information Converter
NASA Technical Reports Server (NTRS)
Herbert, W. C.
2009-01-01
MAGIC is a software tool capable of converting highly detailed 3D models from an open, standard format, VRML 2.0/97, into the proprietary DTS file format used by the Torque Game Engine from GarageGames. MAGIC is used to convert 3D simulations from authoritative sources into the data needed to run the simulations in NASA's Distributed Observer Network. The Distributed Observer Network (DON) is a simulation presentation tool built by NASA to facilitate the simulation sharing requirements of the Data Presentation and Visualization effort within the Constellation Program. DON is built on top of the Torque Game Engine (TGE) and has chosen TGE's Dynamix Three Space (DTS) file format to represent 3D objects within simulations.
Steele, Andrew D; Keohane, Colleen E; Knouse, Kyle W; Rossiter, Sean E; Williams, Sierra J; Wuest, William M
2016-05-11
Promysalin is a species-specific Pseudomonad metabolite with unique bioactivity. To better understand the mode of action of this natural product, we synthesized 16 analogs utilizing diverted total synthesis (DTS). Our analog studies revealed that the bioactivity of promysalin is sensitive to changes within its hydrogen bond network whereby alteration has drastic biological consequences. The DTS library not only yielded three analogs that retained potency but also provided insights that resulted in the identification of a previously unknown ability of promysalin to bind iron. These findings coupled with previous observations hint at a complex multifaceted role of the natural product within the rhizosphere.
Steele, Andrew D.; Keohane, Colleen E.; Knouse, Kyle W.; Rossiter, Sean E.; Williams, Sierra J.; Wuest, William M.
2016-01-01
Promysalin is a species-specific Pseudomonad metabolite with unique bioactivity. To better understand the mode of action of this natural product, we synthesized 16 analogs utilizing diverted total synthesis (DTS). Our analog studies revealed that the bioactivity of promysalin is sensitive to changes within its hydrogen bond network whereby alteration has drastic biological consequences. The DTS library not only yielded three analogs that retained potency but also provided insights that resulted in the identification of a previously unknown ability of promysalin to bind iron. These findings coupled with previous observations hint at a complex multifaceted role of the natural product within the rhizosphere. PMID:27096543
Takechi, M; Miyamoto, Y; Ishikawa, K; Nagayama, M; Kon, M; Asaoka, K; Suzuki, K
1998-02-01
The effect of added antibiotics on the basic properties of anti-washout-type fast-setting calcium phosphate cement (aw-FSCPC) was investigated in a preliminary evaluation of aw-FSCPC containing drugs. Flomoxef sodium was employed as the antibiotic and was incorporated into the powder-phase aw-FSCPC at up to 10%. The setting time, consistency, wet diametral tensile strength (DTS) value, and porosity were measured for aw-FSCPC containing various amounts of flomoxef sodium. X-ray diffraction (XRD) analysis was also conducted for the identification of products. To evaluate the drug-release profile, set aw-FSCPC was immersed in saline and the released flomoxef sodium was determined at regular intervals. The spread area of the cement paste as an index of consistency of the cement increased progressively with the addition of flomoxef sodium, and it doubled when the aw-FSCPC contained 8% flomoxef sodium. In contrast, the wet DTS value decreased with increase in flomoxef sodium content. Bulk density measurement and scanning electron microscopic observation revealed that the set mass was more porous with the amount of flomoxef sodium contained in the aw-FSCPC. The XRD analysis revealed that formation of hydroxyapatite (HAP) from aw-FSCPC was reduced even after 24 h, when the aw-FSCPC contained flomoxef sodium at > or = 6%. Therefore, the decrease of wet DTS value was thought to be partly the result of the increased porosity and inhibition of HAP formation in aw-FSCPC containing large amounts of flomoxef sodium. The flomoxef sodium release from aw-FSCPC showed the typical profile observed in a skeleton-type drug delivery system (DDS). The rate of drug release from aw-FSCPC can be controlled by changing the concentration of sodium alginate. Although flomoxef sodium addition has certain disadvantageous effects on the basic properties of aw-FSCPC, we conclude that aw-FSCPC is a good candidate for potential use as a DDS carrier that may be useful in surgical operations.
NASA Astrophysics Data System (ADS)
Ringeri, A.; Butler, K. E.; MacQuarrie, K. T. B.
2016-12-01
The interface between embankment dams and adjoining hydraulic structures are regions which can give rise to seepage defects. A field experiment was conducted at the Mactaquac Generating Station in New Brunswick, Canada using active thermometry to investigate seepage conditions along the interface of a diversion sluiceway and earth embankment. The method involved monitoring the time evolution of temperature following the injection of a controlled heat pulse from a subsurface heat cable acting as a line source. Transient anomalies in the induced temperature field can result from the aberration of thermal properties and flow conditions which accompany defects. An industrial heat trace cable and distributed temperature sensing (DTS) fibre optic cable were installed in two parallel, 42 m deep, sub-vertical boreholes separated by 3 m and offset 0.5 m from the core-concrete interface. The heat and DTS cables were installed in the upstream and downstream boreholes respectively. Heat was injected as a box car function at a constant rate of 78.72 W/m for 51 d while the DTS cable, with a 20 cm sampling resolution, was averaged over 10 min at 30 min intervals for 300 d. The DTS cable successfully detected temperature changes induced by the upstream heat pulse. A coherent temperature response occurred along a 13 m section of deep fibre, where mean peak temperatures rose 1.59 ± 0.03 °C above ambient temperatures with an average time lag of 8.2 d following the end of the heating cycle. Two temperature anomalies above this region coincided with the position of the water table and the location of a previously detected fibre break. The method appears to be particularly useful in seepage surveillance of the deeper regions of the interface. Further analysis is required to remove the influence of seasonal temperatures on the heat pulse response at shallow depths.
NASA Astrophysics Data System (ADS)
Hines, R. J.; Harter, T.; Tyler, S. W.; McFadin, B.; Yokel, E.
2008-12-01
The Scott River is a major tributary to the Klamath River that provides cold water rearing habitat for wild salmonid populations, including coho salmon (Oncorhynchus kisutch), Chinook salmon (O. tshawytscha), and steelhead trout (O. mykiss). During the summer months (July through September), the main-stem Scott River becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the groundwater aquifer. Summer stream temperatures in the Scott River are currently at levels that are not considered sustainable for the native salmonid population, resulting in the enactment of a Total Maximum Daily Load (TMDL) for temperature. Two of the conditions affecting stream temperature have been identified as increases in solar radiation due to a reduction in riparian vegetation and decreased accretion of groundwater. In conjunction with a regional scale surface water-groundwater modeling effort to investigate the benefits of various conjunctive use management alternatives on mid- and late summer baseflow in the Scott River, we completed high-resolution field measurements of stream temperature over an approximately 1,050-meter reach. Temperatures were measured using Fiber-Optic Distributed Temperature Sensing (DTS) techniques. The DTS survey in combination with FLIR stream surface temperature data from 2003 indicate that groundwater discharge to the Scott River is highly localized throughout the valley. The results of the DTS survey depict highly localized areas of groundwater accretion, as well as prominent localized temperature effects from riparian vegetation and river geomorphology. While originally modeled as a well-mixed stream during FLIR analysis, the DTS data further suggest that locally strong, vertical thermal gradients are found near the bottom of the active stream channel. The high-resolution temperature measurements were paired with fish surveys in order to determine the correlation between areas of identified lower river temperatures, groundwater accretion and other beneficial salmonid habitat indicators. Our work suggests that understanding of local-scale groundwater-stream interaction and analysis of corresponding local-scale geologic and riparian vegetation controls are critical to understanding the basin-scale groundwater-stream interactions. Preliminary data reviews indicate that groundwater discharge leads to distinct cold temperature pools near the streambed, while the remainder of the stream column is thermally well mixed. This local-scale, three-dimensional understanding is necessary if strategies are to be developed that aim for effective water resource management practices and improved beneficial use habitat. A multi-scale field reconnaissance and modeling approach is suggested to develop water management practices that lead to better habitat protection throughout the watershed.
Alcohol abuse - delirium tremens; DTs; Alcohol withdrawal - delirium tremens; Alcohol withdrawal delirium ... Delirium tremens can occur when you stop drinking alcohol after a period of heavy drinking, especially if ...
Smanski, Michael J.; Peterson, Ryan M.; Huang, Sheng-Xiong; Shen, Ben
2012-01-01
Diterpenoid biosynthesis has been extensively studied in plants and fungi, yet cloning and engineering diterpenoid pathways in these organisms remain challenging. Bacteria are emerging as prolific producers of diterpenoid natural products, and bacterial diterpene synthases are poised to make significant contributions to our understanding of terpenoid biosynthesis. Here we will first survey diterpenoid natural products of bacterial origin and briefly review their biosynthesis with emphasis on diterpene synthases (DTSs) that channel geranylgeranyl diphosphate to various diterpenoid scaffolds. We will then highlight differences of DTSs of bacterial and higher organism origins and discuss the challenges in discovering novel bacterial DTSs. We will conclude by discussing new opportunities for DTS mechanistic enzymology and applications of bacterial DTS in biocatalysis and metabolic pathway engineering. PMID:22445175
High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors
NASA Astrophysics Data System (ADS)
Button, Steven W.; Mativetsky, Jeffrey M.
2017-08-01
Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.
Fate of internal waves on a shallow shelf
NASA Astrophysics Data System (ADS)
Davis, Kristen; Arthur, Robert; Reid, Emma; Decarlo, Thomas; Cohen, Anne
2017-11-01
Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a shelf-slope region of a coral atoll in the South China Sea. The spatially-continuous view of the near-bottom temperature field provided by the DTS offers a perspective of physical processes previously available only in laboratory settings or numerical models. These processes include internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, internal ``tide pools'' (dense water left behind after the retreat of an internal wave), and internal run-down (near-bottom, offshore-directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf - whether they are transmitted into shallow waters or reflected back offshore - is mediated by local water column density and shear structure, with important implications for nearshore distributions of energy, heat, and nutrients. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for field work supported by Academia Sinica and for K.D. and E.R. from NSF.
NASA Astrophysics Data System (ADS)
Ciocca, Francesco; Abesser, Corinna; Hannah, David; Blaen, Philip; Chalari, Athena; Mondanos, Michael; Krause, Stefan
2017-04-01
Optical fibre distributed temperature sensing (DTS) is increasingly used in environmental monitoring and for subsurface characterisation, e.g. to obtain precise measurements of soil temperature at high spatio-temporal resolution, over several kilometres of optical fibre cable. When combined with active heating of metal elements embedded in the optical fibre cable (active-DTS), the temperature response of the soil to heating provides valuable information from which other important soil parameters, such as thermal conductivity and soil moisture content, can be inferred. In this presentation, we report the development of an Actively Heated Fibre Optics (AHFO) method for the characterisation of soil thermal conductivity and soil moisture dynamics at high temporal and spatial resolutions at a vegetated hillslope site in central England. The study site is located within a juvenile forest adjacent to the Birmingham Institute of Forest Research (BIFoR) experimental site. It is instrumented with three loops of a 500m hybrid-optical cable installed at 10cm, 25cm and 40cm depths. Active DTS surveys were undertaken in June and October 2016, collecting soil temperature data at 0.25m intervals along the cable, prior to, during and after the 900s heating phase. Soil thermal conductivity and soil moisture were determined according to Ciocca et al. 2012, applied to both the cooling and the heating phase. Independent measurements of soil thermal conductivity and soil moisture content were collected using thermal needle probes, calibrated capacitance-based probes and laboratory methods. Results from both the active DTS survey and independent in-situ and laboratory measurements will be presented, including the observed relationship between thermal conductivity and moisture content at the study site and how it compares against theoretical curves used by the AHFO methods. The spatial variability of soil thermal conductivity and soil moisture content, as observed using the different methods, will be shown and an outlook will be provided of how the AHFO method can benefit soil sciences, ground source heat pump applications and groundwater recharge estimations. This research is part of the Distributed intelligent Heat Pulse System (DiHPS) project which is funded by the UK Natural Environmental Research Council (NERC). The project is supported by BIFoR, the European Space Agency (ESA), CarbonZero Ltd, the UK Forestry Commission and the UK Soil Moisture Observation Network (COSMOS-UK). This work is distributed under the Creative Commons Attribution 3.0 Unported Licence together with an author copyright. This licence does not conflict with the regulations of the Crown Copyright. Ciocca F., Lunati I., van de Giesen N., and Parlange M.B. 2012. Heated optical fiber for distributed soil-moisture measurements: A lysimeter experiment. Vadose Zone J. 11. doi:10.2136/vzj2011.0177
NASA Astrophysics Data System (ADS)
Liu, Junliang; He, Yinghui; Li, Juan; Cai, Shuqun; Wang, Dongxiao; Huang, Yandan
2018-04-01
Nonlinear interaction between near-inertial waves (NIWs) and diurnal tides (DTs) after nine typhoons near the Xisha Islands of the northwestern South China Sea (SCS) were investigated using three-year in situ mooring observation data. It was found that a harmonic wave (f + D1, hereafter referred to as fD1 wave), with a frequency equal to the sum of frequencies of NIWs and DTs (hereafter referred to as f and D1, respectively), was generated via nonlinear interaction between typhoon-induced NIWs and DTs after each typhoon. The fD1 wave mainly concentrates in the subsurface layer, and is mainly induced by the first component of the vertical nonlinear momentum term, the product of the vertical velocity of DT and vertical shear of near-inertial current (hereafter referred to as Component 1), in which the vertical shear of the near-inertial current greatly affects the strength of the fD1 current. The larger the Component 1, the stronger the fD1 currents. The background preexisting mesoscale anticyclonic eddy near the mooring site may also enhance the vertical velocity of DT and thus Component 1, which subsequently facilitates the nonlinear interaction-induced energy transfer to the fD1 wave and enhances the fD1 currents after the passage of a typhoon.
Abdominal wall desmoid tumors: A case report
MA, JIN-HUI; MA, ZHEN-HAI; DONG, XUE-FENG; YIN, HANG; ZHAO, YONG-FU
2013-01-01
Desmoid tumors (DTs) are rare lesions that do not possess any metastatic potential. However, they have a strong tendency to invade locally and recur. They constitute 3% of all soft tissue tumors and 0.03% of all neoplasms. Abdominal DTs occur sporadically or are associated with certain familial syndromes, such as familial adenomatous polyposis (FAP). The single form of this neoplasm most frequently occurs in females of reproductive age and during pregnancy. A female patient with a DT of the abdominal wall who had no relevant family history was admitted to hospital. The patient, who presented with a painless mass in the left anterolateral abdomen, had no history of trauma, surgery or childbearing. According to the medical history, physical examination and CT report, the patient was diagnosed with DT. Radical resection of the affected abdominal wall musculature was performed, and the defect was replaced with a polypropylene mesh. The histological diagnosis was of DT. The patient remains in good health and complete remission without any other treatment following surgery. DTs exhibit aggressive growth and have a high rate of recurrence. Surgery is the optimal treatment, and subsequent radiotherapy may decrease the local recurrence rate. Further research into their aetiology is required combined with multicentre clinical trials of new treatments in order to improve management of this disease. This case report provides general knowledge of DT, and may be used as a guidance for diagnosis and treatment. PMID:23833679
Farris, Samantha G; Zvolensky, Michael J; Otto, Michael W; Leyro, Teresa M
2015-07-01
Distress intolerance is linked to the maintenance of panic disorder and cigarette smoking, and may underlie both problems. Smokers (n = 54; 40.7% panic disorder) were recruited for an experimental study; half were randomly assigned to 12-hour nicotine deprivation and half smoked as usual. The current investigation consisted of secondary, exploratory analyses from this larger experimental study. Four distress intolerance indices were examined as predictors of anxious responding to an emotional elicitation task (10% carbon dioxide (CO2)-enriched air challenge); anxious responding was in turn examined as a predictor of post-challenge panic and nicotine withdrawal symptoms. The Distress Tolerance Scale (DTS) was significantly negatively associated with anxious responding to the challenge (β = -0.41, p = 0.017). The DTS was negatively associated with post-challenge increases nicotine withdrawal symptoms indirectly through the effect of anxious responding to the challenge (b = -0.485, CI95% (-1.095, -0.033)). This same indirect effect was found for post-challenge severity of panic symptoms (b = -0.515, CI95% (-0.888, -0.208)). The DTS was directly predictive of post-challenge increases nicotine withdrawal symptoms, in the opposite direction (β = 0.37, p = 0.009), but not panic symptom severity. Anxious responding in response to stressful experiences may explain the impact of perceived distress intolerance on panic and nicotine withdrawal symptom expression. © The Author(s) 2015.
Cesarean section after abdominal mesh repair for pregnancy-related desmoid tumor: a case report
Ooi, Sara; Ngo, Harry
2017-01-01
We report the case of a 32-year-old gravida 2 para 1 woman with a background of partially resected desmoid tumor (DT) arising from the previous cesarean section (CS) scar. This case details the management of her DT by surgical resection and mesh repair and second pregnancy following this. Pregnancy-related DTs are a relatively rare entity, and there is a paucity of literature regarding their management during pregnancy. There are only five reported cases of DTs arising from CS scars. To our knowledge, this is the only report to illustrate that subsequent CS is possible after desmoid resection and abdominal mesh repair. It provides evidence that CS can be safely accomplished following abdominal wall reconstructions and further arguments against elective lower segment CS. PMID:28744163
Cesarean section after abdominal mesh repair for pregnancy-related desmoid tumor: a case report.
Ooi, Sara; Ngo, Harry
2017-01-01
We report the case of a 32-year-old gravida 2 para 1 woman with a background of partially resected desmoid tumor (DT) arising from the previous cesarean section (CS) scar. This case details the management of her DT by surgical resection and mesh repair and second pregnancy following this. Pregnancy-related DTs are a relatively rare entity, and there is a paucity of literature regarding their management during pregnancy. There are only five reported cases of DTs arising from CS scars. To our knowledge, this is the only report to illustrate that subsequent CS is possible after desmoid resection and abdominal mesh repair. It provides evidence that CS can be safely accomplished following abdominal wall reconstructions and further arguments against elective lower segment CS.
NASA Astrophysics Data System (ADS)
Hall, A.; Diabat, M.
2014-12-01
Temperature is a key factor for salmonid health and is an important restoration metric on the Middle Fork of the John Day River, northeast Oregon. The longest undammed tributary to the Columbia, the headwaters of the Middle Fork are crucial to steelhead and spring Chinook and summer Chinook juvenile rearing. In the past century the river has been altered by dredge mining, overgrazing, logging activities, and irrigation resulting in bank erosion, low effective shade, and channelization. These factors decreased fish habitat and led to increased stream temperature maxima. Restoration has focused on restoring fish habitat, creating thermal refugia, and planting native vegetation. The most recent completed restoration project diverted the flow into the historic, meandering stream channel from the dredged, straightened channel. Over the past seven years, Oregon State University researchers (Tara O'Donnell-2012, Julie Huff-2009) have been involved in a planned-to-be 10-year stream temperature monitoring study to assess maximum temperatures during low-flow summer months. The use of fiber optics through distributed temperature sensing (DTS) made it possible to record high resolution temperature data at both temporal and spatial scales; data which is used to assess the efficacy of restoration efforts on the reach. Furthermore, DTS provided temperature data that reveals subtle hydrologic processes such as groundwater or hyporheic inflows and quantifies their effect on the stream. Current research has focused on large scale DTS installations on the Middle Fork of the John Day River on the Oxbow, Forrest, and the upstream Galena ("RPB") conservation properties. In the summers of 2013 and 2014, 16 km of river were monitored. Our study compares temperatures before and after the restoration project and provides essential guidance for future restoration projects. Direct comparisons coupled with a deterministic modeling using HeatSource assist in better understanding the responsiveness of the stream to restoration. Results showed that reconstructing the stream channel influenced stream temperature as a function of modifying channel geometry, hydraulics, and riparian conditions. Special attention in this work is focused on the role of tributary fans in the creation of distributed cold-water emergences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, D; Kang, S; Kim, T
Purpose: Patient breathing-related sorting method of projections in 4D digital tomosythesis (DTS) can be suffered from severe artifacts due to non-uniform angle distribution of projections and noncoplanar reconstructed images for each phase. In this study, we propose a method for optimally acquiring projection images in 4D DTS. Methods: In this method every pair of projections at x-ray tube’s gantry angles symmetrical with respect to the center of the range of gantry rotation is obtained at the same respiration amplitude. This process is challenging but becomes feasible with visual-biofeedback using a patient specific respiration guide wave which is in sinusoidal shapemore » (i.e., smooth and symmetrical enough). Depending on scan parameters such as the number of acquisition points per cycle, total scan angle and projections per acquisition amplitude, acquisition sequence is pre-determined. A simulation study for feasibility test was performed. To mimic actual situation closely, a group of volunteers were recruited and breathing data were acquired both with/without biofeedback. Then, x-ray projections for a humanoid phantom were virtually performed following (1) the breathing data from volunteers without guide, (2) the breathing data with guide and (3) the planned breathing data (i.e., ideal situation). Images from all of 3 scenarios were compared. Results: Scenario #2 showed significant artifact reduction compared to #1 while did minimal increase from the ideal situation (i.e., scenario #3). We verified the performance of the method with regard to the degree of inaccuracy during respiratory guiding. Also, the scan angle dependence-related differences in the DTS images could reduce between using the proposed method and the established patient breathing-related sorting method. Conclusion: Through the proposed 4D DTS method, it is possible to improve the accuracy of image guidance between intra/inter fractions with relatively low imaging dose. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
NASA Astrophysics Data System (ADS)
Peevey, Tanya
The upper troposphere lower stratosphere (UTLS) is a region of minimum temperatures that contains the tropopause. As a transition region between the troposphere and the stratosphere, the UTLS contains various processes that facilitate stratosphere-troposphere exchange (STE) which can redistribute radiatively important species such as water vapor or ozone. One potential marker for STE is the double tropopause (DT). Therefore this study seeks to further understand how DTs form and how they could enhance the current understanding of some STE processes in the UTLS. Using data from the High Resolution Dynamic Limb Sounder (HIRDLS), a data set with high vertical and horizontal resolution, newly discovered DT structures are found over the Pacific and Atlantic oceans that suggest a relationship between the DT and both storm tracks and Rossby waves. The association between DTs and storm tracks is examined by further analyzing the recently discovered and unexpected relationship between the DT and the tropopause inversion layer (TIL) in a developing baroclinic disturbance. Results show an increase in the number of DTs when the lapse rate of the extratropical TIL is less than -2°C/km, i.e. when the TIL is stronger and the local stability is higher. Composites of ERA-Interim DT profiles for three different TIL strengths shows that the vertical motion and relative vorticity both decrease as the TIL increases, which suggests the warm conveyor belt as a mechanism. This is investigated further with a case study analysis of a developing extratropical cyclone in the Pacific Ocean. Additionally, an analysis of DTs in relation to the large scale flow responsible for storm development shows a strong correlation between monthly Rossby wave activity, ozone laminae and DT variability. Further examination shows that if these waves break a DT will be found with a wave breaking event about 30% of the time in the eastern Pacific and eastern Atlantic oceans, both regions of poleward wave breaking. These results highlight a new and more complicated DT structure that is a product of both large scale dynamics and small scale vertical motions, thus adding new information to the current understanding of the UTLS.
Liu, Yani; Luo, Xiaomei; Yang, Chunxiao; Yang, Tingyu; Zhou, Jiali; Shi, Shaojun
2016-01-01
The aim of the present study was to evaluate whether quercetin (Que) modulates the mRNA and protein expression levels of drug-metabolizing enzymes (DMEs) and drug transporters (DTs) in the small intestine and liver, and thus modifies the pharmacokinetic profile of cyclosporine (CsA) in rats. This two-part study evaluated the pharmacokinetic profiles of CsA in the presence or absence of Que (experiment I) and the involvement of DMEs and DTs (experiment II). In experiment I, 24 rats received single-dose CsA (10 mg/kg) on day 1, single-dose Que (25, 50 and 100 mg/kg/day; eight rats in each group) on days 3–8, and concomitant CsA/Que on day 9. In experiment II, the mRNA and protein expression levels of cytochrome P (CYP)3A1, CYP3A2, UDP glucuronosyltransferase family 1 member A complex locus, organic anion-transporting polypeptide (OATP)2B1, OATP1B2, P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in the small intestine and liver of rats were analyzed following oral administration of Que at 25, 50 and 100 mg/kg in the presence or absence of CsA (10 mg/kg) for seven consecutive days. Co-administration of Que (25,50 and 100 mg/kg) decreased the maximum serum concentration of CsA by 46, 50 and 47% in a dose-independent manner. In addition, the area under the curve to the last measurable concentration and area under the curve to infinite time were decreased, by 21 and 16%, 30 and 33%, and 33 and 34% (P<0.01), respectively. However, the mRNA and protein expression levels of the above-mentioned DMEs and DTs were inhibited by Que in a dose-dependent manner (P<0.01) to a similar extent in the small intestine and liver. It was demonstrated that Que was able to reduce the bioavailability of CsA following multiple concomitant doses in rats. Overlapping modulation of intestinal and hepatic DMEs and DTs, as well as the DME-DT interplay are potential explanations for these observations. PMID:27510982
NASA Astrophysics Data System (ADS)
Sigmund, Armin; Pfister, Lena; Sayde, Chadi; Thomas, Christoph K.
2017-06-01
In recent years, the spatial resolution of fiber-optic distributed temperature sensing (DTS) has been enhanced in various studies by helically coiling the fiber around a support structure. While solid polyvinyl chloride tubes are an appropriate support structure under water, they can produce considerable errors in aerial deployments due to the radiative heating or cooling. We used meshed reinforcing fabric as a novel support structure to measure high-resolution vertical temperature profiles with a height of several meters above a meadow and within and above a small lake. This study aimed at quantifying the radiation error for the coiled DTS system and the contribution caused by the novel support structure via heat conduction. A quantitative and comprehensive energy balance model is proposed and tested, which includes the shortwave radiative, longwave radiative, convective, and conductive heat transfers and allows for modeling fiber temperatures as well as quantifying the radiation error. The sensitivity of the energy balance model to the conduction error caused by the reinforcing fabric is discussed in terms of its albedo, emissivity, and thermal conductivity. Modeled radiation errors amounted to -1.0 and 1.3 K at 2 m height but ranged up to 2.8 K for very high incoming shortwave radiation (1000 J s-1 m-2) and very weak winds (0.1 m s-1). After correcting for the radiation error by means of the presented energy balance, the root mean square error between DTS and reference air temperatures from an aspirated resistance thermometer or an ultrasonic anemometer was 0.42 and 0.26 K above the meadow and the lake, respectively. Conduction between reinforcing fabric and fiber cable had a small effect on fiber temperatures (< 0.18 K). Only for locations where the plastic rings that supported the reinforcing fabric touched the fiber-optic cable were significant temperature artifacts of up to 2.5 K observed. Overall, the reinforcing fabric offers several advantages over conventional support structures published to date in the literature as it minimizes both radiation and conduction errors.
Identifying the dominant thermal controls in a small salmonid-bearing creek with DTS and LDCA
NASA Astrophysics Data System (ADS)
Hatch, C. E.; Boughton, D. A.; Mora, E.
2012-12-01
Temperature has long been used as an indicator of ecosystem health and suitability for aquatic species, particularly in sensitive areas crucial to the persistence of declining fish populations. In addition, the EPA may soon implement TMDLs for stream temperatures throughout the U.S. Typically, stream temperature surveys have long duration but only at point locations, limiting the precision of efforts to predict stream temperatures or understand broader climate linkages. Specifically, single temperature loggers give no insight into the spatial heterogeneity of thermal conditions often exploited by biota. Distributed Temperature Sensing (DTS) provides temperature data at high spatial and temporal resolution up to 5-km in length, allowing for detailed assessment of a creek's heat budget. Rather than calculating a detailed energy balance from a single site or using a statistical approach, here we describe a hybrid method that uses Least Dependent Component Analysis (LDCA) capable of taking advantage of DTS data density in time and space. The method identifies distinct thermal components in the stream's heat budget, using only temperature data and an algorithm based on mutual information that "unmixes" signals in the temperature data. These signals can be interpreted as sets of heat-flux elements sharing coordinated (non-independent) dynamics, both simplifying the number of heat budget components as well as the number thermally forcing stream temperatures. Comparing these components to meteorological data and fluvial system structure allowed us to relate the groups back to causal heating and cooling mechanisms, which can be tested directly with targeted heat-budget studies. We applied this method to a small, arid-land creek, and found that a minimum of three distinct components were necessary to describe the thermal heterogeneity of a 1-km reach. We could also estimate a spatial response profile of each component, yielding insight into possible links between stream geomorphology and function. This method shows promise to aid with siting and defining detailed heat-budget studies, determining the dimensionality of heat budgets in natural streams, and more broadly for associating thermal components to fluvial structure and processes.
WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliopoulos, AS; Sun, X; Pitsianis, N
2015-06-15
Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digitalmore » projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub-kernels. Conclusion: Composable projection operators constitute a versatile research tool which can greatly accelerate iterative registration algorithms and may be conducive to the clinical applicability of LIVE. National Institutes of Health Grant No. R01-CA184173; GPU donation by NVIDIA Corporation.« less
Lens of the eye dose calculation for neuro-interventional procedures and CBCT scans of the head
NASA Astrophysics Data System (ADS)
Xiong, Zhenyu; Vijayan, Sarath; Rana, Vijay; Jain, Amit; Rudin, Stephen; Bednarek, Daniel R.
