Sample records for sensor flight heritage

  1. The Next Generation Advanced Video Guidance Sensor: Flight Heritage and Current Development

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. This paper presents the flight heritage and results of the sensor technology, some hardware trades for the current sensor, and discusses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the various NGAVGS development units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.

  2. Sensitivity Study for Sensor Optical and Electric Crosstalk Based on Spectral Measurements: An Application to Developmental Sensors Using Heritage Sensors Such As MODIS

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Oudrari, Hassan; Xiong, Sanxiong; Che, Nianzeng; Xiong, Xiaoxiong

    2007-01-01

    The process of developing new sensors for space flight frequently builds upon the designs and experience of existing heritage space flight sensors. Frequently in the development and testing of new sensors, problems are encountered that pose the risk of serious impact on successful retrieval of geophysical products. This paper describes an approach to assess the importance of optical and electronic cross-talk on retrieval of geophysical products using new MODIS-like sensors through the use of MODIS data sets. These approaches may be extended to any sensor characteristic and any sensor where that characteristic may impact the Level 1 products so long as validated geophysical products are being developed from the heritage sensor. In this study, a set of electronic and/or optical cross-talk coefficients are postulated. These coefficients are sender-receiver influence coefficients and represent a sensor signal contamination on any detector on a focal plane when another band's detectors on that focal plane are stimulated with a monochromatic light. The approach involves using the postulated cross-talk coefficients on an actual set of MODIS data granules. The original MODIS data granules and the cross-talk impacted granules are used with validated geophysical algorithms to create the derived products. Comparison of the products produced with the original and cross-talk impacted granules indicates potential problems, if any, with the characteristics of the developmental sensor that are being studied.

  3. Intelligent Devices - Sensors and Actuators - A KSC Perspective

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Perotti, Jose M.

    2008-01-01

    The primary objective of this workshop is to identify areas of advancement in sensor measurements and technologies that will help to define standard practices and procedures that will better enable the infusion into flight programs of sensors with improved capabilities but limited or no flight heritage. These standards would be crucial to demonstrating a methodology for validating current models while also creating the possibility of being able to have sufficient data to either update these models (e. g., spatial or temporal resolution, etc.) or develop new models based on the ability to simulate the new measured physical parameters. The workshop is also intended to narrow the gap between sensor measurements (and techniques), data processing techniques and the ability to make use of that data by gathering together experts in the field for a short workshop. This collaboration will unite NASA and other government agencies with contractor capabilities industry-wide to prevent duplication, spawn synergistic growth in sensor technology, help analysts make good engineering decisions and help focus new sensor maturation efforts to better meet future flight program customers' needs. This is the first such workshop designed to specifically address establishing a standardized protocol/methodology for demonstrating the technology readiness of non-flight heritage sensor systems. While other similar workshops are held covering many areas of interest to the sensor development community, no other meeting is specific enough to address this vital but often overlooked topic. By encouraging cross-fertilization of ideas from instrument experts from many different backgrounds, it is hoped that this workshop will initiate innovative new ideas and concepts in sensor development, calibration and validation. It is anticipated this workshop will repeat periodically as needed.

  4. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for successful radiance assimilation include low noise measurements, channel sets that span the vertical space defined within the NWP model, a fast and accurate radiative transfer model, and bias correction schemes designed to remove systematic biases in the departures between the observed versus calculated radiances.

  5. The Compact Environmental Anomaly Sensor (CEASE) III

    NASA Astrophysics Data System (ADS)

    Roddy, P.; Hilmer, R. V.; Ballenthin, J.; Lindstrom, C. D.; Barton, D. A.; Ignazio, J. M.; Coombs, J. M.; Johnston, W. R.; Wheelock, A. T.; Quigley, S.

    2016-12-01

    The Air Force Research Laboratory's Energetic Charged Particle (ECP) sensor project is a comprehensive effort to measure the charged particle environment that causes satellite anomalies. The project includes the Compact Environmental Anomaly Sensor (CEASE) III, building on the flight heritage of prior CEASE designs. CEASE III consists of multiple sensor modules. High energy particles are observed using independent unique silicon detector stacks. In addition CEASE III includes an electrostatic analyzer (ESA) assembly which uses charge multiplication for particle detection. The sensors cover a wide range of proton and electron energies that contribute to satellite anomalies.

  6. AZ-2000-IECW and StaMet Black Kapton Options for Solar Probe Plus MAG Sensor MLI Kevlar/Polyimide Shells

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2017-01-01

    AZ-2000-IECW white paint and StaMet black Kapton have been evaluated for the Kevlar/polyimide shells that enclose the Solar Probe Plus Magnetometer (MAG) sensors and multilayer insulation. Flight qualification testing on AZ-2000-IECW painted Kevlar/polyimide laminate was completed at Goddard Space Flight Center. This paint potentially meets all the requirements. However, it has no flight heritage. StaMet is hotter in the sun, and is specular. The results of the MAG thermal balance test show StaMet meets the thermal requirement and heater power budget. The mission prefers to fly StaMet after evaluating the risks of AZ-2000-IECW flaking and glint from StaMet to the Star Trackers.

  7. Wireless sensor networks for heritage object deformation detection and tracking algorithm.

    PubMed

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-10-31

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection.

  8. Wireless Sensor Networks for Heritage Object Deformation Detection and Tracking Algorithm

    PubMed Central

    Xie, Zhijun; Huang, Guangyan; Zarei, Roozbeh; He, Jing; Zhang, Yanchun; Ye, Hongwu

    2014-01-01

    Deformation is the direct cause of heritage object collapse. It is significant to monitor and signal the early warnings of the deformation of heritage objects. However, traditional heritage object monitoring methods only roughly monitor a simple-shaped heritage object as a whole, but cannot monitor complicated heritage objects, which may have a large number of surfaces inside and outside. Wireless sensor networks, comprising many small-sized, low-cost, low-power intelligent sensor nodes, are more useful to detect the deformation of every small part of the heritage objects. Wireless sensor networks need an effective mechanism to reduce both the communication costs and energy consumption in order to monitor the heritage objects in real time. In this paper, we provide an effective heritage object deformation detection and tracking method using wireless sensor networks (EffeHDDT). In EffeHDDT, we discover a connected core set of sensor nodes to reduce the communication cost for transmitting and collecting the data of the sensor networks. Particularly, we propose a heritage object boundary detecting and tracking mechanism. Both theoretical analysis and experimental results demonstrate that our EffeHDDT method outperforms the existing methods in terms of network traffic and the precision of the deformation detection. PMID:25365458

  9. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  10. University of Virginia infrared sensor experiment (UVIRSE)

    NASA Astrophysics Data System (ADS)

    Dawson, Jeffrey R.; Bell, Meredith A.; Powers, Michael C.; Laufer, Gabriel

    2001-03-01

    A suite consisting of an infrared sensor, optical sensors and a video camera are prepared for launch by a group of students at University of Virginia (UVA) and James Madison University (JMU). The sensors are a first step in the development of a Gas Filter Correlation Radiometer (GFCR) that will detect stratospheric methane (CH4) when flown on sub-orbital sounding rockets and/or from the hypersonic X-34 reusable launch vehicle. The current payload has a threefold purpose: (a) to provide space heritage to a thermoelectrically cooled mercury cadmium telluride sensor, (b) to demonstrate methods for correlating the IR reading of the sensor with ground topography, and (c) to flight test all the payload components that will become part of the sub- orbital methane GFCR sensor. Once completed the system will serve as host to other undergraduate research design projects that require space environment, microgravity, or remote sensing capabilities. The payload components have been received and tested, and the supporting structure has been designed and built. Data from previous rocket flights was used to analyze the environmental strains placed on the experiment and components. Payload components are being integrated and tested as a system to ensure functionality in the flight environment. This includes thermal testing for individual components, vibration testing from individual components and overall payload, and load testing of the external structure. Launch is scheduled for Spring 2001.

  11. The “Puck” energetic charged particle detector: Design, heritage, and advancements

    PubMed Central

    Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-01-01

    Abstract Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low‐resource missions in the past, the need was recognized for a low‐resource but highly capable, mass‐species‐discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the “Puck” EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high‐voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions. PMID:27867799

  12. The "Puck" energetic charged particle detector: Design, heritage, and advancements.

    PubMed

    Clark, G; Cohen, I; Westlake, J H; Andrews, G B; Brandt, P; Gold, R E; Gkioulidou, M A; Hacala, R; Haggerty, D; Hill, M E; Ho, G C; Jaskulek, S E; Kollmann, P; Mauk, B H; McNutt, R L; Mitchell, D G; Nelson, K S; Paranicas, C; Paschalidis, N; Schlemm, C E

    2016-08-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  13. The "Puck" Energetic Charged Particle Detector: Design, Heritage, and Advancements

    NASA Technical Reports Server (NTRS)

    Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; hide

    2016-01-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of approximately 10 kiloelectronvolts to several megaelectronvolts. This sensor makes simultaneous angular measurements of electron fluxes from the tens of kiloelectronvolts to about 1 megaelectronvolt. The same measurements can be extended down to approximately 1 kiloelectronvolt per nucleon,with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  14. CATS Cloud and Aerosol Level 2 Heritage Edition Data Products.

    NASA Astrophysics Data System (ADS)

    Rodier, S. D.; Vaughan, M.; Yorks, J. E.; Palm, S. P.; Selmer, P. A.; Hlavka, D. L.; McGill, M. J.; Trepte, C. R.

    2017-12-01

    The Cloud-Aerosol Transport System (CATS) instrument was developed at NASA's Goddard Space Flight Center (GSFC) and deployed to the International Space Station (ISS) in January 2015. The CATS elastic backscatter lidars have been operating continuously in one of two science modes since February 2015. One of the primary science objectives of CATS is to continue the CALIPSO aerosol and cloud profile data record to provide continuity of lidar climate observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at NASA's Goddard Space Flight Center (GSFC) and the CALIPSO project at NASA's Langley Research Center (LaRC) closely collaborated to develop and deliver a full suite of CALIPSO-like level 2 data products using the latest version of the CALIPSO level 2 Version 4 algorithms for the CATS data acquired while operating in science mode 1 (Multi-beam backscatter detection at 1064 and 532 nm, with depolarization measurement at both wavelengths). In this work, we present the current status of the CATS Heritage (i.e. CALIPSO-like) level 2 data products derived from the recent released CATS Level 1B V2-08 data. Extensive comparisons are performed between the three data sets (CALIPSO V4.10 Level 2, CATS Level 2 Operational V2-00 and CATS Heritage V1.00) for cloud and aerosol measurements (e.g., cloud-top height cloud-phase, cloud-layer occurrence frequency and cloud-aerosol discrimination) along the ISS path. In addition, global comparisons (between 52°S and 52°N) of aerosol extinction profiles derived from the CATS Level 2 Operational products and CALIOP V4 Level 2 products are presented. Comparisons of aerosol optical depths retrieved from active sensors (CATS and CALIOP) and passive sensors (MODIS) will provide context for the extinction profile comparisons.

  15. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    PubMed Central

    Proietti, Noemi; Capitani, Donatella; Di Tullio, Valeria

    2014-01-01

    In recent years nuclear magnetic resonance (NMR) sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported. PMID:24755519

  16. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  17. Sensor system development for the WSO-UV (World Space Observatory-Ultraviolet) space-based astronomical telescope

    NASA Astrophysics Data System (ADS)

    Hayes-Thakore, Chris; Spark, Stephen; Pool, Peter; Walker, Andrew; Clapp, Matthew; Waltham, Nick; Shugarov, Andrey

    2015-10-01

    As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory - Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 - 176 nm and 174 - 310 nm and a Long-Slit Spectrometer covering 115 nm - 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v's long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.

  18. Review of Our National Heritage of Launch Vehicles Using Aerodynamic Surfaces and Current Use of These by Other Nations. Part II; Center Director's Discretionary Fund Project Numbe

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1996-01-01

    Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability and for flight control. Recently, due to the aft center-of-gravity (cg) locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that can be provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability and payload capability. As a starting point for the novel design of aerodynamic flight control augmentors for a Saturn class, aft cg launch vehicle, this report undertakes a review of our national heritage of launch vehicles using aerodynamic surfaces, along with a survey of current use of aerodynamic surfaces on large launch vehicles of other nations. This report presents one facet of Center Director's Discretionary Fund Project 93-05 and has a previous and subsequent companion publication.

  19. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  20. AURORA: The Next Generation Space Weather Sensor for NPOESS

    NASA Astrophysics Data System (ADS)

    Paxton, L.; Morrison, D.; Santo, A.; Ogorzalek, B.; Goldsten, J.; Boldt, J.; Kil, H.; Zhang, Y.; Demajistre, R.; Wolven, B.; Meng, C.

    2005-12-01

    The AURORA sensor slated for flight on the NPOESS satellites represents the culmination of over 20 years of experience at JHU/APL in the design, manufacture, flight, operation and analysis of compact, cost-effective far ultraviolet sensors for space weather data collection. The far ultraviolet covers the spectral range from about 115 to 185 nm. This region is ideal for observations of the upper atmosphere because, at these wavelengths, the lower atmosphere and Earth's surface are black. AURORA will observe the mid- and low-latitude F-region ionosphere, the auroral E-region ionosphere, the day thermosphere composition, auroral energy deposition and map ionospheric irregularities. AURORA implements the flight-proven design derived from SSUSI on the DMSP Block 5D spacecraft and GUVI on the NASA TIMED spacecraft. These instruments have provided the instrument and algorithm heritage for NPOESS/AURORA. In this talk the performance capabilities of the AURORA instrument will be summarized along with the design of the instrument and algorithms. Example products will be shown for each of the measurement regimes. We acknowldge support from DMSP and NASA and the collaboration with our science colleagues at the Aerospace Corporation (Paul Straus, Jim Hecht, Dave McKenzie, and Andy Christensen) and Computational Physics (Doug Strickland, Hal Knight, and Scott Evans) and Naval Research Laboratory (Robert Meier, Mike Picone, Stefan Thonnard, Pat Dandenault, and Andy Stefan) and our colleagues at APL (Michele Weiss, Doug Holland, Bill Wood, and Jim Eichert) among others.

  1. Initial flight results of the TRMM Kalman filter

    NASA Technical Reports Server (NTRS)

    Andrews, Stephen F.; Morgenstern, Wendy M.

    1998-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls attitude based on the Earth Sensor Assembly (ESA) output. After a potential single point failure in the ESA was identified, the contingency attitude determination method chosen to backup the ESA-based system was a sixth-order extended Kalman filter that uses magnetometer and digital sun sensor measurements. A brief description of the TRMM Kalman filter will be given, including some implementation issues and algorithm heritage. Operational aspects of the Kalman filter and some failure detection and correction will be described. The Kalman filter was tested in a sun pointing attitude and in a nadir pointing attitude during the in-orbit checkout period, and results from those tests will be presented. This paper will describe some lessons learned from the experience of the TRMM team.

  2. Initial Flight Results of the TRMM Kalman Filter

    NASA Technical Reports Server (NTRS)

    Andrews, Stephen F.; Morgenstern, Wendy M.

    1998-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls attitude based on the Earth Sensor Assembly (ESA) output. After a potential single point failure in the ESA was identified, the contingency attitude determination method chosen to backup the ESA-based system was a sixth-order extended Kalman filter that uses magnetometer and digital sun sensor measurements. A brief description of the TRMM Kalman filter will be given, including some implementation issues and algorithm heritage. Operational aspects of the Kalman filter and some failure detection and correction will be described. The Kalman filter was tested in a sun pointing attitude and in a nadir pointing attitude during the in-orbit checkout period, and results from those tests will be presented. This paper will describe some lessons learned from the experience of the TRMM team.

  3. Terra and Aqua MODIS Design, Radiometry, and Geometry in Support of Land Remote Sensing

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wolfe, Robert; Barnes, William; Guenther, Bruce; Vermote, Eric; Saleous, Nazmi; Salomonson, Vincent

    2011-01-01

    The NASA Earth Observing System (EOS) mission includes the construction and launch of two nearly identical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. The MODIS proto-flight model (PFM) is onboard the EOS Terra satellite (formerly EOS AM-1) launched on December 18, 1999 and hereafter referred to as Terra MODIS. Flight model-1 (FM1) is onboard the EOS Aqua satellite (formerly EOS PM-1) launched on May 04, 2002 and referred to as Aqua MODIS. MODIS was developed based on the science community s desire to collect multiyear continuous datasets for monitoring changes in the Earth s land, oceans and atmosphere, and the human contributions to these changes. It was designed to measure discrete spectral bands, which includes many used by a number of heritage sensors, and thus extends the heritage datasets to better understand both long- and short-term changes in the global environment (Barnes and Salomonson 1993; Salomonson et al. 2002; Barnes et al. 2002). The MODIS development, launch, and operation were managed by NASA/Goddard Space Flight Center (GSFC), Greenbelt, Maryland. The sensors were designed, built, and tested by Raytheon/ Santa Barbara Remote Sensing (SBRS), Goleta, California. Each MODIS instrument offers 36 spectral bands, which span the spectral region from the visible (0.41 m) to long-wave infrared (14.4 m). MODIS collects data at three different nadir spatial resolutions: 0.25, 0.5, and 1 km. Key design specifications, such as spectral bandwidths, typical scene radiances, required signal-to-noise ratios (SNR) or noise equivalent temperature differences (NEDT), and primary applications of each MODIS spectral band are summarized in Table 7.1. These parameters were the basis for the MODIS design. More details on the evolution of the NASA EOS and development of the MODIS instruments are provided in Chap. 1. This chapter focuses on the MODIS sensor design, radiometry, and geometry as they apply to land remote sensing. With near-daily coverage of the Earth's surface, MODIS provides comprehensive measurements that enable scientists and policy makers to better understand and effectively manage the natural resources on both regional and global scales. Terra, the first large multisensor EOS satellite, is operated in a 10:30 am (local equatorial crossing time, descending southwards) polar orbit. Aqua, the second multisensor EOS satellite is operated in a 1:30 pm (local equatorial crossing time, ascending northwards) polar orbit. With complementing morning and afternoon observations, the Terra and Aqua MODIS, together with other sensors housed on both satellites, have greatly improved our understanding of the dynamics of the global environmental system.

  4. NASA Hispanic Heritage Month Employee Profile- Gustavo Martinez - Marshall Space Flight Center

    NASA Image and Video Library

    2016-10-19

    In observance of National Hispanic Heritage Month, Gustavo Martinez, a propulsion engineer at NASA’s Marshall Space Flight Center, is featured in this video profile. Martinez, a first-generation American of Mexican descent, earned his bachelors and masters in mechanical engineering from the University of Texas at El Paso. He works in the Liquid Engine System Branch of Marshall’s Propulsion Systems Department, supporting RS-25 engine systems analysis and test preparations for NASA’s Space Launch System. National Hispanic Heritage Month honors the cultures and contributions of Americans whose ancestors originated from Spain, Mexico, the Caribbean and Central and South America. The observation started in 1968 as Hispanic Heritage Week under President Lyndon Johnson and was expanded into law by President Ronald Reagan in 1988.

  5. Determination of technical readiness for an atmospheric carbon imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mobilia, Joseph; Kumer, John B.; Palmer, Alice; Sawyer, Kevin; Mao, Yalan; Katz, Noah; Mix, Jack; Nast, Ted; Clark, Charles S.; Vanbezooijen, Roel; Magoncelli, Antonio; Baraze, Ronald A.; Chenette, David L.

    2013-09-01

    The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.

  6. Terrestrial Applications of the Thermal Infrared Sensor, TIRS

    NASA Technical Reports Server (NTRS)

    Smith, Ramsey L.; Thome, Kurtis; Richardson, Cathleen; Irons, James; Reuter, Dennis

    2009-01-01

    Landsat satellites have acquired single-band thermal images since 1978. The next satellile in the heritage, Landsat Data Continuity Mission (LDCM), is scheduled to launch in December 2012. LDCM will contain the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), where TIRS operates in concert with, but independently of OLI. This paper will provide an overview of the remote sensing instrument TIRS. The T1RS instrument was designed at National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) where it will be fabricated and calibrated as well. Protecting the integrity of the Scientific Data that will be collected from TIRS played a strong role in definition of the calibration test equipment and procedures used for the optical, radiometric, and spatial calibration. The data that will be produced from LCDM will continue to be used world wide for environment monitoring and resource management.

  7. Monitoring Architectural Heritage by Wireless Sensors Networks: San Gimignano — A Case Study

    PubMed Central

    Mecocci, Alessandro; Abrardo, Andrea

    2014-01-01

    This paper describes a wireless sensor network (WSN) used to monitor the health state of architectural heritage in real-time. The WSN has been deployed and tested on the “Rognosa” tower in the medieval village of San Gimignano, Tuscany, Italy. This technology, being non-invasive, mimetic, and long lasting, is particularly well suited for long term monitoring and on-line diagnosis of the conservation state of heritage buildings. The proposed monitoring system comprises radio-equipped nodes linked to suitable sensors capable of monitoring crucial parameters like: temperature, humidity, masonry cracks, pouring rain, and visual light. The access to data is granted by a user interface for remote control. The WSN can autonomously send remote alarms when predefined thresholds are reached. PMID:24394600

  8. Multispectral Imaging in Cultural Heritage Conservation

    NASA Astrophysics Data System (ADS)

    Del Pozo, S.; Rodríguez-Gonzálvez, P.; Sánchez-Aparicio, L. J.; Muñoz-Nieto, A.; Hernández-López, D.; Felipe-García, B.; González-Aguilera, D.

    2017-08-01

    This paper sums up the main contribution derived from the thesis entitled "Multispectral imaging for the analysis of materials and pathologies in civil engineering, constructions and natural spaces" awarded by CIPA-ICOMOS for its connection with the preservation of Cultural Heritage. This thesis is framed within close-range remote sensing approaches by the fusion of sensors operating in the optical domain (visible to shortwave infrared spectrum). In the field of heritage preservation, multispectral imaging is a suitable technique due to its non-destructive nature and its versatility. It combines imaging and spectroscopy to analyse materials and land covers and enables the use of a variety of different geomatic sensors for this purpose. These sensors collect both spatial and spectral information for a given scenario and a specific spectral range, so that, their smaller storage units save the spectral properties of the radiation reflected by the surface of interest. The main goal of this research work is to characterise different construction materials as well as the main pathologies of Cultural Heritage elements by combining active and passive sensors recording data in different ranges. Conclusions about the suitability of each type of sensor and spectral range are drawn in relation to each particular case study and damage. It should be emphasised that results are not limited to images, since 3D intensity data from laser scanners can be integrated with 2D data from passive sensors obtaining high quality products due to the added value that metric brings to multispectral images.

  9. MEDA, The New Instrument for Mars Environment Analysis for the Mars 2020 Mission

    NASA Astrophysics Data System (ADS)

    Moreno-Alvarez, Jose F.; Pena-Godino, Antonio; Rodriguez-Manfredi, Jose Antonio; Cordoba, Elizabeth; MEDA Team

    2016-08-01

    The Mars 2020 rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Designed to advance high-priority science goals for Mars exploration, the mission will address key questions about the potential for life on Mars. The mission will also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.The Mars Environmental Dynamics Analyzer (MEDA) is an integrated full suite of sensors designed to address the Mars 2020 mission objectives of characterization of dust size and morphology and surface weather measurements.MEDA system consists of one control unit and 10 separated sensor enclosures distributed in different positions along the Mars 2020 rover. MEDA is composed of an ARM-based control computer with its flight software application, two wind sensors including mixed ASICs inside, five air temperature sensors, one sky pointing camera complemented with 16 photo- detectors looking up and around, one thermal infrared sensor using five measurement bands, one relative humidity sensor, one pressure sensor and the harness that interconnects all of them. It is a complex system intended to operate in one of the harshest environments possible, the Mars surface, for many years to come.This will become a short term reality thanks to the combination of a strong international science team driving the science and system requirements working together with a powerful industrial organization to design and build the instrument. The instrument is being built right now, with its Critical Design Review at the end of 2016, and the flight model to be provided in 2018.This paper summarizes the main scientific objective of the MEDA instrument, the links between the Mission and the MEDA science objectives, and the challenging environmental Mars requirements. It will then focus on the engineered definition of the instrument, showing the overall architecture of the instrument and its sensors, including a discussion of the heritage from REMS.

  10. Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica

    2010-01-01

    The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.

  11. Magnetoresistive magnetometer for space science applications

    NASA Astrophysics Data System (ADS)

    Brown, P.; Beek, T.; Carr, C.; O'Brien, H.; Cupido, E.; Oddy, T.; Horbury, T. S.

    2012-02-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz-1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm3, respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012.

  12. Fusion of 3D models derived from TLS and image-based techniques for CH enhanced documentation

    NASA Astrophysics Data System (ADS)

    Bastonero, P.; Donadio, E.; Chiabrando, F.; Spanò, A.

    2014-05-01

    Recognizing the various advantages offered by 3D new metric survey technologies in the Cultural Heritage documentation phase, this paper presents some tests of 3D model generation, using different methods, and their possible fusion. With the aim to define potentialities and problems deriving from integration or fusion of metric data acquired with different survey techniques, the elected test case is an outstanding Cultural Heritage item, presenting both widespread and specific complexities connected to the conservation of historical buildings. The site is the Staffarda Abbey, the most relevant evidence of medieval architecture in Piedmont. This application faced one of the most topical architectural issues consisting in the opportunity to study and analyze an object as a whole, from twice location of acquisition sensors, both the terrestrial and the aerial one. In particular, the work consists in the evaluation of chances deriving from a simple union or from the fusion of different 3D cloudmodels of the abbey, achieved by multi-sensor techniques. The aerial survey is based on a photogrammetric RPAS (Remotely piloted aircraft system) flight while the terrestrial acquisition have been fulfilled by laser scanning survey. Both techniques allowed to extract and process different point clouds and to generate consequent 3D continuous models which are characterized by different scale, that is to say different resolutions and diverse contents of details and precisions. Starting from these models, the proposed process, applied to a sample area of the building, aimed to test the generation of a unique 3Dmodel thorough a fusion of different sensor point clouds. Surely, the describing potential and the metric and thematic gains feasible by the final model exceeded those offered by the two detached models.

  13. OMPS SDR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Sen, B.; Done, J.; Buss, R.; Jaross, G. R.; Kelly, T. J.

    2009-12-01

    The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross-track is 110 degree to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the plans to calibrate the TC sensor and validate the radiance data (TC Sensor Data Record or TC SDR) after launch. We discuss the measurements planned during the Intensive Cal/Val (ICV) phase of NPP mission, the data analysis methodology and results from the analysis of OMPS calibration measurements.

  14. Rapid Mapping for Built Heritage at Risk Using Low-Cost and Cots Sensors. a Test in the Duomo Vecchio of San Severino Marche

    NASA Astrophysics Data System (ADS)

    Calantropio, A.; Colucci, E.; Teppati Losè, L.

    2017-11-01

    In the last years, the researchers in the field of Geomatics have focused their attention in the experimentation and validation of new methodologies and techniques, stressing especially the potential of low-cost and COTS (Commercial Off The Shelf) solutions and sensors. In particular, these tools have been used with purposes of rapid mapping in different contexts (ranging from the construction industry, environmental monitoring, mining activities, etc.). The Built Heritage, due to its intrinsic nature of endangered artefact, can largely benefit from the technological and methodological innovations in this research field. The contribute presented in this paper will highlight these main topics: the rapid mapping of the Built Heritage (in particular the one subjected to different types of risk) using low-cost and COTS solutions. Different sensors and techniques were chosen to be evaluated on a specific test site: the Duomo Vecchio of San Severino Marche (MC - Italy), that was partially affected by the earthquake swarm that hit the area of Central Italy starting from the 24th of August 2016. One of the main aims of this work is to demonstrate how low-cost and COTS sensors can contribute to the documentation of the Built Heritage for its safeguard, for damage assessment in case of disastrous events and operations of restoration and preservation.

  15. Atmospheric correction for hyperspectral ocean color sensors

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Ahmad, Z.; Franz, B. A.; Knobelspiesse, K. D.

    2017-12-01

    NASA's heritage Atmospheric Correction (AC) algorithm for multi-spectral ocean color sensors is inadequate for the new generation of spaceborne hyperspectral sensors, such as NASA's first hyperspectral Ocean Color Instrument (OCI) onboard the anticipated Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission. The AC process must estimate and remove the atmospheric path radiance contribution due to the Rayleigh scattering by air molecules and by aerosols from the measured top-of-atmosphere (TOA) radiance. Further, it must also compensate for the absorption by atmospheric gases and correct for reflection and refraction of the air-sea interface. We present and evaluate an improved AC for hyperspectral sensors beyond the heritage approach by utilizing the additional spectral information of the hyperspectral sensor. The study encompasses a theoretical radiative transfer sensitivity analysis as well as a practical application of the Hyperspectral Imager for the Coastal Ocean (HICO) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensors.

  16. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation

    PubMed Central

    Sansoni, Giovanna; Trebeschi, Marco; Docchio, Franco

    2009-01-01

    3D imaging sensors for the acquisition of three dimensional (3D) shapes have created, in recent years, a considerable degree of interest for a number of applications. The miniaturization and integration of the optical and electronic components used to build them have played a crucial role in the achievement of compactness, robustness and flexibility of the sensors. Today, several 3D sensors are available on the market, even in combination with other sensors in a “sensor fusion” approach. An importance equal to that of physical miniaturization has the portability of the measurements, via suitable interfaces, into software environments designed for their elaboration, e.g., CAD-CAM systems, virtual renders, and rapid prototyping tools. In this paper, following an overview of the state-of-art of 3D imaging sensors, a number of significant examples of their use are presented, with particular reference to industry, heritage, medicine, and criminal investigation applications. PMID:22389618

  17. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation.

    PubMed

    Sansoni, Giovanna; Trebeschi, Marco; Docchio, Franco

    2009-01-01

    3D imaging sensors for the acquisition of three dimensional (3D) shapes have created, in recent years, a considerable degree of interest for a number of applications. The miniaturization and integration of the optical and electronic components used to build them have played a crucial role in the achievement of compactness, robustness and flexibility of the sensors. Today, several 3D sensors are available on the market, even in combination with other sensors in a "sensor fusion" approach. An importance equal to that of physical miniaturization has the portability of the measurements, via suitable interfaces, into software environments designed for their elaboration, e.g., CAD-CAM systems, virtual renders, and rapid prototyping tools. In this paper, following an overview of the state-of-art of 3D imaging sensors, a number of significant examples of their use are presented, with particular reference to industry, heritage, medicine, and criminal investigation applications.

  18. Use of Heritage Hardware on Orion MPCV Exploration Flight Test One

    NASA Technical Reports Server (NTRS)

    Rains, George Edward; Cross, Cynthia D.

    2012-01-01

    Due to an aggressive schedule for the first space flight of an unmanned Orion capsule, currently known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made within the Orion Program to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi-Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the MPLM cabin Positive Pressure Relief Assembly (PPRA), and the Shuttle Ground Support Equipment Heat Exchanger (GSE HX). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE HX had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the activities required in order to utilize heritage hardware for EFT1.

  19. Use of Heritage Hardware on MPCV Exploration Flight Test One

    NASA Technical Reports Server (NTRS)

    Rains, George Edward; Cross, Cynthia D.

    2011-01-01

    Due to an aggressive schedule for the first orbital test flight of an unmanned Orion capsule, known as Exploration Flight Test One (EFT1), combined with severe programmatic funding constraints, an effort was made to identify heritage hardware, i.e., already existing, flight-certified components from previous manned space programs, which might be available for use on EFT1. With the end of the Space Shuttle Program, no current means exists to launch Multi Purpose Logistics Modules (MPLMs) to the International Space Station (ISS), and so the inventory of many flight-certified Shuttle and MPLM components are available for other purposes. Two of these items are the Shuttle Ground Support Equipment Heat Exchanger (GSE Hx) and the MPLM cabin Positive Pressure Relief Assembly (PPRA). In preparation for the utilization of these components by the Orion Program, analyses and testing of the hardware were performed. The PPRA had to be analyzed to determine its susceptibility to pyrotechnic shock, and vibration testing had to be performed, since those environments are predicted to be significantly more severe during an Orion mission than those the hardware was originally designed to accommodate. The GSE Hx had to be tested for performance with the Orion thermal working fluids, which are different from those used by the Space Shuttle. This paper summarizes the certification of the use of heritage hardware for EFT1.

  20. OMPS TC EDR Algorithm: Improvement and Verification

    NASA Astrophysics Data System (ADS)

    Novicki, M.; Sen, B.; Hao, X.; Qu, J. J.

    2009-12-01

    The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2011. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE). The Total Column Mapper (TC) sensor images the Earth through a slit, nadir-cell horizontally spaced at 49.5 km cross-track with an along-track reporting interval of 50 km. The total field of view (FOV) cross track is 110 degrees to provide daily global coverage. The TC sensor, a grating spectrometer, provides 0.45 nm spectral sampling across the wavelength range of 300-380 nm. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the Sun, using a diffuser to redirect the solar irradiance into the sensor. We describe the data analysis method being presently implemented to retrieve the total column ozone Earth Data Record (EDR) from the radiance data measured by the TC sensor. We discuss the software changes, the test data used to verify the functional performance and the test results.

  1. Assessment and Calibration of Ultrasonic Measurement Errors in Estimating Weathering Index of Stone Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Keehm, Y.

    2011-12-01

    Estimating the degree of weathering in stone cultural heritage, such as pagodas and statues is very important to plan conservation and restoration. The ultrasonic measurement is one of commonly-used techniques to evaluate weathering index of stone cultual properties, since it is easy to use and non-destructive. Typically we use a portable ultrasonic device, PUNDIT with exponential sensors. However, there are many factors to cause errors in measurements such as operators, sensor layouts or measurement directions. In this study, we carried out variety of measurements with different operators (male and female), different sensor layouts (direct and indirect), and sensor directions (anisotropy). For operators bias, we found that there were not significant differences by the operator's sex, while the pressure an operator exerts can create larger error in measurements. Calibrating with a standard sample for each operator is very essential in this case. For the sensor layout, we found that the indirect measurement (commonly used for cultural properties, since the direct measurement is difficult in most cases) gives lower velocity than the real one. We found that the correction coefficient is slightly different for different types of rocks: 1.50 for granite and sandstone and 1.46 for marble. From the sensor directions, we found that many rocks have slight anisotropy in their ultrasonic velocity measurement, though they are considered isotropic in macroscopic scale. Thus averaging four different directional measurement (0°, 45°, 90°, 135°) gives much less errors in measurements (the variance is 2-3 times smaller). In conclusion, we reported the error in ultrasonic meaurement of stone cultural properties by various sources quantitatively and suggested the amount of correction and procedures to calibrate the measurements. Acknowledgement: This study, which forms a part of the project, has been achieved with the support of national R&D project, which has been hosted by National Research Institute of Cultural Heritage of Cultural Heritage Administration(No. NRICH-1107-B01F).

  2. Rendezvous and Proximity Operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    Space Shuttle rendezous missions presented unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading and contamination concerns. These issues, along with limited forward reaction control system propellant, drove a change from the Gemimi/Apollo coelliptic profile heritage to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions and crew exchange, assembly and replinishment flights to Mir and to the International Space Station drove further profile and piloting technique changes, including new relative navigation sensors and new computer generated piloting cues.

  3. Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements

    NASA Technical Reports Server (NTRS)

    Lortz, Charlene L.; Huang, Chi-Chien N.; Ravich, Joshua A.; Steiner, Carl N.

    2013-01-01

    This packaging design approach can help heritage hardware meet a flight project's stringent EMC radiated emissions requirement. The approach requires only minor modifications to a hardware's chassis and mainly concentrates on its connector interfaces. The solution is to raise the surface area where the connector is mounted by a few millimeters using a pedestal, and then wrapping with conductive tape from the cable backshell down to the surface-mounted connector. This design approach has been applied to JPL flight project subsystems. The EMC radiated emissions requirements for flight projects can vary from benign to mission critical. If the project's EMC requirements are stringent, the best approach to meet EMC requirements would be to design an EMC control program for the project early on and implement EMC design techniques starting with the circuit board layout. This is the ideal scenario for hardware that is built from scratch. Implementation of EMC radiated emissions mitigation techniques can mature as the design progresses, with minimal impact to the design cycle. The real challenge exists for hardware that is planned to be flown following a built-to-print approach, in which heritage hardware from a past project with a different set of requirements is expected to perform satisfactorily for a new project. With acceptance of heritage, the design would already be established (circuit board layout and components have already been pre-determined), and hence any radiated emissions mitigation techniques would only be applicable at the packaging level. The key is to take a heritage design with its known radiated emissions spectrum and repackage, or modify its chassis design so that it would have a better chance of meeting the new project s radiated emissions requirements.

  4. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  5. Synchronous Crepuscular Flight of Female Asian Gypsy Moths: Relationships of Light Intensity and Ambient and Body Temperatures

    Treesearch

    Ralph E. Charlton; Ring T. Carde; William E. Wallner; William E. Wallner

    1999-01-01

    Female gypsy moths (Lymantria dispar) of Asian heritage studied in central Siberia and Germany exhibit a highly synchronous flight at dusk, after light intensity falls to about 2 lux. This critical light intensity sets the timing of flight behaviors independent of ambient temperature. Flight follows several minutes of preflight wing fanning during which females in...

  6. Ares I-X Flight Test Development Challenges and Success Factors

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Davis, Steve; Olsen, Ronald; Taylor, James

    2010-01-01

    The NASA Constellation Program's Ares I-X rocket launched successfully on October 28, 2009 collecting valuable data and providing risk reduction for the Ares I project. The Ares I-X mission was formulated and implemented in less than four years commencing with the Exploration Systems Architecture Study in 2005. The test configuration was founded upon assets and processes from other rocket programs including Space Shuttle, Atlas, and Peacekeeper. For example, the test vehicle's propulsion element was a Shuttle Solid Rocket Motor. The Ares I-X rocket comprised a motor assembly, mass and outer mold line simulators of the Ares I Upper Stage, Orion Spacecraft and Launch Abort System, a roll control system, avionics, and other miscellaneous components. The vehicle was 327 feet tall and weighed approximately 1,800,000 pounds. During flight the rocket reached a maximum speed of Mach 4.8 and an altitude of 150,000 feet. The vehicle demonstrated staging at 130,000 feet, tested parachutes for recovery of the motor, and utilized approximately 900 sensors for data collection. Developing a new launch system and preparing for a safe flight presented many challenges. Specific challenges included designing a system to withstand the environments, manufacturing large structures, and re-qualifying heritage hardware. These and other challenges, if not mitigated, may have resulted in test cancellation. Ares I-X succeeded because the mission was founded on carefully derived objectives, led by decisive and flexible management, implemented by an exceptionally talented and dedicated workforce, and supported by a thorough independent review team. Other major success factors include the use of proven heritage hardware, a robust System Integration Laboratory, multi-NASA center and contractor team, concurrent operations, efficient vehicle assembly, effective risk management, and decentralized element development with a centralized control board. Ares I-X was a technically complex test that required creative thinking, risk taking, and a passion to succeed.

  7. Orion Flight Test-1 Thermal Protection System Instrumentation

    NASA Technical Reports Server (NTRS)

    Kowal, T. John

    2011-01-01

    The Orion Crew Exploration Vehicle (CEV) was originally under development to provide crew transport to the International Space Station after the retirement of the Space Shuttle, and to provide a means for the eventual return of astronauts to the Moon. With the current changes in the future direction of the United States human exploration programs, the focus of the Orion project has shifted to the project s first orbital flight test, designated Orion Flight Test 1 (OFT-1). The OFT-1 is currently planned for launch in July 2013 and will demonstrate the Orion vehicle s capability for performing missions in low Earth orbit (LEO), as well as extensibility beyond LEO for select, critical areas. Among the key flight test objectives are those related to validation of the re-entry aerodynamic and aerothermal environments, and the performance of the thermal protection system (TPS) when exposed to these environments. A specific flight test trajectory has been selected to provide a high energy entry beyond that which would be experienced during a typical low Earth orbit return, given the constraints imposed by the possible launch vehicles. This trajectory resulted from a trade study that considered the relative benefit of conflicting objectives from multiple subsystems, and sought to provide the maximum integrated benefit to the re-entry state-of-the-art. In particular, the trajectory was designed to provide: a significant, measureable radiative heat flux to the windward surface; data on boundary transition from laminar to turbulent flow; and data on catalytic heating overshoot on non-ablating TPS. In order to obtain the necessary flight test data during OFT-1, the vehicle will need to have an adequate quantity of instrumentation. A collection of instrumentation is being developed for integration in the OFT-1 TPS. In part, this instrumentation builds upon the work performed for the Mars Science Laboratory Entry, Descent and Landing Instrument (MEDLI) suite to instrument the OFT-1 ablative heat shield. The MEDLI integrated sensor plugs and pressure sensors will be adapted for compatibility with the Orion TPS design. The sensor plugs will provide in-depth temperature data to support aerothermal and TPS model correlation, and the pressure sensors will provide a flush air data system for validation of the entry and descent aerodynamic environments. In addition, a radiometer design will be matured to measure the radiative component of the reentry heating at two locations on the heat shield. For the back shell, surface thermocouple and pressure port designs will be developed and applied which build upon the heritage of the Space Shuttle Program for instrumentation of reusable surface insulation (RSI) tiles. The quantity and location of the sensors has been determined to balance the needs of the reentry disciplines with the demands of the hardware development, manufacturing and integration. Measurements which provided low relative value and presented significant engineering development effort were, unfortunately, eliminated. The final TPS instrumentation has been optimized to target priority test objectives. The data obtained will serve to provide a better understanding of reentry environments for the Orion capsule design, reduce margins, and potentially reduce TPS mass or provide TPS extensibility for alternative missions.

  8. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2011-01-01

    This paper presents an overview of the attitude ground system (AGS) currently under development for the Magnetospheric Multiscale (MMS) mission. The primary responsibilities for the MMS AGS are definitive attitude determination, validation of the onboard attitude filter, and computation of certain parameters needed to improve maneuver performance. For these purposes, the ground support utilities include attitude and rate estimation for validation of the onboard estimates, sensor calibration, inertia tensor calibration, accelerometer bias estimation, center of mass estimation, and production of a definitive attitude history for use by the science teams. Much of the AGS functionality already exists in utilities used at NASA's Goddard Space Flight Center with support heritage from many other missions, but new utilities are being created specifically for the MMS mission, such as for the inertia tensor, accelerometer bias, and center of mass estimation. Algorithms and test results for all the major AGS subsystems are presented here.

  9. Next Generation Advanced Video Guidance Sensor: Low Risk Rendezvous and Docking Sensor

    NASA Technical Reports Server (NTRS)

    Lee, Jimmy; Carrington, Connie; Spencer, Susan; Bryan, Thomas; Howard, Ricky T.; Johnson, Jimmie

    2008-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is being built and tested at MSFC. This paper provides an overview of current work on the NGAVGS, a summary of the video guidance heritage, and the AVGS performance on the Orbital Express mission. This paper also provides a discussion of applications to ISS cargo delivery vehicles, CEV, and future lunar applications.

  10. InSight Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; La Duc, Myron; Willis, Jason

    The NASA Discovery Program’s next mission, Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSIght), consists of a single spacecraft that will be launched aboard an Atlas V 401 rocket from Vandenberg Air Force Base (Space Launch Complex 3E) during the March 2016 timeframe. The overarching mission goal is to illuminate the fundamentals of formation and evolution of terrestrial planets by investigating the interior structure and processes of Mars. The flight system consists of a heritage cruise stage, aeroshell (heatshield and backshell), and Lander from the 2008 Phoenix mission. Included in the lander payload are various cameras, a seismometer, an auxiliary sensor suite to measure wind, temperature, and pressure, and a mole to penetrate the regolith (<5 meters) and assess the subsurface geothermal gradient of Mars. Being a Mars lander mission without life detection instruments, InSight has been designated a PP Category Iva mission. As such, planetary protection bioburden requirements apply which require microbial reduction procedures and biological burden reporting. The InSight project is current with required PP documentation, having completed an approved Planetary Protection Plan, Subsidiary PP Plans, and a PP Implementation Plan. The InSight mission’s early planetary protection campaign has commenced, coinciding with the fabrication and assembly of payload and flight system hardware and the baseline analysis of existing flight spares. A report on the status of InSight PP activities will be provided.

  11. Flight testing of a luminescent surface pressure sensor

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  12. Atmospheric Entry Studies for Venus Missions: 45 deg Sphere-Cone Rigid Aeroshells and Ballistic Entries

    NASA Technical Reports Server (NTRS)

    Prabu, Dinesh K.; Allen, Gary A., Jr.; Cappuccio, Gelsomina; Spilker, Thomas R.; Hwang, Helen H.; Moses, Robert W.

    2013-01-01

    The present study considers ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and capsule diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30 is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is placed on the peak deceleration load and 10 bar is assumed as the limit for heritage carbon-phenolic material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a heat flux 2.5 kW/sq cm is utilized as a threshold below which the heritage carbon phenolic is considered mass inefficient. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a range of "critical" ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of 10 bar. The results are verified against known performance of the various probes used in the Pioneer Venus mission. It is anticipated that the results presented here will serve as a baseline in the development of a new class of ablative materials for future Venus missions.

  13. LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit

    NASA Astrophysics Data System (ADS)

    Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.

    2013-01-01

    We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.

  14. In-Flight Capability for Evaluating Skin-Friction Gages and Other Near-Wall Flow Sensors

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Pipitone, Brett J.; Krake, Keith L.; Richwine, Dave (Technical Monitor)

    2003-01-01

    An 8-in.-square boundary-layer sensor panel has been developed for in-flight evaluation of skin-friction gages and other near-wall flow sensors on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture (FTF). Instrumentation on the sensor panel includes a boundary-layer rake, temperature sensors, static pressure taps, and a Preston tube. Space is also available for skin-friction gages or other near-wall flow sensors. Pretest analysis of previous F-15B/FTF flight data has identified flight conditions suitable for evaluating skin-friction gages. At subsonic Mach numbers, the boundary layer over the sensor panel closely approximates the two-dimensional (2D), law-of-the-wall turbulent boundary layer, and skin-friction estimates from the Preston tube and the rake (using the Clauser plot method) can be used to evaluate skin-friction gages. At supersonic Mach numbers, the boundary layer over the sensor panel becomes complex, and other means of measuring skin friction are needed to evaluate the accuracy of new skin-friction gages. Results from the flight test of a new rubber-damped skin-friction gage confirm that at subsonic Mach numbers, nearly 2D, law-of-the-wall turbulent boundary layers exist over the sensor panel. Sensor panel data also show that this new skin-friction gage prototype does not work in flight.

  15. Laser transmitter for space-based sodium lidar instrument

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Krainak, Michael A.; Janches, Diego; Konoplev, Oleg

    2016-05-01

    We are currently developing a laser transmitter to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of a Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our laser transmitter development effort with emphasis on wavelength tuning and power scaling of a diode-pumped Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that could produce multi-watt 589 nm wavelength output. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from past and current space flight missions.

  16. Guidelines for Successful Use and Communication of Instrument Heritage in Early Mission Development with a Focus on Spectrometers

    NASA Technical Reports Server (NTRS)

    Baker, Elizabeth E.

    2012-01-01

    Heritage is important for both cost and risk related issues and as such, it is heavily discussed in NASA proposal evaluations. If used and communicated efficiently, heritage can lower both the perception of risk and the associated costs. Definitions of heritage vary between engineering, cost, and scientific communities, but when applied appropriately, heritage provides a benefit to the proposed mission. By making an instrument at least once before, the cost of producing it again can be reduced. The time and effort needed to develop the instrument concept and test the product represent an expense that can be lowered through the use of a previously built and developed instrument. This same thought can be applied when using a flight spare or build-to-print model of the heritage instrument. The lowered perception of risk is a result of the confidence gained in the instrument through successful use in the target environment. This is extremely important in early mission development to the evaluation board. This analysis will use JPL-managed proposals from 2003 to 2011, including Discovery, New Frontiers, and Mars Scout missions. Through the examination of these proposals and their associated debriefs, a set of guidelines have been created for successful use and communication of instrument heritage in early mission development

  17. Remote assessment of cultural heritage environments with wireless sensor array networks.

    PubMed

    Agbota, Henoc; Mitchell, John E; Odlyha, Marianne; Strlič, Matija

    2014-05-19

    The logistics and cost of environmental monitoring can represent challenges for heritage managers, partly because of the sheer number of environmental parameters to consider. There is a need for a system, capable of monitoring the holistic impact of the environment on cultural materials while remaining relatively easy to use and providing remote access. This paper describes a dosimetric system based on piezoelectric quartz crystal technology. The prototype sensing module consists of an array of piezoelectric quartz crystals (PQC) coated with different metals (Fe, Cu, Ni and Sn) and includes a temperature and relative humidity sensor. The communication module involves an 802.15.4 low-power radio and a GPRS gateway which allows real time visualisation of the measurements online. An energy management protocol ensures that the system consumes very low power between measurements. The paper also describes the results and experiences from two heritage field deployments, at Apsley House in London, UK, and at the Royal Palaces of Abomey in Benin. Evaluation of PQC measurements, temperature, relative humidity and the rate of successful transmission over the communication systems are also reported.

  18. Remote Assessment of Cultural Heritage Environments with Wireless Sensor Array Networks

    PubMed Central

    Agbota, Henoc; Mitchell John, E.; Odlyha, Marianne; Strlič, Matija

    2014-01-01

    The logistics and cost of environmental monitoring can represent challenges for heritage managers, partly because of the sheer number of environmental parameters to consider. There is a need for a system, capable of monitoring the holistic impact of the environment on cultural materials while remaining relatively easy to use and providing remote access. This paper describes a dosimetric system based on piezoelectric quartz crystal technology. The prototype sensing module consists of an array of piezoelectric quartz crystals (PQC) coated with different metals (Fe, Cu, Ni and Sn) and includes a temperature and relative humidity sensor. The communication module involves an 802.15.4 low-power radio and a GPRS gateway which allows real time visualisation of the measurements online. An energy management protocol ensures that the system consumes very low power between measurements. The paper also describes the results and experiences from two heritage field deployments, at Apsley House in London, UK, and at the Royal Palaces of Abomey in Benin. Evaluation of PQC measurements, temperature, relative humidity and the rate of successful transmission over the communication systems are also reported. PMID:24854056

  19. NDE measurements for understanding of performance: A few case studies on engineering components, human health and cultural heritage

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Venkatraman, B.

    2013-01-01

    Life cycle management involves a seamless integration of materials, design, analysis, production, manufacturing, and degradation plus, a wide variety of disciplines relating to surveillance and characterisation with adequate feedback and control. Science and technology of non-destructive evaluation (NDE) links all these domains and disciplines together in a seamless and robust manner. A number of research programs on NDE science and technology have evolved during the last four decades world over including the one at Indira Gandhi Centre for Atomic Research, Kalpakkam, initiated and nurtured by the first author. Many engineering and technology challenges pertaining to fast spectrum reactors have been successfully solved by this Centre through development of innovative sensors, procedures and coupled with strong basic science and modeling approaches. These technologies have also been selectively applied in gaining insights of human health and cultural heritage. This paper highlights some of the innovative NDE sensors and techniques developed in the field of electromagnetic NDE and their successful applications. A few interesting case studies pertaining to NDE in heritage and healthcare using acoustic and thermal methods are also presented.

  20. Heritage Systems Engineering Lessons from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study s lessons learned in more detail and offers suggestions for improving the project s ability to identify and manage the technology and heritage risks inherent in the design solution.

  1. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study's lessons learned in more detail and offers suggestions for improving the project's ability to identify and manage the technology and heritage risks inherent in the design solution.

  2. ISINGLASS campaign multi point sensors and data integration

    NASA Astrophysics Data System (ADS)

    Clayton, R.; Lynch, K. A.; Michell, R.; Hampton, D. L.; Samara, M.; Zettergren, M. D.; Hysell, D. L.; Lessard, M.

    2016-12-01

    The upcoming ISINGLASS mission will take place during February 2017 and will consist of 2 rockets launched out of Poker Flat Research Range, Alaska. Each rocket will deploy sensorcraft on the upleg to generate a localized multipoint measurement of the ionospheric plasma environment. Ground based measurements such as the PFISR and SuperDARN radar arrays, CCD cameras making maps of multi-wavelength energy flux and characteristic energy, and Scanning Doppler Imagers for neutral flows, will also be used in conjunction with the in situ rocket measurements. The GEMINI ionospheric model will be used to stitch together all of the various data products during the mission to provide a map of the relevant parameters during the duration of the campaign. The sensors built by Dartmouth for this mission are called Petite Ion Probes (PIPs), collimated RPAs with heritage on the MICA auroral mission. For the upcoming Isinglass flights, PIPs will be assembled into small ejectables, and four of these sensorcraft will be deployed from each of the two rockets on the upleg, creating a localized swarm for the duration of the flight through the F-region ionosphere. During the science portion of the flight, the sensorcraft will be spaced 1km apart from the main payload, which allows for the multipoint measurement of small-scale gradients in the F-region, such as across the edges of arcs. Interpretation of the data from the PIPs is aided by calibration done at Dartmouth in the Elephant plasma chamber. Comparison between the PIPs, and Langmuir and emissive probe measurements, provides verification of the PIP measurements, as well as verifying the field of view of the detector in the various configurations present on the payload. Observational goals for the campaign target a different type of auroral arc with each of the two rockets. The measured response of the thermal ionospheric plasma to different types and scale sizes of auroral precipitation drivers will provide two case studies quantifying the gradient scale lengths of auroral disturbances.

  3. Evaluation of a fault tolerant system for an integrated avionics sensor configuration with TSRV flight data

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.

    1985-01-01

    The performance analysis results of a fault inferring nonlinear detection system (FINDS) using sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment is presented. First, a statistical analysis of the flight recorded sensor data was made in order to determine the characteristics of sensor inaccuracies. Next, modifications were made to the detection and decision functions in the FINDS algorithm in order to improve false alarm and failure detection performance under real modelling errors present in the flight data. Finally, the failure detection and false alarm performance of the FINDS algorithm were analyzed by injecting bias failures into fourteen sensor outputs over six repetitive runs of the five minute flight data. In general, the detection speed, failure level estimation, and false alarm performance showed a marked improvement over the previously reported simulation runs. In agreement with earlier results, detection speed was faster for filter measurement sensors soon as MLS than for filter input sensors such as flight control accelerometers.

  4. In-flight measurement of the National Oceanic and Atmospheric Administration (NOAA)-10 static Earth sensor error

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Filla, O.; Baker, D.

    1993-01-01

    Analysis performed in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) measures error in the static Earth sensor onboard the National Oceanic and Atmospheric Administration (NOAA)-10 spacecraft using flight data. Errors are computed as the difference between Earth sensor pitch and roll angle telemetry and reference pitch and roll attitude histories propagated by gyros. The flight data error determination illustrates the effect on horizon sensing of systemic variation in the Earth infrared (IR) horizon radiance with latitude and season, as well as the effect of anomalies in the global IR radiance. Results of the analysis provide a comparison between static Earth sensor flight performance and that of scanning Earth sensors studied previously in the GSFC/FDD. The results also provide a baseline for evaluating various models of the static Earth sensor. Representative days from the NOAA-10 mission indicate the extent of uniformity and consistency over time of the global IR horizon. A unique aspect of the NOAA-10 analysis is the correlation of flight data errors with independent radiometric measurements of stratospheric temperature. The determination of the NOAA-10 static Earth sensor error contributes to realistic performance expectations for missions to be equipped with similar sensors.

  5. A New Dusts Sensor for Cultural Heritage Applications Based on Image Processing

    PubMed Central

    Proietti, Andrea; Leccese, Fabio; Caciotta, Maurizio; Morresi, Fabio; Santamaria, Ulderico; Malomo, Carmela

    2014-01-01

    In this paper, we propose a new sensor for the detection and analysis of dusts (seen as powders and fibers) in indoor environments, especially designed for applications in the field of Cultural Heritage or in other contexts where the presence of dust requires special care (surgery, clean rooms, etc.). The presented system relies on image processing techniques (enhancement, noise reduction, segmentation, metrics analysis) and it allows obtaining both qualitative and quantitative information on the accumulation of dust. This information aims to identify the geometric and topological features of the elements of the deposit. The curators can use this information in order to design suitable prevention and maintenance actions for objects and environments. The sensor consists of simple and relatively cheap tools, based on a high-resolution image acquisition system, a preprocessing software to improve the captured image and an analysis algorithm for the feature extraction and the classification of the elements of the dust deposit. We carried out some tests in order to validate the system operation. These tests were performed within the Sistine Chapel in the Vatican Museums, showing the good performance of the proposed sensor in terms of execution time and classification accuracy. PMID:24901977

  6. a Multi-Data Source and Multi-Sensor Approach for the 3d Reconstruction and Visualization of a Complex Archaelogical Site: the Case Study of Tolmo de Minateda

    NASA Astrophysics Data System (ADS)

    Torres-Martínez, J. A.; Seddaiu, M.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; González-Aguilera, D.

    2015-02-01

    The complexity of archaeological sites hinders to get an integral modelling using the actual Geomatic techniques (i.e. aerial, closerange photogrammetry and terrestrial laser scanner) individually, so a multi-sensor approach is proposed as the best solution to provide a 3D reconstruction and visualization of these complex sites. Sensor registration represents a riveting milestone when automation is required and when aerial and terrestrial dataset must be integrated. To this end, several problems must be solved: coordinate system definition, geo-referencing, co-registration of point clouds, geometric and radiometric homogeneity, etc. Last but not least, safeguarding of tangible archaeological heritage and its associated intangible expressions entails a multi-source data approach in which heterogeneous material (historical documents, drawings, archaeological techniques, habit of living, etc.) should be collected and combined with the resulting hybrid 3D of "Tolmo de Minateda" located models. The proposed multi-data source and multi-sensor approach is applied to the study case of "Tolmo de Minateda" archaeological site. A total extension of 9 ha is reconstructed, with an adapted level of detail, by an ultralight aerial platform (paratrike), an unmanned aerial vehicle, a terrestrial laser scanner and terrestrial photogrammetry. In addition, the own defensive nature of the site (i.e. with the presence of three different defensive walls) together with the considerable stratification of the archaeological site (i.e. with different archaeological surfaces and constructive typologies) require that tangible and intangible archaeological heritage expressions can be integrated with the hybrid 3D models obtained, to analyse, understand and exploit the archaeological site by different experts and heritage stakeholders.

  7. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  8. Sensor fault diagnosis of aero-engine based on divided flight status.

    PubMed

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  9. Applications of Payload Directed Flight

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu

    2009-01-01

    Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'

  10. Sensor fault diagnosis of aero-engine based on divided flight status

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  11. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Bacskay, Allen

    2010-01-01

    Use of heritage and new technology is necessary/enabling to implementing small, low cost missions, yet overruns decrease the ability to sustain future mission flight rates The majority of the cost growth drivers seen in the D&NF study were embedded early during formulation phase and later realized during the development and I&T phases Cost drivers can be avoided or significantly decreased by project management and SE emphasis on early identification of risks and realistic analyses SE processes that emphasize an assessment of technology within the mission system to identify technical issues in the design or operational use of the technology. Realistic assessment of new and heritage spacecraft technology assumptions , identification of risks and mitigation strategies. Realistic estimates of effort required to inherit existing or qualify new technology, identification of risks to estimates and develop mitigation strategies. Allocation of project reserves for risk-based mitigation strategies of each individual area of heritage or new technology. Careful tailoring of inheritance processes to ensure due diligence.

  12. Evaluating the Applicability of Heritage Flight Hardware in Orion Environmental Control and Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cross, Cynthia D.; Lewis, John F.; Barido, Richard A.; Carrasquillo, Robyn; Rains, George E.

    2011-01-01

    Recent changes in the overall NASA vision has resulted in further cost and schedule challenges for the Orion program. As a result, additional scrutiny has been focused on the use of new developments for hardware in the environmental control and life support systems. This paper will examine the Orion architecture as it is envisioned to support missions to the International Space Station and future exploration missions and determine what if any functions can be satisfied through the use of existing, heritage hardware designs. An initial evaluation of each component is included and where a heritage component was deemed likely further details are examined. Key technical parameters, mass, volume and vibration loads are a few of the specific items that are evaluated. Where heritage hardware has been identified that may be substituted in the Orion architecture a discussion of key requirement changes that may need to be made as well as recommendation to further evaluate applicability are noted.

  13. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.

  14. Fiber Optic Control System Integration program: for optical flight control system development

    NASA Astrophysics Data System (ADS)

    Weaver, Thomas L.; Seal, Daniel W.

    1994-10-01

    Hardware and software were developed for optical feedback links in the flight control system of an F/A-18 aircraft. Developments included passive optical sensors and optoelectronics to operate the sensors. Sensors with different methods of operation were obtained from different manufacturers and integrated with common optoelectronics. The sensors were the following: Air Data Temperature; Air Data Pressure; and Leading Edge Flap, Nose Wheel Steering, Trailing Edge Flap, Pitch Stick, Rudder, Rudder Pedal, Stabilator, and Engine Power Lever Control Position. The sensors were built for a variety of aircraft locations and harsh environments. The sensors and optoelectronics were as similar as practical to a production system. The integrated system was installed by NASA for flight testing. Wavelength Division Multiplexing proved successful as a system design philosophy. Some sensors appeared to be better choices for aircraft applications than others, with digital sensors generally being better than analog sensors, and rotary sensors generally being better than linear sensors. The most successful sensor approaches were selected for use in a follow-on program in which the sensors will not just be flown on the aircraft and their performance recorded; but, the optical sensors will be used in closing flight control loops.

  15. ASIAN AMERICAN AND PACIFIC ISLANDERS HERITAGE MONTH

    NASA Image and Video Library

    2016-05-31

    BO THAO-URABE, A MEMBER OF PRESIDENT BARACK OBAMA’S COMMISSION ON ASIAN AMERICANS AND PACIFIC ISLANDERS, SPOKE TO TEAM MEMBERS OF NASA’S MARSHALL SPACE FLIGHT CENTER DURING AN ASIAN AMERICANS AND PACIFIC ISLANDERS MONTH CELEBRATION EVENT MAY 31.

  16. A Trajectory Generation Approach for Payload Directed Flight

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.; Yeh, Yoo-Hsiu

    2009-01-01

    Presently, flight systems designed to perform payload-centric maneuvers require preconstructed procedures and special hand-tuned guidance modes. To enable intelligent maneuvering via strong coupling between the goals of payload-directed flight and the autopilot functions, there exists a need to rethink traditional autopilot design and function. Research into payload directed flight examines sensor and payload-centric autopilot modes, architectures, and algorithms that provide layers of intelligent guidance, navigation and control for flight vehicles to achieve mission goals related to the payload sensors, taking into account various constraints such as the performance limitations of the aircraft, target tracking and estimation, obstacle avoidance, and constraint satisfaction. Payload directed flight requires a methodology for accurate trajectory planning that lets the system anticipate expected return from a suite of onboard sensors. This paper presents an extension to the existing techniques used in the literature to quickly and accurately plan flight trajectories that predict and optimize the expected return of onboard payload sensors.

  17. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.

    PubMed

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-07-17

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  18. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing

    PubMed Central

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-01-01

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system. PMID:26193281

  19. Next Generation Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Lee, Jimmy; Spencer, Susan; Bryan, Tom; Johnson, Jimmie; Robertson, Bryan

    2008-01-01

    The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. The United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport. Systems (COTS) Automated Rendezvous and Docking (AR&D). AVGS has a proven pedigree, based on extensive ground testing and flight demonstrations. The AVGS on the Demonstration of Autonomous Rendezvous Technology (DART)mission operated successfully in "spot mode" out to 2 km. The first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. Parts obsolescence issues prevent the construction of more AVGS. units, and the next generation sensor must be updated to support the CEV and COTS programs. The flight proven AR&D sensor is being redesigned to update parts and add additional. capabilities for CEV and COTS with the development of the Next, Generation AVGS (NGAVGS) at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities might include greater sensor range, auto ranging, and real-time video output. This paper presents an approach to sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It will also discuss approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, parts selection and test plans for the NGAVGS will be addressed to provide a highly reliable flight qualified sensor. Expanded capabilities through innovative use of existing capabilities will also be discussed.

  20. Performance, Calibration and Stability of the Mars InSight Mission Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Banfield, Don; Banerdt, Bruce; Hurst, Ken; Grinblat, Jonny; murray, alex; Carpenter, Scott

    2017-10-01

    The NASA Mars InSight Discovery Mission is primarily aimed at understanding the seismic environment at Mars and in turn the interior structure of the planet. To this end, it carries a set of very sensitive seismometers to characterize fine ground movements from quakes, impacts and tides. However, to remove atmospheric perturbations that would otherwise corrupt the seismic signals, InSight also carries a pressure sensor of unprecedented sensitivity and frequency response for a Mars mission.The instrument is based on a commercial spacecraft pressure sensor built by the Tavis Corporation. Tavis heritage transducers have provided pressure measurements on several interplanetary missions, starting with a similar application on the Viking Landers. The sensor developed for the Insight mission is their most sensitive device. That same sensitivity was the root of the challenges faced in the design and development for Insight. It uses inductive sensing of a deformable membrane, and includes an internal temperature sensor to compensate for temperature effects in its overall response.The technical requirement on the pressure sensor performance is 0.01(f/0.1)^(-2/3) Pa/sqrt(Hz) between 0.01 and 0.1 Hz, and 0.01 Pa/sqrt(Hz) between 0.1 and 1 Hz. The actual noise spectrum is about 0.01(f/0.3)^(-2/3) Pa/sqrt(Hz) between 0.01 and 1 Hz, and its frequency response (including inlet plumbing) has good response up to about 10 Hz Nyquist (it will be sampled at 20 Hz).Achieving the required sensitivity proved to be a difficult engineering challenge, which necessitated extensive experimentation and prototyping of the electronics design. In addition, a late discovery of the introduction of noise by the signal processing chain into the measurement stream forced a last-minute change in the instrument’s firmware.The flight unit has been calibrated twice, separated by a time span of about 2 years due to the delay in launching the InSight mission. This has the benefit of allowing a direct measure of the stability of the pressure sensor over time. We will discuss the details of the performance, calibration and stability of the pressure sensor in more detail in our presentation.

  1. Heritage Gallery

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Marshall Space Flight Center's (MSFC's) building 4200 hosts a new spaceflight history museum referred to as the Heritage Gallery, allowing employees and visitors alike to have the opportunity to experience history first hand. On display are many models of launch vehicles and spacecraft that have made the center famous. It features a full-scale mockup of the lunar roving vehicle, three built-in multimedia displays, a large theater screen, and two glass cases that house memorabilia such as personal items belonging to Wernher von Braun, MSFC's first Center Director. The new Heritage Gallery features the accomplishments of several past and present members of the Marshall team. Attending the ribbon cutting ceremony are: (left to right) Gerhard Reisig; Cort Durocher, executive director of the American Institute of Aeronautics and Astronautics; Ernst Stuhlinger; Konrad Darnenburg; Werner Dahm; Walter Jacobi; and host of event, Center Director Art Stephenson.

  2. Recording Approach of Heritage Sites Based on Merging Point Clouds from High Resolution Photogrammetry and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Grussenmeyer, P.; Alby, E.; Landes, T.; Koehl, M.; Guillemin, S.; Hullo, J. F.; Assali, P.; Smigiel, E.

    2012-07-01

    Different approaches and tools are required in Cultural Heritage Documentation to deal with the complexity of monuments and sites. The documentation process has strongly changed in the last few years, always driven by technology. Accurate documentation is closely relied to advances of technology (imaging sensors, high speed scanning, automation in recording and processing data) for the purposes of conservation works, management, appraisal, assessment of the structural condition, archiving, publication and research (Patias et al., 2008). We want to focus in this paper on the recording aspects of cultural heritage documentation, especially the generation of geometric and photorealistic 3D models for accurate reconstruction and visualization purposes. The selected approaches are based on the combination of photogrammetric dense matching and Terrestrial Laser Scanning (TLS) techniques. Both techniques have pros and cons and recent advances have changed the way of the recording approach. The choice of the best workflow relies on the site configuration, the performances of the sensors, and criteria as geometry, accuracy, resolution, georeferencing, texture, and of course processing time. TLS techniques (time of flight or phase shift systems) are widely used for recording large and complex objects and sites. Point cloud generation from images by dense stereo or multi-view matching can be used as an alternative or as a complementary method to TLS. Compared to TLS, the photogrammetric solution is a low cost one, as the acquisition system is limited to a high-performance digital camera and a few accessories only. Indeed, the stereo or multi-view matching process offers a cheap, flexible and accurate solution to get 3D point clouds. Moreover, the captured images might also be used for models texturing. Several software packages are available, whether web-based, open source or commercial. The main advantage of this photogrammetric or computer vision based technology is to get at the same time a point cloud (the resolution depends on the size of the pixel on the object), and therefore an accurate meshed object with its texture. After matching and processing steps, we can use the resulting data in much the same way as a TLS point cloud, but in addition with radiometric information for textures. The discussion in this paper reviews recording and important processing steps as geo-referencing and data merging, the essential assessment of the results, and examples of deliverables from projects of the Photogrammetry and Geomatics Group (INSA Strasbourg, France).

  3. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  4. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Astrophysics Data System (ADS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-11-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  5. 14 CFR 125.228 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... when an original sensor signal has been changed in any way, other than changes necessary to: (1... sensor. (b) An original sensor signal for any flight recorder parameter required to be recorded under... original sensor signal value can be reconstructed from the recorded data. This demonstration requires that...

  6. 14 CFR 135.156 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... when an original sensor signal has been changed in any way, other than changes necessary to: (1... sensor. (b) An original sensor signal for any flight recorder parameter required to be recorded under... original sensor signal value can be reconstructed from the recorded data. This demonstration requires that...

  7. 14 CFR 125.228 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... when an original sensor signal has been changed in any way, other than changes necessary to: (1... sensor. (b) An original sensor signal for any flight recorder parameter required to be recorded under... original sensor signal value can be reconstructed from the recorded data. This demonstration requires that...

  8. 14 CFR 135.156 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... when an original sensor signal has been changed in any way, other than changes necessary to: (1... sensor. (b) An original sensor signal for any flight recorder parameter required to be recorded under... original sensor signal value can be reconstructed from the recorded data. This demonstration requires that...

  9. 14 CFR 135.156 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... when an original sensor signal has been changed in any way, other than changes necessary to: (1... sensor. (b) An original sensor signal for any flight recorder parameter required to be recorded under... original sensor signal value can be reconstructed from the recorded data. This demonstration requires that...

  10. 14 CFR 125.228 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... when an original sensor signal has been changed in any way, other than changes necessary to: (1... sensor. (b) An original sensor signal for any flight recorder parameter required to be recorded under... original sensor signal value can be reconstructed from the recorded data. This demonstration requires that...

  11. Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Howard, Richard T.; Heaton, Andrew F.

    2008-01-01

    Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes.

  12. Active Satellite Sensors for the needs of Cultural Heritage: Introducing SAR applications in Cyprus through ATHENA project

    NASA Astrophysics Data System (ADS)

    Kouhartsiouk, Demetris; Agapiou, Athos; Lynsadrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.; Lasaponara, Rosa; Masini, Nicola; Brcic, Ramon; Eineder, Michael; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2017-04-01

    Non-invasive landscape investigation for archaeological purposes includes a wide range of survey techniques, most of which include in-situ methods. In the recent years, a major advance in the non-invasive surveying techniques has been the introduction of active remote sensing technologies. One of such technologies is spaceborne radar, known as Synthetic Aperture Radar (SAR). SAR has proven to be a valuable tool in the analysis of potential archaeological marks and in the systematic cultural heritage site monitoring. With the use of SAR, it is possible to monitor slight variations in vegetation and soil often interpreted as archaeological signs, while radar sensors frequently having penetrating capabilities offering an insight into shallow underground remains. Radar remote sensing for immovable cultural heritage and archaeological applications has been recently introduced to Cyprus through the currently ongoing ATHENA project. ATHENA project, under the Horizon 2020 programme, aims at building a bridge between research institutions of the low performing Member States and internationally-leading counterparts at EU level, mainly through training workshops and a series of knowledge transfer activities, frequently taking place on the basis of capacity development. The project is formed as the consortium of the Remote Sensing and Geo-Environment Research Laboratory of the Cyprus University of Technology (CUT), the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR). As part of the project, a number of cultural heritage sites in Cyprus have been studied testing different methodologies involving SAR imagery such as Amplitude Change Detection, Coherence Calculation and fusion techniques. The ATHENA's prospective agenda includes the continuation of the capacity building programme with upcoming training workshops to take place while expanding the knowledge of radar applications on conservation and risk monitoring of cultural heritage sites through SAR Interferometry. The current paper presents some preliminary results from the archaeological site of "Nea Paphos", addressing the potential use of the radar technology.

  13. Strontium iodide gamma ray spectrometers for planetary science (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Rowe, Emmanuel; Butler, Jarrhett; Groza, Michael; Burger, Arnold; Yamashita, Naoyuki; Lambert, James L.; Stassun, Keivan G.; Beck, Patrick R.; Cherepy, Nerine J.; Payne, Stephen A.; Castillo-Rogez, Julie C.; Feldman, Sabrina M.; Raymond, Carol A.

    2016-09-01

    Gamma rays produced passively by cosmic ray interactions and by the decay of radioelements convey information about the elemental makeup of planetary surfaces and atmospheres. Orbital missions mapped the composition of the Moon, Mars, Mercury, Vesta, and now Ceres. Active neutron interrogation will enable and/or enhance in situ measurements (rovers, landers, and sondes). Elemental measurements support planetary science objectives as well as resource utilization and planetary defense initiatives. Strontium iodide, an ultra-bright scintillator with low nonproportionality, offers significantly better energy resolution than most previously flown scintillators, enabling improved accuracy for identification and quantification of key elements. Lanthanum bromide achieves similar resolution; however, radiolanthanum emissions obscure planetary gamma rays from radioelements K, Th, and U. The response of silicon-based optical sensors optimally overlaps the emission spectrum of strontium iodide, enabling the development of compact, low-power sensors required for space applications, including burgeoning microsatellite programs. While crystals of the size needed for planetary measurements (>100 cm3) are on the way, pulse-shape corrections to account for variations in absorption/re-emission of light are needed to achieve maximum resolution. Additional challenges for implementation of large-volume detectors include optimization of light collection using silicon-based sensors and assessment of radiation damage effects and energetic-particle induced backgrounds. Using laboratory experiments, archived planetary data, and modeling, we evaluate the performance of strontium iodide for future missions to small bodies (asteroids and comets) and surfaces of the Moon and Venus. We report progress on instrument design and preliminary assessment of radiation damage effects in comparison to technology with flight heritage.

  14. 75 FR 47176 - Special Conditions: Dassault Aviation Model Falcon 7X; Enhanced Flight Visibility System (EFVS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ...), imaging sensor(s), and avionics interfaces that display the sensor imagery on the HUD and overlay it with... that display the sensor imagery, with or without other flight information, on a head-down display. To... infrared sensors can be much different from that detected by natural pilot vision. On a dark night, thermal...

  15. Onboard Sensor Data Qualification in Human-Rated Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Melcher, Kevin J.; Maul, William A.; Chicatelli, Amy K.; Sowers, Thomas S.; Fulton, Christopher; Bickford, Randall

    2012-01-01

    The avionics system software for human-rated launch vehicles requires an implementation approach that is robust to failures, especially the failure of sensors used to monitor vehicle conditions that might result in an abort determination. Sensor measurements provide the basis for operational decisions on human-rated launch vehicles. This data is often used to assess the health of system or subsystem components, to identify failures, and to take corrective action. An incorrect conclusion and/or response may result if the sensor itself provides faulty data, or if the data provided by the sensor has been corrupted. Operational decisions based on faulty sensor data have the potential to be catastrophic, resulting in loss of mission or loss of crew. To prevent these later situations from occurring, a Modular Architecture and Generalized Methodology for Sensor Data Qualification in Human-rated Launch Vehicles has been developed. Sensor Data Qualification (SDQ) is a set of algorithms that can be implemented in onboard flight software, and can be used to qualify data obtained from flight-critical sensors prior to the data being used by other flight software algorithms. Qualified data has been analyzed by SDQ and is determined to be a true representation of the sensed system state; that is, the sensor data is determined not to be corrupted by sensor faults or signal transmission faults. Sensor data can become corrupted by faults at any point in the signal path between the sensor and the flight computer. Qualifying the sensor data has the benefit of ensuring that erroneous data is identified and flagged before otherwise being used for operational decisions, thus increasing confidence in the response of the other flight software processes using the qualified data, and decreasing the probability of false alarms or missed detections.

  16. Evaluation of the Linear Aerospike SR-71 Experiment (LASRE) Oxygen Sensor

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.; Corpening, Griffin P.; Jarvis, Michele; Chiles, Harry R.

    1999-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) was a propulsion flight experiment for advanced space vehicles such as the X-33 and reusable launch vehicle. A linear aerospike rocket engine was integrated into a semi-span of an X-33-like lifting body shape (model), and carried on top of an SR-71 aircraft at NASA Dryden Flight Research Center. Because no flight data existed for aerospike nozzles, the primary objective of the LASRE flight experiment was to evaluate flight effects on the engine performance over a range of altitudes and Mach numbers. Because it contained a large quantity of energy in the form of fuel, oxidizer, hypergolics, and gases at very high pressures, the LASRE propulsion system posed a major hazard for fire or explosion. Therefore, a propulsion-hazard mitigation system was created for LASRE that included a nitrogen purge system. Oxygen sensors were a critical part of the nitrogen purge system because they measured purge operation and effectiveness. Because the available oxygen sensors were not designed for flight testing, a laboratory study investigated oxygen-sensor characteristics and accuracy over a range of altitudes and oxygen concentrations. Laboratory test data made it possible to properly calibrate the sensors for flight. Such data also provided a more accurate error prediction than the manufacturer's specification. This predictive accuracy increased confidence in the sensor output during critical phases of the flight. This paper presents the findings of this laboratory test.

  17. Performance analysis of a fault inferring nonlinear detection system algorithm with integrated avionics flight data

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.; Morrell, F. R.

    1985-01-01

    This paper presents the performance analysis results of a fault inferring nonlinear detection system (FINDS) using integrated avionics sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment. First, an overview of the FINDS algorithm structure is given. Then, aircraft state estimate time histories and statistics for the flight data sensors are discussed. This is followed by an explanation of modifications made to the detection and decision functions in FINDS to improve false alarm and failure detection performance. Next, the failure detection and false alarm performance of the FINDS algorithm are analyzed by injecting bias failures into fourteen sensor outputs over six repetitive runs of the five minutes of flight data. Results indicate that the detection speed, failure level estimation, and false alarm performance show a marked improvement over the previously reported simulation runs. In agreement with earlier results, detection speed is faster for filter measurement sensors such as MLS than for filter input sensors such as flight control accelerometers. Finally, the progress in modifications of the FINDS algorithm design to accommodate flight computer constraints is discussed.

  18. Interfacing and Verifying ALHAT Safe Precision Landing Systems with the Morpheus Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Hirsh, Robert L.; Roback, Vincent E.; Villalpando, Carlos; Busa, Joseph L.; Pierrottet, Diego F.; Trawny, Nikolas; Martin, Keith E.; Hines, Glenn D.

    2015-01-01

    The NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project developed a suite of prototype sensors to enable autonomous and safe precision landing of robotic or crewed vehicles under any terrain lighting conditions. Development of the ALHAT sensor suite was a cross-NASA effort, culminating in integration and testing on-board a variety of terrestrial vehicles toward infusion into future spaceflight applications. Terrestrial tests were conducted on specialized test gantries, moving trucks, helicopter flights, and a flight test onboard the NASA Morpheus free-flying, rocket-propulsive flight-test vehicle. To accomplish these tests, a tedious integration process was developed and followed, which included both command and telemetry interfacing, as well as sensor alignment and calibration verification to ensure valid test data to analyze ALHAT and Guidance, Navigation and Control (GNC) performance. This was especially true for the flight test campaign of ALHAT onboard Morpheus. For interfacing of ALHAT sensors to the Morpheus flight system, an adaptable command and telemetry architecture was developed to allow for the evolution of per-sensor Interface Control Design/Documents (ICDs). Additionally, individual-sensor and on-vehicle verification testing was developed to ensure functional operation of the ALHAT sensors onboard the vehicle, as well as precision-measurement validity for each ALHAT sensor when integrated within the Morpheus GNC system. This paper provides some insight into the interface development and the integrated-systems verification that were a part of the build-up toward success of the ALHAT and Morpheus flight test campaigns in 2014. These campaigns provided valuable performance data that is refining the path toward spaceflight infusion of the ALHAT sensor suite.

  19. The MEDA's Radiometer TIRS for the MARS2020 Mission

    NASA Astrophysics Data System (ADS)

    Pérez Izquierdo, Joel; Sebastián Martínez, Eduardo; Bravo, Andrés; Ferrándiz, Ricardo; Ramos, Miguel; Martínez, Germán; Rodríguez Manfredi, Jose Antonio

    2016-10-01

    The TIRS (Thermal InfraRed Sensor) instrument is one of the payloads of NASA MARS2020 mission, that is expected to take off in 2020, and is designed to operate for at least three Martian years on surface. The TIRS is part of the Mars Environmental Dynamics Analyzer (MEDA), formed for other environmental sensors, which will be placed in the MARS2020 Rover, and is been developing by the Spanish Center of Astrobiology (CAB).The main objectives of MEDA's Thermal InfraRed Sensor are:-Characterize the net radiative forcing (within 10%), and constrain the conductive forcing at the local surface and near-surface atmosphere.-Record the surface skin temperature and the UV-VIS-NIR irradiance solar flux at an accuracy of [10%] at full range of the atmosphere.TIRS design has heritage from GTS-REMS on the Mars Science Laboratory, in the Curiosity Rover. The aim of the instrument is to measure the radiative flux emitted from the Martian surface, sky and the CO2 atmosphere using five thermopiles sensors in four wavelength bands, model TS100 provided by IPHT (Institute of Photonic Technology, Jena, Germany). The TIRS has three downward pointing thermopiles to measure the IR fluxes emitted by the surface, separating brightness surface temperature from emissivity and surface reflected upward short wave radiation, using the thermopiles IR3 (0.3-3 µm), IR4 (6.5-inf µm), IR5 (8-14 µm). Additionally, it has two more thermopiles pointing to the sky, the thermopiles IR1 (6.5-inf µm) and IR2 (14.5-15.5 µm), which captures the downward fluxes of thermal infrared radiation and air temperature nearby the sensor.Thermopiles are accommodated inside a mechanical assembly that is designed to ensure a low thermal gradient. This assembly also accommodates a calibration plate, aimed to intercept part of the thermopiles FOV, and capable to do an in-flight recalibration.

  20. ARV Re-Entry Module Aerodynmics And Aerothermodynamics

    NASA Astrophysics Data System (ADS)

    Scheer, Heloise; Tran, Philippe; Berthe, Philippe

    2011-05-01

    Astrium-ST is the prime contractor of ARV phase A and is especially in charge of designing the Reentry Module (RM). The RM aeroshape has been defined following a trade-off. High level system requirements were derived with particular attention paid on minimum lift-over-drag ratio, trim incidence, centre-of-gravity lateral off-set and box size, volumetric efficiency, attitude at parachute deployment, flight heritage and aeroheating. Since moderate cross-range and thus L/D ratio were required, the aeroshape trade-off has been performed among blunt capsule candidates. Two front- shield families were considered: spherical (Apollo/ARD/Soyuz type) and sphero-conical (CTV type) segment front-shield. The rear-cone angle was set to 20° for internal pressurized volume and accommodation purposes. Figures of merit were assessed and a spherical front- shield of ARD type with a 20° rear-cone section was selected and proposed for further investigations. Maximum benefits will be taken from ARD flight heritage. CFD and WTT campaigns plans will be presented including preliminary results.

  1. Spacecraft Chemical Propulsion Systems at NASA's Marshall Space Flight Center: Heritage and Capabilities

    NASA Technical Reports Server (NTRS)

    McRight, Patrick S.; Sheehy, Jeffrey A.; Blevins, John A.

    2005-01-01

    NASA Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V and the Space Shuttle. This paper highlights a lesser known but equally rich side of MSFC - its heritage in spacecraft chemical propulsion systems and its current capabilities for in-space propulsion system development and chemical propulsion research. The historical narrative describes the efforts associated with developing upper-stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology, X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and several technology development activities. Also discussed are MSFC chemical propulsion research capabilities, along with near- and long-term technology challenges to which MSFC research and system development competencies are relevant.

  2. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  3. Ground/Flight Correlation of Aerodynamic Loads with Structural Response

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Davis, Mark C.

    2009-01-01

    Ground and flight tests provide a basis and methodology for in-flight characterization of the aerodynamic and structural performance through the monitoring of the fluid-structure interaction. The NF-15B flight tests of the Intelligent Flight Control System program provided a unique opportunity to test the correlation of aerodynamic loads with points of flow attaching and detaching from the surface, which are also known as flow bifurcation points, as observed in a previous wind tunnel test performed at the U.S. Air Force Academy (Colorado Springs, Colorado). Moreover, flight tests, along with the subsequent unsteady aerodynamic tests in the NASA Transonic Dynamics Tunnel (TDT), provide a basis using surface flow sensors as means of assessing the aeroelastic performance of flight vehicles. For the flight tests, the NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. This data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in a structural response, which were then compared with the hot-film sensor signals. The hot-film sensor signals near the stagnation region were found to be highly correlated with the root-bending strains. For the TDT tests, a flexible wing section developed under the U.S. Air Force Research Lab SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at two span stations. The TDT tests confirmed the correlation between flow bifurcation points and the wing structural response to tunnel-generated gusts. Furthermore, as the wings structural modes were excited by the gusts, a gradual phase change between the flow bifurcation point and the structural mode occurred during a resonant condition.

  4. PRIMA Platform capability for satellite missions in LEO and MEO (SAR, Optical, GNSS, TLC, etc.)

    NASA Astrophysics Data System (ADS)

    Logue, T.; L'Abbate, M.

    2016-12-01

    PRIMA (Piattaforma Riconfigurabile Italiana Multi Applicativa) is a multi-mission 3-axis stabilized Platform developed by Thales Alenia Space Italia under ASI contract.PRIMA is designed to operate for a wide variety of applications from LEO, MEO up to GEO and for different classes of satellites Platform Family. It has an extensive heritage in flight heritage (LEO and MEO Satellites already fully operational) in which it has successfully demonstrated the flexibility of use, low management costs and the ability to adapt to changing operational conditions.The flexibility and modularity of PRIMA provides unique capability to satisfy different Payload design and mission requirements, thanks to the utilization of recurrent adaptable modules (Service Module-SVM, Propulsion Module-PPM, Payload Module-PLM) to obtain mission dependent configuration. PRIMA product line development is continuously progressing, and is based on state of art technology, modular architecture and an Integrated Avionics. The aim is to maintain and extent multi-mission capabilities to operate in different environments (LEO to GEO) with different payloads (SAR, Optical, GNSS, TLC, etc.). The design is compatible with a wide range of European and US equipment suppliers, thus maximising cooperation opportunity. Evolution activities are mainly focused on the following areas: Structure: to enable Spacecraft configurations for multiple launch; Thermal Control: to guarantee thermal limits for new missions, more demanding in terms of environment and payload; Electrical: to cope with higher power demand (e.g. electrical propulsion, wide range of payloads, etc.) considering orbital environment (e.g. lighting condition); Avionics : AOCS solutions optimized on mission (LEO observation driven by agility and pointing, agility not a driver for GEO). Use of sensors and actuators tailored for specific mission and related environments. Optimised Propulsion control. Data Handling, SW and FDIR mission customization, ensuring robust storage and downlink capability, long lasting autonomy and flexible operations in all mission phases, nominal and non-nominal conditions. This paper starting from PRIMA flight achievements will then outline PRIMA family multi-purpose features addressed to meet multi mission requirements.

  5. PHOTOGRAPHER

    NASA Image and Video Library

    2015-11-03

    LITTLE BIG MOUNTAIN PERFORMS A TRADITIONAL NATIVE AMERICAN HOOP DANCE AT NASA MARSHALL SPACE FLIGHT CENTER’S 2015 NATIVE AMERICAN HERITAGE EVENT. THE EVENT, HELD NOV. 3 ON THE LAWN OF THE ACTIVITIES BUILDING, BUILDING 4316, HONORED THE CONTRIBUTIONS, ACHIEVEMENTS, SACRIFICES AND CULTURAL AND HISTORICAL LEGACY OF AMERICAN INDIANS. IN ITS EARLIEST FORM, THE STORYTELLING HOOP DANCE IS BELIEVED TO HAVE BEEN PART OF A HEALING CEREMONY DESIGNED TO RESTORE BALANCE AND HARMONY IN THE WORLD. WITH NO BEGINNING OR END, THE HOOP REPRESENTS THE NEVER-ENDING CIRCLE OF LIFE. THE SPECIAL EMPHASIS PROGRAM -- SPONSORED BY THE OFFICE OF DIVERSITY AND EQUAL OPPORTUNITY -- WAS PART OF MARSHALL’S OBSERVANCE OF NATIONAL NATIVE AMERICAN HERITAGE MONTH.

  6. Design of a Hybrid (Wired/Wireless) Acquisition Data System for Monitoring of Cultural Heritage Physical Parameters in Smart Cities

    PubMed Central

    García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma

    2015-01-01

    Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board’s designs and more than 5000 algorithm lines. System tests have shown an adequate system operation. PMID:25815447

  7. Design of a hybrid (wired/wireless) acquisition data system for monitoring of cultural heritage physical parameters in Smart Cities.

    PubMed

    García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma

    2015-03-25

    Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board's designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.

  8. Data Integration Acquired from Micro-Uav and Terrestrial Laser Scanner for the 3d Mapping of Jesuit Ruins of São Miguel das Missões

    NASA Astrophysics Data System (ADS)

    Reiss, M. L. L.; da Rocha, R. S.; Ferraz, R. S.; Cruz, V. C.; Morador, L. Q.; Yamawaki, M. K.; Rodrigues, E. L. S.; Cole, J. O.; Mezzomo, W.

    2016-06-01

    The Jesuit Missions the Guaranis were one of the great examples of cultural, social, and scientific of the eighteenth century, which had its decline from successive wars that followed the exchange of territories domain occupied by Portugal and Spain with the Madrid Treaty of January 13, 1750. One of the great examples of this development is materialized in the ruins of 30 churches and villages that remain in a territory that now comprises part of Brazil, Argentina and Paraguay. These Churches, São Miguel das Missões is among the Brazilian ruins, the best preserved. The ruins of São Miguel das Missões were declared a UNESCO World Cultural Heritage in 1983 and the Institute of National Historical Heritage (IPHAN) is the Brazilian Federal agency that manages and maintains this heritage. In order to produce a geographic database to assist the IPHAN in the management of the Ruins of São Miguel das Missões it was proposed a three-dimensional mapping of these ruins never performed in this location before. The proposal is integrated data acquired from multiple sensors: two micro-UAV, an Asctec Falcon 8 (rotary wing) and a Sensefly e-Bee (fixed wing); photos from terrestrial cameras; two terrestrial LIDAR sensors, one Faro Focus 3D S-120 and Optec 3D-HD ILRIS. With this abundance of sensors has been possible to perform comparisons and integration of the acquired data, and produce a 3D reconstruction of the church with high completeness and accuracy (better than 25 mm), as can be seen in the presentation of this work.

  9. Proximity Operations and Docking Sensor Development

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Brewster, Linda L.; Lee, James E.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been under development for the last three years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in spot mode out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. 12 Parts obsolescence issues prevent the construction of more AVGS units, and the next generation sensor was updated to allow it to support the CEV and COTS programs. The flight proven AR&D sensor has been redesigned to update parts and add additional capabilities for CEV and COTS with the development of the Next Generation AVGS at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities include greater sensor range, auto ranging capability, and real-time video output. This paper presents some sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the brassboard and proto-type NGAVGS units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.

  10. Evaluation of Candidate Millimeter Wave Sensors for Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Alexander, Neal T.; Hudson, Brian H.; Echard, Jim D.

    1994-01-01

    The goal of the Synthetic Vision Technology Demonstration Program was to demonstrate and document the capabilities of current technologies to achieve safe aircraft landing, take off, and ground operation in very low visibility conditions. Two of the major thrusts of the program were (1) sensor evaluation in measured weather conditions on a tower overlooking an unused airfield and (2) flight testing of sensor and pilot performance via a prototype system. The presentation first briefly addresses the overall technology thrusts and goals of the program and provides a summary of MMW sensor tower-test and flight-test data collection efforts. Data analysis and calibration procedures for both the tower tests and flight tests are presented. The remainder of the presentation addresses the MMW sensor flight-test evaluation results, including the processing approach for determination of various performance metrics (e.g., contrast, sharpness, and variability). The variation of the very important contrast metric in adverse weather conditions is described. Design trade-off considerations for Synthetic Vision MMW sensors are presented.

  11. NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch

    NASA Technical Reports Server (NTRS)

    Gilligan, Eric

    2014-01-01

    Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.