2016-03-01
The aim of this work is to develop a method to calculate lens dose for fluoroscopically-guided neuro-interventional procedures and for CBCT scans of the head. EGSnrc Monte Carlo software is used to determine the dose to the lens of the eye for the projection geometry and exposure parameters used in these procedures. This information is provided by a digital CAN bus on the Toshiba Infinix C-Arm system which is saved in a log file by the real-time skin-dose tracking system (DTS) we previously developed. The x-ray beam spectra on this machine were simulated using BEAMnrc. These spectra were compared to those determined by SpekCalc and validated through measured percent-depth-dose (PDD) curves and half-value-layer (HVL) measurements. We simulated CBCT procedures in DOSXYZnrc for a CTDI head phantom and compared the surface dose distribution with that measured with Gafchromic film, and also for an SK150 head phantom and compared the lens dose with that measured with an ionization chamber. Both methods demonstrated good agreement. Organ dose calculated for a simulated neuro-interventional-procedure using DOSXYZnrc with the Zubal CT voxel phantom agreed within 10% with that calculated by PCXMC code for most organs. To calculate the lens dose in a neuro-interventional procedure, we developed a library of normalized lens dose values for different projection angles and kVp's. The total lens dose is then calculated by summing the values over all beam projections and can be included on the DTS report at the end of the procedure.
Martín, Jaime; Dyson, Matthew; Reid, Obadiah G.; ...
2017-12-11
Many typical organic optoelectronic devices, such as light-emitting diodes, field-effect transistors, and photovoltaic cells, use an ultrathin active layer where the organic semiconductor is confined within nanoscale dimensions. However, the question of how this spatial constraint impacts the active material is rarely addressed, although it may have a drastic influence on the phase behavior and microstructure of the active layer and hence the final performance. Here, the small-molecule semiconductor p-DTS(FBTTh 2) 2 is used as a model system to illustrate how sensitive this class of material can be to spatial confinement on device-relevant length scales. It is also shown thatmore » this effect can be exploited; it is demonstrated, for instance, that spatial confinement is an efficient tool to direct the crystal orientation and overall texture of p-DTS(FBTTh 2) 2 structures in a controlled manner, allowing for the manipulation of properties including photoluminescence and charge transport characteristics. This insight should be widely applicable as the temperature/confinement phase diagrams established via differential scanning calorimetry and grazing-incidence X-ray diffraction are used to identify specific processing routes that can be directly extrapolated to other functional organic materials, such as polymeric semiconductors, ferroelectrics or high-refractive-index polymers, to induce desired crystal textures or specific (potentially new) polymorphs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martín, Jaime; Dyson, Matthew; Reid, Obadiah G.
Many typical organic optoelectronic devices, such as light-emitting diodes, field-effect transistors, and photovoltaic cells, use an ultrathin active layer where the organic semiconductor is confined within nanoscale dimensions. However, the question of how this spatial constraint impacts the active material is rarely addressed, although it may have a drastic influence on the phase behavior and microstructure of the active layer and hence the final performance. Here, the small-molecule semiconductor p-DTS(FBTTh 2) 2 is used as a model system to illustrate how sensitive this class of material can be to spatial confinement on device-relevant length scales. It is also shown thatmore » this effect can be exploited; it is demonstrated, for instance, that spatial confinement is an efficient tool to direct the crystal orientation and overall texture of p-DTS(FBTTh 2) 2 structures in a controlled manner, allowing for the manipulation of properties including photoluminescence and charge transport characteristics. This insight should be widely applicable as the temperature/confinement phase diagrams established via differential scanning calorimetry and grazing-incidence X-ray diffraction are used to identify specific processing routes that can be directly extrapolated to other functional organic materials, such as polymeric semiconductors, ferroelectrics or high-refractive-index polymers, to induce desired crystal textures or specific (potentially new) polymorphs.« less
Herath, Nuradhika; Das, Sanjib; Keum, Jong K.; ...
2015-08-28
Structural characteristics of the active layers in organic photovoltaic (OPV) devices play a critical role in charge generation, separation and transport. Here we report on morphology and structural control of p-DTS(FBTTh 2) 2:PC 71BM films by means of thermal annealing and 1,8-diiodooctane (DIO) solvent additive processing, and correlate it to the device performance. By combining surface imaging with nanoscale depth-sensitive neutron reflectometry (NR) and X-ray diffraction, three-dimensional morphologies of the films are reconstituted with information extending length scales from nanometers to microns. DIO promotes the formation of a well-mixed donor-acceptor vertical phase morphology with a large population of small p-DTS(FBTTh2)2more » nanocrystals arranged in an elongated domain network of the film, thereby enhancing the device performance. In contrast, films without DIO exhibit three-sublayer vertical phase morphology with phase separation in agglomerated domains. Our findings are supported by thermodynamic description based on the Flory-Huggins theory with quantitative evaluation of pairwise interaction parameters that explain the morphological changes resulting from thermal and solvent treatments. Our study reveals that vertical phase morphology of small-molecule based OPVs is significantly different from polymer-based systems. Lastly, the significant enhancement of morphology and information obtained from theoretical modeling may aid in developing an optimized morphology to enhance device performance for OPVs.« less
The Common Data Acquisition Platform in the Helmholtz Association
NASA Astrophysics Data System (ADS)
Kaever, P.; Balzer, M.; Kopmann, A.; Zimmer, M.; Rongen, H.
2017-04-01
Various centres of the German Helmholtz Association (HGF) started in 2012 to develop a modular data acquisition (DAQ) platform, covering the entire range from detector readout to data transfer into parallel computing environments. This platform integrates generic hardware components like the multi-purpose HGF-Advanced Mezzanine Card or a smart scientific camera framework, adding user value with Linux drivers and board support packages. Technically the scope comprises the DAQ-chain from FPGA-modules to computing servers, notably frontend-electronics-interfaces, microcontrollers and GPUs with their software plus high-performance data transmission links. The core idea is a generic and component-based approach, enabling the implementation of specific experiment requirements with low effort. This so called DTS-platform will support standards like MTCA.4 in hard- and software to ensure compatibility with commercial components. Its capability to deploy on other crate standards or FPGA-boards with PCI express or Ethernet interfaces remains an essential feature. Competences of the participating centres are coordinated in order to provide a solid technological basis for both research topics in the Helmholtz Programme ``Matter and Technology'': ``Detector Technology and Systems'' and ``Accelerator Research and Development''. The DTS-platform aims at reducing costs and development time and will ensure access to latest technologies for the collaboration. Due to its flexible approach, it has the potential to be applied in other scientific programs.
Estimation of accuracy of earth-rotation parameters in different frequency bands
NASA Astrophysics Data System (ADS)
Vondrak, J.
1986-11-01
The accuracies of earth-rotation parameters as determined by five different observational techniques now available (i.e., optical astrometry /OA/, Doppler tracking of satellites /DTS/, satellite laser ranging /SLR/, very long-base interferometry /VLBI/ and lunar laser ranging /LLR/) are estimated. The differences between the individual techniques in all possible combinations, separated by appropriate filters into three frequency bands, were used to estimate the accuracies of the techniques for periods from 0 to 200 days, from 200 to 1000 days and longer than 1000 days. It is shown that for polar motion the most accurate results are obtained with VLBI anad SLR, especially in the short-period region; OA and DTS are less accurate, but with longer periods the differences in accuracy are less pronounced. The accuracies of UTI-UTC as determined by OA, VLBI and LLR are practically equivalent, the differences being less than 40 percent.
Adkins, Jennifer W; Weathers, Frank W; McDevitt-Murphy, Meghan; Daniels, Jennifer B
2008-12-01
In this study psychometric properties of seven self-report measures of posttraumatic stress disorder (PTSD) were compared. The seven scales evaluated were the Davidson Trauma Scale (DTS), the PTSD Checklist (PCL), the Posttraumatic Stress Diagnostic Scale (PDS), the Civilian Mississippi Scale (CMS), the Impact of Event Scale-Revised (IES-R), the Penn Inventory for Posttraumatic Stress Disorder (Penn), and the PK scale of the MMPI-2 (PK). Participants were 239 (79 male and 160 female) trauma-exposed undergraduates. All seven measures exhibited good test-retest reliability and internal consistency. The PDS, PCL and DTS demonstrated the best convergent validity; the IES-R, PDS, and PCL demonstrated the best discriminant validity; and the PDS, PCL, and IES-R demonstrated the best diagnostic utility. Overall, results most strongly support the use of the PDS and the PCL for the assessment of PTSD in this population.
DTS: Building custom, intelligent schedulers
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1994-01-01
DTS is a decision-theoretic scheduler, built on top of a flexible toolkit -- this paper focuses on how the toolkit might be reused in future NASA mission schedulers. The toolkit includes a user-customizable scheduling interface, and a 'Just-For-You' optimization engine. The customizable interface is built on two metaphors: objects and dynamic graphs. Objects help to structure problem specifications and related data, while dynamic graphs simplify the specification of graphical schedule editors (such as Gantt charts). The interface can be used with any 'back-end' scheduler, through dynamically-loaded code, interprocess communication, or a shared database. The 'Just-For-You' optimization engine includes user-specific utility functions, automatically compiled heuristic evaluations, and a postprocessing facility for enforcing scheduling policies. The optimization engine is based on BPS, the Bayesian Problem-Solver (1,2), which introduced a similar approach to solving single-agent and adversarial graph search problems.
Re-treatment decisions for failed posterior fillings by Finnish general practitioners.
Heinikainen, Mia; Vehkalahti, Miira; Murtomaa, Heikki
2002-06-01
To evaluate treatment decisions of general dental practitioners (GDPs) in the private and public sector in cases of re-treatment of failed posterior fillings. A questionnaire on six cases from 400 GDPs, selected by stratified randomisation by gender, and main occupation (public vs. private sector). Others were all full-time dental teachers (DTs; n=47) representing clinical disciplines other than surgery and orthodontics. Restorative cases were described in detail, including figures drawn on four subcases involving the first permanent upper molar where the filling to be replaced increased in size from occlusal filling to the entire clinical crown. For each case, respondents chose the optimal treatment from eight alternatives, later re-classified as amalgam restoration, direct composite restoration, prosthetic restoration (indirect composite, cast gold inlay/onlay, ceramic inlay/onlay, ceramic crown, or bridge construction following tooth extraction). For re-treatment of the occlusal filling, composite restoration was preferred both by GDPs (92%) and DTs (83%). For three-surface fillings, prosthetic restorations were dominant in the private sector (OR=2.3; 95% CI: 1.4, 3.8; P<0.001). In total loss of the clinical crown, prosthetic restoration was chosen by all the DTs, public-sector dentists, and 95% of private-sector dentists. No more than 10% of GDPs chose amalgam and 2% gold; the rest chose composites. Treatment decisions were similar in public and private sectors for cases with the smallest and largest fillings. Wide variation in cases of medium-sized restorations indicated a lack of generally accepted guidelines of good clinical practice and of evidence-based treatment practice.
NASA Astrophysics Data System (ADS)
Schilperoort, B.; Coenders, M.; Savenije, H. H. G.
2017-12-01
In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.
Miyamoto, Y; Ishikawa, K; Takechi, M; Toh, T; Yuasa, T; Nagayama, M; Suzuki, K
1998-01-01
The basic properties of calcium phosphate cement (CPC) containing atelocollagen, the main component of the organic substrate in bone, were studied in an initial evaluation for the fabrication of modified CPC. The setting time of conventional CPC (c-CPC) was prolonged to over 100 min when c-CPC contained 1% or more atelocollagen. The diametral tensile strength (DTS) of c-CPC decreased linearly with the collagen content, descending to below the detection limit when the c-CPC contained 3% or more atelocollagen. Therefore, use of c-CPC as the base cement seems inappropriate for the fabrication of atelocollagen-containing CPC. In contrast, the cement set at 9-34 min when fast-setting CPC (FSCPC) was used as the base cement and contained 1-5% atelocollagen, respectively. Although addition of atelocollagen resulted in the decrease of DTS of the set mass, the DTS was approximately the same, 6-8 MPa, at contents of atelocollagen between 1% and 5%. When atelocollagen was added to FSCPC, the handling property was improved significantly. The paste also became more adhesive with increase in atelocollagen content. These properties are desirable for its use in surgical procedures since, for example, bony defects can be filled easily and without a space interposed between the bone and cement paste. Although there are some disadvantages for the addition of atelocollagen to CPC, it can be accepted as long as FSCPC was used as the base cement. We conclude that further evaluations of the effects of atelocollagen, such as biocompatibility, bone synthesis, and bone replacement behaviour should be done, using FSCPC as the base cement.
McManus, Brenda A; Coleman, David C; Deasy, Emily C; Brennan, Gráinne I; O' Connell, Brian; Monecke, Stefan; Ehricht, Ralf; Leggett, Bernadette; Leonard, Nola; Shore, Anna C
2015-01-01
This study compares the characteristics of Staphylococcus epidermidis (SE) and Staphylococcus haemolyticus (SH) isolates from epidemiologically unrelated infections in humans (Hu) (28 SE-Hu; 8 SH-Hu) and companion animals (CpA) (12 SE-CpA; 13 SH-CpA). All isolates underwent antimicrobial susceptibility testing, multilocus sequence typing and DNA microarray profiling to detect antimicrobial resistance and SCCmec-associated genes. All methicillin-resistant (MR) isolates (33/40 SE, 20/21 SH) underwent dru and mecA allele typing. Isolates were predominantly assigned to sequence types (STs) within a single clonal complex (CC2, SE, 84.8%; CC1, SH, 95.2%). SCCmec IV predominated among MRSE with ST2-MRSE-IVc common to both Hu (40.9%) and CpA (54.5%). Identical mecA alleles and nontypeable dru types (dts) were identified in one ST2-MRSE-IVc Hu and CpA isolate, however, all mecA alleles and 2/4 dts detected among 18 ST2-MRSE-IVc isolates were closely related, sharing >96.5% DNA sequence homology. Although only one ST-SCCmec type combination (ST1 with a non-typeable [NT] SCCmec NT9 [class C mec and ccrB4]) was common to four MRSH-Hu and one MRSH-CpA, all MRSH isolates were closely related based on similar STs, SCCmec genes (V/VT or components thereof), mecA alleles and dts. Overall, 39.6% of MR isolates harbored NT SCCmec elements, and ACME was more common amongst MRSE and CpA isolates. Multidrug resistance (MDR) was detected among 96.7% of isolates but they differed in the prevalence of specific macrolide, aminoglycoside and trimethoprim resistance genes amongst SE and SH isolates. Ciprofloxacin, rifampicin, chloramphenicol [fexA, cat-pC221], tetracycline [tet(K)], aminoglycosides [aadD, aphA3] and fusidic acid [fusB] resistance was significantly more common amongst CpA isolates. SE and SH isolates causing infections in Hu and CpA hosts belong predominantly to STs within a single lineage, harboring similar but variable SCCmec genes, mecA alleles and dts. Host and staphylococcal species-specific characteristics were identified in relation to antimicrobial resistance genes and phenotypes, SCCmec and ACME.
McManus, Brenda A.; Coleman, David C.; Deasy, Emily C.; Brennan, Gráinne I.; O’ Connell, Brian; Monecke, Stefan; Ehricht, Ralf; Leggett, Bernadette; Leonard, Nola; Shore, Anna C.
2015-01-01
This study compares the characteristics of Staphylococcus epidermidis (SE) and Staphylococcus haemolyticus (SH) isolates from epidemiologically unrelated infections in humans (Hu) (28 SE-Hu; 8 SH-Hu) and companion animals (CpA) (12 SE-CpA; 13 SH-CpA). All isolates underwent antimicrobial susceptibility testing, multilocus sequence typing and DNA microarray profiling to detect antimicrobial resistance and SCCmec-associated genes. All methicillin-resistant (MR) isolates (33/40 SE, 20/21 SH) underwent dru and mecA allele typing. Isolates were predominantly assigned to sequence types (STs) within a single clonal complex (CC2, SE, 84.8%; CC1, SH, 95.2%). SCCmec IV predominated among MRSE with ST2-MRSE-IVc common to both Hu (40.9%) and CpA (54.5%). Identical mecA alleles and nontypeable dru types (dts) were identified in one ST2-MRSE-IVc Hu and CpA isolate, however, all mecA alleles and 2/4 dts detected among 18 ST2-MRSE-IVc isolates were closely related, sharing >96.5% DNA sequence homology. Although only one ST-SCCmec type combination (ST1 with a non-typeable [NT] SCCmec NT9 [class C mec and ccrB4]) was common to four MRSH-Hu and one MRSH-CpA, all MRSH isolates were closely related based on similar STs, SCCmec genes (V/VT or components thereof), mecA alleles and dts. Overall, 39.6% of MR isolates harbored NT SCCmec elements, and ACME was more common amongst MRSE and CpA isolates. Multidrug resistance (MDR) was detected among 96.7% of isolates but they differed in the prevalence of specific macrolide, aminoglycoside and trimethoprim resistance genes amongst SE and SH isolates. Ciprofloxacin, rifampicin, chloramphenicol [fexA, cat-pC221], tetracycline [tet(K)], aminoglycosides [aadD, aphA3] and fusidic acid [fusB] resistance was significantly more common amongst CpA isolates. SE and SH isolates causing infections in Hu and CpA hosts belong predominantly to STs within a single lineage, harboring similar but variable SCCmec genes, mecA alleles and dts. Host and staphylococcal species-specific characteristics were identified in relation to antimicrobial resistance genes and phenotypes, SCCmec and ACME. PMID:26379051
NASA Astrophysics Data System (ADS)
Stutsel, B.; Callow, J. N.
2017-12-01
Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature (frost) is incorporated in crop damage models. This data set provided by DTS allows a level of detail that is not possible to record with traditional temperature loggers and shows how this emerging technology can be applied to agricultural applications. This research was supported by the Grains Research and Development Corporation National Frost Initiative.
Fault tolerant data management system
NASA Technical Reports Server (NTRS)
Gustin, W. M.; Smither, M. A.
1972-01-01
Described in detail are: (1) results obtained in modifying the onboard data management system software to a multiprocessor fault tolerant system; (2) a functional description of the prototype buffer I/O units; (3) description of modification to the ACADC and stimuli generating unit of the DTS; and (4) summaries and conclusions on techniques implemented in the rack and prototype buffers. Also documented is the work done in investigating techniques of high speed (5 Mbps) digital data transmission in the data bus environment. The application considered is a multiport data bus operating with the following constraints: no preferred stations; random bus access by all stations; all stations equally likely to source or sink data; no limit to the number of stations along the bus; no branching of the bus; and no restriction on station placement along the bus.
NASA Astrophysics Data System (ADS)
Rana, Vijay; Gill, Kamaljit; Rudin, Stephen; Bednarek, Daniel R.
2012-03-01
The current version of the real-time skin-dose-tracking system (DTS) we have developed assumes the exposure is contained within the collimated beam and is uniform except for inverse-square variation. This study investigates the significance of factors that contribute to beam non-uniformity such as the heel effect and backscatter from the patient to areas of the skin inside and outside the collimated beam. Dose-calibrated Gafchromic film (XR-RV3, ISP) was placed in the beam in the plane of the patient table at a position 15 cm tube-side of isocenter on a Toshiba Infinix C-Arm system. Separate exposures were made with the film in contact with a block of 20-cm solid water providing backscatter and with the film suspended in air without backscatter, both with and without the table in the beam. The film was scanned to obtain dose profiles and comparison of the profiles for the various conditions allowed a determination of field non-uniformity and backscatter contribution. With the solid-water phantom and with the collimator opened completely for the 20-cm mode, the dose profile decreased by about 40% on the anode side of the field. Backscatter falloff at the beam edge was about 10% from the center and extra-beam backscatter decreased slowly with distance from the field, being about 3% of the beam maximum at 6 cm from the edge. Determination of the magnitude of these factors will allow them to be included in the skin-dose-distribution calculation and should provide a more accurate determination of peak-skin dose for the DTS.
Aragona, Pasquale; Rania, Laura; Roszkowska, Anna M; Spinella, Rosaria; Postorino, Elisa; Puzzolo, Domenico; Micali, Antonio
2013-09-01
To evaluate the effect of aminoacid enriched artificial tears on the ocular surface of patients with dysfunctional tear syndrome (DTS). Forty patients were divided into two groups: group 1 treated for 90 days with sodium hyaluronate (SH) 0.15% 1 drop × 5 times/day; group 2 treated for 90 days with SH 0.15% + aminoacids mixture 1 drop × 5 times/day. Symptom score questionnaire, tear break-up time (TBUT), corneal fluorescein stain, Shirmer's I test and confocal microscopy were performed at baseline and after 30 and 90 days. Confocal images underwent morphometric analysis. Both treatments improved symptoms after 1 month. Group 2 patients showed at 1 month an improvement of TBUT and corneal stain, maintained throughout the study. Also Shirmer's I test improved after 3 months. In group 1, an improvement of TBUT and corneal stain was observed after 3 months. The morphometric analysis of confocal images demonstrated at month 1 an improvement of nerve tortuosity in group 2; after 3 months both groups showed a significant improvement versus baseline. The epithelium showed, in both groups, a reduction in hyperreflective large cells starting from 1 month; the area of the cells was significantly reduced after 3 months, with a significant higher reduction in group 2. The perineural stromal opacity was significantly increased after 3 months, particularly in group 2. This is the first study addressing corneal changes after amino acids administration in a DTS population. The treatment with amino acids enriched SH can be considered a useful tool in the treatment of DTS. © 2013 The Authors Acta Ophthalmologica © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by Blackwell Publishing Ltd.
Buruiana, Tinca; Nechifor, Marioara; Melinte, Violeta; Podasca, Viorica; Buruiana, Emil C
2014-01-01
To develop resin-modified glass ionomer materials, we synthesized methacrylate-functionalized acrylic copolymer (PAlk-LeuM) derived from acrylic acid, itaconic acid and N-acryloyl-L-leucine using (N-methacryloyloxyethylcarbamoyl-N'-4-hydroxybutyl) urea as the modifying agent. The spectroscopic (proton/carbon nuclear magnetic resonance, Fourier transform infrared spectroscopy) characteristics, and the gel permeation chromatography/Brookfield viscosity measurements were analysed and compared with those of the non-modified copolymer (PAlk-Leu). The photocurable copolymer (PAlk-LeuM, ~14 mol% methacrylate groups) and its precursor (PAlk-Leu) were incorporated in dental ionomer compositions besides diglycidyl methacrylate of bisphenol A (Bis-GMA) or an analogue of Bis-GMA (Bis-GMA-1), triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The kinetic data obtained by photo-differential scanning calorimetry showed that both the degree of conversion (60.50-75.62%) and the polymerization rate (0.07-0.14 s(-1)) depend mainly on the amount of copolymer (40-50 wt.%), and conversions over 70% were attained in the formulations with 40 wt.% PAlk-LeuM. To formulate light-curable cements, each organic composition was mixed with filler (90 wt.% fluoroaluminosilicate/10 wt.% hydroxyapatite) into a 2.7:1 ratio (powder/liquid ratio). The light-cured specimens exhibited flexural strength (FS), compressive strength (CS) and diametral tensile strength (DTS) varying between 28.08 and 64.79 MPa (FS), 103.68-147.13 MPa (CS) and 16.89-31.87 MPa (DTS). The best values for FS, CS and DTS were found for the materials with the lowest amount of PAlk-LeuM. Other properties such as the surface hardness, water sorption/water solubility, surface morphology and fluorescence caused by adding the fluorescein monomer were also evaluated.
Demiryay, Elvan; Yaylali, Volkan; Cetin, Ebru Nevin; Yildirim, Cem
2011-09-01
The aim was to compare the effects of topical cyclosporine A and artificial tears combination with artificial tears alone in patients with dysfunctional tear syndrome (DTS). Forty-two eyes of 42 patients with DTS were enrolled in the study. The inclusion criteria for the study were Schirmer I (without anesthesia) scores below 10 mm/5 min and tear film break-up time (BUT) below 10 sec. The patients were randomly divided into two groups. The study group (22 patients) underwent 0.05% cyclosporine A treatment twice a day and preservative-free artificial tears for four times a day for 4 months. The control group (20 patients) was administered only preservative-free artificial tears four times a day for 4 months. The BUT, Schirmer test scores, corneal fluorescein staining, conjunctival lissamine green staining, and goblet cell density derived by impression cytology were recorded before and after treatment in each group. In the study group, all parameters improved statistically significantly after treatment at the 4-month follow-up compared with the pretreatment values (P<0.001 for all). In the control group, corneal fluorescein staining (P<0.001) and conjunctival lissamine green staining (P=0.014) improved, but BUT and Schirmer scores did not change significantly after treatment. At the end of the 4-month follow-up, the study group demonstrated statistically significantly better BUT (P=0.020), Schirmer scores (P=0.002), goblet cell density (P=0.006), corneal fluorescein staining (P=0.003), and conjunctival lissamine green staining (P=0.017) scores than did the control group. Topical cyclosporine A and artificial tears treatment significantly increases goblet cell density, decreases the signs of DTS, and improves ocular surface health.
Rosenberry, Donald O.; Briggs, Martin A.; Delin, Geoffrey N.; Hare, Danielle K.
2016-01-01
Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.
IL-36α Regulates Tubulointerstitial Inflammation in the Mouse Kidney.
Ichii, Osamu; Kimura, Junpei; Okamura, Tadashi; Horino, Taro; Nakamura, Teppei; Sasaki, Hayato; Elewa, Yaser Hosny Ali; Kon, Yasuhiro
2017-01-01
IL-36α, a member of the IL-1 family, is a crucial mediator of inflammatory responses. We previously found that IL-36α was overexpressed in injured distal tubules (DTs); however, its pathological function remains unclear. Herein, unilateral ureter obstruction (UUO) or folic acid (FA) injection was performed in mouse kidneys to assess the role of IL-36α in kidney injury. IL-36α mRNA and protein expression significantly increased in the kidneys within 24 h after UUO. IL-36α localized to dilated DTs. IL-36α expression significantly correlated with the progression of tubulointerstitial cell infiltration and tubular epithelium cell death in UUO kidneys and with renal dysfunction in FA-induced acute kidney injury mice. At 24 h after UUO, IL-36α + DT epithelial cells showed loose intercellular digitations. IL-1RL2, an IL-36α receptor protein, localized to podocytes, proximal tubules, and DTs in the healthy kidney. IL-1RL2 was expressed in interstitial cells and platelets or extended primary cilia of DT epithelial cells in UUO kidneys. IL-36α stimulation promoted the production of IL-6 and Prss35, an inflammatory cytokine and collagen remodeling-associated enzyme, respectively, in cultured NIH3T3 fibroblasts. UUO-treated IL-36α-knockout (KO) mice showed milder kidney injury features than wild-type (WT) mice did. In UUO kidneys from IL-36α-KO mice, the expression of genes associated with inflammatory response and sensory perception was significantly different from that in WT mice. Altogether, our data indicate an association between intrarenal IL-36α overexpression and the progression of tubulointerstitial inflammations and morpho-functional alterations of DT epithelial cells. IL-36α may be a novel kidney injury marker useful for evaluating DT damages.
Kim, Kye-Hwan; Jeon, Kyung Nyeo; Kang, Min Gyu; Ahn, Jong Hwa; Koh, Jin-Sin; Park, Yongwhi; Hwang, Seok-Jae; Jeong, Young-Hoon; Kwak, Choong Hwan; Hwang, Jin-Yong; Park, Jeong Rang
2016-01-01
Background/Aims: This study is a head-to-head comparison of predictive values for long-term cardiovascular outcomes between exercise electrocardiography (ex-ECG) and computed tomography coronary angiography (CTCA) in patients with chest pain. Methods: Four hundred and forty-two patients (mean age, 56.1 years; men, 61.3%) who underwent both ex-ECG and CTCA for evaluation of chest pain were included. For ex-ECG parameters, the patients were classified according to negative or positive results, and Duke treadmill score (DTS). Coronary artery calcium score (CACS), presence of plaque, and coronary artery stenosis were evaluated as CTCA parameters. Cardiovascular events for prognostic evaluation were defined as unstable angina, acute myocardial infarction, revascularization, heart failure, and cardiac death. Results: The mean follow-up duration was 2.8 ± 1.1 years. Fifteen patients experienced cardiovascular events. Based on pretest probability, the low- and intermediate-risks of coronary artery disease were 94.6%. Odds ratio of CACS > 40, presence of plaque, coronary stenosis ≥ 50% and DTS ≤ 4 were significant (3.79, p = 0.012; 9.54, p = 0.030; 6.99, p < 0.001; and 4.58, p = 0.008, respectively). In the Cox regression model, coronary stenosis ≥ 50% (hazard ratio, 7.426; 95% confidence interval, 2.685 to 20.525) was only significant. After adding DTS ≤ 4 to coronary stenosis ≥ 50%, the integrated discrimination improvement and net reclassification improvement analyses did not show significant. Conclusions: CTCA was better than ex-ECG in terms of predicting long-term outcomes in low- to intermediate-risk populations. The predictive value of the combination of CTCA and ex-ECG was not superior to that of CTCA alone. PMID:27017387
Decision-theoretic control of EUVE telescope scheduling
NASA Technical Reports Server (NTRS)
Hansson, Othar; Mayer, Andrew
1993-01-01
This paper describes a decision theoretic scheduler (DTS) designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems and using probabilistic inference to aggregate this information in light of the features of a given problem. The Bayesian Problem-Solver (BPS) introduced a similar approach to solving single agent and adversarial graph search patterns yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.