  12. Low cost split stirling cryogenic cooler for aerospace applications

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Zechtzer, Semeon; Pundak, Nachman; Riabzev, Sergey; Kirckconnel, C.; Freeman, Jeremy

    2012-06-01

    Cryogenic coolers are used in association with sensitive electronics and sensors for military, commercial or scientific space payloads. The general requirements are high reliability and power efficiency, low vibration export and ability to survive launch vibration extremes and long-term exposure to space radiation. A long standing paradigm of using exclusively space heritage derivatives of legendary "Oxford" cryocoolers featuring linear actuators, flexural bearings, contactless seals and active vibration cancellation is so far the best known practice aiming at delivering high reliability components for the critical and usually expensive space missions. The recent tendency of developing mini and micro satellites for the budget constrained missions has spurred attempts to adapt leading-edge tactical cryogenic coolers to meet the space requirements. The authors are disclosing theoretical and practical aspects of a collaborative effort on developing a space qualified cryogenic refrigerator based on the Ricor model K527 tactical cooler and Iris Technology radiation hardened, low cost cryocooler electronics. The initially targeted applications are cost-sensitive flight experiments, but should the results show promise, some long-life "traditional" cryocooler missions may well be satisfied by this approach.

  13. A Reduced SWAP+C DC Magnetometer for Geomagnetic and Space Physics Research

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Ojeda, L.; Rogacki, S.; Pelloni, M.; Regoli, L.

    2016-12-01

    A new small, low mass, low power consumption, and low cost (reduced SWaP+C or Size, Weight and Power + Cost) magnetometer is being developed for both ground-based and future CubeSat Constellation-class missions. The University of Michigan (UM) magnetometer is based on the PNI Induction magnetometer electronics. PNI 3100 magnetometers have flight heritage on Cubesat Missions (e.g., the UM RAXs mission), but they were used primarily for attitude control. This presentation describes the modifications and performance of the magnetometer and our strategies for continued improvement in performance and its environmental testing. A description of further development of this new magnetometer with regards to its ability to measure geophysical signals up to 10 Hz is also given. Current performance has noise levels of about 1 nT/root Hz at 1 Hz, temperature stability, inherent radiation tolerance, in a 3 x 5 cm package (electronics and sensors), draws 10s of mW and costs a few hundred dollars. We will also present several strategies to reduce the noise by a factor of 5-10 that are currently being pursued.

  14. IXV avionics architecture: Design, qualification and mission results

    NASA Astrophysics Data System (ADS)

    Succa, Massimo; Boscolo, Ilario; Drocco, Alessandro; Malucchi, Giovanni; Dussy, Stephane

    2016-07-01

    The paper details the IXV avionics presenting the architecture and the constituting subsystems and equipment. It focuses on the novelties introduced, such as the Ethernet-based protocol for the experiment data acquisition system, and on the synergy with Ariane 5 and Vega equipment, pursued in order to comply with the design-to-cost requirement for the avionics system development. Emphasis is given to the adopted model philosophy in relation to OTS/COTS items heritage and identified activities necessary to extend the qualification level to be compliant with the IXV environment. Associated lessons learned are identified. Then, the paper provides the first results and interpretation from the flight recorders telemetry, covering the behavior of the Data Handling System, the quality of telemetry recording and real-time/delayed transmission, the performance of the batteries and the Power Protection and Distribution Unit, the ground segment coverage during visibility windows and the performance of the GNC sensors (IMU and GPS) and actuators. Finally, some preliminary tracks of the IXV follow on are given, introducing the objectives of the Innovative Space Vehicle and the necessary improvements to be developed in the frame of PRIDE.

  15. 78 FR 32078 - Special Conditions: Gulfstream Model G280 Airplane, Enhanced Flight Vision System (EFVS) With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... document refers to a system comprised of a head-up display, imaging sensor(s), and avionics interfaces that display the sensor imagery on the HUD, and which overlay that imagery with alpha-numeric and symbolic... the sensor imagery, with or without other flight information, on a head-down display. For clarity, the...

  16. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    NASA Technical Reports Server (NTRS)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  17. The Gravity Recovery and Interior Laboratory mission

    NASA Astrophysics Data System (ADS)

    Lehman, D. H.; Hoffman, T. L.; Havens, G. G.

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and Extended Mission in December 2012. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission used twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such as an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  18. The Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  19. Hydra Rendezvous and Docking Sensor

    NASA Technical Reports Server (NTRS)

    Roe, Fred; Carrington, Connie

    2007-01-01

    The U.S. technology to support a CEV AR&D activity is mature and was developed by NASA and supporting industry during an extensive research and development program conducted during the 1990's and early 2000 time frame at the Marshall Space Flight Center. Development and demonstration of a rendezvous/docking sensor was identified early in the AR&D Program as the critical enabling technology that allows automated proxinity operations and docking. A first generation rendezvous/docking sensor, the Video Guidance Sensor (VGS) was developed and successfully flown on STS 87 and again on STS 95, proving the concept of a video-based sensor. Advances in both video and signal processing technologies and the lessons learned from the two successful flight experiments provided a baseline for the development of a new generation of video based rendezvous/docking sensor. The Advanced Video Guidance Sensor (AVGS) has greatly increased performance and additional capability for longer-range operation. A Demonstration Automatic Rendezvous Technology (DART) flight experiment was flown in April 2005 using AVGS as the primary proximity operations sensor. Because of the absence of a docking mechanism on the target satellite, this mission did not demonstrate the ability of the sensor to coltrold ocking. Mission results indicate that the rendezvous sensor operated successfully in "spot mode" (2 km acquisition of the target, bearing data only) but was never commanded to "acquire and track" the docking target. Parts obsolescence issues prevent the construction of current design AVGS units to support the NASA Exploration initiative. This flight proven AR&D technology is being modularized and upgraded with additional capabilities through the Hydra project at the Marshall Space Flight Center. Hydra brings a unique engineering approach and sensor architecture to the table, to solve the continuing issues of parts obsolescence and multiple sensor integration. This paper presents an approach to sensor hardware trades, to address the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS). It will also discuss approaches for upgrading AVGS to address parts obsolescence, and concepts for modularizing the sensor to provide configuration flexibility for multiple vehicle applications. Options for complementary sensors to be integrated into the multi-head Hydra system will also be presented. Complementary sensor options include ULTOR, a digital image correlator system that could provide relative six-degree-of-freedom information independently from AVGS, and time-of-flight sensors, which determine the range between vehicles by timing pulses that travel from the sensor to the target and back. Common targets and integrated targets, suitable for use with the multi-sensor options in Hydra, will also be addressed.

  20. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    NASA Astrophysics Data System (ADS)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen beginning-2010, the second will follow beginning-2011.

  1. Evaluation Of Mass Market Devices For The Documentation Of The Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Aicardi, I.; Lingua, A.; Piras, M.

    2014-06-01

    The cultural and artistic heritage has always been at the center of activities aimed at its preservation and enhancement. Italy is a country particularly rich in terms of heritage to be protected, where the high-risk due to natural hazard, as earthquakes, landslides and floods, which are adds to human activities, contribute to make the heritage more frail, land needs to be safeguarded and enhanced and new mass market technology can be considered as innovative tools for the documentation of cultural heritage. In order to increase our country on the artistic point of view, it must be known in an historical and cultural way. Moreover, it is important also to define the cultural heritage on metric terms, to be able to describe and represent it with the best approach, with the purpose to offer to the people who comes to visit our beautiful country, the reliable model of some important object, that is no longer in exposition. The possibility to use the mass-market devices can allow us to realize it, because they are available for the greater part of the visitors, in a photogrammetric way to reconstruct our models. In the last years, these devices have been very improved and the embedded sensors are becoming more and more efficient in terms of precision and reliability. Also several small video cameras are now used to document our travels and activities and to share them through Internet. In this scenario, the aim of this research is to study and validate the possibility to use mass-market technology for this purpose, testing four different devices (smartphones and video cameras) for the documentation of the cultural heritage.

  2. Flight test results of the Strapdown hexad Inertial Reference Unit (SIRU). Volume 1: Flight test summary

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Flight test results of the strapdown inertial reference unit (SIRU) navigation system are presented. The fault-tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance.

  3. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.

  4. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied.

  5. Flash LIDAR Systems for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Dissly, Richard; Weinberg, J.; Weimer, C.; Craig, R.; Earhart, P.; Miller, K.

    2009-01-01

    Ball Aerospace offers a mature, highly capable 3D flash-imaging LIDAR system for planetary exploration. Multi mission applications include orbital, standoff and surface terrain mapping, long distance and rapid close-in ranging, descent and surface navigation and rendezvous and docking. Our flash LIDAR is an optical, time-of-flight, topographic imaging system, leveraging innovations in focal plane arrays, readout integrated circuit real time processing, and compact and efficient pulsed laser sources. Due to its modular design, it can be easily tailored to satisfy a wide range of mission requirements. Flash LIDAR offers several distinct advantages over traditional scanning systems. The entire scene within the sensor's field of view is imaged with a single laser flash. This directly produces an image with each pixel already correlated in time, making the sensor resistant to the relative motion of a target subject. Additionally, images may be produced at rates much faster than are possible with a scanning system. And because the system captures a new complete image with each flash, optical glint and clutter are easily filtered and discarded. This allows for imaging under any lighting condition and makes the system virtually insensitive to stray light. Finally, because there are no moving parts, our flash LIDAR system is highly reliable and has a long life expectancy. As an industry leader in laser active sensor system development, Ball Aerospace has been working for more than four years to mature flash LIDAR systems for space applications, and is now under contract to provide the Vision Navigation System for NASA's Orion spacecraft. Our system uses heritage optics and electronics from our star tracker products, and space qualified lasers similar to those used in our CALIPSO LIDAR, which has been in continuous operation since 2006, providing more than 1.3 billion laser pulses to date.

  6. 14 CFR 121.346 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... sensor signal has been changed in any way, other than changes necessary to: (1) Accomplish analog to... high frequency component of a signal that is outside the operational bandwidth of the sensor. (b) An original sensor signal for any flight recorder parameter required to be recorded under § 121.344 may be...

  7. 14 CFR 121.346 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sensor signal has been changed in any way, other than changes necessary to: (1) Accomplish analog to... high frequency component of a signal that is outside the operational bandwidth of the sensor. (b) An original sensor signal for any flight recorder parameter required to be recorded under § 121.344 may be...

  8. 14 CFR 121.346 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sensor signal has been changed in any way, other than changes necessary to: (1) Accomplish analog to... high frequency component of a signal that is outside the operational bandwidth of the sensor. (b) An original sensor signal for any flight recorder parameter required to be recorded under § 121.344 may be...

  9. Smart Sensors for Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.

    2017-12-01

    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  10. GeoCARB design maturity and geostationary heritage

    NASA Astrophysics Data System (ADS)

    Sawyer, Kevin; Clark, Charles; Katz, Noah; Kumar, Jack; Nast, Ted; Palmer, Alice

    2013-09-01

    Our companion paper `Progress in development of Tropospheric Infrared Mapping Spectrometers (TIMS): geostationary greenhouse gas (GHG) application' describes geoCARB performance and science. Here we describe a geoCARB instrument design study leading to near PDR maturity. It is based on heritage geostationary (AIA and HMI on SDO, SBIRS GEO-1 and upcoming GLM on GOES-R as examples) and other (IRIS and NIRcam) flight instrumentation. Heritage work includes experience and well developed specifications for near a-thermal carbon fiber honeycomb composite optical benches and optical element mounting design forms that utilize a "family" of mounts for nearly any type of optical element. The geoCARB approach utilizes composite optical benches and bipod flexures to kinematically mount optics. Tooling for alignment and staking of all elements is integral to the design and is "removed before flight" for mass minimization. GeoCARB requires a cryogenic region for focal planes and spectrometers but front end optics and main structure are designed to run much warmer. A star tracker is used for geoCARB posteriori geolocation including pseudo-diurnal thermal distortion characterization. It is kinematically mounted by low conductance thermal isolators directly on to the low expansion high stiffness composite bench that defines the master optical surfaces including the scanning mirrors. The thermal load from the camera heads is routed away from the bench heat pipes. Use of kinematic mounting is advantageous for low thermal conduction designs. Honeycomb composites enable the design's low thermal mechanical distortions.

  11. NASA Glenn Research Center Electrochemistry Branch Battery Overview

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2010-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Specific areas of focus are Li-ion batteries and their development for future Exploration missions. Current component development efforts for high energy and ultra high energy Li-ion batteries are addressed. Electrochemical systems are critical to the success of Exploration, Science and Space Operations missions. NASA Glenn has a long, successful heritage with batteries and fuel cells for aerospace applications. GRC Battery capabilities and expertise span basic research through flight hardware development and implementation. There is a great deal of synergy between energy storage system needs for aerospace and terrestrial applications.

  12. Genesis Sample Return Capsule Overview

    NASA Technical Reports Server (NTRS)

    Willcockson, Bill

    2005-01-01

    I. Simple Entry Capsule Concept: a) Spin-Stabilized/No Active Control Systems; b) Ballistic Entry for 11.04 km/sec Velocity; c) No Heatshield Separation During Entry; d) Parachute Deploy via g-Switch + Timer. II. Stardust Design Inheritance a) Forebody Shape; b) Seal Concepts; c) Parachute Deploy Control; d) Utah Landing Site (UTTR). III. TPS Systems a) Heatshield - Carbon-Carbon - First Planetary Entry; b) Backshell - SLA-561V - Flight Heritage from Pathfinder, MER; d) Forebody Structural Penetrations Aerothermal and TPS Design Process has the Same Methodology as Used for Pathfinder, MER Flight Vehicles.

  13. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  14. Routing Topologies of Wireless Sensor Networks for Health Monitoring of a Cultural Heritage Site.

    PubMed

    Aparicio, Sofía; Martínez-Garrido, María I; Ranz, Javier; Fort, Rafael; Izquierdo, Miguel Ángel G

    2016-10-19

    This paper provides a performance evaluation of tree and mesh routing topologies of wireless sensor networks (WSNs) in a cultural heritage site. The historical site selected was San Juan Bautista church in Talamanca de Jarama (Madrid, Spain). We report the preliminary analysis required to study the effects of heating in this historical location using WSNs to monitor the temperature and humidity conditions during periods of weeks. To test which routing topology was better for this kind of application, the WSNs were first deployed on the upper floor of the CAEND institute in Arganda del Rey simulating the church deployment, but in the former scenario there was no direct line of sight between the WSN elements. Two parameters were selected to evaluate the performance of the routing topologies of WSNs: the percentage of received messages and the lifetime of the wireless sensor network. To analyze in more detail which topology gave the best performance, other communication parameters were also measured. The tree topology used was the collection tree protocol and the mesh topology was the XMESH provided by MEMSIC (Andover, MA, USA). For the scenarios presented in this paper, it can be concluded that the tree topology lost fewer messages than the mesh topology.

  15. Balloon-borne pressure sensor performance evaluation utilizing tracking radars

    NASA Technical Reports Server (NTRS)

    Norcross, G. A.; Brooks, R. L.

    1983-01-01

    The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the Earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute significant height errors to their measurements of atmospheric constituent concentrations and properties. A series of radiosonde flights was conducted. In most cases, each flight consisted of two sondes attached to a single balloon and each flight was tracked by a highly accurate C-band radar. For the first 19 radiosonde flights, the standard aneroid cell baroswitch assembly used was the pressure sensor. The last 26 radiosondes were equipped with a premium grade aneroid cell baroswitch assembly sensor and with a hypsometer. It is shown that both aneroid cell baroswitch sensors become increasingly inaccurate with altitude. The hypsometer radar differences are not strongly dependent upon altitude and it is found that the standard deviation of the differences at 35 km is 0.179 km.

  16. In space performance of the lunar orbiter laser altimeter (LOLA) laser transmitter

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Shaw, George B.; Novo-Gradac, Ann Marie; Li, Steven X.; Cavanaugh, John

    2011-11-01

    In this paper we present the final configuration of the space flight laser transmitter as delivered to the Lunar Orbiter Laser Altimeter (LOLA) instrument along with some in-space operation performance data. The LOLA instrument is designed to map the lunar surface and provide unprecedented data products in anticipation of future manned flight missions. The laser transmitter has been operating on orbit at the Moon continuously since July 2009 and accumulated over 1.8 billion laser shots in space. The LOLA laser transmitter design has heritage dated back to the MOLA laser transmitter launched more than 10 years ago and incorporates lessons learned from previous laser altimeter missions at NASA Goddard Space Flight Center.

  17. An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Rieder, R.; Wanke, H.; Economou, T.

    1996-09-01

    Mars Pathfinder and the Russian Mars-96 will carry an Alpha Proton X-Ray Spectrometer (APXS) for the determination of the chemical composition of Martian rocks and soil. The instrument will measure the concentration of all major and many minor elements, including C,N and O, at levels above typically 1%. The method employed consist of bombarding a sample of 50 mm diameter with alpha particles from a radioactive source (50 mCi of Cm-244) and measuring: (i) backscattered alpha particles (alpha mode) (ii) protons from (a,p) reactions with some light elements (proton mode) (iii) characteristic X-rays emitted from the sample (X-ray mode). The APXS has a long standing space heritage, going back to Surveyor V,VI and VII (1967/68) and the Soviet Phobos (1988) missions. The present design is the result of an endeavour to reduce mass and power consumption to 600g/ 300mW. It consist of a sensor head containing the alpha sources, a telescope of a silicon detectors for the detection of the alpha particles and protons and a separate X-ray detector with its preamplifier, and an electronics box (80x70x60 mm) containing a microcontroller based multichannel spectrometer. The paper will describe the APXS flight hardware and present results obtained with the flight instrument that will show the instrument capabili- ties and the expected results to be obtained during surface operations on Mars.

  18. Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Alexander, James; Goldberg, Hannah; Montgomery, James; Spiers, Gary; Liebe, Carl; Johnson, Andrew; Gromov, Konstantin; Konefat, Edward; Lam, Raymond; Meras, Patrick

    2008-01-01

    To be certain that a candidate sensor system will perform as expected during missions, we have developed a field test system and have executed test flights with a helicopter-mounted sensor platform over desert terrains, which simulate Lunar features. A key advantage to this approach is that different sensors can be tested and characterized in an environment relevant to the flight needs prior to flight. Testing the various sensors required the development of a field test system, including an instrument to validate the truth of the sensor system under test. The field test system was designed to be flexible enough to cover the test needs of many sensors (lidar, radar, cameras) that require an aerial test platform, including helicopters, airplanes, unmanned aerial vehicles (UAV), or balloons. To validate the performance of the sensor under test, the dynamics of the test platform must be known with sufficient accuracy to provide accurate models for input into algorithm development. The test system provides support equipment to measure the dynamics of the field test sensor platform, and allow computation of the truth position, velocity, attitude, and time.

  19. Ground/Flight Correlation of Aerodynamic Loads with Structural Response

    NASA Technical Reports Server (NTRS)

    Mangalam, Arun S.; Davis, Mark C.

    2009-01-01

    United States Air Force Research Laboratory (AFRL) ground tests at the NASA Transonic Dynamics Tunnel (TDT) and NASA flight tests provide a basis and methodology for in-flight characterization of the aeroelastic performance through the monitoring of the fluid-structure interaction using surface flow sensors. NASA NF-15B flight tests provided a unique opportunity to test the correlation of aerodynamic loads with sectional flow attachment/detachment points, also known as flow bifurcation points (FBPs), as observed in previous wind tunnel tests. The NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. These data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in root-bending strains and hot-film sensor signals near the stagnation region that were highly correlated. For the TDT tests, a flexible wing section developed under the AFRL SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at multiple span stations. The TDT tests provided data showing a gradual phase change between the FBP and the structural mode occurred during a resonant condition as the wings structural modes were excited by the tunnel-generated gusts.

  20. Flight parameter estimation using instantaneous frequency and direction of arrival measurements from a single acoustic sensor node.

    PubMed

    Lo, Kam W

    2017-03-01

    When an airborne sound source travels past a stationary ground-based acoustic sensor node in a straight line at constant altitude and constant speed that is not much less than the speed of sound in air, the movement of the source during the propagation of the signal from the source to the sensor node (commonly referred to as the "retardation effect") enables the full set of flight parameters of the source to be estimated by measuring the direction of arrival (DOA) of the signal at the sensor node over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the sensor node to improve the precision of the flight parameter estimates when the source spectrum contains a harmonic line of constant frequency. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the flight parameters can be reduced when IF measurements are used together with DOA measurements. Two flight parameter estimation algorithms that utilize both IF and DOA measurements are described and their performances are evaluated using both simulated data and real data.

  1. Passive exposure of Earth radiation budget experiment components. LDEF experiment AO-147: Post-flight examinations and tests

    NASA Technical Reports Server (NTRS)

    Hickey, John R.

    1992-01-01

    The flight spare sensors of the Earth Radiation Budget (ERB) experiment of the Nimbus 6 and 7 missions were flown aboard the LDEF. The preliminary post retrieval examination and test results are presented here for the sensor windows and filters, the thermopile sensors and a cavity radiometer.

  2. Flight Software for the LADEE Mission

    NASA Technical Reports Server (NTRS)

    Cannon, Howard N.

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.

  3. NPP Clouds and the Earth's Radiant Energy System (CERES) Predicted Sensor Performance Calibration and Preliminary Data Product Performance

    NASA Technical Reports Server (NTRS)

    Priestly, Kory; Smith, George L.; Thomas, Susan; Maddock, Suzanne L.

    2009-01-01

    Continuation of the Earth Radiation Budget (ERB) Climate Data Record (CDR) has been identified as critical in the 2007 NRC Decadal Survey, the Global Climate Observing System WCRP report, and in an assessment titled Impacts of NPOESS Nunn-McCurdy Certification on Joint NASA-NOAA Climate Goals. In response, NASA, NOAA and NPOESS agreed in early 2008 to fly the final existing CERES Flight Model (FM-5) on the NPP spacecraft for launch in 2010. Future opportunities for ERB CDR continuity consist of procuring an additional CERES Sensor with modest performance upgrades for flight on the NPOESS C1 spacecraft in 2013, followed by a new CERES follow-on sensor for flight in 2018 on the NPOESS C3 spacecraft. While science goals remain unchanged for the long-term ERB Climate Data Record, it is now understood that the task of achieving these goals is more difficult for two reasons. The first is an increased understanding of the dynamics of the Earth/atmosphere system which demonstrates that rigorous separation of natural variability from anthropogenic change on decadal time scales requires higher accuracy and stability than originally envisioned. Secondly, future implementation scenarios involve less redundancy in flight hardware (1 vs. 2 orbits and operational sensors) resulting in higher risk of loss of continuity and reduced number of independent observations to characterize performance of individual sensors. Although EOS CERES CDR's realize a factor of 2 to 4 improvement in accuracy and stability over previous ERBE CDR's, future sensors will require an additional factor of 2 improvement to answer rigorously the science questions moving forward. Modest investments, defined through the CERES Science Team s 30-year operational history of the EOS CERES sensors, in onboard calibration hardware and pre-flight calibration and test program will ensure meeting these goals while reducing costs in re-processing scientific datasets. The CERES FM-5 pre-flight radiometric characterization program benefited from the 30-year operational experience of the CERES EOS sensors, as well as a stronger emphasis of radiometric characterization in the Statement of Work with the sensor provider. Improvements to the pre-flight program included increased spectral, spatial, and temporal sampling under vacuum conditions as well as additional tests to characterize the primary and transfer standards in the calibration facility. Future work will include collaboration with NIST to further enhance the understanding of the radiometric performance of this equipment prior to flight. The current effort summarizes these improvements to the CERES FM-5 pre-flight sensor characterization program, as well as modifications to inflight calibration procedures and operational tasking. In addition, an estimate of the impacts to the system level accuracy and traceability is presented.

  4. Recent Goddard Space Flight Center (GSFC) experience with on-orbit calibration of attitude sensors

    NASA Technical Reports Server (NTRS)

    Davis, W.; Hashmall, J.; Harman, R.

    1992-01-01

    The results of on-orbit calibration for several satellites by the flight Dynamics Facility (FDF) at GSFC are reviewed. The examples discussed include attitude calibrations for sensors, including fixed-head star trackers, fine sun sensors, three-axis magnetometers, and inertial reference units taken from recent experience with the Compton Gamma Ray observatory, the Upper Atmosphere Research Satellite, and the Extreme Ultraviolet Explorer calibration. The methods used and the results of calibration are discussed, as are the improvements attained from in-flight calibration.

  5. Small total dose measurement system for SDS-1

    NASA Astrophysics Data System (ADS)

    Kimoto, Yugo; Satoh, Yohei; Tachihara, Hiroshi

    2009-11-01

    The Japanese Aerospace Exploration Agency (JAXA) uses monitors on board satellites to measure and record in-flight data on ionization effects in space. A compact, total dose measurement system for the small satellite (SDS-1) was developed based on the previous system for measuring total ionizing dose effects. Especially, the sensor for SDS-1 is quite smaller than the sensor for SOHLA-1, which is presented in the last year. The sensor is 8 mm wide×3 mm high×19 mm long and weighs approximately 4 g with 500 mm its wire harness. Eight pin LCC RADFET and temperature sensor are arranged on it. Seven sensors are arranged on some components inside the SDS-1. One of the sensors is arranged on a printed board in advanced microprocessing in-ORBIT experiment equipment (AMI). The AMI demonstrate 320 MIPS microprocessor and DC-DC converter for space. The absorbed dose at the points where the sensors are arranged was evaluated before flight and will be compared with resulting flight data.

  6. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  7. Automated Rendezvous and Capture System Development and Simulation for NASA

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.; Murphy, Leslie

    2004-01-01

    The United States does not have an Automated Rendezvous and Capture Docking (AR&C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. T h i s reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR&C) system for U.S. space vehicles. This A M C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized as the primary navigation sensor on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004. Realtime closed-loop simulations will be performed to validate the improved AR&C systems prior to flight.

  8. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    NASA Technical Reports Server (NTRS)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  9. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  10. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  11. Evaluation of scanning earth sensor mechanism on engineering test satellite 4

    NASA Technical Reports Server (NTRS)

    Ikeuchi, M.; Wakabayashi, Y.; Ohkami, Y.; Kida, T.; Ishigaki, T.; Matsumoto, M.

    1983-01-01

    The results of the analysis and the evaluation of flight data obtained from the horizon sensor test project are described. The rotary mechanism of the scanning earth sensor composed of direct drive motor and bearings using solid lubricant is operated satisfactorily. The transmitted flight data from Engineering Test Satellite IV was evaluated in comparison with the design value.

  12. Millimeter-wave data acquisition for terrain mapping, obstacle detection, and dust penetrating capability testing

    NASA Astrophysics Data System (ADS)

    Schmerwitz, S.; Doehler, H.-U.; Ellis, K.; Jennings, S.

    2011-06-01

    The DLR project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites) is devoted to demonstrating and evaluating the characteristics of sensors for helicopter operations in degraded visual environments. Millimeter wave radar is one of the many sensors considered for use in brown-out. It delivers a lower angular resolution compared to other sensors, however it may provide the best dust penetration capabilities. In cooperation with the NRC, flight tests on a Bell 205 were conducted to gather sensor data from a 35 GHz pencil beam radar for terrain mapping, obstacle detection and dust penetration. In this paper preliminary results from the flight trials at NRC are presented and a description of the radars general capability is shown. Furthermore, insight is provided into the concept of multi-sensor fusion as attempted in the ALLFlight project.

  13. Seasat. Volume 2: Flight systems

    NASA Technical Reports Server (NTRS)

    Pounder, E. (Editor)

    1980-01-01

    Flight systems used in the Seasat Project are described. Included are (1) launch operation; (2) satellite performance after launch; (3) sensors that collected data; and (4) the launch vehicle that placed the satellite into Earth orbit. Techniques for sensor management are explained.

  14. Design, Development & Flight Testing Of The U.S. Army 4200 sq ft Parafoil Recovery System

    NASA Technical Reports Server (NTRS)

    Bennett, Thomas W.; Fox, Roy

    2007-01-01

    The purpose of this paper is to describe the design, development and flight testing of the U.S. Army 4200 ft(sup 2) parafoil recovery system built under NASA Contract NAS9-00076. The 4200 ft(sup 2) parafoil described herein was a potential candidate to fulfill the U.S. Army requirement for a 10,000 lb useable payload precision guided recovery system. Design heritage as well as specific features, like lower surface inlets, confluence fitting, upper surface energy modulator design, deployment bag design and 60 ft diameter Ringslot drogue will be discussed. Initial flight test results, ground testing of various components to verify design margin and configuration changes will also be discussed. The 4200 ft(sup 2) parafoil recovery system completed three flight tests during 2003 at payload weights of over 15,000 lbs.

  15. Design, Development and Flight Testing of the U.S. Army 4200 sq ft Parafoil Recovery System

    NASA Technical Reports Server (NTRS)

    Bennett, Thomas W.; Fox, Roy, Jr.

    2005-01-01

    The purpose of this paper is to describe the design, development and flight-testing of the U.S. Army 4200 sq ft parafoil recovery system built under NASA Contract NAS 9-00076. The 4200 f? parafoil described herein was a potential candidate to fulfill the U.S. Army requirement for a 10,000 lb useable payload precision guided recovery system. Design heritage as well as specific features, like lower surface inlets, confluence fitting, upper surface energy modulator design, deployment bag design and 60 ft diameter Ringslot drogue will be discussed. Initial flight test results, ground testing of various components to verify design margin and configuration changes will also be discussed. The 4200 sq ft parafoil recovery system completed three flight tests during 2003 at payload weights of over 15,000 Ibs

  16. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  17. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  18. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System

    PubMed Central

    Bermudez, Sergio A.; Schrott, Alejandro G.; Tsukada, Masahiko; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F.; López, Vanessa; Leona, Marco

    2017-01-01

    Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects. PMID:28858223

  19. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System.

    PubMed

    Klein, Levente J; Bermudez, Sergio A; Schrott, Alejandro G; Tsukada, Masahiko; Dionisi-Vici, Paolo; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F; López, Vanessa; Leona, Marco

    2017-08-31

    Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects.

  20. Flight-Tested Prototype of BEAM Software

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David

    2006-01-01

    Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.

  1. Wavelets and Elman Neural Networks for monitoring environmental variables

    NASA Astrophysics Data System (ADS)

    Ciarlini, Patrizia; Maniscalco, Umberto

    2008-11-01

    An application in cultural heritage is introduced. Wavelet decomposition and Neural Networks like virtual sensors are jointly used to simulate physical and chemical measurements in specific locations of a monument. Virtual sensors, suitably trained and tested, can substitute real sensors in monitoring the monument surface quality, while the real ones should be installed for a long time and at high costs. The application of the wavelet decomposition to the environmental data series allows getting the treatment of underlying temporal structure at low frequencies. Consequently a separate training of suitable Elman Neural Networks for high/low components can be performed, thus improving the networks convergence in learning time and measurement accuracy in working time.

  2. The balloon and the airship technological heritage

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1981-01-01

    The balloon and the airship are discussed with emphasis on the identification of commonalities and distinctions. The aerostat technology behind the shape and structure of the vehicles is reviewed, including a discussion of structural weight, internal pressure, buckling, and the development of a stable tethered balloon system. Proper materials for the envelope are considered, taking elongation and stress into account, and flight operation and future developments are reviewed. Airships and tethered balloons which are designed to carry high operating pressure with low gas loss characteristics are found to share similar problems in low speed flight operations, while possessing interchangeable technologies.

  3. Liquid-Metal Pump Technologies for Nuclear Surface Power

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.

    2007-01-01

    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.

  4. A preliminary design for flight testing the FINDS algorithm

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.

    1986-01-01

    This report presents a preliminary design for flight testing the FINDS (Fault Inferring Nonlinear Detection System) algorithm on a target flight computer. The FINDS software was ported onto the target flight computer by reducing the code size by 65%. Several modifications were made to the computational algorithms resulting in a near real-time execution speed. Finally, a new failure detection strategy was developed resulting in a significant improvement in the detection time performance. In particular, low level MLS, IMU and IAS sensor failures are detected instantaneously with the new detection strategy, while accelerometer and the rate gyro failures are detected within the minimum time allowed by the information generated in the sensor residuals based on the point mass equations of motion. All of the results have been demonstrated by using five minutes of sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment.

  5. First Deminsys (high speed FBG interrogator) flight

    NASA Astrophysics Data System (ADS)

    van Els, Thomas J.

    2009-03-01

    Deminsys is the world's fastest multi sensor / multi channel FBG interrogator, identifies one till four channels with typically 8 sensors per channel. The system is especially developed for the interrogation of signals up to 19,3 kHz for each sensor and the sample frequency is independent of the number of sensors. By having multiple sensors per fibre you can create a very compact network of sensors. Due to its revolutionary (light weight, compact and solid state) design, Deminsys seems to fit perfectly into (research) programs for aerospace, medic & life science, maritime, industrial, crash test and all other fast detection applications. Technobis Fibre Technologies (TFT) and NLR made a first test flight with the Deminsys optical fibre measurement system using the NLR test aircraft on October 24th 2008. This flight was a first step in the further development of the current system in order to make it suitable for operation on-board an aircraft and bring it from TRL3 towards TRL5, a functional model for aerospace applications.

  6. A Vision for an International Multi-Sensor Snow Observing Mission

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2015-01-01

    Discussions within the international snow remote sensing community over the past two years have led to encouraging consensus regarding the broad outlines of a dedicated snow observing mission. The primary consensus - that since no single sensor type is satisfactory across all snow types and across all confounding factors, a multi-sensor approach is required - naturally leads to questions about the exact mix of sensors, required accuracies, and so on. In short, the natural next step is to collect such multi-sensor snow observations (with detailed ground truth) to enable trade studies of various possible mission concepts. Such trade studies must assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, temporal and spatial coverage, technological maturity, and cost.

  7. Helicopter synthetic vision based DVE processing for all phases of flight

    NASA Astrophysics Data System (ADS)

    O'Brien, Patrick; Baughman, David C.; Wallace, H. Bruce

    2013-05-01

    Helicopters experience nearly 10 times the accident rate of fixed wing platforms, due largely to the nature of their mission, frequently requiring operations in close proximity to terrain and obstacles. Degraded visual environments (DVE), including brownout or whiteout conditions generated by rotor downwash, result in loss of situational awareness during the most critical phase of flight, and contribute significantly to this accident rate. Considerable research into sensor and system solutions to address DVE has been conducted in recent years; however, the promise of a Synthetic Vision Avionics Backbone (SVAB) extends far beyond DVE, enabling improved situational awareness and mission effectiveness during all phases of flight and in all visibility conditions. The SVAB fuses sensor information with high resolution terrain databases and renders it in synthetic vision format for display to the crew. Honeywell was awarded the DARPA MFRF Technical Area 2 contract in 2011 to develop an SVAB1. This work includes creation of a common sensor interface, development of SVAB hardware and software, and flight demonstration on a Black Hawk helicopter. A "sensor agnostic" SVAB allows platform and mission diversity with efficient upgrade path, even while research continues into new and improved sensors for use in DVE conditions. Through careful integration of multiple sources of information such as sensors, terrain and obstacle databases, mission planning information, and aircraft state information, operations in all conditions and phases of flight can be enhanced. This paper describes the SVAB and its functionality resulting from the DARPA contract as well as Honeywell RD investment.

  8. Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challenge

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.

    2006-01-01

    The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), manages the project and is responsible for flight operation; Orbital Sciences Corporation (OSC), is the spacecraft builder and is responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), is responsible for science planning and operations. As a cost-capped mission, one of Dawn's implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL's ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL's GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project's commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to fundamental systems engineering practices: decomposition of the project request into manageable requirements; integration of multiple ground disciplines and experts into a focused team effort; definition of a structured yet flexible development process; definition of an in-process risk reduction plan; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.

  9. Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challange

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.

    2006-01-01

    The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), responsible for project management and flight operations; Orbital Sciences Corporation (OSC), spacecraft builder and responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), responsible for science planning and operations. As a cost-capped mission, one of Dawn s implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL s ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL s GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project s commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to an overall systems engineering process and fundamental systems engineering practices: decomposition of the project request into manageable requirements; definition of a structured yet flexible development process; integration of multiple ground disciplines and experts into a focused team effort; in-process risk management; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.

  10. Air launch wireless sensor nodes (ALSN) for battle damage assessment (BDA)

    NASA Astrophysics Data System (ADS)

    Back, Jason M.; Beck, Steven D.; Frank, Mark A.; Hoenes, Eric

    2006-05-01

    This paper summarizes the Defense Threat Reduction Agency (DTRA) sponsored development and demonstration of an Air Launched Sensor Node (ALSN) system designed to fill DTRA's immediate need to support the Global Strike requirement of weapon-borne deliverable sensors for Battle Damage Assessment (BDA). Unattended ground sensors were integrated into a CBU-103 Tactical Munitions Dispenser (TMD), and flight test demonstrated with the 46 th Test Wing at Eglin AFB, FL. The objectives of the ALSN program were to repackage an existing multi-sensor node system to conform to the payload envelope and deployment configuration design; to integrate this payload into the CBU-103 TMD; and to conduct a combined payload flight test demonstration. The final sensor node included multiple sensors a microphone, a geophone, and multiple directional Passive Infrared (PIR) detectors with processing electronics, a low power wireless communications 802.15.4 mesh network, GPS (Global Positioning System), and power integrated into a form-fit BLU-97 munitions deployable package. This paper will present and discuss the flight test, results, and ALSN performance.

  11. COBALT Flight Demonstrations Fuse Technologies

    NASA Image and Video Library

    2017-06-07

    This 5-minute, 50-second video shows how the CoOperative Blending of Autonomous Landing Technologies (COBALT) system pairs new landing sensor technologies that promise to yield the highest precision navigation solution ever tested for NASA space landing applications. The technologies included a navigation doppler lidar (NDL), which provides ultra-precise velocity and line-of-sight range measurements, and the Lander Vision System (LVS), which provides terrain-relative navigation. Through flight campaigns conducted in March and April 2017 aboard Masten Space Systems' Xodiac, a rocket-powered vertical takeoff, vertical landing (VTVL) platform, the COBALT system was flight tested to collect sensor performance data for NDL and LVS and to check the integration and communication between COBALT and the rocket. The flight tests provided excellent performance data for both sensors, as well as valuable information on the integrated performance with the rocket that will be used for subsequent COBALT modifications prior to follow-on flight tests. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.

  12. The Traceable Radiometry Underpinning Terrestrial and Helio Studies (TRUTHS) mission

    NASA Astrophysics Data System (ADS)

    Green, Paul D.; Fox, Nigel P.; Lobb, Daniel; Friend, Jonathan

    2015-10-01

    TRUTHS (Traceable Radiometry Underpinning Terrestrial- and Helio-Studies) is a proposed small satellite mission to enable a space-based climate observing system capable of delivering data of the quality needed to provide the information needed by policy makers to make robust mitigation and adaptation decisions. This is achieved by embedding trust and confidence in the data and derived information (tied to international standards) from both its own measurements and by upgrading the performance and interoperability of other EO platforms, such as the Sentinels by in-flight reference calibration. TRUTHS would provide measurements of incoming (total and spectrally resolved) and global reflected spectrally and spatially (50 m) solar radiation at the 0.3% uncertainty level. These fundamental climate data products can be convolved into the building blocks for many ECVs and EO applications as envisaged by the 2015 ESA science strategy; in a cost effective manner. We describe the scientific drivers for the TRUTHS mission and how the requirements for the climate benchmarking and cross-calibration reference sensor are both complementary and simply implemented, with a small additional complexity on top of heritage calibration schemes. The calibration scheme components and the route to SI-traceable Earth-reflected solar spectral radiance and solar spectral irradiance are described.

  13. Design and qualification of the interferometer for the GOSAT-2 spectrometer

    NASA Astrophysics Data System (ADS)

    Montembault, Yan; Moreau, Louis; Roux, Michel; Buijs, Henry; Soucy, Marc-André

    2016-10-01

    GOSAT-2 is the successor of the Greenhouse gases Observing SATellite (GOSAT, "IBUKI") launched in 2009 by Japan Aerospace Exploration Agency (JAXA). GOSAT-2 will continue and enhance space borne measurements of greenhouse gases started by GOSAT and monitor the impacts of climate change and human activities on the carbon cycle. It will also contribute to climate science and climate change related policies. The GOSAT-2 spacecraft will carry two earth observation instruments: FTS-2, the second generation of the TANSO-FTS and CAI-2, a Cloud and Aerosol Imager. Mitsubishi Electric Corporation is the prime contractor of GOSAT-2. Harris is the subcontractor of the spectrometer. ABB, who successfully designed, manufactured, and delivered the interferometer for the TANSO-FTS instrument for GOSAT, is currently delivering the modulator for the FTS-2 instrument to Mitsubishi Electric Corporation. Built on the TANSO-FTS heritage, FTS-2 is a thermal and near infrared sensor for carbon observation based on a Fourier transform spectrometer featuring larger optical throughput than TANSO-FTS. This paper presents an overview of the design of the FTS-2 interferometer as well as key qualification and performance verification activities conducted on the interferometer flight model.

  14. A weighted optimization approach to time-of-flight sensor fusion.

    PubMed

    Schwarz, Sebastian; Sjostrom, Marten; Olsson, Roger

    2014-01-01

    Acquiring scenery depth is a fundamental task in computer vision, with many applications in manufacturing, surveillance, or robotics relying on accurate scenery information. Time-of-flight cameras can provide depth information in real-time and overcome short-comings of traditional stereo analysis. However, they provide limited spatial resolution and sophisticated upscaling algorithms are sought after. In this paper, we present a sensor fusion approach to time-of-flight super resolution, based on the combination of depth and texture sources. Unlike other texture guided approaches, we interpret the depth upscaling process as a weighted energy optimization problem. Three different weights are introduced, employing different available sensor data. The individual weights address object boundaries in depth, depth sensor noise, and temporal consistency. Applied in consecutive order, they form three weighting strategies for time-of-flight super resolution. Objective evaluations show advantages in depth accuracy and for depth image based rendering compared with state-of-the-art depth upscaling. Subjective view synthesis evaluation shows a significant increase in viewer preference by a factor of four in stereoscopic viewing conditions. To the best of our knowledge, this is the first extensive subjective test performed on time-of-flight depth upscaling. Objective and subjective results proof the suitability of our approach to time-of-flight super resolution approach for depth scenery capture.

  15. Use of piezoelectric foil for flow diagnostics

    NASA Technical Reports Server (NTRS)

    Carraway, Debra L.; Bertelrud, Arild

    1989-01-01

    A laboratory investigation was conducted to characterize two piezoelectric-film sensor configurations, a rigidly mounted sensor and a sensor mounted over an air cavity. The sensors are evaluated for sensitivity and frequency response, and methods to optimize data are presented. The cavity-mounted sensor exhibited a superior frequency response and was more sensitive to normal pressure fluctuations and less sensitive to vibrations through the structure. Both configurations were sensitive to large-scale structural vibrations. Flight-test data are shown for cavity-mounted sensors, illustrating practical aspects to consider when designing sensors for application in such harsh environments. The relation of the data to skin friction and maximum shear stress, transition detection, and turbulent viscous layers is derived through analysis of the flight data.

  16. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    NASA Technical Reports Server (NTRS)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  17. Registration of 3D and Multispectral Data for the Study of Cultural Heritage Surfaces

    PubMed Central

    Chane, Camille Simon; Schütze, Rainer; Boochs, Frank; Marzani, Franck S.

    2013-01-01

    We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model. PMID:23322103

  18. The influence of the in situ camera calibration for direct georeferencing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Mitishita, E.; Barrios, R.; Centeno, J.

    2014-11-01

    The direct determination of exterior orientation parameters (EOPs) of aerial images via GNSS/INS technologies is an essential prerequisite in photogrammetric mapping nowadays. Although direct sensor orientation technologies provide a high degree of automation in the process due to the GNSS/INS technologies, the accuracies of the obtained results depend on the quality of a group of parameters that models accurately the conditions of the system at the moment the job is performed. One sub-group of parameters (lever arm offsets and boresight misalignments) models the position and orientation of the sensors with respect to the IMU body frame due to the impossibility of having all sensors on the same position and orientation in the airborne platform. Another sub-group of parameters models the internal characteristics of the sensor (IOP). A system calibration procedure has been recommended by worldwide studies to obtain accurate parameters (mounting and sensor characteristics) for applications of the direct sensor orientation. Commonly, mounting and sensor characteristics are not stable; they can vary in different flight conditions. The system calibration requires a geometric arrangement of the flight and/or control points to decouple correlated parameters, which are not available in the conventional photogrammetric flight. Considering this difficulty, this study investigates the feasibility of the in situ camera calibration to improve the accuracy of the direct georeferencing of aerial images. The camera calibration uses a minimum image block, extracted from the conventional photogrammetric flight, and control point arrangement. A digital Vexcel UltraCam XP camera connected to POS AV TM system was used to get two photogrammetric image blocks. The blocks have different flight directions and opposite flight line. In situ calibration procedures to compute different sets of IOPs are performed and their results are analyzed and used in photogrammetric experiments. The IOPs from the in situ camera calibration improve significantly the accuracies of the direct georeferencing. The obtained results from the experiments are shown and discussed.

  19. Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety

    NASA Technical Reports Server (NTRS)

    Heatwole, Scott; Lanzi, Raymond J.

    2010-01-01

    The Autonomous Flight Safety System (AFSS) aims to replace the human element of range safety operations, as well as reduce reliance on expensive, downrange assets for launches of expendable launch vehicles (ELVs). The system consists of multiple navigation sensors and flight computers that provide a highly reliable platform. It is designed to ensure that single-event failures in a flight computer or sensor will not bring down the whole system. The flight computer uses a rules-based structure derived from range safety requirements to make decisions whether or not to destroy the rocket.

  20. Development of a Sheathed Miniature Aerothermal Reentry Thermocouple for Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Martinez, Edward R.; Weber, Carissa Tudryn; Oishi, Tomo; Santos, Jose; Mach, Joseph

    2011-01-01

    The Sheathed Miniature Aerothermal Reentry Thermocouple is a micro-miniature thermocouple for high temperature measurement in extreme environments. It is available for use in Thermal Protection System materials for ground testing and flight. This paper discusses the heritage, and design of the instrument. Experimental and analytical methods used to verify its performance and limitations are described.

  1. Using Quality Attributes to Bridge Systems Engineering Gaps : A Juno Ground Data Systems Case Study

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.; Jackson, Maddalena M.; Thornton, Marla S.

    2012-01-01

    The Juno Mission to Jupiter is the second mission selected by the NASA New Frontiers Program. Juno launched August 2011 and will reach Jupiter July 2016. Juno's payload system is composed of nine instruments plus a gravity science experiment. One of the primary functions of the Juno Ground Data System (GDS) is the assembly and distribution of the CFDP (CCSDS File Delivery Protocol) product telemetry, also referred to as raw science data, for eight out of the nine instruments. The GDS accomplishes this with the Instrument Data Pipeline (IDP). During payload integration, the first attempt to exercise the IDP in a flight like manner revealed that although the functional requirements were well understood, the system was unable to meet latency requirements with the as-is heritage design. A systems engineering gap emerged between Juno instrument data delivery requirements and the assumptions behind the heritage flight-ground interactions. This paper describes the use of quality attributes to measure and overcome this gap by introducing a new systems engineering activity, and a new monitoring service architecture that successfully delivered the performance metrics needed to validate Juno IDP.

  2. Solar maximum mission fine pointing sun sensor dawn and dusk errors flight data and model analysis

    NASA Technical Reports Server (NTRS)

    Kulp, D. R.

    1988-01-01

    SMM flight system control errors occurring at spacecraft dawn and dusk are analyzed. The errors are associated with the fine pointing sun sensor (FPSS), which is a primary component of the SMM attitude control system. It is shown that the source of the FPSS dawn/dusk distortion is the incomplete masking of sunlight reflected off the earth by the optical baffle covering the FPSS sensor heads onboard the SMM during periods of orbit dawn and dusk. For the most part, the modeled behavior of the FPSS under dawn and dusk lighting conditions matches the observed behavior in the SMM flight data.

  3. Ares I-X Flight Test Vehicle: Stack 5 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.

  4. Ares I-X Flight Test Vehicle:Stack 1 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.

  5. Pressure Distribution and Air Data System for the Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Gibson, Lorelei S.; Siemers, Paul M., III; Kern, Frederick A.

    1989-01-01

    The Aeroassist Flight Experiment (AFE) is designed to provide critical flight data necessary for the design of future Aeroassist Space Transfer Vehicles (ASTV). This flight experiment will provide aerodynamic, aerothermodynamic, and environmental data for verification of experimental and computational flow field techniques. The Pressure Distribution and Air Data System (PD/ADS), one of the measurement systems incorporated into the AFE spacecraft, is designed to provide accurate pressure measurements on the windward surface of the vehicle. These measurements will be used to determine the pressure distribution and air data parameters (angle of attack, angle of sideslip, and free-stream dynamic pressure) encountered by the blunt-bodied vehicle over an altitude range of 76.2 km to 94.5 km. Design and development data are presented and include: measurement requirements, measurement heritage, theoretical studies to define the vehicle environment, flush-mounted orifice configuration, pressure transducer selection and performance evaluation data, and pressure tubing response analysis.

  6. The Lifting Body Legacy...X-33

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1999-01-01

    NASA has a technology program in place to enable the development of a next generation Reusable Launch Vehicle that will carry our future payloads into orbit at a much-reduced cost. The VentureStar, Lifting Body (LB) flight vehicle, is one of the potential reusable launch vehicle configurations being studied. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines the flight stability and control aspects of our LB heritage which was utilized in the design of the VentureStar LB and its test version, the X-33. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. In the initial LB Program, eight LB's were built and over 225 LB test flights were conducted through 1975. Three LB series were most significant in the advancement of today's LB technolocy: the M2-F; the HL-10; and the X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the U. S. Air Force. LB vehicles are alive again today with the X- 33, X-38, and VentureStar.

  7. Lifting Body Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1998-01-01

    NASA has a technology program in place to build the X-33 test vehicle and then the full sized Reusable Launch Vehicle, VentureStar. VentureStar is a Lifting Body (LB) flight vehicle which will carry our future payloads into orbit, and will do so at a much reduced cost. There were three design contenders for the new Reusable Launch Vehicle: a Winged Vehicle, a Vertical Lander, and the Lifting Body(LB). The LB design won the competition. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines our LB heritage which was utilized in the design of the new Reusable Launch Vehicle, VentureStar. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. Eight LB's were built and over 225 LB test flights were conducted through 1975 in the initial LB Program. Three LB series were most significant in the advancement of today's LB technology: the M2-F; HL-1O; and X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the Air Force. LB vehicles are alive again today.

  8. A Venus/Saturn Mission Study: 45deg Sphere-Cone Rigid Aeroshells and Ballistic Entries

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Allen, Gary A.; Cappuccio, Gelsomina

    2012-01-01

    The present study considers ballistic entries into the atmospheres of Saturn and Venus using a 45deg sphere-cone rigid aeroshell (a legacy shape that has been successfully used in the Pioneer Venus and Galileo missions). For a number of entry mass and diameter combinations (i.e., various entries ballistic coefficients), entry velocities, and heading angles, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is place on the peak deceleration load and 10 bar is assumed as the spallation pressure threshold for the legacy material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a minimum margined heat flux threshold of 2.5 kW/sq cm is assumed for the heritage material. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a "critical" ballistic coefficient beyond which the steepest possible entries are determined by the spallation pressure threshold. The results are verified against known performance of the various probes used in the Galileo and Pioneer Venus missions. It is hoped that the results presented here will serve as a baseline in the development of a new class of ablative materials for Venus and Saturn missions being considered in a future New Frontiers class of NASA missions.

  9. The GSFC Combined Approach of ODC Stockpiling and Tribological Testing to Mitigate the Risks of ODC Elimination

    NASA Technical Reports Server (NTRS)

    Predmore, Roamer; Woods, Claudia; Hovanec, Andrew

    1997-01-01

    In response to the elimination of production of several Ozone Depleting Chemicals (ODCs) which have been widely used in successful space flight mechanism cleaning and lubricating procedures, GSFC developed and implemented an overall philosophy of mitigating the risks to flight hardware during the transition phase to ODC-Free cleaning procedures. One leg of that philosophy is the initiation of a several tier testing program which will deliver increasing amounts of information over the next few years, starting with original surface analysis comparisons between ODC and various ODC-Free cleaning technologies. The other leg is the stockpiling of an appropriate amount of ODC solvents such that all short term GSFC missions will be able to stay with or revert to heritage cleaning and lubricating procedures in the face of life issues. While tribological testing, mechanism life testing and space-flight experience will ultimately bring us into the 21st century with environmentally friendly means of cleaning long-life precision mechanism components, many satellites will be launched over the next few years with a number of important tribological questions unanswered. In order to prepare for this challenge, the Materials Engineering Branch in cooperation with the Electromechanical Branch launched an intensive review of all ongoing missions. The failure risk was determined for each long-life mechanism based on a number of parameters, including a comparison of flight solvents used to clean the heritage/life test hardware. Also studied was the ability of the mechanism manufacturers to stockpile ODCs based on state laws and company policies. A stockpiling strategy was constructed based on this information and subsequently implemented. This paper provides an overview of the GSFC ODC elimination risk mitigation philosophy as well as a detailed examination of the development of the ODC stockpiling plan.

  10. Ion beam plume and efflux characterization flight experiment study. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.

    1977-01-01

    A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.

  11. Phase aided 3D imaging and modeling: dedicated systems and case studies

    NASA Astrophysics Data System (ADS)

    Yin, Yongkai; He, Dong; Liu, Zeyi; Liu, Xiaoli; Peng, Xiang

    2014-05-01

    Dedicated prototype systems for 3D imaging and modeling (3DIM) are presented. The 3D imaging systems are based on the principle of phase-aided active stereo, which have been developed in our laboratory over the past few years. The reported 3D imaging prototypes range from single 3D sensor to a kind of optical measurement network composed of multiple node 3D-sensors. To enable these 3D imaging systems, we briefly discuss the corresponding calibration techniques for both single sensor and multi-sensor optical measurement network, allowing good performance of the 3DIM prototype systems in terms of measurement accuracy and repeatability. Furthermore, two case studies including the generation of high quality color model of movable cultural heritage and photo booth from body scanning are presented to demonstrate our approach.

  12. Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Performance shortcomings are analyzed.

  13. Comparison of Orion Vision Navigation Sensor Performance from STS-134 and the Space Operations Simulation Center

    NASA Technical Reports Server (NTRS)

    Christian, John A.; Patangan, Mogi; Hinkel, Heather; Chevray, Keiko; Brazzel, Jack

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is a new spacecraft being designed by NASA and Lockheed Martin for future crewed exploration missions. The Vision Navigation Sensor is a Flash LIDAR that will be the primary relative navigation sensor for this vehicle. To obtain a better understanding of this sensor's performance, the Orion relative navigation team has performed both flight tests and ground tests. This paper summarizes and compares the performance results from the STS-134 flight test, called the Sensor Test for Orion RelNav Risk Mitigation (STORRM) Development Test Objective, and the ground tests at the Space Operations Simulation Center.

  14. Performance Evaluation of Cots Uav for Architectural Heritage Documentation. a Test on S.GIULIANO Chapel in Savigliano (cn) - Italy

    NASA Astrophysics Data System (ADS)

    Chiabrando, F.; Teppati Losè, L.

    2017-08-01

    Even more the use of UAV platforms is a standard for images or videos acquisitions from an aerial point of view. According to the enormous growth of requests, we are assisting to an increasing of the production of COTS (Commercial off the Shelf) platforms and systems to answer to the market requirements. In this last years, different platforms have been developed and sell at low-medium cost and nowadays the offer of interesting systems is very large. One of the most important company that produce UAV and other imaging systems is the DJI (Dà-Jiāng Innovations Science and Technology Co., Ltd) founded in 2006 headquartered in Shenzhen - China. The platforms realized by the company range from low cost systems up to professional equipment, tailored for high resolution acquisitions useful for film maker purposes. According to the characteristics of the last developed low cost DJI platforms, the onboard sensors and the performance of the modern photogrammetric software based on Structure from Motion (SfM) algorithms, those systems are nowadays employed for performing 3D surveys starting from the small up to the large scale. The present paper is aimed to test the characteristic in terms of image quality, flight operations, flight planning and accuracy evaluation of the final products of three COTS platforms realized by DJI: the Mavic Pro, the Phantom 4 and the Phantom 4 PRO. The test site chosen was the Chapel of San Giuliano in the municipality of Savigliano (Cuneo-Italy), a small church with two aisles dating back to the early eleventh century.

  15. Uav Photgrammetric Workflows: a best Practice Guideline

    NASA Astrophysics Data System (ADS)

    Federman, A.; Santana Quintero, M.; Kretz, S.; Gregg, J.; Lengies, M.; Ouimet, C.; Laliberte, J.

    2017-08-01

    The increasing commercialization of unmanned aerial vehicles (UAVs) has opened the possibility of performing low-cost aerial image acquisition for the documentation of cultural heritage sites through UAV photogrammetry. The flying of UAVs in Canada is regulated through Transport Canada and requires a Special Flight Operations Certificate (SFOC) in order to fly. Various image acquisition techniques have been explored in this review, as well as well software used to register the data. A general workflow procedure has been formulated based off of the literature reviewed. A case study example of using UAV photogrammetry at Prince of Wales Fort is discussed, specifically in relation to the data acquisition and processing. Some gaps in the literature reviewed highlight the need for streamlining the SFOC application process, and incorporating UAVs into cultural heritage documentation courses.

  16. Lessons learned from selecting and testing spaceflight potentiometers

    NASA Technical Reports Server (NTRS)

    Iskenderian, T.

    1994-01-01

    A solar array drive (SAD) was designed for operation on the TOPEX/POSEIDON spacecraft that was launched in August, 1992. The experience gained in selecting, specifying, testing to failure, and redesigning its position sensor produced valuable lessons for future component selection and qualification. Issues of spaceflight heritage, cost/benefit/risk assessment, and component specification are addressed. It was found that costly schedule and budget overruns may have been avoided if the capability of the candidate sensors to meet requirements had been more critically examined prior to freezing the design. The use of engineering models and early qualification tests is also recommended.

  17. Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin

    2015-01-01

    A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.

  18. UTOFIA: an underwater time-of-flight image acquisition system

    NASA Astrophysics Data System (ADS)

    Driewer, Adrian; Abrosimov, Igor; Alexander, Jonathan; Benger, Marc; O'Farrell, Marion; Haugholt, Karl Henrik; Softley, Chris; Thielemann, Jens T.; Thorstensen, Jostein; Yates, Chris

    2017-10-01

    In this article the development of a newly designed Time-of-Flight (ToF) image sensor for underwater applications is described. The sensor is developed as part of the project UTOFIA (underwater time-of-flight image acquisition) funded by the EU within the Horizon 2020 framework. This project aims to develop a camera based on range gating that extends the visible range compared to conventional cameras by a factor of 2 to 3 and delivers real-time range information by means of a 3D video stream. The principle of underwater range gating as well as the concept of the image sensor are presented. Based on measurements on a test image sensor a pixel structure that suits best to the requirements has been selected. Within an extensive characterization underwater the capability of distance measurements in turbid environments is demonstrated.

  19. Design of an intelligent flight instrumentation unit using embedded RTOS

    NASA Astrophysics Data System (ADS)

    Estrada-Marmolejo, R.; García-Torales, G.; Torres-Ortega, H. H.; Flores, J. L.

    2011-09-01

    Micro Unmanned Aerial Vehicles (MUAV) must calculate its spatial position to control the flight dynamics, which is done by Inertial Measurement Units (IMUs). MEMS Inertial sensors have made possible to reduce the size and power consumption of such units. Commonly the flight instrumentation operates independently of the main processor. This work presents an instrumentation block design, which reduces size and power consumption of the complete system of a MUAV. This is done by coupling the inertial sensors to the main processor without considering any intermediate level of processing aside. Using Real Time Operating Systems (RTOS) reduces the number of intermediate components, increasing MUAV reliability. One advantage is the possibility to control several different sensors with a single communication bus. This feature of the MEMS sensors makes a smaller and less complex MUAV design possible.

  20. High-angle-of-attack pneumatic lag and upwash corrections for a hemispherical flow direction sensor

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Heeg, Jennifer; Larson, Terry J.; Ehernberger, L. J.; Hagen, Floyd W.; Deleo, Richard V.

    1987-01-01

    As part of the NASA F-14 high angle of attack flight test program, a nose mounted hemispherical flow direction sensor was calibrated against a fuselage mounted movable vane flow angle sensor. Significant discrepancies were found to exist in the angle of attack measurements. A two fold approach taken to resolve these discrepancies during subsonic flight is described. First, the sensing integrity of the isolated hemispherical sensor is established by wind tunnel data extending to an angle of attack of 60 deg. Second, two probable causes for the discrepancies, pneumatic lag and upwash, are examined. Methods of identifying and compensating for lag and upwash are presented. The wind tunnel data verify that the isolated hemispherical sensor is sufficiently accurate for static conditions with angles of attack up to 60 deg and angles of sideslip up to 30 deg. Analysis of flight data for two high angle of attack maneuvers establishes that pneumatic lag and upwash are highly correlated with the discrepancies between the hemispherical and vane type sensor measurements.

  1. Characterization of modulated time-of-flight range image sensors

    NASA Astrophysics Data System (ADS)

    Payne, Andrew D.; Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.

    2009-01-01

    A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10-100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements.

  2. Lunar Atmosphere and Dust Environment Explorer Integration and Test

    NASA Technical Reports Server (NTRS)

    Wright, Michael R.; McCormick, John L.

    2010-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA collaborative flight project to explore the lunar exosphere. It is being developed through a unique partnership between NASA's Ames Research Center (ARC) and Goddard Space Flight Center (GSFC). Each center brings its own experience and flight systems heritage to the task of integrating and testing the LADEE subsystems, instruments, and spacecraft. As an "in-house" flight project being implemented at low-cost and moderate risk, LADEE relies on single-string subsystems and protoflight hardware to accomplish its mission. Integration and test (l&T) of the LADEE spacecraft with the instruments will be performed at GSFC, and includes assembly, integration, functional testing, and flight qualification and acceptance testing. Due to the nature of the LADEE mission, l&T requirements include strict contamination control measures and instrument calibration procedures. Environmental testing will include electromagnetic compatibility (EMC), vibro-acoustic testing, and thermal-balance/vacuum. Upon successful completion of spacecraft l&T, LADEE will be launched from NASA's Wallops Flight Facility. Launch of the LADEE spacecraft is currently scheduled for December 2012.

  3. The Homogeneity of Optimal Sensor Placement Across Multiple Winged Insect Species

    NASA Astrophysics Data System (ADS)

    Jenkins, Abigail L.

    Taking inspiration from biology, control algorithms can be implemented to imitate the naturally occurring control systems present in nature. This research is primarily concerned with insect flight and optimal wing sensor placement. Many winged insects with halteres are equipped with mechanoreceptors termed campaniform sensilla. Although the exact information these receptors provide to the insect's nervous system is unknown, it is thought to have the capability of measuring inertial rotation forces. During flight, when the wing bends, the information measured by the campaniform sensilla is received by the central nervous system, and provides the insect necessary data to control flight. This research compares three insect species - the hawkmoth Manduca sexta, the honeybee Apis mellifera, and the fruit fly Drosophila melanogaster. Using an observability-based sensor placement algorithm, the optimal sensor placement for these three species is determined. Simulations resolve if this optimal sensor placement corresponds to the insect's campaniform sensilla, as well as if placement is homogeneous across species.

  4. Flight model performances of HISUI hyperspectral sensor onboard ISS (International Space Station)

    NASA Astrophysics Data System (ADS)

    Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira

    2016-10-01

    Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.

  5. Flight model of HISUI hyperspectral sensor onboard ISS (International Space Station)

    NASA Astrophysics Data System (ADS)

    Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared wavelength region. The sensor is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of a Flight Model (FM) of HISUI hyperspectral sensor have been completed in the beginning of 2017. Simultaneously, the development of JEMExternal Facility (EF) Payload system for the instrument is being carried out. The system includes the structure, the thermal control sub-system and the electrical sub-system. The tests results of flight model, such as optical performance, optical distortion and radiometric performance are reported.

  6. Technology Transfer Challenges: A Case Study of User-Centered Design in NASA's Systems Engineering Culture

    NASA Technical Reports Server (NTRS)

    Quick, Jason

    2009-01-01

    The Upper Stage (US) section of the National Aeronautics and Space Administration's (NASA) Ares I rocket will require internal access platforms for maintenance tasks performed by humans inside the vehicle. Tasks will occur during expensive critical path operations at Kennedy Space Center (KSC) including vehicle stacking and launch preparation activities. Platforms must be translated through a small human access hatch, installed in an enclosed worksite environment, support the weight of ground operators and be removed before flight - and their design must minimize additional vehicle mass at attachment points. This paper describes the application of a user-centered conceptual design process and the unique challenges encountered within NASA's systems engineering culture focused on requirements and "heritage hardware". The NASA design team at Marshall Space Flight Center (MSFC) initiated the user-centered design process by studying heritage internal access kits and proposing new design concepts during brainstorming sessions. Simultaneously, they partnered with the Technology Transfer/Innovative Partnerships Program to research inflatable structures and dynamic scaffolding solutions that could enable ground operator access. While this creative, technology-oriented exploration was encouraged by upper management, some design stakeholders consistently opposed ideas utilizing novel, untested equipment. Subsequent collaboration with an engineering consulting firm improved the technical credibility of several options, however, there was continued resistance from team members focused on meeting system requirements with pre-certified hardware. After a six-month idea-generating phase, an intensive six-week effort produced viable design concepts that justified additional vehicle mass while optimizing the human factors of platform installation and use. Although these selected final concepts closely resemble heritage internal access platforms, challenges from the application of the user-centered process provided valuable lessons for improving future collaborative conceptual design efforts.

  7. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  8. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas

    DTIC Science & Technology

    2014-09-30

    developed by incorporating the proposed IR sensors and ground-sky temperature difference algorithm into a tethered balloon borne payload (Figure 3...into the cloud base. RESULTS FROM FY 2014 • A second flight of the tethered balloon -borne IR cloud margin sensor was conducted in Colorado on...Figure 3: Tethered balloon -borne IR sensing payload IR Cloud Margin Sensor Figure 4: First successful flight validation of the IR cloud

  9. Flight code validation simulator

    NASA Astrophysics Data System (ADS)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  10. Experimenting with an Evolving Ground/Space-based Software Architecture to Enable Sensor Webs

    NASA Technical Reports Server (NTRS)

    mandl, Daniel; Frye, Stuart

    2005-01-01

    A series of ongoing experiments are being conducted at the NASA Goddard Space Flight Center to explore integrated ground and space-based software architectures enabling sensor webs. A sensor web, as defined by Steve Talabac at NASA Goddard Space Flight Center(GSFC), is a coherent set of distributed nodes interconnected by a communications fabric, that collectively behave as a single, dynamically adaptive, observing system. The nodes can be comprised of satellites, ground instruments, computing nodes etc. Sensor web capability requires autonomous management of constellation resources. This becomes progressively more important as more and more satellites share resource, such as communication channels and ground station,s while automatically coordinating their activities. There have been five ongoing activities which include an effort to standardize a set of middleware. This paper will describe one set of activities using the Earth Observing 1 satellite, which used a variety of ground and flight software along with other satellites and ground sensors to prototype a sensor web. This activity allowed us to explore where the difficulties that occur in the assembly of sensor webs given today s technology. We will present an overview of the software system architecture, some key experiments and lessons learned to facilitate better sensor webs in the future.

  11. Geometry-Based Observability Metric

    NASA Technical Reports Server (NTRS)

    Eaton, Colin; Naasz, Bo

    2012-01-01

    The Satellite Servicing Capabilities Office (SSCO) is currently developing and testing Goddard s Natural Feature Image Recognition (GNFIR) software for autonomous rendezvous and docking missions. GNFIR has flight heritage and is still being developed and tailored for future missions with non-cooperative targets: (1) DEXTRE Pointing Package System on the International Space Station, (2) Relative Navigation System (RNS) on the Space Shuttle for the fourth Hubble Servicing Mission.

  12. Laser-based sensors on UAVs for quantifying local emissions of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Zondlo, Mark; Tao, Lei; O'Brien, Anthony; Ross, Kevin; Khan, Amir; Pan, Da; Golston, Levi; Sun, Kang; DiGangi, Josh

    2015-04-01

    Small unmanned aerial systems (UAS) provide an ideal platform to sample both locally near an emission source as well as within the atmospheric boundary layer. However, small UAS (those with wingspans or rotors on the order of a meter) place severe constraints on sensor size (~ liter volume), mass (~ kg), and power (10s W). Laser-based sensors employing absorption techniques are ideally suited for such platforms due to their high sensitivity, high selectivity, and compact footprint. We have developed and flown compact sensors for water vapor, carbon dioxide and methane using new advances in open-path, laser-based spectroscopy on a variety of platforms ranging from remote control helicopters to long-duration UAS. Open-path spectroscopy allows for high frequency sampling (10-25 Hz) while avoiding the size/mass/power of sample delays, inlet lines, and pumps. To address the challenges of in-flight stability in changing environmental conditions and any associated flight artifacts on the measurement itself (e.g. vibrations), we use an in-line reference cell at a reduced pressure (10 hPa) to account for systematic drift continuously while in flight. Wavelength modulation spectroscopy is used at different harmonics to isolate the narrow linewidth of the in-line reference signal from the ambient, pressure-broadened absorption lineshape of the trace gas of interest. As a result, a metric of in-flight performance is achieved in real-time on the same optical pathlength as the ambient signal. To demonstrate the great potential of laser-based sensors on UAS, we deployed a 1.65 micron-based methane sensor (4 kg, 50 W, 100 ppbv precision at 10 Hz) on a UT-Dallas remote control aircraft for two weeks around gas/oil extraction activities as part of the EDF Barnett Coordinated Campaign in October 2013. We conducted thirty-four flights around a compressor station to examine the spatial and temporal characteristics of its emissions. Leaks of methane were typically lofted to altitudes well above the surface (up to 100 m). In addition, plumes were very narrow horizontally (10-30 m width) within 200 m of the emission origin. By using a mass balance approach of upwind versus downwind CH4 concentrations, coupled to meteorological wind data, the CH4 emission rate from the compressor station averaged 13 ± 5 g CH4 s-1, consistent with individual, leak surveys measured within the compressor station itself. More recently, we developed a mid-infrared version of the same sensor using an antimonide laser at 3.3 microns. This sensor has a precision of 2 ppbv CH4 at 10 Hz, a mass of 1.3 kg, and consumes 10 W of power. Flight tests show the improved precision is capable of detecting methane leaks from landfills and cattle feedlots at higher altitudes (500 m) and greater distances downwind (several km) than the near infrared CH4 sensor. Sampling strategy is particularly important for not only UAS-based flight patterns but also sensor design. Many tradeoffs exist between the sampling density of the flight pattern, sensor precision, accuracy of wind data, and geographic isolation of the source of interest, and these will be discussed in the context of airborne-based CH4 measurements in the field. The development of compact yet robust trace gas sensors to be deployed on small UAS opens new capabilities for atmospheric sensing such as quantifying local source emissions (e.g. farms, well pads), vertical profiling of trace gases in a forest canopy, and trace gas distributions in complex areas (mountains, urban canyons).

  13. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  14. Mixed-mode VLSI optic flow sensors for in-flight control of a micro air vehicle

    NASA Astrophysics Data System (ADS)

    Barrows, Geoffrey L.; Neely, C.

    2000-11-01

    NRL is developing compact optic flow sensors for use in a variety of small-scale navigation and collision avoidance tasks. These sensors are being developed for use in micro air vehicles (MAVs), which are autonomous aircraft whose maximum dimension is on the order of 15 cm. To achieve desired weight specifications of 1 - 2 grams, mixed-signal VLSI circuitry is being used to develop compact focal plane sensors that directly compute optic flow. As an interim proof of principle, we have constructed a sensor comprising a focal plane sensor head with on-chip processing and a back-end PIC microcontroller. This interim sensors weighs approximately 25 grams and is able to measure optic flow with real-world and low-contrast textures. Variations of this sensor have been used to control the flight of a glider in real-time to avoid collisions with walls.

  15. Monitoring Heritage Buildings with Open Source Hardware Sensors: A Case Study of the Mosque-Cathedral of Córdoba

    PubMed Central

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Meroño de Larriva, Jose Emilio; Ortíz Cordero, Rafael; Hidalgo Fernández, Rafael Enrique; García-Ferrer, Alfonso

    2016-01-01

    A number of physical factors can adversely affect cultural heritage. Therefore, monitoring parameters involved in the deterioration process, principally temperature and relative humidity, is useful for preventive conservation. In this study, a total of 15 microclimate stations using open source hardware were developed and stationed at the Mosque-Cathedral of Córdoba, which is registered with UNESCO for its outstanding universal value, to assess the behavior of interior temperature and relative humidity in relation to exterior weather conditions, public hours and interior design. Long-term monitoring of these parameters is of interest in terms of preservation and reducing the costs of future conservation strategies. Results from monitoring are presented to demonstrate the usefulness of this system. PMID:27690056

  16. The environmental monitoring of Cultural Heritage through Low Cost strategies: The frescoes of the crypt of St. Francesco d'Assisi's, Irsina (Basilicata, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Sileo, Maria; Gizzi, Fabrizio; Masini, Nicola

    2015-04-01

    One of the main tools of assessment and diagnosis used to define appropriate strategies for the preservation of cultural heritage is the environmental monitoring. To achieve an environmental monitoring are needed high costs of purchase and maintenance, high costs of instrumental and for the management of the plants and processing of results. These costs imply that the technologies for environmental monitoring are not as common but their use is limited to the study very famous monuments or sites. To extend the use and dissemination of such technologies to a greater number of monuments, through the project Pro_Cult (Advanced methodological approaches and technologies for Protection and Security of Cultural Heritage) a research aimed at testing low cost technologies has been performed. The aim of the research is to develop low cost monitoring systems, assessing their effectiveness in a comparative way with commercial high cost ones. To this aim an environmental monitoring system using the Arduino system was designed and developed. It is an electronics prototyping platform based on open-source hardware and software flexible and user friendly. This system is connected to sensors for the detection of environmental parameters of non high purchase cost but with respect to the medium potential detection sensors accurately. This low cost system was tested in the framework of a microclimate monitoring project of the crypt of St. Francis of Assisi in Irsina (Southern Italy) enriched by a precious cycle of medieval frescoes. The aim of this research was to compare two monitoring systems, the first, at low cost, using Arduino system, and the second, a standard commercial product for a full yearly cycle and assess the reliability and the results obtained by the two systems. This paper shows the results of the comparative analysis of an entire monitoring yearly cycle in relation to the problems of degradation affecting the paintings of medieval crypt [1]. The obtained results proved the capability and reliability of the designed low cost monitoring system for investigating the indoor microclimate in relation with decay pathologies. Acknowledgements The authors thank Basilicata Region for supporting this activity in the framework of the Project "PRO_CULT" (Advanced methodological approaches and technologies for Protection and Security of Cultural Heritage) financed by Regional Operational Programme ERDF 2007/2013 [1] M. Sileo, M. Biscione, F.T. Gizzi, N. Masini & M.I. Martinez-Garrido, 2014 - Low cost strategies for the environmental monitoring of Cultural Heritage: Preliminary data from the crypt of St. Francesco d'Assisi, Irsina (Basilicata, Southern Italy). Science, Technology and Cultural Heritage, Edited by Miguel Angel Rogerio-Candelera, 27-34. ISBN: 978-1-138-02744-2.

  17. Implementation of a Target State Estimator for the Air-to-Air Attack Mode of the AFTI/F-16.

    DTIC Science & Technology

    1987-12-01

    presents a discussion of the portion of the AFTI/F-16 aircraft relative to this thesis, including sensors and the digital flight control system ( DFCS ...system ( DFCS ). All sensor data are digitized and sent to one or more digital computers for processing. The flight control computers convert flight...the square of the magnitude of the target’s inertial turn rate, is developed from the application of the Coriolis theorem, written as Id Td dt dt

  18. HYDICE postflight data processing

    NASA Astrophysics Data System (ADS)

    Aldrich, William S.; Kappus, Mary E.; Resmini, Ronald G.; Mitchell, Peter A.

    1996-06-01

    The hyperspectral digital imagery collection experiment (HYDICE) sensor records instrument counts for scene data, in-flight spectral and radiometric calibration sequences, and dark current levels onto an AMPEX DCRsi data tape. Following flight, the HYDICE ground data processing subsystem (GDPS) transforms selected scene data from digital numbers (DN) to calibrated radiance levels at the sensor aperture. This processing includes: dark current correction, spectral and radiometric calibration, conversion to radiance, and replacement of bad detector elements. A description of the algorithms for post-flight data processing is presented. A brief analysis of the original radiometric calibration procedure is given, along with a description of the development of the modified procedure currently used. Example data collected during the 1995 flight season, but uncorrected and processed, are shown to demonstrate the removal of apparent sensor artifacts (e.g., non-uniformities in detector response over the array) as a result of this transformation.

  19. Ultraviolet sensor as integrity monitor for enhanced flight vision system (EFVS) approaches to Cat II RVR conditions

    NASA Astrophysics Data System (ADS)

    McKinley, John B.; Pierson, Roger; Ertem, M. C.; Krone, Norris J., Jr.; Cramer, James A.

    2008-04-01

    Flight tests were conducted at Greenbrier Valley Airport (KLWB) and Easton Municipal Airport / Newnam Field (KESN) in a Cessna 402B aircraft using a head-up display (HUD) and a Norris Electro Optical Systems Corporation (NEOC) developmental ultraviolet (UV) sensor. These flights were sponsored by NEOC under a Federal Aviation Administration program, and the ultraviolet concepts, technology, system mechanization, and hardware for landing during low visibility landing conditions have been patented by NEOC. Imagery from the UV sensor, HUD guidance cues, and out-the-window videos were separately recorded at the engineering workstation for each approach. Inertial flight path data were also recorded. Various configurations of portable UV emitters were positioned along the runway edge and threshold. The UV imagery of the runway outline was displayed on the HUD along with guidance generated from the mission computer. Enhanced Flight Vision System (EFVS) approaches with the UV sensor were conducted from the initial approach fix to the ILS decision height in both VMC and IMC. Although the availability of low visibility conditions during the flight test period was limited, results from previous fog range testing concluded that UV EFVS has the performance capability to penetrate CAT II runway visual range obscuration. Furthermore, independent analysis has shown that existing runway light emit sufficient UV radiation without the need for augmentation other than lens replacement with UV transmissive quartz lenses. Consequently, UV sensors should qualify as conforming to FAA requirements for EFVS approaches. Combined with Synthetic Vision System (SVS), UV EFVS would function as both a precision landing aid, as well as an integrity monitor for the GPS and SVS database.

  20. Modeling the Fault Tolerant Capability of a Flight Control System: An Exercise in SCR Specification

    NASA Technical Reports Server (NTRS)

    Alexander, Chris; Cortellessa, Vittorio; DelGobbo, Diego; Mili, Ali; Napolitano, Marcello

    2000-01-01

    In life-critical and mission-critical applications, it is important to make provisions for a wide range of contingencies, by providing means for fault tolerance. In this paper, we discuss the specification of a flight control system that is fault tolerant with respect to sensor faults. Redundancy is provided by analytical relations that hold between sensor readings; depending on the conditions, this redundancy can be used to detect, identify and accommodate sensor faults.

  1. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying.

    PubMed

    V Hinüber, Edgar L; Reimer, Christian; Schneider, Tim; Stock, Michael

    2017-04-26

    This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS ( inertial navigation system/global satellite navigation system ) solutions based on MEMS ( micro-electro-mechanical- sensor ) machined sensors, being used for UAV ( unmanned aerial vehicle ) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS ( global navigation satellite system ) receivers from very-low-cost MEMS and high performance MEMS over FOG ( fiber optical gyro ) and RLG ( ring laser gyro ) up to HRG ( hemispherical resonator gyro ) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed.

  2. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying

    PubMed Central

    v. Hinüber, Edgar L.; Reimer, Christian; Schneider, Tim; Stock, Michael

    2017-01-01

    This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS (inertial navigation system/global satellite navigation system) solutions based on MEMS (micro-electro-mechanical- sensor) machined sensors, being used for UAV (unmanned aerial vehicle) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS (global navigation satellite system) receivers from very-low-cost MEMS and high performance MEMS over FOG (fiber optical gyro) and RLG (ring laser gyro) up to HRG (hemispherical resonator gyro) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed. PMID:28445417

  3. Ares I-X Flight Test Vehicle Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, was launched on October 28, 2009. Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle was not practical within project constraints, modal tests for several configurations during vehicle stacking were defined to calibrate the FEM. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report describes the test requirements, constraints, pre-test analysis, test execution and results for the Ares I-X flight test vehicle modal test on the Mobile Launcher Platform. Initial comparisons between pre-test predictions and test data are also presented.

  4. 1.5 μm lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft

    NASA Astrophysics Data System (ADS)

    Augere, B.; Besson, B.; Fleury, D.; Goular, D.; Planchat, C.; Valla, M.

    2016-05-01

    Lidar (light detection and ranging) is a well-established measurement method for the prediction of atmospheric motions through velocity measurements. Recent advances in 1.5 μm Lidars show that the technology is mature, offers great ease of use, and is reliable and compact. A 1.5 μm airborne Lidar appears to be a good candidate for airborne in-flight measurement systems. It allows measurements remotely, outside aircraft aerodynamic disturbance, and absolute air speed (no need for calibration) with great precision in all aircraft flight domains. In the framework of the EU AIM2 project, the ONERA task has consisted of developing and testing a 1.5 μm anemometer sensor for in-flight airspeed measurements. The objective of this work is to demonstrate that the 1.5 μm Lidar sensor can increase the quality of the data acquisition procedure for aircraft flight test certification. This article presents the 1.5 μm anemometer sensor dedicated to in-flight airspeed measurements and describes the flight tests performed successfully on-board the Piaggio P180 aircraft. Lidar air data have been graphically compared to the air data provided by the aircraft flight test instrumentation (FTI) in the reference frame of the Lidar sensor head. Very good agreement of true air speed (TAS) by a fraction of ms-1, angle of sideslip (AOS), and angle of attack (AOA) by a fraction of degree were observed.

  5. Combination of Tls Point Clouds and 3d Data from Kinect v2 Sensor to Complete Indoor Models

    NASA Astrophysics Data System (ADS)

    Lachat, E.; Landes, T.; Grussenmeyer, P.

    2016-06-01

    The combination of data coming from multiple sensors is more and more applied for remote sensing issues (multi-sensor imagery) but also in cultural heritage or robotics, since it often results in increased robustness and accuracy of the final data. In this paper, the reconstruction of building elements such as window frames or door jambs scanned thanks to a low cost 3D sensor (Kinect v2) is presented. Their combination within a global point cloud of an indoor scene acquired with a terrestrial laser scanner (TLS) is considered. If the added elements acquired with the Kinect sensor enable to reach a better level of detail of the final model, an adapted acquisition protocol may also provide several benefits as for example time gain. The paper aims at analyzing whether the two measurement techniques can be complementary in this context. The limitations encountered during the acquisition and reconstruction steps are also investigated.

  6. Around Marshall

    NASA Image and Video Library

    2002-10-30

    Marshall Space Flight Center's (MSFC's) building 4200 hosts a new spaceflight history museum referred to as the Heritage Gallery, allowing employees and visitors alike to have the opportunity to experience history first hand. On display are many models of launch vehicles and spacecraft that have made the center famous. It features a full-scale mockup of the lunar roving vehicle, three built-in multimedia displays, a large theater screen, and two glass cases that house memorabilia such as personal items belonging to Wernher von Braun, MSFC's first Center Director. The new Heritage Gallery features the accomplishments of several past and present members of the Marshall team. Attending the ribbon cutting ceremony are: (left to right) Gerhard Reisig; Cort Durocher, executive director of the American Institute of Aeronautics and Astronautics; Ernst Stuhlinger; Konrad Darnenburg; Werner Dahm; Walter Jacobi; and host of event, Center Director Art Stephenson.

  7. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  8. Determining Transmission Loss from Measured External and Internal Acoustic Environments

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler; Smith, A. M.

    2012-01-01

    An estimate of the internal acoustic environment in each internal cavity of a launch vehicle is needed to ensure survivability of Space Launch System (SLS) avionics. Currently, this is achieved by using the noise reduction database of heritage flight vehicles such as the Space Shuttle and Saturn V for liftoff and ascent flight conditions. Marshall Space Flight Center (MSFC) is conducting a series of transmission loss tests to verify and augment this method. For this test setup, an aluminum orthogrid curved panel representing 1/8th of the circumference of a section of the SLS main structure was mounted in between a reverberation chamber and an anechoic chamber. Transmission loss was measured across the panel using microphones. Data measured during this test will be used to estimate the internal acoustic environments for several of the SLS launch vehicle internal spaces.

  9. Orion FSW V and V and Kedalion Engineering Lab Insight

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.

    2010-01-01

    NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program.

  10. Digest of NASA earth observation sensors

    NASA Technical Reports Server (NTRS)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  11. Embedded Relative Navigation Sensor Fusion Algorithms for Autonomous Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    DeKock, Brandon K.; Betts, Kevin M.; McDuffie, James H.; Dreas, Christine B.

    2008-01-01

    bd Systems (a subsidiary of SAIC) has developed a suite of embedded relative navigation sensor fusion algorithms to enable NASA autonomous rendezvous and docking (AR&D) missions. Translational and rotational Extended Kalman Filters (EKFs) were developed for integrating measurements based on the vehicles' orbital mechanics and high-fidelity sensor error models and provide a solution with increased accuracy and robustness relative to any single relative navigation sensor. The filters were tested tinough stand-alone covariance analysis, closed-loop testing with a high-fidelity multi-body orbital simulation, and hardware-in-the-loop (HWIL) testing in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL).

  12. Robust In-Flight Sensor Fault Diagnostics for Aircraft Engine Based on Sliding Mode Observers

    PubMed Central

    Chang, Xiaodong; Huang, Jinquan; Lu, Feng

    2017-01-01

    For a sensor fault diagnostic system of aircraft engines, the health performance degradation is an inevitable interference that cannot be neglected. To address this issue, this paper investigates an integrated on-line sensor fault diagnostic scheme for a commercial aircraft engine based on a sliding mode observer (SMO). In this approach, one sliding mode observer is designed for engine health performance tracking, and another for sensor fault reconstruction. Both observers are employed in in-flight applications. The results of the former SMO are analyzed for post-flight updating the baseline model of the latter. This idea is practical and feasible since the updating process does not require the algorithm to be regulated or redesigned, so that ground-based intervention is avoided, and the update process is implemented in an economical and efficient way. With this setup, the robustness of the proposed scheme to the health degradation is much enhanced and the latter SMO is able to fulfill sensor fault reconstruction over the course of the engine life. The proposed sensor fault diagnostic system is applied to a nonlinear simulation of a commercial aircraft engine, and its effectiveness is evaluated in several fault scenarios. PMID:28398255

  13. Robust In-Flight Sensor Fault Diagnostics for Aircraft Engine Based on Sliding Mode Observers.

    PubMed

    Chang, Xiaodong; Huang, Jinquan; Lu, Feng

    2017-04-11

    For a sensor fault diagnostic system of aircraft engines, the health performance degradation is an inevitable interference that cannot be neglected. To address this issue, this paper investigates an integrated on-line sensor fault diagnostic scheme for a commercial aircraft engine based on a sliding mode observer (SMO). In this approach, one sliding mode observer is designed for engine health performance tracking, and another for sensor fault reconstruction. Both observers are employed in in-flight applications. The results of the former SMO are analyzed for post-flight updating the baseline model of the latter. This idea is practical and feasible since the updating process does not require the algorithm to be regulated or redesigned, so that ground-based intervention is avoided, and the update process is implemented in an economical and efficient way. With this setup, the robustness of the proposed scheme to the health degradation is much enhanced and the latter SMO is able to fulfill sensor fault reconstruction over the course of the engine life. The proposed sensor fault diagnostic system is applied to a nonlinear simulation of a commercial aircraft engine, and its effectiveness is evaluated in several fault scenarios.

  14. Buffet induced structural/flight-control system interaction of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Voracek, David F.; Clarke, Robert

    1991-01-01

    High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  15. The development and use of a computer-interactive data acquisition and display system in a flight environment

    NASA Technical Reports Server (NTRS)

    Bever, G. A.

    1981-01-01

    The flight test data requirements at the NASA Dryden Flight Research Center increased in complexity, and more advanced instrumentation became necessary to accomplish mission goals. This paper describes the way in which an airborne computer was used to perform real-time calculations on critical flight test parameters during a flight test on a winglet-equipped KC-135A aircraft. With the computer, an airborne flight test engineer can select any sensor for airborne display in several formats, including engineering units. The computer is able to not only calculate values derived from the sensor outputs but also to interact with the data acquisition system. It can change the data cycle format and data rate, and even insert the derived values into the pulse code modulation (PCM) bit stream for recording.

  16. A chemical sensor and biosensor based totally automated water quality monitor for extended space flight: Step 1

    NASA Technical Reports Server (NTRS)

    Smith, Robert S.

    1993-01-01

    The result of a literature search to consider what technologies should be represented in a totally automated water quality monitor for extended space flight is presented. It is the result of the first summer in a three year JOVE project. The next step will be to build a test platform at the Authors' school, St. John Fisher College. This will involve undergraduates in NASA related research. The test flow injection analysis system will be used to test the detection limit of sensors and the performance of sensors in groups. Sensor companies and research groups will be encouraged to produce sensors which are not currently available and are needed for this project.

  17. Validation of Modified Wine-Rack Thermal Design for Nickel-Hydrogen Batteries in Landsat-7 Spacecraft Thermal Vacuum Test and in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    1999-01-01

    A heritage wine-rack thermal/mechanical design for the nickel-hydrogen batteries was the baseline at the Landsat-7 Preliminary Design Review. An integrated thermal and power analysis of the batteries performed by the author in 1994 revealed that the maximum cell-to-cell gradient was 6.6 C. The author proposed modifying the heritage wine-rack design by enhancing heat conduction from cells to cells, and from cells to battery frame. At the 1995 Intersociety Energy Conversion Engineering Conference (IECEC), the author presented a paper on methods of modifying the wine-rack design. It showed that the modified wine-rack option, which uses a metallic filler, could reduce the maximum cell-to-cell temperature gradient to 1.30 C, and could also reduce the maximum cell temperature by as much as 80 C. That design concept was adopted by the Landsat7 Project Office, and a design change was made at the Critical Design Review. Results of the spacecraft thermal vacuum and thermal balance tests, and temperature data in flight show that the temperatures of the battery cells are very uniform. The maximum cell-to-cell gradient is 1.50 C. They validate the modified wine-rack thermal design.

  18. NASA Space Rocket Logistics Challenges

    NASA Technical Reports Server (NTRS)

    Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2014-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

  19. Present and future of vision systems technologies in commercial flight operations

    NASA Astrophysics Data System (ADS)

    Ward, Jim

    2016-05-01

    The development of systems to enable pilots of all types of aircraft to see through fog, clouds, and sandstorms and land in low visibility has been widely discussed and researched across aviation. For military applications, the goal has been to operate in a Degraded Visual Environment (DVE), using sensors to enable flight crews to see and operate without concern to weather that limits human visibility. These military DVE goals are mainly oriented to the off-field landing environment. For commercial aviation, the Federal Aviation Agency (FAA) implemented operational regulations in 2004 that allow the flight crew to see the runway environment using an Enhanced Flight Vision Systems (EFVS) and continue the approach below the normal landing decision height. The FAA is expanding the current use and economic benefit of EFVS technology and will soon permit landing without any natural vision using real-time weather-penetrating sensors. The operational goals of both of these efforts, DVE and EFVS, have been the stimulus for development of new sensors and vision displays to create the modern flight deck.

  20. Aerothermal Assment Of The Expert Flap In The SCIROCCO Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Walpot, L.; Di Clemente, M.; Vos, J.; Etchells, J.; Trifoni, E.; Thoemel, J.; Gavira, J.

    2011-05-01

    In the frame of the “In-Flight Test Measurement Techniques for Aerothermodynamics” activity of the EXPERT Program, the EXPERT Instrumented Open Flap Assembly experiment has the objective to verify the design/sensor integration and validate the CFD tools. Ground based measurements were made in Europe’s largest high enthalpy plasma facility, Scirocco in Italy. Two EXPERT flaps of the flight article, instrumented with 14 thermocouples, 5 pressure ports, a pyrometer and an IR camera mounted in the cavity instrumented flap will collect in-flight data. During the Scirocco experiment, an EXPERT flap model identical to the flight article was mounted at 45 deg on a holder including cavity and was subjected to a hot plasma flow at an enthalpy up to 11MJ/kg at a stagnation pressure of 7 bar. The test model sports the same pressure sensors as the flight article. Hypersonic state-of-the-art codes were then be used to perform code-to-code and wind tunnel-to-code comparisons, including thermal response of the flap as collected during the tests by the sensors and camera.