Experiments with a decision-theoretic scheduler
NASA Technical Reports Server (NTRS)
Hansson, Othar; Holt, Gerhard; Mayer, Andrew
1992-01-01
This paper describes DTS, a decision-theoretic scheduler designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems, and using probabilistic inference to aggregate this information in light of features of a given problem. BPS, the Bayesian Problem-Solver, introduced a similar approach to solving single-agent and adversarial graph search problems, yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.
Electron pressure balance in the SOL through the transition to detachment
McLean, A. G.; Leonard, A. W.; Makowski, M. A.; ...
2015-02-07
Upgrades to core and divertor Thomson scattering (DTS) diagnostics at DIII-D have provided measurements of electron pressure profiles in the lower divertor from attached- to fully-detached divertor plasma conditions. Detailed, multistep sequences of discharges with increasing line-averaged density were run at several levels of P inj. Strike point sweeping allowed 2D divertor characterization using DTS optimized to measure T e down to 0.5 eV. The ionization front at the onset of detachment is found to move upwards in a controlled manner consistent with the indication that scrape-off layer parallel power flux is converted from conducted to convective heat transport. Measurementsmore » of n e, T e and p e in the divertor versus Lparallel demonstrate a rapid transition from Te ≥ 15 eV to ≤3 eV occurring both at the outer strike point and upstream of the X-point. Furthermore, these observations provide a strong benchmark for ongoing modeling of divertor detachment for existing and future tokamak devices.« less
Electron pressure balance in the SOL through the transition to detachment
NASA Astrophysics Data System (ADS)
McLean, A. G.; Leonard, A. W.; Makowski, M. A.; Groth, M.; Allen, S. L.; Boedo, J. A.; Bray, B. D.; Briesemeister, A. R.; Carlstrom, T. N.; Eldon, D.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Liu, C.; Osborne, T. H.; Petrie, T. W.; Soukhanovskii, V. A.; Stangeby, P. C.; Tsui, C.; Unterberg, E. A.; Watkins, J. G.
2015-08-01
Upgrades to core and divertor Thomson scattering (DTS) diagnostics at DIII-D have provided measurements of electron pressure profiles in the lower divertor from attached- to fully-detached divertor plasma conditions. Detailed, multistep sequences of discharges with increasing line-averaged density were run at several levels of Pinj. Strike point sweeping allowed 2D divertor characterization using DTS optimized to measure Te down to 0.5 eV. The ionization front at the onset of detachment is found to move upwards in a controlled manner consistent with the indication that scrape-off layer parallel power flux is converted from conducted to convective heat transport. Measurements of ne, Te and pe in the divertor versus Lparallel demonstrate a rapid transition from Te ⩾ 15 eV to ⩽3 eV occurring both at the outer strike point and upstream of the X-point. These observations provide a strong benchmark for ongoing modeling of divertor detachment for existing and future tokamak devices.
McDonald, Scott D; Thompson, NiVonne L; Stratton, Kelcey J; Calhoun, Patrick S
2014-03-01
Self-report questionnaires are frequently used to identify PTSD among U.S. military personnel and Veterans. Two common scoring methods used to classify PTSD include: (1) a cut score threshold and (2) endorsement of PTSD symptoms meeting DSM-IV-TR symptom cluster criteria (SCM). A third method requiring a cut score in addition to SCM has been proposed, but has received little study. The current study examined the diagnostic accuracy of three scoring methods for the Davidson Trauma Scale (DTS) among 804 Afghanistan and Iraq war-era military Service Members and Veterans. Data were weighted to approximate the prevalence of PTSD and other Axis I disorders in VA primary care. As expected, adding a cut score criterion to SCM improved specificity and positive predictive power. However, a cut score of 68-72 provided optimal diagnostic accuracy. The utility of the DTS, the role of baseline prevalence, and recommendations for future research are discussed. Published by Elsevier Ltd.
Reactions of Pd(II) and Pt(II) Complexes With Tetraethylthiouram Disulfide
Cervantes, G.; Molins, E.; Miravitlles, C.
1997-01-01
The reactions of tetraethylthiouram disulfide (DTS), an inhibitor of the nephrotoxicity of Pt(II) drugs, an efficient agent in the treatment of chronic alcoholism, in the treatment of HIV infections, AIDS and heavy metal toxicity, and a fungicide and herbicide, with K2[PtCl4], in ratio 1:1 and 1:2, gave the compounds [PtCl2DTS] and [Pt(S2CNEt2)2] respectively. The reaction of the complexes K2[PdCl4], Pd(AcO)2 and [PdCl2(PhCN)2], where PhCN = Benzonitrile, with tetraethylthiouram disulfide in ratio 1:1 or 1:2, yielded orange crystals identified as [Pd(S2CNEt2)2]. The crystals were suitable for study by X-ray diffraction. The -S-S- bridge in the tetraethylthiouram disulfude molecule was broken and the two molecules of the thiocarbamate derivative were bound to the Pd(II) by the equivalents sulfur atoms. All the compounds were characterized by IR, 1H and 13C NMR spectroscopies. PMID:18475812
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, K. M.
2015-01-01
In this paper, we investigate changes in the Hadley Circulation (HC) and their connections to increased global dryness under CO2 warming from CMIP-5 model projections. We find a strengthening of the ascending branch of the HC manifested in a deep-tropics squeeze (DTS), i.e., a deepening and narrowing of the convective zone, increased high clouds, and a rise of the level of maximum meridional mass outflow in the upper troposphere (200-100 hectopascals) of the deep tropics. The DTS induces atmospheric moisture divergence, reduces tropospheric relative humidity in the tropics and subtropics, in conjunction with a widening of the subsiding branches of the HC, resulting in increased frequency of dry events in preferred geographic locations worldwide. Among water cycle parameters examined, global dryness has the highest signal-to-noise ratio. Our results provide scientific bases for inferring that the observed tend of prolonged droughts in recent decades is likely attributable to greenhouse warming.
45 CFR 287.10 - What definitions apply to this part?
Code of Federal Regulations, 2011 CFR
2011-10-01
... (ASSISTANCE PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE... funding for that purpose. Department means the Department of Health and Human Services; Division of Tribal Services (DTS) means the unit in the Office of Community Services within the Department's Administration...
45 CFR 287.10 - What definitions apply to this part?
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROGRAMS), ADMINISTRATION FOR CHILDREN AND FAMILIES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE NATIVE... that purpose. Department means the Department of Health and Human Services; Division of Tribal Services (DTS) means the unit in the Office of Community Services within the Department's Administration for...
Helicopter noise data : letter report DTS-75-FA053-LR8 (rev. 1)
DOT National Transportation Integrated Search
1990-07-17
One-third octave spectral noise data are provided for 15 helicopters from the TSC Helicopter Noise Data Library. The original data were measured by TSC in 1978 through 1983 and published in reports as listed below. The data have been adjusted to refe...
78 FR 54269 - Lake Clark National Park Subsistence Resource Commission; Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-LACL-DTS-13687; PPAKAKROR4; PPMPRLE1Y.LS0000] Lake Clark National Park Subsistence Resource Commission; Meetings AGENCY: National Park Service...- 463, 86 Stat. 770), the National Park Service (NPS) is hereby giving notice that the Lake Clark...
ERIC Educational Resources Information Center
Bakah, Marie Afua Baah; Voogt, Joke M.; Pieters, Jules M.
2012-01-01
Polytechnic staff perspectives are sought on the sustainability and large-scale implementation of design teams (DT), as a means for collaborative curriculum design and teacher professional development in Ghana's polytechnics, months after implementation. Data indicates that teachers still collaborate in DTs for curriculum design and professional…
USDA-ARS?s Scientific Manuscript database
This study demonstrated a new method for mapping high-resolution (spatial: 1 m, and temporal: 1 h) soil moisture by assimilating distributed temperature sensing (DTS) observed soil temperatures at intermediate scales. In order to provide robust soil moisture and property estimates, we first proposed...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... DEPARTMENT OF THE INTERIOR National Park Service [NPS-AKR-DENA-KOVA-DTS-13608; PPAKAKROR4; PPMPRLE1Y.LS0000] Kobuk Valley National Park Subsistence Resource Commission (SRC) and the Denali National Park SRC; Meetings AGENCY: National Park Service, Interior. ACTION: Meeting notice. SUMMARY: As...
da Silva, Gisele Rodrigues; Simamoto-Júnior, Paulo Cezar; da Mota, Adérito Soares; Soares, Carlos José
2007-03-01
This study aimed to analyze the microhardness (KHN) and diametral tensile strength (DTS) of two hybrid resin composites (TPH Spectrum and Filtek Z250). To this end, the composites were polymerized with six laboratory photo-curing units (LPUs) and the results compared with an alternative polymerization method using conventional halogen light source in conjunction with additional polymerization in an autoclave (15 minutes/100 degrees C). LPUs were used following the manufacturers' instructions. Diametral tensile strength and Knoop hardness tests were conducted for all groups (n=5). Data were statistically compared using ANOVA and Tukey's test (alpha = 0.05). Among the LPUs, the one that provided light curing in conjunction with heat and nitrogen pressure resulted in a significant increase in KHN and DTS of resin composites. Between the resin composites, Filtek Z250 showed higher hardness values than TPH Spectrum. It was concluded that the use of alternative polymerization with conventional light polymerization and autoclave was feasible with a wide implication for the general public in terms of reduced dental treatment cost.
Lau, William K M; Kim, Kyu-Myong
2015-03-24
In this paper, we investigate changes in the Hadley Circulation (HC) and their connections to increased global dryness (suppressed rainfall and reduced tropospheric relative humidity) under CO2 warming from Coupled Model Intercomparison Project Phase 5 (CMIP5) model projections. We find a strengthening of the HC manifested in a "deep-tropics squeeze" (DTS), i.e., a deepening and narrowing of the convective zone, enhanced ascent, increased high clouds, suppressed low clouds, and a rise of the level of maximum meridional mass outflow in the upper troposphere (200-100 hPa) of the deep tropics. The DTS induces atmospheric moisture divergence and reduces tropospheric relative humidity in the tropics and subtropics, in conjunction with a widening of the subsiding branches of the HC, resulting in increased frequency of dry events in preferred geographic locations worldwide. Among various water-cycle parameters examined, global dryness is found to have the highest signal-to-noise ratio. Our results provide a physical basis for inferring that greenhouse warming is likely to contribute to the observed prolonged droughts worldwide in recent decades.
Wen, Xiao-Yong; Yang, Yunqing; Yan, Zhenya
2015-07-01
In this paper, a simple and constructive method is presented to find the generalized perturbation (n,M)-fold Darboux transformations (DTs) of the modified nonlinear Schrödinger (MNLS) equation in terms of fractional forms of determinants. In particular, we apply the generalized perturbation (1,N-1)-fold DTs to find its explicit multi-rogue-wave solutions. The wave structures of these rogue-wave solutions of the MNLS equation are discussed in detail for different parameters, which display abundant interesting wave structures, including the triangle and pentagon, etc., and may be useful to study the physical mechanism of multirogue waves in optics. The dynamical behaviors of these multi-rogue-wave solutions are illustrated using numerical simulations. The same Darboux matrix can also be used to investigate the Gerjikov-Ivanov equation such that its multi-rogue-wave solutions and their wave structures are also found. The method can also be extended to find multi-rogue-wave solutions of other nonlinear integrable equations.
Vujanovic, Anka A; Wardle, Margaret C; Bakhshaie, Jafar; Smith, Lia J; Green, Charles E; Lane, Scott D; Schmitz, Joy M
2018-05-01
Cue reactivity has great potential to advance our understanding of posttraumatic stress disorder (PTSD), substance use disorder (SUD), and PTSD/SUD comorbidity. The present investigation examined distress tolerance (DT) with regard to trauma and substance cue reactivity. Participants included 58 low-income, inner-city adults (49.1% women; M age = 45.73, SD = 10.00) with substance dependence and at least 4 symptoms of PTSD. A script-driven cue reactivity paradigm was utilized. Four DT measures were administered, including the Distress Tolerance Scale (DTS), Mirror-Tracing Persistence Task (MTPT), Breath-Holding Task (BH), and Paced Auditory Serial Addition Task (PASAT). Lower DT, as indexed by MTPT duration, was significantly predictive of greater levels of self-reported substance cravings/urges in response to trauma cues, above and beyond covariates. Lower DTS scores predicted lower levels of self-reported control/safety ratings in response to substance cues. None of the DT indices was significantly predictive of heart rate variability. Clinical and research implications are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Zhang, Pengpeng; Happersett, Laura; Ravindranath, Bosky; Zelefsky, Michael; Mageras, Gig; Hunt, Margie
2016-01-01
Purpose: Robust detection of implanted fiducials is essential for monitoring intrafractional motion during hypofractionated treatment. The authors developed a plan optimization strategy to ensure clear visibility of implanted fiducials and facilitate 3D localization during volumetric modulated arc therapy (VMAT). Methods: Periodic kilovoltage (kV) images were acquired at 20° gantry intervals and paired with simultaneously acquired 4.4° short arc megavoltage digital tomosynthesis (MV-DTS) to localize three fiducials during VMAT delivery for hypofractionated prostate cancer treatment. Beginning with the original optimized plan, control point segments where fiducials were consistently blocked by multileaf collimator (MLC) within each 4.4° MV-DTS interval were first identified. For each segment, MLC apertures were edited to expose the fiducial that led to the least increase in the cost function. Subsequently, MLC apertures of all control points not involved with fiducial visualization were reoptimized to compensate for plan quality losses and match the original dose–volume histogram. MV dose for each MV-DTS was also kept above 0.4 MU to ensure acceptable image quality. Different imaging (gantry) intervals and visibility margins around fiducials were also evaluated. Results: Fiducials were consistently blocked by the MLC for, on average, 36% of the imaging control points for five hypofractionated prostate VMAT plans but properly exposed after reoptimization. Reoptimization resulted in negligible dosimetric differences compared with original plans and outperformed simple aperture editing: on average, PTV D98 recovered from 87% to 94% of prescription, and PTV dose homogeneity improved from 9% to 7%. Without violating plan objectives and compromising delivery efficiency, the highest imaging frequency and largest margin that can be achieved are a 10° gantry interval, and 15 mm, respectively. Conclusions: VMAT plans can be made to accommodate MV-kV imaging of fiducials. Fiducial visualization rate and workflow efficiency are significantly improved with an automatic modification and reoptimization approach. PMID:27147314
Williams, James A; Eddleman, Laura; Pantone, Amy; Martinez, Regina; Young, Stephen; Van Der Pol, Barbara
2014-08-01
Next-generation diagnostics for Chlamydia trachomatis and Neisseria gonorrhoeae are available on semi- or fully-automated platforms. These systems require less hands-on time than older platforms and are user friendly. Four automated systems, the ABBOTT m2000 system, Becton Dickinson Viper System with XTR Technology, Gen-Probe Tigris DTS system, and Roche cobas 4800 system, were evaluated for total run time, hands-on time, and walk-away time. All of the systems evaluated in this time-motion study were able to complete a diagnostic test run within an 8-h work shift, instrument setup and operation were straightforward and uncomplicated, and walk-away time ranged from approximately 90 to 270 min in a head-to-head comparison of each system. All of the automated systems provide technical staff with increased time to perform other tasks during the run, offer easy expansion of the diagnostic test menu, and have the ability to increase specimen throughput. © 2013 Society for Laboratory Automation and Screening.
Meda, Ziemlé Clément; Konate, Lassina; Ouedraogo, Hyacinthe; Sanou, Moussa; Hercot, David; Sombie, Issiaka
2011-01-01
In Burkina Faso, as in most developing countries, the operational level of the health system is made up of Health Districts (HDs), the activities of which are typically coordinated by the District Team (DT). Assessing the the core functions of DTs, as described by WHO, shows two important weaknesses. Firstly, instructions from "above" are often implemented rather passively: DTs tend not to display much leadership. Secondly, the current organisation, based on input financing and centralised planning, does not sufficiently promote either the vision or research functions of DTs. In this article, we report our experience in the Orodora HD in Burkina Faso, where the DT's leadership and vision proved to be essential ingredients for effective health action in the district. Our description of six interventions implemented between 2004 and 2008 shows how DT leadership and vision have improved outputs at the HD level. Until 2004, the district applied static health planning. The health system was insufficiently financed and performed poorly. Faced with this situation, the DT decided to set up several priority interventions based on health care access criteria and patient concerns, while respecting and contextualizing national norms and objectives. Six interventions were then implemented. The first was ensure that quality blood (meeting transfusion security norms) was available at the District Hospital (DH), by picking blood up from the regional blood transfusion center weekly. This speeded up care at the DH, reduced the number of cases referred to the regional hospital for transfusion, and reduced neonatal and maternal mortality. The second intervention sought to improve the skills of health workers in managing emergency cases and to improve relationships with the referral hospital through the reintroduction of counter-referral procedures. This led to a decrease in unnecessary referrals and also reduced the mortality rates of serious cases. The third intervention, by implementing a decentralized approach to tuberculosis detection, succeeded in improving access to care and enabled us to quantify the rate of tuberculosis-HIV co-infection in the HD. The fourth intervention improved financial access to emergency obstetric care by providing essential drugs and consumables for emergency obstetric surgery free of charge. The fifth intervention boosted the motivation of health workers by an annual 'competition of excellence', organised for workers and teams in the HD. Finally, our sixth intervention was the introduction of a "culture" of evaluation and transparency, by means of a local health journal, used to interact with stakeholders both at the local level and in the health sector more broadly. We also present our experiences regularly during national health science symposia. Although the DT operates with limited resources, it has over time managed to improve care and services in the HD, through its dynamic management and strategic planning. It has reduced inpatient mortality and improved access to care, particularly for vulnerable groups, in line with the Primary Health Care and Bamako Initiative principles. This case study would have benefited from a stronger methodology. However, it shows that in a context of limited resources it is still possible to strengthen the local health system by improving management practices. To progress towards universal health coverage, all core functions of a DT are worth implementing, including leadership and vision. National and international health strategies should thus include a plan to provide for and train local health system managers who can provide both leadership and strategic vision.
USDA-ARS?s Scientific Manuscript database
In this study, ß-carotene (BC)-loaded nanoemulsions encapsulated with native whey protein isolate (WPI) and WPI-dextran (DT, 5 kDa, 20 kDa, and 70 kDa) conjugates were prepared and the effects of glycosylation with various molecular weight DTs on the physicochemical property, lipolysis, and BC bioac...
Modification of yield and composition of essential oils by distillation time
USDA-ARS?s Scientific Manuscript database
Field and laboratory experiments were conducted to model the length of the steam distillation time (DT) on essential oil yield and oil composition of peppermint, lemongrass, and palmarosa oils. The DTs tested were 1.25, 2.5, 5, 10, 20, 40, 80, and 160 min for peppermint, and 1.25, 2.5, 5, 10, 20, 40...
Decision tools in health care: focus on the problem, not the solution.
Liu, Joseph; Wyatt, Jeremy C; Altman, Douglas G
2006-01-20
Systematic reviews or randomised-controlled trials usually help to establish the effectiveness of drugs and other health technologies, but are rarely sufficient by themselves to ensure actual clinical use of the technology. The process from innovation to routine clinical use is complex. Numerous computerised decision support systems (DSS) have been developed, but many fail to be taken up into actual use. Some developers construct technologically advanced systems with little relevance to the real world. Others did not determine whether a clinical need exists. With NHS investing 5 billion pounds sterling in computer systems, also occurring in other countries, there is an urgent need to shift from a technology-driven approach to one that identifies and employs the most cost-effective method to manage knowledge, regardless of the technology. The generic term, 'decision tool' (DT), is therefore suggested to demonstrate that these aids, which seem different technically, are conceptually the same from a clinical viewpoint. Many computerised DSSs failed for various reasons, for example, they were not based on best available knowledge; there was insufficient emphasis on their need for high quality clinical data; their development was technology-led; or evaluation methods were misapplied. We argue that DSSs and other computer-based, paper-based and even mechanical decision aids are members of a wider family of decision tools. A DT is an active knowledge resource that uses patient data to generate case specific advice, which supports decision making about individual patients by health professionals, the patients themselves or others concerned about them. The identification of DTs as a consistent and important category of health technology should encourage the sharing of lessons between DT developers and users and reduce the frequency of decision tool projects focusing only on technology. The focus of evaluation should become more clinical, with the impact of computer-based DTs being evaluated against other computer, paper- or mechanical tools, to identify the most cost effective tool for each clinical problem. We suggested the generic term 'decision tool' to demonstrate that decision-making aids, such as computerised DSSs, paper algorithms, and reminders are conceptually the same, so the methods to evaluate them should be the same.
Monte Carlo investigation of backscatter point spread function for x-ray imaging examinations
NASA Astrophysics Data System (ADS)
Xiong, Zhenyu; Vijayan, Sarath; Rudin, Stephen; Bednarek, Daniel R.
2017-03-01
X-ray imaging examinations, especially complex interventions, may result in relatively high doses to the patient's skin inducing skin injuries. A method was developed to determine the skin-dose distribution for non-uniform x-ray beams by convolving the backscatter point-spread-function (PSF) with the primary-dose distribution to generate the backscatter distribution that, when added to the primary dose, gives the total-dose distribution. This technique was incorporated in the dose-tracking system (DTS), which provides a real-time color-coded 3D-mapping of skin dose during fluoroscopic procedures. The aim of this work is to investigate the variation of the backscatter PSF with different parameters. A backscatter PSF of a 1-mm x-ray beam was generated by EGSnrc Monte-Carlo code for different x-ray beam energies, different soft-tissue thickness above bone, different bone thickness and different entrance-beam angles, as well as for different locations on the SK-150 anthropomorphic head phantom. The results show a reduction of the peak scatter to primary dose ratio of 48% when X-ray beam voltage is increased from 40 keV to 120 keV. The backscatter dose was reduced when bone was beneath the soft tissue layer and this reduction increased with thinner soft tissue and thicker bone layers. The backscatter factor increased about 21% as the angle of incidence of the beam with the entrance surface decreased from 90° (perpendicular) to 30°. The backscatter PSF differed for different locations on the SK-150 phantom by up to 15%. The results of this study can be used to improve the accuracy of dose calculation when using PSF convolution in the DTS.
Liu, Y H; Yi, Q; Hou, X B; Zhang, X G; Zhang, J J; Liu, H M; Hu, Y F; Huang, Y B
2016-06-30
Flowering-related traits in maize are affected by complex factors and are important for the improvement of cropping systems in the maize zone. Quantitative trait loci (QTLs) detected using different materials and methods usually vary. In the present study, 266 maize (Zea mays) F2:3 families and 301 recombinant inbred lines (RIL) derived from a cross between 08-641 (founding parent from southeast China) and Ye478 (founding parent from China) were evaluated for four flowering-related traits, including days to tasseling (DTT), days to pollen shedding (DPS), days to silking (DTS), and anthesis-silking interval. Sixty-six QTLs controlling the target traits were detected in the F2:3 and RIL populations via single environment analysis and joint analysis across all environments (JAAE). The QTLs explained 0.8-13.47% of the phenotypic variation, with 12 QTLs explaining more than 10%. The results of meta-QTL (MQTL) analysis indicated that 41 QTLs could be integrated into 14 MQTLs. One MQTL included 2.9 QTLs, ranging from two to ten QTLs for one to three traits. QTLs, including MQTL1-1 and MQTL9-1, were detected across the F2:3 and RIL populations via SAE and JAAE. Among the MQTLs, nine QTLs were integrated into MQTL9-1 and affected DTT, DPS, and DTS, with the favored allele being derived from 08-641. MQTL3-2 showed high phenotypic variation and was suitable for fine mapping to determine the genetic mechanisms of flowering. MQTL3-2 could be applied to improve inbred lines using marker-assisted selection.
Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.
Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen
2013-01-01
A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.
Data Service: Distributed Data Capture and Replication
NASA Astrophysics Data System (ADS)
Warner, P. B.; Pietrowicz, S. R.
2007-10-01
Data Service is a critical component of the NOAO Data Management and Science Support (DMaSS) Solutions Platform, which is based on a service-oriented architecture, and is to replace the current NOAO Data Transport System. Its responsibilities include capturing data from NOAO and partner telescopes and instruments and replicating the data across multiple (currently six) storage sites. Java 5 was chosen as the implementation language, and Java EE as the underlying enterprise framework. Application metadata persistence is performed using EJB and Hibernate on the JBoss Application Server, with PostgreSQL as the persistence back-end. Although potentially any underlying mass storage system may be used as the Data Service file persistence technology, DTS deployments and Data Service test deployments currently use the Storage Resource Broker from SDSC. This paper presents an overview and high-level design of the Data Service, including aspects of deployment, e.g., for the LSST Data Challenge at the NCSA computing facilities.
USDA-ARS?s Scientific Manuscript database
We determined the cholesterol-lowering effects of tomato pomace (TP), a byproduct of tomato processing, and its components such as tomato seed oil (TSO) and defatted tomato seed (DTS) in hamsters, a widely used animal model for cholesterol metabolism. Male Syrian Golden hamsters were fed high-fat di...
Dynamic texture recognition using local binary patterns with an application to facial expressions.
Zhao, Guoying; Pietikäinen, Matti
2007-06-01
Dynamic texture (DT) is an extension of texture to the temporal domain. Description and recognition of DTs have attracted growing attention. In this paper, a novel approach for recognizing DTs is proposed and its simplifications and extensions to facial image analysis are also considered. First, the textures are modeled with volume local binary patterns (VLBP), which are an extension of the LBP operator widely used in ordinary texture analysis, combining motion and appearance. To make the approach computationally simple and easy to extend, only the co-occurrences of the local binary patterns on three orthogonal planes (LBP-TOP) are then considered. A block-based method is also proposed to deal with specific dynamic events such as facial expressions in which local information and its spatial locations should also be taken into account. In experiments with two DT databases, DynTex and Massachusetts Institute of Technology (MIT), both the VLBP and LBP-TOP clearly outperformed the earlier approaches. The proposed block-based method was evaluated with the Cohn-Kanade facial expression database with excellent results. The advantages of our approach include local processing, robustness to monotonic gray-scale changes, and simple computation.
Mechanics and pathomechanics in the overhead athlete.
Kibler, W Ben; Wilkes, Trevor; Sciascia, Aaron
2013-10-01
Optimal performance of the overhead throwing task requires precise mechanics that involve coordinated kinetic and kinematic chains to develop, transfer, and regulate the forces the body needs to withstand the inherent demands of the task and to allow optimal performance. These chains have been evaluated and the basic components, called nodes, have been identified. Impaired performance and/or injury, the DTS, is associated with alterations in the mechanics that are called pathomechanics. They can occur at multiple locations throughout the kinetic chain. They must be evaluated and treated as part of the overall problem. Observational analysis of the mechanics and pathomechanics using the node analysis method can be useful in highlighting areas of alteration that can be evaluated for anatomic injury or altered physiology. The comprehensive kinetic chain examination can evaluate sites of kinetic chain breakage, and a detailed shoulder examination can assess joint internal derangement of altered physiology that may contribute to the pathomechanics. Treatment of the DTS should be comprehensive, directed toward restoring physiology and mechanics and optimizing anatomy. This maximizes the body’s ability to develop normal mechanics to accomplish the overhead throwing task. Copyright © 2013 Elsevier Inc. All rights reserved.
Cai, Menghao; Zhou, Xiangshan; Lu, Jian; Fan, Weimin; Niu, Chuanpeng; Zhou, Jiushun; Sun, Xueqian; Kang, Li; Zhang, Yuanxing
2011-02-01
Production enhancement of a novel antitumor compound aspergiolide A from shear-sensitive and easy-foaming marine-derived fungus Aspergillus glaucus HB1-19 in a 5-l stirred bioreactor was investigated. Two types of impellers, i.e., six-flat-blade disc turbine impeller (DT) and three-sector-blade pitched blade turbine impeller (PB) were used in this work. In cultures with fermentation medium, the combination of upper PB and lower DT led to the maximum dry biomass (13.8 g/l) and aspergiolide A production (19.3 mg/l). However, two PBs brought the highest aspergiolide A yield coefficient (1.9 mg/g dry biomass) despite it produced the lowest dry biomass (5.3 g/l). By contrast, two DTs and the upper DT and lower PB showed insignificant results. Feeding 0.35% (v/v) n-dodecane in cultures with upper PB and lower DT further improved aspergiolide A production by 31.0%, i.e., 25.3 mg/l, which is also 322% higher than that in the ordinary cultures with two DTs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Santos, Israel J. M.; Matias, Edinardo F. F.; Santos, Karla K. A.; Braga, Maria F. B. M.; Andrade, Jacqueline C.; Souza, Teógenes M.; Santos, Francisco A. V.; Sousa, Ana Carla A.; Costa, José G. M.; Menezes, Irwin R. A.; Alves, Rômulo R. N.; Almeida, Waltecio O.; Coutinho, Henrique D. M.