  1. Flight Demonstration of a Shock Location Sensor Using Constant Voltage Hot-Film Anemometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Sarma, Garimella R.; Mangalam, Siva M.

    1997-01-01

    Flight tests have demonstrated the effectiveness of an array of hot-film sensors using constant voltage anemometry to determine shock position on a wing or aircraft surface at transonic speeds. Flights were conducted at the NASA Dryden Flight Research Center using the F-15B aircraft and Flight Test Fixture (FTF). A modified NACA 0021 airfoil was attached to the side of the FTF, and its upper surface was instrumented to correlate shock position with pressure and hot-film sensors. In the vicinity of the shock-induced pressure rise, test results consistently showed the presence of a minimum voltage in the hot-film anemometer outputs. Comparing these results with previous investigations indicate that hot-film anemometry can identify the location of the shock-induced boundary layer separation. The flow separation occurred slightly forward of the shock- induced pressure rise for a laminar boundary layer and slightly aft of the start of the pressure rise when the boundary layer was tripped near the airfoil leading edge. Both minimum mean output and phase reversal analyses were used to identify the shock location.

  2. A flight expert system (FLES) for on-board fault monitoring and diagnosis

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Scharnhorst, D. A.; Ai, C. S.; Feber, H. J.

    1987-01-01

    The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher workloads for the pilot and tend to induce a higher probability of errors. Therefore, an architecture for a flight expert system (FLES) is developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with airplane status information during the diagnostic process. The simulator is based on the Lockheed Advanced Concept System (ACS), a future generation airplane, and on the Boeing 737. A distinction between two types of faults, maladjustments and malfunctions, has led to two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to access abnormal situations during airplane flight. Malfunctions and maladjustments are handled separately, diagnosed using domain knowledge.

  3. On Certain New Methodology for Reducing Sensor and Readout Electronics Circuitry Noise in Digital Domain

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Miko, Joseph; Bradley, Damon; Heinzen, Katherine

    2008-01-01

    NASA Hubble Space Telescope (HST) and upcoming cosmology science missions carry instruments with multiple focal planes populated with many large sensor detector arrays. These sensors are passively cooled to low temperatures for low-level light (L3) and near-infrared (NIR) signal detection, and the sensor readout electronics circuitry must perform at extremely low noise levels to enable new required science measurements. Because we are at the technological edge of enhanced performance for sensors and readout electronics circuitry, as determined by thermal noise level at given temperature in analog domain, we must find new ways of further compensating for the noise in the signal digital domain. To facilitate this new approach, state-of-the-art sensors are augmented at their array hardware boundaries by non-illuminated reference pixels, which can be used to reduce noise attributed to sensors. There are a few proposed methodologies of processing in the digital domain the information carried by reference pixels, as employed by the Hubble Space Telescope and the James Webb Space Telescope Projects. These methods involve using spatial and temporal statistical parameters derived from boundary reference pixel information to enhance the active (non-reference) pixel signals. To make a step beyond this heritage methodology, we apply the NASA-developed technology known as the Hilbert- Huang Transform Data Processing System (HHT-DPS) for reference pixel information processing and its utilization in reconfigurable hardware on-board a spaceflight instrument or post-processing on the ground. The methodology examines signal processing for a 2-D domain, in which high-variance components of the thermal noise are carried by both active and reference pixels, similar to that in processing of low-voltage differential signals and subtraction of a single analog reference pixel from all active pixels on the sensor. Heritage methods using the aforementioned statistical parameters in the digital domain (such as statistical averaging of the reference pixels themselves) zeroes out the high-variance components, and the counterpart components in the active pixels remain uncorrected. This paper describes how the new methodology was demonstrated through analysis of fast-varying noise components using the Hilbert-Huang Transform Data Processing System tool (HHT-DPS) developed at NASA and the high-level programming language MATLAB (Trademark of MathWorks Inc.), as well as alternative methods for correcting for the high-variance noise component, using an HgCdTe sensor data. The NASA Hubble Space Telescope data post-processing, as well as future deep-space cosmology projects on-board instrument data processing from all the sensor channels, would benefit from this effort.

  4. Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) calibration of the Upper Atmosphere Research Satellite (UARS) sensors

    NASA Technical Reports Server (NTRS)

    Hashmall, J.; Garrick, J.

    1993-01-01

    Flight Dynamics Facility (FDF) responsibilities for calibration of Upper Atmosphere Research Satellite (UARS) sensors included alignment calibration of the fixed-head star trackers (FHST's) and the fine Sun sensor (FSS), determination of misalignments and scale factors for the inertial reference units (IRU's), determination of biases for the three-axis magnetometers (TAM's) and Earth sensor assemblies (ESA's), determination of gimbal misalignments of the Solar/Stellar Pointing Platform (SSPP), and field-of-view calibration for the FSS's mounted both on the Modular Attitude Control System (MACS) and on the SSPP. The calibrations, which used a combination of new and established algorithms, gave excellent results. Alignment calibration results markedly improved the accuracy of both ground and onboard Computer (OBC) attitude determination. SSPP calibration results allowed UARS to identify stars in the period immediately after yaw maneuvers, removing the delay required for the OBC to reacquire its fine pointing attitude mode. SSPP calibration considerably improved the pointing accuracy of the attached science instrument package. This paper presents a summary of the methods used and the results of all FDF UARS sensor calibration.

  5. Dynamic Leading-Edge Stagnation Point Determination Utilizing an Array of Hot-Film Sensors with Unknown Calibration

    NASA Technical Reports Server (NTRS)

    Ellsworth, Joel C.

    2017-01-01

    During flight-testing of the National Aeronautics and Space Administration (NASA) Gulfstream III (G-III) airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) SubsoniC Research Aircraft Testbed (SCRAT) between March 2013 and April 2015 it became evident that the sensor array used for stagnation point detection was not functioning as expected. The stagnation point detection system is a self calibrating hot-film array; the calibration was unknown and varied between flights, however, the channel with the lowest power consumption was expected to correspond with the point of least surface shear. While individual channels showed the expected behavior for the hot-film sensors, more often than not the lowest power consumption occurred at a single sensor (despite in-flight maneuvering) in the array located far from the expected stagnation point. An algorithm was developed to process the available system output and determine the stagnation point location. After multiple updates and refinements, the final algorithm was not sensitive to the failure of a single sensor in the array, but adjacent failures beneath the stagnation point crippled the algorithm.

  6. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.

    PubMed

    Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto

    2017-09-29

    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.

  7. A sensor simulation framework for the testing and evaluation of external hazard monitors and integrated alerting and notification functions

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Venable, Kyle; Bezawada, Rajesh; Adami, Tony; Vadlamani, Ananth K.

    2009-05-01

    This paper discusses a sensor simulator/synthesizer framework that can be used to test and evaluate various sensor integration strategies for the implementation of an External Hazard Monitor (EHM) and Integrated Alerting and Notification (IAN) function as part of NASA's Integrated Intelligent Flight Deck (IIFD) project. The IIFD project under the NASA's Aviation Safety program "pursues technologies related to the flight deck that ensure crew workload and situational awareness are both safely optimized and adapted to the future operational environment as envisioned by NextGen." Within the simulation framework, various inputs to the IIFD and its subsystems, the EHM and IAN, are simulated, synthesized from actual collected data, or played back from actual flight test sensor data. Sensors and avionics included in this framework are TCAS, ADS-B, Forward-Looking Infrared, Vision cameras, GPS, Inertial navigators, EGPWS, Laser Detection and Ranging sensors, altimeters, communication links with ATC, and weather radar. The framework is implemented in Simulink, a modeling language developed by The Mathworks. This modeling language allows for test and evaluation of various sensor and communication link configurations as well as the inclusion of feedback from the pilot on the performance of the aircraft. Specifically, this paper addresses the architecture of the simulator, the sensor model interfaces, the timing and database (environment) aspects of the sensor models, the user interface of the modeling environment, and the various avionics implementations.

  8. Development of a flight data acquisition system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Hood, Scott

    Current developments surrounding the use of unmanned aerial vehicles have produced a need for a high quality data acquisition platform developed specifically a research environment. This work was undertaken to produce such a system that is low cost, extensible, and better supports fixed wing research through the inclusion of a custom vane based air data probe capable of measuring airspeed, angle of attack, and angle of sideslip. This was accomplished by starting with the open source Pixhawk system as the core and then modifying the device firmware and adding sensors to suit the needs of current aerospace research at OSU. An overview of each component of the system is presented, as well as a description of various firmware modifications to the stock Pixhawk system. Tests were then performed on all of the major sensors using bench testing, wind tunnel analysis, and flight maneuvers to determine the final performance of each part of the system. This research shows that all of the critical sensors on the data acquisition platform produce data acceptable for flight research. The accelerometer has been shown to have an overall tolerance of +/-0.0545 m/s², with +/-0.223 deg/s for the gyroscopic sensor, +/-1.32 hPa for the barometric sensor, +/-0.318 m/s for the airspeed sensor, +/-1.65 °C for the outside air temperature sensor, and +/-0.00115 V for the analog to digital converter. The stock calibration curve for the airspeed sensor was determined to be correct to within +/-0.5 in H2O through wind tunnel testing, and an experimental step input analysis on the flow direction vanes showed that worst case steady state error and time to damp are acceptable for the system. Power spectral density and spectral coherence analysis of flight data was used to show that the custom air data probe is capable of following the flight dynamics of a given aircraft to within a 10 percent tolerance across a range of frequencies. Finally, general performance of the system was proven using basic aircraft system identification data collection as a test case.

  9. Next-Generation RS-25 Engines for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2017-01-01

    The utilization of heritage RS-25 engines, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over 1 million seconds total accumulated hot-fire time. In addition, there were also 16 flight engines and 2 development engines remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway to improve system affordability and eliminate obsolescence concerns. These key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.

  10. Orion Powered Flight Guidance Burn Options for Near Term Exploration

    NASA Technical Reports Server (NTRS)

    Fill, Tom; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  11. Orion's Powered Flight Guidance Burn Options for Near Term Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fill, Thomas; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  12. Structural analysis of stratocumulus convection

    NASA Technical Reports Server (NTRS)

    Siems, S. T.; Baker, M. B.; Bretherton, C. S.

    1990-01-01

    The 1 and 20 Hz data are examined from the Electra flights made on July 5, 1987. The flight legs consisted of seven horizontal turbulent legs at the inversion, midcloud, and below clouds, plus 4 soundings made within the same period. The Rosemont temperature sensor and the top and bottom dewpoint sensors were used to measure temperature and humidity at 1 Hz. Inversion structure and entrainment; local dynamics and large scale forcing; convective elements; and decoupling of cloud and subcloud are discussed in relationship to the results of the Electra flight.

  13. The Miniaturized Moessbauer Spectrometer MIMOS II for the Asteroid Redirect Mission(ARM): Quantative Iron Mineralogy And Oxidation States

    NASA Technical Reports Server (NTRS)

    Schroeder, C.; Klingelhoefer, G; Morris, R. V.; Yen, A. S.; Renz, F.; Graff, T. G.

    2016-01-01

    The miniaturized Moessbauer spectrometer MIMOS II is an off-the-shelf instrument with proven flight heritage. It has been successfully deployed during NASA’s Mars Exploration Rover (MER) mission and was on-board the UK-led Beagle 2 Mars lander and the Russian Phobos-Grunt sample return mission. A Moessbauer spectrometer has been suggested for ASTEX, a DLR Near-Earth Asteroid (NEA) mission study, and the potential payload to be hosted by the Asteroid Redirect Mission (ARM). Here we make the case for in situ asteroid characterization with Moessbauer spectroscopy on the ARM employing one of three available fully-qualified flight-spare Moessbauer instruments.

  14. Implementing wireless sensor networks for architectural heritage conservation

    NASA Astrophysics Data System (ADS)

    Martínez-Garrido, M. I.; Aparicio, S.; Fort, R.; Izquierdo, M. A. G.; Anaya, J. J.

    2012-04-01

    Preventive conservation in architectural heritage is one of the most important aims for the development and implementation of new techniques to assess decay, lending to reduce damage before it has occurred and reducing costs in the long term. For that purpose, it is necessary to know all aspects influencing in decay evolution depending on the material under study and its internal and external conditions. Wireless sensor networks are an emerging technology and a minimally invasive technique. The use of these networks facilitates data acquisition and monitoring of a large number of variables that could provoke material damages, such as presence of harmful compounds like salts, dampness, etc. The current project presents different wireless sensors networks (WSN) and sensors used to fulfill the requirements for a complete analysis of main decay agents in a Renaissance church of the 16th century in Madrid (Spain). Current typologies and wireless technologies are studied establishing the most suitable system and the convenience of each one. Firstly, it is very important to consider that microclimate is in close correlation with material deterioration. Therefore a temperature(T) and relative humidity (RH)/moisture network has been developed, using ZigBee wireless communications protocols, and monitoring different points along the church surface. These points are recording RH/T differences depending on the height and the sensor location (inside the material or on the surface). On the other hand, T/RH button sensors have been used, minimizing aesthetical interferences, and concluding which is the most advisable way for monitoring these specific parameters. Due to the fact that microclimate is a complex phenomenon, it is necessary to examine spatial distribution and time evolution at the same time. This work shows both studies since the development expects a long term monitoring. A different wireless network has been deployed to study the effects of pollution caused by other active systems such as a forced-air heating system, the parishioners presence or feasts and other ventilation conditions. Finally weather conditions are registered through a weather station. Outside and inside conditions are compared to incorporate data to the network for a later decay modeling.

  15. NASA Dryden Flight Research Center C-17 Research Overview

    NASA Technical Reports Server (NTRS)

    Miller, Chris

    2007-01-01

    A general overview of NASA Dryden Flight Research Center's C-17 Aircraft is presented. The topics include: 1) 2006 Activities PHM Instrumentation Refurbishment; 2) Acoustic and Vibration Sensors; 3) Gas Path Sensors; 4) NASA Instrumentation System Racks; 5) NASA C-17 Simulator; 6) Current Activities; 7) Future Work; 8) Lawn Dart ; 9) Weight Tub; and 10) Parachute Test Vehicle.

  16. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  17. Design and evaluation of an autonomous, obstacle avoiding, flight control system using visual sensors

    NASA Astrophysics Data System (ADS)

    Crawford, Bobby Grant

    In an effort to field smaller and cheaper Uninhabited Aerial Vehicles (UAVs), the Army has expressed an interest in an ability of the vehicle to autonomously detect and avoid obstacles. Current systems are not suitable for small aircraft. NASA Langley Research Center has developed a vision sensing system that uses small semiconductor cameras. The feasibility of using this sensor for the purpose of autonomous obstacle avoidance by a UAV is the focus of the research presented in this document. The vision sensor characteristics are modeled and incorporated into guidance and control algorithms designed to generate flight commands based on obstacle information received from the sensor. The system is evaluated by simulating the response to these flight commands using a six degree-of-freedom, non-linear simulation of a small, fixed wing UAV. The simulation is written using the MATLAB application and runs on a PC. Simulations were conducted to test the longitudinal and lateral capabilities of the flight control for a range of airspeeds, camera characteristics, and wind speeds. Results indicate that the control system is suitable for obstacle avoiding flight control using the simulated vision system. In addition, a method for designing and evaluating the performance of such a system has been developed that allows the user to easily change component characteristics and evaluate new systems through simulation.

  18. Determination of Heritage SSME Pogo Suppressor Resistance and Inertance from Waterflow Pulse Testing

    NASA Technical Reports Server (NTRS)

    McDougal, Chris; Eberhart, Chad; Lee, Erik

    2016-01-01

    Waterflow tests of a heritage Space Shuttle Main Engine pogo suppressor were performed to experimentally quantify the resistance and inertance provided by the suppressor. Measurements of dynamic pressure and flow rate in response to pulsing flow were made throughout the test loop. A unique system identification methodology combined all sensor measurements with a one-dimensional perturbational flow model of the complete water flow loop to spatially translate physical measurements to the device under test. Multiple techniques were then employed to extract the effective resistance and inertance for the pogo suppressor. Parameters such as steady flow rate, perturbational flow rate magnitude, and pulse frequency were investigated to assess their influence on the behavior of the pogo suppressor dynamic response. These results support validation of the RS-25 pogo suppressor performance for use on the Space Launch System Core Stage.

  19. Reliable dual-redundant sensor failure detection and identification for the NASA F-8 DFBW aircraft

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.; Desai, M. N.; Deyst, J. J., Jr.; Willsky, A. S.

    1978-01-01

    A technique was developed which provides reliable failure detection and identification (FDI) for a dual redundant subset of the flight control sensors onboard the NASA F-8 digital fly by wire (DFBW) aircraft. The technique was successfully applied to simulated sensor failures on the real time F-8 digital simulator and to sensor failures injected on telemetry data from a test flight of the F-8 DFBW aircraft. For failure identification the technique utilized the analytic redundancy which exists as functional and kinematic relationships among the various quantities being measured by the different control sensor types. The technique can be used not only in a dual redundant sensor system, but also in a more highly redundant system after FDI by conventional voting techniques reduced to two the number of unfailed sensors of a particular type. In addition the technique can be easily extended to the case in which only one sensor of a particular type is available.

  20. Simulation and ground testing with the Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2005-01-01

    The Advanced Video Guidance Sensor (AVGS), an active sensor system that provides near-range 6-degree-of-freedom sensor data, has been developed as part of an automatic rendezvous and docking system for the Demonstration of Autonomous Rendezvous Technology (DART). The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state imager to detect the light returned from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The development of the sensor, through initial prototypes, final prototypes, and three flight units, has required a great deal of testing at every phase, and the different types of testing, their effectiveness, and their results, are presented in this paper, focusing on the testing of the flight units. Testing has improved the sensor's performance.

  1. Efficient placement of structural dynamics sensors on the space station

    NASA Technical Reports Server (NTRS)

    Lepanto, Janet A.; Shepard, G. Dudley

    1987-01-01

    System identification of the space station dynamic model will require flight data from a finite number of judiciously placed sensors on it. The placement of structural dynamics sensors on the space station is a particularly challenging problem because the station will not be deployed in a single mission. Given that the build-up sequence and the final configuration for the space station are currently undetermined, a procedure for sensor placement was developed using the assembly flights 1 to 7 of the rephased dual keel space station as an example. The procedure presented approaches the problem of placing the sensors from an engineering, as opposed to a mathematical, point of view. In addition to locating a finite number of sensors, the procedure addresses the issues of unobserved structural modes, dominant structural modes, and the trade-offs involved in sensor placement for space station. This procedure for sensor placement will be applied to revised, and potentially more detailed, finite element models of the space station configuration and assembly sequence.

  2. In-Flight and Post-Flight Impact Data Analysis from DEBIE2 (Debris In-Orbit Evaluator) on Board of ISS

    NASA Astrophysics Data System (ADS)

    Menicucci, Alessandra; Drolshagen, Gerhard; Kuitunen, Juha; Butenko, Yuriy; Mooney, Cathal

    2013-08-01

    DEBIE2 (Debris-in-orbit-evaluator) was launched in February 2008 as part of the European Technology Exposure Facility (EuTEF) and installed on the exterior of Columbus on ISS. DEBIE2 is an active detector, composed by 3 sensor units able to monitor the sub-micron micro-meteoroid and debris population in space. Each DEBIE sensor consists of a thin aluminium foil coupled with 2 wire grids sensitive to the plasma generated by particles impacting on the foil where also 2 piezoelectric sensors are glued. If the particle penetrates the foil, this can be detected by a third electron plasma detector located just behind the foil. The combination of these information allows to estimate the micro-particles and debris fluxes. EuTEF and DEBIE2 were retrieved after 18 months in flight and returned to Earth with the Space Shuttle Mission STS-128. In this paper, the results of the analysis of in-flight impact data are presented as well as the comparison with the models. The DEBIE2 sensor pointing the Zenith direction, was found to have one wire of the upper grid cut in two pieces by an impact. The postflight analysis focused on this sensor and included optical and SEM/EDX scanning. The results from this inspection will be also presented in this paper.

  3. Flight-determined lag of angle-of-attack and angle-of-sideslip sensors in the YF-12A airplane from analysis of dynamic maneuvers

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Belte, D.

    1974-01-01

    Magnitudes of lags in the pneumatic angle-of-attack and angle-of-sideslip sensor systems of the YF-12A airplane were determined for a variety of flight conditions by analyzing stability and control data. The three analysis techniques used are described. An apparent trend with Mach number for measurements from both of the differential-pressure sensors showed that the lag ranged from approximately 0.15 second at subsonic speed to 0.4 second at Mach 3. Because Mach number was closely related to altitude for the available flight data, the individual effects of Mach number and altitude on the lag could not be separated clearly. However, the results indicated the influence of factors other than simple pneumatic lag.

  4. ED08-0109-08

    NASA Image and Video Library

    2008-05-01

    Ikhana fiber optic wing shape sensor team: clockwise from left, Anthony "Nino" Piazza, Allen Parker, William Ko and Lance Richards. The sensors, located along a fiber the thickness of a human hair, aren't visible in the center of the Ikhana aircraft's left wing. NASA Dryden Flight Research Center is evaluating an advanced fiber optic-based sensing technology installed on the wings of NASA's Ikhana aircraft. The fiber optic system measures and displays the shape of the aircraft's wings in flight. There are other potential safety applications for the technology, such as vehicle structural health monitoring. If an aircraft structure can be monitored with sensors and a computer can manipulate flight control surfaces to compensate for stresses on the wings, structural control can be established to prevent situations that might otherwise result in a loss of control.

  5. Northrop Grumman HEC flight coaxial cryocoolers performance

    NASA Astrophysics Data System (ADS)

    Nguyen, T.; Russo, J.; Basel, G.; Chi, D.; Abelson, L.

    2018-05-01

    The Northrop Grumman Aerospace Systems (NGAS) has expanded the cryocooler product line to include a single stage High Efficiency Cryocooler (HEC) cooler with a coaxial pulse tube cold head that operates at temperatures down to 45K. The HEC coaxial pulse tube cooler has been adopted by several customers, and has completed acceptance testing to meet program flight requirements. The NGAS TRL 9 HEC is a pulse tube cryocooler with a flexure bearing compressor which has been delivered for a number of flight payloads that are currently operating in space. To date, NGAS has delivered space cryocoolers in several configurations including single stage with a linear cold head and two stage with both linear and coaxial cold heads. The new HEC coaxial cooler uses the same TRL9 HEC compressor with a passive pulse tube cold head, to maintain the flight heritage of the HEC linear cooler. In this paper, we present the flight acceptance test data of the HEC coaxial cryocooler, which includes thermal performance, launch vibration and thermal cycling. The HEC coaxial cooler has demonstrated excellent performance in family with the flight qualified HEC linear cooler. The HEC coaxial cooler provides users with additional flexibility in selecting the cold head configuration to meet their particular applications.

  6. VEGA Launch Vehicle Dynamic Environment: Flight Experience and Qualification Status

    NASA Astrophysics Data System (ADS)

    Di Trapani, C.; Fotino, D.; Mastrella, E.; Bartoccini, D.; Bonnet, M.

    2014-06-01

    VEGA Launch Vehicle (LV) during flight is equipped with more than 400 sensors (pressure transducers, accelerometers, microphones, strain gauges...) aimed to catch the physical phenomena occurring during the mission. Main objective of these sensors is to verify that the flight conditions are compliant with the launch vehicle and satellite qualification status and to characterize the phenomena that occur during flight. During VEGA development, several test campaigns have been performed in order to characterize its dynamic environment and identify the worst case conditions, but only with the flight data analysis is possible to confirm the worst cases identified and check the compliance of the operative life conditions with the components qualification status.Scope of the present paper is to show a comparison of the sinusoidal dynamic phenomena that occurred during VEGA first and second flight and give a summary of the launch vehicle qualification status.

  7. Automated 3D architecture reconstruction from photogrammetric structure-and-motion: A case study of the One Pilla pagoda, Hanoi, Vienam

    NASA Astrophysics Data System (ADS)

    To, T.; Nguyen, D.; Tran, G.

    2015-04-01

    Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.

  8. Flight parameter estimation using instantaneous frequency and time delay measurements from a three-element planar acoustic array.

    PubMed

    Lo, Kam W

    2016-05-01

    The acoustic signal emitted by a turbo-prop aircraft consists of a strong narrowband tone superimposed on a broadband random component. A ground-based three-element planar acoustic array can be used to estimate the full set of flight parameters of a turbo-prop aircraft in transit by measuring the time delay (TD) between the signal received at the reference sensor and the signal received at each of the other two sensors of the array over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the reference sensor to improve the precision of the flight parameter estimates. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the aircraft velocity and altitude can be greatly reduced when IF measurements are used together with TD measurements. Two flight parameter estimation algorithms that utilize both IF and TD measurements are formulated and their performances are evaluated using both simulated and real data.

  9. Square tracking sensor for autonomous helicopter hover stabilization

    NASA Astrophysics Data System (ADS)

    Oertel, Carl-Henrik

    1995-06-01

    Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.

  10. 14 CFR 125.228 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight data recorders: filtered data. 125... Equipment Requirements § 125.228 Flight data recorders: filtered data. (a) A flight data signal is filtered... original sensor signal value can be reconstructed from the recorded data. This demonstration requires that...

  11. Developing a Ruggedized User-Friendly UAS for Monitoring Volcanic Emissions

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Elston, J. S.; Stachura, M.

    2017-12-01

    Using lessons learned from a history of airborne volcano measurements and a range of UAS R&D, a reliable and ruggedized UAS is being developed specifically for volcano monitoring and response. A key feature is the user interface (UI) that allows for a menu of automated flight plans that will account for terrain and sensor requirements. Due to variation in response times of miniaturized airborne the sensors, flight plan options are extended to account for sensor lag when needed. By automating such complicating variables into the UI, the amount of background and training needed for operation is further minimized. Payload options include simultaneous in situ gas and particle sensors combined with downward-looking imagers to provide a wide range of data products. Currently under development by Black Swift Technologies, the latest updates and test results will be presented. Specifications of the Superswift airframe include a 6,000 m flight ceiling, 2.4 kg payload capacity, and 2 hr endurance.

  12. Passive range estimation for rotorcraft low-altitude flight

    NASA Technical Reports Server (NTRS)

    Sridhar, B.; Suorsa, R.; Hussien, B.

    1991-01-01

    The automation of rotorcraft low-altitude flight presents challenging problems in control, computer vision and image understanding. A critical element in this problem is the ability to detect and locate obstacles, using on-board sensors, and modify the nominal trajectory. This requirement is also necessary for the safe landing of an autonomous lander on Mars. This paper examines some of the issues in the location of objects using a sequence of images from a passive sensor, and describes a Kalman filter approach to estimate the range to obstacles. The Kalman filter is also used to track features in the images leading to a significant reduction of search effort in the feature extraction step of the algorithm. The method can compute range for both straight line and curvilinear motion of the sensor. A laboratory experiment was designed to acquire a sequence of images along with sensor motion parameters under conditions similar to helicopter flight. Range estimation results using this imagery are presented.

  13. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  14. Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Petersen, W.; Buechler, D. E.; Krehbiel, P. R.; Gatlin, P.; Zubrick, S.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models is expected to be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 ground processing algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area)

  15. Development of an Unmanned Aircraft System and Cyberinfrastructure for Environmental Science Research

    NASA Astrophysics Data System (ADS)

    Brady, J. J.; Tweedie, C. E.; Escapita, I. J.

    2009-12-01

    There is a fundamental need to improve capacities for monitoring environmental change using remote sensing technologies. Recently, researchers have begun using Unmanned Aerial Vehicles (UAVs) to expand and improve upon remote sensing capabilities. Limitations to most non-military and relatively small-scale Unmanned Aircraft Systems (UASs) include a need to develop more reliable communications between ground and aircraft, tools to optimize flight control, real time data processing, and visually ascertaining the quantity of data collected while in air. Here we present a prototype software system that has enhanced communication between ground and the vehicle, can synthesize near real time data acquired from sensors on board, can log operation data during flights, and can visually demonstrate the amount and quality of data for a sampling area. This software has the capacity to greatly improve the utilization of UAS in the environmental sciences. The software system is being designed for use on a paraglider UAV that has a suite of sensors suitable for characterizing the footprints of eddy covariance towers situated in the Chihuahuan Desert and in the Arctic. Sensors on board relay operational flight data (airspeed, ground speed, latitude, longitude, pitch, yaw, roll, acceleration, and video) as well as a suite of customized sensors. Additional sensors can be added to an on board laptop or a CR1000 data logger thereby allowing data from these sensors to be visualized in the prototype software. This poster will describe the development, use and customization of our UAS and multimedia will be available during AGU to illustrate the system in use. UAV on workbench in the lab UAV in flight

  16. PredGuid+A: Orion Entry Guidance Modified for Aerocapture

    NASA Technical Reports Server (NTRS)

    Lafleur, Jarret

    2013-01-01

    PredGuid+A software was developed to enable a unique numerical predictor-corrector aerocapture guidance capability that builds on heritage Orion entry guidance algorithms. The software can be used for both planetary entry and aerocapture applications. Furthermore, PredGuid+A implements a new Delta-V minimization guidance option that can take the place of traditional targeting guidance and can result in substantial propellant savings. PredGuid+A allows the user to set a mode flag and input a target orbit's apoapsis and periapsis. Using bank angle control, the guidance will then guide the vehicle to the appropriate post-aerocapture orbit using one of two algorithms: Apoapsis Targeting or Delta-V Minimization (as chosen by the user). Recently, the PredGuid guidance algorithm was adapted for use in skip-entry scenarios for NASA's Orion multi-purpose crew vehicle (MPCV). To leverage flight heritage, most of Orion's entry guidance routines are adapted from the Apollo program.

  17. KSC-08pd0089

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  18. KSC-08pd0081

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, elements of the ARES I-X Roll Control System, or RoCS, will undergo testing. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  19. KSC-08pd0092

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  20. KSC-08pd0087

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  1. KSC-08pd0090

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician (right) adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  2. KSC-08pd0088

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd0085

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician monitors equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  4. KSC-08pd0091

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  5. KSC-08pd0084

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians get ready to begin testing elements of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  6. Ablation Modeling of Ares-I Upper State Thermal Protection System Using Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Sharp, John R.; Page, Arthur T.

    2007-01-01

    The thermal protection system (TPS) for the Ares-I Upper Stage will be based on Space Transportation System External Tank (ET) and Solid Rocket Booster (SRB) heritage materials. These TPS materials were qualified via hot gas testing that simulated ascent and re-entry aerothermodynamic convective heating environments. From this data, the recession rates due to ablation were characterized and used in thermal modeling for sizing the thickness required to maintain structural substrate temperatures. At Marshall Space Flight Center (MSFC), the in-house code ABL is currently used to predict TPS ablation and substrate temperatures as a FORTRAN application integrated within SINDA/G. This paper describes a comparison of the new ablation utility in Thermal Desktop and SINDA/FLUINT with the heritage ABL code and empirical test data which serves as the validation of the Thermal Desktop software for use on the design of the Ares-I Upper Stage project.

  7. A Wireless Internet-Based Observatory: The Real-time Coastal Observation Network (ReCON)

    DTIC Science & Technology

    2007-09-01

    48105 J. J. Gray National Oceanic and Atmospheric Administration Thunder Bay National Marine Sanctuary 500 W. Fletcher St. Alpena , MI 49707 S...underwater hubs with sensors. Shore Station Buoy or Permanent Station Alpena Muskegon Milwaukee Ann Arbor Chicago Cleveland Toledo...meteorological station located on TBI, and a shore station located at the Maritime Heritage Center in Alpena , MI. A digital video camera will be connected to

  8. Geometric Calibration and Radiometric Correction of the Maia Multispectral Camera

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Dubbini, M.; Menna, F.; Remondino, F.; Gattelli, M.; Covi, D.

    2017-10-01

    Multispectral imaging is a widely used remote sensing technique, whose applications range from agriculture to environmental monitoring, from food quality check to cultural heritage diagnostic. A variety of multispectral imaging sensors are available on the market, many of them designed to be mounted on different platform, especially small drones. This work focuses on the geometric and radiometric characterization of a brand-new, lightweight, low-cost multispectral camera, called MAIA. The MAIA camera is equipped with nine sensors, allowing for the acquisition of images in the visible and near infrared parts of the electromagnetic spectrum. Two versions are available, characterised by different set of band-pass filters, inspired by the sensors mounted on the WorlView-2 and Sentinel2 satellites, respectively. The camera details and the developed procedures for the geometric calibrations and radiometric correction are presented in the paper.

  9. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-05-01

    Because of the high travel speed, the complex flow dynamics around an aircraft and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realized with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 hPa to 800 hPa, and a water vapour concentration range of more than three orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements show an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2% and 5.1% during in flight operation on the HALO airplane. Under certain flight conditions we quantified for the first time stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the usually used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.

  10. Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Afchine, A.; Ebert, V.

    2014-11-01

    Because of the high travel speed, the complex flow dynamics around an aircraft, and the complex dependency of the fluid dynamics on numerous airborne parameters, it is quite difficult to obtain accurate pressure values at a specific instrument location of an aircraft's fuselage. Complex simulations using computational fluid dynamics (CFD) models can in theory computationally "transfer" pressure values from one location to another. However, for long flight patterns, this process is inconvenient and cumbersome. Furthermore, these CFD transfer models require a local experimental validation, which is rarely available. In this paper, we describe an integrated approach for a spectroscopic, calibration-free, in-flight pressure determination in an open-path White cell on an aircraft fuselage using ambient, atmospheric water vapour as the "sensor species". The presented measurements are realised with the HAI (Hygrometer for Atmospheric Investigations) instrument, built for multiphase water detection via calibration-free TDLAS (tunable diode laser absorption spectroscopy). The pressure determination is based on raw data used for H2O concentration measurement, but with a different post-flight evaluation method, and can therefore be conducted at deferred time intervals on any desired flight track. The spectroscopic pressure is compared in-flight with the static ambient pressure of the aircraft avionic system and a micro-mechanical pressure sensor, located next to the open-path cell, over a pressure range from 150 to 800 hPa, and a water vapour concentration range of more than 3 orders of magnitude. The correlation between the micro-mechanical pressure sensor measurements and the spectroscopic pressure measurements shows an average deviation from linearity of only 0.14% and a small offset of 9.5 hPa. For the spectroscopic pressure evaluation we derive measurement uncertainties under laboratory conditions of 3.2 and 5.1% during in-flight operation on the HALO airplane. Under certain flight conditions we quantified, for the first time, stalling-induced, dynamic pressure deviations of up to 30% (at 200 hPa) between the avionic sensor and the optical and mechanical pressure sensors integrated in HAI. Such severe local pressure deviations from the typically used avionic pressure are important to take into account for other airborne sensors employed on such fast flying platforms as the HALO aircraft.

  11. Evolving EO-1 Sensor Web Testbed Capabilities in Pursuit of GEOSS

    NASA Technical Reports Server (NTRS)

    Mandi, Dan; Ly, Vuong; Frye, Stuart; Younis, Mohamed

    2006-01-01

    A viewgraph presentation to evolve sensor web capabilities in pursuit of capabilities to support Global Earth Observing System of Systems (GEOSS) is shown. The topics include: 1) Vision to Enable Sensor Webs with "Hot Spots"; 2) Vision Extended for Communication/Control Architecture for Missions to Mars; 3) Key Capabilities Implemented to Enable EO-1 Sensor Webs; 4) One of Three Experiments Conducted by UMBC Undergraduate Class 12-14-05 (1 - 3); 5) Closer Look at our Mini-Rovers and Simulated Mars Landscae at GSFC; 6) Beginning to Implement Experiments with Standards-Vision for Integrated Sensor Web Environment; 7) Goddard Mission Services Evolution Center (GMSEC); 8) GMSEC Component Catalog; 9) Core Flight System (CFS) and Extension for GMSEC for Flight SW; 10) Sensor Modeling Language; 11) Seamless Ground to Space Integrated Message Bus Demonstration (completed December 2005); 12) Other Experiments in Queue; 13) Acknowledgements; and 14) References.

  12. The Use of Modeling for Flight Software Engineering on SMAP

    NASA Technical Reports Server (NTRS)

    Murray, Alexander; Jones, Chris G.; Reder, Leonard; Cheng, Shang-Wen

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission proposes to deploy an Earth-orbiting satellite with the goal of obtaining global maps of soil moisture content at regular intervals. Launch is currently planned in 2014. The spacecraft bus would be built at the Jet Propulsion Laboratory (JPL), incorporating both new avionics as well as hardware and software heritage from other JPL projects. [4] provides a comprehensive overview of the proposed mission

  13. A new stratospheric sounding platform based on unmanned aerial vehicle (UAV) droppable from meteorological balloon

    NASA Astrophysics Data System (ADS)

    Efremov, Denis; Khaykin, Sergey; Lykov, Alexey; Berezhko, Yaroslav; Lunin, Aleksey

    High-resolution measurements of climate-relevant trace gases and aerosols in the upper troposphere and stratosphere (UTS) have been and remain technically challenging. The high cost of measurements onboard airborne platforms or heavy stratospheric balloons results in a lack of accurate information on vertical distribution of atmospheric constituents. Whereas light-weight instruments carried by meteorological balloons are becoming progressively available, their usage is constrained by the cost of the equipment or the recovery operations. The evolving need in cost-efficient observations for UTS process studies has led to development of small airborne platforms - unmanned aerial vehicles (UAV), capable of carrying small sensors for in-situ measurements. We present a new UAV-based stratospheric sounding platform capable of carrying scientific payload of up to 2 kg. The airborne platform comprises of a latex meteorological balloon and detachable flying wing type UAV with internal measurement controller. The UAV is launched on a balloon to stratospheric altitudes up to 20 km, where it can be automatically released by autopilot or by a remote command sent from the ground control. Having been released from the balloon the UAV glides down and returns to the launch position. Autopilot using 3-axis gyro, accelerometer, barometer, compas and GPS navigation provides flight stabilization and optimal way back trajectory. Backup manual control is provided for emergencies. During the flight the onboard measurement controller stores the data into internal memory and transmits current flight parameters to the ground station via telemetry. Precise operation of the flight control systems ensures safe landing at the launch point. A series of field tests of the detachable stratospheric UAV has been conducted. The scientific payload included the following instruments involved in different flights: a) stratospheric Lyman-alpha hygrometer (FLASH); b) backscatter sonde; c) electrochemical ozone sonde; d) optical CO2 sensor; e) radioactivity sensor; f) solar radiation sensor. In addition, each payload included temperature sensor, barometric sensor and a GPS receiver. Design features of measurement systems onboard UAV and flight results are presented. Possible applications for atmospheric studies and validation of remote ground-based and space-borne observations is discussed.

  14. The GSFC Combined Approach of ODC Stockpiling and Tribological Testing to Mitigate the Risks of ODC Elimination

    NASA Technical Reports Server (NTRS)

    Predmore, Roamer; LeBoeuf, Claudia; Hovanec, Andrew

    1997-01-01

    In response to the elimination of production of several Ozone Depleting Chemicals (ODC's) which have been widely used in successful space flight mechanism cleaning and lubricating procedures, GSFC developed and implemented an overall philosophy of mitigating the risks to flight hardware during the transition phase to ODC-free cleaning procedures. The short term leg of the philosophy was the stockpiling of an appropriate amount of ODC solvents such that all short term GSFC missions will be able to stay with or revert to heritage cleaning and lubricating procedures in the face of life issues. The long-term leg of that philosophy was the initiation of a several tier testing program that will deliver increasing amounts of information over the next few years, starting with accelerated lubricant life tests that compare lubricant life on surfaces cleaned with ODC solvents with lubricant life on surfaces cleaned with ODC-free solvents. While tribological testing, mechanism life testing and space-flight experience will ultimately bring us into the 21st century with environmentally friendly means of cleaning long-life precision mechanism components, many satellites will be launched over the next few years before a number of important tribological questions can be answered. In order to prepare for this challenge, the Materials Engineering Branch in cooperation with the Electromechanical Branch launched an intensive review of all ongoing missions. The failure risk was determined for each long-life lubricated mechanism based on a number of parameters, including 4 comparison of flight solvents used to clean the heritage/life test hardware. Also studied was the ability of the mechanism manufacturers to stockpile ODC's based on state laws and company policies. A stockpiling strategy was constructed based on this information and subsequently implemented. This paper provides an overview of the GSFC ODC elimination risk mitigation philosophy as well as a detailed examination of the development of the ODC stockpiling plan.

  15. Flight simulation for flight control computer S/N 0104-1 (ASTP)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.

  16. Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) Flight Testing of the Lidar Sensor

    NASA Technical Reports Server (NTRS)

    Soreide, David C.; Bogue, Rodney K.; Ehernberger, L. J.; Hannon, Stephen M.; Bowdle, David A.

    2000-01-01

    The purpose of the ACLAIM program is ultimately to establish the viability of light detection and ranging (lidar) as a forward-looking sensor for turbulence. The goals of this flight test are to: 1) demonstrate that the ACLAIM lidar system operates reliably in a flight test environment, 2) measure the performance of the lidar as a function of the aerosol backscatter coefficient (beta), 3) use the lidar system to measure atmospheric turbulence and compare these measurements to onboard gust measurements, and 4) make measurements of the aerosol backscatter coefficient, its probability distribution and spatial distribution. The scope of this paper is to briefly describe the ACLAIM system and present examples of ACLAIM operation in flight, including comparisons with independent measurements of wind gusts, gust-induced normal acceleration, and the derived eddy dissipation rate.

  17. Air Data Boom System Development for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Cox, Jeff; Bondurant, Robert; Dupont, Ron; ODonnell, Louise; Vellines, Wesley, IV; Johnston, William M.; Cagle, Christopher M.; Schuster, David M.; Elliott, Kenny B.; hide

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.

  18. Obstacle detection and avoiding of quadcopter

    NASA Astrophysics Data System (ADS)

    Wang, Dizhong; Lin, Jiajian

    2017-10-01

    Recent years, the flight control technology over quadcopter has been boosted vigorously and acquired the comprehensive application in a variety of industries. However, it is prominent for there to be problems existed in the stable and secure flight with the development of its autonomous flight. Through comparing with the characteristics of ultrasonic ranging and laser Time-of-Flight(abbreviated to ToF) distance as well as vision measurement and its related sensors, the obstacle detection and identification sensors need to be installed in order to effectively enhance the safety flying for aircraft, which is essential for avoiding the dangers around the surroundings. That the major sensors applied to objects perception at present are distance measuring instruments which based on the principle and application of non-contact detection technology . Prior to acknowledging the general principles of flight and obstacle avoiding, the aerodynamics modeling of the quadcopter and its object detection means has been initially determined on this paper. Based on such premise, this article emphasized on describing and analyzing the research on obstacle avoiding technology and its application status, and making an expectation for the trend of its development after analyzing the primary existing problems concerning its accuracy object avoidance.

  19. Recommended fine positioning test for the Development Test Flight (DTF-1) of the NASA Flight Telerobotic Servicer (FTS)

    NASA Technical Reports Server (NTRS)

    Dagalakis, N.; Wavering, A. J.; Spidaliere, P.

    1991-01-01

    Test procedures are proposed for the NASA DTF (Development Test Flight)-1 positioning tests of the FTS (Flight Telerobotic Servicer). The unique problems associated with the DTF-1 mission are discussed, standard robot performance tests and terminology are reviewed and a very detailed description of flight-like testing and analysis is presented. The major technical problem associated with DTF-1 is that only one position sensor can be used, which will be fixed at one location, with a working volume which is probably smaller than some of the robot errors to be measured. Radiation heating of the arm and the sensor could also cause distortions that would interfere with the test. Two robot performance testing committees have established standard testing procedures relevant to the DTF-1. Due to the technical problems associated with DTF-1, these procedures cannot be applied directly. These standard tests call for the use of several test positions at specific locations. Only one position, that of the position sensor, can be used by DTF-1. Off-line programming accuracy might be impossible to measure and in that case it will have to be replaced by forward kinetics accuracy.

  20. OMPS Sensor Performance and Algorithm Description

    NASA Astrophysics Data System (ADS)

    Branham, M. S.; Farrow, S. V.; Novicki, M.; Bhaswar, S.; Baker, B.

    2009-12-01

    The Ozone Mapping and Profiler Suite (OMPS), built by Ball Aerospace, is the next-generation U.S. ozone monitoring sensor suite, designed and built for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), under contract to the Integrated Program Office, administered by the Air Force, National Oceanic and Atmospheric Administration (NOAA), and National Aeronautics and Space Administration (NASA) under contract to Northrop Grumman. The first flight of an OMPS is scheduled for early 2011 on the NPOESS Preparatory Project (NPP) satellite. The OMPS sensor data will be used to generate the ozone calibrated sensor data and environmental data record (EDR) products. The final OMPS sensor performance and algorithms for NPP will be presented, now that the FM1 flight sensor suite has completed sell off and is integrated on the NPP spacecraft. Challenges requiring future development, and during intensive calibration/validation on orbit will be described. Also, an overview of the sensor suite, the FM1 measurement performance, and details of the retrieval algorithms will be provided in this presentation.

  1. Flight Hydrogen Sensor for use in the ISS Oxygen Generation Assembly

    NASA Technical Reports Server (NTRS)

    MSadoques, George, Jr.; Makel, Darby B.

    2005-01-01

    This paper provides a description of the hydrogen sensor Orbital Replacement Unit (ORU) used on the Oxygen Generation Assembly (OGA), to be operated on the International Space Station (ISS). The hydrogen sensor ORU is being provided by Makel Engineering, Inc. (MEI) to monitor the oxygen outlet for the presence of hydrogen. The hydrogen sensor ORU is a triple redundant design where each sensor converts raw measurements to actual hydrogen partial pressure that is reported to the OGA system controller. The signal outputs are utilized for system shutdown in the event that the hydrogen concentration in the oxygen outlet line exceeds the specified shutdown limit. Improvements have been made to the Micro-Electro-Mechanical Systems (MEMS) based sensing element, screening, and calibration process to meet OGA operating requirements. Two flight hydrogen sensor ORUs have successfully completed the acceptance test phase. This paper also describes the sensor s performance during acceptance testing, additional tests planned to extend the operational performance calibration cycle, and integration with the OGA system.

  2. Autonomous Inspection of Electrical Transmission Structures with Airborne UV Sensors - NASA Report on Dominion Virginia Power Flights of November 2016

    NASA Technical Reports Server (NTRS)

    Moore, Andrew J.; Schubert, Matthew; Nicholas Rymer

    2017-01-01

    The report details test and measurement flights to demonstrate autonomous UAV inspection of high voltage electrical transmission structures. A UAV built with commercial, off-the-shelf hardware and software, supplemented with custom sensor logging software, measured ultraviolet emissions from a test generator placed on a low-altitude substation and a medium-altitude switching tower. Since corona discharge precedes catastrophic electrical faults on high-voltage structures, detection and geolocation of ultraviolet emissions is needed to develop a UAV-based self-diagnosing power grid. Signal readings from an onboard ultraviolet sensor were validated during flight with a commercial corona camera. Geolocation was accomplished with onboard GPS; the UAV position was logged to a local ground station and transmitted in real time to a NASA server for tracking in the national airspace.