2012-01-01
Tropidurus hispidus and Tropidurus semitaeniatus are two lizard species utilized in traditional medicine in Northeast Brazil. Their medicinal use includes diseases related with bacterial infections such as tonsillitis and pharyngitis. They are used in the form of teas (decoctions) for the treatment of illnesses. In this work, we evaluated the antimicrobial activity of the decoctions of T. hispidus (DTH) and T. semitaeniatus (DTS) against bacterial strains, namely, standard and multiresistant Escherichia coli, Staphylococus aureus, and Pseudomonas aureuginosa, alone and in combination with aminoglycoside antibiotics. The decoctions were prepared using the whole body of the dried lizards, and the filtrate was frozen and lyophilized. When tested alone, the samples did not demonstrate any substantial inhibition of bacterial growth. However, in combination with antibiotics as aminoglycosides, decoctions reduced the minimal inhibitory concentration (MIC) of the assayed antibiotics against multiresistant strains of S. aureus and P. aureuginosa. Chemical prospecting tests revealed the presence of alkaloids in DTS. This is the first study evaluating the medicinal efficacy of T. hispidus and T. semitaeniatus and contributes to the list of new sources of medicines from natural products of animal origin. PMID:21754948
Continuous monitoring of deep groundwater at the ice margin, Kangerlussuaq, West Greenland
NASA Astrophysics Data System (ADS)
Claesson Liljedahl, L.; Lehtinen, A. M.; Ruskeeniemi, T.; Engström, J.; Hansson, K.; Sundberg, J.; Henkemans, E.; Frape, S.; Johansson, S.; Acuna, J.
2012-12-01
The deep geologic repository (DGR) concept for the long-term management of used nuclear fuel involves the containment and isolation of used nuclear fuel at depths of approximately 500-1000 m below ground surface within a suitable geological formation for hundreds of thousands of years. A key objective of the used fuel DGR research programs of the Swedish, Finnish and Canadian nuclear waste management organizations (SKB, POSIVA and NWMO, respectively) is to further understanding of geosphere stability and long-term evolution. Future glaciation represents an intense external perturbation of a DGR situated in northern latitudes. To advance the understanding of processes associated with glaciation and their impact on the long-term performance of a DGR, the Greenland Analogue Project (GAP) was initiated by SKB, POSIVA and NWMO. The GAP was initiated in 2008 as a four-year field and modelling study utilizing the Greenland ice sheet and sub-surface conditions in West Greenland as an analogue for the conditions expected to prevail in Fennoscandia and Canada during future glacial cycles. One of the main aims of the GAP is to improve the understanding of how groundwater flow and water chemistry is influenced by an existing ice sheet and continuous permafrost. One way to study this is by monitoring deep drillholes. A 645 m deep drillhole (DH-GAP04) was drilled and instrumented in July 2011 at the ice-sheet margin in Kangerlussuaq, West Greenland to investigate the hydrogeochemical and hydrogeological conditions of a subglacial environment. Of particular interest is the recharge of glacial meltwater, and understanding to what depth it intrudes into the bedrock and whether it affects the chemistry and physico-chemical properties of the deep groundwater. DH-GAP04 is instrumented with a two-packer multi-sensor system, installed at a depth of 560 m, dividing the hole into three sections. The upper section extends from the base of permafrost (about 350 m) down to the upper packer and is 190 m. The mid section is straddled by the two packers and is 10 m long. The lower section extends from the lower packer to the bottom of the hole and is 80 m. DH-GAP04 enables; 1) sub-permafrost geochemical sampling and monitoring of pressure and EC in three sections; 2) temperature monitoring in the mid section and temperature profiling along the hole using multimode fiber-optic cables and the distributed temperature sensing technique (DTS), and; 3) estimation of rock mass hydraulic properties. DTS-data shows that permafrost extends to a depth of 350 m at the ice sheet margin. Results from the first year's monitoring and sampling of DH-GAP04 suggest that the upper and mid sections are hydraulically connected, but hydrogeochemically different. The upper and mid sections have similar transmissivities and fresh water heads, but the mid section with its small volume is believed to provide a good opportunity to observe possible interactions between deep groundwaters and subglacial meltwaters. The upper section is long, but flushing of drilling water contamination occurs at the same speed as for the mid section. The water in the upper section is isotopically lighter and more saline than the water in the mid section, while the lower section seems to be rather stagnant, but appears to contain an under pressurized fracture system discharging water from the hole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Z; Vijayan, S; Oines, A
Purpose: To compare PCXMC and EGSnrc calculated organ and effective radiation doses from cone-beam computed tomography (CBCT) and interventional fluoroscopically-guided procedures using automatic exposure-event grouping. Methods: For CBCT, we used PCXMC20Rotation.exe to automatically calculate the doses and compared the results to those calculated using EGSnrc with the Zubal patient phantom. For interventional procedures, we use the dose tracking system (DTS) which we previously developed to produce a log file of all geometry and exposure parameters for every x-ray pulse during a procedure, and the data in the log file is input into PCXMC and EGSnrc for dose calculation. A MATLABmore » program reads data from the log files and groups similar exposures to reduce calculation time. The definition files are then automatically generated in the format used by PCXMC and EGSnrc. Processing is done at the end of the procedure after all exposures are completed. Results: For the Toshiba Infinix CBCT LCI-Middle-Abdominal protocol, most organ doses calculated with PCXMC20Rotation closely matched those calculated with EGSnrc. The effective doses were 33.77 mSv with PCXMC20Rotation and 32.46 mSv with EGSnrc. For a simulated interventional cardiac procedure, similar close agreement in organ dose was obtained between the two codes; the effective doses were 12.02 mSv with PCXMC and 11.35 mSv with EGSnrc. The calculations can be completed on a PC without manual intervention in less than 15 minutes with PCXMC and in about 10 hours with EGSnrc, depending on the level of data grouping and accuracy desired. Conclusion: Effective dose and most organ doses in CBCT and interventional radiology calculated by PCXMC closely match those calculated by EGSnrc. Data grouping, which can be done automatically, makes the calculation time with PCXMC on a standard PC acceptable. This capability expands the dose information that can be provided by the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Monitoring soil water dynamics at 0.1-1000 m scales using active DTS: the MOISST experience
NASA Astrophysics Data System (ADS)
Sayde, C.; Moreno, D.; Legrand, C.; Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Selker, J. S.
2014-12-01
The Actively Heated Fiber Optics (AHFO) method can measure soil water content at high temporal (<1hr) and spatial (every 0.25 m) resolutions along buried fiber optics (FO) cables multiple kilometers in length. As observed by Sayde et al. 2014, this unprecedented density of measurements captures soil water dynamics over four orders of magnitude in spatial scale (0.1-1000 m), bridging the gap between point scale measurements and large scale remote sensing. 4900 m of FO sensing cables were installed at the MOISST experimental site in Stillwater, Ok. The FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. Six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the AHFO data. Gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. In this work we present the preliminary results of this experiment. We will also address the experience learned from this large scale deployment of the AHFO method. In particular, we will present the in-situ soil moisture calibration method developed to tackle the calibration challenges associated with the high spatial heterogeneity of the soil physical and thermal properties. The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation. Sayde, C., J. Benitez Buelga, L. Rodriguez-Sinobas, L. El Khoury, M. English, N. van de Giesen, and J.S. Selker (2014). Mapping Variability of Soil Water Content and Flux across 1-1,000 m scales using the Actively Heated Fiber Optic Method, Accepted for publication in Water Resour. Res.
Quantitative Analysis of Bone Microstructure Using Tomosynthesis
2013-10-01
resolution of separation, thickness, distances, in-plane and out-of-plane geometric distortion, and density linearity. 5 To assess the minimum spacing... geometric accuracy phantom was created using four 1 mm beads, placed in four corners at 35 mm apart (Figure 1f). An embedded human vertebra was also...included in the phantom as a realistic reference material (Figure 1g). Figure 1: Tray of phantoms to assess DTS resolution, geometric distortion
Quantitative Analysis of Bone Microstructure Using Tomosynthesis
2012-10-01
resolution of separation, thickness, distances, in-plane and out-of-plane geometric distortion, and density linearity. To assess the minimum spacing...volume, a geometric accuracy phantom was created using four 1 mm beads, placed in four corners at 35 mm apart (Figure 1f). An embedded human vertebra...was also included in the phantom as a realistic reference material (Figure 1g). Figure 1: Tray of phantoms to assess DTS resolution, geometric
Extracting decision rules from police accident reports through decision trees.
de Oña, Juan; López, Griselda; Abellán, Joaquín
2013-01-01
Given the current number of road accidents, the aim of many road safety analysts is to identify the main factors that contribute to crash severity. To pinpoint those factors, this paper shows an application that applies some of the methods most commonly used to build decision trees (DTs), which have not been applied to the road safety field before. An analysis of accidents on rural highways in the province of Granada (Spain) between 2003 and 2009 (both inclusive) showed that the methods used to build DTs serve our purpose and may even be complementary. Applying these methods has enabled potentially useful decision rules to be extracted that could be used by road safety analysts. For instance, some of the rules may indicate that women, contrary to men, increase their risk of severity under bad lighting conditions. The rules could be used in road safety campaigns to mitigate specific problems. This would enable managers to implement priority actions based on a classification of accidents by types (depending on their severity). However, the primary importance of this proposal is that other databases not used here (i.e. other infrastructure, roads and countries) could be used to identify unconventional problems in a manner easy for road safety managers to understand, as decision rules. Copyright © 2012 Elsevier Ltd. All rights reserved.
Al-maliky, Mohammed Abbood; Mahmood, Ali Shukur; Al-karadaghi, Tamara Sardar; Kurzmann, Christoph; Laky, Markus; Franz, Alexander; Moritz, Andreas
2014-01-01
The aim of this study was to evaluate a new treatment modality for the occlusion of dentinal tubules (DTs) via the combination of 10.6 µm carbon dioxide (CO2) laser and nanoparticle hydroxyapatite paste (n-HAp). Forty-six sound human molars were used in the current experiment. Ten of the molars were used to assess the temperature elevation during lasing. Thirty were evaluated for dentinal permeability test, subdivided into 3 groups: the control group (C), laser only (L−), and laser plus n-HAp (L+). Six samples, two per group, were used for surface and cross section morphology, evaluated through scanning electron microscope (SEM). The temperature measurement results showed that the maximum temperature increase was 3.2°C. Morphologically groups (L−) and (L+) presented narrower DTs, and almost a complete occlusion of the dentinal tubules for group (L+) was found. The Kruskal-Wallis nonparametric test for permeability test data showed statistical differences between the groups (P < 0.05). For intergroup comparison all groups were statistically different from each other, with group (L+) showing significant less dye penetration than the control group. We concluded that CO2 laser in moderate power density combined with n-HAp seems to be a good treatment modality for reducing the permeability of dentin. PMID:25386616
Effects of surface topography on SERS response: Correlating nanoscopy with spectroscopy
NASA Astrophysics Data System (ADS)
Das, Sumit Kumar; Ghosh, Manash; Chowdhury, Joydeep
2018-05-01
This paper reports for the first time the hidden correlation between the topographical features of the bilayer Langmuir-Blodgett (LB) film substrates of stearic acid (SA) incubated in Au@Ag nanocolloids over various dipping times (DTs) with their corresponding SERS responses. The topographies of the as prepared substrates are investigated from the statistical considerations in terms of lateral correlation length, interface width, Hurst and Lyapnov exponents. The real space of the substrates are mapped directly from the FESEM and AFM images of the bilayer LB film of SA immersed in Au@Ag nanocolloids over various DTs ranging between 6 and 72 h. The SERS spectra of the Rhodamine 6G molecules adsorbed on the as prepared substrates have been reported. The statistical parameters of the substrates that exhibit maximum SERS efficacy have been suggested. The far field distributions in presence and in absence of Raman dipole together with spatial distribution of the near field from the hottest spot of the as prepared substrate have also been reported. To our knowledge, this is the first report that links nanoscopy with SERS spectroscopy from statistical considerations and is expected to open a new window towards the fabrication of more efficient and reproducible SERS active substrates in future endeavours.
Wang, Huanlin; Jin, Hua; Nunnink, Sarah E; Guo, Wei; Sun, Jian; Shi, Jianan; Zhao, Bin; Bi, Yinhau; Yan, Tongjun; Yu, Haiying; Wang, Guangjian; Gao, Zhiqing; Zhao, Hanqing; Ou, Yanghui; Song, Zixiagn; Chen, Fangbin; Lohr, James B; Baker, Dewleen G
2011-04-01
Military personnel commonly serve as first responders to natural disasters. Our aim is to identify Post-Traumatic Stress Disorder (PTSD) and determine risk in military responders to the Wen Chuan earthquake. Analyses were carried out on 1056 of the 1125 soldiers enrolled. In addition to social demographic characteristics, the Davidson Trauma Scale (DTS) and an Earthquake exposure screening scale were administered. PTSD prevalence was 6.53% (69 cases). Logistic regression indicated that intensity of traumatic exposure (odds ratio 6.46, 95% CI 4.47-9.32, p<0.001), not having received psychological counseling (odds ratio 3.28, 95% CI 1.31-8.20, p<0.02) and regular drinking (odds ratio 2.42, 95% CI 1.04-5.62, p<0.05) were significant predictors of PTSD. Being a single-child, not being raised by both parents and regular smoking also independently predicted PTSD if intensity of earthquake traumatic exposure was not included in the model. The self-rated DTS was used to classify PTSD in this study and psychiatric co-morbidity outside of PTSD was not assessed in this sample. PTSD is a concern for Military disaster responders; to identify those with high risk of developing PTSD would be important and beneficial. Published by Elsevier B.V.
1984-10-31
PURPOSE UTILITIES! C. C.CT2 .t tt.t t.t, 4.t44.• 4 *• tt 4t t • t t tt* t tttt t SCONTROL check-2 SUBRO.UTINE ccat2 .sl,lenl,s2,len2,sr, lenr ,nlenr) C.4...same address as sI or s2 C-C t lenr length of sr Cin 4lenr naxiPsum length allowable for sr C.tETH0Q. C D.TS. refers to a Delimited Text String, in which...DECLARATIONS **. !9TESER !enIlen2,1!n3,!en4, lenr ,m1enr CKARACTER.25S sl, sZ, s3, s4., sr C.* ABSTRACT *.. Cl.PURPOSE -erfor..s sr sl ’’ s2 ’: s3 C.OUOIT HIS.TORY
Hyperdust : An advanced in-situ detection and chemical analysis of microparticles in space
NASA Astrophysics Data System (ADS)
Sternovsky, Z.; Gruen, E.; Horanyi, M.; Kempf, S.; Maute, K.; Srama, R.
2014-12-01
Interplanetary dust that originates from comets and asteroids may be in different stages of Solar System evolution. Atmosphereless planetary bodies, e.g., planetary satellites, asteroids, or Kuiper belt objects are enshrouded in clouds of dust released by meteoroid impacts or by volcanism. The ejecta grains are samples from the surface of these objects and their analysis can be performed from orbit or flyby to determine the surface composition, interior structure and ongoing geochemical processes. Early dust mass spectrometers on the Halley missions had sufficient mass resolution in order to provide important cosmochemical information in the near-comet high dust flux environment. The Ulysses dust detector discovered interstellar grains within the planetary system (Gruen et al. A&A, 1994) and its twin detector on Galileo discovered the tenuous dust clouds around the Galilean satellites (Krueger et al., Icarus, 2003). The similar-sized Cosmic Dust Analyzer onboard the Cassini mission combined a highly sensitive dust detector with a low-mass resolution mass spectrometer. Compositional dust measurements from this instrument probed the deep interior of Saturn's Enceladus satellite (Postberg et al., Nature, 2009). Based on this experience new instrumentation was developed that combined the best attributes of all these predecessors and exceeded their capabilities in accurate trajectory determination. The Hyperdust instrument is a combination of a Dust Trajectory Sensor (DTS) together with an analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of induced electric signals. Large area chemical analyzers of 0.1 m2 sensitive area have been tested at a dust accelerator and it was demonstrated that they have sufficient mass resolution to resolve ions with atomic mass number >100. The Hyperdust instrument is capable of distinguishing interstellar and interplanetary grains based on their trajectory composition information. In orbit or flyby near airless planetary bodies the instrument can map the surface compositional down to a spatial resolution of ~10 km. The Hyperdust instrument is currently being developed to TRL 6 funded by NASA's MatISSE program to be a low-mass, high performance instrument for future in-situ exploration.
NASA Astrophysics Data System (ADS)
Wang, H. F.; Feigl, K. L.; Patterson, J.; Parker, L.; Reinisch, E. C.; Zeng, X.; Cardiff, M. A.; Fratta, D.; Lord, N. E.; Thurber, C. H.; Robertson, M.; Miller, D. E.; Akerley, J.; Kreemer, C.; Morency, C.; Davatzes, N. C.
2017-12-01
The PoroTomo project consists of poroelastic tomography by adjoint inverse modeling of data from seismology, geodesy, and hydrology. The goal of the PoroTomo project is to assess an integrated technology for characterizing and monitoring changes in the rock mechanical properties of an enhanced geothermal system in 3 dimensions with a spatial resolution better than 50 meters. In March 2016, we deployed the integrated technology in a 1500-by-500-by-400-meter volume at Brady. The 15-day deployment included 4 distinct time intervals with intentional manipulations of the pumping rates in injection and production wells. The data set includes: active seismic sources, fiber-optic cables for Distributed Acoustic Sensing (DAS) and Distributed Temperature Sensing (DTS) arranged vertically in a borehole to 400 m depth and horizontally in a trench 8700 m in length and 0.5 m in depth; 244 seismometers on the surface, 3 pressure sensors in observation wells, continuous geodetic measurements at 3 GPS stations, and 7 InSAR acquisitions. To account for the mechanical behavior of both the rock and the fluids, we are developing numerical models for the 3-D distribution of the material properties. We present an overview of results, including:Tomographic images of P-wave velocity estimated from seismic body waves [Thurber et al., this meeting].Tomographic images of phase velocity estimated from ambient noise correlation functions [Zeng et al., this meeting].Models of volumetric contraction to account for subsidence observed by InSAR and GPS [Reinisch et al., this meeting].Interpretation of pressure and temperature data [Patterson et al., this meeting].Taken together, these results support a conceptual model of highly permeable conduits along faults channeling fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells. The PoroTomo project is funded by a grant from the U.S. Department of Energy.
NASA Astrophysics Data System (ADS)
Cardiff, M. A.; Feigl, K. L.; Zeng, X.; Lord, N. E.; Lancelle, C.; Parker, L.; Reinisch, E. C.; Lim, D.; Ali, S. T.; Fratta, D.; Thurber, C. H.; Wang, H. F.; Robertson, M.; Lopeman, J.; Kreemer, C.; Morency, C.; Davatzes, N. C.; Team, P.; Coleman, T.; Miller, D. E.
2016-12-01
In the geothermal field at Brady Hot Springs, Nevada, highly permeable conduits along faults appear to channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells. Subsidence occurs over an elliptical area that is 4 km by 1.5 km. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in units with depth less than 600 m. (S. Tabrez Ali et al., Geothermics, 2016). Characterizing such structures in terms of their rock mechanical properties is essential to successful operations of Enhanced Geothermal Systems (EGS). The goal of the PoroTomo project is to assess an integrated technology for characterizing and monitoring changes in the rock mechanical properties of an EGS reservoir in three dimensions with a spatial resolution better than 50 meters. The targeted rock mechanical properties include: saturation, porosity, Young's modulus, Poisson's ratio, and density, all of which are "critically important" characteristics of a viable EGS reservoir. In March 2016, we deployed the integrated technology in a 1500-by-500-by-400-meter volume at Brady. The 15-day deployment included 4 distinct time intervals with intentional manipulations of the pumping rates in injection and production wells. The data set includes: active seismic sources, fiber-optic cables for Distributed Acoustic Sensing (DAS) and Distributed Temperature Sensing (DTS) arranged vertically in a borehole to 400 m depth and horizontally in a trench 8700 m in length and 0.5 m in depth; 244 seismometers on the surface, 3 pressure sensors in observation wells, continuous geodetic measurements at 3 GPS stations, and 7 InSAR acquisitions. To account for the mechanical behavior of both the rock and the fluids, we are developing numerical models for the 3-D distribution of the material properties. The PoroTomo project is funded by a grant from the U.S. Department of Energy.
Fonseca, Rodrigo Borges; de Almeida, Letícia Nunes; Mendes, Gustavo Adolfo Martins; Kasuya, Amanda Vessoni Barbosa; Favarão, Isabella Negro; de Paula, Marcella Silva
2016-01-01
To evaluate the effect of glass fiber/filler particles proportion on flexural strength and diametral tensile strength of an experimental fiber-reinforced composite. Four experimental groups (N=10) were created using an experimental short fiber-reinforced composite, having as a factor under study the glass fiber (F) and filler particle (P) proportion: F22.5/P55 with 22.5 wt% of fiber and 55 wt% of filler particles; F25/P52.5 with 25 wt% of fiber and 52.5 wt% of filler particles; F27.5/P50 with 27.5 wt% of fiber and 50 wt% of filler particles; F30/P47.5 with 30 wt% of fiber and 47.5 wt% of filler particles. The experimental composite was made up by a methacrylate-based resin (50% Bis-GMA and 50% TEGDMA). Specimens were prepared for Flexural Strength (FS) (25 mm × 2 mm × 2 mm) and for Diametral Tensile Strength (DTS) (3×6 Ø mm) and tested at 0.5 mm/min in a universal testing machine. The results (in MPa) showed significance (different superscript letters mean statistical significant difference) for FS (p<0.009) and DTS (p<0.001)--FS results: F22.5/P55: 217.24±20.64(B); F25/P52.5: 245.77±26.80(AB); F27.5/P50: 246.88±32.28(AB); F30/P47.5: 259.91±26.01(A). DTS results: F22.5/P55: 21.82±4.42(B); F25/P52.5: 22.00±7.40(B); F27.5/P50: 18.63±4.41(B); F30/P47.5: 31.05±2.97(A). In SEM analysis, areas without fiber reinforcement demonstrated to be more prone to the presence of bubbles and crack development. The group F30/P47.5 showed areas with a great quantity of fibers without empty spaces for crack propagation. Increasing fiber content results in higher flexural and diametral tensile strength of an experimental composite reinforced with glass fibers. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Andrade, Verónica; Martínez, Alejandra; Rojas, Ninón; Bello-Toledo, Helia; Flores, Paulo; Sánchez-Sanhueza, Gabriela; Catalán, Alfonso
2018-05-01
Interim restorations are occasionally left in the mouth for extended periods and are susceptible to bacterial infiltration. Thus, dental interim cements with antibacterial properties are required. The purpose of this in vitro study was to determine in vitro antibacterial activity against Streptococcus mutans and to compare the diametrical tensile strength (DTSs) of dental interim cement modified with zinc oxide nanoparticles (ZnO-NPs) with that of cement modified with terpenes. Antibacterial properties of ZnO-NPs, terpenes, and dental interim cement modified with ZnO-NPs and cement modified with terpenes against S mutans were tested according to minimum inhibitory concentration (MIC) and direct contact inhibition (DCI). Tensile strength levels were evaluated using DTS. Results were analyzed using the Kolmogorov-Smirnov, ANOVA, and Tamhane tests (α=.05). The MICs of ZnO-NPs and terpenes against S mutans were 61.94 μg/g and 0.25% v/v, respectively. The DCI assay under the cylinders of cement (area of contact with the agar surface) revealed significant bacterial growth inhibition on Temp-Bond NE specimens with ZnO-NPs at MIC of 495.2 μg/g (8× MIC) and with terpenes at MIC 0.999% v/v (4× MIC) (P<.05). The Temp-Bond NE cement cylinder (control group) showed the lowest DTS (1.05 ±0.27 MPa) of all other test groups. In the Zn-NPs group, the greatest increase occurred in the NP8 (8× MIC; 495.2 μg/g) group with a value of 1.50 ±0.23 MPa, a significant increase in DTS compared with the control and terpene groups (P<.05). In the terpene group, the highest increase corresponded to group T2 (2× MIC; 0.4995% v/v) with a value of 1.29 ±0.18 MPa. The addition of terpenes and ZnO-NPs to interim cement showed antibacterial activity when in contact with S. mutans ATCC 25175. Both terpenes and ZnO-NPs antimicrobial agents increased diametral tensile strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Summary of Awards: FY 1979 and 1980 Program of University Research,
1980-12-01
completed. The wind tunnel Timothy M. Barrow, DTS-222 model for correlation of lateral/directional theory is also com- U.S. Department of...of SSOM through generalization and verification MONITOR of the program. The objective is to refine the SSOM to make it Timothy E. Aloney, NRD-12 a...Future Mobility Needs for the Elderly: Development of a Methodology 3. GALLAUDET COLLEGE DOT-OS-501 10 A Study to Identify the Problems that Deaf
Gremigni, Paola; Del Bene, Serena; Tossani, Eliana
2010-01-01
Researchers addressing the mental health needs of inmates reported that post-traumatic stress disorder (PTSD) was one of the most common disorders. This study examined the patterns of PTSD symptoms and their relation to the self-reported level of distress and psychological wellbeing in a sample of Italian inmates. Fifty inmates, 90% male, 54% aged 31-50 years, 70% awaiting trial, completed a battery of tests including the Davidson Trauma Scale (DTS), the Symptom Questionnaire (SQ), and the Psychological Well-Being Scales (PWBS). Cluster analysis revealed three distinct clusters of respondents, which presents varying combination of PTSD symptoms, as measured with the three subscales of the DTS. Accordingly, these clusters were labeled Cluster 1--Traumatized (n = 18), Cluster 2--Non-traumatized (n = 18), and Cluster 3--Seriously traumatized (n = 14). Findings indicated that the three groups differed consistently across all the domains of the SQ and on the environmental mastery scale of the PWBS. Those in the Traumatized clusters, as compared to the Nontraumatized, demonstrated higher overall psychological distress and lower perceived environmental mastery. Moreover, independent of posttraumatic level, inmates showed poorer psychological wellbeing and higher distress than the normative population. The patterns manifested in clusters 1 and 3 could become the focus of attention to deliver specific intervention aimed at reducing inmates' distress and encouraging their adjustment to prison life.
Rotation-invariant image and video description with local binary pattern features.
Zhao, Guoying; Ahonen, Timo; Matas, Jiří; Pietikäinen, Matti
2012-04-01
In this paper, we propose a novel approach to compute rotation-invariant features from histograms of local noninvariant patterns. We apply this approach to both static and dynamic local binary pattern (LBP) descriptors. For static-texture description, we present LBP histogram Fourier (LBP-HF) features, and for dynamic-texture recognition, we present two rotation-invariant descriptors computed from the LBPs from three orthogonal planes (LBP-TOP) features in the spatiotemporal domain. LBP-HF is a novel rotation-invariant image descriptor computed from discrete Fourier transforms of LBP histograms. The approach can be also generalized to embed any uniform features into this framework, and combining the supplementary information, e.g., sign and magnitude components of the LBP, together can improve the description ability. Moreover, two variants of rotation-invariant descriptors are proposed to the LBP-TOP, which is an effective descriptor for dynamic-texture recognition, as shown by its recent success in different application problems, but it is not rotation invariant. In the experiments, it is shown that the LBP-HF and its extensions outperform noninvariant and earlier versions of the rotation-invariant LBP in the rotation-invariant texture classification. In experiments on two dynamic-texture databases with rotations or view variations, the proposed video features can effectively deal with rotation variations of dynamic textures (DTs). They also are robust with respect to changes in viewpoint, outperforming recent methods proposed for view-invariant recognition of DTs.
Rakovshik, Sarah G; McManus, Freda; Vazquez-Montes, Maria; Muse, Kate; Ougrin, Dennis
2016-03-01
To investigate the effect of Internet-based training (IBT), with and without supervision, on therapists' (N = 61) cognitive-behavioral therapy (CBT) skills in routine clinical practice. Participants were randomized into 3 conditions: (1) Internet-based training with use of a consultation worksheet (IBT-CW); (2) Internet-based training with CBT supervision via Skype (IBT-S); and (3) "delayed-training" controls (DTs), who did not receive the training until all data collection was completed. The IBT participants received access to training over a period of 3 months. CBT skills were evaluated at pre-, mid- and posttraining/wait using assessor competence ratings of recorded therapy sessions. Hierarchical linear analysis revealed that the IBT-S participants had significantly greater CBT competence at posttraining than did IBT-CW and DT participants at both the mid- and posttraining/wait assessment points. There were no significant differences between IBT-CW and the delayed (no)-training DTs. IBT programs that include supervision may be a scalable and effective method of disseminating CBT into routine clinical practice, particularly for populations without ready access to more-traditional "live" methods of training. There was no evidence for a significant effect of IBT without supervision over a nontraining control, suggesting that merely providing access to IBT programs may not be an effective method of disseminating CBT to routine clinical practice. (c) 2016 APA, all rights reserved).
Foley, J
2007-06-01
To gain an overview of knowledge of local analgesia, pulpal therapy and restorative procedures in the primary dentition amongst dental undergraduate students (DS), dental therapy students (DTS), recently-qualified dentists (QD) and dental therapists (DT), working within a Dental Hospital setting. A survey undertaken at Dundee Dental Hospital and School, NHS Tayside, United Kingdom to determine current knowledge regarding the use of local analgesia, pulp anatomy and pulp therapy techniques in addition to restoration of primary teeth. Data were available for 24 individuals (DS: 5; QD: 6; DTS: 8; DT: 5). Deficiencies in knowledge regarding the maximum safe dose for local analgesia, pulp canal anatomy, pulp therapy medicaments and the preparation required prior to placement of a pre-formed metal crown were noted in both student and staff groups. The knowledge of basic dental procedures for children amongst a group of dental students, student dental therapists and recently qualified dentists and dental therapists, was found to be imperfect. These findings indicate that more research is needed on the educational procedures used in the transfer of such knowledge and skills. Deficiencies in knowledge were identified in all areas assessed. Courses should be designed at both the pre- and postgraduate level to address and avoid such gaps in knowledge.