  3. Pulse Based Time-of-Flight Range Sensing.

    PubMed

    Sarbolandi, Hamed; Plack, Markus; Kolb, Andreas

    2018-05-23

    Pulse-based Time-of-Flight (PB-ToF) cameras are an attractive alternative range imaging approach, compared to the widely commercialized Amplitude Modulated Continuous-Wave Time-of-Flight (AMCW-ToF) approach. This paper presents an in-depth evaluation of a PB-ToF camera prototype based on the Hamamatsu area sensor S11963-01CR. We evaluate different ToF-related effects, i.e., temperature drift, systematic error, depth inhomogeneity, multi-path effects, and motion artefacts. Furthermore, we evaluate the systematic error of the system in more detail, and introduce novel concepts to improve the quality of range measurements by modifying the mode of operation of the PB-ToF camera. Finally, we describe the means of measuring the gate response of the PB-ToF sensor and using this information for PB-ToF sensor simulation.

  4. 14 CFR Appendix E to Part 135 - Helicopter Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Helicopter Flight Recorder Specifications E.... E Appendix E to Part 135—Helicopter Flight Recorder Specifications Parameters Range Accuracy sensor... Controls (Collective, Longitudinal Cyclic, Lateral Cyclic, Pedal) 3 Full range ±3% 2 0.5% 1 Flight Control...

  5. 14 CFR 121.346 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight data recorders: filtered data. 121... § 121.346 Flight data recorders: filtered data. (a) A flight data signal is filtered when an original... sensor signal value can be reconstructed from the recorded data. This demonstration requires that: (i...

  6. 14 CFR 135.156 - Flight data recorders: filtered data.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight data recorders: filtered data. 135... Aircraft and Equipment § 135.156 Flight data recorders: filtered data. (a) A flight data signal is filtered... original sensor signal value can be reconstructed from the recorded data. This demonstration requires that...

  7. A procedure for accurate calibration of the orientation of the three sensors in a vector magnetometer. [at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1977-01-01

    Procedures are described for the calibration of a vector magnetometer of high absolute accuracy. It is assumed that the calibration will be performed in the magnetic test facility of Goddard Space Flight Center (GSFC). The first main section of the report describes the test equipment and facility calibrations required. The second presents procedures for calibrating individual sensors. The third discusses the calibration of the sensor assembly. In a final section recommendations are made to GSFC for modification of the test facility required to carry out the calibration procedures.

  8. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Development

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2002-01-01

    In response to recommendations from the National Aviation Weather Program Council, the National Aeronautics and Space Administration (NASA) is working with industry to develop an electronic pilot reporting capability for small aircraft. This paper describes the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor development effort. NASA is working with industry to develop a sensor capable of measuring temperature, relative humidity, magnetic heading, pressure, icing, and average turbulence energy dissipation. Users of the data include National Centers for Environmental Prediction (NCEP) forecast modelers, air traffic controllers, flight service stations, airline operation centers, and pilots. Preliminary results from flight tests are presented.

  9. Infrared horizon sensor modeling for attitude determination and control - Analysis and mission experience

    NASA Technical Reports Server (NTRS)

    Singhal, S. P.; Phenneger, M. C.; Stengle, T. H.

    1986-01-01

    This paper summarizes the work of the Flight Dynamics Division of the National Aeronautics and Space Administration/Goddard Space Flight Center in analyzing and evaluating the performance of a variety of infrared horizon sensors on 12 spaceflight missions from 1973 to 1984. Earth infrared radiance modeling, using the LOWTRAN 5 Program, and the Horizon Radiance Modeling Utility are also described. Mission data are presented for Magsat and the Earth Radiation Budget Satellite, with analysis to assess the sensor modeling as well as cloud and sun interference effects. Recommendations are made regarding future directions for the infrared horizon technology.

  10. Local Observability Analysis of Star Sensor Installation Errors in a SINS/CNS Integration System for Near-Earth Flight Vehicles.

    PubMed

    Yang, Yanqiang; Zhang, Chunxi; Lu, Jiazhen

    2017-01-16

    Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles.

  11. A summary of results from solar monitoring rocket flights

    NASA Technical Reports Server (NTRS)

    Duncan, C. H.

    1981-01-01

    Three rocket flights to measure the solar constant and provide calibration data for sensors aboard Nimbus 6, 7, and Solar Maximum Mission (SMM) spacecraft were accomplished. The values obtained by the rocket instruments for the solar constant in SI units are: 1367 w/sq m on 29 June 1976; 1372 w/sq m on 16 November 1978; and 1374 w/sq m on 22 May 1980. The uncertainty of the rocket measurements is + or - 0.5%. The values obtained by the Hickey-Frieden sensor on Nimbus 7 during the second and third flights was 1376 w/sq m. The value obtained by the Active Cavity Radiometer Model IV (ACR IV) on SMM during the flight was 1368 w/sq m.

  12. Salvaging of the Final SSMIS Flight Unit for a Future Flight-of-Opportunity

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Boucher, D. J., Jr.; Park, E. S.; Swadley, S. D.; Poe, G.

    2017-12-01

    The final Special Sensor Microwave Imager/Sounder (SSMIS) that was originally manifested aboard the DMSP F-20 platform became available when that mission was deactivated. The U.S. Naval Research Laboratory and The Aerospace Corporation have secured the de-manifested SSMIS for potential flight on a future mission-of-opportunity. A number of mission options are under consideration, including installation aboard the International Space Station. The intent is for any such deployment to provide a measure of continuity between SSMIS units currently operating aboard DMSP F-16, F-17, and F-18 and whatever equivalent sensor may be selected for the next-generation DoD Weather Satellite Follow-on program. We will describe the current status of SSMIS preparations for flight.

  13. ED08-0016-20

    NASA Image and Video Library

    2008-01-17

    NASA engineer Larry Hudson and Ikhana ground crew member James Smith work on a ground validation test with new fiber optic sensors that led to validation flights on the Ikhana aircraft. NASA Dryden Flight Research Center is evaluating an advanced fiber optic-based sensing technology installed on the wings of NASA's Ikhana aircraft. The fiber optic system measures and displays the shape of the aircraft's wings in flight. There are other potential safety applications for the technology, such as vehicle structural health monitoring. If an aircraft structure can be monitored with sensors and a computer can manipulate flight control surfaces to compensate for stresses on the wings, structural control can be established to prevent situations that might otherwise result in a loss of control.

  14. HH-65A Dolphin digital integrated avionics

    NASA Technical Reports Server (NTRS)

    Huntoon, R. B.

    1984-01-01

    Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.

  15. Navigation Doppler lidar sensor for precision altitude and vector velocity measurements: flight test results

    NASA Astrophysics Data System (ADS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George; Hines, Glenn

    2011-06-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high-resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over various terrains. The sensor was one of several sensors tested in this field test by NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  16. Navigation Doppler Lidar Sensor for Precision Altitude and Vector Velocity Measurements Flight Test Results

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Lockhard, George; Amzajerdian, Farzin; Petway, Larry B.; Barnes, Bruce; Hines, Glenn D.

    2011-01-01

    An all fiber Navigation Doppler Lidar (NDL) system is under development at NASA Langley Research Center (LaRC) for precision descent and landing applications on planetary bodies. The sensor produces high resolution line of sight range, altitude above ground, ground relative attitude, and high precision velocity vector measurements. Previous helicopter flight test results demonstrated the NDL measurement concepts, including measurement precision, accuracies, and operational range. This paper discusses the results obtained from a recent campaign to test the improved sensor hardware, and various signal processing algorithms applicable to real-time processing. The NDL was mounted in an instrumentation pod aboard an Erickson Air-Crane helicopter and flown over vegetation free terrain. The sensor was one of several sensors tested in this field test by NASA?s Autonomous Landing and Hazard Avoidance Technology (ALHAT) project.

  17. CIB: an improved communication architecture for real-time monitoring of aerospace materials, instruments, and sensors on the ISS.

    PubMed

    Krasowski, Michael J; Prokop, Norman F; Flatico, Joseph M; Greer, Lawrence C; Jenkins, Phillip P; Neudeck, Philip G; Chen, Liangyu; Spina, Danny C

    2013-01-01

    The Communications Interface Board (CIB) is an improved communications architecture that was demonstrated on the International Space Station (ISS). ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT) bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO) and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed.

  18. CIB: An Improved Communication Architecture for Real-Time Monitoring of Aerospace Materials, Instruments, and Sensors on the ISS

    PubMed Central

    Krasowski, Michael J.; Prokop, Norman F.; Flatico, Joseph M.; Greer, Lawrence C.; Jenkins, Phillip P.; Neudeck, Philip G.; Chen, Liangyu; Spina, Danny C.

    2013-01-01

    The Communications Interface Board (CIB) is an improved communications architecture that was demonstrated on the International Space Station (ISS). ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT) bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO) and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed. PMID:23983621

  19. Mars Ascent Vehicle-Propellant Aging

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Rousseau, Jeremy; Williams, Jacob

    2015-01-01

    This project is to develop and test a new propellant formulation specifically for the Mars Ascent Vehicle (MAV) for the robotic Mars Sample Return mission. The project was initiated under the Planetary Sciences Division In-Space Propulsion Technology (ISPT) program and is continuing under the Mars Exploration Program. The two-stage, solid motor-based MAV has been the leading MAV solution for more than a decade. Additional studies show promise for alternative technologies including hybrid and bipropellant options, but the solid motor design has significant propellant density advantages well suited for physical constraints imposed while using the SkyCrane descent stage. The solid motor concept has lower specific impulse (Isp) than alternatives, but if the first stage and payload remain sufficiently small, the two-stage solid MAV represents a potential low risk approach to meet the mission needs. As the need date for the MAV slips, opportunities exist to advance technology with high on-ramp potential. The baseline propellant for the MAV is currently the carboxyl terminated polybutadiene (CTPB) based formulation TP-H-3062 due to its advantageous low temperature mechanical properties and flight heritage. However, the flight heritage is limited and outside the environments, the MAV must endure. The ISPT program competed a propellant formulation project with industry and selected ATK to develop a new propellant formulation specifically for the MAV application. Working with ATK, a large number of propellant formulations were assessed to either increase performance of a CTPB propellant or improve the low temperature mechanical properties of a hydroxyl terminated polybutadiene (HTPB) propellant. Both propellants demonstrated potential to increase performance over heritage options, but an HTPB propellant formulation, TP-H-3544, was selected for production and testing. The test plan includes propellant aging first at high vacuum conditions, representative of the Mars transit, followed by an additional year at simulated Mars surface conditions. The actual Mars surface environment is based on the igloo design, actively maintains the propellant at or above -40 degC, 95% carbon dioxide at Mars surface pressure. The NASA Marshall Space Flight Center (MSFC) Mars environment test facility is shown in figure 1 and located in the East Test area of Redstone Arsenal due to storage of live propellants. The facility consists of a vacuum chamber placed inside a large freezer unit. The facility includes pressure and temperature monitoring equipment in addition to a vacuum quality monitoring system spectrometer to record any outgassing products.

  20. The transition of GTDS to the Unix workstation environment

    NASA Technical Reports Server (NTRS)

    Carter, D.; Metzinger, R.; Proulx, R.; Cefola, P.

    1995-01-01

    Future Flight Dynamics systems should take advantage of the possibilities provided by current and future generations of low-cost, high performance workstation computing environments with Graphical User Interface. The port of the existing mainframe Flight Dynamics systems to the workstation environment offers an economic approach for combining the tremendous engineering heritage that has been encapsulated in these systems with the advantages of the new computing environments. This paper will describe the successful transition of the Draper Laboratory R&D version of GTDS (Goddard Trajectory Determination System) from the IBM Mainframe to the Unix workstation environment. The approach will be a mix of historical timeline notes, descriptions of the technical problems overcome, and descriptions of associated SQA (software quality assurance) issues.

  1. Direct Analysis in Real Time Mass Spectrometry for the Nondestructive Investigation of Conservation Treatments of Cultural Heritage.

    PubMed

    Manfredi, Marcello; Robotti, Elisa; Bearman, Greg; France, Fenella; Barberis, Elettra; Shor, Pnina; Marengo, Emilio

    2016-01-01

    Today the long-term conservation of cultural heritage is a big challenge: often the artworks were subjected to unknown interventions, which eventually were found to be harmful. The noninvasive investigation of the conservation treatments to which they were subjected to is a crucial step in order to undertake the best conservation strategies. We describe here the preliminary results on a quick and direct method for the nondestructive identification of the various interventions of parchment by means of direct analysis in real time (DART) ionization and high-resolution time-of-flight mass spectrometry and chemometrics. The method has been developed for the noninvasive analysis of the Dead Sea Scrolls, one of the most important archaeological discoveries of the 20th century. In this study castor oil and glycerol parchment treatments, prepared on new parchment specimens, were investigated in order to evaluate two different types of operations. The method was able to identify both treatments. In order to investigate the effect of the ion source temperature on the mass spectra, the DART-MS analysis was also carried out at several temperatures. Due to the high sensitivity, simplicity, and no sample preparation requirement, the proposed analytical methodology could help conservators in the challenging analysis of unknown treatments in cultural heritage.

  2. Europa Propulsion Valve Seat Material Testing

    NASA Technical Reports Server (NTRS)

    Addona, Brad M.

    2017-01-01

    The Europa mission and spacecraft design presented unique challenges for selection of valve seat materials that met the fluid compatibility requirements, and combined fluid compatibility and high radiation exposure level requirements. The Europa spacecraft pressurization system valves will be exposed to fully saturated propellant vapor for the duration of the mission. The effects of Nitrogen Tetroxide (NTO) and Monomethylhydrazine (MMH) propellant vapors on heritage valve seat materials, such as Vespel SP-1 and Polychlorotrifluoroethylene (PCTFE), were evaluated to determine if an alternate material is required. In liquid system applications, Teflon is the only available compatible valve seat material. Radiation exposure data for Teflon in an air or vacuum environment has been previously documented. Radiation exposure data for Teflon in an oxidizer environment such as NTO, was not available, and it was unknown whether the effects would be similar to those on air-exposed samples. Material testing was conducted by Marshall Space Flight Center (MSFC) and White Sands Test Facility (WSTF) to determine the effects of propellant vapor on heritage seat materials for pressurization valve applications, and the effects of combined radiation and NTO propellant exposure on Teflon. The results indicated that changes in heritage pressurization valve seat materials' properties rendered them unsuitable for the Europa application. The combined radiation and NTO exposure testing of Teflon produced results equivalent to combined radiation and air exposure results.

  3. Worst case analysis: Earth sensor assembly for the tropical rainfall measuring mission observatory

    NASA Technical Reports Server (NTRS)

    Conley, Michael P.

    1993-01-01

    This worst case analysis verifies that the TRMMESA electronic design is capable of maintaining performance requirements when subjected to worst case circuit conditions. The TRMMESA design is a proven heritage design and capable of withstanding the most worst case and adverse of circuit conditions. Changes made to the baseline DMSP design are relatively minor and do not adversely effect the worst case analysis of the TRMMESA electrical design.

  4. NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview

    NASA Technical Reports Server (NTRS)

    Nola, Charles L.; Blue, Lisa

    2008-01-01

    Building on the heritage of the Saturn and Space Shuttle Programs for the Design, Development, Test, and Evaluation (DDT and E) of avionics and software for NASA's Ares I Crew Launch Vehicle (CLV), the Ares I Upper Stage Element is a vital part of the Constellation Program's transportation system. The Upper Stage Element's Avionics Subsystem is actively proceeding toward its objective of delivering a flight-certified Upper Stage Avionics System for the Ares I CLV.

  5. Multi-Scale Modeling of Novel Hall Thrusters: Understanding Physics of CHT and DCF Thrusters

    DTIC Science & Technology

    2011-12-30

    thrusters having over 40 years of flight heritage (the first variant, SPT -50, was flown aboard the Soviet Meteor spacecraft in 1971), the community...symmetric sheath. This finding was touched upon in our previous work.14 The walls of this SPT -type thruster are made of a dielectric material. The...One theory of SPT operation suggests that electron impacts of the dielectric material result in emission of secondary electrons from the material

  6. Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) Sensor Suite

    NASA Technical Reports Server (NTRS)

    Hwang, Helen; Wright, Henry; Kuhl, Chris; Schoenenberger, Mark; White, Todd; Karlgaard, Chris; Mahzari, Milad; Oishi, Tomo; Pennington, Steve; Trombetta, Nick; hide

    2017-01-01

    The Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite seeks to address the aerodynamic, aerothermodynamic, and thermal protection system (TPS) performance issues during atmospheric entry, descent, and landing of the Mars 2020 mission. Based on the highly successful instrumentation suite that flew on Mars Science Laboratory (MEDLI), the new sensor suite expands on the types of measurements and also seeks to answer questions not fully addressed by the previous mission. Sensor Package: MEDLI2 consists of 7 pressure transducers, 17 thermal plugs, 2 heat flux sensors, and one radiometer. The sensors are distributed across both the heatshield and backshell, unlike MEDLI (the first sensor suite), which was located solely on the heat-shield. The sensors will measure supersonic pressure on the forebody, a pressure measurement on the aftbody, near-surface and in-depth temperatures in the heatshield and backshell TPS materials, direct total heat flux on the aftbody, and direct radiative heating on the aftbody. Instrument Development: The supersonic pressure transducers, the direct heat flux sensors, and the radiometer all were tested during the development phase. The status of these sensors, including the piezo-resistive pressure sensors, will be presented. The current plans for qualification and calibration for all of the sensors will also be discussed. Post-Flight Data Analysis: Similar to MEDLI, the estimated flight trajectory will be reconstructed from the data. The aerodynamic parameters that will be reconstructed will be the axial force coefficient, freestream Mach number, base pressure, atmospheric density, and winds. The aerothermal quantities that will be determined are the heatshield and backshell aero-heating, turbulence transition across the heatshield, and TPS in-depth performance of PICA. By directly measuring the radiative and total heat fluxes on the back-shell, the convective portion of the heat flux will be estimated. The status of the current tools to perform the post-flight data analysis will be presented, along with plans for model improvements.

  7. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  8. A Survey and Experimental Evaluation of Proximity Sensors for Space Robotics

    NASA Technical Reports Server (NTRS)

    Volpe, Richard

    1993-01-01

    This paper provides an overview of our selction process for proximity sensors for manipulator collison avoidance. Five categories of sensors have been considered for this use in space operations: Intensity of reflection, triangulation, time of flight, capacitive, and iductive.

  9. Sense and avoid technology for Global Hawk and Predator UAVs

    NASA Astrophysics Data System (ADS)

    McCalmont, John F.; Utt, James; Deschenes, Michael; Taylor, Michael J.

    2005-05-01

    The Sensors Directorate at the Air Force Research Laboratory (AFRL) along with Defense Research Associates, Inc. (DRA) conducted a flight demonstration of technology that could potentially satisfy the Federal Aviation Administration's (FAA) requirement for Unmanned Aerial Vehicles (UAVs) to sense and avoid local air traffic sufficient to provide an "...equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft". This FAA requirement must be satisfied for autonomous UAV operation within the national airspace. The real-time on-board system passively detects approaching aircraft, both cooperative and non-cooperative, using imaging sensors operating in the visible/near infrared band and a passive moving target indicator algorithm. Detection range requirements for RQ-4 and MQ-9 UAVs were determined based on analysis of flight geometries, avoidance maneuver timelines, system latencies and human pilot performance. Flight data and UAV operating parameters were provided by the system program offices, prime contractors, and flight-test personnel. Flight demonstrations were conducted using a surrogate UAV (Aero Commander) and an intruder aircraft (Beech Bonanza). The system demonstrated target detection ranges out to 3 nautical miles in nose-to-nose scenarios and marginal visual meteorological conditions. (VMC) This paper will describe the sense and avoid requirements definition process and the system concept (sensors, algorithms, processor, and flight rest results) that has demonstrated the potential to satisfy the FAA sense and avoid requirements.

  10. Flight data acquisition methodology for validation of passive ranging algorithms for obstacle avoidance

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.

    1990-01-01

    The automation of low-altitude rotorcraft flight depends on the ability to detect, locate, and navigate around obstacles lying in the rotorcraft's intended flightpath. Computer vision techniques provide a passive method of obstacle detection and range estimation, for obstacle avoidance. Several algorithms based on computer vision methods have been developed for this purpose using laboratory data; however, further development and validation of candidate algorithms require data collected from rotorcraft flight. A data base containing low-altitude imagery augmented with the rotorcraft and sensor parameters required for passive range estimation is not readily available. Here, the emphasis is on the methodology used to develop such a data base from flight-test data consisting of imagery, rotorcraft and sensor parameters, and ground-truth range measurements. As part of the data preparation, a technique for obtaining the sensor calibration parameters is described. The data base will enable the further development of algorithms for computer vision-based obstacle detection and passive range estimation, as well as provide a benchmark for verification of range estimates against ground-truth measurements.

  11. NASA Sea Ice and Snow Validation Program for the DMSP SSM/I: NASA DC-8 flight report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.

    1988-01-01

    In June 1987 a new microwave sensor called the Special Sensor Microwave Imager (SSM/I) was launched as part of the Defense Meteorological Satellite Program (DMSP). In recognition of the importance of this sensor to the polar research community, NASA developed a program to acquire the data, to convert the data into sea ice parameters, and finally to validate and archive both the SSM/I radiances and the derived sea ice parameters. Central to NASA's sea ice validation program was a series of SSM/I aircraft underflights with the NASA DC-8 airborne Laboratory. The mission (the Arctic '88 Sea Ice Mission) was completed in March 1988. This report summarizes the mission and includes a summary of aircraft instrumentation, coordination with participating Navy aircraft, flight objectives, flight plans, data collected, SSM/I orbits for each day during the mission, and lists several piggyback experiments supported during this mission.

  12. Next-Generation RS-25 Engines for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2017-01-01

    The utilization of heritage RS-25 engine, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway at NASA and the RS-25 engine provider, Aerojet Rocketdyne, to improve system affordability and eliminate obsolescence concerns. This paper describes how the achievement of these key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.

  13. New sonic shockwave multi-element sensors mounted on a small airfoil flown on F-15B testbed aircraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An experimental device to pinpoint the location of a shockwave that develops in an aircraft flying at transonic and supersonic speeds was recently flight-tested at NASA's Dryden Flight Research Center, Edwards, California. The shock location sensor, developed by TAO Systems, Hampton, Va., utilizes a multi-element hot-film sensor array along with a constant-voltage anemometer and special diagnostic software to pinpoint the exact location of the shockwave and its characteristics as it develops on an aircraft surface. For this experiment, the 45-element sensor was mounted on the small Dryden-designed airfoil shown in this illustration. The airfoil was attached to the Flight Test Fixture mounted underneath the fuselage of Dryden's F-15B testbed aircraft. Tests were flown at transonic speeds of Mach 0.7 to 0.9, and the device isolated the location of the shock wave to within a half-inch. Application of this technology could assist designers of future supersonic aircraft in improving the efficiency of engine air inlets by controlling the shockwave, with a related improvement in aircraft performance and fuel economy.

  14. Description of a dual fail operational redundant strapdown inertial measurement unit for integrated avionics systems research

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.; Morrell, F. R.

    1981-01-01

    An experimental redundant strapdown inertial measurement unit (RSDIMU) is developed as a link to satisfy safety and reliability considerations in the integrated avionics concept. The unit includes four two degree-of-freedom tuned rotor gyros, and four accelerometers in a skewed and separable semioctahedral array. These sensors are coupled to four microprocessors which compensate sensor errors. These microprocessors are interfaced with two flight computers which process failure detection, isolation, redundancy management, and general flight control/navigation algorithms. Since the RSDIMU is a developmental unit, it is imperative that the flight computers provide special visibility and facility in algorithm modification.

  15. Evaluation of calibration accuracy of magnetometer sensors of Aist small spacecraft

    NASA Astrophysics Data System (ADS)

    Sedelnikov, A. V.; Filippov, A. S.; Gorozhakina, A. S.

    2018-05-01

    In the paper the technique of estimation of calibration accuracy of magnetometer gauges by the example of an Aist small spacecraft is stated. According to the measurement of the Earth's magnetic field in the orbital flight of a small spacecraft, the parameters of its rotational motion around the center of mass are estimated and primary information is generated for the magnetic actuators of the orbital motion control system. Therefore, calibration of the magnetometer sensors at the ground test stage is essential for the successful execution of the flight program. The technique can be used at the stages of ground and flight tests of magnetic field measuring instruments.

  16. Sensor Systems Collect Critical Aerodynamics Data

    NASA Technical Reports Server (NTRS)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  17. Thermal Characterization of a Simulated Fission Engine via Distributed Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Duncan, Roger G.; Fielder, Robert S.; Seeley, Ryan J.; Kozikowski, Carrie L.; Raum, Matthew T.

    2005-02-01

    We report the use of distributed fiber Bragg gratings to monitor thermal conditions within a simulated nuclear reactor core located at the Early Flight Fission Test Facility of the NASA Marshall Space Flight Center. Distributed fiber-optic temperature measurements promise to add significant capability and advance the state-of-the-art in high-temperature sensing. For the work reported herein, seven probes were constructed with ten sensors each for a total of 70 sensor locations throughout the core. These discrete temperature sensors were monitored over a nine hour period while the test article was heated to over 700 °C and cooled to ambient through two operational cycles. The sensor density available permits a significantly elevated understanding of thermal effects within the simulated reactor. Fiber-optic sensor performance is shown to compare very favorably with co-located thermocouples where such co-location was feasible.

  18. Analytical and flight investigation of the influence of rotor and other high-order dynamics on helicopter flight-control system bandwidth

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Hindson, W. S.

    1985-01-01

    The increasing use of highly augmented digital flight-control systems in modern military helicopters prompted an examination of the influence of rotor dynamics and other high-order dynamics on control-system performance. A study was conducted at NASA Ames Research Center to correlate theoretical predictions of feedback gain limits in the roll axis with experimental test data obtained from a variable-stability research helicopter. Feedback gains, the break frequency of the presampling sensor filter, and the computational frame time of the flight computer were systematically varied. The results, which showed excellent theoretical and experimental correlation, indicate that the rotor-dynamics, sensor-filter, and digital-data processing delays can severely limit the usable values of the roll-rate and roll-attitude feedback gains.

  19. The Pilatus Unmanned Aircraft System for Lower Atmospheric Research

    NASA Technical Reports Server (NTRS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; hide

    2016-01-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.

  20. The pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Palo, S.; Argrow, B.; LoDolce, G.; Mack, J.; Gao, R.-S.; Telg, H.; Trussel, C.; Fromm, J.; Long, C. N.; Bland, G.; Maslanik, J.; Schmid, B.; Hock, T.

    2015-11-01

    This paper presents details of the University of Colorado (CU) Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research grade lower tropospheric measurement missions.

  1. The Pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.

  2. Computer Program Development Specification for IDAMST Operational Flight Program Application, Software Type B5. Addendum 1.

    DTIC Science & Technology

    1976-07-30

    Interface Requirements 4 3.1.1.1 Interface Block Diagram 4 3.1.1.2 Detailed Interface Definition 7 3.1.1.2.1 Subsystems 7 3.1.1.2.2 Controls & Displays 11 r...116 3.2.3.2 Navigation Brute Force 121 3.2.3.3 Cargo Brute Force 125 3.2.3.4 Sensor Brute Force 129 3.2.3.5 Controls /Displays Brute Force 135 3.2.3.6...STD-T553 Multiplex Data Bus, with the avionic subsystems, flight * control system, the controls /displays, engine sensors, and airframe sensors. 3.1

  3. Line scanning time-of-flight laser sensor for intelligent transport systems, combining wide field-of-view optics of 30 deg, high scanning speed of 0.9 ms/line, and simple sensor configuration

    NASA Astrophysics Data System (ADS)

    Imaki, Masaharu; Kameyama, Shumpei; Ishimura, Eitaro; Nakaji, Masaharu; Yoshinaga, Hideo; Hirano, Yoshihito

    2017-03-01

    We developed a line scanning time-of-flight (TOF) laser sensor for an intelligent transport system (ITS), which combines wide field-of-view (FOV) receiving optics of 30 deg and a high-speed microelectro mechanical system scanner of 0.9 ms/line with a simple sensor configuration. The newly developed high-aspect ratio photodiode realizes the scanless and wide FOV receiver. The sinusoidal wave intensity modulation method is used for the TOF measurement. This enables the noise reduction of the trans-impedance amplifier by applying the LC-resonant method. The vehicle detection and axle counting, which are the important functions in ITS, are also demonstrated.

  4. A Flight Expert System (FLES) For On-Board Fault Monitoring And Diagnosis

    NASA Astrophysics Data System (ADS)

    Ali, M.; Scharnhorst, D...; Ai, C. S.; Ferber, H. J.

    1986-03-01

    The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher work loads for the pilot and tend to induce a higher probability of errors. Therefore, we have developed an architecture for a flight expert system (FLES) to assist pilots in monitoring, diagnosing and recovering from in-flight faults. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with the airplane status information during the diagnostic process. The simulator is based partly on the Lockheed Advanced Concept System (ACS), a future generation airplane, and partly on the Boeing 737, an existing airplane. A distinction between two types of faults, maladjustments and malfunctions, has led us to take two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to assess abnormal situations during airplane flight. This paper describes our reasons for handling malfunctions and maladjustments separately and the use of domain knowledge in the diagnosis of each.

  5. A flight expert system (FLES) for on-board fault monitoring and diagnosis

    NASA Technical Reports Server (NTRS)

    Ali, M.; Scharnhorst, D. A.; Ai, C. S.; Ferber, H. J.

    1986-01-01

    The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher work loads for the pilot and tend to induce a higher probability of errors. Therefore, an architecture for a flight expert system (FLES) to assist pilots in monitoring, diagnosing and recovering from in-flight faults has been developed. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with the airplane status information during the diagnostic process. The simulator is based partly on the Lockheed Advanced Concept System (ACS), a future generation airplane, and partly on the Boeing 737, an existing airplane. A distinction between two types of faults, maladjustments and malfunctions, has led us to take two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to assess abnormal situations during airplane flight. This paper describes the reasons for handling malfunctions and maladjustments separately and the use of domain knowledge in the diagnosis of each.

  6. The OMPS Limb Profiler instrument

    NASA Astrophysics Data System (ADS)

    Rault, D. F.; Xu, P.

    2011-12-01

    The Ozone Mapping and Profiler Suite (OMPS) will continue the monitoring of the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. OMPS is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in October 2011. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance, from which ozone profile will be retrieved from the upper tropopause uo to 60km. End-to-end studies of the sensor and retrieval algorithm indicate the following expected performance for ozone: accuracy of 5% or better from the tropopause up to 50 km, precision of about 3-5% from 18 to 50 km, and vertical resolution of 1.5-2 km with vertical sampling of 1 km and along-track horizontal sampling of 1 deg latitude. The paper will describe the mission, discuss the retrieval algorithm, and summarize the expected performance. If available, the paper will also present early on-orbit data.

  7. Polder 2 in-flight results and parasol perspectives

    NASA Astrophysics Data System (ADS)

    Bermudo, F.; Fougnie, B.; Bret-Dibat, T.

    2017-11-01

    This paper presents a global approach of the POLDER 2 mission: from instrument design, pre-flight and inflight calibrations till the first in-flight results. The POLDER 2 sensor has been developed by the Centre National d'Etudes Spatiales, the French space agency. It is part of the payload of the ADEOS II satellite developed by JAXA and launched in December 2002. POLDER 2 collected global data from April 2003, end of ADEOS II system check out phase, till the loss of the satellite on October 2003 due to a failure of the satellite power supply system. The POLDER 2 sensor is designed to collect global and repetitive observations of the solar radiation reflected by the Earth-Atmosphere system for climate research. The sensor is a wide field-of-view (2400 Km swath), low resolution (6x7 Km² at nadir) multi-spectral imaging radiometer / polarimeter. The instrument concept is based on a telecentric optics, a rotating wheel carrying 15 spectral filters and polarizers, and a bidimensionnal CCD detector array. The multidisciplinary scientific objectives of POLDER 2 lead to severe radiometric and geometrical requirements, as well as a very accurate calibration of the sensor. These requirements are achieved through a stable instrument design, exhaustive pre-flight and original in-flight calibrations. A derived model of POLDER 2 instrument will be flown on the payload of the CNES PARASOL micro satellite, the launch of which is planned end 2004. The PARASOL mission is part of the "Aqua train" i.e. the formation flying of 3 satellites following EOS-PM, so called "Aqua".

  8. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder research aircraft's solar cell arrays are prominently displayed as it touches down on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, following a test flight. The solar arrays covered more than 75 percent of Pathfinder's upper wing surface, and provided electricity to power its six electric motors, flight controls, communications links and a host of scientific sensors.

  9. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Image and Video Library

    1998-04-27

    The Perseus B remotely piloted aircraft taxis on the runway at Edwards Air Force Base, California, before a series of development flights at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  10. Perseus B Taxi Tests in Preparation for a New Series of Flight Tests

    NASA Image and Video Library

    1998-04-27

    The Perseus B remotely piloted aircraft on the runway at Edwards Air Force Base, California at the conclusion of a development flight at NASA's Dryden flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  11. An Autonomous Flight Safety System

    DTIC Science & Technology

    2008-11-01

    are taken. AFSS can take vehicle navigation data from redundant onboard sensors and make flight termination decisions using software-based rules...implemented on redundant flight processors. By basing these decisions on actual Instantaneous Impact Predictions and by providing for an arbitrary...number of mission rules, it is the contention of the AFSS development team that the decision making process used by Missile Flight Control Officers

  12. Flight calibration tests of a nose-boom-mounted fixed hemispherical flow-direction sensor

    NASA Technical Reports Server (NTRS)

    Armistead, K. H.; Webb, L. D.

    1973-01-01

    Flight calibrations of a fixed hemispherical flow angle-of-attack and angle-of-sideslip sensor were made from Mach numbers of 0.5 to 1.8. Maneuvers were performed by an F-104 airplane at selected altitudes to compare the measurement of flow angle of attack from the fixed hemispherical sensor with that from a standard angle-of-attack vane. The hemispherical flow-direction sensor measured differential pressure at two angle-of-attack ports and two angle-of-sideslip ports in diametrically opposed positions. Stagnation pressure was measured at a center port. The results of these tests showed that the calibration curves for the hemispherical flow-direction sensor were linear for angles of attack up to 13 deg. The overall uncertainty in determining angle of attack from these curves was plus or minus 0.35 deg or less. A Mach number position error calibration curve was also obtained for the hemispherical flow-direction sensor. The hemispherical flow-direction sensor exhibited a much larger position error than a standard uncompensated pitot-static probe.

  13. Local Observability Analysis of Star Sensor Installation Errors in a SINS/CNS Integration System for Near-Earth Flight Vehicles

    PubMed Central

    Yang, Yanqiang; Zhang, Chunxi; Lu, Jiazhen

    2017-01-01

    Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles. PMID:28275211

  14. Operational algorithm development and refinement approaches

    NASA Astrophysics Data System (ADS)

    Ardanuy, Philip E.

    2003-11-01

    Next-generation polar and geostationary systems, such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and the Geostationary Operational Environmental Satellite (GOES)-R, will deploy new generations of electro-optical reflective and emissive capabilities. These will include low-radiometric-noise, improved spatial resolution multi-spectral and hyperspectral imagers and sounders. To achieve specified performances (e.g., measurement accuracy, precision, uncertainty, and stability), and best utilize the advanced space-borne sensing capabilities, a new generation of retrieval algorithms will be implemented. In most cases, these advanced algorithms benefit from ongoing testing and validation using heritage research mission algorithms and data [e.g., the Earth Observing System (EOS)] Moderate-resolution Imaging Spectroradiometer (MODIS) and Shuttle Ozone Limb Scattering Experiment (SOLSE)/Limb Ozone Retreival Experiment (LORE). In these instances, an algorithm's theoretical basis is not static, but rather improves with time. Once frozen, an operational algorithm can "lose ground" relative to research analogs. Cost/benefit analyses provide a basis for change management. The challenge is in reconciling and balancing the stability, and "comfort," that today"s generation of operational platforms provide (well-characterized, known, sensors and algorithms) with the greatly improved quality, opportunities, and risks, that the next generation of operational sensors and algorithms offer. By using the best practices and lessons learned from heritage/groundbreaking activities, it is possible to implement an agile process that enables change, while managing change. This approach combines a "known-risk" frozen baseline with preset completion schedules with insertion opportunities for algorithm advances as ongoing validation activities identify and repair areas of weak performance. This paper describes an objective, adaptive implementation roadmap that takes into account the specific maturities of each system"s (sensor and algorithm) technology to provide for a program that contains continuous improvement while retaining its manageability.

  15. Combined Instrumentation Package COMARS+ for the ExoMars Schiaparelli Lander

    NASA Astrophysics Data System (ADS)

    Gülhan, Ali; Thiele, Thomas; Siebe, Frank; Kronen, Rolf

    2018-02-01

    In order to measure aerothermal parameters on the back cover of the ExoMars Schiaparelli lander the instrumentation package COMARS+ was developed by DLR. Consisting of three combined aerothermal sensors, one broadband radiometer sensor and an electronic box the payload provides important data for future missions. The aerothermal sensors called COMARS combine four discrete sensors measuring static pressure, total heat flux, temperature and radiative heat flux at two specific spectral bands. The infrared radiation in a broadband spectral range is measured by the separate broadband radiometer sensor. The electronic box of the payload is used for amplification, conditioning and multiplexing of the sensor signals. The design of the payload was mainly carried out using numerical tools including structural analyses, to simulate the main mechanical loads which occur during launch and stage separation, and thermal analyses to simulate the temperature environment during cruise phase and Mars entry. To validate the design an extensive qualification test campaign was conducted on a set of qualification models. The tests included vibration and shock tests to simulate launch loads and stage separation shocks. Thermal tests under vacuum condition were performed to simulate the thermal environment of the capsule during the different flight phases. Furthermore electromagnetic compatibility tests were conducted to check that the payload is compatible with the electromagnetic environment of the capsule and does not emit electromagnetic energy that could cause electromagnetic interference in other devices. For the sensor heads located on the ExoMars back cover radiation tests were carried out to verify their radiation hardness. Finally the bioburden reduction process was demonstrated on the qualification hardware to show the compliance with the planetary protection requirements. To test the actual heat flux, pressure and infrared radiation measurement under representative conditions, aerothermal tests were performed in an arc-heated wind tunnel facility. After all qualification tests were passed successfully, the acceptance test campaign for the flight hardware at acceptance level included the same tests than the qualification campaign except shock, radiation hardness and aerothermal tests. After passing all acceptance tests, the COMARS+ flight hardware was integrated into the Schiaparelli capsule in January 2015 at the ExoMars integration site at Thales Alenia Space in Turin. Although the landing of Schiaparelli failed, resulting in the loss of most COMARS+ flight data because they were stored on the lander, some data points were directly transmitted to the orbiter at low sampling rate during the entry phase. These data indicate that all COMARS+ sensors delivered useful data until parachute deployment with the exception of the plasma black-out phase. Since measured structure and sensor housing temperatures are far below predicted pre-flight values, a new calibration using COMARS+ spare sensors at temperatures below 0 °C is necessary.

  16. Developmental Flight Instrumentation System for the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Thomas, John

    2006-01-01

    The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.

  17. Turboprop and rotary-wing aircraft flight parameter estimation using both narrow-band and broadband passive acoustic signal-processing methods.

    PubMed

    Ferguson, B G; Lo, K W

    2000-10-01

    Flight parameter estimation methods for an airborne acoustic source can be divided into two categories, depending on whether the narrow-band lines or the broadband component of the received signal spectrum is processed to estimate the flight parameters. This paper provides a common framework for the formulation and test of two flight parameter estimation methods: one narrow band, the other broadband. The performances of the two methods are evaluated by applying them to the same acoustic data set, which is recorded by a planar array of passive acoustic sensors during multiple transits of a turboprop fixed-wing aircraft and two types of rotary-wing aircraft. The narrow-band method, which is based on a kinematic model that assumes the source travels in a straight line at constant speed and altitude, requires time-frequency analysis of the acoustic signal received by a single sensor during each aircraft transit. The broadband method is based on the same kinematic model, but requires observing the temporal variation of the differential time of arrival of the acoustic signal at each pair of sensors that comprises the planar array. Generalized cross correlation of each pair of sensor outputs using a cross-spectral phase transform prefilter provides instantaneous estimates of the differential times of arrival of the signal as the acoustic wavefront traverses the array.

  18. X-Ray Calibration Facility/Advanced Video Guidance Sensor Test

    NASA Technical Reports Server (NTRS)

    Johnston, N. A. S.; Howard, R. T.; Watson, D. W.

    2004-01-01

    The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.

  19. Orion MPCV GN and C End-to-End Phasing Tests

    NASA Technical Reports Server (NTRS)

    Neumann, Brian C.

    2013-01-01

    End-to-end integration tests are critical risk reduction efforts for any complex vehicle. Phasing tests are an end-to-end integrated test that validates system directional phasing (polarity) from sensor measurement through software algorithms to end effector response. Phasing tests are typically performed on a fully integrated and assembled flight vehicle where sensors are stimulated by moving the vehicle and the effectors are observed for proper polarity. Orion Multi-Purpose Crew Vehicle (MPCV) Pad Abort 1 (PA-1) Phasing Test was conducted from inertial measurement to Launch Abort System (LAS). Orion Exploration Flight Test 1 (EFT-1) has two end-to-end phasing tests planned. The first test from inertial measurement to Crew Module (CM) reaction control system thrusters uses navigation and flight control system software algorithms to process commands. The second test from inertial measurement to CM S-Band Phased Array Antenna (PAA) uses navigation and communication system software algorithms to process commands. Future Orion flights include Ascent Abort Flight Test 2 (AA-2) and Exploration Mission 1 (EM-1). These flights will include additional or updated sensors, software algorithms and effectors. This paper will explore the implementation of end-to-end phasing tests on a flight vehicle which has many constraints, trade-offs and compromises. Orion PA-1 Phasing Test was conducted at White Sands Missile Range (WSMR) from March 4-6, 2010. This test decreased the risk of mission failure by demonstrating proper flight control system polarity. Demonstration was achieved by stimulating the primary navigation sensor, processing sensor data to commands and viewing propulsion response. PA-1 primary navigation sensor was a Space Integrated Inertial Navigation System (INS) and Global Positioning System (GPS) (SIGI) which has onboard processing, INS (3 accelerometers and 3 rate gyros) and no GPS receiver. SIGI data was processed by GN&C software into thrust magnitude and direction commands. The processing changes through three phases of powered flight: pitchover, downrange and reorientation. The primary inputs to GN&C are attitude position, attitude rates, angle of attack (AOA) and angle of sideslip (AOS). Pitch and yaw attitude and attitude rate responses were verified by using a flight spare SIGI mounted to a 2-axis rate table. AOA and AOS responses were verified by using a data recorded from SIGI movements on a robotic arm located at NASA Johnson Space Center. The data was consolidated and used in an open-loop data input to the SIGI. Propulsion was the Launch Abort System (LAS) Attitude Control Motor (ACM) which consisted of a solid motor with 8 nozzles. Each nozzle has active thrust control by varying throat area with a pintle. LAS ACM pintles are observable through optically transparent nozzle covers. SIGI movements on robot arm, SIGI rate table movements and LAS ACM pintle responses were video recorded as test artifacts for analysis and evaluation. The PA-1 Phasing Test design was determined based on test performance requirements, operational restrictions and EGSE capabilities. This development progressed during different stages. For convenience these development stages are initial, working group, tiger team, Engineering Review Team (ERT) and final.

  20. Barred Spiral Galaxy

    NASA Image and Video Library

    2017-12-08

    Barred Spiral Galaxy NGC 1300 Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: P. Knezek (WIYN) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  1. Validation of a Low-Thrust Mission Design Tool Using Operational Navigation Software

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Knittel, Jeremy M.; Williams, Ken; Stanbridge, Dale; Ellison, Donald H.

    2017-01-01

    Design of flight trajectories for missions employing solar electric propulsion requires a suitably high-fidelity design tool. In this work, the Evolutionary Mission Trajectory Generator (EMTG) is presented as a medium-high fidelity design tool that is suitable for mission proposals. EMTG is validated against the high-heritage deep-space navigation tool MIRAGE, demonstrating both the accuracy of EMTG's model and an operational mission design and navigation procedure using both tools. The validation is performed using a benchmark mission to the Jupiter Trojans.

  2. Illumination adaptation with rapid-response color sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Xinchi; Wang, Quan; Boyer, Kim L.

    2014-09-01

    Smart lighting solutions based on imaging sensors such as webcams or time-of-flight sensors suffer from rising privacy concerns. In this work, we use low-cost non-imaging color sensors to measure local luminous flux of different colors in an indoor space. These sensors have much higher data acquisition rate and are much cheaper than many o_-the-shelf commercial products. We have developed several applications with these sensors, including illumination feedback control and occupancy-driven lighting.

  3. Improving the in-flight security by employing seat occupancy sensors based on Fiber Bragg grating technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei

    2012-06-01

    The current schemes of detecting the status of passengers in airplanes cannot satisfy the more strict regulations recently released by the United States Transportation Security Administration. In basis of investigation on the current seat occupancy sensors for vehicles, in this paper we present a novel scheme of seat occupancy sensors based on Fiber Bragg Grating technology to improve the in-flight security of airplanes. This seat occupancy sensor system can be used to detect the status of passengers and to trigger the airbags to control the inflation of air bags, which have been installed in the airplanes of some major airlines under the new law. This scheme utilizes our previous research results of Weight-In- Motion sensor system based on optical fiber Bragg grating. In contrast to the current seat occupancy sensors for vehicles, this new seat occupancy sensor has so many merits that it is very suitable to be applied in aerospace industry or high speed railway system. Moreover, combined with existing Fiber Bragg Grating strain or temperature sensor systems built in airplanes, this proposed method can construct a complete airline passenger management system.