Improving Photovoltaic Energy Production with Fiber-Optic Distributed Temperature Sensing
NASA Astrophysics Data System (ADS)
Hausner, M. B.; Berli, M.
2014-12-01
The efficiency of solar photovoltaic (PV) generators declines sharply with increased temperatures. Peak solar exposure often occurs at the same time as peak temperatures, but solar PV installations are typically designed based on solar angle. In temperate areas, the peak temperatures may not be high enough to induce significant efficiency losses. In some of the areas with the greatest potential for solar development, however, summer air temperatures regularly reach 45 °C and PV panel temperatures exceed the air temperatures. Here we present a preliminary model of a PV array intended to optimize solar production in a hot and arid environment. The model begins with the diurnal and seasonal cycles in the angle and elevation of the sun, but also includes a meteorology-driven energy balance to project the temperatures of the PV panels and supporting structure. The model will be calibrated and parameterized using a solar array at the Desert Research Institute's (DRI) Renewable Energy Deployment and Display (REDD) facility in Reno, Nevada, and validated with a similar array at DRI's Las Vegas campus. Optical fibers will be installed on the PV panels and structural supports and interrogated by a distributed temperature sensor (DTS) to record the spatial and temporal variations in temperature. Combining the simulated panel temperatures, the efficiency-temperature relationship for the panels, and the known solar cycles at a site will allow us to optimize the design of future PV collectors (i.e., the aspect and angle of panels) for given production goals.
Characterization of Dutch dairy farms using sensor systems for cow management.
Steeneveld, W; Hogeveen, H
2015-01-01
To improve cow management in large dairy herds, sensors have been developed that can measure physiological, behavioral, and production indicators on individual cows. Recently, the number of dairy farms using sensor systems has increased. It is not known, however, to what extent sensor systems are used on dairy farms, and the reasons why farmers invest or not in sensor systems are unclear. The first objective of this study was to give an overview of the sensor systems currently used in the Netherlands. The second objective was to investigate the reasons for investing or not investing in sensor systems. The third objective was to characterize farms with and without sensor systems. A survey was developed to investigate first, the reasons for investing or not in sensor systems and, then, how the sensor systems are used in daily cow management. The survey was sent to 1,672 Dutch dairy farmers. The final data set consisted of 512 dairy farms (response rate of 30.6%); 202 farms indicated that they had sensor systems and 310 farms indicated that they did not have sensor systems. A wide variety of sensor systems was used on Dutch dairy farms; those for mastitis detection and estrus detection were the most-used sensor systems. The use of sensor systems was different for farms using an automatic milking system (AMS) and a conventional milking system (CMS). Reasons for investing were different for different sensor systems. For sensor systems attached to the AMS, the farmers made no conscious decision to invest: they answered that the sensors were standard in the AMS or were bought for reduced cost with the AMS. The main reasons for investing in estrus detection sensor systems were improving detection rates, gaining insights into the fertility level of the herd, improving profitability of the farm, and reducing labor. Main reasons for not investing in sensor systems were economically related. It was very difficult to characterize farms with and without sensor systems. Farms with CMS and sensor systems had more cows than CMS farms without sensor systems. Furthermore, farms with sensor systems had fewer labor hours per cow compared with farms without sensor systems. Other farm characteristics (age of the farmer, availability of a successor, growth in herd size, milk production per cow, number of cows per hectare, and milk production per hectare) did not differ for farms with and without sensor systems. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
SU-E-J-56: Static Gantry Digital Tomosynthesis From the Beam’s-Eye-View
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partain, L; Kwon, J; Boyd, D
Purpose We have designed a novel TumoTrak™ x-ray system that delivers 19 distinct kV views with the linac gantry stationary. It images MV treatment beam above and below the patient with a kV tomosysthesis slice image from the therapy beam’s-eye-view. Results will be high quality images without MLC shadowing for notable improvements relative to conventional fluoroscopic MV imaging and fluoroscopic kV imaging. Methods A complete design has a kV electron beam multisource X-ray tube that fits around the MV treatment beam path, with little interference with normal radiotherapy and unblocked by the multi-leaf-collimator. To simulate digital tomosynthesis, we used cone-beammore » CT projection data from a lung SBRT patient. These data were acquired at 125 kVp and 11 fps (0.4 mAs per projection). We chose 19 projections evenly spaced over 27° around one of the treatment angles (240°). Digital tomosynthesis reconstruction of a slice through the tumor was performed using iterative reconstruction. The visibility of the lesion was assessed for the reconstructed digital tomosynthesis (DTS), using fluoroscopy MV images acquired during radiation therapy, and a kV single projection image acquired at the same angle as the treatment field (240°). Results The fluoroscopic DTS images provide the best tumor contrast, surpassing the conventional radiographic and the in-treatment MV portal images. The electron beam multisource X-ray tube design has been completed and the tube is being fabricated. The estimated time to cycle through all 19 projections is 700 ms, enabling high frame-rate imaging. While the initial proposed use case is for image guided and gated treatment delivery, the enhanced imaging will also deliver superior radiographic images for patient setup. Conclusion The proposed device will deliver high quality planar images from the beam’s-eye-view without MLC obstruction. The prototype has been designed and is being assembled with first imaging scheduled for May 2015. L. Partain, J. Kwon, D. Boyd: NIH/SBIR R43CA192489-01. J. Rottmann, G. Zentai, R. Berbeco: NIH/NCI 1R01CA188446-01. R. Berbeco: E. Research Grant, Varian Medical Systems.« less
2007-08-29
Closed by BRAC Remaining Site Site Not Affected by BRAC Texarkana * FTEs effective EOM August 2005 (Geographic Location Report, Military Personnel Report...until DTS is fully implemented 2. Arlington Liaison, Bratenahl, Texarkana and OCONUS locations also continue mission operations Center of Excellence...07 Land Forward Presence - Army 1. Anniston Army Depot – Anniston, AL May 07 2. Red River Army Depot – Texarkana , TX May07 3. Letterkenny Army
Operation and Performance Measurement on Engines in Sea Level Test Facilities
1984-03-01
progressively larger collector to ’:7.. *: capture the efflux, but secondary airflow increases rapidly as collector area .-- increases. Therefore...1 + Dbm + Dc + Dts + Dbt - WeVe + (Pe - P 2 )Ae where the terms above and to follow are defined as Fa - measured thrust from load cell Pn - net thrust...Dbt - buoyancy (boat-tail) drag on exhaust nozzle. Considering that . (Pe-P" 2 )Ae + WeVe - (Pe-P..)Ae + (P-1-P- 2 )Ae + WeVe and .. .* Pg (Pe-PŖ)Ae
Steeneveld, W; Vernooij, J C M; Hogeveen, H
2015-06-01
To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred together with another major change at the farm, such as a new barn or a new milking system. Most likely, these other changes had led to a decrease in milk production that could not be compensated for by the use of sensor systems. Having estrus detection sensor systems did not improve reproduction performance. Labor reduction was an important reason for investing in sensor systems. Therefore, economic benefits from investments in sensor systems can be expected more from the reduction in labor costs than from improvements in measures of health and production in dairy herds. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Method of calibrating a fluid-level measurement system
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2010-01-01
A method of calibrating a fluid-level measurement system is provided. A first response of the system is recorded when the system's sensor(s) is (are) not in contact with a fluid of interest. A second response of the system is recorded when the system's sensor(s) is (are) fully immersed in the fluid of interest. Using the first and second responses, a plurality of expected responses of the system's sensor(s) is (are) generated for a corresponding plurality of levels of immersion of the sensor(s) in the fluid of interest.
Aerospace Sensor Systems: From Sensor Development To Vehicle Application
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2008-01-01
This paper presents an overview of years of sensor system development and application for aerospace systems. The emphasis of this work is on developing advanced capabilities for measurement and control of aeropropulsion and crew vehicle systems as well as monitoring the safety of those systems. Specific areas of work include chemical species sensors, thin film thermocouples and strain gages, heat flux gages, fuel gages, SiC based electronic devices and sensors, space qualified electronics, and MicroElectroMechanical Systems (MEMS) as well as integrated and multifunctional sensor systems. Each sensor type has its own technical challenges related to integration and reliability in a given application. The general approach has been to develop base sensor technology using microfabrication techniques, integrate sensors with "smart" hardware and software, and demonstrate those systems in a range of aerospace applications. Descriptions of the sensor elements, their integration into sensors systems, and examples of sensor system applications will be discussed. Finally, suggestions related to the future of sensor technology will be given. It is concluded that smart micro/nano sensor technology can revolutionize aerospace applications, but significant challenges exist in maturing the technology and demonstrating its value in real-life applications.
A Brief Overview of NASA Glenn Research Center Sensor and Electronics Activities
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2012-01-01
Aerospace applications require a range of sensing technologies. There is a range of sensor and sensor system technologies being developed using microfabrication and micromachining technology to form smart sensor systems and intelligent microsystems. Drive system intelligence to the local (sensor) level -- distributed smart sensor systems. Sensor and sensor system development examples: (1) Thin-film physical sensors (2) High temperature electronics and wireless (3) "lick and stick" technology. NASA GRC is a world leader in aerospace sensor technology with a broad range of development and application experience. Core microsystems technology applicable to a range of application environmentS.
Massively parallel diffuse optical tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandusky, John V.; Pitts, Todd A.
Diffuse optical tomography systems and methods are described herein. In a general embodiment, the diffuse optical tomography system comprises a plurality of sensor heads, the plurality of sensor heads comprising respective optical emitter systems and respective sensor systems. A sensor head in the plurality of sensors heads is caused to act as an illuminator, such that its optical emitter system transmits a transillumination beam towards a portion of a sample. Other sensor heads in the plurality of sensor heads act as observers, detecting portions of the transillumination beam that radiate from the sample in the fields of view of themore » respective sensory systems of the other sensor heads. Thus, sensor heads in the plurality of sensors heads generate sensor data in parallel.« less
Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies
NASA Astrophysics Data System (ADS)
Hauptmann, Peter R.
2006-03-01
The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.
Moshaverinia, Alireza; Roohpour, Nima; Billington, Richard W; Darr, Jawwad A; Rehman, Ihtesham U
2008-07-01
Compressed fluids such as supercritical CO(2) offer marvellous opportunities for the synthesis of polymers, particularly in applications in medicine and dentistry. It has several advantages in comparison to conventional polymerisation solvents, such as enhanced kinetics and simplified solvent removal process. In this study, poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP), a modified glass-ionomer polymer, was synthesised in supercritical CO(2) (sc-CO(2)) and methanol as a co-solvent. The synthesised polymer was characterized by (1)H-NMR, Raman and FT-IR spectroscopy and viscometry. The molecular weight of the final product was also measured using static light scattering method. The synthesised polymers were subsequently used in several glass ionomer cement formulations (Fuji II commercial GIC) in which mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting cements were evaluated. The polymerisation reaction in sc-CO(2)/methanol was significantly faster than the corresponding polymerisation reaction in water and the purification procedures were simpler for the former. Furthermore, glass ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesised in water. The working properties of glass ionomer formulations made in sc-CO(2)/methanol were comparable and in selected cases better than the values of those made from polymers synthesised in water.
Fertility decline and the changing dynamics of wealth, status and inequality.
Colleran, Heidi; Jasienska, Grazyna; Nenko, Ilona; Galbarczyk, Andrzej; Mace, Ruth
2015-05-07
In the course of demographic transitions (DTs), two large-scale trends become apparent: (i) the broadly positive association between wealth, status and fertility tends to reverse, and (ii) wealth inequalities increase and then temporarily decrease. We argue that these two broad patterns are linked, through a diversification of reproductive strategies that subsequently converge as populations consume more, become less self-sufficient and increasingly depend on education as a route to socio-economic status. We examine these links using data from 22 mid-transition communities in rural Poland. We identify changing relationships between fertility and multiple measures of wealth, status and inequality. Wealth and status generally have opposing effects on fertility, but these associations vary by community. Where farming remains a viable livelihood, reproductive strategies typical of both pre- and post-DT populations coexist. Fertility is lower and less variable in communities with lower wealth inequality, and macro-level patterns in inequality are generally reproduced at the community level. Our results provide a detailed insight into the changing dynamics of wealth, status and inequality that accompany DTs at the community level where peoples' social and economic interactions typically take place. We find no evidence to suggest that women with the most educational capital gain wealth advantages from reducing fertility, nor that higher educational capital delays the onset of childbearing in this population. Rather, these patterns reflect changing reproductive preferences during a period of profound economic and social change, with implications for our understanding of reproductive and socio-economic inequalities in transitioning populations.
Banducci, Anne N.; Hoffman, Elana M.; Lejuez, C.W.; Koenen, Karestan
2014-01-01
Adults with substance use disorders (SUDs) report a high prevalence of childhood abuse. Research in the general population suggests specific types of abuse lead to particular negative outcomes; it is not known whether this pattern holds for adults with SUDs. We hypothesized that specific types of abuse would be associated with particular behavioral and emotional outcomes among substance users. That is, childhood sexual abuse would be associated with risky sex behaviors, childhood physical abuse with aggression, and childhood emotional abuse with emotion dysregulation. 280 inpatients (M age = 43.3; 69.7% male; 88.4% African American) in substance use treatment completed the Childhood Trauma Questionnaire (CTQ), HIV Risk-Taking Behavior Scale, Addiction Severity Index, Difficulties with Emotion Regulation Scale (DERS), Distress Tolerance Scale (DTS), and Affect Intensity and Dimensions of Affiliation Motivation (AIM). Consistent with our hypotheses, the CTQ Sexual Abuse subscale uniquely predicted exchanging sex for cocaine and heroin, number of arrests for prostitution, engaging in unprotected sex with a casual partner during the prior year, and experiencing low sexual arousal when sober. The Physical Abuse subscale uniquely predicted number of arrests for assault and weapons offenses. The Emotional Abuse subscale uniquely predicted the DERS total score, AIM score, and DTS score. Among substance users, different types of abuse are uniquely associated with specific negative effects. Assessment of specific abuse types among substances users may be informative in treatment planning and relapse prevention. PMID:24521524
Banducci, Anne N; Hoffman, Elana M; Lejuez, C W; Koenen, Karestan C
2014-05-01
Adults with substance use disorders (SUDs) report a high prevalence of childhood abuse. Research in the general population suggests specific types of abuse lead to particular negative outcomes; it is not known whether this pattern holds for adults with SUDs. We hypothesized that specific types of abuse would be associated with particular behavioral and emotional outcomes among substance users. That is, childhood sexual abuse would be associated with risky sex behaviors, childhood physical abuse with aggression, and childhood emotional abuse with emotion dysregulation. 280 inpatients (M age=43.3; 69.7% male; 88.4% African American) in substance use treatment completed the Childhood Trauma Questionnaire (CTQ), HIV Risk-Taking Behavior Scale, Addiction Severity Index, Difficulties with Emotion Regulation Scale (DERS), Distress Tolerance Scale (DTS), and Affect Intensity and Dimensions of Affiliation Motivation (AIM). Consistent with our hypotheses, the CTQ sexual abuse subscale uniquely predicted exchanging sex for cocaine and heroin, number of arrests for prostitution, engaging in unprotected sex with a casual partner during the prior year, and experiencing low sexual arousal when sober. The physical abuse subscale uniquely predicted number of arrests for assault and weapons offenses. The emotional abuse subscale uniquely predicted the DERS total score, AIM score, and DTS score. Among substance users, different types of abuse are uniquely associated with specific negative effects. Assessment of specific abuse types among substance users may be informative in treatment planning and relapse prevention. Copyright © 2014 Elsevier Ltd. All rights reserved.
Poe, Amanda; Duong, Ngocvien Thi; Bedi, Kanwar; Kodani, Maja
2018-03-01
Diagnosis of hepatitis C virus (HCV) infection is based on testing for antibodies to HCV (anti-HCV), hepatitis C core antigen (HCV cAg) and HCV RNA. To ensure quality control (QC) and quality assurance (QA), proficiency panels are provided by reference laboratories and various international organizations, requiring costly dry ice shipments to maintain specimen integrity. Alternative methods of specimen preservation and transport can save on shipping and handling and help in improving diagnostics by facilitating QA/QC of various laboratories especially in resource limited countries. Plasma samples positive for anti-HCV and HCV RNA were either dried using dried tube specimens (DTS) method or lyophilization for varying durations of time and temperature. Preservation of samples using DTS method resulted in loss of anti-HCV reactivity for low-positive samples and did not generate enough volume for HCV RNA testing. Lyophilized samples tested positive for anti-HCV even after storage at 4 °C and 25 °C for 12 weeks. Further, HCV RNA was detectable in 5 of 5 (100%) samples over the course of 12 week storage at 4, 25, 37 and 45 °C. In conclusion, lyophilization of specimens maintains integrity of plasma samples for testing for markers of HCV infection and can be a potent mode of sharing proficiency samples without incurring huge shipping costs and avoids challenges with dry ice shipments between donor and recipient laboratories. Copyright © 2017. Published by Elsevier B.V.
Kamalaldin, Nurulain 'Atikah; Jaafar, Mariatti; Zubairi, Saiful Irwan; Yahaya, Badrul Hisham
2018-01-04
The use of bioceramics, especially the combination of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), as a three-dimensional scaffold in bone engineering is essential because together these elements constitute 60% of the bone content. Different ratios of HA and β-TCP were previously tested for their ability to produce suitable bioceramic scaffolds, which must be able to withstand high mechanical load. In this study, two ratios of HA/TCP (20:80 and 70:30) were used to create pellets, which then were evaluated in vitro to identify any adverse effects of using the material in bone grafting. Diametral tensile strength (DTS) and density testing was conducted to assess the mechanical strength and porosity of the pellets. The pellets then were tested for their toxicity to normal human fibroblast cells. In the toxicity assay, cells were incubated with the pellets for 3 days. At the end of the experiment, cell morphological changes were assessed, and the absorbance was read using PrestoBlue Cell Viability Reagent™. An inversely proportional relationship between DTS and porosity percentage was detected. Fibroblasts showed normal cell morphology in both treatments, which suggests that the HA/TCP pellets were not toxic. In the osteoblast cell attachment assay, cells were able to attach to the surface of both ratios, but cells were also able to penetrate inside the scaffold of the 70:30 pellets. This finding suggests that the 70:30 ratio had better osteoconduction properties than the 20:80 ratio.
Labandeira, Conrad C; Kustatscher, Evelyn; Wappler, Torsten
2016-01-01
To discern the effect of the end-Permian (P-Tr) ecological crisis on land, interactions between plants and their insect herbivores were examined for four time intervals containing ten major floras from the Dolomites of northeastern Italy during a Permian-Triassic interval. These floras are: (i) the Kungurian Tregiovo Flora; (ii) the Wuchiapingian Bletterbach Flora; (iii) three Anisian floras; and (iv) five Ladinian floras. Derived plant-insect interactional data is based on 4242 plant specimens (1995 Permian, 2247 Triassic) allocated to 86 fossil taxa (32 Permian, 56 Triassic), representing lycophytes, sphenophytes, pteridophytes, pteridosperms, ginkgophytes, cycadophytes and coniferophytes from 37 million-year interval (23 m.yr. Permian, 14 m.yr. Triassic). Major Kungurian herbivorized plants were unaffiliated taxa and pteridosperms; later during the Wuchiapingian cycadophytes were predominantly consumed. For the Anisian, pteridosperms and cycadophytes were preferentially consumed, and subordinately pteridophytes, lycophytes and conifers. Ladinian herbivores overwhelming targeted pteridosperms and subordinately cycadophytes and conifers. Throughout the interval the percentage of insect-damaged leaves in bulk floras, as a proportion of total leaves examined, varied from 3.6% for the Kungurian (N = 464 leaves), 1.95% for the Wuchiapingian (N = 1531), 11.65% for the pooled Anisian (N = 1324), to 10.72% for the pooled Ladinian (N = 923), documenting an overall herbivory rise. The percentage of generalized consumption, equivalent to external foliage feeding, consistently exceeded the level of specialized consumption from internal feeding. Generalized damage ranged from 73.6% (Kungurian) of all feeding damage, to 79% (Wuchiapingian), 65.5% (pooled Anisian) and 73.2% (pooled Ladinian). Generalized-to-specialized ratios show minimal change through the interval, although herbivore component community structure (herbivore species feeding on a single plant-host species) increasingly was partitioned from Wuchiapingian to Ladinian. The Paleozoic plant with the richest herbivore component community, the coniferophyte Pseudovoltzia liebeana, harbored four damage types (DTs), whereas its Triassic parallel, the pteridosperm Scytophyllum bergeri housed 11 DTs, almost four times that of P. liebeana. Although generalized DTs of P. liebeana were similar to S. bergeri, there was expansion of Triassic specialized feeding types, including leaf mining. Permian-Triassic generalized herbivory remained relatively constant, but specialized herbivores more finely partitioned plant-host tissues via new feeding modes, especially in the Anisian. Insect-damaged leaf percentages for Dolomites Kungurian and Wuchiapingian floras were similar to those of lower Permian, north-central Texas, but only one-third that of southeastern Brazil. Global herbivore patterns for Early Triassic plant-insect interactions remain unknown.
Labandeira, Conrad C.; Kustatscher, Evelyn
2016-01-01
To discern the effect of the end-Permian (P-Tr) ecological crisis on land, interactions between plants and their insect herbivores were examined for four time intervals containing ten major floras from the Dolomites of northeastern Italy during a Permian–Triassic interval. These floras are: (i) the Kungurian Tregiovo Flora; (ii) the Wuchiapingian Bletterbach Flora; (iii) three Anisian floras; and (iv) five Ladinian floras. Derived plant–insect interactional data is based on 4242 plant specimens (1995 Permian, 2247 Triassic) allocated to 86 fossil taxa (32 Permian, 56 Triassic), representing lycophytes, sphenophytes, pteridophytes, pteridosperms, ginkgophytes, cycadophytes and coniferophytes from 37 million-year interval (23 m.yr. Permian, 14 m.yr. Triassic). Major Kungurian herbivorized plants were unaffiliated taxa and pteridosperms; later during the Wuchiapingian cycadophytes were predominantly consumed. For the Anisian, pteridosperms and cycadophytes were preferentially consumed, and subordinately pteridophytes, lycophytes and conifers. Ladinian herbivores overwhelming targeted pteridosperms and subordinately cycadophytes and conifers. Throughout the interval the percentage of insect-damaged leaves in bulk floras, as a proportion of total leaves examined, varied from 3.6% for the Kungurian (N = 464 leaves), 1.95% for the Wuchiapingian (N = 1531), 11.65% for the pooled Anisian (N = 1324), to 10.72% for the pooled Ladinian (N = 923), documenting an overall herbivory rise. The percentage of generalized consumption, equivalent to external foliage feeding, consistently exceeded the level of specialized consumption from internal feeding. Generalized damage ranged from 73.6% (Kungurian) of all feeding damage, to 79% (Wuchiapingian), 65.5% (pooled Anisian) and 73.2% (pooled Ladinian). Generalized-to-specialized ratios show minimal change through the interval, although herbivore component community structure (herbivore species feeding on a single plant-host species) increasingly was partitioned from Wuchiapingian to Ladinian. The Paleozoic plant with the richest herbivore component community, the coniferophyte Pseudovoltzia liebeana, harbored four damage types (DTs), whereas its Triassic parallel, the pteridosperm Scytophyllum bergeri housed 11 DTs, almost four times that of P. liebeana. Although generalized DTs of P. liebeana were similar to S. bergeri, there was expansion of Triassic specialized feeding types, including leaf mining. Permian–Triassic generalized herbivory remained relatively constant, but specialized herbivores more finely partitioned plant-host tissues via new feeding modes, especially in the Anisian. Insect-damaged leaf percentages for Dolomites Kungurian and Wuchiapingian floras were similar to those of lower Permian, north-central Texas, but only one-third that of southeastern Brazil. Global herbivore patterns for Early Triassic plant–insect interactions remain unknown. PMID:27829032
High performance photovoltaic applications using solution-processed small molecules.
Chen, Yongsheng; Wan, Xiangjian; Long, Guankui
2013-11-19
Energy remains a critical issue for the survival and prosperity of humancivilization. Many experts believe that the eventual solution for sustainable energy is the use of direct solar energy as the main energy source. Among the options for renewable energy, photovoltaic technologies that harness solar energy offer a way to harness an unlimited resource and minimum environment impact in contrast with other alternatives such as water, nuclear, and wind energy. Currently, almost all commercial photovoltaic technologies use Si-based technology, which has a number of disadvantages including high cost, lack of flexibility, and the serious environmental impact of the Si industry. Other technologies, such as organic photovoltaic (OPV) cells, can overcome some of these issues. Today, polymer-based OPV (P-OPV) devices have achieved power conversion efficiencies (PCEs) that exceed 9%. Compared with P-OPV, small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible performance, higher mobility and open circuit voltage, and easier synthetic control that leads to more diversified structures. Therefore, while largely undeveloped, SM-OPV is an important emerging technology with performance comparable to P-OPV. In this Account, we summarize our recent results on solution-processed SM-OPV. We believe that solution processing is essential for taking full advantage of OPV technologies. Our work started with the synthesis of oligothiophene derivatives with an acceptor-donor-acceptor (A-D-A) structure. Both the backbone conjugation length and electron withdrawing terminal groups play an important role in the light absorption, energy levels and performance of the devices. Among those molecules, devices using a 7-thiophene-unit backbone and a 3-ethylrhodanine (RD) terminal unit produced a 6.1% PCE. With the optimized conjugation length and terminal unit, we borrowed from the results with P-OPV devices to optimize the backbone. Thus we selected BDT (benzo[1,2-b:4,5-b']dithiophene) and DTS (dithienosilole) to replace the central thiophene unit, leading to a PCE of 8.12%. In addition to our molecules, Bazan and co-workers have developed another excellent system using DTS as the core unit that has also achieved a PCE greater than 8%.
Energy Systems Sensor Laboratory | Energy Systems Integration Facility |
NREL Sensor Laboratory Energy Systems Sensor Laboratory The Energy Systems Integration Facility's Energy Systems Sensor Laboratory is designed to support research, development, testing, and evaluation of advanced hydrogen sensor technologies to support the needs of the emerging hydrogen
A fiber optic multi-stress monitoring system for power transformer
NASA Astrophysics Data System (ADS)
Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho
2017-04-01
A fiber-optic multi-stress monitoring system which uses 4 FBG sensors and a fiber-optic mandrel acoustic emission sensor is proposed. FBG sensors and a mandrel sensor measure different types of stresses occurring in electrical power transformer, such as temperature and acoustic signals. The sensor system uses single broadband light source to address the outputs of both sensors using single fiber-optic circuitry. An athermal-packaged FBG is used to supply quasi-coherent light for the Sagnac interferometer demodulation which processes the mandrel sensor output. The proposed sensor system could simplify the optical circuit for the multi-stress measurements and enhance the cost-effectiveness of the sensor system.
NASA Astrophysics Data System (ADS)
Florian, Mallet; Vincent, Marc; Johnny, Douvinet; Philippe, Rossello; Bouteiller Caroline, Le; Jean-Philippe, Malet; Julien, Gance
2015-04-01
Runoff generation in the headwater catchments in various land use conditions still remain a core issue in catchment hydrology (Uhlenbrook S. et al., 2003). Vegetation has a strong impact on flows distribution (interception, infiltration, evapotranspiration, runoff) but the relative influence of these mechanisms according to geomorphological determinants is still not totally understood. The "ORE Draix" located in the Alpes-de-Haute-Provence (France) allows to study these parameters using experimental watersheds equipped with a long term monitoring instrumentation (rainfall, streamflow, water, soil and air temperature, soil erosion, soil moisture...). These marl torrential watersheds have a peculiar hydrological behavior during flood events with large outflow differences between the wooded and the bare areas. We try to identify the runoff production factors by studying water storage/drainage processes within the first 30 cm depth of soil (Wilson et al., 2003, Western et al., 2004). Soil moisture can explain runoff during floods, that's why we try to upscale this variable at the watershed level. Unlike studies on soil moisture monitoring in agricultural context (flat areas), conventional remote sensing methods are difficult to apply to the badlands (elevation between 1500 masl and 1800 masl, approximately 1km² areas, steep slopes, various land uses) (Bagdhadi, 2005). This difficulty can be overcome by measuring soil moisture at different spatial (point, plot, slope, catchment) and time scales (event, season, year) using innovative approaches. In this context, we propose a monitoring of soil moisture based on geostatistical treatments crossed with measurements at different scales. These measures are provided from ground and airborne sensors deployment. Point measurements are ensured at a very high time frequency using capacitance probes. At an intermediate level, a slope is equipped with a DTS sensor (distributed temperature sensing) to obtain a 2D estimate of soilwater flow of from the surface to - 30 cm. Another distributed approach will be carried out from a measurement of cosmic neutrons mitigation (Cosmic ray sensor) to estimate a soil moisture averaged value over 40 ha (Zreda et al., 2012). Finally, the smallest scale (slope and catchment) will be approached using remote sensing with a drone and/or satellite imagery (IR, passive and active microwave). This concatenation of scales with different combinations of time steps should enable us to better understand the hydrological dynamics in torrential environments. It aims at mapping the stormflow generation on a catchment at the flood scale and defining the main determinants of surface runoff. These results may contribute to the improvement of runoff simulation and flood prediction. References : Uhlenbrook S., J.J. McDonnell and C. Leibundgut, 2003. Preface: Runoff generation implications for river basin modelling. Hydrological Processes, Special Issue, 17: 197-198. Andrew W. Western, Sen-Lin Zhou, Rodger B. Grayson, Thomas A. MacMahon, Günter Blöshl, David J. Wilson, 2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology 286. Zreda, M., Shuttleworth WJ., Zeng X., Zweck C., Desilets D., Franz TE. et al., 2012. COSMOS: the COsmic-ray Soil Moisture Observing System. Hydrology and Earth System Sciences, 16(11): 4079-4099.
An efficient management system for wireless sensor networks.
Ma, Yi-Wei; Chen, Jiann-Liang; Huang, Yueh-Min; Lee, Mei-Yu
2010-01-01
Wireless sensor networks have garnered considerable attention recently. Networks typically have many sensor nodes, and are used in commercial, medical, scientific, and military applications for sensing and monitoring the physical world. Many researchers have attempted to improve wireless sensor network management efficiency. A Simple Network Management Protocol (SNMP)-based sensor network management system was developed that is a convenient and effective way for managers to monitor and control sensor network operations. This paper proposes a novel WSNManagement system that can show the connections stated of relationships among sensor nodes and can be used for monitoring, collecting, and analyzing information obtained by wireless sensor networks. The proposed network management system uses collected information for system configuration. The function of performance analysis facilitates convenient management of sensors. Experimental results show that the proposed method enhances the alive rate of an overall sensor node system, reduces the packet lost rate by roughly 5%, and reduces delay time by roughly 0.2 seconds. Performance analysis demonstrates that the proposed system is effective for wireless sensor network management.
Shishir, Sharmin; Tsuyuzaki, Shiro
2018-05-11
Detecting fine-scale spatiotemporal land use changes is a prerequisite for understanding and predicting the effects of urbanization and its related human impacts on the ecosystem. Land use changes are frequently examined using vegetation indices (VIs), although the validation of these indices has not been conducted at a high resolution. Therefore, a hierarchical classification was constructed to obtain accurate land use types at a fine scale. The characteristics of four popular VIs were investigated prior to examining the hierarchical classification by using Purbachal New Town, Bangladesh, which exhibits ongoing urbanization. These four VIs are the normalized difference VI (NDVI), green-red VI (GRVI), enhanced VI (EVI), and two-band EVI (EVI2). The reflectance data were obtained by the IKONOS (0.8-m resolution) and WorldView-2 sensor (0.5-m resolution) in 2001 and 2015, respectively. The hierarchical classification of land use types was constructed using a decision tree (DT) utilizing all four of the examined VIs. The accuracy of the classification was evaluated using ground truth data with multiple comparisons and kappa (κ) coefficients. The DT showed overall accuracies of 96.1 and 97.8% in 2001 and 2015, respectively, while the accuracies of the VIs were less than 91.2%. These results indicate that each VI exhibits unique advantages. In addition, the DT was the best classifier of land use types, particularly for native ecosystems represented by Shorea forests and homestead vegetation, at the fine scale. Since the conservation of these native ecosystems is of prime importance, DTs based on hierarchical classifications should be used more widely.
Vehicle Fault Diagnose Based on Smart Sensor
NASA Astrophysics Data System (ADS)
Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng
In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreedharan, Priya
The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships amongmore » sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system performance and offset the need for more contaminant sensors. Physics- and algorithm-based frameworks are presented for selecting and fusing information from noncontaminant sensors. The frameworks are demonstrated with door-position sensors, which are found to be more useful in natural airflow conditions, but which cannot compensate for poor placement of contaminant sensors. The concepts and empirical findings have the potential to help in the design of sensor systems for more complex building systems. The research has broader relevance to additional environmental monitoring problems, fault detection and diagnostics, and system design.« less
NASA Astrophysics Data System (ADS)
Leal-Junior, Arnaldo G.; Vargas-Valencia, Laura; dos Santos, Wilian M.; Schneider, Felipe B. A.; Siqueira, Adriano A. G.; Pontes, Maria José; Frizera, Anselmo
2018-07-01
This paper presents a low cost and highly reliable system for angle measurement based on a sensor fusion between inertial and fiber optic sensors. The system consists of the sensor fusion through Kalman filter of two inertial measurement units (IMUs) and an intensity variation-based polymer optical fiber (POF) curvature sensor. In addition, the IMU was applied as a reference for a compensation technique of POF curvature sensor hysteresis. The proposed system was applied on the knee angle measurement of a lower limb exoskeleton in flexion/extension cycles and in gait analysis. Results show the accuracy of the system, where the Root Mean Square Error (RMSE) between the POF-IMU sensor system and the encoder was below 4° in the worst case and about 1° in the best case. Then, the POF-IMU sensor system was evaluated as a wearable sensor for knee joint angle assessment without the exoskeleton, where its suitability for this purpose was demonstrated. The results obtained in this paper pave the way for future applications of sensor fusion between electronic and fiber optic sensors in movement analysis.
Rooftop package unit diagnostician
Chassin, David P [Pasco, WA; Pratt, Robert G [Kennewick, WA; Reid, Larry Dean [Benton City, WA
2004-08-17
A diagnostic system for an HVAC system includes a number of sensors used to measure the operation of the HVAC system. Sensor readings are measured by timing the delay between when a strobe signal is sent to a sensor and when an interrupt signal from the sensor is received. A device driver used to measure the sensor readings stores the sensor readings in pseudo-character device files, which are universally accessible by different subsystems of the diagnostic system. Based on the readings from these sensors, this diagnostic system is able to determine the operational status of the HVAC system and if an economizer in the HVAC system is operating properly.
Advanced sensor-simulation capability
NASA Astrophysics Data System (ADS)
Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.
1990-09-01
This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.
Fiber Optic Control System Integration program: for optical flight control system development
NASA Astrophysics Data System (ADS)
Weaver, Thomas L.; Seal, Daniel W.
1994-10-01
Hardware and software were developed for optical feedback links in the flight control system of an F/A-18 aircraft. Developments included passive optical sensors and optoelectronics to operate the sensors. Sensors with different methods of operation were obtained from different manufacturers and integrated with common optoelectronics. The sensors were the following: Air Data Temperature; Air Data Pressure; and Leading Edge Flap, Nose Wheel Steering, Trailing Edge Flap, Pitch Stick, Rudder, Rudder Pedal, Stabilator, and Engine Power Lever Control Position. The sensors were built for a variety of aircraft locations and harsh environments. The sensors and optoelectronics were as similar as practical to a production system. The integrated system was installed by NASA for flight testing. Wavelength Division Multiplexing proved successful as a system design philosophy. Some sensors appeared to be better choices for aircraft applications than others, with digital sensors generally being better than analog sensors, and rotary sensors generally being better than linear sensors. The most successful sensor approaches were selected for use in a follow-on program in which the sensors will not just be flown on the aircraft and their performance recorded; but, the optical sensors will be used in closing flight control loops.
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori
2017-01-01
Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954
Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori
2017-08-28
Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.
Optical fiber sensors: Systems and applications. Volume 2
NASA Astrophysics Data System (ADS)
Culshaw, Brian; Dakin, John
State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.
Open architecture of smart sensor suites
NASA Astrophysics Data System (ADS)
Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten
2017-10-01
Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.
Multidimensional System Analysis of Electro-Optic Sensors with Sampled Deterministic Output.
1987-12-18
System descriptions of scanning and staring electro - optic sensors with sampled output are developed as follows. Functions representing image...to complete the system descriptions. The results should be useful for designing electro - optic sensor systems and correcting data for instrumental...effects and other experimental conditions. Keywords include: Electro - optic system analysis, Scanning sensors, Staring sensors, Spatial sampling, and Temporal sampling.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
Sensor Webs as Virtual Data Systems for Earth Science
NASA Astrophysics Data System (ADS)
Moe, K. L.; Sherwood, R.
2008-05-01
The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing improved science predictions. Still other projects are maturing technology to support autonomous operations, communications and system interoperability. This paper will highlight lessons learned by various projects during the first half of the AIST program. Several sensor web demonstrations have been implemented and resulting experience with evolving standards, such as the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) among others, will be featured. The role of sensor webs in support of the intergovernmental Group on Earth Observations' Global Earth Observation System of Systems (GEOSS) will also be discussed. The GEOSS vision is a distributed system of systems that builds on international components to supply observing and processing systems that are, in the whole, comprehensive, coordinated and sustained. Sensor web prototypes are under development to demonstrate how remote sensing satellite data, in situ sensor networks and decision support systems collaborate in applications of interest to GEO, such as flood monitoring. Furthermore, the international Committee on Earth Observation Satellites (CEOS) has stepped up to the challenge to provide the space-based systems component for GEOSS. CEOS has proposed "virtual constellations" to address emerging data gaps in environmental monitoring, avoid overlap among observing systems, and make maximum use of existing space and ground assets. Exploratory applications that support the objectives of virtual constellations will also be discussed as a future role for sensor webs.
Distributed sensor coordination for advanced energy systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumer, Kagan
Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectivesmore » and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.« less
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
NASA Astrophysics Data System (ADS)
Yao, Yingying; Huang, Xiang; Liu, Jie; Zheng, Chunmiao; He, Xiaobo; Liu, Chuankun
2015-08-01
Interactions between groundwater and surface water in arid regions are complex, and recharge-discharge processes are often influenced by the hydrological regime, climate and geology. Traditional methods such as hydraulic gradient measuring by piezometers, differential discharge gauging and conservative tracer experiments, are often inadequate to capture the spatial and temporal variation of exchange rates. In this study, the distribution and the size of the overall groundwater inflow zone (GIZ) and the hyporheic inflow zone (HIZ) in the middle Heihe River Basin, northwest China, are characterized, and the relative inflow flux is estimated by high-resolution temperature measurements. Distributed temperature sensing (DTS) was used to measure the mixing temperatures of a 5-km reach of streambed with a spatial resolution of 0.5 m. The sampling interval was 0.25 m, and the temporal interval was 15 and 10 min at Pingchuan and Banqiao experimental sites, respectively. Two separate measurement periods in Pingchuan (Ping1, Ping2) captured different meteorological and stream-flow conditions. The results show that the number and the size range of the individual HIZs are greater than those of GIZs. Groundwater upwelling (GIZ) causes a larger decrease in river-water temperature with less inflow flux compared with the HIZ. The distribution pattern of HIZs and GIZs is influenced by the hydrodynamics of the river and the hydraulic permeability of the riverbed. High-resolution temperature variation based on DTS is an effective predictor of distributed inflows from groundwater upwelling and hyporheic exchange in an arid region.
Reduced Dual-Task Performance in MS Patients Is Further Decreased by Muscle Fatigue.
Wolkorte, Ria; Heersema, Dorothea J; Zijdewind, Inge
2015-06-01
Multiple sclerosis (MS) can be accompanied by motor, cognitive, and sensory impairments. Additionally, MS patients often report fatigue as one of their most debilitating symptoms. It is, therefore, expected that MS patients will have difficulties in performing cognitive-motor dual tasks (DTs), especially in a fatiguing condition. To determine whether MS patients are more challenged by a DT than controls in a fatiguing and less-fatiguing condition and whether DT performance is associated with perceived fatigue. A group of 19 MS patients and 19 age-, sex-, and education-matched controls performed a cognitive task (2-choice reaction time task) separately or concurrent with a low-force or a high-force motor task (index finger abduction at 10% or 30% maximal voluntary contraction). MS patients performed less well on a cognitive task than controls. Cognitive task performance under DT conditions decreased more for MS patients. Moreover, under high-force DT conditions, cognitive performance declined in both groups but to a larger degree for MS patients. Besides a decline in cognitive task performance, MS patients also showed a stronger decrease in motor performance under high-force DT conditions. DT costs were positively related to perceived fatigue as measured by questionnaires. Compared with controls, MS patients performed less well on DTs as demonstrated by a reduction in both cognitive and motor performances. This performance decrease was stronger under fatiguing conditions and was related to the sense of fatigue of MS patients. These data illustrate problems that MS patients may encounter in daily life because of their fatigue. © The Author(s) 2014.
Kastello, Jennifer C; Jacobsen, Kathryn H; Gaffney, Kathleen F; Kodadek, Marie P; Bullock, Linda C; Sharps, Phyllis W
2016-06-01
Women exposed to intimate partner violence (IPV) and other forms of lifetime trauma may be at risk for negative mental health outcomes including posttraumatic stress disorder (PTSD). The purpose of this study was to examine potential predictors of PTSD among low-income women exposed to perinatal IPV. This study analyzed baseline cross-sectional data from 239 low-income pregnant women in the USA who participated in a nurse home visitation intervention between 2006 and 2012 after reporting recent IPV. PTSD was assessed with the Davidson Trauma Scale (DTS) in which participants answer questions about the most disturbing traumatic event (MDTE) in their lifetime that affected them the week before the interview. In total, 40 % of the women were identified as having PTSD (DTS ≥40). PTSD prevalence significantly increased with age to nearly 80 % of women ages 30 and older (n = 23). Age was also the strongest predictor of PTSD (p < 0.001). Most participants (65 %) identified non-IPV-related traumas as their MDTEs. Psychological (94 %), physical (82 %), and sexual (44 %) violence were not significantly associated with PTSD status. Despite recent exposure to IPV, most participants identified other traumatic events as more disturbing than IPV-related trauma. Further, the risk for PTSD increased with age, suggesting that the cumulative effect of trauma, which may include IPV, increases the risk for PTSD over a lifetime. Implementing comprehensive screening for trauma during prenatal care may lead to the early identification and treatment of PTSD during pregnancy in a community setting.
Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U
2009-06-01
Supercritical (sc-) fluids (such as sc-CO(2)) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO(2) has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO(2)/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO(2) mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO(2)/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO(2)/methanol were comparable and better than the values of those for polymers synthesized in water.
Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor.
Youngstrom, Daniel W; LaDow, Jade E; Barrett, Jennifer G
2016-11-01
Tendons are frequently damaged and fail to regenerate, leading to pain, loss of function, and reduced quality of life. Mesenchymal stem cells (MSCs) possess clinically useful tissue-regenerative properties and have been exploited for use in tendon tissue engineering and cell therapy. However, MSCs exhibit phenotypic heterogeneity based on the donor tissue used, and the efficacy of cell-based treatment modalities may be improved by optimizing cell source based on relative differentiation capacity. Equine MSCs were isolated from bone marrow (BM), adipose (AD), and tendon (TN), expanded in monolayer prior to seeding on decellularized tendon scaffolds (DTS), and cell-laden constructs were placed in a bioreactor designed to mimic the biophysical environment of the tendon. It was hypothesized that TN MSCs would differentiate toward a tendon cell phenotype better than BM and AD MSCs in response to a conditioning period involving cyclic mechanical stimulation for 1 hour per day at 3% strain and 0.33 Hz. All cell types integrated into DTS adopted an elongated morphology similar to tenocytes, expressed tendon marker genes, and improved tissue mechanical properties after 11 days. TN MSCs expressed the greatest levels of scleraxis, collagen type-I, and cartilage oligomeric matrix protein. Major histocompatibility class-II protein mRNA expression was not detected in any of the MSC types, suggesting low immunogenicity for allogeneic transplantation. The results suggest that TN MSCs are the ideal cell type for regenerative medicine therapies for tendinopathies, exhibiting the most mature tendon-like phenotype in vitro. When TN MSCs are unavailable, BM or AD MSCs may serve as robust alternatives.
Lam, Cho Kwong Charlie; Lau, Kevin Ka-Lun
2018-04-12
The Universal Thermal Climate Index (UTCI) is an index for assessing outdoor thermal environment which aims to be applicable universally to different climates. However, the scale of UTCI thermal stress classification can be interpreted depending on the context. Previous studies validated the UTCI in individual cities, but comparative studies between different cities are scarce. This study examines the differences in thermal perception and clothing choices between residents from two climate zones over similar UTCI ranges in summer. We compared summer thermal comfort survey data from Melbourne (n = 2162, January-February 2014) and Hong Kong (n = 414, July-August 2007). We calculated the UTCI from outdoor weather station data and used t tests to compare the differences in thermal sensation and clothing between Hong Kong and Melbourne residents. When the UTCI was between 23.0 and 45.9 °C, Melbourne residents wore significantly more clothing (0.1 clo) than Hong Kong residents. Hong Kong residents reported neutral to warm sensation at a higher UTCI range compared with the dynamic thermal sensation (DTS) model. Moreover, Melbourne residents reported warm and hot sensation at a higher UTCI range than the DTS model. Respondents in Melbourne also exhibited different responses to the mean radiant temperature under shaded and sunny conditions, while such a trend was not observed in Hong Kong. It would be advisable to define different thermal sensation thresholds for the UTCI scale according to different climate zones for better prediction of the outdoor thermal comfort of different urban populations.
NASA Astrophysics Data System (ADS)
Lam, Cho Kwong Charlie; Lau, Kevin Ka-Lun
2018-04-01
The Universal Thermal Climate Index (UTCI) is an index for assessing outdoor thermal environment which aims to be applicable universally to different climates. However, the scale of UTCI thermal stress classification can be interpreted depending on the context. Previous studies validated the UTCI in individual cities, but comparative studies between different cities are scarce. This study examines the differences in thermal perception and clothing choices between residents from two climate zones over similar UTCI ranges in summer. We compared summer thermal comfort survey data from Melbourne (n = 2162, January-February 2014) and Hong Kong (n = 414, July-August 2007). We calculated the UTCI from outdoor weather station data and used t tests to compare the differences in thermal sensation and clothing between Hong Kong and Melbourne residents. When the UTCI was between 23.0 and 45.9 °C, Melbourne residents wore significantly more clothing (0.1 clo) than Hong Kong residents. Hong Kong residents reported neutral to warm sensation at a higher UTCI range compared with the dynamic thermal sensation (DTS) model. Moreover, Melbourne residents reported warm and hot sensation at a higher UTCI range than the DTS model. Respondents in Melbourne also exhibited different responses to the mean radiant temperature under shaded and sunny conditions, while such a trend was not observed in Hong Kong. It would be advisable to define different thermal sensation thresholds for the UTCI scale according to different climate zones for better prediction of the outdoor thermal comfort of different urban populations.
Brandt, William Cunha; Silva, Cristina Gomes; Frollini, Elisabete; Souza-Junior, Eduardo Jose Carvalho; Sinhoreti, Mário Alexandre Coelho
2013-08-01
The aim of this study was to evaluate the thermal and mechanical properties of the composite resins containing the photo-initiators camphorquinone (CQ) and/or phenyl-propanodione (PPD) when photoactivated with halogen lamp (XL2500/3M-ESPE), monowave (UltraBlueIS/DMC) and polywave (UltraLume5/Ultradent) LED units. A blend of BisGMA, UDMA, BisEMA and TEGDMA was prepared with the same wt% of photo-initiators CQ and/or PPD and 65wt% of silaneted filler particles. Compression strength (CS), diametral tensile strength (DTS) and diametral modulus (DM) were tested. Thermogravimetric analysis (TGA) was made and the lost residual monomer were verified. Dynamic mechanical thermal analysis (DMTA) was used for to analyze the glass transition temperature (Tg) and the storage modulus in 37°C. Degree of conversion (DC) was accomplished in the same samples of DMA using middle-infrared spectroscopy (mid-IR). CQ, CQ/PPD and PPD obtained the same results for all mechanical properties (CS, DTS and DM), lost residual monomer and storage modulus in 37°C, regardless LCU used. The results of Tg showed that the combination PPD-UltraLume5 produced the highest values. DC showed that the combination CQ-UltraLume5 resulted in the highest values and PPD-XL2500 in the lowest DC values. The study shows that PPD is not only effective photosensitizers, but also photocrosslinking agents for dental composite resins with a similar efficiency to CQ. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan
2013-09-01
As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH3(CH2)11Si(OCH3)3). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro-nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.
Fertility decline and the changing dynamics of wealth, status and inequality
Colleran, Heidi; Jasienska, Grazyna; Nenko, Ilona; Galbarczyk, Andrzej; Mace, Ruth
2015-01-01
In the course of demographic transitions (DTs), two large-scale trends become apparent: (i) the broadly positive association between wealth, status and fertility tends to reverse, and (ii) wealth inequalities increase and then temporarily decrease. We argue that these two broad patterns are linked, through a diversification of reproductive strategies that subsequently converge as populations consume more, become less self-sufficient and increasingly depend on education as a route to socio-economic status. We examine these links using data from 22 mid-transition communities in rural Poland. We identify changing relationships between fertility and multiple measures of wealth, status and inequality. Wealth and status generally have opposing effects on fertility, but these associations vary by community. Where farming remains a viable livelihood, reproductive strategies typical of both pre- and post-DT populations coexist. Fertility is lower and less variable in communities with lower wealth inequality, and macro-level patterns in inequality are generally reproduced at the community level. Our results provide a detailed insight into the changing dynamics of wealth, status and inequality that accompany DTs at the community level where peoples' social and economic interactions typically take place. We find no evidence to suggest that women with the most educational capital gain wealth advantages from reducing fertility, nor that higher educational capital delays the onset of childbearing in this population. Rather, these patterns reflect changing reproductive preferences during a period of profound economic and social change, with implications for our understanding of reproductive and socio-economic inequalities in transitioning populations. PMID:25833859
Insect herbivory fluctuations through geological time.
Pinheiro, Esther R S; Iannuzzi, Roberto; Duarte, Leandro D S
2016-09-01
Arthropods and land plants are the major macroscopic sources of biodiversity on the planet. Knowledge of the organization and specialization of plant-herbivore interactions, such as their roles in food webs is important for understanding the processes for maintaining biodiversity. A limited number of studies have examined herbivory through geological time. The most have analyzed localities from one restricted interval within a geological period, or a time transition such as the Paleocene-Eocene boundary interval. In the present study, we analyzed the frequency of herbivory and density of damage type (DT) from the Middle Devonian to the early Miocene. The data were compiled from literature sources and focused on studies that describe occurrences of leaves with DTs indicating herbivore consumption as a proportion of the total number of leaves analyzed. The data were standardized based on the DT categories in the Damage Type Guide, and the age of each locality was updated based on the most recent geochronological standard and expressed in millions of years. Temperature and geological age were the best descriptors of the variation in herbivory frequency, which tended to increase at higher temperatures. Two models were equivalent to explain DT density: the interaction between CO 2 levels and geological age, and O 2 levels and geological age had the same predictive power. The density of DT tended to increase with higher content of atmospheric CO 2 and O 2 compared to modern values. The frequency of herbivory and the density of DTs appear to be influenced by long-term atmospheric variables. © 2016 by the Ecological Society of America.
Smart Sensor Systems for Aerospace Applications: From Sensor Development to Application Testing
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Xu, J. C.; Dungan, L. K.; Ward, B. J.; Rowe, S.; Williams, J.; Makel, D. B.; Liu, C. C.; Chang, C. W.
2008-01-01
The application of Smart Sensor Systems for aerospace applications is a multidisciplinary process consisting of sensor element development, element integration into Smart Sensor hardware, and testing of the resulting sensor systems in application environments. This paper provides a cross-section of these activities for multiple aerospace applications illustrating the technology challenges involved. The development and application testing topics discussed are: 1) The broadening of sensitivity and operational range of silicon carbide (SiC) Schottky gas sensor elements; 2) Integration of fire detection sensor technology into a "Lick and Stick" Smart Sensor hardware platform for Crew Exploration Vehicle applications; 3) Extended testing for zirconia based oxygen sensors in the basic "Lick and Stick" platform for environmental monitoring applications. It is concluded that that both core sensor platform technology and a basic hardware platform can enhance the viability of implementing smart sensor systems in aerospace applications.
Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems
NASA Technical Reports Server (NTRS)
Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)
2017-01-01
A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.
Microfabricated Hydrogen Sensor Technology for Aerospace and Commercial Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.
1994-01-01
Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.
NASA Technical Reports Server (NTRS)
Foyle, David C.
1993-01-01
Based on existing integration models in the psychological literature, an evaluation framework is developed to assess sensor fusion displays as might be implemented in an enhanced/synthetic vision system. The proposed evaluation framework for evaluating the operator's ability to use such systems is a normative approach: The pilot's performance with the sensor fusion image is compared to models' predictions based on the pilot's performance when viewing the original component sensor images prior to fusion. This allows for the determination as to when a sensor fusion system leads to: poorer performance than one of the original sensor displays, clearly an undesirable system in which the fused sensor system causes some distortion or interference; better performance than with either single sensor system alone, but at a sub-optimal level compared to model predictions; optimal performance compared to model predictions; or, super-optimal performance, which may occur if the operator were able to use some highly diagnostic 'emergent features' in the sensor fusion display, which were unavailable in the original sensor displays.
Disbonding effects on elastic wave generation and reception by bonded piezoelectric sensor systems
NASA Astrophysics Data System (ADS)
Blackshire, James L.; Martin, Steven A.; Na, Jeong K.
2007-04-01
Durable integrated sensor systems are needed for long-term health monitoring evaluations of aerospace systems. For legacy aircraft the primary means of implementing a sensor system will be through surface mounting or bonding of the sensors to the structure. Previous work has shown that the performance of surface-bonded piezo sensors can degrade due to environmental effects such as vibrations, temperature fluctuations, and substrate flexure motions. This performance degradation included sensor cracking, disbonding, and general loss of efficiency over time. In this research effort, the bonding state of a piezo sensor system was systematically studied to understand and improve the long-term durability and survivability of the sensor system. Analytic and computational models were developed and used to understand elastic wave generation and reception performance for various states of sensor disbond. Experimental studies were also conducted using scanning laser vibrometry, pitch-catch ultrasound, and pulse-echo ultrasound methods to understand elastic wave propagation effects in thin plate materials. Significant performance loss was observed for increasing levels of sensor disbond as well as characteristic frequency signatures which may be useful in understanding sensor performance levels for future structural health monitoring systems.
Integrated active sensor system for real time vibration monitoring.
Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue
2015-11-05
We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.
Integrated active sensor system for real time vibration monitoring
Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue
2015-01-01
We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293
Kwonjoon Lee; Kiseok Song; Taehwan Roh; Hoi-Jun Yoo
2016-08-01
The wrist patch-type ECG/APW sensor system is proposed for continuous and comprehensive monitoring of the patient's cardiovascular system. The wrist patch-type ECG/APW sensor system is consists of ECG/APW sensor, ECG/APW electrodes, and base station for real-time monitoring of the patient's status. The ECG/APW sensor and electrodes are composed of wrist patch, bandage-type ECG electrode and fabric APW electrode, respectively so that the patient's cardiovascular system can be continuously monitored in daily life with free hand-movement. Since the proposed wrist patchtype ECG/APW sensor simultaneously measures ECG/APW, the cardiac indicators, such as HR and PAT, can be extracted for comprehensive and accurate monitoring of the patient's cardiovascular system. The proposed wrist patch-type ECG/APW sensor system is successfully verified using the commercial PPG sensor (RP520) and demonstrated with the customized Android application on the smart phone.
An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web
NASA Astrophysics Data System (ADS)
Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.
2013-09-01
Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an architecture to represent how integrate air quality sensor data stream into geospatial data infrastructure to present an interoperable air quality monitoring system for supporting disaster management systems by real time information. Developed system tested on Tehran air pollution sensors for calculating Air Quality Index (AQI) for CO pollutant and subsequently notifying registered users in emergency cases by sending warning E-mails. Air quality monitoring portal used to retrieving and visualize sensor observation through interoperable framework. This system provides capabilities to retrieve SOS observation using WPS in a cascaded service chaining pattern for monitoring trend of timely sensor observation.
Real-Time Sensor Validation System Developed for Reusable Launch Vehicle Testbed
NASA Technical Reports Server (NTRS)
Jankovsky, Amy L.
1997-01-01
A real-time system for validating sensor health has been developed for the reusable launch vehicle (RLV) program. This system, which is part of the propulsion checkout and control system (PCCS), was designed for use in an integrated propulsion technology demonstrator testbed built by Rockwell International and located at the NASA Marshall Space Flight Center. Work on the sensor health validation system, a result of an industry-NASA partnership, was completed at the NASA Lewis Research Center, then delivered to Marshall for integration and testing. The sensor validation software performs three basic functions: it identifies failed sensors, it provides reconstructed signals for failed sensors, and it identifies off-nominal system transient behavior that cannot be attributed to a failed sensor. The code is initiated by host software before the start of a propulsion system test, and it is called by the host program every control cycle. The output is posted to global memory for use by other PCCS modules. Output includes a list indicating the status of each sensor (i.e., failed, healthy, or reconstructed) and a list of features that are not due to a sensor failure. If a sensor failure is found, the system modifies that sensor's data array by substituting a reconstructed signal, when possible, for use by other PCCS modules.