  4. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  5. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  6. Control and trajectory design of a highly flexible air vehicle with a distributed sensing architecture

    NASA Astrophysics Data System (ADS)

    Pachikara, Abraham James

    Next generational aircraft are becoming very flexible due to efforts to reduce weight and increase aerodynamic efficiency. As a result, flight control systems and trajectories that were designed with traditional rigid body assumptions may no longer become valid. When an aircraft becomes more flexible, the shape of the aircraft can deform significantly due to the aeroservoelastic dynamics. No longer are few sensors located at the CG and elsewhere will be enough to maximize performance. Instead, a full suite of sensors will be needed all throughout the aircraft to accurately measure the complete aerodynamic distribution and dynamics. First, a parametric study will be conducted to understand how flexibility impacts both the open-loop and closed-loop dynamics of a generic micro air vehicle (MAV). Once the impact of flexibility on the MAV's aeroservoelastic dynamics is well understood, an aeroservoelastic flight controller will be designed that leverages a "Fly-By-Feel" sensor architecture. A sensor architecture will be developed that uses several sensors to estimate the MAV's full aerodynamic and inertial distribution along with inertial sensors at the CG. A modal filtering approach will be used for the relevant sensor management and to extract useful modal characteristics from the sensor data. Once that is done, a controller will be designed for maneuver tracking. Once a flight controller has been designed, a set of representative motion primitives for the MAV can be developed that model how the aircraft moves for trajectory generation. Then trajectories can be developed for the flexible vehicle. Analysis will then be conducted to understand how flexibility impacts the creation of trajectories and MAV performance metrics.

  7. Boundary Layer Transition During the Orion Exploration Flight Test 1 (EFT-1)

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.

    2016-01-01

    Boundary layer transition was observed in the thermocouple data on the windside backshell of the Orion reentry capsule. Sensors along the windside centerline, as well as off-centerline, indicated transition late in the flight at approximately Mach 4 conditions. Transition progressed as expected, beginning at the sensors closest to the forward bay cover (FBC) and moving towards the heatshield. Sensors placed in off-centerline locations did not follow streamlines, so the progression of transition observed in these sensors is less intuitive. Future analysis will include comparisons to pre-flight predictions and expected transitional behavior will be investigated. Sensors located within the centerline and off-centerline launch abort system (LAS) attach well cavities on the FBC also showed indications of boundary layer transition. The transition within the centerline cavity was observed in the temperature traces prior to transition onset on the sensors upstream of the cavity. Transition behavior within the off centerline LAS attach well cavity will also be investigated. Heatshield thermocouples were placed within Avcoat plugs to attempt to capture transitional behavior as well as better understand the aerothermal environments. Thermocouples were placed in stacks of two or five vertically within the plugs, but the temperature data obtained at the sensors closest to the surface did not immediately indicate transitional behavior. Efforts to use the in depth thermocouple temperatures to reconstruct the surface heat flux are ongoing and any results showing the onset of boundary layer transition obtained from those reconstructions will also be included in this paper. Transition on additional features of interest, including compression pad ramps, will be included if it becomes available.

  8. Infrared Imagery of Shuttle (IRIS). Task 2, summary report

    NASA Technical Reports Server (NTRS)

    Chocol, C. J.

    1978-01-01

    End-to-end tests of a 16 element indium antimonide sensor array and 10 channels of associated electronic signal processing were completed. Quantitative data were gathered on system responsivity, frequency response, noise, stray capacitance effects, and sensor paralleling. These tests verify that the temperature accuracies, predicted in the Task 1 study, can be obtained with a very carefully designed electro-optical flight system. Pre-flight and inflight calibration of a high quality are mandatory to obtain these accuracies. Also, optical crosstalk in the array-dewar assembly must be carefully eliminated by its design. Tests of the scaled up tracking system reticle also demonstrate that the predicted tracking system accuracies can be met in the flight system. In addition, improvements in the reticle pattern and electronics are possible, which will reduce the complexity of the flight system and increase tracking accuracy.

  9. Predictive Lateral Logic for Numerical Entry Guidance Algorithms

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.

    2016-01-01

    Recent entry guidance algorithm development123 has tended to focus on numerical integration of trajectories onboard in order to evaluate candidate bank profiles. Such methods enjoy benefits such as flexibility to varying mission profiles and improved robustness to large dispersions. A common element across many of these modern entry guidance algorithms is a reliance upon the concept of Apollo heritage lateral error (or azimuth error) deadbands in which the number of bank reversals to be performed is non-deterministic. This paper presents a closed-loop bank reversal method that operates with a fixed number of bank reversals defined prior to flight. However, this number of bank reversals can be modified at any point, including in flight, based on contingencies such as fuel leaks where propellant usage must be minimized.

  10. Light Echo

    NASA Image and Video Library

    2017-12-08

    "Light Echo" Illuminates Dust Around Supergiant Star V838 Monocerotis (V838 Mon) Credit: NASA and The Hubble Heritage Team (AURA/STScI) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  11. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  12. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  13. Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm.

    PubMed

    Targ, R; Steakley, B C; Hawley, J G; Ames, L L; Forney, P; Swanson, D; Stone, R; Otto, R G; Zarifis, V; Brockman, P; Calloway, R S; Klein, S H; Robinson, P A

    1996-12-20

    The use of airborne laser radar (lidar) to measure wind velocities and to detect turbulence in front of an aircraft in real time can significantly increase fuel efficiency, flight safety, and terminal area capacity. We describe the flight-test results for two coherent lidar airborne shear sensor (CLASS) systems and discuss their agreement with our theoretical simulations. The 10.6-μm CO(2) system (CLASS-10) is a flying brassboard; the 2.02-μm Tm:YAG solid-state system (CLASS-2) is configured in a rugged, light-weight, high-performance package. Both lidars have shown a wind measurement accuracy of better than 1 m/s.

  14. Tactically Extensible and Modular Communications X-Band TEMCOM-X

    NASA Technical Reports Server (NTRS)

    Sims, William H.

    2015-01-01

    This paper will discuss a CubeSat size (3U) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with the U.S. Department of the Army and Dynetics Corporation. This telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, Proto-flight software defined radio (SDR) and Electronically Steerable Patch Array (ESPA) antenna subsystems for use on platforms as small as CubeSats and unmanned aircraft systems (UASs). Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from tactical forces or sensors operating in austere locations (e.g., direct imagery download, unattended ground sensor data exfiltration, interlink communications).

  15. OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    NASA Technical Reports Server (NTRS)

    May, Alexander; Sutter, Brian; Linn, Timothy; Bierhaus, Beau; Berry, Kevin; Mink, Ron

    2014-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023.

  16. Characterization of a Two-Stage Pulse Tube Cooler for Space Applications

    NASA Astrophysics Data System (ADS)

    Orsini, R.; Nguyen, T.; Colbert, R.; Raab, J.

    2010-04-01

    A two-stage long-life, low mass and efficient pulse tube cooler for space applications has been developed and acceptance tested for flight applications. This paper presents the data collected on four flight coolers during acceptance testing. Flight acceptance test of these cryocoolers includes thermal performance mapping over a range of reject temperatures, launch vibration testing and thermal cycling testing. Designed conservatively for a 10-year life, the coolers are required to provide simultaneous cooling powers at 95 K and 180 K while rejecting to 300 K with less than 187 W input power to the electronics. The total mass of each cooler and electronics system is 8.7 kg. The radiation-hardened and software driven control electronics provides cooler control functions which are fully re-configurable in orbit. These functions include precision temperature control to better than 100 mK p-p. This 2 stage cooler has heritage to the 12 Northrop Grumman Aerospace Systems (NGAS) coolers currently on orbit with 2 operating for more than 11.5 years.

  17. A ratioing radiometer for use with a solar diffuser. [to monitor in-flight calibration of satellite sensors

    NASA Technical Reports Server (NTRS)

    Palmer, James M.; Slater, Philip N.

    1991-01-01

    The use of an on-board solar diffuser has been proposed to monitor the in-flight calibration of satellite sensors. This paper presents the preliminary specifications and design for a ratioing radiometer, to be used to determine the change in radiance of the solar diffuser. The issues involved in spectral channel selection are discussed and the effects of stray light are presented. An error analysis showing the benefit of the ratioing radiometer is included.

  18. Horizon sensor errors calculated by computer models compared with errors measured in orbit

    NASA Technical Reports Server (NTRS)

    Ward, K. A.; Hogan, R.; Andary, J.

    1982-01-01

    Using a computer program to model the earth's horizon and to duplicate the signal processing procedure employed by the ESA (Earth Sensor Assembly), errors due to radiance variation have been computed for a particular time of the year. Errors actually occurring in flight at the same time of year are inferred from integrated rate gyro data for a satellite of the TIROS series of NASA weather satellites (NOAA-A). The predicted performance is compared with actual flight history.

  19. Hazardous Gas Detection Sensor Using Broadband Light-Emitting Diode-Based Absorption Spectroscopy for Space Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terracciano, Anthony; Thurmond, Kyle; Villar, Michael

    As space travel matures and extended duration voyages become increasingly common, it will be necessary to include arrays of early fire detection systems aboard spacefaring vessels, space habitats, and in spacesuits. As gasses that are relevant to combustion and pyrolysis have absorption features in the midinfrared range, it is possible to utilize absorption spectroscopy as a means of detecting and quantifying the concentration of these hazardous compounds. Within this work, a sensor for detecting carbon dioxide has been designed and tested autonomously on a high-altitude balloon flight. The sensor utilizes a 4.2-mm lightemitting diode source, amplitude modulation to characterize speciesmore » concentrations, and frequency modulation to characterize ambient temperature. Future work will include expanding the sensor design to detect other gases, and demonstrating suborbital flight capability.« less

  20. Hazardous Gas Detection Sensor Using Broadband Light-Emitting Diode-Based Absorption Spectroscopy for Space Applications

    DOE PAGES

    Terracciano, Anthony; Thurmond, Kyle; Villar, Michael; ...

    2018-03-12

    As space travel matures and extended duration voyages become increasingly common, it will be necessary to include arrays of early fire detection systems aboard spacefaring vessels, space habitats, and in spacesuits. As gasses that are relevant to combustion and pyrolysis have absorption features in the midinfrared range, it is possible to utilize absorption spectroscopy as a means of detecting and quantifying the concentration of these hazardous compounds. Within this work, a sensor for detecting carbon dioxide has been designed and tested autonomously on a high-altitude balloon flight. The sensor utilizes a 4.2-mm lightemitting diode source, amplitude modulation to characterize speciesmore » concentrations, and frequency modulation to characterize ambient temperature. Future work will include expanding the sensor design to detect other gases, and demonstrating suborbital flight capability.« less

  1. Development Challenges of Utilizing a Corner Cube Mechanism Design with Successful IASI Flight Heritage for the Infrared Sounder (IRS) on MTG: Recurrent Mechanical Design not Correlated to Recurrent Development

    NASA Astrophysics Data System (ADS)

    Spanoudakis, Peter; Schwab, Philippe; Kiener, Lionel; Saudan, Herve; Perruchoud, Gerald

    2015-09-01

    The Corner Cube Mechanism (CCM) design for the Infra-Red Sounder (IRS) on MTG is based on the successful mechanism currently in orbit on the Infrared Atmospheric Sounding Interferometers (IASI) on the Metop satellites. The overall CCM performance is described with attention given to the specific design developments for the MTG project. A description is presented of the modifications introduced and challenges encountered to adapt the IASI space heritage design (which is only 15 years old) to meet the MTG specifications. A detailed account is provided regarding the tests performed on the adapted components for the new programme. The major issues encountered and solutions proposed are illustrated concerning the voice- coil actuator development, optical switch design, fatigue life of the flexure components and the adaptation of the launch locking device. Nevertheless, an Engineering Qualification Model was rapidly manufactured and now undergoing a qualification test campaign.

  2. KSC-08pd0083

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians look at some of the elements to be tested in the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd0082

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, some of the internal elements seen here of the ARES I-X Roll Control System, or RoCS, will undergo testing. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  4. Flight evaluation of advanced third-generation midwave infrared sensor

    NASA Astrophysics Data System (ADS)

    Shen, Chyau N.; Donn, Matthew

    1998-08-01

    In FY-97 the Counter Drug Optical Upgrade (CDOU) demonstration program was initiated by the Program Executive Office for Counter Drug to increase the detection and classification ranges of P-3 counter drug aircraft by using advanced staring infrared sensors. The demonstration hardware is a `pin-for-pin' replacement of the AAS-36 Infrared Detection Set (IRDS) located under the nose radome of a P-3 aircraft. The hardware consists of a 3rd generation mid-wave infrared (MWIR) sensor integrated into a three axis-stabilized turret. The sensor, when installed on the P- 3, has a hemispheric field of regard and analysis has shown it will be capable of detecting and classifying Suspected Drug Trafficking Aircraft and Vessels at ranges several factors over the current IRDS. This paper will discuss the CDOU system and it's lab, ground, and flight evaluation results. Test targets included target templates, range targets, dedicated target boats, and targets of opportunity at the Naval Air Warfare Center Aircraft Division and at operational test sites. The objectives of these tests were to: (1) Validate the integration concept of the CDOU package into the P-3 aircraft. (2) Validate the end-to-end functionality of the system, including sensor/turret controls and recording of imagery during flight. (3) Evaluate the system sensitivity and resolution on a set of verified resolution targets templates. (4) Validate the ability of the 3rd generation MWIR sensor to detect and classify targets at a significantly increased range.

  5. Fiber Bragg Gratings for High-Temperature Thermal Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson-Bagby, Kelly L.; Fielder, Robert S.

    2004-07-01

    Fiber Bragg grating (FBG) sensors were used as a characterization tool to study the SAFE-100 thermal simulator at the Nasa Marshal Space Flight Center. The motivation for this work was to support Nasa space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements, up to 1150 deg. C, were made with FBG temperature sensors. Additionally, FBG strain measurements were taken at elevated temperatures to provide a strain profile of the core during operation. This paper will discuss the contribution of these measurements to meet the goals of Nasa Marshallmore » Space Flight Center's Propulsion Research Center. (authors)« less

  6. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  7. Aerothermal test results from the first flight of the Pegasus air-launched space booster

    NASA Technical Reports Server (NTRS)

    Noffz, Gregory K.; Curry, Robert E.; Haering, Edward A., Jr.; Kolodziej, Paul

    1991-01-01

    A survey of temperature measurements at speeds through Mach 8.0 on the first flight of the Pegasus air-launched booster system is discussed. In addition, heating rates were derived from the temperature data obtained on the fuselage in the vicinity of the wing shock interaction. Sensors were distributed on the wing surfaces, leading edge, and on the wing-body fairing or fillet. Side-by-side evaluations were obtained for a variety of sensor installations. Details of the trajectory reconstruction through first-stage separation are provided. Given here are indepth descriptions of the sensor installations, temperature measurements, and derived heating rates along with interpretations of the results.

  8. Autonomous Flight Safety System - Phase III

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Autonomous Flight Safety System (AFSS) is a joint KSC and Wallops Flight Facility project that uses tracking and attitude data from onboard Global Positioning System (GPS) and inertial measurement unit (IMU) sensors and configurable rule-based algorithms to make flight termination decisions. AFSS objectives are to increase launch capabilities by permitting launches from locations without range safety infrastructure, reduce costs by eliminating some downrange tracking and communication assets, and reduce the reaction time for flight termination decisions.

  9. Innovative Sensors for Environmental Monitoring in Museums

    PubMed Central

    Bacci, Mauro; Cucci, Costanza; Mencaglia, Andrea Azelio; Mignani, Anna Grazia

    2008-01-01

    Different physical and chemical factors, such as light, temperature, relative humidity, pollutants and so on, can affect works of art on display. Each factor does not act individually, but its effect can be enhanced or accelerated by the presence of other factors. Accordingly, an evaluation of the impact of the whole environment on art objects is recognized as an essential requirement for conservation purposes. To meet the most up-to-date guidelines on preventive conservation, in recent years several scientific projects supported by the EC were aimed at developing innovative tools that could complement the standard methods for environmental monitoring in museums. These research projects produced a new generation of passive sensors that are capable of taking into account the overall environmental effects by mimicking in some way the behaviour of real works of art. The main goal of the present paper is to provide a survey of these sensors, which represent a new frontier in the environmental control in museums. Furthermore, the use of optical fibres, as both intrinsic sensors and devices for interrogating sensors, will also be illustrated, and examples of their use in the cultural heritage field will be reported. PMID:27879807

  10. Transition from lab to flight demo for model-based FLIR ATR and SAR-FLIR fusion

    NASA Astrophysics Data System (ADS)

    Childs, Martin B.; Carlson, Karen M.; Pujara, Neeraj

    2000-08-01

    Model-based automatic target recognition (ATR) using forward- looking infrared (FLIR) imagery, and using FLIR imagery combined with cues from a synthetic aperture radar (SAR) system, has been successfully demonstrated in the laboratory. For the laboratory demonstration, FLIR images, platform location, sensor data, and SAR cues were read in from files stored on computer disk. This ATR system, however, was intended to ultimately be flown in a fighter aircraft. We discuss the transition from laboratory demonstration to flight demonstration for this system. The obvious changes required were in the interfaces: the flight system must get live FLIR imagery from a sensor; it must get platform location, sensor data, and controls from the avionics computer in the aircraft via 1553 bus; and it must get SAR cues from the on-board SAR system, also via 1553 bus. Other changes included the transition to rugged hardware that would withstand the fighter aircraft environment, and the need for the system to be compact and self-contained. Unexpected as well as expected challenges were encountered. We discuss some of these challenges, how they were met, and the performance of the flight-demonstration system.

  11. Remote observations of reentering spacecraft including the space shuttle orbiter

    NASA Astrophysics Data System (ADS)

    Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, Jay H.; Gibson, David M.

    Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.

  12. Remote Observations of Reentering Spacecraft Including the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, jay H.; Gibson, David

    2013-01-01

    Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.

  13. Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System

    NASA Technical Reports Server (NTRS)

    Frazzini, R.; Vaughn, D.

    1975-01-01

    The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.

  14. FLASH fly-by-light flight control demonstration results overview

    NASA Astrophysics Data System (ADS)

    Halski, Don J.

    1996-10-01

    The Fly-By-Light Advanced Systems Hardware (FLASH) program developed Fly-By-Light (FBL) and Power-By-Wire (PBW) technologies for military and commercial aircraft. FLASH consists of three tasks. Task 1 developed the fiber optic cable, connectors, testers and installation and maintenance procedures. Task 3 developed advanced smart, rotary thin wing and electro-hydrostatic (EHA) actuators. Task 2, which is the subject of this paper,l focused on integration of fiber optic sensors and data buses with cable plant components from Task 1 and actuators from Task 3 into centralized and distributed flight control systems. Both open loop and piloted hardware-in-the-loop demonstrations were conducted with centralized and distributed flight control architectures incorporating the AS-1773A optical bus, active hand controllers, optical sensors, optimal flight control laws in high speed 32-bit processors, and neural networks for EHA monitoring and fault diagnosis. This paper overviews the systems level testing conducted under the FLASH Flight Control task. Preliminary results are summarized. Companion papers provide additional information.

  15. Methodologies to determine forces on bones and muscles of body segments during exercise, employing compact sensors suitable for use in crowded space vehicles

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1994-01-01

    A complete description of an instrumented ergometer system, including the sensors, the data acquisition system, and the methodologies to calculate the kinematic parameters were initially developed at Tulane University. This work was continued by the PI at NASA Johnson Space Center, where a flight ergometer was instrumented and tested during a KC-135 Zero-Gravity flight. The sensors that form part of the system include EMG probes and accelerometers mounted on the subject using the ergometer, load cells to measure pedal forces, and encoders to measure position and orientation of the pedal (foot). Currently, data from the flight test is being analyzed and processed to calculate the kinematic parameters of the individual. The formulation developed during the initial months of the grant will be used for this purpose. The system's components are compact (all sensors are very small). A salient feature of the system and associated methodology to determine the kinematics is that although it uses accelerometers, position is not determined by integration. Position is determined by determining the angle of two frames of reference for which acceleration at one point is known in coordinates of both frames.

  16. A Forest Fire Sensor Web Concept with UAVSAR

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.

    2008-12-01

    We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.

  17. Ground-based sensors for the SR-71 sonic boom propagation experiment

    NASA Technical Reports Server (NTRS)

    Norris, Stephen R.; Haering, Edward A., Jr.; Murray, James E.

    1995-01-01

    This paper describes ground-level measurements of sonic boom signatures made as part of the SR-71 sonic boom propagation experiment recently completed at NASA Dryden Flight Research Center, Edwards, California. Ground level measurements were the final stage of this experiment which also included airborne measurements at near and intermediate distances from an SR-71 research aircraft. Three types of sensors were deployed to three station locations near the aircraft ground track. Pressure data were collected for flight conditions from Mach 1.25 to Mach 1.60 at altitudes from 30,000 to 48,000 ft. Ground-level measurement techniques, comparisons of data sets from different ground sensors, and sensor system strengths and weaknesses are discussed. The well-known N-wave structure dominated the sonic boom signatures generated by the SR-71 aircraft at most of these conditions. Variations in boom shape caused by atmospheric turbulence, focusing effects, or both were observed for several flights. Peak pressure and boom event duration showed some dependence on aircraft gross weight. The sonic boom signatures collected in this experiment are being compiled in a data base for distribution in support of the High Speed Research Program.

  18. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  19. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  20. Evaluation of Algorithms for Compressing Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Cook, Sid; Harsanyi, Joseph; Faber, Vance

    2003-01-01

    With EO-1 Hyperion in orbit NASA is showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI spectral compression and Mapping Science (MSI) for JPEG 2000 spatial compression expertise, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor > 100, while retaining the necessary spectral and spatial fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our compression algorithms leverage commercial-off-the-shelf (COTS) spectral and spatial exploitation algorithms. We are currently in the process of evaluating these compression algorithms using statistical analysis and NASA scientists. We are also developing special purpose processors for executing these algorithms onboard a spacecraft.

  1. BioSentinel: Mission Development of a Radiation Biosensor to Gauge DNA Damage and Repair Beyond Low Earth Orbit on a 6U Nanosatellite

    NASA Technical Reports Server (NTRS)

    Sanchez, Hugo; Lewis, Brian; Hanel, Robert

    2015-01-01

    We are designing and developing a 6U (10 x 22 x 34 cm; 14 kg) nanosatellite as a secondary payload to fly aboard NASAs Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinels 12- to 18-month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. In order to understand the relative contributions of the space environments two dominant biological perturbations, reduced gravity and ionizing radiation, results from deep space will be directly compared to data obtained in LEO (on ISS) and on Earth. These data points will be available for validation of existing biological radiation damage and repair models, and for extrapolation to humans, to assist in mitigating risks during future long-term exploration missions beyond LEO. The BioSentinel Payload occupies 4U of the spacecraft and will utilize the monocellular eukaryotic organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from ambient space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. Yeast was selected because of 1) its similarity to cells in higher organisms, 2) the well-established history of strains engineered to measure DSB repair, 3) its spaceflight heritage, and 4) the wealth of available ground and flight reference data. The S. cerevisiae flight strain will include engineered genetic defects to prevent growth and division until a radiation-induced DSB activates the yeasts DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its successful repair. The yeast will be carried in the dry state within the 1-atm PL container in 18 separate fluidics cards with each card having 16 independent culture microwells, with integral microchannels and filters to supply nutrients and reagents, confine the yeast to the wells, and enable optical measurement. The measurement subsystem will monitor each subgroup of culture wells continuously for several weeks, optically tracking DSB-triggered cell growth and metabolism. BioSentinel will also include physical radiation sensors based on the TimePix sensor, as implemented by JSCs RadWorks group, which record individual radiation events including estimates of their linear-energy-transfer (LET) values. Radiation-dose and LET data will be compared directly to the rate of DSB-and-repair events measured by the S. cerevisiae biosentinels.

  2. Automated Rendezvous and Capture System Development and Simulation for NASA

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.; Murphy, Leslie

    2004-01-01

    The United States does not have an Automated Rendezvous and Capture/Docking (AR and C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. This reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Soviets have the capability to autonomously dock in space, but their system produces a hard docking with excessive force and contact velocity. Automated Rendezvous and Capture/Docking has been identified as a key enabling technology for the Space Launch Initiative (SLI) Program, DARPA Orbital Express and other DOD Programs. The development and implementation of an AR&C capability can significantly enhance system flexibility, improve safety, and lower the cost of maintaining, supplying, and operating the International Space Station. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR and C) system for U.S. space vehicles. This AR&C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004.

  3. Flight Test 4 Preliminary Results: NASA Ames SSI

    NASA Technical Reports Server (NTRS)

    Isaacson, Doug; Gong, Chester; Reardon, Scott; Santiago, Confesor

    2016-01-01

    Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements as well as the safety substantiation and end-to-end assessment of DAA system performance. The Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS) Project conducted flight test program, referred to as Flight Test 4, at Armstrong Flight Research Center from April -June 2016. Part of the test flights were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as JADEM (Java Architecture for DAA Extensibility and Modeling). The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Flight test 4 has four objectives: (1) validate DAA requirements in stressing cases that drive MOPS requirements, including: high-speed cooperative intruder, low-speed non-cooperative intruder, high vertical closure rate encounter, and Mode CS-only intruder (i.e. without ADS-B), (2) validate TCASDAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors and in multiple-intruder encounters against both cooperative and non-cooperative intruders, (3) validate Well Clear Recovery guidance in the presence of realistic sensor, tracking and navigational errors, and (4) validate DAA alerting and guidance requirements in the presence of realistic sensor, tracking and navigational errors. The results will be presented at RTCA Special Committee 228 in support of final verification and validation of the DAA MOPS.

  4. A multimodal micro air vehicle for autonomous flight in near-earth environments

    NASA Astrophysics Data System (ADS)

    Green, William Edward

    Reconnaissance, surveillance, and search-and-rescue missions in near-Earth environments such as caves, forests, and urban areas pose many new challenges to command and control (C2) teams. Of great significance is how to acquire situational awareness when access to the scene is blocked by enemy fire, rubble, or other occlusions. Small bird-sized aerial robots are expendable and can fly over obstacles and through small openings to assist in the acquisition and distribution of intelligence. However, limited flying space and densely populated obstacle fields requires a vehicle that is capable of hovering, but also maneuverable. A secondary flight mode was incorporated into a fixed-wing aircraft to preserve its maneuverability while adding the capability of hovering. An inertial measurement sensor and onboard flight control system were interfaced and used to transition the hybrid prototype from cruise to hover flight and sustain a hover autonomously. Furthermore, the hovering flight mode can be used to maneuver the aircraft through small openings such as doorways. An ultrasonic and infrared sensor suite was designed to follow exterior building walls until an ingress route was detected. Reactive control was then used to traverse the doorway and gather reconnaissance. Entering a dangerous environment to gather intelligence autonomously will provide an invaluable resource to any C2 team. The holistic approach of platform development, sensor suite design, and control serves as the philosophy of this work.

  5. Flight testing of a fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Finney, M. J.; Tregay, G. W.; Calabrese, P. R.

    1993-01-01

    A fiber optic temperature sensor (FOTS) system consisting of an optical probe, a flexible fiber optic cable, and an electro-optic signal processor was fabricated to measure the gas temperature in a turbine engine. The optical probe contained an emissive source embedded in a sapphire lightguide coupled to a fiber-optic jumper cable and was retrofitted into an existing thermocouple probe housing. The flexible fiber optic cable was constructed with 200 micron core, polyimide-coated fiber and was ruggedized for an aircraft environment. The electro-optic signal processing unit was used to ratio the intensities of two wavelength intervals and provided an analog output value of the indicated temperature. Subsequently, this optical sensor system was installed on a NASA Dryden F-15 Highly Integrated Digital Electronic Control (HIDEC) Aircraft Engine and several flight tests were conducted. Over the course of flight testing, the FOTS system's response was proportional to the average of the existing thermocouples sensing the changes in turbine engine thermal conditions.

  6. EC91-436-8

    NASA Image and Video Library

    1991-08-16

    The National Aeronautics and Space Administration's Systems Research Aircraft (SRA), a highly modified F-18 jet fighter, during a research flight. The former Navy aircraft was flown by NASA's Dryden Flight Research Center at Edwards Air Force Base, California, to evaluate a number of experimental aerospace technologies in a multi-year, joint NASA/DOD/industry program. Among the more than 20 experiments flight-tested were several involving fiber optic sensor systems. Experiments developed by McDonnell-Douglas and Lockheed-Martin centered on installation and maintenace techniques for various types of fiber-optic hardware proposed for use in military and commercial aircraft, while a Parker-Hannifin experiment focused in alternative fiber-optic designs for position measurement sensors as well as operational experience in handling optical sensor systems. Other experiments flown on this testbed aircraft included electronically-controlled control surface actuators, flush air data collection systems, "smart" skin antennae and laser-based systems. Incorporation of one or more of these technologies in future aircraft and spacecraft could result in signifigant savings in weight, maintenance and overall cost.

  7. The Successful Development of an Automated Rendezvous and Capture (AR&C) System for the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.

    2003-01-01

    During the 1990's, the Marshall Space Flight Center (MSFC) conducted pioneering research in the development of an automated rendezvous and capture/docking (AR&C) system for U.S. space vehicles. Development and demonstration of a rendezvous sensor was identified early in the AR&C Program as the critical enabling technology that allows automated proximity operations and docking. A first generation rendezvous sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on STS-87 and STS-95, proving the concept of a video- based sensor. A ground demonstration of the entire system and software was successfully tested. Advances in both video and signal processing technologies and the lessons learned from the two successful flight experiments provided a baseline for the development, by the MSFC, of a new generation of video based rendezvous sensor. The Advanced Video Guidance Sensor (AGS) has greatly increased performance and additional capability for longer-range operation with a new target designed as a direct replacement for existing ISS hemispherical reflectors.

  8. A stochastic global identification framework for aerospace structures operating under varying flight states

    NASA Astrophysics Data System (ADS)

    Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo

    2018-01-01

    In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing's aeroelastic response under the admissible flight states via a minimum number of estimated parameters compared to standard identification approaches. The obtained results demonstrate the high accuracy and effectiveness of the proposed global identification framework, thus constituting a first step towards the next generation of "fly-by-feel" aerospace vehicles with state awareness capabilities.

  9. Scan to Bim for 3d Reconstruction of the Papal Basilica of Saint Francis in Assisi in Italy

    NASA Astrophysics Data System (ADS)

    Angelini, M. G.; Baiocchi, V.; Costantino, D.; Garzia, F.

    2017-05-01

    The historical building heritage, present in the most of Italian cities centres, is, as part of the construction sector, a working potential, but unfortunately it requires planning of more complex and problematic interventions. However, policies to support on the existing interventions, together with a growing sensitivity for the recovery of assets, determine the need to implement specific studies and to analyse the specific problems of each site. The purpose of this paper is to illustrate the methodology and the results obtained from integrated laser scanning activity in order to have precious architectural information useful not only from the cultural heritage point of view but also to construct more operative and powerful tools, such as BIM (Building Information Modelling) aimed to the management of this cultural heritage. The Papal Basilica and the Sacred Convent of Saint Francis in Assisi in Italy are, in fact, characterized by unique and complex peculiarities, which require a detailed knowledge of the sites themselves to ensure visitor's security and safety. For such a project, we have to take in account all the people and personnel normally present in the site, visitors with disabilities and finally the needs for cultural heritage preservation and protection. This aim can be reached using integrated systems and new technologies, such as Internet of Everything (IoE), capable of connecting people, things (smart sensors, devices and actuators; mobile terminals; wearable devices; etc.), data/information/knowledge and processes to reach the desired goals. The IoE system must implement and support an Integrated Multidisciplinary Model for Security and Safety Management (IMMSSM) for the specific context, using a multidisciplinary approach.

  10. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for monitoring higher level parameters such as fauna diversity. The regenerating rainforest environment presents a number of interesting challenges for wireless sensor networks related to energy harvesting and to reliable low-power wireless communications through dense and wet vegetation. Located downstream from the Springbrook plateau, the Little Nerang and Hinze dams are the two major water supply storages for the Gold Coast region. In September 2009 we fitted methane, light, wind, and sonar sensors to our autonomous electric boat platform and successfully demonstrated autonomous collection of methane flux release data on Little Nerang Dam. Sensor and boat status data were relayed back to a human operator on the shore of the dam via a small network of our Fleck™ nodes. The network also included 4 floating nodes each fitted with a string of 6 temperature sensors for profiling temperature at different water depths. We plan to expand the network further during 2010 to incorporate floating methane nodes, additional temperature sensing nodes, as well as land-based microclimate nodes. The overall monitoring system will provide significant data to understand the connected catchment-to-storage system and will provide continuous data to monitor and understand change trends within this world heritage area.

  11. Repurposing Radiosonde Sensors for UAV Integration

    NASA Astrophysics Data System (ADS)

    Clowney, F. A.

    2015-12-01

    Radiosondes provide accurate, high-resolution meteorological data for a variety of purposes but are inefficient for studying the atmospheric boundary layer. Tethered balloons can provide greater temporal resolution but are difficult to acquire, hard to manage and limited in vertical resolution. UAVs appear to offer a more cost-effective method for gathering low-level meteorological data in situ, with a strong possibility of adding atmospheric chemistry. This potential is enhanced by the availability of new generations of small sensors along with dramatic advances in low-cost UAVs, especially rotary-wing. InterMet is using its experience in radiosonde design and manufacturing to develop sensor packages for fixed and rotary-wing UAVs, with the goal of delivering high-quality data at low cost. The challenge is to adapt affordable, high-accuracy sensors to the different UAV flight modes. Equally important is learning from the research community what is required for this data to have useful scientific value. Specific topics to be covered include data sampling and output rates, sensor response times, calibration, sensor placement, data storage and transfer, power consumption, integration with flight management systems and wind calculations. Beta test results for the iMet-XQ and iMet-XF sensor packages will be presented if available.

  12. Proteus in flight over Southern California

    NASA Image and Video Library

    2003-03-27

    Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.

  13. Proteus front view in flight

    NASA Image and Video Library

    2003-03-27

    Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.

  14. Results from a GPS Shuttle Training Aircraft flight test

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.

    1991-01-01

    A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.

  15. Ares I-X Ascent Base Environments

    NASA Technical Reports Server (NTRS)

    Mobley, B. L.; Bender, R. L.; Canabal, F.; Smith, Sheldon D.

    2011-01-01

    Plume induced base heating environments were measured during the flight of the NASA Constellation Ares I-X developmental launch vehicle, successfully flown on October 28, 2009. The Ares IX first stage is a four segment Space Shuttle derived booster with base consisting of a flared aft skirt, deceleration and tumble motors, and a thermal curtain surrounding the first stage 7.2 area ratio nozzle. Developmental Flight Instrumentation (DFI) consisted of radiometers, calorimeters, pressure transducers and gas temperature probes installed on the aft skirt and nozzle to measure the base environments. In addition, thermocouples were also installed between the layers of the flexible thermal curtain to provide insight into the curtain response to the base environments and to assist in understanding curtain failure during reentry. Plume radiation environment predictions were generated by the Reverse Monte Carlo (RMC) code and the convective base heating predictions utilized heritage MSFC empirical methods. These predictions were compared to the DFI data and results from the flight videography. Radiation predictions agreed with the flight measured data early in flight but gauge failures prevented high altitude comparisons. The convective environment comparisons demonstrated the need to improve the prediction methodology; particularly for low altitude, local plume recirculation. The convective comparisons showed relatively good agreement at altitudes greater than 50,000 feet.

  16. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab

    NASA Technical Reports Server (NTRS)

    Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL) using the FRL's 6-DOF gantry system, called the Dynamic Overhead Target System (DOTS). The target vehicle for "docking" in the laboratory was a mockup that was representative of the proposed CEV docking system, with added retroreflectors for the AVGS.' The multi-sensor test configuration used 35 open-loop test trajectories covering three major objectives: (l) sensor characterization trajectories designed to test a wide range of performance parameters; (2) CEV-specific trajectories designed to test performance during CEV-like approach and departure profiles; and (3) sensor characterization tests designed for evaluating sensor performance under more extreme conditions as might be induced during a spacecraft failure or during contingency situations. This paper describes the test development, test facility, test preparations, test execution, and test results of the multisensor series oftrajectories

  17. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Image and Video Library

    1997-04-30

    The Perseus B remotely piloted aircraft nears touchdown at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden Flight Research Center. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  18. Remote sensing and geographic database management systems applications for the protection and conservation of cultural heritage

    NASA Astrophysics Data System (ADS)

    Palumbo, Gaetano; Powlesland, Dominic

    1996-12-01

    The Getty Conservation Institute is exploring the feasibility of using remote sensing associated with a geographic database management system (GDBMS) in order to provide archaeological and historic site managers with sound evaluations of the tools available for site and information management. The World Heritage Site of Chaco Canyon, New Mexico, a complex of archeological sites dating to the 10th to the 13th centuries AD, was selected as a test site. Information from excavations conducted there since the 1930s, and a range of documentation generated by the National Park Service was gathered. NASA's John C. Stennis Space Center contributed multispectral data of the area, and the Jet Propulsion Laboratory contributed data from ATLAS (airborne terrestrial applications sensor) and CAMS (calibrated airborne multispectral scanner) scanners. Initial findings show that while 'automatic monitoring systems' will probably never be a reality, with careful comparisons of historic and modern photographs, and performing digital analysis of remotely sensed data, excellent results are possible.

  19. Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation

    PubMed Central

    Nevin, Austin; Cesaratto, Anna; Bellei, Sara; D'Andrea, Cosimo; Toniolo, Lucia; Valentini, Gianluca; Comelli, Daniela

    2014-01-01

    Applications of time-resolved photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) to the analysis of cultural heritage are presented. Examples range from historic wall paintings and stone sculptures to 20th century iconic design objects. A detailed description of the instrumentation developed and employed for analysis in the laboratory or in situ is given. Both instruments rely on a pulsed laser source coupled to a gated detection system, but differ in the type of information they provide. Applications of FLIM to the analysis of model samples and for the in-situ monitoring of works of art range from the analysis of organic materials and pigments in wall paintings, the detection of trace organic substances on stone sculptures, to the mapping of luminescence in late 19th century paintings. TRPL and FLIM are employed as sensors for the detection of the degradation of design objects made in plastic. Applications and avenues for future research are suggested. PMID:24699285

  20. D Imaging for Museum Artefacts: a Portable Test Object for Heritage and Museum Documentation of Small Objects

    NASA Astrophysics Data System (ADS)

    Hess, M.; Robson, S.

    2012-07-01

    3D colour image data generated for the recording of small museum objects and archaeological finds are highly variable in quality and fitness for purpose. Whilst current technology is capable of extremely high quality outputs, there are currently no common standards or applicable guidelines in either the museum or engineering domain suited to scientific evaluation, understanding and tendering for 3D colour digital data. This paper firstly explains the rationale towards and requirements for 3D digital documentation in museums. Secondly it describes the design process, development and use of a new portable test object suited to sensor evaluation and the provision of user acceptance metrics. The test object is specifically designed for museums and heritage institutions and includes known surface and geometric properties which support quantitative and comparative imaging on different systems. The development for a supporting protocol will allow object reference data to be included in the data processing workflow with specific reference to conservation and curation.

  1. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE PAGES

    de Boer, Gijs; Palo, Scott; Argrow, Brian; ...

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.« less

  2. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, Gijs; Palo, Scott; Argrow, Brian

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.« less

  3. Modeling and characterization of the Earth Radiation Budget Experiment (ERBE) nonscanner and scanner sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Pandey, Dhirendra K.; Taylor, Deborah B.

    1989-01-01

    The Earth Radiation Budget Experiment (ERBE) is making high-absolute-accuracy measurements of the reflected solar and Earth-emitted radiation as well as the incoming solar radiation from three satellites: ERBS, NOAA-9, and NOAA-10. Each satellite has four Earth-looking nonscanning radiometers and three scanning radiometers. A fifth nonscanner, the solar monitor, measures the incoming solar radiation. The development of the ERBE sensor characterization procedures are described using the calibration data for each of the Earth-looking nonscanners and scanners. Sensor models for the ERBE radiometers are developed including the radiative exchange, conductive heat flow, and electronics processing for transient and steady state conditions. The steady state models are used to interpret the sensor outputs, resulting in the data reduction algorithms for the ERBE instruments. Both ground calibration and flight calibration procedures are treated and analyzed. The ground and flight calibration coefficients for the data reduction algorithms are presented.

  4. Implementation of a sensor guided flight algorithm for target tracking by small UAS

    NASA Astrophysics Data System (ADS)

    Collins, Gaemus E.; Stankevitz, Chris; Liese, Jeffrey

    2011-06-01

    Small xed-wing UAS (SUAS) such as Raven and Unicorn have limited power, speed, and maneuverability. Their missions can be dramatically hindered by environmental conditions (wind, terrain), obstructions (buildings, trees) blocking clear line of sight to a target, and/or sensor hardware limitations (xed stare, limited gimbal motion, lack of zoom). Toyon's Sensor Guided Flight (SGF) algorithm was designed to account for SUAS hardware shortcomings and enable long-term tracking of maneuvering targets by maintaining persistent eyes-on-target. SGF was successfully tested in simulation with high-delity UAS, sensor, and environment models, but real- world ight testing with 60 Unicorn UAS revealed surprising second order challenges that were not highlighted by the simulations. This paper describes the SGF algorithm, our rst round simulation results, our second order discoveries from ight testing, and subsequent improvements that were made to the algorithm.

  5. Bioinspired optical sensors for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  6. Status report on the land processes aircraft science management operations working group

    NASA Technical Reports Server (NTRS)

    Lawless, James G.; Mann, Lisa J.

    1991-01-01

    Since its inception three years ago, the Land Processes Aircraft Science Management Operations Working Group (MOWG) provided recommendations on the optimal use of the Agency's aircraft in support of the Land Processes Science Program. Recommendations covered topics such as aircraft and sensor usage, development of long-range plans, Multisensor Airborne Campaigns (MAC), program balance, aircraft sensor databases, new technology and sensor development, and increased University scientist participation in the program. Impacts of these recommendations improved the efficiency of various procedures including the flight request process, tracking of flight hours, and aircraft usage. The group also created a bibliography focused on publications produced by Land Processes scientists from the use of the aircraft program, surveyed NASA funded PI's on their participation in the aircraft program, and developed a planning template for multi-sensor airborne campaigns. Benefits from these activities are summarized.

  7. On-Orbit Performance of the TRMM Mission Mode

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy; Hashmall, Joseph A.; Glickman, Jonathan; Natanson, Gregory

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System along with detailed in-flight performance results of the TRMM Mission mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency of Japan designed to monitor and study tropical rainfall and the associated release of energy. Prior to calibration, the spacecraft attitude showed larger Sun sensor yaw updates than expected. This was traced to not just sensor misalignment but also to a misalignment between the two heads within each Sun sensor. In order to avoid alteration of the flight software, Sun sensor transfer function coefficients were determined to minimize the error due to head misalignment. This paper describes the design, on-orbit checkout, calibration and performance of the TRMM Mission Mode with respect to the mission level requirements.

  8. Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated Flight Conditions

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan

    2012-01-01

    Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.

  9. Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) Project Status as of May 2010

    NASA Technical Reports Server (NTRS)

    Striepe, Scott A.; Epp, Chirold D.; Robertson, Edward A.

    2010-01-01

    This paper includes the current status of NASA s Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) Project. The ALHAT team has completed several flight tests and two major design analysis cycles. These tests and analyses examine terrain relative navigation sensors, hazard detection and avoidance sensors and algorithms, and hazard relative navigation algorithms, and the guidance and navigation system using these ALHAT functions. The next flight test is scheduled for July 2010. The paper contains results from completed flight tests and analysis cycles. ALHAT system status, upcoming tests and analyses is also addressed. The current ALHAT plans as of May 2010 are discussed. Application of the ALHAT system to landing on bodies other than the Moon is included

  10. Preliminary system design study for a digital fly-by-wire flight control system for an F-8C aircraft

    NASA Technical Reports Server (NTRS)

    Seacord, C. L.; Vaughn, D. K.

    1976-01-01

    The design of a fly-by-wire control system having a mission failure probability of less than one millionth failures per flight hour is examined. Emphasis was placed on developing actuator configurations that would improve the system performance, and consideration of the practical aspects of sensor/computer and computer/actuator interface implementation. Five basic configurations were defined as appropriate candidates for the F-8C research aircraft. Options on the basic configurations were included to cover variations in flight sensors, redundancy levels, data transmission techniques, processor input/output methods, and servo actuator arrangements. The study results can be applied to fly by wire systems for transport aircraft in general and the space shuttle.

  11. AFGL Fiscal Year 1984 Air Force Technical Objectives Document.

    DTIC Science & Technology

    1982-11-01

    the near term, to design the performance characteristics of sensors operating from the Shuttle. In the long term, these sensors will provide the...atmosphere are determined from sensors on rockets and satellites. These data, which are used to develop tailored analytic and predictive models for...toward increasing the flight time of the various vehicles. Future research and test- ing of advanced sensors will require rockets with increased

  12. Lightweight dew-/frost-point hygrometer based on a surface-acoustic-wave sensor for balloon-borne atmospheric water vapor profile sounding

    NASA Astrophysics Data System (ADS)

    Hansford, Graeme M.; Freshwater, Ray A.; Eden, Louise; Turnbull, Katharine F. V.; Hadaway, David E.; Ostanin, Victor P.; Jones, Roderic L.

    2006-01-01

    The design of a very lightweight dew-/frost-point hygrometer for balloon-borne atmospheric water vapor profiling is described. The instrument is based on a surface-acoustic-wave sensor. The low instrument weight is a key feature, allowing flights on meteorological balloons which brings many more flight opportunities. The hygrometer shows consistently good performance in the troposphere and while water vapor measurements near the tropopause and in the stratosphere are possible with the current instrument, the long-time response in these regions hampers realistic measurements. The excellent intrinsic sensitivity of the surface-acoustic-wave sensor should permit considerable improvement in the hygrometer performance in the very dry regions of the atmosphere.

  13. Proteus in flight over Rosamond Dry lakebed

    NASA Image and Video Library

    2003-03-27

    Scaled Composites' unique tandem-wing Proteus was the testbed for a series of UAV collision-avoidance flight demonstrations. An Amphitech 35GHz radar unit installed below Proteus' nose was the primary sensor for the Detect, See and Avoid tests.

  14. Optimization of digitization procedures in cultural heritage preservation

    NASA Astrophysics Data System (ADS)

    Martínez, Bea; Mitjà, Carles; Escofet, Jaume

    2013-11-01

    The digitization of both volumetric and flat objects is the nowadays-preferred method in order to preserve cultural heritage items. High quality digital files obtained from photographic plates, films and prints, paintings, drawings, gravures, fabrics and sculptures, allows not only for a wider diffusion and on line transmission, but also for the preservation of the original items from future handling. Early digitization procedures used scanners for flat opaque or translucent objects and camera only for volumetric or flat highly texturized materials. The technical obsolescence of the high-end scanners and the improvement achieved by professional cameras has result in a wide use of cameras with digital back to digitize any kind of cultural heritage item. Since the lens, the digital back, the software controlling the camera and the digital image processing provide a wide range of possibilities, there is necessary to standardize the methods used in the reproduction work leading to preserve as high as possible the original item properties. This work presents an overview about methods used for camera system characterization, as well as the best procedures in order to identify and counteract the effect of the lens residual aberrations, sensor aliasing, image illumination, color management and image optimization by means of parametric image processing. As a corollary, the work shows some examples of reproduction workflow applied to the digitization of valuable art pieces and glass plate photographic black and white negatives.