NASA Astrophysics Data System (ADS)
Ledermann, Christoph; Pauer, Hendrikje; Woern, Heinz
2014-05-01
In minimally invasive surgery, exible mechatronic instruments promise to improve the overall performance of surgical interventions. However, those instruments require highly developed sensors in order to provide haptic feedback to the surgeon or to enable (semi-)autonomous tasks. Precisely, haptic sensors and a shape sensor are required. In this paper, we present our ber optical sensor system of Fiber Bragg Gratings, which consists of a shape sensor, a kinesthetic sensor and a tactile sensor. The status quo of each of the three sensors is described, as well as the concept to integrate them into one ber optical sensor system.
Electron beam diagnostic system using computed tomography and an annular sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmer, John W.; Teruya, Alan T.
2015-08-11
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2014-07-29
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Development of wireless sensor network for landslide monitoring system
NASA Astrophysics Data System (ADS)
Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S.
2017-05-01
A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km2. Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website.
The application of micromachined sensors to manned space systems
NASA Technical Reports Server (NTRS)
Bordano, Aldo; Havey, Gary; Wald, Jerry; Nasr, Hatem
1993-01-01
Micromachined sensors promise significant system advantages to manned space vehicles. Vehicle Health Monitoring (VHM) is a critical need for most future space systems. Micromachined sensors play a significant role in advancing the application of VHM in future space vehicles. This paper addresses the requirements that future VHM systems place on micromachined sensors such as: system integration, performance, size, weight, power, redundancy, reliability and fault tolerance. Current uses of micromachined sensors in commercial, military and space systems are used to document advantages that are gained and lessons learned. Based on these successes, the future use of micromachined sensors in space programs is discussed in terms of future directions and issues that need to be addressed such as how commercial and military sensors can meet future space system requirements.
Analysis of seawater flow through optical fiber
NASA Astrophysics Data System (ADS)
Fernández López, Sheila; Carrera Ramírez, Jesús; Rodriguez Sinobar, Leonor; Benitez, Javier; Rossi, Riccardo; Laresse de Tetto, Antonia
2015-04-01
The relation between sea and coastal aquifer is very important to the human populations living in coastal areas. The interrelation involves the submarine ground water discharge of relatively fresh water to the sea and the intrusion of sea water into the aquifer, which impairs the quality of ground water. The main process in seawater intrusion is managed by fluid-density effects which control the displacement of saline water. The underlain salinity acts as the restoring force, while hydrodynamic dispersion and convection lead to a mixing and vertical displacement of the brine. Because of this, a good definition of this saltwater-freshwater interface is needed what is intimately joined to the study of the movements (velocity fields) of fresh and salt water. As it is well known, the flow of salt water studied in seawater intrusion in stationary state, is nearly null or very low. However, in the rest of cases, this flux can be very important, so it is necessary its study to a better comprehension of this process. One possible manner of carry out this analysis is through the data from optical fiber. So, to research the distribution and velocity of the fresh and saltwater in the aquifer, a fiber optic system (OF) has been installed in Argentona (Baix Maresme, Catalonia). The main objective is to obtain the distributed temperature measurements (OF-DTS) and made progress in the interpretation of the dynamic processes of water. For some applications, the optical fiber acts as a passive temperature sensor but in our case, the technique Heated Active Fiber Optic will be used. This is based on the thermal response of the ground as a heat emission source is introduced. The thermal properties of the soil, dependent variables of soil water content, will make a specific temperature distribution around the cable. From the analyzed data we will deduce the velocity field, the real objective of our problem. To simulate this phenomenon and the coupled transport and flow problem, dominant in seawater intrusion, a finite element code in C ++ language will be developed. Finally, the information obtained numerically with our code will be checked with the field information.
NASA Astrophysics Data System (ADS)
Laskar, S.; Bordoloi, S.
2016-01-01
This paper presents an instrumentation system to measure the degradation in lubricating oil using a bare, tapered and bent multi-mode optical fiber (BTBMOF) sensor probe and a temperature probe. The sensor system consists of (i) a bare, tapered and bent multi-mode optical fiber (BTBMOF) as optical sensor along with a laser source and a LDR (Light Dependent Resistor) as detector (ii) a temperature sensor (iii) a ATmega microcontroller based data acquisition system and (iv) a trained ANN for processing and calibration. The BTBMOF sensor and the temperature sensor are used to provide the measure of refractive index (RI) and the temperature of a lubricating oil sample. A microcontroller based instrumentation system with trained ANN algorithm has been developed to determine the degradation of the lubricating oil sample by sampling the readings of the optical fiber sensor, and the temperature sensor.
Development of Sic Gas Sensor Systems
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Okojie, R. S.; Beheim, G. M.; Thomas, V.; Chen, L.; Lukco, D.; Liu, C. C.; Ward, B.; Makel, D.
2002-01-01
Silicon carbide (SiC) based gas sensors have significant potential to address the gas sensing needs of aerospace applications such as emission monitoring, fuel leak detection, and fire detection. However, in order to reach that potential, a range of technical challenges must be overcome. These challenges go beyond the development of the basic sensor itself and include the need for viable enabling technologies to make a complete gas sensor system: electrical contacts, packaging, and transfer of information from the sensor to the outside world. This paper reviews the status at NASA Glenn Research Center of SiC Schottky diode gas sensor development as well as that of enabling technologies supporting SiC gas sensor system implementation. A vision of a complete high temperature microfabricated SiC gas sensor system is proposed. In the long-term, it is believed that improvements in the SiC semiconductor material itself could have a dramatic effect on the performance of SiC gas sensor systems.
Sense, decide, act, communicate (SDAC): next generation of smart sensor systems
NASA Astrophysics Data System (ADS)
Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian
2004-09-01
The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.
Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System
NASA Technical Reports Server (NTRS)
Duncan, Joshua J.; Youngquist, Robert C.
2013-01-01
The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors
A civil structural monitoring system based on fiber grating sensors
NASA Astrophysics Data System (ADS)
Zhang, Yan; Cai, Haiwen; Pastore, Robert; Ju, Jing; Zeng, Debing; Yin, Zhifan; Cui, Hong-Liang
2003-08-01
Optical fiber sensors based on Fiber Bragg Grating (FBG) technology have found many applications in the area of civil structural monitoring systems, such as in bridge monitoring and maintenance. FBG sensors can measure the deformation, overload and cracks on bridge with a high sensitivity. In this paper we report on our recent work a structural monitoring system using FBG sensors. Basic theoretical background and design of the system is described here, including the light source, FBG sensors, demodulator sensors, signal detection and processing schemes. The system will be installed on a major arch bridge currently under construction in Shanghai, China for long-term in situ health monitoring. The system schematic arrangement on the bridge is introduced in brief. Simulation experiments in the laboratory were carried out to test the performance of FBG strain sensors. The sensor response shows excellent linearity against the strain imposed on it. Traffic and overload monitoring on bridge using FBG sensors is also discussed and planned for the near future.
New virtual sonar and wireless sensor system concepts
NASA Astrophysics Data System (ADS)
Houston, B. H.; Bucaro, J. A.; Romano, A. J.
2004-05-01
Recently, exciting new sensor array concepts have been proposed which, if realized, could revolutionize how we approach surface mounted acoustic sensor systems for underwater vehicles. Two such schemes are so-called ``virtual sonar'' which is formulated around Helmholtz integral processing and ``wireless'' systems which transfer sensor information through radiated RF signals. The ``virtual sonar'' concept provides an interesting framework through which to combat the dilatory effects of the structure on surface mounted sensor systems including structure-borne vibration and variations in structure-backing impedance. The ``wireless'' concept would eliminate the necessity of a complex wiring or fiber-optic external network while minimizing vehicle penetrations. Such systems, however, would require a number of advances in sensor and RF waveguide technologies. In this presentation, we will discuss those sensor and sensor-related developments which are desired or required in order to make practical such new sensor system concepts, and we will present several underwater applications from the perspective of exploiting these new sonar concepts. [Work supported by ONR.
Continued Development of Compact Multi-Gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado-Alonso, Jesus; Phillips, Straun; Berry, David; DiCarmine, Paul; Chullen, Cinda; Quinn, Gregory
2016-01-01
Miniature optical gas sensors based on luminescent materials have shown great potential as alternatives to NIR-based gas sensor systems for the Portable Life Support System (PLSS). The unique capability of luminescent sensors for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages over both traditional and advanced non-dispersive infrared (NDIR) gas sensors, which have so far shown longer life than luminescent sensors. In this paper we present the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted in Intelligent Optical Systems laboratories, a United Technologies Corporation Aerospace Systems (UTC) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems, and the advantages and limitations found through detailed sensor validation are discussed.
Airborne net-centric multi-INT sensor control, display, fusion, and exploitation systems
NASA Astrophysics Data System (ADS)
Linne von Berg, Dale C.; Lee, John N.; Kruer, Melvin R.; Duncan, Michael D.; Olchowski, Fred M.; Allman, Eric; Howard, Grant
2004-08-01
The NRL Optical Sciences Division has initiated a multi-year effort to develop and demonstrate an airborne net-centric suite of multi-intelligence (multi-INT) sensors and exploitation systems for real-time target detection and targeting product dissemination. The goal of this Net-centric Multi-Intelligence Fusion Targeting Initiative (NCMIFTI) is to develop an airborne real-time intelligence gathering and targeting system that can be used to detect concealed, camouflaged, and mobile targets. The multi-INT sensor suite will include high-resolution visible/infrared (EO/IR) dual-band cameras, hyperspectral imaging (HSI) sensors in the visible-to-near infrared, short-wave and long-wave infrared (VNIR/SWIR/LWIR) bands, Synthetic Aperture Radar (SAR), electronics intelligence sensors (ELINT), and off-board networked sensors. Other sensors are also being considered for inclusion in the suite to address unique target detection needs. Integrating a suite of multi-INT sensors on a single platform should optimize real-time fusion of the on-board sensor streams, thereby improving the detection probability and reducing the false alarms that occur in reconnaissance systems that use single-sensor types on separate platforms, or that use independent target detection algorithms on multiple sensors. In addition to the integration and fusion of the multi-INT sensors, the effort is establishing an open-systems net-centric architecture that will provide a modular "plug and play" capability for additional sensors and system components and provide distributed connectivity to multiple sites for remote system control and exploitation.
Ontological Problem-Solving Framework for Dynamically Configuring Sensor Systems and Algorithms
Qualls, Joseph; Russomanno, David J.
2011-01-01
The deployment of ubiquitous sensor systems and algorithms has led to many challenges, such as matching sensor systems to compatible algorithms which are capable of satisfying a task. Compounding the challenges is the lack of the requisite knowledge models needed to discover sensors and algorithms and to subsequently integrate their capabilities to satisfy a specific task. A novel ontological problem-solving framework has been designed to match sensors to compatible algorithms to form synthesized systems, which are capable of satisfying a task and then assigning the synthesized systems to high-level missions. The approach designed for the ontological problem-solving framework has been instantiated in the context of a persistence surveillance prototype environment, which includes profiling sensor systems and algorithms to demonstrate proof-of-concept principles. Even though the problem-solving approach was instantiated with profiling sensor systems and algorithms, the ontological framework may be useful with other heterogeneous sensing-system environments. PMID:22163793
Chemiresistive Graphene Sensors for Ammonia Detection.
Mackin, Charles; Schroeder, Vera; Zurutuza, Amaia; Su, Cong; Kong, Jing; Swager, Timothy M; Palacios, Tomás
2018-05-09
The primary objective of this work is to demonstrate a novel sensor system as a convenient vehicle for scaled-up repeatability and the kinetic analysis of a pixelated testbed. This work presents a sensor system capable of measuring hundreds of functionalized graphene sensors in a rapid and convenient fashion. The sensor system makes use of a novel array architecture requiring only one sensor per pixel and no selector transistor. The sensor system is employed specifically for the evaluation of Co(tpfpp)ClO 4 functionalization of graphene sensors for the detection of ammonia as an extension of previous work. Co(tpfpp)ClO 4 treated graphene sensors were found to provide 4-fold increased ammonia sensitivity over pristine graphene sensors. Sensors were also found to exhibit excellent selectivity over interfering compounds such as water and common organic solvents. The ability to monitor a large sensor array with 160 pixels provides insights into performance variations and reproducibility-critical factors in the development of practical sensor systems. All sensors exhibit the same linearly related responses with variations in response exhibiting Gaussian distributions, a key finding for variation modeling and quality engineering purposes. The mean correlation coefficient between sensor responses was found to be 0.999 indicating highly consistent sensor responses and excellent reproducibility of Co(tpfpp)ClO 4 functionalization. A detailed kinetic model is developed to describe sensor response profiles. The model consists of two adsorption mechanisms-one reversible and one irreversible-and is shown capable of fitting experimental data with a mean percent error of 0.01%.
Operation of remote mobile sensors for security of drinking water distribution systems.
Perelman, By Lina; Ostfeld, Avi
2013-09-01
The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.
MAGID-II: a next-generation magnetic unattended ground sensor (UGS)
NASA Astrophysics Data System (ADS)
Walter, Paul A.; Mauriello, Fred; Huber, Philip
2012-06-01
A next generation magnetic sensor is being developed at L-3 Communications, Communication Systems East to enhance the ability of Army and Marine Corps unattended ground sensor (UGS) systems to detect and track targets on the battlefield. This paper describes a magnetic sensor that provides superior detection range for both armed personnel and vehicle targets, at a reduced size, weight, and level of power consumption (SWAP) over currently available magnetic sensors. The design integrates the proven technology of a flux gate magnetometer combined with advanced digital signal processing algorithms to provide the warfighter with a rapidly deployable, extremely low false-alarm-rate sensor. This new sensor improves on currently available magnetic UGS systems by providing not only target detection and direction information, but also a magnetic disturbance readout, indicating the size of the target. The sensor integrates with Government Off-the-Shelf (GOTS) systems such as the United States Army's Battlefield Anti-Intrusion System (BAIS) and the United States Marine Corps Tactical Remote Sensor System (TRSS). The system has undergone testing by the US Marine Corps, as well as extensive company testing. Results from these field tests are given.
Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
Lambrecht, Joris M; Kirsch, Robert F
2014-11-01
Inertial and magnetic sensors are valuable for untethered, self-contained human movement analysis. Very recently, complete integration of inertial sensors, magnetic sensors, and processing into single packages, has resulted in miniature, low power devices that could feasibly be employed in an implantable motion capture system. We developed a wearable sensor system based on a commercially available system-in-package inertial and magnetic sensor. We characterized the accuracy of the system in measuring 3-D orientation-with and without magnetometer-based heading compensation-relative to a research grade optical motion capture system. The root mean square error was less than 4° in dynamic and static conditions about all axes. Using four sensors, recording from seven degrees-of-freedom of the upper limb (shoulder, elbow, wrist) was demonstrated in one subject during reaching motions. Very high correlation and low error was found across all joints relative to the optical motion capture system. Findings were similar to previous publications using inertial sensors, but at a fraction of the power consumption and size of the sensors. Such ultra-small, low power sensors provide exciting new avenues for movement monitoring for various movement disorders, movement-based command interfaces for assistive devices, and implementation of kinematic feedback systems for assistive interventions like functional electrical stimulation.
Laser sensor system documentation.
DOT National Transportation Integrated Search
2017-03-01
Phase 1 of TxDOT Project 0-6873, True Road Surface Deflection Measuring Device, developed a : laser sensor system based on several sensors mounted on a rigid beam. : This sensor system remains with CTR currently, as the project is moving into Phase 2...
Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
Yurtman, Aras; Barshan, Billur
2017-08-09
Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-02-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-01-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148
NASA Astrophysics Data System (ADS)
Korotaev, Valery V.; Denisov, Victor M.; Rodrigues, Joel J. P. C.; Serikova, Mariya G.; Timofeev, Andrey V.
2015-05-01
The paper deals with the creation of integrated monitoring systems. They combine fiber-optic classifiers and local sensor networks. These systems allow for the monitoring of complex industrial objects. Together with adjacent natural objects, they form the so-called geotechnical systems. An integrated monitoring system may include one or more spatially continuous fiber-optic classifiers based on optic fiber and one or more arrays of discrete measurement sensors, which are usually combined in sensor networks. Fiber-optic classifiers are already widely used for the control of hazardous extended objects (oil and gas pipelines, railways, high-rise buildings, etc.). To monitor local objects, discrete measurement sensors are generally used (temperature, pressure, inclinometers, strain gauges, accelerometers, sensors measuring the composition of impurities in the air, and many others). However, monitoring complex geotechnical systems require a simultaneous use of continuous spatially distributed sensors based on fiber-optic cable and connected local discrete sensors networks. In fact, we are talking about integration of the two monitoring methods. This combination provides an additional way to create intelligent monitoring systems. Modes of operation of intelligent systems can automatically adapt to changing environmental conditions. For this purpose, context data received from one sensor (e.g., optical channel) may be used to change modes of work of other sensors within the same monitoring system. This work also presents experimental results of the prototype of the integrated monitoring system.
Transient multivariable sensor evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Heifetz, Alexander
A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.
Sensor Systems for Prognostics and Health Management
Cheng, Shunfeng; Azarian, Michael H.; Pecht, Michael G.
2010-01-01
Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented. PMID:22219686
Sensor systems for prognostics and health management.
Cheng, Shunfeng; Azarian, Michael H; Pecht, Michael G
2010-01-01
Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttner, William J.; Rivkin, Carl; Burgess, Robert
Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cellmore » Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.« less
Health Monitoring for Airframe Structural Characterization
NASA Technical Reports Server (NTRS)
Munns, Thomas E.; Kent, Renee M.; Bartolini, Antony; Gause, Charles B.; Borinski, Jason W.; Dietz, Jason; Elster, Jennifer L.; Boyd, Clark; Vicari, Larry; Ray, Asok;
2002-01-01
This study established requirements for structural health monitoring systems, identified and characterized a prototype structural sensor system, developed sensor interpretation algorithms, and demonstrated the sensor systems on operationally realistic test articles. Fiber-optic corrosion sensors (i.e., moisture and metal ion sensors) and low-cycle fatigue sensors (i.e., strain and acoustic emission sensors) were evaluated to validate their suitability for monitoring aging degradation; characterize the sensor performance in aircraft environments; and demonstrate placement processes and multiplexing schemes. In addition, a unique micromachined multimeasure and sensor concept was developed and demonstrated. The results show that structural degradation of aircraft materials could be effectively detected and characterized using available and emerging sensors. A key component of the structural health monitoring capability is the ability to interpret the information provided by sensor system in order to characterize the structural condition. Novel deterministic and stochastic fatigue damage development and growth models were developed for this program. These models enable real time characterization and assessment of structural fatigue damage.
NASA Astrophysics Data System (ADS)
Conklin, John Albert
This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also presents future work needed to expand the functionality and utility of the modular sensor.
Sensor Failure Detection of FASSIP System using Principal Component Analysis
NASA Astrophysics Data System (ADS)
Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina
2018-02-01
In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
...; Fiber Optic Sensor Systems Technology Corporation AGENCY: Department of the Navy, DoD. ACTION: Notice..., 2012, announcing an intent to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable... the Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology...
Fibre optic portable rail vehicle detector
NASA Astrophysics Data System (ADS)
Kepak, Stanislav; Cubik, Jakub; Zavodny, Petr; Hejduk, Stanislav; Nedoma, Jan; Davidson, Alan; Vasinek, Vladimir
2016-12-01
During track maintenance operations, the early detection of oncoming rail vehicles is critical for the safety of maintenance personnel. In addition, the detection system should be simple to install at the trackside by minimally qualified personnel. Fibre optic based sensor systems have the inherent advantages of being passive, unaffected by radio frequency interference (RFI) and suffering very low signal attenuation. Such a system therefore represents a good alternative to conventional approaches such as ultrasonic based sensor systems. The proposed system consists of one or more passive fibre trackside sensors and an x86 processing unit located at the work site. The solid fibre connection between sensors and processing unit eliminates the risk of RFI. In addition, the detection system sensors are easy to install with no requirement for electrical power at the sensor site. The system was tested on a tram line in Ostrava with the results obtained indicating the successful detection of all the trams in the monitoring windows using a single sensor. However, the platform allows flexibility in configuring multiple sensors where required by system users.
Smart sensor systems for human health breath monitoring applications.
Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A
2011-09-01
Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.
1989-01-01
A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.
Intelligent Sensors: An Integrated Systems Approach
NASA Technical Reports Server (NTRS)
Mahajan, Ajay; Chitikeshi, Sanjeevi; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando
2005-01-01
The need for intelligent sensors as a critical component for Integrated System Health Management (ISHM) is fairly well recognized by now. Even the definition of what constitutes an intelligent sensor (or smart sensor) is well documented and stems from an intuitive desire to get the best quality measurement data that forms the basis of any complex health monitoring and/or management system. If the sensors, i.e. the elements closest to the measurand, are unreliable then the whole system works with a tremendous handicap. Hence, there has always been a desire to distribute intelligence down to the sensor level, and give it the ability to assess its own health thereby improving the confidence in the quality of the data at all times. This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines some fundamental issues in the development of intelligent sensors under the following two categories: Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).
Multispectral image-fused head-tracked vision system (HTVS) for driving applications
NASA Astrophysics Data System (ADS)
Reese, Colin E.; Bender, Edward J.
2001-08-01
Current military thermal driver vision systems consist of a single Long Wave Infrared (LWIR) sensor mounted on a manually operated gimbal, which is normally locked forward during driving. The sensor video imagery is presented on a large area flat panel display for direct view. The Night Vision and Electronics Sensors Directorate and Kaiser Electronics are cooperatively working to develop a driver's Head Tracked Vision System (HTVS) which directs dual waveband sensors in a more natural head-slewed imaging mode. The HTVS consists of LWIR and image intensified sensors, a high-speed gimbal, a head mounted display, and a head tracker. The first prototype systems have been delivered and have undergone preliminary field trials to characterize the operational benefits of a head tracked sensor system for tactical military ground applications. This investigation will address the advantages of head tracked vs. fixed sensor systems regarding peripheral sightings of threats, road hazards, and nearby vehicles. An additional thrust will investigate the degree to which additive (A+B) fusion of LWIR and image intensified sensors enhances overall driving performance. Typically, LWIR sensors are better for detecting threats, while image intensified sensors provide more natural scene cues, such as shadows and texture. This investigation will examine the degree to which the fusion of these two sensors enhances the driver's overall situational awareness.
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)
2001-01-01
Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.
NASA Astrophysics Data System (ADS)
Putzer, P.; Hurni, A.; Manhart, M.; Tiefenbeck, C.; Plattner, M.; Koch, A. W.
2012-04-01
In this paper the concept and design of the Hybrid Sensor Bus (HSB) system for telecommunication satellites is presented. The HSB development in the frame of an ESA-ARTES project has been started in 2011 and the system will be tested as flight demonstrator onboard the German Heinrich Hertz communication satellite (H2Sat) in 2016. In state-of-the-art telecommunication platforms hundreds of sensors are necessary for satellite control and monitoring. The sensors are wired point-to-point (p2p) to the satellite management unit (SMU) which results in a high mass impact but preliminary increases AIT effort and thereby the overall satellite costs. Sensor bus architectures reduce AIT cost by reduction of wiring effort, reduction in required test time and by providing a flexible sensor network topology. The HSB system is based on a modular concept including a controller module, a fiber-optic interrogator module and an I²C electric interrogator module The HSB system provides advanced performance which includes programmable and sensor specific alarm functions, averaging of dedicated sensor values and thereby a reduction of SMU processor load. The combination of electrical I2C sensors for punctual resolved measurements and fiber-optic sensors for e.g. thermal mapping of panels by embedding sensor fibers in the satellite structures results in a versatile system. In this paper we present the design of the HSB system taking into account the requirements from European platform manufacturers. The HSB design yields a product which can be implemented as replacement of standard p2p systems to build up a more cost efficient sensor system for geostationary satellites.
Application of the Systematic Sensor Selection Strategy for Turbofan Engine Diagnostics
NASA Technical Reports Server (NTRS)
Sowers, T. Shane; Kopasakis, George; Simon, Donald L.
2008-01-01
The data acquired from available system sensors forms the foundation upon which any health management system is based, and the available sensor suite directly impacts the overall diagnostic performance that can be achieved. While additional sensors may provide improved fault diagnostic performance, there are other factors that also need to be considered such as instrumentation cost, weight, and reliability. A systematic sensor selection approach is desired to perform sensor selection from a holistic system-level perspective as opposed to performing decisions in an ad hoc or heuristic fashion. The Systematic Sensor Selection Strategy is a methodology that optimally selects a sensor suite from a pool of sensors based on the system fault diagnostic approach, with the ability of taking cost, weight, and reliability into consideration. This procedure was applied to a large commercial turbofan engine simulation. In this initial study, sensor suites tailored for improved diagnostic performance are constructed from a prescribed collection of candidate sensors. The diagnostic performance of the best performing sensor suites in terms of fault detection and identification are demonstrated, with a discussion of the results and implications for future research.
Application of the Systematic Sensor Selection Strategy for Turbofan Engine Diagnostics
NASA Technical Reports Server (NTRS)
Sowers, T. Shane; Kopasakis, George; Simon, Donald L.
2008-01-01
The data acquired from available system sensors forms the foundation upon which any health management system is based, and the available sensor suite directly impacts the overall diagnostic performance that can be achieved. While additional sensors may provide improved fault diagnostic performance there are other factors that also need to be considered such as instrumentation cost, weight, and reliability. A systematic sensor selection approach is desired to perform sensor selection from a holistic system-level perspective as opposed to performing decisions in an ad hoc or heuristic fashion. The Systematic Sensor Selection Strategy is a methodology that optimally selects a sensor suite from a pool of sensors based on the system fault diagnostic approach, with the ability of taking cost, weight and reliability into consideration. This procedure was applied to a large commercial turbofan engine simulation. In this initial study, sensor suites tailored for improved diagnostic performance are constructed from a prescribed collection of candidate sensors. The diagnostic performance of the best performing sensor suites in terms of fault detection and identification are demonstrated, with a discussion of the results and implications for future research.
Continued Development of Compact Multi-gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado-Alonso, Jesús; Phillips, Straun; Chullen, Cinda; Quinn, Gregory
2016-01-01
Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to Near-Infrared-based gas sensor systems for the advanced space suit portable life support system (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. This paper presents the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.
Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors
NASA Technical Reports Server (NTRS)
Alexander, James; Goldberg, Hannah; Montgomery, James; Spiers, Gary; Liebe, Carl; Johnson, Andrew; Gromov, Konstantin; Konefat, Edward; Lam, Raymond; Meras, Patrick
2008-01-01
To be certain that a candidate sensor system will perform as expected during missions, we have developed a field test system and have executed test flights with a helicopter-mounted sensor platform over desert terrains, which simulate Lunar features. A key advantage to this approach is that different sensors can be tested and characterized in an environment relevant to the flight needs prior to flight. Testing the various sensors required the development of a field test system, including an instrument to validate the truth of the sensor system under test. The field test system was designed to be flexible enough to cover the test needs of many sensors (lidar, radar, cameras) that require an aerial test platform, including helicopters, airplanes, unmanned aerial vehicles (UAV), or balloons. To validate the performance of the sensor under test, the dynamics of the test platform must be known with sufficient accuracy to provide accurate models for input into algorithm development. The test system provides support equipment to measure the dynamics of the field test sensor platform, and allow computation of the truth position, velocity, attitude, and time.
Continued Development of Compact Multi-Gas Monitor for Life Support Systems Control in Space
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Phillips, Straun; Chullen, Cinda
2015-01-01
Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to NIR-based gas sensor systems for the Portable Life Support System (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. In this paper we present the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.
Uncooled microbolometer sensors for unattended applications
NASA Astrophysics Data System (ADS)
Kohin, Margaret; Miller, James E.; Leary, Arthur R.; Backer, Brian S.; Swift, William; Aston, Peter
2003-09-01
BAE SYSTEMS has been developing and producing uncooled microbolometer sensors since 1995. Recently, uncooled sensors have been used on Pointer Unattended Aerial Vehicles and considered for several unattended sensor applications including DARPA Micro-Internetted Unattended Ground Sensors (MIUGS), Army Modular Acoustic Imaging Sensors (MAIS), and Redeployable Unattended Ground Sensors (R-UGS). This paper describes recent breakthrough uncooled sensor performance at BAE SYSTEMS and how this improved performance has been applied to a new Standard Camera Core (SCC) that is ideal for these unattended applications. Video imagery from a BAE SYSTEMS 640x480 imaging camera flown in a Pointer UAV is provided. Recent performance results are also provided.
A Fault Tolerant System for an Integrated Avionics Sensor Configuration
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Lancraft, R. E.
1984-01-01
An aircraft sensor fault tolerant system methodology for the Transport Systems Research Vehicle in a Microwave Landing System (MLS) environment is described. The fault tolerant system provides reliable estimates in the presence of possible failures both in ground-based navigation aids, and in on-board flight control and inertial sensors. Sensor failures are identified by utilizing the analytic relationships between the various sensors arising from the aircraft point mass equations of motion. The estimation and failure detection performance of the software implementation (called FINDS) of the developed system was analyzed on a nonlinear digital simulation of the research aircraft. Simulation results showing the detection performance of FINDS, using a dual redundant sensor compliment, are presented for bias, hardover, null, ramp, increased noise and scale factor failures. In general, the results show that FINDS can distinguish between normal operating sensor errors and failures while providing an excellent detection speed for bias failures in the MLS, indicated airspeed, attitude and radar altimeter sensors.
NASA Technical Reports Server (NTRS)
1978-01-01
A digest of information on remote sensor data systems is given. It includes characteristics of spaceborne sensors and the supportive systems immediately associated therewith. It also includes end-to-end systems information that will assist the user in appraising total data system impact produced by a sensor. The objective is to provide a tool for anticipating the complexity of systems and potential data system problems as new user needs are generated. Materials in this handbook span sensor systems from the present to those planned for use in the 1990's. Sensor systems on all planned missions are presented in digest form, condensed from data as available at the time of compilation. Projections are made of anticipated systems.
Manipulation based on sensor-directed control: An integrated end effector and touch sensing system
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
A hand/touch sensing system is described that, when mounted on a position-controlled manipulator, greatly expands the kinds of automated manipulation tasks that can be undertaken. Because of the variety of coordinate conversions, control equations, and completion criteria, control is necessarily dependent upon a small digital computer. The sensing system is designed both to be rugged and to sense the necessary touch and force information required to execute a wide range of manipulation tasks. The system consists of a six-axis wrist sensor, external touch sensors, and a pair of matrix jaw sensors. Details of the construction of the particular sensors, the integration of the end effector into the sensor system, and the control algorithms for using the sensor outputs to perform manipulation tasks automatically are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.
The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.
NASA Technical Reports Server (NTRS)
Liu, G.
1985-01-01
One of the major concerns in the design of an active control system is obtaining the information needed for effective feedback. This involves the combination of sensing and estimation. A sensor location index is defined as the weighted sum of the mean square estimation errors in which the sensor locations can be regarded as estimator design parameters. The design goal is to choose these locations to minimize the sensor location index. The choice of the number of sensors is a tradeoff between the estimation quality based upon the same performance index and the total costs of installing and maintaining extra sensors. An experimental study for choosing the sensor location was conducted on an aeroelastic system. The system modeling which includes the unsteady aerodynamics model developed by Stephen Rock was improved. Experimental results verify the trend of the theoretical predictions of the sensor location index for different sensor locations at various wind speeds.
The Radio Frequency Health Node Wireless Sensor System
NASA Technical Reports Server (NTRS)
Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.
2009-01-01
The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor units. The RFHN includes a core module that performs generic computer functions, including management of power and input, output, processing, and storage of data. In a typical application, the processing capabilities in the RFHN are utilized to perform preprocessing, trending, and fusion of sensor data. The core module also serves as the unit through which the remote control computer configures the sensor units and the rest of the RFHN.
NASA Astrophysics Data System (ADS)
Romo-Medrano, Katya E.; Khotiaintsev, Sergei N.; García-Garduño, Victor
2004-08-01
An optical-fibre sensor system is presented for monitoring void fraction distribution in a spacecraft's gas and propellant centrifuge separator. The system could be used at the separator development stage or for monitoring, during ground tests, the elements of the spacecraft propulsion system. Our sensor system employs an array of point optical-fibre refractometric transducers installed in the form of several linear radial arrays on the separator rotating blades. We employed a small-size hemispherical optical detection element as the transducer and we optimized its parameters through numerical ray-tracing. The aim is to minimize the effect of the thin film of liquid that forms on the transducer's surface in this application. The features of this sensor system are: (1) an efficient matrix-type multiplexing scheme, (2) the installation of the main optoelectronic unit of the sensor in a hermetically sealed container inside the separator tank located on the rotating shaft and (3) the spark-proof and explosion-proof design of the sensor circuits and elements. The sensor is simple, reliable, low-cost and is capable of withstanding the factors involved during operation of the propulsion system such as cryogenic temperatures and chemically aggressive liquids. The novel elements and design concepts implemented in this sensor system can also find applications in other sensors for spacecraft propulsion systems and also in a variety of optical-fibre sensors used in scientific research and industry.
High pressure fiber optic sensor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guida, Renato; Xia, Hua; Lee, Boon K
2013-11-26
The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.
Model-Based Economic Evaluation of Treatments for Depression: A Systematic Literature Review.
Kolovos, Spyros; Bosmans, Judith E; Riper, Heleen; Chevreul, Karine; Coupé, Veerle M H; van Tulder, Maurits W
2017-09-01
An increasing number of model-based studies that evaluate the cost effectiveness of treatments for depression are being published. These studies have different characteristics and use different simulation methods. We aimed to systematically review model-based studies evaluating the cost effectiveness of treatments for depression and examine which modelling technique is most appropriate for simulating the natural course of depression. The literature search was conducted in the databases PubMed, EMBASE and PsycInfo between 1 January 2002 and 1 October 2016. Studies were eligible if they used a health economic model with quality-adjusted life-years or disability-adjusted life-years as an outcome measure. Data related to various methodological characteristics were extracted from the included studies. The available modelling techniques were evaluated based on 11 predefined criteria. This methodological review included 41 model-based studies, of which 21 used decision trees (DTs), 15 used cohort-based state-transition Markov models (CMMs), two used individual-based state-transition models (ISMs), and three used discrete-event simulation (DES) models. Just over half of the studies (54%) evaluated antidepressants compared with a control condition. The data sources, time horizons, cycle lengths, perspectives adopted and number of health states/events all varied widely between the included studies. DTs scored positively in four of the 11 criteria, CMMs in five, ISMs in six, and DES models in seven. There were substantial methodological differences between the studies. Since the individual history of each patient is important for the prognosis of depression, DES and ISM simulation methods may be more appropriate than the others for a pragmatic representation of the course of depression. However, direct comparisons between the available modelling techniques are necessary to yield firm conclusions.
Barcellos, Daphne Câmara; Fonseca, Beatriz Maria; Pucci, César Rogério; Cavalcanti, Bruno das Neves; Persici, Erasmo De Souza; Gonçalves, Sérgio Eduardo de Paiva
2016-07-01
This study assessed a 6 month resin/dentin bond's durability and cytotoxic effect of Zn-doped model dentin adhesives. The mechanical and physicochemical properties were also tested. A model etch-and-rinse single-bottle adhesive was formulated (55wt.% Bis-GMA, 45wt.% HEMA, 0.5wt.% CQ, 0.5wt.% DMAEMA) and Zinc methacrylate (Zn-Mt) or ZnO nanoparticles (ZnOn) were added to the model's adhesive, resulting in three groups: Group Control (control model adhesive); Group Zn-Mt (1wt.% Zn-Mt incorporated to adhesive) and Group ZnOn (1wt.% ZnOn incorporated to adhesive). The microtensile bond strength (mTBS) was assessed after 24h or 6 months in water storage. Mechanical properties (diametral tensile strength/DTS, flexural strength/FS, flexural modulus/FM, resilience modulus/RM, and compressive strength/CS) and physicochemical properties (polymerization shrinkage/PS, contact angle/CA, water sorption/WS, and water solubility/WS) were also tested. Cytotoxicity was evaluated with SRB biochemical assay. No significant difference in the DTS, FS, FM, CS, CA, WS, and WS were found when 1% of ZnOn or Zn-Mt was added to the model dentin adhesive. Group Zn-Mt decreased the RM of adhesive. Groups Zn-Mt and ZnOn decreased the PS of adhesives. Group ZnOn reduced the cytotoxicity of adhesive. Group ZnOn preserved mTBS after 6 months storage without degradation areas as seen by SEM analysis. The 1wt.% ZnOn may preserve the integrity of the hybrid layer and may reduce cytotoxicity and polymerization shrinkage of model dentin adhesive. The addition of Zn-Mt to the adhesive had no beneficial effects. Copyright © 2016 The Academy of Dental Materials. All rights reserved.
Sensors-network and its application in the intelligent storage security
NASA Astrophysics Data System (ADS)
Zhang, Qingying; Nicolescu, Mihai; Jiang, Xia; Zhang, Ying; Yue, Weihong; Xiao, Weihong
2004-11-01
Intelligent storage systems run on different advanced technologies, such as linear layout, business intelligence and data mining. Security, the basic desire of the storage system, has been focused on with the indraught of multimedia communication technology and sensors" network. Along with the developing of science and the social demands, multifarious alarming system has been designed and improved to be intelligentized, modularized and have network connections. It is of great moment to make the storage, and further more, the logistics system more and more efficient and perfect with modern science and technology. Diversified information on the spot should be caught by different kinds of sensors. Those signals are treated and communicated to the control center to give the further actions. For fire-proofing, broad-spectrum gas sensors, fume sensors, flame sensors and temperature sensors are used to catch the information in their own ways. Once the fire is taken somewhere, the sensors work by the fume, temperature, and flame as well as gas immediately. Meanwhile the intelligent control system starts. It passes the tidings to the center unit. At the same time, it sets those movable walls on to work quickly to obstruct the fire"s spreading. While for guarding the warehouse against theft, cut-off sensors, body sensors, photoelectric sensors, microwave sensors and closed-circuit television as well as electronic clocks are available to monitor the warehouse reasonably. All of those sensors work in a net way. The intelligent control system is made with a digital circuit instead of traditional switch one. This system can work in a better way in many cases. Its reliability is high and the cost is low.
33 CFR 117.743 - Rahway River.
Code of Federal Regulations, 2010 CFR
2010-07-01
... lights anytime the bridge is not in the full open position. (d) An infrared sensor system shall be... the infrared sensor system. (g) If the infrared sensors detect a vessel or other obstruction.... (j) In the event of a failure, or obstruction to the infrared sensor system, the bridge shall...
DOT National Transportation Integrated Search
2016-08-01
This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) micro-electromechanical sensors and systems (MEMS) embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system f...
33 CFR 117.743 - Rahway River.
Code of Federal Regulations, 2011 CFR
2011-07-01
... lights anytime the bridge is not in the full open position. (d) An infrared sensor system shall be... the infrared sensor system. (g) If the infrared sensors detect a vessel or other obstruction.... (j) In the event of a failure, or obstruction to the infrared sensor system, the bridge shall...
33 CFR 117.743 - Rahway River.
Code of Federal Regulations, 2012 CFR
2012-07-01
... lights anytime the bridge is not in the full open position. (d) An infrared sensor system shall be... the infrared sensor system. (g) If the infrared sensors detect a vessel or other obstruction.... (j) In the event of a failure, or obstruction to the infrared sensor system, the bridge shall...
33 CFR 117.743 - Rahway River.
Code of Federal Regulations, 2014 CFR
2014-07-01
... lights anytime the bridge is not in the full open position. (d) An infrared sensor system shall be... the infrared sensor system. (g) If the infrared sensors detect a vessel or other obstruction.... (j) In the event of a failure, or obstruction to the infrared sensor system, the bridge shall...
33 CFR 117.743 - Rahway River.
Code of Federal Regulations, 2013 CFR
2013-07-01
... lights anytime the bridge is not in the full open position. (d) An infrared sensor system shall be... the infrared sensor system. (g) If the infrared sensors detect a vessel or other obstruction.... (j) In the event of a failure, or obstruction to the infrared sensor system, the bridge shall...
Intelligent Sensors: Strategies for an Integrated Systems Approach
NASA Technical Reports Server (NTRS)
Chitikeshi, Sanjeevi; Mahajan, Ajay; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando
2005-01-01
This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).
A Soft Sensor-Based Three-Dimensional (3-D) Finger Motion Measurement System
Park, Wookeun; Ro, Kyongkwan; Kim, Suin; Bae, Joonbum
2017-01-01
In this study, a soft sensor-based three-dimensional (3-D) finger motion measurement system is proposed. The sensors, made of the soft material Ecoflex, comprise embedded microchannels filled with a conductive liquid metal (EGaln). The superior elasticity, light weight, and sensitivity of soft sensors allows them to be embedded in environments in which conventional sensors cannot. Complicated finger joints, such as the carpometacarpal (CMC) joint of the thumb are modeled to specify the location of the sensors. Algorithms to decouple the signals from soft sensors are proposed to extract the pure flexion, extension, abduction, and adduction joint angles. The performance of the proposed system and algorithms are verified by comparison with a camera-based motion capture system. PMID:28241414
Wearable sensor systems for infants.
Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio
2015-02-05
Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.
Wearable Sensor Systems for Infants
Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio
2015-01-01
Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future. PMID:25664432
Circuits and Systems for Low-Power Miniaturized Wireless Sensors
NASA Astrophysics Data System (ADS)
Nagaraju, Manohar
The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines
Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu
2016-01-01
In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved. PMID:27136561
Simulating optoelectronic systems for remote sensing with SENSOR
NASA Astrophysics Data System (ADS)
Boerner, Anko
2003-04-01
The consistent end-to-end simulation of airborne and spaceborne remote sensing systems is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software ENvironment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. It allows the simulation of a wide range of optoelectronic systems for remote sensing. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. Part three consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimization requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and examples of its use are given. The verification of SENSOR is demonstrated.
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines.
Liu, Liansheng; Liu, Datong; Zhang, Yujie; Peng, Yu
2016-04-29
In a complex system, condition monitoring (CM) can collect the system working status. The condition is mainly sensed by the pre-deployed sensors in/on the system. Most existing works study how to utilize the condition information to predict the upcoming anomalies, faults, or failures. There is also some research which focuses on the faults or anomalies of the sensing element (i.e., sensor) to enhance the system reliability. However, existing approaches ignore the correlation between sensor selecting strategy and data anomaly detection, which can also improve the system reliability. To address this issue, we study a new scheme which includes sensor selection strategy and data anomaly detection by utilizing information theory and Gaussian Process Regression (GPR). The sensors that are more appropriate for the system CM are first selected. Then, mutual information is utilized to weight the correlation among different sensors. The anomaly detection is carried out by using the correlation of sensor data. The sensor data sets that are utilized to carry out the evaluation are provided by National Aeronautics and Space Administration (NASA) Ames Research Center and have been used as Prognostics and Health Management (PHM) challenge data in 2008. By comparing the two different sensor selection strategies, the effectiveness of selection method on data anomaly detection is proved.
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Zvonar, G. A.; Baumann, W. T.; Delos, P. L.
1993-01-01
Recently, a modal domain optical fiber sensor has been demonstrated as a sensor in a control system for vibration suppression of a flexible cantilevered beam. This sensor responds to strain through a mechanical attachment to the structure. Because this sensor is of the interferometric type, the output of the sensor has a sinusoidal nonlinearity. For small levels of strain, the sensor can be operated in its linear region. For large levels of strain, the detection electronics can be configured to count fringes. In both of these configurations, the sensor nonlinearity imposes some restrictions on the performance of the control system. In this paper we investigate the effects of these sensor nonlinearities on the control system, and identify the region of linear operation in terms of the optical fiber sensor parameters.
Attitude measurement: Principles and sensors
NASA Technical Reports Server (NTRS)
Duchon, P.; Vermande, M. P.
1981-01-01
Tools used in the measurement of satellite attitude are described. Attention is given to the elements that characterize an attitude sensor, the references employed (stars, moon, Sun, Earth, magnetic fields, etc.), and the detectors (optical, magnetic, and inertial). Several examples of attitude sensors are described, including sun sensors, star sensors, earth sensors, triaxial magnetometers, and gyrometers. Finally, sensor combinations that make it possible to determine a complete attitude are considered; the SPOT attitude measurement system and a combined CCD star sensor-gyrometer system are discussed.
NASA Technical Reports Server (NTRS)
Kelly, W. L.; Howle, W. M.; Meredith, B. D.
1980-01-01
The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onbaord image processing. Since the IAS is a data preprocessing system which is closely coupled to the sensor system, it serves as a first step in providing a 'Smart' imaging sensor. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner and provide the opportunity to design sensor systems which can be reconfigured in near real time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.
Concept and Design of the Hybrid Sensor Bus System for Telecommunication Satellites
NASA Astrophysics Data System (ADS)
Hurni, Andreas; Tiefenbeck, Christoph; Manhart, Markus; Heyer, Heinz-Volker; Plattner, Markus; Putzer, Philipp; Roßner, Max; Koch, Alexander W.; Furano, Gianluca; McKenzie, Iain; Lam, King
2012-08-01
The Hybrid Sensor Bus (HSB) is a system for sensor interrogation in telecommunication satellites, which will be developed in the frame of the ESA ARTES program. The main target of the HSB system is the replacement of classical point-to-point wired sensors by sensors connected on bus networks. This will save mass and reduces efforts in assembly, integration and testing (AIT). The HSB system is able to manage an electrical I2C and a fiber-optical sensor network. The system consists of an intelligent power module, an electrical and a fiber-optical interrogator module in cold redundancy. Additional features of the HSB system are its modularity and the adaptability to different satellite platforms. The implementation of a HSB system allows platform manufacturers to build a more cost efficient satellite.This paper presents the concept and the design status of the HSB system.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2017-04-01
Mobile, heterogeneous, and smart sensor networks produce pervasive structural health monitoring (SHM) information. With various embedded sensors, smartphones have emerged to innovate SHM by empowering citizens to serve as sensors. By default, smartphones meet the fundamental smart sensor criteria, thanks to the built-in processor, memory, wireless communication units and mobile operating system. SHM using smartphones, however, faces technical challenges due to citizen-induced uncertainties, undesired sensor-structure integration, and lack of control over the sensing platform. Previously, the authors presented successful applications of smartphone accelerometers for structural vibration measurement and proposed a monitoring framework under citizen-induced spatiotemporal uncertainties. This study aims at extending the capabilities of smartphone-based SHM with a special focus on the lack of control over the sensor (i.e., the phone) positioning by citizens resulting in unknown sensor orientations. Using smartphone gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can be obtained with respect to gravitational and magnetic north directions. Using these sensor data, mobile operating system frameworks return processed features such as attitude and heading that can be used to correct misaligned sensor signals. For this purpose, a coordinate transformation procedure is proposed and illustrated on a two-story laboratory structural model and real-scale bridges with various sensor positioning examples. The proposed method corrects the sensor signals by tracking their orientations and improves measurement accuracy. Moreover, knowing structure’s coordinate system a priori, even the data from arbitrarily positioned sensors can automatically be transformed to the structural coordinates. In addition, this paper also touches some secondary mobile and heterogeneous data issues including imperfect sampling and geolocation services. The coordinate system transformation methods proposed in this study can be implemented in other non-smartphone-based SHM systems as long as similar instrumentation is available.
NASA Astrophysics Data System (ADS)
Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.
2016-04-01
The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night with weak wind. In the same night temperature gradients up to 30 K m-1 were determined above the meadow. The water was up to 13 K warmer than the air in this night resulting in a sharp and strong temperature decrease at the water surface and a moderate decrease with gradients up to -9 K m-1 in the air above. The plexiglass rings caused some obvious artefacts and affected data was removed and replaced by linear interpolation. According to the uncertainty estimation performed to date, conduction between fabric and fiber increased fiber temperatures by approximately 0.005 K at 2 m height on a sunny day with weak wind. This effect was deemed negligible as it reflected less than 1 % of the total heating compared to that in the air. The maximum absolute error was approximately 0.9 K at 2 m height on the same day. Ongoing work will demonstrate potential benefits of the enhanced-resolution profiles by quantitatively comparing measured and interpolated temperature profiles with varying resolution (as well as sensible heat fluxes computed according to flux-gradient-similarity).
A system for activity recognition using multi-sensor fusion.
Gao, Lei; Bourke, Alan K; Nelson, John
2011-01-01
This paper proposes a system for activity recognition using multi-sensor fusion. In this system, four sensors are attached to the waist, chest, thigh, and side of the body. In the study we present two solutions for factors that affect the activity recognition accuracy: the calibration drift and the sensor orientation changing. The datasets used to evaluate this system were collected from 8 subjects who were asked to perform 8 scripted normal activities of daily living (ADL), three times each. The Naïve Bayes classifier using multi-sensor fusion is adopted and achieves 70.88%-97.66% recognition accuracies for 1-4 sensors.
Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha
2017-12-14
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.
Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha
2017-01-01
Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system. PMID:29240666
Fluidic Sensor Temperature Indicating System.
A fluidic sensor temperature indicating system designed by Honeywell Inc was tested on a T56 engine during dynamometer calibration. It was also...based on the sensor being mounted in a T56 engine showed a hot gas temperature drop from 1970F at the sensor entrance to 1760F in the sensor pulsation
Proposed evaluation framework for assessing operator performance with multisensor displays
NASA Technical Reports Server (NTRS)
Foyle, David C.
1992-01-01
Despite aggressive work on the development of sensor fusion algorithms and techniques, no formal evaluation procedures have been proposed. Based on existing integration models in the literature, an evaluation framework is developed to assess an operator's ability to use multisensor, or sensor fusion, displays. The proposed evaluation framework for evaluating the operator's ability to use such systems is a normative approach: The operator's performance with the sensor fusion display can be compared to the models' predictions based on the operator's performance when viewing the original sensor displays prior to fusion. This allows for the determination as to when a sensor fusion system leads to: 1) poorer performance than one of the original sensor displays (clearly an undesirable system in which the fused sensor system causes some distortion or interference); 2) better performance than with either single sensor system alone, but at a sub-optimal (compared to the model predictions) level; 3) optimal performance (compared to model predictions); or, 4) super-optimal performance, which may occur if the operator were able to use some highly diagnostic 'emergent features' in the sensor fusion display, which were unavailable in the original sensor displays. An experiment demonstrating the usefulness of the proposed evaluation framework is discussed.
A Sensor System for Detection of Hull Surface Defects
Navarro, Pedro; Iborra, Andrés; Fernández, Carlos; Sánchez, Pedro; Suardíaz, Juan
2010-01-01
This paper presents a sensor system for detecting defects in ship hull surfaces. The sensor was developed to enable a robotic system to perform grit blasting operations on ship hulls. To achieve this, the proposed sensor system captures images with the help of a camera and processes them in real time using a new defect detection method based on thresholding techniques. What makes this method different is its efficiency in the automatic detection of defects from images recorded in variable lighting conditions. The sensor system was tested under real conditions at a Spanish shipyard, with excellent results. PMID:22163590
NASA Technical Reports Server (NTRS)
Powell, Bradley W.; Burroughs, Ivan A.
1994-01-01
Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.
Automatic Line Calling Badminton System
NASA Astrophysics Data System (ADS)
Affandi Saidi, Syahrul; Adawiyah Zulkiplee, Nurabeahtul; Muhammad, Nazmizan; Sarip, Mohd Sharizan Md
2018-05-01
A system and relevant method are described to detect whether a projectile impact occurs on one side of a boundary line or the other. The system employs the use of force sensing resistor-based sensors that may be designed in segments or assemblies and linked to a mechanism with a display. An impact classification system is provided for distinguishing between various events, including a footstep, ball impact and tennis racquet contact. A sensor monitoring system is provided for determining the condition of sensors and providing an error indication if sensor problems exist. A service detection system is provided when the system is used for tennis that permits activation of selected groups of sensors and deactivation of others.
Design and evaluation of a wireless sensor network based aircraft strength testing system.
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.
Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521
Noncontacting Optical Measurement And Inspection Systems
NASA Astrophysics Data System (ADS)
Asher, Jeffrey A.; Jackson, Robert L.
1986-10-01
Product inspection continues to play a growing role in the improvement of quality and reduction of scrap. Recent emphasis on precision measurements and in-process inspection have been a driving force for the development of noncontacting sensors. Noncontacting sensors can provide long term, unattended use due to the lack of sensor wear. Further, in applications where, sensor contact can damage or geometrically change the part to be measured or inspected, noncontacting sensors are the only technical approach available. MTI is involved in the development and sale of noncontacting sensors and custom inspection systems. This paper will review the recent advances in noncontacting sensor development. Machine vision and fiber optics sensor systems are finding a wide variety of industrial inspection applications. This paper will provide detailed examples of several state-of-the-art applications for these noncontacting sensors.
A new method for registration of heterogeneous sensors in a dimensional measurement system
NASA Astrophysics Data System (ADS)
Zhao, Yan; Wang, Zhong; Fu, Luhua; Qu, Xinghua; Zhang, Heng; Liu, Changjie
2017-10-01
Registration of multiple sensors is a basic step in multi-sensor dimensional or coordinate measuring systems before any measurement. In most cases, a common standard is used to be measured by all sensors, and this may work well for general registration of multiple homogeneous sensors. However, when inhomogeneous sensors detect a common standard, it is usually very difficult to obtain the same information, because of the different working principles of the sensors. In this paper, a new method called multiple steps registration is proposed to register two sensors: a video camera sensor (VCS) and a tactile probe sensor (TPS). In this method, the two sensors measure two separated standards: a chrome circle on a reticle and a reference sphere with a constant distance between them, fixed on a steel plate. The VCS captures only the circle and the TPS touches only the sphere. Both simulations and real experiments demonstrate that the proposed method is robust and accurate in the registration of multiple inhomogeneous sensors in a dimensional measurement system.
Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask.
Kieninger, Jochen; Tamari, Yaara; Enderle, Barbara; Jobst, Gerhard; Sandvik, Joe A; Pettersen, Erik O; Urban, Gerald A
2018-04-26
The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G) and breast cancer (T-47D) cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.
NeXOS, developing and evaluating a new generation of insitu ocean observation systems.
NASA Astrophysics Data System (ADS)
Delory, Eric; del Rio, Joaquin; Golmen, Lars; Roar Hareide, Nils; Pearlman, Jay; Rolin, Jean-Francois; Waldmann, Christoph; Zielinski, Oliver
2017-04-01
Ocean biological, chemical or physical processes occur over widely varying scales in space and time: from micro- to kilometer scales, from less than seconds to centuries. While space systems supply important data and information, insitu data is necessary for comprehensive modeling and forecasting of ocean dynamics. Yet, collection of in-situ observation on these scales is inherently challenging and remains generally difficult and costly in time and resources. This paper address the innovations and significant developments for a new generation of insitu sensors in FP7 European Union project "Next generation, Cost- effective, Compact, Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management" or "NeXOS" for short. Optical and acoustics sensors are the focus of NeXOS but NeXOS moves beyond just sensors as systems that simultaneously address multiple objectives and applications are becoming increasingly important. Thus NeXOS takes a perspective of both sensors and sensor systems with significant advantages over existing observing capabilities via the implementation of innovations such as multiplatform integration, greater reliability through better antifouling management and greater sensor and data interoperability through use of OGC standards. This presentation will address the sensor system development and field-testing of the new NeXOS sensor systems. This is being done on multiple platforms including profiling floats, gliders, ships, buoys and subsea stations. The implementation of a data system based on SWE and PUCK furthers interoperability across measurements and platforms. This presentation will review the sensor system capabilities, the status of field tests and recommendations for long-term ocean monitoring.
Systems and methods for detecting a flame in a fuel nozzle of a gas turbine
Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony
2013-05-07
A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be... the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system...
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be... the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...
A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
A new sensor system for mobile and aerial emission sampling was developed for open area sources, such as open burning. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, and black carbon, samplers for particulate matter with ...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
Yi, Wei-Ying; Leung, Kwong-Sak; Leung, Yee
2017-12-22
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems' hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field.
Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites
NASA Astrophysics Data System (ADS)
Thomas, Joseph; Ambroise, Arounaguiry; Birchfield, Kara; Cai, Wensheng; Sandmann, Christian; Singh, Sarabjit; Weidemaier, Kristin; Pitner, J. Bruce
2006-02-01
The early stage development studies of novel implantable continuous metabolite sensor systems for glucose, lactate and fatty acids are discussed. These sensors utilize non-enzymatic "reagentless" sensor systems based on NIR fluorophore-labeled binding proteins. For in vivo applications, NIR fluorescence based systems (beyond 600 nm) have the added benefit of reduced interference from background scattering, tissue and serum absorption and cell auto-fluorescence. The long wavelength emission facilitates implanted sensor disks to transmit fluorescence to an external reader through wireless connections and the resulting fluorescence signals can be correlated to metabolite concentrations. We have developed a prototype optical system that uses a bifurcated optical fiber to transmit excitation and read emission at the surface of the skin. With this system, fluorescence signals were read over time through animal skin. The changes in glucose concentration were studied using immobilized sensor proteins and were compared to non-immobilized sensors in solution. For sensors in solution, no response delay was observed. For immobilized systems, the fluorescence response showed a delay corresponding to the diffusion time for the metabolite to equilibrate within the sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeigler, Kristine E.; Ferguson, Blythe A.
2012-07-01
The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials andmore » condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors installed on the P Reactor Building blocks define the baseline materials condition of the P Reactor ISD external concrete structure. Continued monitoring of the blocks will enable evaluation of the effects of aging on the P Reactor ISD structure. The collected data will support validation of the material degradation model and assessment of the condition of the ISD structure over time. The following are recommendations for continued development of the ISD Sensor Network Test Bed: - Establish a long-term monitoring program using the concrete blocks with existing sensor and/or additional sensors for trending the concrete materials and structural condition; - Continue development of a stand-alone test bed sensor system that is self-powered and provides wireless transmission of data to a user-accessible dashboard; - Develop and implement periodic NDE/DE characterization of the concrete blocks to provide verification and validation for the measurements obtained through the sensor system and concrete degradation model(s). (authors)« less
Position and orientation determination system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpring, Lawrence J.; Farfan, Eduardo B.; Gordon, John R.
A position determination system and method is provided that may be used for obtaining position and orientation information of a detector in a contaminated room. The system includes a detector, a sensor operably coupled to the detector, and a motor coupled to the sensor to move the sensor around the detector. A CPU controls the operation of the motor to move the sensor around the detector and determines distance and angle data from the sensor to an object. The method includes moving a sensor around the detector and measuring distance and angle data from the sensor to an object atmore » incremental positions around the detector.« less