  15. High-accuracy 3-D modeling of cultural heritage: the digitizing of Donatello's "Maddalena".

    PubMed

    Guidi, Gabriele; Beraldin, J Angelo; Atzeni, Carlo

    2004-03-01

    Three-dimensional digital modeling of Heritage works of art through optical scanners, has been demonstrated in recent years with results of exceptional interest. However, the routine application of three-dimensional (3-D) modeling to Heritage conservation still requires the systematic investigation of a number of technical problems. In this paper, the acquisition process of the 3-D digital model of the Maddalena by Donatello, a wooden statue representing one of the major masterpieces of the Italian Renaissance which was swept away by the Florence flood of 1966 and successively restored, is described. The paper reports all the steps of the acquisition procedure, from the project planning to the solution of the various problems due to range camera calibration and to material non optically cooperative. Since the scientific focus is centered on the 3-D model overall dimensional accuracy, a methodology for its quality control is described. Such control has demonstrated how, in some situations, the ICP-based alignment can lead to incorrect results. To circumvent this difficulty we propose an alignment technique based on the fusion of ICP with close-range digital photogrammetry and a non-invasive procedure in order to generate a final accurate model. In the end detailed results are presented, demonstrating the improvement of the final model, and how the proposed sensor fusion ensure a pre-specified level of accuracy.

  16. Flight Demonstration of a Milli-Arcsecond Optical Pointing System for Direct Exoplanet Imaging

    NASA Astrophysics Data System (ADS)

    Mendillo, Christopher; Chakrabarti, S.; Cook, T.; Hicks, B.

    2012-01-01

    The PICTURE (Planetary Imaging Concept Testbed Using a Rocket Experiment) sounding rocket attempted to use a white-light nulling interferometer to image the exozodiacal dust disk of Epsilon Eridani (K2V, 3.22 pc) in reflected visible light down to an inner radius of 3 AU. PICTURE launched from White Sands Missile Range on October 8th, 2011. Unfortunately, the main science telemetry channel was lost seconds into flight and no science data was recovered. However, on-board diagnostic data does show that PICTURE successfully demonstrated a fast (200 Hz) optical tracking system that provided 2 milli-arcsecond in-flight pointing stability, a thousand-fold improvement over the raw pointing of the rocket's attitude control system (ACS). The PICTURE flight provides heritage for a technology that will be a key component for many future direct exoplanet imaging missions. We present a spectral analysis of the 200 Hz tracking data in comparison to the 50 Hz ACS gyro data and we provide a precise measurement of the true ACS performance at frequencies higher than 5 Hz where the ACS gyros become noise limited. This work is funded by NASA grant: NNG05WC17G.

  17. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  18. Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Stewart, James; Eslinger, Robert

    1990-01-01

    Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.

  19. A Methodology to Assess the Impact of Optical and Electronic Crosstalk in a New Generation of Sensors Using Heritage Sensors

    NASA Technical Reports Server (NTRS)

    Oudrari, Hassan; Schwarting, Thomas; Chiang, Kwo-Fu; McIntire, Jeff; Pan, Chunhui; Xiong, Xiaoxiong; Butler, James

    2010-01-01

    Electronic and optical crosstalk are radiometric challenges that often exist in the focal plane design in many sensors Such as MODIS. A methodology is described to assess the impact due to optical and electronic crosstalk on the measured radiance, and thereafter, the retrieval of geophysical products using MODIS Level I data sets. Based on a postulated set of electronic and optical crosstalk coefficients, and a set of MODIS scenes, we have simulated a system signal contamination on any detector on a focal plane when another detector on that focal plane is stimulated with a geophysical signal. The original MODIS scenes and the crosstalk impacted scenes can be used with validated geophysical algorithms to derive the final data products. Products contaminated with crosstalk are then compared to those without contamination to assess the impact magnitude and location, and will allow us to separate Out-Of-Band (OOB) leaks from hand-to-hand optical crosstalk, and identify potential failures to meet climate research requirements.

  20. Experimental program to determine long term characteristics of the MDE pressure transducers

    NASA Technical Reports Server (NTRS)

    Parker, C. D.

    1973-01-01

    The pressure cell sensors developed for the Pioneer 10/G meteoroid detection experiments (MDE) were investigated to enhance their application and their potential as a sensor in other MDE applications. Their Paschen characteristics were also investigated, and the effects of variations in geometry, Ni-63 platings (for initial ionizations) and sealing pressures were determined. The effects of extensive pre-flight testing and proton and heavy ion space radiation were investigated. Flight-quality pressure panels/cells were committed to long term testing to demonstrate their suitability for the Pioneer 10/G Missions.

  1. In-flight wobble identification for Galileo

    NASA Technical Reports Server (NTRS)

    Lai, J. Y.; Wong, E. C.

    1984-01-01

    To achieve in-flight wobble compensation for Galileo, wobble identification is implemented using star scanner data or automatic gain control (AGC) signal as measurement in all-spin mode. The star scanner provides spacecraft attitude in inertial space while the AGC signal provides the spacecraft pointing relative to earth. A linear observation model is defined for each sensor which is being applied to a Kalman Estimator. It can be shown from simulation that better result can be achieved using a combined set of data than any one sensor alone due to correlation reduction among error sources.

  2. Flight software operation of the Hubble Space Telescope fine guidance sensor

    NASA Technical Reports Server (NTRS)

    Rodden, J. J.; Dougherty, H. J.; Cormier, D. J.

    1988-01-01

    The Hubble Space Telescope (HST) is to carry five major scientific instruments to collect imagery, spectrographic, and photometric astronomical data. The Pointing Control System is designed to achieve pointing accuracies and line of sight jitter levels an order of magnitude less than can be achieved with ground mounted telescopes. This paper describes the operation of the pointing control system flight software in targeting a celestial object in a science instrument aperture and in performing the coordinate transformations necessary for commanding the fine guidance sensor and determining the attitude-error corrections.

  3. Advances in terrestrial physics research at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1987-01-01

    Some past, current, and future terrestrial physics research activities at NASA/Goddard Space Flight Center are described. The uses of satellites and sensors, such as Tiros, Landsat, Nimbus, and SMMR, for terrestrial physics research are discussed. The spaceborne data are applicable for monitoring and studying vegetation, snow, and ice dynamics; geological features; soil moisture; water resources; the geoid of the earth; and the earth's magnetic field. Consideration is given to improvements in remote sensing systems and data records and the Earth Observing System sensor concepts.

  4. Helmet-Mounted Display Symbology and Stabilization Concepts

    NASA Technical Reports Server (NTRS)

    Newman, Richard L.

    1995-01-01

    The helmet-mounted display (HMD) presents flight, sensor, and weapon information in the pilot's line of sight. The HMD was developed to allow the pilot to retain aircraft and weapon information and to view sensor images while looking off boresight.

  5. An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi

    1998-01-01

    NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.

  6. Semiautonomous Avionics-and-Sensors System for a UAV

    NASA Technical Reports Server (NTRS)

    Shams, Qamar

    2006-01-01

    Unmanned Aerial Vehicles (UAVs) autonomous or remotely controlled pilotless aircraft have been recently thrust into the spotlight for military applications, for homeland security, and as test beds for research. In addition to these functions, there are many space applications in which lightweight, inexpensive, small UAVS can be used e.g., to determine the chemical composition and other qualities of the atmospheres of remote planets. Moreover, on Earth, such UAVs can be used to obtain information about weather in various regions; in particular, they can be used to analyze wide-band acoustic signals to aid in determining the complex dynamics of movement of hurricanes. The Advanced Sensors and Electronics group at Langley Research Center has developed an inexpensive, small, integrated avionics-and-sensors system to be installed in a UAV that serves two purposes. The first purpose is to provide flight data to an AI (Artificial Intelligence) controller as part of an autonomous flight-control system. The second purpose is to store data from a subsystem of distributed MEMS (microelectromechanical systems) sensors. Examples of these MEMS sensors include humidity, temperature, and acoustic sensors, plus chemical sensors for detecting various vapors and other gases in the environment. The critical sensors used for flight control are a differential- pressure sensor that is part of an apparatus for determining airspeed, an absolute-pressure sensor for determining altitude, three orthogonal accelerometers for determining tilt and acceleration, and three orthogonal angular-rate detectors (gyroscopes). By using these eight sensors, it is possible to determine the orientation, height, speed, and rates of roll, pitch, and yaw of the UAV. This avionics-and-sensors system is shown in the figure. During the last few years, there has been rapid growth and advancement in the technological disciplines of MEMS, of onboard artificial-intelligence systems, and of smaller, faster, and smarter wireless telemetry systems. The major attraction of MEMS lies in orders-of-magnitude reductions of power requirements relative to traditional electronic components that perform equivalent functions. In addition, the compactness of MEMS, relative to functionally equivalent traditional electronics systems, makes MEMS attractive for UAV applications. Recent advances in MEMS have made it possible to produce pressure, acceleration, humidity, and temperature sensors having masses in subgram range and possessing sensitivities and accuracies comparable to those of larger devices.

  7. SDIO Workshop on Piezoelectric Ceramic Actuators for Space Applications Held in Alexandria, Virginia on 25 February 1992

    DTIC Science & Technology

    1992-06-01

    the cryocooler , to prevent the cold finger from moving. These actuators (p. D-74) are of the Physik P-842.10 Low Voltage Piezo Translator type ,21 about...accepting a new technology without flight cold finger on an existing, advanced Stirling cryocooler . heritage. Therefore, M&S has initiated plans for a...VA 222024302. and to t Ofoo* of Management and Budget. Papoww k RoJCwOn Pnyect 1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 3. REPORT TYPE AND

  8. Laser Remote Sensing From ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)

    NASA Technical Reports Server (NTRS)

    Rodier, Sharon; Vaughan, Mark; Palm, Steve; Jensen, Mike; Yorks, John; McGill, Matt; Trepte, Chip; Murray, Tim; Lee, Kam-Pui

    2015-01-01

    The Cloud-Aerosol Transport System (CATS) instrument was developed at NASA's Goddard Space Flight Center (GSFC) and deployed to the International Space Station (ISS) on 10 January 2015. CATS is mounted on the Japanese Experiment Module's Exposed Facility (JEM_EF) and will provide near-continuous, altitude-resolved measurements of clouds and aerosols in the Earth's atmosphere. The CATS ISS orbit path provides a unique opportunity to capture the full diurnal cycle of cloud and aerosol development and transport, allowing for studies that are not possible with the lidar aboard the CALIPSO platform, which flies in the sun-synchronous A-Train orbit." " One of the primary science objectives of CATS is to continue the CALIPSO aerosol and cloud profile data record to provide continuity of lidar climate observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at NASA's Goddard Space Flight Center (GSFC) and the CALIPSO project at NASA's Langley Research Center (LaRC) are closely collaborating to develop and deliver a full suite of CALIPSO-like level 2 data products that will be produced using the newly acquired CATS level 1B data whenever CATS is operating in science modes 1. The CALIPSO mission is now well into its ninth year of on-orbit operations, and has developed a robust set of mature and well-validated science algorithms to retrieve the spatial and optical properties of clouds and aerosols from multi-wavelength lidar backscatter signals. By leveraging both new and existing NASA technical resources, this joint effort by the CATS and CALIPSO teams will deliver validated lidar data sets to the user community at the earliest possible opportunity. The science community will have access to two sets of CATS Level 2 data products. The "Operational" data products will be produced by the GSFC CATS team utilizing the new instrument capabilities (e.g., multiple FOVs and 1064 nm depolarization), while the "Heritage" data products created using the existing CALIPSO algorithms and the CATS 532 nm channels and the total 1064 nm channel. " Below is the development of the CATS "Heritage" level 2 software and data along with some initial results with operational data."

  9. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Image and Video Library

    1998-04-30

    The Perseus B remotely piloted aircraft approaches the runway at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden flight Research Center in April 1998. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  10. Subsonic stability and control flight test results of the Space Shuttle /tail cone off/

    NASA Technical Reports Server (NTRS)

    Cooke, D. R.

    1980-01-01

    The subsonic stability and control testing of the Space Shuttle Orbiter in its two test flights in the tailcone-off configuration is discussed, and test results are presented. Flight test maneuvers were designed to maximize the quality and quantity of stability and control data in the minimal time allotted using the Space Shuttle Functional Simulator and the Modified Maximum Likelihood Estimator (MMLE) programs, and coefficients were determined from standard sensor data sets using the MMLE, despite problems encountered in timing due to the different measurement systems used. Results are included for lateral directional and longitudinal maneuvers as well as the Space Shuttle aerodynamic data base obtained using the results of wind tunnel tests. The flight test data are found to permit greater confidence in the data base since the differences found are well within control system capability. It is suggested that the areas of major differences, including lateral directional data with open speedbrake, roll due to rudder and normal force due to elevon, be investigated in any further subsonic flight testing. Improvements in sensor data and data handling techniques for future orbital test flights are indicated.

  11. Using UAV's to Measure the Urban Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jacob, R. L.; Sankaran, R.; Beckman, P. H.

    2015-12-01

    The urban boundary layer is one of the most poorly studied regions of the atmospheric boundary layer. Since a majority of the world's population now lives in urban areas, it is becoming a more important region to measure and model. The combination of relatively low-cost unmanned aerial vehicles and low-cost sensors can together provide a new instrument for measuring urban and other boundary layers. We have mounted a new sensor and compute platform called Waggle on an off-the-shelf XR8 octo-copter from 3DRobotics. Waggle consists of multiple sensors for measuring pressure, temperature and humidity as well as trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. A single board computer running Linux included in Waggle on the UAV allows in-situ processing and data storage. Communication of the data is through WiFi or 3G and the Waggle software can save the data in case communication is lost during flight. The flight pattern is a deliberately simple vertical ascent and descent over a fixed location to provide vertical profiles and so flights can be confined to urban parks, industrial areas or the footprint of a single rooftop. We will present results from test flights in urban and rural areas in and around Chicago.

  12. Development of Cloud-Based UAV Monitoring and Management System

    PubMed Central

    Itkin, Mason; Kim, Mihui; Park, Younghee

    2016-01-01

    Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation. PMID:27854267

  13. Development of Cloud-Based UAV Monitoring and Management System.

    PubMed

    Itkin, Mason; Kim, Mihui; Park, Younghee

    2016-11-15

    Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation.

  14. AVIRIS performance during the 1987 flight season: An AVIRIS project assessment and summary of the NASA-sponsored performance evaluation

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Porter, Wallace M.; Reimer, John H.; Chrien, Thomas G.; Green, Robert O.

    1988-01-01

    Results are presented of the assessment of AVIRIS performance during the 1987 flight season by the AVIRIS project and the earth scientists who were chartered by NASA to conduct an independent data quality and sensor performance evaluation. The AVIRIS evaluation program began in late June 1987 with the sensor meeting most of its design requirements except for signal-to-noise ratio in the fourth spectrometer, which was about half of the required level. Several events related to parts failures and design flaws further reduced sensor performance over the flight season. Substantial agreement was found between the assessments by the project and the independent investigators of the effects of these various factors. A summary of the engineering work that is being done to raise AVIRIS performance to its required level is given. In spite of degrading data quality over the flight season, several exciting scientific results were obtained from the data. These include the mapping of the spatial variation of atmospheric precipitable water, detection of environmentally-induced shifts in the spectral red edge of stressed vegetation, detection of spectral features related to pigment, leaf water and ligno-cellulose absorptions in plants, and the identification of many diagnostic mineral absorption features in a variety of geological settings.

  15. Pegasus Mated to B-52 Mothership - First Flight

    NASA Image and Video Library

    1989-11-09

    The Pegasus air-launched space booster is carried aloft under the right wing of NASA's B-52 carrier aircraft on its first captive flight from the Dryden Flight Research Center, Edwards, California. The first of two scheduled captive flights was completed on November 9, 1989. Pegasus is used to launch satellites into low-earth orbits cheaply. In 1997, a Pegasus rocket booster was also modified to test a hypersonic experiment (PHYSX). An experimental "glove," installed on a section of its wing, housed hundreds of temperature and pressure sensors that sent hypersonic flight data to ground tracking facilities during the experiment’s flight.

  16. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation

    PubMed Central

    Lee, Jisun; Kwon, Jay Hyoun; Yu, Myeongjong

    2015-01-01

    In this study, simulation tests for gravity gradient referenced navigation (GGRN) are conducted to verify the effects of various factors such as database (DB) and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN). In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available. PMID:26184212

  17. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli

    PubMed Central

    Fuller, Sawyer B.; Karpelson, Michael; Censi, Andrea; Ma, Kevin Y.; Wood, Robert J.

    2014-01-01

    Scaling a flying robot down to the size of a fly or bee requires advances in manufacturing, sensing and control, and will provide insights into mechanisms used by their biological counterparts. Controlled flight at this scale has previously required external cameras to provide the feedback to regulate the continuous corrective manoeuvres necessary to keep the unstable robot from tumbling. One stabilization mechanism used by flying insects may be to sense the horizon or Sun using the ocelli, a set of three light sensors distinct from the compound eyes. Here, we present an ocelli-inspired visual sensor and use it to stabilize a fly-sized robot. We propose a feedback controller that applies torque in proportion to the angular velocity of the source of light estimated by the ocelli. We demonstrate theoretically and empirically that this is sufficient to stabilize the robot's upright orientation. This constitutes the first known use of onboard sensors at this scale. Dipteran flies use halteres to provide gyroscopic velocity feedback, but it is unknown how other insects such as honeybees stabilize flight without these sensory organs. Our results, using a vehicle of similar size and dynamics to the honeybee, suggest how the ocelli could serve this role. PMID:24942846

  18. Assessing Impact of Dual Sensor Enhanced Flight Vision Systems on Departure Performance

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.

    2016-01-01

    Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS) may serve as game-changing technologies to meet the challenges of the Next Generation Air Transportation System and the envisioned Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety and operational tempos of current-day Visual Flight Rules operations irrespective of the weather and visibility conditions. One significant obstacle lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility and pilot workload of conducting departures and approaches on runways without centerline lighting in visibility as low as 300 feet runway visual range (RVR) by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance and workload was assessed. Using EFVS concepts during 300 RVR terminal operations on runways without centerline lighting appears feasible as all EFVS concepts had equivalent (or better) departure performance and landing rollout performance, without any workload penalty, than those flown with a conventional HUD to runways having centerline lighting. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  19. Development of autonomous multirotor platform for exploration missions

    NASA Astrophysics Data System (ADS)

    Czyba, Roman; Janik, Marcin; Kurgan, Oliver; Niezabitowski, Michał; Nocoń, Marek

    2016-06-01

    This paper outlines development process of unmanned multirotor aerial vehicle HF-4X, which consists of design and manufacturing semi-autonomous UAV dedicated for indoor flight, which would be capable of stable and controllable mission flight. A micro air vehicle was designed to participate in the International Micro Air Vehicle Conference and Flight Competition. In this paper much attention was paid to the structure of flight control system, stabilization algorithms, analysis of IMU sensors, fusion algorithms.

  20. Partnership Opportunities with AFRC for Wireless Systems Flight Testing

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.

  1. Flight Mechanics/Estimation Theory Symposium, 1992

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas H. (Editor)

    1993-01-01

    This conference publication includes 40 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 5-7, 1992. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  2. Flight Mechanics/Estimation Theory Symposium 1996

    NASA Technical Reports Server (NTRS)

    Greatorex, Scott (Editor)

    1996-01-01

    This conference publication includes 34 papers and abstracts presented at the Flight Mechanics/ Estimation Theory Symposium on May 14-16, 1996. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  3. Development of autonomous multirotor platform for exploration missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czyba, Roman; Janik, Marcin; Kurgan, Oliver

    This paper outlines development process of unmanned multirotor aerial vehicle HF-4X, which consists of design and manufacturing semi-autonomous UAV dedicated for indoor flight, which would be capable of stable and controllable mission flight. A micro air vehicle was designed to participate in the International Micro Air Vehicle Conference and Flight Competition. In this paper much attention was paid to the structure of flight control system, stabilization algorithms, analysis of IMU sensors, fusion algorithms.

  4. Flight Mechanics/Estimation Theory Symposium, 1994

    NASA Technical Reports Server (NTRS)

    Hartman, Kathy R. (Editor)

    1994-01-01

    This conference publication includes 41 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 17-19, 1994. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  5. Flight Mechanics/Estimation Theory Symposium, 1990

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas (Editor)

    1990-01-01

    This conference publication includes 32 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 22-25, 1990. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium features technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  6. Flight Mechanics/Estimation Theory Symposium 1995

    NASA Technical Reports Server (NTRS)

    Hartman, Kathy R. (Editor)

    1995-01-01

    This conference publication includes 41 papers and abstracts presented at the Flight Mechanics/ Estimation Theory Symposium on May 16-18, 1995. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  7. Qualification Testing of Engineering Camera and Platinum Resistance Thermometer (PRT) Sensors for Mars Science Laboratory (MSL) Project under Extreme Temperatures to Assess Reliability and to Enhance Mission Assurance

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Maki, Justin N.; Cucullu, Gordon C.

    2008-01-01

    Package Qualification and Verification (PQV) of advanced electronic packaging and interconnect technologies and various other types of qualification hardware for the Mars Exploration Rover/Mars Science Laboratory flight projects has been performed to enhance the mission assurance. The qualification of hardware (Engineering Camera and Platinum Resistance Thermometer, PRT) under extreme cold temperatures has been performed with reference to various project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times (3x) the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations and mission phases. Qualification has been performed by subjecting above flight-like qual hardware to the environmental temperature extremes and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Experiments of flight like hardware qualification test results have been described in this paper.

  8. Hadfield installs a UBNT sensor in the U.S. Laboratory

    NASA Image and Video Library

    2013-01-31

    ISS034-E-037330 (31 Jan. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, installs a Ultra-Sonic Background Noise Tests (UBNT) sensor kit behind a rack in the Destiny of the International Space Station.

  9. Performance of light sources and radiation sensors under low gravity realized by parabolic airplane flights

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro

    A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.

  10. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL) using the FRL's 6-DOF gantry system, called the Dynamic Overhead Target System (DOTS). The target vehicle for "docking" in the laboratory was a mockup that was representative of the proposed CEV docking system, with added retroreflectors for the AVGS. The multi-sensor test configuration used 35 open-loop test trajectories covering three major objectives: (1) sensor characterization trajectories designed to test a wide range of performance parameters; (2) CEV-specific trajectories designed to test performance during CEV-like approach and departure profiles; and (3) sensor characterization tests designed for evaluating sensor performance under more extreme conditions as might be induced during a spacecraft failure or during contingency situations. This paper describes the test development, test facility, test preparations, test execution, and test results of the multi-sensor series of trajectories.

  11. UAV Inspection of Electrical Transmission Infrastructure with Path Conformance Autonomy and Lidar-Based Geofences NASA Report on UTM Reference Mission Flights at Southern Company Flights November 2016

    NASA Technical Reports Server (NTRS)

    Moore, Andrew J.; Schubert, Matthew; Rymer, Nicholas; Balachandran, Swee; Consiglio, Maria; Munoz, Cesar; Smith, Joshua; Lewis, Dexter; Schneider, Paul

    2017-01-01

    Flights at low altitudes in close proximity to electrical transmission infrastructure present serious navigational challenges: GPS and radio communication quality is variable and yet tight position control is needed to measure defects while avoiding collisions with ground structures. To advance unmanned aerial vehicle (UAV) navigation technology while accomplishing a task with economic and societal benefit, a high voltage electrical infrastructure inspection reference mission was designed. An integrated air-ground platform was developed for this mission and tested in two days of experimental flights to determine whether navigational augmentation was needed to successfully conduct a controlled inspection experiment. The airborne component of the platform was a multirotor UAV built from commercial off-the-shelf hardware and software, and the ground component was a commercial laptop running open source software. A compact ultraviolet sensor mounted on the UAV can locate 'hot spots' (potential failure points in the electric grid), so long as the UAV flight path adequately samples the airspace near the power grid structures. To improve navigation, the platform was supplemented with two navigation technologies: lidar-to-polyhedron preflight processing for obstacle demarcation and inspection distance planning, and trajectory management software to enforce inspection standoff distance. Both navigation technologies were essential to obtaining useful results from the hot spot sensor in this obstacle-rich, low-altitude airspace. Because the electrical grid extends into crowded airspaces, the UAV position was tracked with NASA unmanned aerial system traffic management (UTM) technology. The following results were obtained: (1) Inspection of high-voltage electrical transmission infrastructure to locate 'hot spots' of ultraviolet emission requires navigation methods that are not broadly available and are not needed at higher altitude flights above ground structures. (2) The sensing capability of a novel airborne UV detector was verified with a standard ground-based instrument. Flights with this sensor showed that UAV measurement operations and recording methods are viable. With improved sensor range, UAVs equipped with compact UV sensors could serve as the detection elements in a self-diagnosing power grid. (3) Simplification of rich lidar maps to polyhedral obstacle maps reduces data volume by orders of magnitude, so that computation with the resultant maps in real time is possible. This enables real-time obstacle avoidance autonomy. Stable navigation may be feasible in the GPS-deprived environment near transmission lines by a UAV that senses ground structures and compares them to these simplified maps. (4) A new, formally verified path conformance software system that runs onboard a UAV was demonstrated in flight for the first time. It successfully maneuvered the aircraft after a sudden lateral perturbation that models a gust of wind, and processed lidar-derived polyhedral obstacle maps in real time. (5) Tracking of the UAV in the national airspace using the NASA UTM technology was a key safety component of this reference mission, since the flights were conducted beneath the landing approach to a heavily used runway. Comparison to autopilot tracking showed that UTM tracking accurately records the UAV position throughout the flight path.

  12. Hadfield installing UBNT Sensors in the U.S. Laboratory

    NASA Image and Video Library

    2013-02-01

    ISS034-E-038211 (1 Feb. 2013) --- Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, installs Ultra-Sonic Background Noise Tests (UBNT) sensors behind a rack in the Destiny laboratory, using the International Space Station (ISS) as Testbed for Analog Research (ISTAR) procedures. These sensors detect high frequency noise levels generated by ISS hardware and equipment operating within Destiny.

  13. Rotorcraft system identification techniques for handling qualities and stability and control evaluation

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Gupta, N. K.; Hansen, R. S.

    1978-01-01

    An integrated approach to rotorcraft system identification is described. This approach consists of sequential application of (1) data filtering to estimate states of the system and sensor errors, (2) model structure estimation to isolate significant model effects, and (3) parameter identification to quantify the coefficient of the model. An input design algorithm is described which can be used to design control inputs which maximize parameter estimation accuracy. Details of each aspect of the rotorcraft identification approach are given. Examples of both simulated and actual flight data processing are given to illustrate each phase of processing. The procedure is shown to provide means of calibrating sensor errors in flight data, quantifying high order state variable models from the flight data, and consequently computing related stability and control design models.

  14. ED07-0287-08

    NASA Image and Video Library

    2007-12-17

    Although the new fiber optic sensors on the Ikhana, which are located on fibers that are the diameter of a human hair, are not visible, the sealant used to cover them can be seen in this view from above the left wing. NASA Dryden Flight Research Center is evaluating an advanced fiber optic-based sensing technology installed on the wings of NASA's Ikhana aircraft. The fiber optic system measures and displays the shape of the aircraft's wings in flight. There are other potential safety applications for the technology, such as vehicle structural health monitoring. If an aircraft structure can be monitored with sensors and a computer can manipulate flight control surfaces to compensate for stresses on the wings, structural control can be established to prevent situations that might otherwise result in a loss of control.

  15. Mars Science Laboratory Heatshield Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  16. Evaluation of Alternate Concepts for Synthetic Vision Flight Displays With Weather-Penetrating Sensor Image Inserts During Simulated Landing Approaches

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.

    2003-01-01

    A simulation study was conducted in 1994 at Langley Research Center that used 12 commercial airline pilots repeatedly flying complex Microwave Landing System (MLS)-type approaches to parallel runways under Category IIIc weather conditions. Two sensor insert concepts of 'Synthetic Vision Systems' (SVS) were used in the simulated flights, with a more conventional electro-optical display (similar to a Head-Up Display with raster capability for sensor imagery), flown under less restrictive visibility conditions, used as a control condition. The SVS concepts combined the sensor imagery with a computer-generated image (CGI) of an out-the-window scene based on an onboard airport database. Various scenarios involving runway traffic incursions (taxiing aircraft and parked fuel trucks) and navigational system position errors (both static and dynamic) were used to assess the pilots' ability to manage the approach task with the display concepts. The two SVS sensor insert concepts contrasted the simple overlay of sensor imagery on the CGI scene without additional image processing (the SV display) to the complex integration (the AV display) of the CGI scene with pilot-decision aiding using both object and edge detection techniques for detection of obstacle conflicts and runway alignment errors.

  17. Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch readiness in December 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models will be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) forecast offices in Southern and Eastern Region. This effort is designed to help improve our understanding of the application of these data in operational settings.

  18. B-747 Vortex Alleviation Flight Tests : Ground-Based Sensor Measurements

    DOT National Transportation Integrated Search

    1982-01-01

    In 1979, a series of B-747 flight tests were carried out to study the wake-vortex alleviation produced by deploying spoilers in the landing configuration. The alleviation achieved was examined by encounters of probe aircraft and by velocity profile m...

  19. Flight Experiments for Living With a Star Space Environment Testbed (LWS-SET): Relationship to Technology

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.

    2003-01-01

    This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.

  20. Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2004-01-01

    In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.

  1. D Photographs in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kiel, St.

    2013-07-01

    This paper on providing "oo-information" (= objective object-information) on cultural monuments and sites, based on 3D photographs is also a contribution of CIPA task group 3 to the 2013 CIPA Symposium in Strasbourg. To stimulate the interest in 3D photography for scientists as well as for amateurs, 3D-Masterpieces are presented. Exemplary it is shown, due to their high documentary value ("near reality"), 3D photography support, e.g. the recording, the visualization, the interpretation, the preservation and the restoration of architectural and archaeological objects. This also includes samples for excavation documentation, 3D coordinate calculation, 3D photographs applied for virtual museum purposes and as educational tools. In addition 3D photography is used for virtual museum purposes, as well as an educational tool and for spatial structure enhancement, which in particular holds for inscriptions and in rock arts. This paper is also an invitation to participate in a systematic survey on existing international archives of 3D photographs. In this respect it is also reported on first results, to define an optimum digitization rate for analog stereo views. It is more than overdue, in addition to the access to international archives for 3D photography, the available 3D photography data should appear in a global GIS(cloud)-system, like on, e.g., google earth. This contribution also deals with exposing new 3D photographs to document monuments of importance for Cultural Heritage, including the use of 3D and single lense cameras from a 10m telescope staff, to be used for extremely low earth based airborne 3D photography, as well as for "underwater staff photography". In addition it is reported on the use of captive balloon and drone platforms for 3D photography in Cultural Heritage. It is liked to emphasize, the still underestimated 3D effect on real objects even allows, e.g., the spatial perception of extremely small scratches as well as of nuances in color differences. Though 3D photographs are a well established basic photographic and photogrammetric tool, they are still a matter of research and practical improvement: - For example, multistage concepts for 3D heritage photographs, e.g., combining before and aft images and images showing different focus, daytime etc., as well as combining 3D imagery of different sensors and comparing 3D imagery with drawings etc. and even standards for exposing and processing 3D heritage photographs are only some topics for recent research. - To advise on state-of-the-art 3D visualisation methodology for Cultural heritage purposes an updated synoptically overview, even claiming completeness, also will be dealt with. - 3D photographs increasingly should replace old fashioned subjective interpreted manual 2D drawings (in 2D only) of heritage monuments. - Currently we are witnesses of early developments, showing Cultural Heritage objects in 3D crystal as well as in 3D printings.

  2. Automated Attitude Sensor Calibration: Progress and Plans

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph; Hashmall, Joseph

    2004-01-01

    This paper describes ongoing work a NASA/Goddard Space Flight Center to improve the quality of spacecraft attitude sensor calibration and reduce costs by automating parts of the calibration process. The new calibration software can autonomously preview data quality over a given time span, select a subset of the data for processing, perform the requested calibration, and output a report. This level of automation is currently being implemented for two specific applications: inertial reference unit (IRU) calibration and sensor alignment calibration. The IRU calibration utility makes use of a sequential version of the Davenport algorithm. This utility has been successfully tested with simulated and actual flight data. The alignment calibration is still in the early testing stage. Both utilities will be incorporated into the institutional attitude ground support system.

  3. Gyroscope-reduced inertial navigation system for flight vehicle motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Xiao, Lu

    2017-01-01

    In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.

  4. EC93-42065-6

    NASA Image and Video Library

    1993-07-12

    The National Aeronautics and Space Administration's Systems Research Aircraft (SRA), a highly modified F-18 jet fighter, on an early research flight over Rogers Dry Lake. The former Navy aircraft was flown by NASA's Dryden Flight Research Center at Edwards Air Force Base, California, to evaluate a number of experimental aerospace technologies in a multi-year, joint NASA/DOD/industry program. Among the more than 20 experiments flight-tested were several involving fiber optic sensor systems. Experiments developed by McDonnell-Douglas and Lockheed-Martin centered on installation and maintenace techniques for various types of fiber-optic hardware proposed for use in military and commercial aircraft, while a Parker-Hannifin experiment focused on alternative fiber-optic designs for postion measurement sensors as well as operational experience in handling optical sensor systems. Other experiments flown on this testbed aircraft included electronically-controlled control surface actuators, flush air data collection systems, "smart" skin antennae and laser-based systems. Incorporation of one or more of these technologies in future aircraft and spacecraft could result in signifigant savings in weight, maintenance and overall cost.

  5. Progress in Insect-Inspired Optical Navigation Sensors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Chahl, Javaan; Zometzer, Steve

    2005-01-01

    Progress has been made in continuing efforts to develop optical flight-control and navigation sensors for miniature robotic aircraft. The designs of these sensors are inspired by the designs and functions of the vision systems and brains of insects. Two types of sensors of particular interest are polarization compasses and ocellar horizon sensors. The basic principle of polarization compasses was described (but without using the term "polarization compass") in "Insect-Inspired Flight Control for Small Flying Robots" (NPO-30545), NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 61. To recapitulate: Bees use sky polarization patterns in ultraviolet (UV) light, caused by Rayleigh scattering of sunlight by atmospheric gas molecules, as direction references relative to the apparent position of the Sun. A robotic direction-finding technique based on this concept would be more robust in comparison with a technique based on the direction to the visible Sun because the UV polarization pattern is distributed across the entire sky and, hence, is redundant and can be extrapolated from a small region of clear sky in an elsewhere cloudy sky that hides the Sun.

  6. Assessing Dual Sensor Enhanced Flight Vision Systems to Enable Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.

    2016-01-01

    Flight deck-based vision system technologies, such as Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS), may serve as a revolutionary crew/vehicle interface enabling technologies to meet the challenges of the Next Generation Air Transportation System Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility, pilot workload and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 ft runway visual range by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs as they made approaches to runways with and without touchdown zone and centerline lights. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance, workload, and situation awareness during extremely low visibility approach and landing operations was assessed. Results indicate that all EFVS concepts flown resulted in excellent approach path tracking and touchdown performance without any workload penalty. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  7. Flight performance using a hyperstereo helmet-mounted display: post-flight debriefing questionnaire

    NASA Astrophysics Data System (ADS)

    Kalich, Melvyn E.; Rash, Clarence E.; Harding, Thomas H.; Jennings, Sion; Craig, Gregory; Stuart, Geoffrey W.

    2009-05-01

    Helmet-mounted display (HMD) designs have faced persistent head-supported mass and center of mass (CM) problems, especially HMD designs like night vision goggles (NVG) that utilize image intensification (I2) sensors mounted forward in front of the user's eyes. Relocating I2 sensors from the front to the sides of the helmet, at or below the transverse plane through the user's head CM, can resolve most of the CM problems. However, the resulting increase in the separation between the two I2 channels effectively increases the user's interpupillary distance (IPD). This HMD design is referred to as a hyperstero design and introduces the phenomenon of hyperstereopsis, a type of visual distortion where stereoscopic depth perception is exaggerated, particularly at distances under 200 feet (~60 meters). The presence of hyperstereopsis has been a concern regarding implementation of hyperstereo HMDs for rotary-wing aircraft. To address this concern, a flight study was conducted to assess the impact of hyperstereopsis on aircraft handling proficiency and pilot acceptance. Three rated aviators with differing levels of I2 and hyperstereo HMD experience conducted a series of flights that concentrated on low-level maneuvers over a two-week period. Initial and final flights were flown with a standard issue I2 device and a production hyperstereo design HMD. Interim flights were flown only with the hyperstereo HMD. Two aviators accumulated 8 hours of flight time with the hyperstereo HMD, while the third accumulated 6.9 hours. This paper presents data collected via written questionnaires completed by the aviators during the post-flight debriefings. These data are compared to questionnaire data from a previous flight investigation in which aviators in a copilot capacity, hands not on the flight controls, accumulated 8 flight hours of flight time using a hyperstereo HMD.

  8. MISSE-6 Post-Flight Examination, Disassembly and Analysis Results

    DTIC Science & Technology

    2010-12-21

    Wiring, QCM wiring, and Rotor/ Sensor wiring. The data wiring for the Boeing experiments including QCMs and Rotor/ Sensor were labeled, removed, and...for a QCM In addition, Q9 was properly wired into datalogger D8, and the rotor sensor was properly wired into datalogger D9. Datalogger D9 was a...Wiring. Appendix B – Time-Temperature Results from Thermal Sensors distributed on MISSE-6A and MISSE-6B Appendix C - Atomic Oxygen Calculation

  9. Flight Mechanics/Estimation Theory Symposium 1988

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas (Editor)

    1988-01-01

    This conference publication includes 28 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 10 to 11, 1988. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium features technical papers on a wide range of issue related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  10. ER-2 High Altitude Solar Cell Calibration Flights

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.

    2017-01-01

    ER-2 Capability: Flights can be conducted once every one to two days during a campaign. Flight season runs from April through September. Twelve 2x2cm cells can be flown per flight, or any other configuration that fits inside of the 14.2x14.2cm illuminated area. This capacity could be doubled if the second ER-2 pod is used. Data supplied includes Isc, Voc, IV curve, and cell temperature. Other optical or atmospheric sensors can be flown as able.

  11. LIRIS flight database and its use toward noncooperative rendezvous

    NASA Astrophysics Data System (ADS)

    Mongrard, O.; Ankersen, F.; Casiez, P.; Cavrois, B.; Donnard, A.; Vergnol, A.; Southivong, U.

    2018-06-01

    ESA's fifth and last Automated Transfer Vehicle, ATV Georges Lemaître, tested new rendezvous technology before docking with the International Space Station (ISS) in August 2014. The technology demonstration called Laser Infrared Imaging Sensors (LIRIS) provides an unseen view of the ISS. During Georges Lemaître's rendezvous, LIRIS sensors, composed of two infrared cameras, one visible camera, and a scanning LIDAR (Light Detection and Ranging), were turned on two and a half hours and 3500 m from the Space Station. All sensors worked as expected and a large amount of data was recorded and stored within ATV-5's cargo hold before being returned to Earth with the Soyuz flight 38S in September 2014. As a part of the LIRIS postflight activities, the information gathered by all sensors is collected inside a flight database together with the reference ATV trajectory and attitude estimated by ATV main navigation sensors. Although decoupled from the ATV main computer, the LIRIS data were carefully synchronized with ATV guidance, navigation, and control (GNC) data. Hence, the LIRIS database can be used to assess the performance of various image processing algorithms to provide range and line-of-sight (LoS) navigation at long/medium range but also 6 degree-of-freedom (DoF) navigation at short range. The database also contains information related to the overall ATV position with respect to Earth and the Sun direction within ATV frame such that the effect of the environment on the sensors can also be investigated. This paper introduces the structure of the LIRIS database and provides some example of applications to increase the technology readiness level of noncooperative rendezvous.

  12. Development of a PPT for the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Benson, Scott W.; Arrington, Lynn A.; Hoskins, W. Andrew; Meckel, Nicole J.

    2000-01-01

    A Pulsed Plasma Thruster (PPT) has been developed for use in a technology demonstration flight experiment on the Earth Observing 1 (EO-1) New Millennium Program mission. The thruster replaces the spacecraft pitch axis momentum wheel for control and momentum management during an experiment of a minimum three-day duration. The EO-1 PPT configuration is a combination of new technology and design heritage from similar systems flown in the 1970's and 1980's. Acceptance testing of the protoflight unit has validated readiness for flight, and integration with the spacecraft, including initial combined testing, has been completed. The thruster provides a range of capability from 90 microN-sec impulse bit at 650 sec specific impulse for 12 W input power, through 860 microN-sec impulse bit at 1400 see specific impulse for 70 W input power. Development of this thruster reinitiates technology research and development and re-establishes an industry base for production of flight hardware. This paper reviews the EO-1 PPT development, including technology selection, design and fabrication, acceptance testing, and initial spacecraft integration and test.

  13. Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Lindsey, William T.; Curry, Robert E.; Gilyard, Glenn B.

    1990-01-01

    Advances in aircraft control system designs have, with increasing frequency, required that air data be used as flight control feedback. This condition requires that these data be measured with accuracy and high fidelity. Most air data information is provided by pneumatic pressure measuring sensors. Typically unsteady pressure data provided by pneumatic sensing systems are distorted at high frequencies. The distortion is a result of the pressure being transmitted to the pressure sensor through a length of connective tubing. The pressure is distorted by frictional damping and wave reflection. As a result, air data provided all-flush, pneumatically sensed air data systems may not meet the frequency response requirements necessary for flight control augmentation. Both lab and flight test were performed at NASA-Ames to investigate the effects of this high frequency distortion in remotely located pressure measurement systems. Good qualitative agreement between lab and flight data are demonstrated. Results from these tests are used to describe the effects of pneumatic distortion in terms of a simple parametric model.

  14. Design, implementation and flight testing of PIF autopilots for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.

    1983-01-01

    The designs of Proportional-Integrated-Filter (PIF) auto-pilots for a General Aviation (NAVION) aircraft are presented. The PIF autopilot uses the sampled-data regulator and command generator tracking to determine roll select, pitch select, heading select, altitude select and localizer/glideslope capture and hold autopilot modes. The PIF control law uses typical General Aviation sensors for state feedback, command error integration for command tracking, digital complementary filtering and analog prefiltering for sensor noise suppression, a control filter for computation delay accommodation and the incremental form to eliminate trim values in implementation. Theoretical developments described in detail, were needed to combine the sampled-data regulator with command generator tracking for use as a digital flight control system. The digital PIF autopilots are evaluated using closed-loop eigenvalues and linear simulations. The implementation of the PIF autopilots in a digital flight computer using a high order language (FORTRAN) is briefly described. The successful flight test results for each PIF autopilot mode is presented.

  15. New frontiers for infrared

    NASA Astrophysics Data System (ADS)

    Corsi, C.

    2015-03-01

    Infrared (IR) science and technology has been mainly dedicated to surveillance and security: since the 70's specialized techniques have been emerging in thermal imaging for medical and cultural heritage diagnostics, building and aeronautics structures control, energy savings and remote sensing. Most of these applications were developed thanks to IR FPAs sensors with high numbers of pixels and, actually, working at room temperatures. Besides these technological achievements in sensors/ receivers, advanced developments of IR laser sources up to far IR bands have been achieved in the form QCL (quantum cascade laser), allowing wide band TLC and high sensitivity systems for security. recently new sensors and sources with improved performances are emerging in the very far IR region up to submillimeter wavelengths, the so called terahertz (THz) region. A survey of the historical growth and a forecast of the future developments in Devices and Systems for the new frontier of IR will be discussed, in particular for the key questions: "From where and when is IR coming?", "Where is it now?" and "Where will it go and when?". These questions will be treated for key systems (Military/Civil), key devices (Sensors/ Sources), and new strategic technologies (Nanotech/TeraHertz).

  16. Time-of-flight camera via a single-pixel correlation image sensor

    NASA Astrophysics Data System (ADS)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  17. F-8C adaptive flight control extensions. [for maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Stein, G.; Hartmann, G. L.

    1977-01-01

    An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated.

  18. Advanced Fiber-optic Monitoring System for Space-flight Applications

    NASA Technical Reports Server (NTRS)

    Hull, M. S.; VanTassell, R. L.; Pennington, C. D.; Roman, M.

    2005-01-01

    Researchers at Luna Innovations Inc. and the National Aeronautic and Space Administration s Marshall Space Flight Center (NASA MSFC) have developed an integrated fiber-optic sensor system for real-time monitoring of chemical contaminants and whole-cell bacterial pathogens in water. The system integrates interferometric and evanescent-wave optical fiber-based sensing methodologies with atomic force microscopy (AFM) and long-period grating (LPG) technology to provide versatile measurement capability for both micro- and nano-scale analytes. Sensors can be multiplexed in an array format and embedded in a totally self-contained laboratory card for use with an automated microfluidics platform.

  19. New in-flight calibration adjustment of the Nimbus 6 and 7 earth radiation budget wide field of view radiometers

    NASA Technical Reports Server (NTRS)

    Kyle, H. L.; House, F. B.; Ardanuy, P. E.; Jacobowitz, H.; Maschhoff, R. H.; Hickey, J. R.

    1984-01-01

    In-flight calibration adjustments are developed to process data obtained from the wide-field-of-view channels of Nimbus-6 and Nimbus-7 after the failure of the Nimbus-7 longwave scanner on June 22, 1980. The sensor characteristics are investigated; the satellite environment is examined in detail; and algorithms are constructed to correct for long-term sensor-response changes, on/off-cycle thermal transients, and filter-dome absorption of longwave radiation. Data and results are presented in graphs and tables, including comparisons of the old and new algorithms.

  20. Carbon dioxide sensor. [partial pressure measurement using monochromators

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Analytical techniques for measuring CO2 were evaluated and rated for use with the advanced extravehicular mobility unit. An infrared absorption concept using a dual-wavelength monochromator was selected for investigation. A breadboard carbon dioxide sensor (CDS) was assembled and tested. The CDS performance showed the capability of measuring CO2 over the range of 0 to 4.0 kPa (0 to 30 mmHg) P sub (CO2). The volume and weight of a flight configured CDS should be acceptable. It is recommended that development continue to complete the design of a flight prototype.

Top